
History-based Access Control and

Secure Information Flow

Anindya Banerjee?1 and David A. Naumann??2

1 Department of Computing and Information Sciences
Kansas State University, Manhattan KS 66506 USA

ab@cis.ksu.edu

2 Department of Computer Science
Stevens Institute of Technology, Hoboken NJ 07030 USA

naumann@cs.stevens-tech.edu

Abstract. This paper addresses the problem of static checking of pro-
grams to ensure that they satisfy confidentiality policies in the presence
of dynamic access control in the form of Abadi and Fournet’s history-
based access control mechanism. The Java virtual machine’s permission-
based stack inspection mechanism provides dynamic access control and
is useful in protecting trusted callees from untrusted callers. In contrast,
history-based access control provides a stateful view of permissions: per-
missions after execution are at most the permissions before execution.
This allows protection of both callers and callees.

The main contributions of this paper are to provide a semantics for
history-based access control and a static analysis for confidentiality that
takes history-based access control into account. The static analysis is a
type and effects analysis where the chief novelty is the use of security
types dependent on permission state. We also show that in contrast to
stack inspection, confidential information can be leaked by the history-
based access control mechanism itself. The analysis ensures a noninter-
ference property formalizing confidentiality.

1 Introduction

Since Denning and Denning’s early work on static certification of secure infor-
mation flow [6], there have been several advances in specifying static analyses;
these advances have been comprehensively summarized in Sabelfeld and Myers’s
survey [16]. Many of these analyses are given in the style of a security type sys-
tem that is shown to enforce a noninterference property [8]. Noninterference is
expressed in terms of a lattice, with L ≤ H the canonical example: the property
says that output channels labeled L are not influenced by input channels labeled
H . The mnemonic is H for high security and L for low: with this interpretation,

? Supported in part by NSF grants CCR-0209205 and CCR-0296182.
?? Supported in part by NSF grant CCR-0208984 and New Jersey Commission on

Science and Technology.

noninterference says that public outputs do not reveal secret inputs. But non-
interference also formalizes integrity.1 Security type systems use labels not only
for external channels but also for program variables and other internal channels,
in order to impose restrictions such as absence of assignment from an H variable
to a L one.

Despite the advances, security type systems have not seen much use as non-
interference is difficult to achieve in practice for various reasons, e.g., covert
channels and declassification. One way to introduce flexibility is to consider se-
curity type systems for information flow that take access control into account.
As Sabelfeld and Myers note, access control mechanisms, by themselves, control
the release of information but not the flow of information once access has been
granted [16]. In previous work [4, 2], we studied the access control mechanism
of Java [9] and the .NET CLR [10], called stack inspection, and established a
connection between authorization of information access and the subsequent flow
of the information. With respect to security type systems, the chief technical
novelty was the use of a permission-dependent security type system and the for-
malization of noninterference for such a type system. Permissions are typically
used to license sensitive operations. Permission-dependent types can express, for
example, that to obtain a secret by reading a confidential file a certain permis-
sion is required; moreover the read operation yields no secret if the permission is
absent. Assumptions about permissions are used in the typing system to allow
certain subprograms to be ignored, namely in branches conditioned on permis-
sion tests known never to succeed.

In simple terms, the noninterference property guarantees that the access
control mechanism is serving correctly to enforce flow policy, in the sense that
once access has been granted, there is no subsequent leak of secret information.

This paper continues the investigations of our previous work [4, 2] but consid-
ers history-based access control proposed by Abadi and Fournet [1]. Stack inspec-
tion is designed for extensible systems, where computation proceeds with trusted
and untrusted code calling each other. The stack inspection mechanism is useful
in providing protection to trusted code when it is called by untrusted code; un-
trusted code can execute the trusted code with reduced powers – namely, with
permissions common to both. This provides protection because the untrusted
code is prevented from using trusted code as deputy and executing sensitive op-
erations. However, as Abadi and Fournet note, stack inspection is not useful in
providing protection to the caller. Thus, if trusted code calls untrusted code and
proceeds with the result returned by the latter – using the same permissions as
it used for the call – undesired results may occur: in proceeding with the result
returned by untrusted code, stack inspection forgets that security may depend on

1 Whereas confidentiality is about what information is leaked, integrity is about what
information is corrupted: highly trusted data should not be influenced by untrusted
inputs. If we use the same lattice as for confidentiality then integrity is dual to confi-
dentiality. But if we read H as “hacked” and L as “licensed” then to check integrity
is to check that H does not influence L. So for simplicity we confine attention to
confidentiality.

2

how, i.e., with what permissions, the result was computed in the first place. This
is because the stack frame containing the permissions is popped upon return, so
the permissions are no longer available on the stack.

To illustrate the problem, we recall the central example from Abadi and Four-
net’s paper. The Main method of a trusted class NaiveProgram, with permission
FileIO, among others, calls method TempFile of an untrusted class, BadPlugIn,
whose permissions do not include FileIO. The method happens to return a sensi-
tive document. Next, the Delete method of class File is called, with the sensitive
document as argument. Class File has all permissions, and method Delete first
checks whether FileIO is present in the currently enabled permissions; if so, the
document is deleted, otherwise, the method aborts.

In a stack inspection régime, the call NaiveProgram.Main results in deletion
of the sensitive document. This is because Delete’s code is executed with per-
missions common to NaiveProgram and File, so the check for FileIO succeeds.

In a history-based régime, the document survives, because we track permis-
sion state both before and after the call. Where stack inspection is functional, in
the sense that the security context is passed as an argument to sub-commands
including method invocations, the history based mechanism is imperative, in the
sense that the security context is a (special) state variable. The call to TempFile
returns the document together with permissions in the intersection of NaivePro-
gram and BadPlugIn, so that FileIO is excluded. Effectively, the history of how
the return result was created is recorded. Now the call to Delete takes place with
this reduced set of permissions; the check fails.

The contributions of this paper are to formalize the informal development of
common programming patterns of history-based access control in [1] and to pro-
vide a type-based analysis for secure information flow that takes history-based
access control based on such patterns into account. Some familiarity with our
previous work [3, 4, 2] will be helpful; in fact, readers familiar with our previous
work will readily observe the substantial overlap with that work. The modest
variation in this work is that the type-based analysis rules also involve an ef-
fect analysis; this effect analysis tracks not only assumptions about the initial
permission state, as in stack inspection, but also provides a conservative approx-
imation of the final permission state. A second difference is that, in contrast to
the stack inspection mechanism, the history-based mechanism is itself a covert
channel subject to nontrivial attacks. To account for such flows, our rule for
method calls in high contexts requires that the invoked method has certain per-
missions; by contrast, the other rules require absence of permissions in certain
contexts.

One of our goals is to demonstrate the flexibility of the framework described
in our previous work by showing how to handle a different access control mech-
anism. To reinforce the similarity, the technical development in this paper is
structured as in [2]. Proof cases are omitted since they are easily adapted from
corresponding ones in [2].

