Secure Information Flow and Pointer Confinement in a Java-like Language

Anindya Banerjee David A. Naumanh
Computing and Information Sciences Computer Science
Kansas State University Stevens Institute of Technology
Manhattan KS 66506 USA Hoboken NJ 07030 USA
ab@cis.ksu.edu naumann@cs.stevens-tech.edu
Abstract building noninterference properties into the semantics in the

manner of Reynolds’ relationally parametric models [24].

We consider a sequential object-oriented language with However, it is difficult to extend such models in a tractable
pointers and mutable state, private fields and class- way to encompass language features such as recursive types
based visibility, dynamic binding and inheritance, recur- and shared mutable objects which are extensively used in
sive classes, casts and type tests, and recursive methoddanguages such as Java [2].

Programs are annotated with security levels, constrained Our contribution is to deal with dynamic memory allo-
by security typing rules. A noninterference theorem showscation and object-oriented constructs: we prove noninterfer-
how the rules ensure pointer confinement and secure infor-ence for a sequential object-oriented language with pointers
mation flow. and mutable state, private fields and class-based visibility,
dynamic binding and inheritance, casts and type tests, and
mutually recursive classes and methods. The security type
system extends that of Volpano and Smith [32] to encom-
pass data flow via mutable object fields and control flow in
dynamically dispatched method calls.

There are many channels by which sensitive informa- \yers [20] gave a security typing system for a fragment
tion can be leaked. This paper is concerned with informa- of java even richer than ours, but left open the problem of
tion flows that arise in sequential object-oriented programs jstifying the rules with a noninterference result. This is
due to control flow, data flow, and dynamic memory al- hardly surprising, as the rules are quite complicated. Some
location. Inspired by Denning's work [10, 11], Volpano, of the complications are inherent in the complexity of the
Smith and Irvine devised an elegant, syntax-directed typejanguage; others are introduced with the aim of accomodat-
system for annotating program variables, commands, andng dynamic access control and sophisticated security poli-
procedure parameters with security levels [34, 32]. Goguencies including declassification [12, 21, 20, 35].
and Meseguer [13] introduced noninterference, expressed |, the present paper, we confine attention to the problem
in terms of suitable simulation relations, to formalize infor- ¢ proving noninterference for a “realistic” sequential lan-

mation flow policies. Volpano and Smith proved that their guage (not far from JavaCard [7]), using conventional anno-
type system ensures noninterference [34, 32]. ~ tations without declassification or dynamic access control.
Subsequently, several researchers have given similaigy results are given in elementary terms. We eschew the
analyses for possibilistic and probabilistic noninterference elegant structures used in [15, 1, 26], but we can give de-
for multi-threaded programs [28, 33, 25, 19, 27]. Barthe jled proofs in the space of a few pages. This may also
and Serpette prove noninterference for a purely functionalhe|p in extending our results to other language features.
instance-based object calculus [4]. For sequential pro- \ye yse the weak form of noninterference which does
grams, Abadiet al. [1], Sabelfeld and Sands [26] and o consider termination to be observable. Strong nonin-
Heintze and Riecke [;5] consider hlgher order proced”res'terference is treated by Volpano and Smith [32] (and oth-
They also make explicit the connections between the rela-g gy 1t for a sequential language this requires loop guards
tional formulation of noninterference and other dependency, fave low security. We omit loops but include recursion
analyses such as slicing and binding time analysis [1, 4],\yhich also admits nontermination. Thus to extend their

*Supported by NSF grants EIA-9806835 and CCR-0296182 ideas to our language we would require low security guards
TSupported by NSF grant INT-9813854 for conditionals that involve recursive calls, a complication

1. Introduction

we choose to avoid here. The extension of strong nonin-Our typing system assigns to methoeh the type

terference to recursive procedures merits study in a simplex:(bool,L) —“,(bool,H) . This designates a method
setting before it is combined with the features of an object- which takes a parameter of level has effectL on the
oriented language. heap, and returns a value of levgél The heap effect is
Our work grew out of a study of data abstraction for given in the method declaration, following the parameter
Java [3]. We found that a straightforward compositional se- list ((bool,L) x)
mantics is adequate even in the presence of recursive types The type of the result expressign == this.f) is
and dynamically bound method calls (which are typically (bool,H) because the type dhis.f s (bool,H)
viewed as being akin to higher order procedures). The se-Although boththis andx arelL, fieldf is is declaredH.
mantics is simple enough to extend easily to additional con- In typing judgements, Volpano and Smith use a type
structs, e.g., access control is included in [3]. H cmdfor commands that assign only kbvariables. Our
Due to pointer aliasing, the language is not relationally typing judgements use a command tygem k1, x2) for
parametriger se But suitable confinement of pointers suf- commands that assign only to variables of level at least
fices to yield a strong representation-independence resulk; and to object fields of level at least,. That is,
for user-defined abstractions [3]. The term “confinement” the heap effect designated by a command type is con-
appears to originate in the literature on operating systemcerned with field levels. The same is true of the heap
security, but its use is natural in object-oriented program- effect designated above the arrow in a method type like
ming where pointer confinement has been proposed for enx:(bool,L) L(booI,H)
capsulation at the level of modules, classes, or instances |f we modify the example to declare a heap
[16, 8, 18, 5, 31]. For information flow, we impose a con- effect H for the method, resulting in a type
finement condition on high-security pointers. x:(bool,L) L(booI,H) , the class is still typable
The following section is a detailed overview of the paper. pecause the only effect is on a field of letl
Section 3 formalizes the language and its semantics. Sec- Consider the following variation.
tion 4 gives the security typing system. Section 5 deals with
confinement, which is then used in Section 6 to prove theclass C H extends D {
noninterference theorem. Section 7 considers related work ~ (P001,??) f;
and prospects for further advance. (bool,H) m ((bool.L) x) L {
if (x) this.f := not x
_ else this.f = x;
2. Overview return (x == this.f); }}

. . L
_ _ _ . The type ofmis againx:(bool,L) ——(bool,H) but
We consider a language that is quite complicated rela-the class ig1. What level, marke®?, can be used for field
tive to those for which noninterference results have beent 7 The conditional statement needs to be typable in context

proved before, but we use simple security annotations thaty:(bool, L), this:(C,H) because the label on a class
generalize those of Volpano and Smith. We annotate localdesignates the level ghis . The conditional should be
variables, fields, and method parameters using types) given type(com ?,L) , as the heap effect for the method

whereT is an ordinary program type andis one of the js L. what about the effect, markel on the local envi-
two security levelsH andL. Generalization to a lattice of ronment (i.e., local variables and parameters)? Our rule for
levels would complicate notations without adding illumina- field update requires that the level of the field be at least the
tion. We also annotate classes. The security level of a classevel of the assigned variable: #sis is H, field f needs

is the security level othis , i.e., the target of a method o be declared ad and then the conditional can be typed as
call, and it is also used for confinement as described in the(com H,L) .

sequel. Subclassing in Java is “invariant” in the sense that
In the following example there is a single fidldbf high method signatures cannot be specialized in subclasses. Al-
security (leveH), in a class name@ of level L. though other alternatives merit study, our typing system is
the same: the declared security levels of a method cannot
class C L extends D { be changed in subclasses. However, we allow the subclass
(bool,H) f; of anL class to be declareld. This has interesting conse-
guences and it is one of the reasons why we need a seman-
(bool,H) m ((bool,L) x) L { tic notion of pointer confinement, calldd-confinement, as
if (x) this.f := not x; discussed later.
else this.f = x; These examples are far from an exhaustive illustration of
return (x == this.f); } } the interesting patterns that arise. Nor can a brief exposition