In passing, we note that different access control mechanisms are possible.
Our previous work on stack inspection is motivated in part because it is widely

3

deployed. The limitations of stack inspection with respect to method calls were
explained by Abadi and Fournet [1] who proposed history-based access control as
a way out. Their mechanism is designed to be similar to stack inspection which
increases its potential for use in practice and thus it merits study. It would also
be interesting to seek a more general notion of access control which subsumes
these mechanisms and others. There may be some interesting parallels between
such mechanisms and recent work on resource usage analysis, history effects,
etc. [12, 14, 13].

The rest of the paper. Section 2 introduces code-based access control via an
example and discusses stack-based and history-based access control. It also ex-
plains the security type formalism used in type-based information flow analyses.
Section 3 is the key section of the paper. It shows how access control can be
used to provide more fine-grained confidentiality policies. It also shows how, in
contrast to stack inspection, the history-based access control mechanism can it-
self be employed to leak secrets. Section 4 formalizes the syntax and semantics
of the object-oriented language we study. Section 5 gives a type-based static
analysis that enforces confidentiality. Section 6 shows the analysis at work on
the central example in Abadi and Fournet’s paper [1]. Section 7 and Section 8
give the technical details of the static analysis; the latter section states the main
result that a program deemed safe by the analysis satisfies the noninterference
property. Section 9 concludes.

2 Access control and information flow

Access control via stack inspection. In the Java access control mechanism [9],
each class C has a set Auth C of permissions associated with it; this comprises a
local access control policy. A typical policy grants few permissions to code from
remote sites and many to code residing on the local disk. The most interesting
policies concern trusted remote sites: Code which has been cryptographically
authenticated as originating at a trusted site may be granted particular permis-
sions.

Permission checks are used to guard sensitive operations. Following previous
work [7], we refrain from modeling exceptions and instead consider a construct,
test p then S1 else S2, which checks for permission p, executing S1 if the check
succeeds and S2 if it fails.

Example. We consider the following example from Section 4.1 of Abadi and
Fournet’s paper [1], adapted to our notation (e.g., type unit for void).

class BadApplet extends Object { // some permissions but not FileIO

unit Main() {
result:= NaiveLibrary.CleanUp(...”password file”...); }}

The comment indicates our assumption about the static access policy: BadApplet
does not have permission FileIO, whereas NaiveLibrary and File below are trusted
classes with all permissions.

4

class NaiveLibrary extends Object { // all permissions
unit CleanUp((string, L) s) {

File.Delete(s);}}

class File extends Object { // all permissions
unit Delete((string, L) s) {

test FileIO then Win32.Delete(s) else abort;} }

The call, BadApplet.Main() will abort. The call to NaiveLibrary.CleanUp will occur
in a context with permissions common to NaiveLibrary and BadApplet and this
context does not contain FileIO. As CleanUp calls Delete, the body of Delete will
also be executed with permissions common to the current permissions (without
FileIO) and Delete; hence the test in Delete fails – the password file survives.
This is a situation where stack inspection is satisfactory, and the history based
mechanism works the same way.

History based access control. At runtime, both stack inspection and the history
based mechanism involve a set of currently enabled permissions; it is a subset
of the statically authorized permissions of the class of the currently-executing
code. When a method is invoked, the initial permission set for the method body
is the intersection of the caller’s current set and the static permissions of the
called code. (Note that it is the class of the dynamically dispatched code that
matters, not the class of the target object.) In stack inspection, the method call
has no effect on the current permission set of the caller. In the history based
mechanism, the caller’s permissions become the intersection of their initial value
with the final permissions of the called method.

Both mechanisms include means to test and branch on the currently enabled
permissions, which we model with the test construct.

Permissions P get enabled by the construct enable P in S in stack inspec-
tion and a similar construct grant P in S for the history-based mechanism; in
both cases, what gets added to the current permission set is the intersection of
P with the statically authorized permissions, Auth C, of the current code’s class,
C.

Whereas the permission set on termination of enable P in S is the same
as its initial value, the history based construct grant P in S deals with the
final permissions of S. Specifically, the final permissions of grant P in S are
the intersection of its initial permissions and the final ones of S. Together with
the behavior of method calls described above, this ensures that for any com-
mand, the final permission set is a subset of its initial value (see Lemma 1). (In
stack inspection the final permissions are equal to the initial ones, so permission
passing can be modeled as just a parameter in the semantics.)

The history based mechanism needs a construct, accept, to allow a privi-
leged caller to retain its permissions after calling less privileged code (e.g., to
delete a file named by an untrusted applet, after checking that the named file
is not important). The effect of accept P in S is to execute S with the current
permissions Q. This results in a final permission set Q′ from S, which may be a
proper subset of Q. The permission set after accept P in S becomes Q′∪(Q∩P).

5

Note that constructs grant and accept abstract two useful programming
patterns for modifying permissions in code. Abadi and Fournet show how they
can be implemented using low-level constructs [1]. For purposes of formal anal-
ysis, however, we will stick to grant and accept in the sequel.

Checking information flow using security types. Based on earlier work on static
certification of information flow by Denning and Denning [6], the idea developed
by Volpano et al. [18] is to label not only inputs and outputs but also variables
and parameters by security types, for example replacing a variable declaration
x : T by x : (T, κ) where κ is the security level. As usual, we consider the rep-
resentative two-element lattice L ≤ H of levels. Syntax-directed typing rules
specify conditions that ensure secure flow. Overt flows, like an assignment of an
H-variable to an L-variable, are disallowed by the typing rules for assignment,
argument passing, etc. To preclude covert flow via control flow, commands are
given types com κ with the meaning that all assigned variables have at least
level κ. For a conditional, if e then S1 else S2, with e high, both S1 and S2 are
required to have type com H .

In an object-oriented language, covert flow also happens via dynamically
dispatched method call. Moreover, there is the possibility of observing differing
behavior of the allocator if objects allocated conditionally are accessible. Such
issues are treated in [15, 3]. In [3], commands are given types (com κ1, κ2) where
κ1 is a lower bound on the level of assigned variables and κ2 is a lower bound
on the heap effect (field assignments and newly allocated objects). Annotated
arrow types are used for modular checking in the case of methods (or procedures
or functions [11]): the type (T, κ1)−〈κ2〉→(U, κ3) designates an assumed input
level at most κ1; on this assumption, the heap effect (min level of fields written)
is at least κ2 and result level at most κ3. A method body is checked with respect
to its type, which is used as an assumption for checking method calls. As with
ordinary types in Java-like languages, the same type is used for all overriding
declarations.

3 Using access control for confidentiality

As mentioned in the introduction, a primary aim of our work is the static
checking of method bodies to ensure that they satisfy confidentiality policies.
However, we also want our confidentiality policies to be flexible enough to admit
a large number of programs. We allow a method to be given several types, to
allow different information flow policies to be imposed for callers with different
permissions. We explain the idea with the motivating example from our previous
work [4, 2].

Consider a trusted class Kern, having permissions stat and sys, and with
a method getStatus that can be called in more than one context. If called by
untrusted code, getStatus returns public (L) information. Trusted code, however,
can obtain private (H) information.