give a thorough justification for the rules. A few more ex- Section 5 is concerned with confinement. In [32], nonin-
amples appear in Section 4.1. Although our type system isterference is proved on the basis of two lemmas called sim-
quite general, it disallows some sensible programs such agle security and confinement. Simple security corresponds
those involving declassification. On the other hand, it ad- roughly to ourL-confinement and safety Lemmas 5.1 and
mits some declarations that are sound but not very useful,6.1 for expressions. These results say thalt @xpression
such as variables of tyd€,L) for H-classC. cannot distinguish between related states. Confinement in
In Section 3 we give the formal syntax and denotational [32] corresponds to what we calf-confinement, which
semantics of the underlying language for which we con- pertains toH-commands: such commands do not assign
sider security annotations. Java is sufficiently complicated to L-variables or fields. Noninterference for conditionals
that it is a challenge to formalize its syntax in a readable depends onf-confinement: A conditional witiHguard
way. We adapt the formalization of a smaller fragment of can behave differently in equivalent states, so the statement
Java, FJ [17], which mixes standard notations from type parts must be restricted to becommands.
theory with Java-like syntax. We extend FJ by adding im- To deal with the heap, we use a property called
perative features, and modify it by treating fields as private confinement. The language includes subclassing and sub-
(class-visible) rather than public. The semantics is definedsumption, and we allow ah-class to have ahtsubclass.
in terms of an ordinary typing system; it does not depend As a result, simple typing does not prevent certdlito L
on security annotations. flows. Moreover, an.-object can be aliased by both &n
In Section 4 we give the typing system for security anno- and anH-variable. Hence, we must show that a typable
tations. In practice, one would want to specify security pol- expression never denotes Erpointer and that commands
icy by labelling certain inputs and outputs, leaving the rest preserve the invariant thatvariables and.-fields contain
to automated inference, but that is beyond the scope of theno H-pointers.
paper, as is label polymorphism. For expository purposes, Besides controlling direct information flows,L-
it is convenient to use separate subsumption and subtypingonfinement is also needed to treat dynamic memory alloca-
rules that express, for example, thatlaexpression can al- tion and the equivalence for heaps. An environment maps
ways be used in a context whereldexpression is allowed. variable identifiers to values, whereas a heap maps locations
But for proofs it is more convenient to use syntax-directed to values. One need only define~ 7’ for and#’ with
rules that incorporate subsumption. For lack of space wethe same domain. In a simple imperative languagei+an
give only the syntax-directed rules for our system, at the command can distinguish betweenrelated states but the
cost that the rules have rather many constraints on securityistinction appears in terms of the states of variables (and
levels. Readers unfamiliar with this style of specifying a termination). In a language with heap allocation, there is
flow analysis are encouraged to read Volpano and Smith'salso the possibility of differing allocations. Thus it is un-
clear and succinct presentation [32]. reasonable foh ~ 1’ to require identical domains. But
Our main result, in Section 6, is a noninterference the- allocation must depend on the domain of the heap, to en-
orem: For a program with annotations satisfying the rules, sure freshness. K ~ h’ allows different domains then an
fields, variables, and method results with labelo not de- L-command could potentially distinguish by observing the
pend on those with labedl. As in work cited in the intro- behavior of the allocator.

duction, noninterference is formalized in terms of an equiv- |n a language with pointer arithmetic, comparison using
alence relation on states. Here a state consists of an envix is a real problem. In Java, pointers are abstract: they can
ronmenty and a heag. For two statesn, k) and(n’, h') be compared only by:. Although two related heaps could
to be equivalent, writteitn, h) ~ (', h'), means that they result in different allocations, one can argue that no infor-
agree orL-variables and om.-fields of heap objects. The mation is leaked th-commands because they cannot make
noninterference theorem says that if a typable program isyseful distinctions between pointer values. One could for-
executed in the two related stateg i) and (7', 1'), the malize this idea by requiring that, for thepart of related
outcomes are also related. What this means is that changegeaps, the domains need not be equal but rather there should
to high security inputs cannot be observed at low outputs. pe a bijection between them so that corresponding objects
The main noninterference result pertains to the methodsare related. From related states, allocation of abhesbpject
of a complete program consisting of a collection of classeswould add a pair to the bijection. Although this approach
that can involve mutually recursive fields and methods. The appears viable, we have avoided it for two reasons. First,
semantics of such a program is given as a fixpoint and thethe added complication would pervade all definitions and
main result is proved by induction. This proof depends on results. We prefer to follow the lead of Volpano and Smith
a main lemma saying that commands are noninterfering—in using simple standard semantic notions to the extent pos-
safe for short—under the assumption that the methods theysible. Second, although it is easy to see how to maintain the
call are safe. Safety depends on confinement. bijection in a small step semantics, it is not as simple in a

compositional semantics. Some other possibilities for relat- A complete program is given asctass tableC'T that as-
ing heaps are in [29, 30], though we have not pursued thesesociates each declared class name with its declaration. The
ideas. typing rules make use of auxiliary notions that are defined
Our approach depends on the allocator satisfying a mildin terms of CT', so the typing relatiom- depends orC'T’
parametricity condition which is also needed for the ab- but this is elided in the notation. Because typing of each
straction theorem of [3]. The condition says that the choice class is done in the context of the full table, methods can be
of a fresh location for an object of clags depends only mutually recursive, and so can field types.
on currently-allocated’ objects. Capability-based systems Methods and classes are considered public. The rules for
provide similar abstractions. The benefit here is that the def-field access and update enforce visibility: fields of a class
inition of 4 ~ A’ can simply require thai andh’ have the are accessible only to methods of that class, as in Java’'s
same domain fok-objects. We have not imposed a condi- private visibility.
tion that the heaps are garbage-free. Garbage in the initial Subsumption is built in to the rules using the subtyp-
state has no influence on the final state. One might haveing relation< on T' specified as follows. For base types,
thought that we would need to garbage-collect in order for bool < bool andunit < unit . For classeg’ andD,

the final states to be related, but this is not necessary. we haveC < D iff either C = D or the class declaration
forCisclass Cextends B { ... }forsomeB < D.

, , _ , CT(C)=class Cextends D{T, f; M}
This section presents the language without security an-

notations; it is this language for which the semantics is de- and let M be in the listhM of method declarations, with
fined. The language is the same as the core language in [3]p7 = 7 m(T,) {S; return e}. We record the typing
from which we have also borrowed expository material. To information by definingntypém,C) = (z : T2) — T.
make the paper more self-contained, we give complete typ-For the declared fields, we definiieldsC’ = T; f and
ing rules and semantic definitions. For further explanation ¢,¢(7,C) = T,. To include inherited fields, we define
and justification of the definitions, the reader is advised to fieldsC' = dfieldsC' U fieldsD, and assumg is disjoint
consult [3]. from the names ifieldsD. The built-in clas©Object has
The grammar is based on given sets of class names (witho methods or fields. Note thattypém, C) is defined only
typical element’), field names £), method names), and if m is declared or inherited i@'.
variable/parameter nameg(includingthis). Barred identi- A class table is well formed if each of its method decla-

fiers like T indicate finite lists, e.gT f stands for a lisff rations is well formed according to the following rule.
of field names with corresponding typ&s _
(z:T,this: C); CF S :com

T == bool [unit |C B (T:T,this: C); Cle:U Uu<T
CL == class Cextends C{T f; M} mtypém, D) is undefined or equalg : T) — T
M == Tm(T=z){S; return e} Cextends DT m(T T){S; return e}
5= x =cl|zfi=e|z:=new C(), [em(@)] Turning to semantics, the state of a method in execution
if eSelse S|var Tz:=ein S|5; 5 is comprised of deaph, which is a finite partial function
e == z|ef|em(e)| from locations to object states, andemvironment), which
e==¢| (C)e|null |einstanceof C assigns locations and primitive values to local variables and

parameters. Every environment of interest includes the dis-

Without formalizing it precisely, we assume there is a class tinguished variabl¢his which points to the target object. A
Object with no fields or methods which can be used as a command denotes a function from initial state to either a
superclass. Additional base types, such as integers, can bénal state or the error valuée.
treated in the same way bsol andunit . For locations, we assume that a countable 5et is

Table 1 gives the typing rules. A typing environméris given, along with a distinguished entityl not in Loc. We
a finite function from variable names to types. A judgement treat object states as mappings from field names to val-
of the formI'; C + e : T says that has typeT in the ues. To track the object’s class we assume given a func-
context of a method of class, with parameters and local tion loctype : Loc — ClassNames such that for eacl®”
variables declared by. A judgementl’; C + S : com there are infinitely many locationswith loctype ¢ = C.
says thatS is a command in the same context. To simplify We writelocs C for {¢ | loctype ¢ = C}. The assumption
the typing rules and semantic definitions, we assume thataboutioctype ensures an adequate supply of fresh locations,
variable and parameter names are not re-used. given that the domain of any heap is finite.