6

class Kern extends Object {
String Hinfo; // H
String Linfo; // L
String getHinfo() { // type () → H

test sys then result : = self.Hinfo else abort }
String getStatus() { // types () −〈∅〉→ H and () −〈{stat}〉→ L

test stat

then enable sys in result : = self.getHinfo()
else result : = self.Linfo }

. . . “other methods that manipulate Linfo and Hinfo”}

Method getHinfo is useful only to callers with permission sys. Because the se-
curity type of self.Hinfo is H , it can only be assigned to a H variable. In this
case, the body of getHinfo, it is the special variable, result, that gives the method
result. So, for the policy expressed by the type () → H , the code can be accepted
under a Smith-Volpano style analysis [18].

For getStatus, the Smith-Volpano analysis will also insist that result be typed
H , so that it satisfies the policy is () → H . But getStatus is useful both for callers
with permission stat and for those without; only the former obtain H info. So
we parameterize the policy by permission stat: if called in a context that does
not have permission stat, getStatus returns L; otherwise it returns H . The use
of negative permissions allows types that mention only permissions relevant to
implementations of the method.

More formally, method types in [4, 2] have the form

κ0, κ̄−〈P ; κ〉→κ1 (1)

This means: suppose the level of self is at most κ0, and the level of the parameters
of the method have level at most κ̄, and the method is called in a context with
permissions disjoint from P . Then the result has level at most κ1, and fields
written have level at least κ.

Using this notation, getStatus can be assigned both types L, ()−〈{stat}; H〉→L

and L, ()−〈∅; H〉→L.
In the BadApplet example in section 2, Delete can be assigned both types

L, L−〈{FileIO}; H〉→() and L, L−〈∅; H〉→(). The body of BadApplet.Main needs
to be typechecked in a context where FileIO is absent. Hence BadApplet.Main
can be assigned the type L, ()−〈{FileIO}; H〉→().

A method body must be checked against each of its declared types. A par-
ticular type gives an assumption that certain permissions are absent, and under
this assumption certain branches are known not to be taken. Typically the ig-
nored branches involve H assignments and thus ignoring these branches allows
the result to be considered L.

History based. In (1), the levels κ0, κ̄ can be read as the input channel and κ1

as the output level. For a sound static analysis, the type also tracks the write
effect κ and the corresponding judgement for commands gives a command level.

7

In the sequel we carry out this same idea for the history based mechanism, for
which we have to track the update effect on permissions. Thus method types
and command judgements include an upper bound on the final permissions; this
is made precise in section 5.

Unlike stack inspection, the history based access mechanism introduces a
covert channel. The reason is that permission changes made in the context of a
high conditional can persist outside the scope of that conditional. If some com-
mand S changes the final permission state then it can be used to leak information
by executing S under a H guard and then, after the conditional, updating L state
based on testing whether the permission state is changed. In [2] we point this out
in regard to a variation on enable that does not have a scoped sub-command
in which the permission is enabled.

The history based mechanism does not allow persistent increase of permis-
sions, but it allows persistent decrease. Here is an example attack, using an
explicit grant to establish some permission which may then be decreased by a
suitable method call.

grant p // assuming p statically authorized
in

if H-exp
then e.m() // assuming p not authorized for m
else skip;
test p then L-var := ”H-exp is false” else L-var := ”H-exp is true”

A variation uses the accept statement to allow m to be invoked in every case.

grant p // assuming p statically authorized
in

if H-exp
then e.m() // assuming p not authorized for m
else accept p in e.m();
test p then L-var := ”H-exp is false” else L-var := ”H-exp is true”

The security typing rule for method call disallows any writes to L fields by m —
this is enforced by requiring that its heap effect be H , as it is called in the scope
of a high guard. Because any code is allowed to invoke grant, test, and accept,
the (implicit) variable holding the current permissions must be treated as L and
thus changes to it too must be disallowed in H conditionals. It turns out that
this can be achieved in the static analysis by requiring that permissions that
can be enabled at the site of the call must be included in the static permissions
of all classes that provide an implementation of m. For a method call in a H

command, any implementation that could be dispatched to at that method call
site should be at least as trusted as the caller. (This condition has no counterpart
in [2].)

Just as a method type serves to specify all implementations thereof, one
can imagine stipulating the permissions that all implementations are required
to have (a link-time requirement). But in this paper we express the restriction
explicitly in the call rule.

8

T ::= bool | unit | C data type; C ranges over class names

CL ::= class C extends C { T̄ f̄ ; M̄ } public fields f̄ , public methods M̄

M ::= T m(T̄ x̄) {S} method; result type T , param. types T̄

S ::= x : = e | if e then S else S | S; S assign to variable; conditional; sequence

| T x : = e in S | x : = e.m(ē) local variable block; method call

| e.f : = e | x : = new C assign to field; construct object

| grant P in S enable permissions

| accept P in S accept permissions

| test P then S else S branch on permissions

e ::= x | null | true | false variable, constant

| e.f | e = e | e is C | (C) e field access; equality test; type test; cast

Table 1. Grammar.

4 Language

This section formalizes the sequential class-based language for which our results
are given. It is adapted from [2], but with the history-based constructs and with
the semantics changed to return the permission state from commands and meth-
ods as discussed in Section 2. We assume given a finite set, Perms , of permissions.
The semantics is given with respect to a given function Auth : ClassNames →
P(Perms) that specifies access policy. The semantic definitions are independent
of any particular information flow policy.

4.1 Syntax

The grammar is given by Table 1. It is based on given sets of class names (with
typical element C), field names (f), method names (m), and variable/parameter
names x (including distinguished names “self” and “result” for the target object
and return value). Identifiers like T̄ with bars on top indicate finite lists, e.g.,
T̄ f̄ stands for a list f̄ of field names with corresponding types T̄ . We let P, Q, R

range over sets of permissions.
We include unrestricted recursion but omit loops, super calls, and constructor

methods.
A complete program is given as a class table, CT , that associates each de-

clared class name with its declaration. The typing rules make use of auxiliary
notions that are defined in terms of CT , so the typing relation ` depends on
CT but this is elided in the notation. Because typing of each class is done in the
context of the full table, methods can be recursive (mutually) and so can field
types.

The subtyping relation ≤ on types is defined as follows. For base types,
bool ≤ bool and unit ≤ unit. For classes C and D, we define C ≤ D iff either
C = D or the class declaration for C is class C extends B { . . . } for some
B ≤ D. The typing rules are syntax-directed: Subsumption is built into the rules

9

Γ ` e1 : C (f : T) ∈ fieldsC Γ ` e2 : U U ≤ T

Γ ` e1.f : = e2

Γ ` e : D mtype(m, D) = T̄→T T ≤ Γ x Γ ` ē : Ū Ū ≤ T̄ x 6= self

Γ ` x : = e.m(ē)

P ⊆ Perms Γ ` S

Γ ` grant P in S

P ⊆ Perms Γ ` S1 Γ ` S2

Γ ` test P then S1 else S2

Table 2. Selected typing rules for commands.

rather than appearing as a separate rule, so that the semantics can be defined
by recursion on typing derivations.