I'' Chax:Tx Iy Ctnull :B mtypdm, D) = (7 : T) — T
s Chey:T Tf € dieldsC perel o o
I; Ckey:T I;Cke:C ’r-eck S
I'; C+ ej==ey : bool I Clef:T) e.m(e) :

I'hCke:D B<D

I'hCke:D B<D

: unit

I CkH(B)e:B

x # this
ICke:T T<T=z

I'; C + e instanceof

I'e =C Tf e dfieldsC
I'Cke:U ULT

5 - bool I'; CFunit

x#this B<TIz

I'; CkHx:=e:com

mtypém, D) = (:T) — T

It CFa.f:=e:com

I'; CFax:=newB():com

I'; Cke: bool

I''Cke:D I':Cre:U U<T Iy CkSy:com I'; CEHSy:com
I'; CF em(e):com I'; Crif e S, else Sy:com
Iy CkSi:com I'; CFS,:com ICre:U (Tyz:T); CES:com ULT

I's CFSy; Sy :com

Iy Ckvar Tz:=ein S:com

Table 1. Typing rules for expressions and commands.

[bool | = {true, false} unit]| = {e}

n € [I] =
s € [C state] &
h € [Heap] &
[C.@:T)—T] =
[MEnv] C

[C] = {nil} U{€]| €€ Loc A loctype £ < C'}
domn = domT AVz € domn .nx € [z]

dom s = fieldsC AV € fieldsC . sf € [type(f,C)]

dom h Cgp, Loc ANV € dom h . he € [(loctype £) state]

[z :T,this: C] — [Heap] — ([T] x [Heap]) .

(C': ClassNames) - (m : MethodNames) - [C, mtypdm, C)]

Table 2. Semantic domains.

Methods are associated with classes, imethod envi-

ronmenf rather than with instances. For this reason the se-

element (the constantly-function) and least upper bounds
of ascending chains, and this suffices for the fixpoint se-

mantic domains, given in Table 2, are rather simple. There mantics. Without giving a precise formalization, we require

are no recursive domain equations to be solved.
dition to domains like[T] and [I'] that correspond di-
rectly to syntactic notations, we use the following domains:
[Heap] is the set of heapqC state] is the set of states
of objects of class”, [MEnv] is the set of method en-
vironments (we write» for finite partial functions), and
[(C,(z:T) — T)] is the set of meanings for methods of
classC with resultT and parameters : T.

The sets[Heap], [bool], [C], and[C state] are or-
dered by equality. We write— for continuous function
space, ordered pointwise, ad for domainX with added
bottom element.. Each sef(C, (7 : T) — T)] has a least

In ad-that [MFEnv] contain exactly the partial functions such

that uCm is defined for all classe§' declared inCT and
methodsn declared or inherited if.

The semantics is defined for an arbitrary allocator, but
the noninterference theorem depends on parametricity.

Definition 1 (Allocator, parametric)

An allocator is a location-valued functiofiresh, such that
loctype(fresh(C, h)) = C and fresh(C,h) & dom h, for
all C, h. An allocator isparametricif dom hy; Nlocs C =
dom ha N locs C implies fresh(C, hy) = fresh(C, hy). O

For example, if Loc N the function fresh(C, h)

min{l | loctype £ = C A\ £ & dom h} is parametric.
It is straightforward to show that, as in Java, no program

[T;

Ctx:Tlunh = nx

constructs create dz_:m_gling pointers, but it_ is slightly simpler [T; C+null : Blunh = nil
to formulate the definitions to allow dangling pointers. Like I CLunit unit .
cast failures, dereferences of dangling pointers @ihdre [unit :unit Junh = e
considered an error. We identify all errors, and divergence, [I'; C' I e1==e2 : bool Junh

with the improper valuel.

The semantics is defined by induction on typing judge-
ments, and for all typings far and.S we have

[T; Cke:T) € [MEnv] — [I'] — [Heap] — [T]L
[T; CFS:com)e
[MEnv] — [T] — [Heap] — ([T] x [Heap]).

To streamline the treatment afin the semantic definitions,
we use a metalanguage constrlet,d = F, in Es, with

the following meaning: If the value af; is L then that is
the value of the entire let expression; otherwise, its value
is the value ofE; with d bound to the value oF;. This
construct is only exploited in the semantic definitions; later,

[r;

[T;

letd; = [I'; C'+ ey : T]unhin

letds =[T; CFey: T]unhin (dy = da)
Cte.f:T)unh

let{=[T; Cte:Clunhin

if £ ¢ dom h then L elsehlf
Ctem(e) : T]unh

let ¢ =[T'; C't e: D]unhin

if £¢& dom hthen L else

let (z:T) — T = mtypém, D) in

let d = p(loctype £)m in

letd = [I; CFe:Ulunhin

let (do, ho) = d[T — d, this— £]h in dg

in definitions of properties, we handle explicitly.

Function update is written, e.dn | + d]. In the se-
mantics of local variables, we writ€for domain restriction:
if z is in the domain of functiom thenn | « is the function
like n but withoutz in its domain.

[T; C+ (B)e: Blunh

let £ =[T; Ct e: D]unhin

if £ € domh A loctype £ < B then ¢ else L
[T; CF einstanceof B :bool Junh
let{=[T; Ct+e: D]unhin

£ € dom h A loctype £ < B

Table 3 gives the semantics of expressions and Table 4
gives the semantics of commands. The definitions are
straightforward renderings of the operational semantics [2].
For example, the value ef f in state(n, k) is L if the value
of e is L or is not in dom h; otherwise, the value of is
some locatior € dom h, so the object statk/ is a finite
map with f € dom (h¢) and the value oé. f is h¢f. Field
updatez. f := e in state(n, h) does not change the environ-
ment; the new heaf | £ +— [k | f — d]] updatesh by
replacingh{ with the object statéh/ | f — d] obtained by
updating fieldf to have the valud of e.

Table 3. Semantics of expressions.

chaing € N — [MEnv] defined as follows.

o C'm = An. Ah. L
pjp1 Cm = [M]p,
pj+1 Cm = pj1 Bm
[M]pnh

let (no, ho) = [(T : T, this: C); C' + S : com]unh in
letd =[(z: T,this: C); C e : T]unoho in (d, ho)
where in clas€” we haveM = T m(T T){S;return e}.

if m is declared ad/ in C

For method call as an expressienn(e), the value isL if-m is inherited from in ¢

unless the value of is somel € dom h. In that case, led

be the method meaning given jpyfor methodm at the dy-
namic type(loctype £) of e. The result of the call is obtained
by applyingd to the initial heaph and to the environment
[T +— d, this— ¢] whered is the list of values of arguments
e. The result, if notL, is a pair(dy, ho); for method call
as expression, the value efm(e) is dy. Note thathg is
discarded; for expository simplicity we do not model side
effects of expressions (see Section 7 for a discussion). FOr |, this section we annotate the syntax of Section 3 with
method call as command, is discarded and the new state ggcyrity labels. Where a tyfecould occur, i.e., in declara-
isn, ho, as the call has no effect on the environmenf the
caller.

4. Security typing

tions of fields, parameters, and local variables, we use pairs
(T, k) wherex is a security level. Such a pair, written

The semantics of a class table is the method environ-is called asecurity type The security levels aré and H,
ment, &, given as the least upper bound of the ascendingordered. < H. We write k; L ko to denote least upper

[T;

[T

[r;

[T;

[r;

[T;

[T;

Ct x:=e:comjunh

letd=[I; Cte:TJunhin ([n| z—d,h)
Ctx.f:=e:comlunh

let £ =nxinif £ ¢ dom hthen L else

letd=[I;CFe:Ulunhin (n,[h| L—[hl] f—d]])

Ct z:=new B() : com]unh

let £ = fresh(B,h) in

([n]| z—4),[h | £ [fieldsB — defaults]])
C'+ e.m(e) : com]unh

let{=[T'; Cte: D]unhin

if £ ¢ dom h then L else

let (z:T) — T = mtypém, D) in

let d = u(loctype £)m in

letd = [I; CFe:Ulunhin

let (do, ho) = d[T — d,this— £]hin (1, ho)
C+ Sy; Sy : com]unh

let (no, ho) = [T; C F .Sy : com|unh in
[T; CF Sy : com]unoho

CHif eS;else Sy:comunh
letb=[I'; C'e:bool Junhin

if bthen [I'; C + Sy : com]unh

else[l’; C + Sy : com|unh

Chrvar Tx:=ein S:comunh
letd =[T; Cte:Ulunhin

let (no, ho) = [T,z :T); CF SJun | z—dhin
(nol, ho)

Table 4. Semantics of commands.

bound. The grammar is revised as follows.