Some auxiliary notations: let CT (C) = class C extends D { T̄1 f̄ ; M̄ }
and let M be in the list M̄ of method declarations, with M = T m(T̄2 x̄){S};
let mtype(m, C) = T̄2→T record typing information and let pars(m, C) = x̄

record the parameter names. Let superC = D. For fields, we define fieldsC =
f̄ : T̄1 ∪ fieldsD and assume f̄ is disjoint from the names in fieldsD. The built-
in class Object has no methods or fields. If m is inherited in C from B then
mtype(m, C) is defined to be mtype(m, B), so that mtype(m, C) is defined iff m

is declared or inherited in C.
A class table is well formed if each of its method declarations is well formed

according to the following rule.

x̄ : T̄ , self : C, result : T ` S mtype(m, superC) is undefined or equals T̄→T

pars(m, superC) is undefined or equals x̄

C ` T m(T̄ x̄){S}

A typing environment Γ is a finite function from variable names to types, written
with the usual notation x : T . A judgement of the form Γ ` e : T says that e has
type T in the context of a method of class Γ self, with parameters and local
variables declared by Γ . A judgement Γ ` S says that S is a command in the
same context. Note that access policy has no influence on typing, though of
course it does influence semantics. Typing rules for some commands appear in
Table 2. The rule for accept is the same as for grant. For other elided rules we
refer the reader to our earlier papers [4, 2].

4.2 Semantics

The state of a method in execution is comprised of a heap h, which is a finite
partial function from locations to object states, a store η, which assigns locations
and primitive values to local variables and parameters, and the currently enabled
permissions P1. Every store of interest includes the distinguished variable self
which points to the target object. A command denotes a function from initial

10

θ ::= T values of type T

| Γ store (maps variables to values)
| state C object state (maps fields to values)
| Heap heap (maps locations to object states) with no dangling loc.
| Heap ⊗ Γ ⊗P(Perms) (global) states with no dangling locations
| Heap ⊗ T ⊗P(Perms) triples (h, d, P) where value d is not a dangling loc. w.r.t. h

| θ⊥ lifting
| perms C permission sets authorized for C

| (C, x̄, T̄→T) method of C with parameters x̄ : T̄ and return type T

| MEnv method environments

[[bool]] = {true , false}

[[unit]] = {it}

[[C]] = {nil} ∪ {` | ` ∈ Loc ∧ type ` ≤ C}

[[Γ]] = {η | dom η = dom Γ ∧ η self 6= nil ∧ ∀x ∈ dom η • η x ∈ [[Γ x]]}

[[state C]] = {s | doms = dom(fields C) ∧ ∀(f : T) ∈ fieldsC • sf ∈ [[T]]}

[[Heap]] = {h | dom h ⊆fin Loc ∧ closed h ∧ ∀` ∈ dom h • h` ∈ [[state (type `)]]}
where closedh iff rng s ∩ Loc ⊆ domh for all s ∈ rng h

[[Heap ⊗ Γ ⊗P(Perms)]]

= {(h, η, P) | h ∈ [[Heap]] ∧ η ∈ [[Γ]] ∧ P ⊆ Perms ∧ rng η ∩ Loc ⊆ dom h}

[[Heap ⊗ T ⊗P(Perms)]]

= {(h, d, P) | h ∈ [[Heap]] ∧ d ∈ [[T]] ∧ P ⊆ Perms ∧ (d ∈ Loc ⇒ d ∈ domh)}

[[θ⊥]] = [[θ]] ∪ ⊥ (where ⊥ is some fresh value not in [[θ]])

[[perms C]] = {P | P ⊆ Auth C}

[[C, x̄, T̄→T]] = [[Heap ⊗ (x̄ : T̄ , self : C) ⊗P(Perms)]] → [[(Heap ⊗ T ⊗P(Perms))⊥]]

[[MEnv]] = {µ | ∀C, m • µCm is defined iff mtype(m, C) is defined,
and µCm ∈ [[C, pars(m, C),mtype(m, C)]] if µCm defined }

Table 3. Semantic domains, for given policy Auth . We write dom and rng for the
domain and range of a function.

state to either a final state or the error value ⊥. States are self-contained in the
sense that all locations in fields and in variables are in the domain of the heap.

For locations, we assume that a countable set Loc is given, along with a
distinguished entity nil not in Loc. We treat object states as mappings from
field names to values. To track the object’s class we assume given a function
type :Loc → ClassNames such that for each C there are infinitely many locations
` with type ` = C. We assume that, like nil , the three primitive values it , true,
and false are not in Loc. The semantic definitions and results are given for an
arbitrary allocator. An allocator is a location-valued function fresh such that
type(fresh(C, h)) = C and fresh(C, h) 6∈ dom h, for all C, h.

Methods are associated with classes, in a method environment. For any data
type T , the domain [[T]] is the set of values of type T . For any typing environment

11

Γ , [[Γ]] is the set of stores assigning values of appropriate type to the variables
in dom Γ . There are several other domains for which there is no corresponding
notation in the syntax. Such semantic categories, θ, together with semantic do-
mains, [[θ]], for each category are defined in Table 3; T and Γ are included in θ.
In a language like Java with garbage collection and without pointer arithmetic,
dangling locations (those not in the domain of the heap) never occur in program
states or as expression values. Capturing this in the semantics is the purpose of
the special cartesian products Heap ⊗Γ ⊗P(Perms) and Heap⊗T ⊗P(Perms).

For expressions and commands, the semantics is defined only for deriv-
able typing judgements. The meaning of an expression Γ ` e : T is a function
[[Heap ⊗ Γ]] → [[T⊥]] that takes (h, η) ∈ [[Heap ⊗ Γ]] and returns either a value
d ∈ [[T]], such that (h, d) ∈ [[Heap ⊗ T]], or the improper value ⊥ which represents
errors. The errors are null dereferences and cast failure; the other expression con-
structs are strict in ⊥. We omit the semantics of expressions and refer the reader
to our previous work [2].

The meaning of a command Γ ` S is a function

[[MEnv]] → [[Heap ⊗ Γ ⊗ perms(Γ self)]] → [[(Heap ⊗ Γ ⊗ perms(Γ self))⊥]] (2)

that takes a method environment µ (see below)and a state (h, η, R), where the
enabled permissions R ∈ perms(Γ self); it returns a possibly updated state to-
gether with the updated permissions, or ⊥ which indicates divergence or error. In
history-based access control, permissions get updated, e.g., in method calls. The
semantics of command, in Table 4, is defined by recursion on the typing deriva-
tion. A nontrivial proof obligation is that if Γ ` S is derivable then its semantics
satisfies (2), which embodies the important property that if the permissions be-
fore execution are included in Auth(Γ self), permissions after execution are also
included in Auth(Γ self).

The main distinction between stack inspection and history-based access con-
trol is that in the former, permission state (i.e., enabled permissions) after eval-
uation equals the permission state before evaluation; in the latter, permission
state after evaluation is at most the permission state before evaluation. Accord-
ingly, the semantics of commands satisfies the following property, shown by a
structural induction on commands.

Lemma 1. Suppose (h0, η0, Q0) = [[Γ ` S]]µ(h, η, R). Then Q0 ⊆ R.

A method environment µ maps each class name C and method name m (de-
clared or inherited in C) to a meaning µ C m which is an element of [[C, x̄, T̄→T]],
i.e., [[Heap ⊗ Γ ⊗P(Perms)]] → [[(Heap ⊗ T ⊗P(Perms))⊥]] where T is the re-
turn type and Γ = self : C, x̄ : T̄ is the parameter store with x̄ = pars(m, C).
The result from a method, if not ⊥, is a triple (h, d, Q) with d in [[T]] and Q in
P(Perms) such that, if d is a location then d is in the domain of h.

For a method declaration M = T m(T̄ x̄){S} in class C, define

[[M]]µ(h, η, R)

= let R′ = R ∩ Auth C in let η1 = [η | result 7→default] in

let (h0, η0, Q0) = [[x̄ : T̄ , self : C, result : T ` S]]µ(h, η1, R
′) in (h0, η0 result, Q0)

12

[[Γ ` e1.f : = e2]]µ(h, η, R)

= let ` = [[Γ ` e1 : C]](h, η) in

if ` = nil then ⊥ else let d = [[Γ ` e2 : U]](h, η) in ([h | ` 7→ [h ` | f 7→d]], η, R)

[[Γ ` x : = e.m(ē)]]µ(h, η, R)

= let ` = [[Γ ` e : D]](h, η) in if ` = nil then ⊥ else let x̄ = pars(m,D) in

let d̄ = [[Γ ` ē : Ū]](h, η) in let η1 = [x̄ 7→ d̄, self 7→ `] in

let (h0, d0, Q0) = µ(type `)m(h, η1, R) in (h0, [η | x 7→d0], R ∩ Q0)

[[Γ ` grant P ′ in S]]µ(h, η, R)

= let (h0, η0, Q0) = [[Γ ` S]]µ(h, η, R ∪ (P ′ ∩ Auth(Γ self))) in (h0, η0, R ∩ Q0)

[[Γ ` accept P ′ in S]]µ(h, η, R)

= let (h0, η0, Q0) = [[Γ ` S]]µ(h, η, R) in (h0, η0, Q0 ∪ (P ′ ∩ R ∩ Auth(Γ self)))

[[Γ ` test P then S1 else S2]]µ(h, η, R)

= if P ⊆ R then [[Γ ` S1]]µ(h, η, R) else [[Γ ` S2]]µ(h, η, R)

Table 4. Semantics of selected commands, for given policy Auth and allocator fresh .
The metalanguage construct, let d = E1 in E2, has the following meaning: If the value
of E1 is ⊥ then that is the value of the entire let expression; otherwise, its value is the
value of E2 with d bound to the value of E1. Function update or extension is written,
e.g., [η | x 7→d].

The semantics of a class table CT is a method environment, written [[CT]], given
as a least upper bound. Specifically, [[CT]] = lub µ where the ascending chain
µ ∈ N → [[MEnv]] is defined as follows.

µ0 C m = λ(h, η, R) • ⊥
µj+1 C m = [[M]]µj if m is declared as M in C

µj+1 C m = µj+1 B m if m is inherited from B in C

5 Safety

The syntactic property given by static analysis is called safety. The analysis is
specified by a typing system.

In this section we annotate the syntax of Section 4 with security labels. Where
types T occur in declarations of fields and local variables, we use pairs (T, κ)
where κ is a security level, L or H . Such a pair, written τ , is called a security
type. The grammar is revised as follows.

CL ::= class C extends C { τ̄ f̄ ; M̄ } S ::= . . . | τ x : = e in S | . . .

Note that there is no change for cast and test.
We refrain from giving concrete syntax for the security types of method

parameters, results, and effects. By analogy with the auxiliary function mtype
which gives the declared type of a method (see Section 4.1), we assume that a

13

function smtypes is given. It may assign multiple security types for a method,
each of the form κ, κ̄−〈P ; κ1; Q〉→κ2. The intended meaning is as follows: if the
method is called with arguments compatible with κ̄, target object compatible
with κ, and enabled permissions disjoint from P , then the heap effect is ≥ κ1

and the result level ≤ κ2 and the enabled permissions after the call are disjoint
from Q.

There is an ordering on method typings κ, κ̄−〈P ; κ1; Q〉→κ2. It is contravari-
ant on inputs κ, κ̄ and P and on assignables κ1, covariant on the result value κ2

and Q.

Definition 1 (subtyping). κ, κ̄−〈P ; κ1; Q〉→κ2 ≤ κ′, κ̄′−〈P ′; κ′
1; Q

′〉→κ′
2 iff

κ′ ≤ κ, κ̄′ ≤ κ̄, P ⊆ P ′, κ′
1 ≤ κ1, Q′ ⊆ Q, and κ2 ≤ κ′

2. ut

Note that P, Q are interpreted negatively, so the conditions P ⊆ P ′ and Q′ ⊆ Q

are effectively contravariant and covariant respectively.

Definition 2 (annotated class table). An annotated class table is a class
table with annotations according to the grammar above, together with a partial
function smtypes satisfying the following conditions. First, smtypes(m, C) is de-
fined iff mtype(m, C) is defined. Second, if smtypes(m, C) is defined then it is a
non-empty set of annotations of the form κ, κ̄−〈P ; κ1; Q〉→κ2. Third, if C ≤ D

and mtype(m, D) is defined then smtypes(m, C) = smtypes(m, D). ut

Note that we do not require P ⊆ Auth C or Q ⊆ Auth C. A method may
be declared in one class and inherited or overridden in a subclass with different
permissions. The third condition allows us to reason about method calls in terms
of the static type of a called method, because any implementation that can be
invoked by dynamic dispatch is checked with respect to the same security types.

We use the symbol † to erase annotations: (T, κ)† = T , and this extends
to erasure for typing environments, commands, and method declarations in an
obvious way.

Definition 3 (safe class table and method declaration). An annotated
class table CT is safe provided that each class satisfies the rule

C extends D ` M for each M ∈ M̄

` class C extends D { τ̄ f̄ ; M̄ }

The hypothesis of this rule requires that each method declaration be checked with
respect to its security types according to the following.

mtype(m, C) = T̄→T pars(m, C) = x̄

self : (C, κ0), x̄ : (T̄ , κ̄), result : (T, κ4); (P∩Auth C) ` S : (com L, κ3); (Q∩Auth C)
for each (κ0, κ̄−〈P ; κ3; Q〉→κ4) ∈ smtypes(m, C)

C extends D ` T m(T̄ x̄){S}

14

x 6= self ∆, x : (T, κ) ` e : (U, κ) U ≤ T

∆, x : (T, κ); P ` x : = e : (com κ, H);P

∆ ` e1 : (C,κ1) f : (T, κ) ∈ sfields C ∆ ` e2 : (U,κ) U ≤ T κ1 ≤ κ

∆; P ` e1.f : = e2 : (com H, κ); P

x 6= self B ≤ D

∆, x : (D, κ); P ` x : = new B : (com κ, H); P

∆, x : (T, κ) ` e : (D, κ0) mtype(m, D) = T̄ → T
′

∆, x : (T, κ) ` ē : (Ū , κ̄)
Ū ≤ T̄ x 6= self T

′ ≤ T κ
′
0, κ̄

′−〈P ′; κ′
1; Q

′〉→κ
′ ∈ smtypes(m, D)