Tables 5 and 6 give typing rules for annotated programs.

k == L|H
w= (T,k)
CL == class Crextends C{7f; M}
M == 7tm(TT)k{S; return e}
S u= ...|var Tz:=ein S|...

subsumption rules. For example, our rule for= ¢ in Ta-
ble 6 could give the command the tyfeom x4, H), rather
than including the unconstrained and the constraint; <
k1, as there is no heap effect and the most precise environ-
ment information is<;. Even for a syntax-directed system,
it may be possible to avoid subsumptions for primitive com-
mands, given those built into rules for command constructs
like sequencing. But care needs to be taken because lev-
els in a method declaration cannot be changed in overriding
declarations, and primitive commands can occur as method
bodies. We err on the side of generality.

The rules use versions of the auxiliary functiongype
etc. that take security levels into account. Let

CT(C)=class C rx;extends D {7 f; M}
and letM be in the listM of method declarations, with
M =71 m(72 T) ke {S; return e}

The security version of mtype is defined by
smtypém,C) = (T : /) —» 7. Corresponding to
dfields fieldsandtype, we definesdfields sfieldsand stype
which differ only in that they give security types, e.g.,
sdfieldsC’ = 77 f.

We also need a functiotevel that gives the level as-
sociated with the class itself: for the declaration above,
levelC' = k;. DefinelevelObject = L. For locations,
definelevel? = levelloctype ¢).

The rule for method declaration imposes the condition
that an overriding definition cannot change the parameter
or return types, nor the heap effect. The rule for class dec-
laration restricts inheritance of methods. This is discussed
in Section 4.1 below.

We use the symbdi to erase annotation$’, x)" = T,
and this extends to erasure for typing environments, com-
mands, and method declarations in the obvious way. For
example, ifM is the method declaration

(bool , L) m((bool ,L)z) L {x:=x; return =z}

thenM'is bool m(bool z) {z:=x; return z}.

For any judgement\; C + S : (com k1, ko) deriv-
able using the rules in Tables 5 and 6, the erased judgement
At C + St : comis derivable using the rules of Table 1.
Conversely, any program typable using the rules of Table 1
can be annotated everywhere byand typed by the rules in
Tables 5 and 6.

We write A for typing environments that assign security 4.1. Examples

types. A judgemenf\; C' S : (com k1, ke) says that
S assigns only to variables (locals and parameters) of level
> k1 and to object fields of levet x, (see Lemma 5.4).

We consider a program in which the HIV status of a
medical patient is to be kept confidential. A basic patient

In Section 2 we noted that security typing can be pre- record looks as follows. We assume that there it -atass
sented more perspicuously using separate subtyping andtring

A; Chax:Ax A; CEnull

A; Cher: (T, k1)
A; ClEeg: (T, k2)

: (D, k)

(T, k1) f € sdfieldsC
A; Clke: (C)ke)

A; CHunit : (unit k)

A; Cke:(D,k) B<D

A; CFhej==es: (b00| , k1 U KJQ)

smtypém, D) =7 : (
A; CFe:(D,ky)
U<T F5<FE

T
A; CFem(e): (T, ke UKy)

T,E) AN (T7 Hg)
A; Cre: (U, rs)

ol

A; Clef: (T, k1 Ukg)

A; CH(B)e: (B, k)

A; Clke: (D,k)
A; C + e instanceof

B<D
B : (bool k)

Table 5. Security typing rules for expressions.

class LPatient L extends Object {
(String,L) name;
(String,L) getName() H {
return this.name }
(unit,L) setName((String,L) n) L {
this.name := n

}}

Note thatsetName hasL-effect, as it assigns to dnfield.
MethodgetName can be declared as havihgor H effect;
we choose the latter. A confidential field is added for HIV
status in the following class.

class XPatient L extends LPatient {
(String,H) hiv;
(unit,L) setHIV((String,H) s) H {
this.hiv = s }
(String,H) getHIV() H {
return this.hiv 1}

Here is an application using such objects, written using

slight abuses of the official syntax.

class Main L extends Object {
(unit,L) main() L {
var (String,L) Lbuf := null;
var (String,H) Hbuf := null;
var (LPatient,L) Ip:=readFile(...);
var (XPatient,L) xp:=new XPatient();
Lbuf := Ip.getName();
Hbuf := Ip.getName();
(1) xp.setName(Lbuf);
Hbuf := readFromTrustedChan(...);
(2) xp.setHIV(Hbuf); } }

After execution of line (1)LBuf , HBuf, andxp.name all
reference the same object. After execution of line (Byf
aliasexxp.name , andHBuf aliasexp.hiv . All the code

(3) Lbuf := Hbuf;
(4) Ip.setName(xp.getHiv());

In both (3) and (4), there is a direct flow frofto L.
Let us consider ahtsubclass oKPatient

class HPatient H extends XPatient {
(String,H) f;
(unit,L) setf((String,H) v) H {
this.f 1= v }
(String,H) getf() H {
}}

return this.f
By contrast withsetName , the effect ofsetf
claredH as it assigns only to a-field.
There is, however, a problem with inherited methods.
Supposé Patient declared a method

can be de-

(String,L) passSelf() H {
...o.m(this)... }

whereo.m is a call on some objed of a methodnwith L
parameter. This is typable kPatient , although it would
not be typable irHPatient where the level othis is
H. For a variablehp of classHPatient , an invocation
hp.passSelf() of the inherited method would result in
a flow fromHto L in the callo.m(this)

We solve the problem in a simple way: The rule for
classes in Table 6 requires thatldisubclass of alh.-class
overrides all methods of its superclass. This is unnecessar-
ily, and unacceptably, restrictive. It requires, for example,
that getName be overridden although it poses no risk of
bad flow; and an overriding declaration does not have ac-
cess to the private fieldame. The problem can be solved
in a less restrictive way using the notion of “anonymous
method” of Vitek and Bokowski [31]: such methods do
not leak the receivethis. The static analyses described in

above is allowed by the security typing rules, assuming ap-[31, 14] restrict inheritance only for methods that I¢his.

propriate types for theead methods. The following are
not allowed inmain .

We expect that their constraints can be adapted easily to our
setting.

a:;éthis TQSTl Ko < Ky
Az (Th,k1); CEe: (To, ko)
Az (Th,k1); CHa:=e:(cOmeks, ky)

K3 < K1

x #£this B<D levelB

(T, ko) f € sdfields”
Az (Ciky); Che: (U ks)
U§T I<£1|_|I<63|JI€5§I€2

Az (Ck1); Cha.f:=e: (COMEKy,kKs5)

Uke < k1 kK3 < level B

A,z (D,k1); Cka:=new B(): (com ks, Kk3)

(T, R) =% (T, ko)

A; Cre: (U,Fs)

A; CkHSt: (Com Hl,HQ)
A; CkHSy: (Com l€3,l€4)
I€5§KJ1|_|K/3 HﬁSKQHH4

A; CFe:(bool | ks5)
A; CESy: (Com Hl,fig,)
H5§I€5|_|Ii7 n6§/€1|_|/£2 KZ7§K’/3|_|I€4

A; CkHSy: (Com /ﬁg,/ﬁ;)

A; CH Sl; Sy : (Com I€5,l€6)

A; Clke: (U kyg)
Ayx: (T k1); CHS:(comks,kg)
U<ZT ky<k1 Ka<K5 k3<Hg

A; CHIif e S)else Sy:(comkg,kr)

: (T,R),this: (C,k1); CF S :(comka, k3)
(T, R),this: (C,k1); CFe: (T, k)

g8l &l

smtypém, D) is undefined or equals: (T,7) —% (T, k4)

A; Chvar (T,k1) z:=ein S:(comkg,ks3)

levelD <

C xextends D+ M foreachM € M

If levelD # k then everym with smtypém, D)
defined is overridden i’ by someM € M.