κ
′
0, κ̄′−〈P ′; κ′

1; Q
′〉→κ

′ ≤ κ0, κ̄−〈P
′; κ1; Q

′〉→κ

P
′ ∩ Auth(∆†

self) ⊆ P Q ⊆ Q
′ ∩ Auth(∆†

self)

κ0 ≤ κ u κ1 κ = H ∧ κ1 = H ⇒ (Auth(∆†
self) − P) ⊆ (∩E≤DAuth E)

∆, x : (T, κ); P ` x : = e.m(ē) : (com κ, κ1); Q

∆; P ` S1 : (com κ1, κ2); Q1 ∆; Q1 ` S2 : (com κ1, κ2); Q

∆; P ` S1; S2 : (com κ1, κ2); Q

∆ ` e : (bool, κ)
∆; P ` S1 : (com κ1, κ2); Q ∆; P ` S2 : (com κ1, κ2); Q κ ≤ κ1 u κ2

∆; P ` if e then S1 else S2 : (com κ1, κ2); Q

∆ ` e : (U,κ) U ≤ T ∆, x : (T, κ); P ` S : (com κ1, κ2); Q

∆; P ` (T, κ) x : = e in S : (com κ1, κ2); Q

∆; (P − (P ′ ∩ Auth(∆†
self))) ` S : (com κ1, κ2); Q

∆; P ` grant P
′
in S : (com κ1, κ2); Q ∪ (P − (P ′ ∩ Auth(∆†

self)))

∆; P ` S : (com κ1, κ2); Q

∆; P ` accept P
′
in S : (com κ1, κ2); Q − (P ′ ∩ Auth(∆†

self))

P
′ ∩ P = ∅ ∧ P

′ ⊆ Auth(∆†
self)

∆; P ` S1 : (com κ1, κ2); Q ∆; P ` S2 : (com κ1, κ2); Q

∆; P ` test P
′
then S1 else S2 : (com κ1, κ2); Q

P
′ ∩ P 6= ∅ ∨ P

′ 6⊆ Auth(∆†
self) ∆; P ` S2 : (com κ1, κ2); Q

∆; P ` test P
′
then S1 else S2 : (com κ1, κ2); Q

∆; P ` S : (com κ1, κ2); Q κ3 ≤ κ1 κ4 ≤ κ2 P ⊆ P
′

Q
′ ⊆ Q

∆; P ′ ` S : (com κ3, κ4); Q
′

Table 5. Security typing rules for commands, for given Auth .

15

This rule depends on rules for expressions and commands. The rules for com-
mands are given in Table 5 but the rules for expressions are exactly the same as
the ones in [2] and hence elided. 2 ut

In the rules for expressions and commands, we write ∆ for typing environ-
ments that assign security types. A judgement ∆; P ` S : (com κ1, κ2); Q says
that if no permissions in set P are enabled initially, then S is safe, assigns only
to variables (locals and parameters) of level ≥ κ1 and to object fields of level
≥ κ2 (see Lemma 4), and no permissions in set Q are enabled finally, i.e., after
execution of S.

The rules use versions of the auxiliary functions that take security levels into
account. Let CT (C) = class C extends D { τ̄1 f̄ ; M̄ }. Corresponding to
fields, we define sfields C = f̄ : τ̄1 ∪ sfieldsD.

Judgement ∆; P ` S : (com κ1, κ2); Q is derivable provided P ⊆ Auth(∆†self)
and Q ⊆ Auth(∆†self) and the judgement is derivable using the security typing
rules.

The last rule in Table 5 is a subsumption rule.
The rule for method call is different from our work on stack inspection [2]

in that it has an extra condition for high commands: permissions that may be
enabled at the site of the call (namely, Auth(∆†self) − P) must be included
in the static permissions of all classes that provide an implementation of the
method (namely, ∩E≤DAuth E). This condition essentially disallows high com-
mands from making calls that may dynamically dispatch to untrusted code.
Because permission state is an implicit low variable, and a call to untrusted
code causes a loss of permissions, this loss can be tested by a low observer and
used to reveal secrets —recall the example attacks in section 2. Those attacks
are untypable in our system because they require permission p at the call site
for m to be included in the static permissions of m.

Note that the rule for method declaration does not restrict assignments to
local variables, i.e., it allows effect L in the hypothesis. Subsumption may be
used to get L there from H . The rule for method call has a form of subsumption
built in: it requires there to be some declared type for the method that matches
its invocation.

The second rule for test is the one that removes from consideration a branch
that cannot be taken under the assumption: the test of P ′ fails if P ′ contains
permissions assumed to be excluded or permissions that are not authorized for
the class in which this command occurs. The first rule for test handles the case
where it cannot be statically determined, from the information tracked in the
judgements, whether the test of P ′ succeeds.

Properties of security typing. For any judgement ∆; P ` S : (com κ1, κ2); Q
derivable using the security typing rules for expressions and commands, the

2 A method can have more than one type so for flexibility in checking method decla-
rations the rule must allow local variable declarations to be annotated differently for
different types. The precise formulation [2] uses † but we omit the unilluminating
complication here.

16

erased judgement ∆† ` S† is derivable using the ordinary typing rules for com-
mands. Conversely, any program typable using the ordinary typing rules for com-
mands can be annotated everywhere by L and typed by the security typing rules
for expressions and commands, taking smtypes(m, C) = {L, L̄−〈∅; L; ∅〉→L} for
all m, C. In other words, for the trivial security policy encoded by the above
security type, the analysis rejects no well formed program.

6 Example

The following example, discussed in the introduction, shows our type system at
work; in contrast to the scenario in section 3, where untrusted code calls trusted
code, here we consider the dual scenario of trusted code calling untrusted code.

class NaiveProgram extends Object {//static permissions contain all permissions
unit Main() {

(string, L) s := BadPlugIn.TempFile();
File.Delete(s); }

Suppose that NaiveProgram is a trusted class with all permissions. Next, we
consider the partially trusted class BadPlugIn whose static permissions do not
include FileIO.

class BadPlugIn extends Object {//static permissions do not contain FileIO

(string, L) TempFile() { result := “...password file...”} }

The trusted class File has all permissions and contains the method Delete, where
the file deletion operation is protected by a test of permission FileIO.

class File extends Object {//static permissions contain all permissions
unit Delete((string, L) s) {

test FileIO then Win32.Delete(s) else abort;} }

We decorate BadPlugin.TempFile() with the history-based flow policy

smtypes(TempFile, BadPlugin) = {L, ()−〈∅; H ; {FileIO}〉→L}

The code for File.Delete can be checked against the flow policy

{L, L−〈{FileIO}; H ; {FileIO}〉→(), L, L−〈∅; H ; ∅〉→()}

The first is used in a context where FileIO is absent and asserts that FileIO is
absent after the call is finished. Indeed, for this policy, the type system checks
the body of Delete in the permission context {FileIO} ∩ Auth(File), i.e., the
context {FileIO}. To type check the test, note that {FileIO} ∩ {FileIO} 6= ∅,
and Delete is accepted.

If we check NaiveProgram.Main for the policy L, ()−〈∅; H ; {FileIO}〉→(),
we have the following situation: the call to TempFile results in the excluded
permission set FileIO, which is the excluded permission set for the call to

17

Delete. We have two possibilities for the type of Delete now, but only the type
L, L−〈{FileIO}; H ; {FileIO}〉→() will do: from Table 5, rule for method call, we
have to establish {FileIO} ∩ Auth(NaiveProgram) ⊆ {FileIO} and {FileIO} ⊆
{FileIO}∩Auth(NaiveProgram). Both succeed. Hence NaiveProgram.Main is well-
typed.

Note that we could not have chosen the type L, L−〈∅; H ; ∅〉→() as the type of
Delete, since we cannot establish {FileIO} ⊆ {FileIO}∩∅ for the postcondition.

In our previous work [2], on stack inspection, the typechecker rejected Naive-
Program.Main as ill-typed. It is instructive to recall the reason: after the call
to TempFile, the call to Delete occurs in the context where no permissions are
excluded, and then the antecedent {FileIO} ∩ Auth(NaiveProgram) ⊆ ∅ fails.

7 Indistinguishability and confinement

In this section we show that if an expression is safe, i.e., accepted by the security
typing rules of Section 5, and has level L, then it is read confined : its value does
not depend on H-fields or H-variables. Moreover, if a command is safe and it
has level com H, H then it is write confined : it does not assign to L-fields or
L-variables. These two properties are the semantic counterparts of the rules “no
read up” and “no write down” that underly information flow control; the terms
“simple security” and “*-property” are also used [5].

The formalization uses the indistinguishability relation ∼ which is also used
to formulate noninterference in Section 8. States (h, η, P) and (h′, η′, P ′) may
be indistinguishable to an L observer while having different allocation of ob-
jects visible only to H . For this reason, indistinguishability is formalized using
a bijective correspondence between those locations in dom h and dom h′ that,
informally, are or have been visible to L.

Definition 4. A typed bijection is a bijective finite partial function, σ, from
Loc to Loc, such that type(σ `) = type ` for all ` in dom σ. ut

In the sequel, σ and its decorated variants range over typed bijections. We treat
partial functions as sets of ordered pairs, so σ′ ⊇ σ expresses that σ′ is an
extension of σ.

Definition 5 (indistinguishable by L). For any σ, we define relations ∼σ

for data values, object states, heaps, and stores.

` ∼σ `′ in [[C]] ⇐⇒ σ ` = `′ ∨ ` = nil = `′

d ∼σ d′ in [[T]] ⇐⇒ d = d′ for primitive types T

s ∼σ s′ in [[state C]] ⇐⇒ ∀(f : (T, κ)) ∈ sfieldsC • κ = L ⇒ sf ∼σ s′f

η ∼σ η′ in [[∆†]] ⇐⇒ ∀(x : (T, κ)) ∈ ∆ • κ = L ⇒ η x ∼σ η′ x

h ∼σ h′ in [[Heap]] ⇐⇒ dom σ ⊆ dom h ∧ rng σ ⊆ dom h′ ∧
∀`, `′ • ` ∼σ `′ ⇒ h ` ∼σ h′ `′

d ∼σ d′ in [[T⊥]] ⇐⇒ d = ⊥ = d′ ∨ (d 6= ⊥ 6= d′ ∧ d ∼σ d′ in [[T]])
P ∼σ P ′ in [[P(Perms)]] ⇐⇒ P = P ′

ut

18

For classes C, the formulation above exploits the convention that equations
involving partial functions are interpreted as false when the function is undefined.
Thus, for ` 6= nil , the relation ` ∼σ `′ holds only if ` is in dom σ. The last clause,
for T⊥, is needed to handle errors (null dereferences) in expressions.

In our model, permissions are atomic values and indistinguishability is just
equality for permission sets. In a more detailed model, permissions would be
heap objects.

Indistinguishability is not symmetric or reflexive in general. But h ∼ι h

where ι is the identity on dom h. Limited transitivity and symmetry hold, e.g.,
if h1 ∼σ h2 and h2 ∼τ h3 then h1 ∼τ◦σ h3.

One use of ∼ is to formulate, in Lemma 4 below, that if a command is typable
as (com H, κ) it does not assign to L-variables, and if it is typable as (com κ, H)
it does not assign to L-fields of objects. For this purpose we use h ∼ι h0, for
initial h and final h0, where ι is the identity on dom h. This expresses that no
L fields of initially existing objects are changed.

Each of our results about the meaning of a class table CT is proved by
induction on the approximation chain by which [[CT]] is defined. The induction
step is treated as a separate lemma about commands, in which the induction
hypothesis is an assumption about the method environment.

The security typing rules depend on permission effects. Thus, we first show
some results on the soundness of effects. The intuition is that if a safe command
is executed with permissions disjoint from the initially excluded permissions,
then the permissions produced as a result of execution are disjoint from the
final set of excluded permissions. Formalizing this intuition is the purpose of
Definition 6, Lemma 2 and Lemma 3 below.

For brevity we write Q # P for Q ∩ P = ∅.

Definition 6 (disjoint effects in method environment). Method environ-
ment µ has disjoint effects, written disj µ, if the following holds for all C, m and
all κ0, κ̄−〈P ; κ; Q〉→κ1 in smtypes(m, C). If R # P and µCm(h, η, R) 6= ⊥ then
Q # Q0, where (h0, d, Q0) = µCm(h, η, R). ut

Lemma 2 (disjoint effects in commands). Suppose ∆; P ` S : (com κ1, κ2); Q
and disj µ. For all η, h, R such that P#R, and R ⊆ Auth(∆† self), if (h0, η0, Q0) =
[[∆† ` S†]]µ(h, η, R) then Q # Q0.

Lemma 3 (safe programs have disjoint effects). If annotated class table
CT is safe then disj [[CT †]] and also disj µi for each µi in the approximation
chain for semantics of CT .

The purpose of Definition 7, Lemma 4 and Lemma 5 below is to establish
that H-commands do not assign to L-variables and L-fields of objects.

Definition 7 (write confined method environment). Method environment
µ is write confined, written wconf µ, if the following holds for all C, m and all
κ, κ̄−〈P ; H ; Q〉→κ1 in smtypes(m, C). If R#P and µCm(h, η, R) 6= ⊥ then h ∼ι

h0 where (h0, d, Q0) = µCm(h, η, R) and ι is the identity on dom h. Moreover,
if κ1 = H, then R′ = Q0 where R′ = R ∩ Auth C. ut

19

Lemma 4 (write confinement of commands). Suppose disj µ, wconf µ,
and ∆; P ` S : (com κ1, κ2); Q. For all η, h, R such that P # R, and R ⊆
Auth(∆†

self), if (h0, η0, Q0) = [[∆† ` S†]]µ(h, η, R) then: (i) κ1 = H implies
η ∼ι η0; (ii) κ2 = H implies h ∼ι h0 and (iii) κ1 = H and κ2 = H imply
R = Q0, where ι is the identity on dom h.