C ry extends D+ (T, ky) m((T,R)) k3 {S; return

e} Fclass Crkextends D {7 f; M}

Table 6. Security typing rules for commands,

Our last examples involve information leaks via the con-
ditional control flow implicit in dynamically bound method
calls. Consider these three classes.

class YN L extends Object {

(bool,L) val(){ return true; } } }
class Y L extends YN {

(bool,L) val(){ return true; } }
class N L extends YN {

(bool,L) val(){ return false; } }

We add the following method t¥Patient . The typing
rules force the result to have leud| otherwise there would
be a bad data flow.

(YN,H) leak() H {

var (YN,H) o;

if (this.hiv) o := new Y();
else o = new N();
return o; }

In main , the expressiorp.leak().val() has leveH

due to the return type déak .

method declarations, and classes.

Here is a similar example but using the heap and method
call commands rather than expressions.

class YNh L extends Object {

(bool,H) v;

(bool,H) val(){ return v } }

(unit,L) setv((bool,H) w) H {

this.vi=w }

(unit,L) set() H {this.setv(true)} }
class Yh L extends YNh {

(unit,L) set() H {this.setv(true)} }
class Nh L extends YNh {

(unit,L) set() H {this.setv(false)} }

Theleak method is the same as before but usyidhand
its subclasses. Considernof type(YNh,H) in

x:=xp.leak(); x.set(); ...x.val()...

The declared level ok must beH because it is assigned
fromleak . The method call rule then requires foset
that the heap effect afet be H, which in turn forces the
level of fieldv to beH. Indeed, if its level wad then the
callx.set() would violate noninterference.

4.2. Remarks about proofs

Proofs in the sequel involve detailed analysis of the se-
For each specific

mantics and the security typing rules.

Lemma 5.1 (L-confinement of expressions)
LetA; C Fe: (T,L)and letd = [AT; CF e: T]unh.
If ok u, ok An, andok hthend € Loc = d € LLoc.

case, the semantic definition may involve several valuesProof: By induction on the derivation ak; C'+e: (T, L)

(e.g., the value ot is needed in the semantics of= e),

(for brevity: “induction one”). Recall from Section 4.2 that

and the rule may involve several types and security labels.throughout the proofs we ignore thecases.

In writing a given proof case, we found it convenient to

write down both the rule and the semantics for reference. It
is impractical to include such redundancy in the paper, how-
ever. Instead, when it comes to proving something about a e
particular construct we make free use of identifiers in the

typing rule (in Table 5 or 6), for types and labels, and iden-
tifiers in the semantic definition for semantic values (in Ta-
ble 3 or 4). We explicitly introduce identifiers for types or
values only when necessity or perspicuity demands it.

Note that the semantic definition may use differentiden- 4
tifiers for types, as the semantics is based on the typing rules

in Table 1 rather than the security rules in Tables 5 and 6.

We streamline the proofs by ignoring outcomes in
many cases. Most of the results only pertain to noout-
comes, and the constructs are mostly strict in Without
comment we assume various intermediate values arelnon-
unless confusion could result.

5. Confinement

This section shows that typable programs maintain the

invariant that fields and variables never hold locations.
The formalization uses the indistinguishability relation
also used in the main results of Section 6.

In formalizing the absence df-variables that refer to
H-objects, we take advantage of the fact thiatz Loc and
1L & Loc. We use the short name#” for L-confinement.

Definition 2 (L-confinement (ok))

e DefineLLoc = {¢ € Loc | level¢ = L}.

e For heaps, definek h iff for all ¢/ € dom h and every
f € fieldqloctype £), if stype(f, loctype £) = (T, L) for
someTl andhlf € Loc thenhlf € LLoc.

e For environments, definek A n iff for every = with
Az = (T,L)forsomeT, if nx € Locthennx € LLoc.

e For method environments, definekp iff the
following holds: for every m,C,n,h, if okh,
okAn, and uCmnh # L then okhy and
k3 =LAde& Loc = d & LLoc,
where smtypém, C) z: (T,R) =2 (T, k3)

A 7 : (T,F),this: (C,levelC)

10

e Case ofr: Thend = [AT; CF 2 : TJunh = nz. The
result follows directly from assumptiosk A 7.

e.f: By typing, k1 = L = ky. Becauseky = L
we can use induction og; this, together with the as-
sumption that the semantics is ndanyields that there is
¢ =[A"; CFe:Clunhandl € LLoc andl € dom h.
Now the result follows using:;; = L and assumption
ok h.

e.m(€): Let Ag = [T : (T, R), this: (loctype (, levell)],
andny = [T +— d, this— ¢]. We claim thatok Aq no;
then we get the result byt p because by typing, =
k4 = L. It remains to prove the claim.

If & = L, then by the typing rulegs; = L. So by in-
duction one, and since the semantics is nan-we get
d € Loc = d € LLoc. Henceok (Z : (T,R)) [+ d|.

We getok (this : (loctype ¢, levell)) [this — £] directly
from the definitions ofok and LLoc, aslevel¢ = L iff

f € LLoc.

e (B) e: By k = L, and because we are considering the
case wheré(B) eJunh # L, we can use induction on
to obtain? € Loc = ¢ € LLoc. Moreover, must be
in dom h otherwise the semantics is. Now the result
follows directly.

e ¢ instanceof B, e==¢/, null , unit : The result
returned in each case is not fivc. This falsifies the
antecedent in the lemma. 0

Lemma 5.2 (L-confinement of commands)

Let A; C F S : (comky,ks). If okpu, okh, ok An,
and[AT; C F ST : com]unh # L thenok A g andok hy,
where(ng, ho) = [AT; C' = ST : com]unh.

Proof: By induction on the derivation of\; C + S :
(com k1, k2), using the assumptions of the Lemma.

e z:=e: This has no heap effect: the result hefap
is h and ok h holds by assumption. We only need
to show ok (A,z : (T1,%x1))[n | = — d], where
d = [AT; C+ e: Ty]unh. Accordingly, assume that
k1 = L. Then by typingxs = L so Lemma 5.1 foe
yieldsd € Loc = d € LLoc.

e z.f :=e: The result environmeny is justn, andok A n
holds by assumption. We only need to showh,,

wherehy = [h | £ — [W | f—d]], { = nx and
d = [AT; CFe: UJunh. Since the semantics is non-
L, we havel! € domh. Now assume that the level
ko Of field f is L. Then by the typing rule we have
k1 = k3 = L. Now applying Lemma 5.1 om, we
obtain,d € Loc = d € LLoc. This provesok hy.

x:=new B(): For the environment, we must show
ok (A,x : (D1,k1))[n | z— L], wherel = fresh(B, h).
Since by assumptionk A 1, it is enough to deal with;
thatis, ifx; = L we must show € Loc = ¢ € LLoc.
Indeed, the allocatofresh yields ¢ € Loc. But by
the typing rule,x; = L implieslevelB = L, hence
¢ € LLoc as required. Finally, we geik hy , where
ho = [h | £+ [fieldsB — defaults]|, becausek h by
hypothesis andiefaults contains no locations (the de-
faults arefalse andnil).

e e.m(e): We haven, = n, and okAn by as-
sumption, so it suffices to showok hy. Let
Ao =7 : (T,F),this: (loctype £, levell), and
no = [T+ d,this— ¢]. We claim ok Agno; then

we get the result byk p. The claim is proved by
the same argument as for method calls in the proof
of Lemma 5.1 (literally the same argument, owing to
the fact that the relevant identifiers are the same in
the typing rules for method call as expression and as
command).

o if ¢S else Sy Letb = [AT; C'Fe:bool Junh.
Then ifb = true, the result follows by induction o,
and ifb = false, the result follows by induction of,.

e var (T,x1) x:=e in S: First, we haveok (A, :
(T,k1)) [n | — d] whered = [AT; C & e: Ulunh.
This is because ik, = L, then by typingky = L, so
by Lemma 5.1 fok, d € Loc = d € LLoc. Induction
on S yields ok (A,z : (T,k1)) m and ok hg, where
(m,ho) = [T,z :T); C+ S)u[n | — dlh. Hence
ok A (m |x).

e Si; S5: Use induction orb, then onSs.