Note that no condition is imposed if [[∆† ` S†]]µ(h, η, R) = ⊥.

Lemma 5 (safe programs are write confined). If annotated class table CT

is safe then wconf [[CT †]] and also wconf µi for each µi in the approximation
chain for semantics of CT .

The last result in this section can be seen as a simple form of noninterference.
It says that if an expression can be typed ∆ ` e : (T, L) then its meaning is the
same in two L-indistinguishable states.

Lemma 6 (safe expressions are read confined).
Suppose ∆ ` e : (T, L) and h ∼σ h′ and η ∼σ η′. If d = [[∆† ` e : T]](h, η) and

d′ = [[∆† ` e : T]](h′, η′) then d ∼σ d′.

8 Safety implies noninterference

This section states the main result: if a class table is accepted by the security
typing rules then the method environment that it denotes satisfies noninterfer-
ence. That is, if it is safe with respect to a given flow policy then its semantics
for the given access policy does satisfy the flow policy.

Noninterference for a class table is defined in terms of noninterference of
method meanings with respect to their security types. Roughly, the idea is that
a method executed under related stores, related heaps, and related permission
states, yields related heaps. Provided smtypes of the method declares that the
level of the return result is L, the return results are also related. This idea can
be formalized (as in [2]) by saying that a method meaning d satisfies a method
type κ0, κ̄−〈P ; κ1; Q〉→κ2 iff the following holds for all σ, h, h′, η, η′,P1, P

′
1: Let

(h0, d0, Q0) = d(h, η, P1), and (h′
0, d

′
0, Q

′
0) = d(h′, η′, P1). If h ∼σ h′, η ∼σ η′,

P1 ∼σ P ′
1, and P1#P then there is τ ⊇ σ such that h0 ∼τ h′

0, Q#Q0, Q0 ∼τ Q′
0,

and (κ2 = L ⇒ d0 ∼τ d′0)

Definition 8 (noninterfering method environment). A method environ-
ment is noninterfering, written nonint µ, iff for all C, m, the meaning µCm

satisfies every κ0, κ̄−〈P ; κ1; Q〉→κ2 in smtypes(m, C). ut

Our main result is that the method environment denoted by a safe class table
is noninterfering. The proof uses lemmas which express noninterference for the
expression and command constructs, respectively.

The proof of the main theorem goes by proving noninterference of each
method environment in the approximation chain, using the following.

20

Lemma 7 (safe commands are noninterfering). Suppose disj µ, wconf µ,
nonint µ, and ∆; P ` S : (com κ1, κ2); Q. Suppose also R#P , R ⊆ Auth(∆† self),
η ∼σ η′, h ∼σ h′, R ∼σ R′, (h0, η0, Q0) = [[∆† ` S†]]µ(h, η, R) and (h′

0, η
′
0, Q

′
0) =

[[∆† ` S†]]µ(h′, η′, R′). Then there is τ ⊇ σ such that η0 ∼τ η′
0 and h0 ∼τ h′

0 and
Q0 ∼τ Q′

0.

Theorem 1 (safety implies noninterference). If annotated class table CT

is safe then its meaning [[CT †]] is noninterfering.

9 Discussion

We have formalized the history based mechanism of Abadi and Fournet and
shown how, by tracking updates of the permission state, static rules can ensure
noninterference in programs that depend on access control to prevent illegal
information flow. Unlike stack inspection, the mechanism itself introduces a new
channel of information flow, but one that can be controlled using the same sort
of type-and-effect analysis that we previously developed for stack inspection [2].
For modular (per-method) checking of dynamically dispatched method calls, we
rely on a flow policy that specifies a set of types for every method; this flow policy
is invariant with respect to subclassing. Whereas these flow types describe flows
that occur in the absence of certain permissions, a fully modular system would
also specify certain permissions required to be present. This set would be used
to check method calls in H commands. In this paper we chose to omit the latter
form of interface specification, but the call rule imposes essentially the same
condition.

Specifying the analysis in terms of a type system is convenient for proving our
noninterference result. But for practical application of the result, type inference
is needed to reduce the burden of annotation. We have developed a modular
inference algorithm for inferring security types for an object-oriented language
without dynamic access control [17]. In future work, we plan to report on security
type inference for a language with dynamic access control supporting, e.g., the
stack inspection mechanism or the history-based mechanism.

Another practical issue is to provide a syntax for flow policy. By Lemma 1,
permission state after execution is at most the permission state before execu-
tion. So it is reasonable to expect that in the analysis, the final set of excluded
permissions contain the initial set of excluded permissions. Thus in a flow policy,
κ0, κ̄−〈P ; κ; Q〉→κ1, Q can contain the permissions not already in P . To translate
this into the framework of this paper, Q can be replaced by P ∪ Q.

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proceedings
of the 10th Annual Network and Distributed System Security Symposium, pages
107–121, Feb. 2003.

21

2. A. Banerjee and D. A. Naumann. Stack-based access control and secure informa-
tion flow. Journal of Functional Programming, Special Issue on Language-based
Security. To appear.

3. A. Banerjee and D. A. Naumann. Secure information flow and pointer confine-
ment in a Java-like language. In IEEE Computer Security Foundations Workshop
(CSFW), pages 253–270. IEEE Computer Society Press, 2002.

4. A. Banerjee and D. A. Naumann. Using access control for secure information
flow in a Java-like language. In IEEE Computer Security Foundations Workshop
(CSFW), pages 155–169. IEEE Computer Society Press, 2003.

5. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, MITRE Corp., 1973.

6. D. Denning and P. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20(7):504–513, 1977.

7. C. Fournet and A. D. Gordon. Stack inspection: Theory and variants. ACM Trans.
Prog. Lang. Syst., 25(3):360–399, 2003.

8. J. Goguen and J. Meseguer. Security policies and security models. In Proceedings
of the 1982 IEEE Symposium on Security and Privacy, pages 11–20, 1982.

9. L. Gong. Inside Java 2 Platform Security. Addison-Wesley, 1999.
10. J. Gough. Compiling for the .NET Common Language Runtime. Prentice Hall,

2001.
11. N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and

integrity. In ACM Symposium on Principles of Programming Languages (POPL),
pages 365–377, 1998.

12. A. Igarashi and N. Kobayashi. Resource Usage Analysis. ACM Trans. Prog. Lang.
Syst., 2004. To appear.

13. Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of type refine-
ments. In Proceedings of the the Eighth ACM SIGPLAN International Conference
on Functional Programming (ICFP’03), Aug. 2003.

14. K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In Pro-
ceedings of the First Asian Programming Languages Symposium (APLAS), 2003.

15. A. C. Myers. JFlow: Practical mostly-static information flow control. In ACM Sym-
posium on Principles of Programming Languages (POPL), pages 228–241, 1999.

16. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5–19, Jan. 2003.

17. Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based informa-
tion flow inference for an object-oriented language. In R. Giacobazzi, editor, Static
Analysis Symposium (SAS), volume 3148 of Lecture Notes in Computer Science,
pages 84–99. Springer-Verlag, 2004.

18. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

22