Lemma 5.3 (L-confinement of method environments)

For each we haveok p;, andok ji. O

The proof is by induction on, using Lemmas 5.1 and 5.2,
and then fixpoint induction fof:. It follows the pattern of
the proof of Theorem 6.3, and is given in the full paper.

Object states are indistinguishable byif their L-fields
are equal, and environments are indistinguishable if their

variables are equal. In the case of heaps and object states,

the relevant levels are determined by the field declarations
in the class table. By contrast, the levels for environments

11

are determined by parameter and local variable declara-
tions, hence the dependence is explicit in the notatign

It is straightforward to show that each of these is an equiva-
lence relation.

Definition 3 (Indistinguishable by L)

e Fors, s’ € [C state], defines ~ s iff
Vf e fieldsC . let (T, k) = stype(f,C)in (k=L =
sf=57f).

e Forh,h' € [Heap], defineh ~ h' iff dom hN LLoc =
dom B N LLoc andV/ € dom h N LLoc . hé ~ h'{.

e For n,n € [AT], definen ~an 7 iff Vo €
dom A .let (T,k) =Azin (k=L = nz=nz). O

If a command is typable gsom H,) it does not assign
to L-variables, and if it is typable agom k., H) it does
not assign td.-fields of objects.

Definition 4 (H-confined method environment)
Method environment is H-confined, writtenHconf p, if
uCmnh # L = hg ~ h, where(d, hg) = pCmnh, for all

C,m with smtypém, C) =7 : (T, %) - (T, k). O

Lemma 5.4 (H-confinement of commands)
LetA; CF S: (comky, k2). Then for allu, n, h such that
Hconf jpand[AT; C = ST : com]unh # 1 we have

o if Ky = H and (o, ho) = [AT; CF ST:com]unh
thenn ~a no.

e if ko = H and (UO,hO)
thenh ~ hy.

[AT; C+ ST : com]unh

Proof: By induction on the derivation of\; C + S :
(com k1,k2). As usual, we follow the conventions de-
scribed in Section 4.2; in particular, level identifiers in the
proof are those in the relevant rulemt x4, ko as used in
the statement of the Lemma.

e 1 :=¢: This has no effect on the heap. We need to show
thatks = H = 1 ~(A 2:(7y,61)) M0, Whereny = [n |
r—d andd = [A"; O F e : T]unh. Assumingr;
H, we obtaink; = H by the typing rule. Now the result
follows using definition~ (A (7, m))-

e z.f:=e¢: This has no effect on the environment, so it
suffices to show thaks H = h ~ hgy, where
[AT; CFe:Ulunh. If £ & LLoc thenh ~ hg be-
cause the two heaps are identicalloboc. If £ € LLoc
then we must consider the updated figlf. Assuming
ks = H, the typing rule forces the level, of field f
to be H; nothing else is updated, $o ~ hqy holds by

definition of ~.

e z:=new B(): First, assume, = H. Then by typing,
k1 = H. We must Show) ~(a :(D,x,)) M0 Whereng =
[n | x+— £ and? = fresh(B,h). But this follows by
definition of~(A 4:(p,x,)) SiNCeK; = H.

Next assume:s = H. Then by typinglevelB = H.
Hencel ¢ LLoc. We must showh ~ hg, wherehy =
[h | ¢+~ [fieldsB — defaults]]. But this follows by
definition of ~ becausé andhg are identical onl Loc.

e e.m(€): This has no effect on the environment. For
the heap, suppose; = H. Then we must show
h ~ hg, where (dg, ho) u(loctype O)ym[z +—
d,this +— ¢]h, and ¢ [A; CFe: Djunh and
d = [A; Cre:U]unh. Becausex; = H, we
have by the typing rule,xs H. Moreover,
smtypém, (loctype)) = T : (T,F) A, (T, ko).
Hence, by assumptioHconf 11, we geth ~ hg.

e Sy; Sy First assumess = H. Then by the typ-
ing rule, k; = H = k3. By induction onS; we get
1 ~a 11 Where we write(ny, hy) for the intermediate
state. Then by induction ofi;, we getrn; ~a 1o where
(no, ho) = [AT; CF Sy : com]un,hy. Hencen ~a no
by transitivity.

Next, assumeg = H. Thenks = H = k4. And, h ~
ho follows by induction onS; and.Ss; and transitivity.

o if e S; else S, First, assumesg = H. Then
by the typing rule,x; = H andke = H. Letb =
[AT; CFe:bool Junh. Thenifb = true, the result
follows by induction onS; and if b = false, the result
follows by induction onSs.

Next, assume&, = H. Then by the typing rules; = H
andk, = H. Again, the result follows by induction on
S1 if b = true and by induction orb; if b = false.

evar (T,k1) z:=e in S: First, assumes; = H.
Then by the typing rulexs = H. Hence by in-
duction onS, [n | = = d] ~(a(1k)) M0 Where
(no, ho) = [(AT,z:T); C+S:comluln | = — dh
andd = [AT; CF e: U]unh. Hencen ~a (o lz).

Next, assumes = H. Then by the typing rulesg = H.
And, by induction onS we geth ~ hy. o

Note that a commandar (7T',L) x:=e in S can be
typed asA; C + S : (com H, k3) so the Lemma applies
to such commands. But the typing rule ensures thatno
variable is assigned i§. Moreover, ifks = H then no
L-fields are assigned. Sois of limited use.

Lemma 5.5 (H-confinement of method environments)
For each we haveHconf p;, and Hconf [i. O

The proof is by induction om, using Lemma 5.4, and then
fixpoint induction. It follows the pattern of the proof of
Theorem 6.3, and is given in the full paper.

12

6. Noninterference

A method meaning is safe, i.e., noninterfering, provided
that, for terminating computations;indistinguishable ini-
tial heaps and environments leaditandistinguishable re-
sults.

Definition 5 (Safe method environment)

We definesafe p iff for all C,m and allh,h’,n,n' the

following holds: If ok h, ok h' ok An, andok A n' then
h~h An~an AuCmnh £ L # pCmn'h
=hyo~hyN(ks=L = d=4d)

where smtypém,C) = 7:(T,R) == (T, k3)
A = 7:(T,rR),this: (C,levelC)
(d, ho) = pCmnh
(d', hg) = pCmn'l

O
Our main result is that the method environment denoted

by a secure class table is safe. The proof uses the following
two results which express noninterference for the expres-
sion and command constructs, respectively.

If an expression can be typel; C + e : (T, L) then
its meaning is the same in twb-indistinguishable states,
provided that it diverges in neither state.

Lemma 6.1 (Safe expressions)

Supposed; C F e : (T,L). Suppose that ~ i/,
n~a1, safe u, ok u, okh, okh', ok An, ok An', and
[AT; CFe:TJunh # L # [AT; CFe: TJun'h. Then
[AT; CFe:Tlunh = [AT; CFe: Tlun'h.

In this proof and subsequent ones, we extend the conven-
tion described in Section 4.2. When comparing semantics
for a pair of state$n, h) and(n’, '), we use corresponding
primes on identifiers in the semantic definitions. For exam-
ple, the semantic definition gAT; C - z := e : com]unh
involves valuel denoted by in staten, i, so we writed’ for
the corresponding value fdA\T; C + z := e : com]un'h’.

Proof: By induction on the derivation of\; C F e :

(T, L). Using the assumptions of the Lemma, we show
[AT; CFe: TJunh = [AT; O+ e: T]un'h’ by cases on

€.

o I Then [AT; CFa: T]unh nr and
[AT; CF o TJun'h = n'z. By assumptiom ~a 7’
andA z = (T, L) we havenz = n'x.

e ¢;==¢y. By typing, k1 = L = ky. Thus we can
use induction ore; to obtain[AT; C ey : T]unh =
[AT; CF ey : TJun'h’ (we are considering the case
where[e;==es]unh # L and[e;==ex]un'h’ # 1,
so by semantics the value ef is also nond). Sim-
ilarly, induction one, yields [AT; CF ey : TJunh =
[AT; C'F ey : TJun'h'. The result follows directly.

e c.f: By typing, k; = L = ko. Becausesy; = L we
can use induction om; this yields that there ig with
[AT; CFe:Clunh = € = [AT; CFe: Clun'l, as

we only consider the case that both semantics are non-

L. For the same reasohfis in the domain of botl and
h'. By kg = L and Lemma 5.1 we havee LLoc so,
by assumptior. ~ k', we geth{ ~ h'¢; this implies
hef = h'Lf because field has labek; = L.

e e.m(e): By the security typing rule we
have e (D,L), so by induction?¢ = /(.
Let Ao =7 : (T,R),this: (loctype £,levell),

o = [Z — d,this— €], and 7y, = [z — d ,this— £'].
We claim thatok Agn and ok Agn’ andng ~a, 15-
Then we get the result = d’ by safe p. It remains to

prove the claims. We give the argument for the case that

T is a single identifier, as the generalization is obvious
but awkward to put into words.

Forny ~a, 7m0, note that sincé = ¢ it suffices to
deal with d,d’ regardless of whetheloctype ¢ = L.

If & = L then we needl = d’. Now® = L im-
pliesks = L by the security typing rule, and then we
getd = d by induction one; moreover Lemma 5.1
yields ok (z : (T, %)) [¥ +— d]|. Thusok Agn because
ok (this : (loctype ¢, level?)) [this — ¢] holds for any?.
We haveok Ag 7’ mutatis mutandis

e (B) e: By k = L, we can use induction onto obtain

¢ = ¢'. Moreover, as we are considering the case where

[(B) e]Junh # L # [(B)e]un’k’', we have that is in
both dom h anddom h'. The result follows directly.

e cinstanceof B, null ,unit : All are easy. O

Lemma 6.2 (Safe commands)

SupposeA; C F S : (com k1,k2). Suppose also
ok p, okh, okh', okAmn, okAn', safe pn, Hconf u,
ne~an,h ~ B, and[Af; CF ST:comjunh # L #
[AT; CF ST :com]un’'h'. Thenny ~a nh andhy ~ hy,
where(no, ho) = [AT; O+ ST : com|unh and(n}, hl) =
[AT; C = ST : com]un'h'.

Proof: By induction on the derivation of\; C' F S :

(com k1, k2). Under the assumptions of the Lemma, we

show[AT; O+ S : comjunh = [AT; C' = S : com]un'h’
by cases orb.

e 1 :=¢: This has no effect on the heap; we only need to
show([n | z+—=d] ~(A z:(11 00 [0 | 2 d'], whered =
[AT; CFe: Ty]unh andd’ = [AT; C & e: To]un'h'.
Under the assumption ~(a z:(1,,,)) 7’ it remains to
show thats; = L impliesd = d'. If k1 = L thenksy =
L, by typing, and then Lemma 6.1 yields= d’. (Use
of Lemma 6.1 depends on the assumptioh etc.)

13

e z.f :=e¢: This has no effect on the environment, so we

only need to show that the result heaps are related. Let
ho=[h|¢—[hl| f—d]andlethy = [h | ¢! —

R0 | f—d']]. We must showiy ~ hj. If the level

ko Of fis H, thenhy ~ h (andh{ ~ h') becauser
andh are identical except for thH field f. So the result
follows by transitivity of ~. For the other cases; =

L, we havex; = k3 = L by the typing rule. Since

N ~(Az:(Crmi)) 1> WE Obtaind = nr = n'z = {'. So

it remains to show thalolf ~ hylf,i.e.,d = d’. And

this holds by Lemma 6.1 fat, using thatsz = L.

x:=new B(): For the environment, we must show
[@ =4 ~au(Dim) 0 | @ £]. By assump-
tion 1 ~a z:(py,ky) 1 it is enough to deal with; that
is, if k1 = L we need?/ = (. By the typing rule,
k1 = L implieslevelB = L. Thus, byh ~ R/, we
havedom hNlocs B = dom h' Nlocs B; thent = ¢’ by
parametricity of the allocator (Definition 1).

Finally, we gethy ~ hy, as follows. If either/ or ¢
is in LLoc thenlevelB = L so by parametricity of the
allocator we get = ¢, satisfying the domain condition
for hg ~ hy. For the range, i.eh ¢ ~ h'{, the result
holds because the new object states are identical.

e.m(e): By semantics, the command has no effect on
the environment, so it suffices to shdw ~ hj. (This

is fortunate, because the statement of the Lemma uses
identifiersno, n;, that are used differently in the seman-
tics.)

We showhy ~ hy by cases oniy. If k4 = H then

it is possible that? # ¢’ and thus the two calls can
have different behavior. But by the typing constraint
ke < k3 We havexks = H and thusHconf u yields
ho ~ h ~ k' ~ hy. It remains to consider the case
k4 = L. In this case, we havé = ¢’ by Lemma 6.1.
Now let Ay ==:(T,R),this: (loctype(,levell),

o = [F — d,this— €], and 5, = [z — d , this— ¢/].
We claim thatok Agn and ok Agn/ andng ~a, 7.
Then we get the resulty = h{, by safe . Owing to our
choice of identifiers in the typing rules, the proof of the
claim is just the same as in the case for method call as
expression (see the proof of Lemma 6.1).

S1; S2: Use induction and.-confinement (Lemma 5.2)
for Sp; then induction orbs.

if eS; else Sy: We proceed by cases on levg] of
the guarde. Supposess = L. Then by Lemma 6.1 for
e, b =1U. If b = true, the result follows by induction
on .Sy and if b = false, the result follows by induction
on S;. Consider the other case; = H. By typing,
/«;6:H:/<¢7andfe1 = Ko = K3 = kg = H. Let
(n0, ho) = [AT; CHif e S else Sy :com]unhand
(nh, hy) = [Af; CFif e S else Sy :com]un'h'.

By H-confinement Lemma 5.4 we have~a 1o,
n ~a 1y, h~hg, andh’ ~ hj. Using assumptions
n ~a n andh ~ b’ we getny ~a nj andhg ~ hj
by transitivity.

evar (T,k1) z:=e in S: First, we have
| z—d] ~Az:(Tk0)) [0 | —d'] because ifi; = L
then by typingxys = L, so, by Lemma 6.1d = d'.
Second, we havek (A,xz : (T,k1))[n | = — d]
by Lemma 5.1. So we can use induction 8rto get
10 ~(Awi(Tok1)) Mo @Ndho ~ hg, and hencéno |z) ~a
(o).
O

Theorem 6.3 (Noninterfering programs) The meaning:
of a well-formed class table is safeife ji.

Proof. Becausesafe [is defined as a fixpoint, we first
show thatsafe p, for all 4, by induction oni. Then the
result follows by fixpoint induction.
We havesafe uo becausgiC'm is constantlyL.
Supposssafe p;, to showsafe p;1. By definition, we
must showsafe p;11Cm for eachC,m. There are two
cases, depending on whetheris declared or inherited.
Supposen has declaration
M =7 k1 m(TT) ko {S; return e} in C and letA =
T : 7,this : (C,levelC). By Lemmas 5.3 and 5.5
we haveok p; and Heconf ;. Supposeok An and ok h,
and let(no,ho) = [(Z:T,this: C); C + S : com]u;nh
(if the outcome isL there is nothing more to prove).
By Lemma 5.2, L-confinement of commands, we have
ok Ano, ok Anj, ok h, andok h’. By Lemma 6.2, safety
for commands, we havky, ~ hj andny ~a 1. It re-
mains to show that if the result leve} for m is L we have
d = d'. But by security typing for method declarations,
if k4 = L then the return expressianis typed L. Using
ok pi, no ~a np, €tc., Lemma 6.1, safety for expressions,
yieldsd = d’'. This concludes the proof afife ;11 Cm.
Supposem is inherited inC' from superclasd. Let
Ac =T : 7,this: (C,levelC) andAp = T : 7,this :
(D,levelD). We claim that, for anyy,n’, ok Acn =
ok Apnandn ~a, n' = n~a,n'. Thensafe p;11Cm
follows from the claim andsafe w;11Dm which was al-

ready proved. (Strictly speaking we are using secondary

induction on inheritance chains.)

For the claim, we only need to considtrs, as oth-
erwise A¢ and Ap are the same. Fahis, ok Apn re-
quireslevelD = L = nthis € LLoc. FromC < D
we getlevelD < levelC by the typing rule for classes.
Moreover, sincem is inherited fromC the rule requires
level D = levelC' so we are done. O

14

7. Discussion

Beyond the progress reported here, much remains to be
done. Non-interference is an attractive property because it
can be easily formalized and can provide a precise descrip-
tion of end-to-end security in a system. By itself, however,
noninterference as an information flow policy can be rather
restrictive. As has been shown by several researchers, a con-
trolled amount of declassification or downgrading of sensi-
tive information is needed in realistic systems for them to be
useful. As a future extension of this work, we expect to for-
malize noninterference in the presence of declassification
following the work of Zdancewic and Myers [35].

One direction of work that we have already pursued is
adding Java’s access control mechanism to the core lan-
guage [3]. We plan to add information flow annotations to
this language. Then, allowing declassification may lead to
leakage of information, but the access control mechanism
can possibly be used to obtain a noninterference result.

Java has quite a few features beyond the language treated
here. To extend our language to the remaining features of
JavaCard [7], the semantics can be extended using standard
techniques. To treat expressions with side effects, both the
environment and the heap would be threaded through the
semantics of expressions. We have avoided this in the cur-
rent paper because it is unilluminating. Exceptional control
flow would add further semantic complications of a similar
kind. The other missing features have to do with scope and
visibility: protected fields, private and protected classes, in-
terfaces, and packages. These features can be treated in the
typing rules, similarly to our treatment of private fields, and
the semantic consequences could perhaps be exploited to
reduce the need for security annotations.

Features of Java beyond those of JavaCard pose a big-
ger challenge: threads, class loading [9], reflection, and
serialization. Specifying noninterference for such con-
structs would probably go hand-in-hand with specification
of pointer confinement and data abstraction properties.

As a step towards more general pointer confinement and
abstraction, we are already studying polymorphic classes as
in GJ [6]. Label polymorphism is also desirable [21, 20],
e.g., for library classes. Label polymorphism might lessen
the practical need fok-subclasses df-classes, which in
turn would allow simplification of the security typing rules.

An important implementation issue is which security an-
notations can be left implicit, to be inferred by a type recon-
struction algorithm. We have not addressed type reconstruc-
tion in the current work, but expect that techniques from
Pottieret al. can be adapted [22, 23].

Acknowledgement: To Geoffrey Smith for discussions that
helped clarify noninterference and to the anonymous refer-
ees for their comments.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]
(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core
calculus of dependency. IWCM Symposium on Principles
of Programming Languages (PORlpages 147-160, 1999.
K. Arnold and J. Gosling. The Java Programming Lan-
guage, second editiorAddison-Wesley, 1998.

A. Banerjee and D. A. Naumann. Representation indepen-
dence, confinement and access controAGM Symposium
on Principles of Programming Languages (POPppges
166-177, 2002.

G. Barthe and B. Serpette. Partial evaluation and non-
interference for object calculi. In A. Middeldorp and T. Sato,
editors,Proceedings of FLOPS'9Q%o0lume 1722 olLNCS
pages 53-67. Springer-Verlag, 1999.

J. Boyland, J. Noble, and W. Retert. Capabilities for sharing:
A generalisation of uniqueness and read-only.EROOP
2001 - Object-Oriented Programmingages 2—27, 2001.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java
programming language. lCM Symposium on Object Ori-

(18]

(19]

(20]

(21]

(22]

(23]

[24]

ented Programming: Systems, Languages, and Applications [25]

(OOPSLA) pages 183-200, Oct. 1998.

Z. Chen.Java Card Technology for Smart Cardaddison-
Wesley, 2000.

D. G. Clarke, J. Noble, and J. M. Potter. Simple owner-
ship types for object containment. In J. L. Knudsen, editor,
ECOOP 2001 - Object Oriented Programmijrgages 53—
76, 2001.

R. D. Dean.Formal Aspects of Mobile Code SecurighD
thesis, Princeton University, 1999.

D. Denning. A lattice model of secure information flow.
Communications of the ACM9(5):236—242, 1976.

D. Denning and P. Denning. Certification of programs
for secure information flowCommunications of the ACM
20(7):504-513, 1977.

E.Ferrari, P.Samarati, E.Bertino, and S.Jajodia. Providing
flexibility in information flow control for object-oriented
systems. InProceedings of IEEE Symposium on Security
and Privacy pages 130-140, 1997.

J. Goguen and J. Meseguer. Security policies and security
models. InProceedings of the 1982 IEEE Symposium on
Security and Privacypages 11-20, 1982.

C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects
with confined types. IPACM Symposium on Object Ori-
ented Programming: Systems, Languages, and Applications
(OOPSLA) pages 241-253, 2001.

N. Heintze and J. G. Riecke. The SLam calculus: program-
ming with secrecy and integrity. 1ACM Symposium on
Principles of Programming Languages (PORPpages 365—
377,1998.

J. Hogg. Islands: Aliasing protection in object-oriented lan-
guages. IMPACM Symposium on Object Oriented Program-
ming: Systems, Languages, and Applications (OOPSLA)
pages 271-285, 1991.

A. lgarashi, B. Pierce, and P. Wadler. Featherweight Java:
A minimal core calculus for Java and GICM Trans. Prog.
Lang. Syst.23(3):396-459, May 2001.

15

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

K. R. M. Leino and G. Nelson. Data abstraction and infor-
mation hiding. Technical Report 160, COMPAQ Systems
Research Center, Nov. 2000. To appear in TOPLAS.

H. Mantel and A. Sabelfeld. A generic approach to the
security of multi-threaded programs. Proceedings of
14th IEEE Computer Security Foundations Workstpames
126-142, 2001.

A. C. Myers. JFlow: Practical mostly-static information
flow control. INACM Symposium on Principles of Program-
ming Languages (POP|pages 228-241, 1999.

A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. IRroceedings, IEEE Symposium
on Security and Privagyages 186-197, 1998.

F. Pottier and S. Conchon. Information flow inference for
free. InProceedings of the fifth ACM International Confer-
ence on Functional Programmingages 46-57, 2000.

F. Pottier and V. Simonet. Information flow inference for
ML. In ACM Symposium on Principles of Programming
Languages (POPL pages 319-330, 2002.

J. C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R. Mason, editolnformation Processing '83
pages 513-523. North-Holland, 1984.

A. Sabelfeld and D. Sands. Probabilistic noninterference
for multi-threaded programs. IRroceedings of 13th IEEE
Computer Security Foundations Workshppges 200215,
2000.

A. Sabelfeld and D. Sands. A Per model of secure infor-
mation flow in sequential programiigher-order and Sym-
bolic Computation14(1):59-91, 2001.

G. Smith. A new type system for secure information flow. In
Proceedings of 14th IEEE Computer Security Foundations
Workshoppages 115-125, 2001.

G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language.ACM Symposium on
Principles of Programming Languages (PORPpages 355—
364, 1998.

I. Stark. Names and Higher-Order Functions
PhD thesis, University of Cambridge, 1994.
http://www.dcs.ed.ac.uk/home/stark/publications/thesis.html.
E. Sumii and B. Pierce. Logical relations for encryption. In
14th IEEE Computer Security Foundations Workshpages
256-269, 2001.

J. Vitek and B. Bokowski. Confined types in jav@oftware
Practice and Experien¢&1(6):507-532, 2001.

D. Wolpano and G. Smith. A type-based approach to pro-
gram security. InProceedings of TAPSOFT'9Qfiumber
1214 in LNCS, pages 607—621. Springer-Verlag, 1997.

D. Volpano and G. Smith. Confinement properties for multi-
threaded programsElectronic Notes in Theoretical Com-
puter Sciencg20, 1999.

D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysigournal of Computer Security
4(3):167-187, 1996.

S. Zdancewic and A. Myers. Robust declassification. In
Proceedings of 14th IEEE Computer Security Foundations
Workshoppages 15-23, 2001.

