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Abstract

We consider a sequential object-oriented language with
pointers and mutable state, private fields and class-
based visibility, dynamic binding and inheritance, recur-
sive classes, casts and type tests, and recursive methods.
Programs are annotated with security levels, constrained
by security typing rules. A noninterference theorem shows
how the rules ensure pointer confinement and secure infor-
mation flow.

1. Introduction

There are many channels by which sensitive informa-
tion can be leaked. This paper is concerned with informa-
tion flows that arise in sequential object-oriented programs
due to control flow, data flow, and dynamic memory al-
location. Inspired by Denning’s work [10, 11], Volpano,
Smith and Irvine devised an elegant, syntax-directed type
system for annotating program variables, commands, and
procedure parameters with security levels [34, 32]. Goguen
and Meseguer [13] introduced noninterference, expressed
in terms of suitable simulation relations, to formalize infor-
mation flow policies. Volpano and Smith proved that their
type system ensures noninterference [34, 32].

Subsequently, several researchers have given similar
analyses for possibilistic and probabilistic noninterference
for multi-threaded programs [28, 33, 25, 19, 27]. Barthe
and Serpette prove noninterference for a purely functional
instance-based object calculus [4]. For sequential pro-
grams, Abadiet al. [1], Sabelfeld and Sands [26] and
Heintze and Riecke [15] consider higher order procedures.
They also make explicit the connections between the rela-
tional formulation of noninterference and other dependency
analyses such as slicing and binding time analysis [1, 4],
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building noninterference properties into the semantics in the
manner of Reynolds’ relationally parametric models [24].
However, it is difficult to extend such models in a tractable
way to encompass language features such as recursive types
and shared mutable objects which are extensively used in
languages such as Java [2].

Our contribution is to deal with dynamic memory allo-
cation and object-oriented constructs: we prove noninterfer-
ence for a sequential object-oriented language with pointers
and mutable state, private fields and class-based visibility,
dynamic binding and inheritance, casts and type tests, and
mutually recursive classes and methods. The security type
system extends that of Volpano and Smith [32] to encom-
pass data flow via mutable object fields and control flow in
dynamically dispatched method calls.

Myers [20] gave a security typing system for a fragment
of Java even richer than ours, but left open the problem of
justifying the rules with a noninterference result. This is
hardly surprising, as the rules are quite complicated. Some
of the complications are inherent in the complexity of the
language; others are introduced with the aim of accomodat-
ing dynamic access control and sophisticated security poli-
cies including declassification [12, 21, 20, 35].

In the present paper, we confine attention to the problem
of proving noninterference for a “realistic” sequential lan-
guage (not far from JavaCard [7]), using conventional anno-
tations without declassification or dynamic access control.
Our results are given in elementary terms. We eschew the
elegant structures used in [15, 1, 26], but we can give de-
tailed proofs in the space of a few pages. This may also
help in extending our results to other language features.

We use the weak form of noninterference which does
not consider termination to be observable. Strong nonin-
terference is treated by Volpano and Smith [32] (and oth-
ers), but for a sequential language this requires loop guards
to have low security. We omit loops but include recursion
which also admits nontermination. Thus to extend their
ideas to our language we would require low security guards
for conditionals that involve recursive calls, a complication



we choose to avoid here. The extension of strong nonin-
terference to recursive procedures merits study in a simple
setting before it is combined with the features of an object-
oriented language.

Our work grew out of a study of data abstraction for
Java [3]. We found that a straightforward compositional se-
mantics is adequate even in the presence of recursive types
and dynamically bound method calls (which are typically
viewed as being akin to higher order procedures). The se-
mantics is simple enough to extend easily to additional con-
structs, e.g., access control is included in [3].

Due to pointer aliasing, the language is not relationally
parametricper se. But suitable confinement of pointers suf-
fices to yield a strong representation-independence result
for user-defined abstractions [3]. The term “confinement”
appears to originate in the literature on operating system
security, but its use is natural in object-oriented program-
ming where pointer confinement has been proposed for en-
capsulation at the level of modules, classes, or instances
[16, 8, 18, 5, 31]. For information flow, we impose a con-
finement condition on high-security pointers.

The following section is a detailed overview of the paper.
Section 3 formalizes the language and its semantics. Sec-
tion 4 gives the security typing system. Section 5 deals with
confinement, which is then used in Section 6 to prove the
noninterference theorem. Section 7 considers related work
and prospects for further advance.

2. Overview

We consider a language that is quite complicated rela-
tive to those for which noninterference results have been
proved before, but we use simple security annotations that
generalize those of Volpano and Smith. We annotate local
variables, fields, and method parameters using types(T, κ)
whereT is an ordinary program type andκ is one of the
two security levelsH andL. Generalization to a lattice of
levels would complicate notations without adding illumina-
tion. We also annotate classes. The security level of a class
is the security level ofthis , i.e., the target of a method
call, and it is also used for confinement as described in the
sequel.

In the following example there is a single fieldf of high
security (levelH), in a class namedCof levelL.

class C L extends D {
(bool,H) f;

(bool,H) m ((bool,L) x) L {
if (x) this.f := not x;
else this.f := x;
return (x == this.f); } }

Our typing system assigns to methodm the type

x:(bool,L)
L−→(bool,H) . This designates a method

which takes a parameter of levelL, has effectL on the
heap, and returns a value of levelH. The heap effectL is
given in the method declaration, following the parameter
list ((bool,L) x) .

The type of the result expression(x == this.f) is
(bool,H) because the type ofthis.f is (bool,H) .
Although boththis andx areL, field f is is declaredH.

In typing judgements, Volpano and Smith use a type
H cmdfor commands that assign only toH variables. Our
typing judgements use a command type(com κ1, κ2) for
commands that assign only to variables of level at least
κ1 and to object fields of level at leastκ2. That is,
the heap effect designated by a command type is con-
cerned with field levels. The same is true of the heap
effect designated above the arrow in a method type like

x:(bool,L)
L−→(bool,H) .

If we modify the example to declare a heap
effect H for the method, resulting in a type

x:(bool,L)
H−→(bool,H) , the class is still typable

because the only effect is on a field of levelH.
Consider the following variation.

class C H extends D {
(bool,??) f;
(bool,H) m ((bool,L) x) L {

if (x) this.f := not x
else this.f := x;
return (x == this.f); } }

The type ofm is againx:(bool,L)
L−→(bool,H) but

the class isH. What level, marked?? , can be used for field
f ? The conditional statement needs to be typable in context
x:(bool,L),this:(C,H) because the label on a class
designates the level ofthis . The conditional should be
given type(com ?,L) , as the heap effect for the method
is L. What about the effect, marked?, on the local envi-
ronment (i.e., local variables and parameters)? Our rule for
field update requires that the level of the field be at least the
level of the assigned variable: asthis is H, field f needs
to be declared asHand then the conditional can be typed as
(com H,L) .

Subclassing in Java is “invariant” in the sense that
method signatures cannot be specialized in subclasses. Al-
though other alternatives merit study, our typing system is
the same: the declared security levels of a method cannot
be changed in subclasses. However, we allow the subclass
of an L class to be declaredH. This has interesting conse-
quences and it is one of the reasons why we need a seman-
tic notion of pointer confinement, calledL-confinement, as
discussed later.

These examples are far from an exhaustive illustration of
the interesting patterns that arise. Nor can a brief exposition
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give a thorough justification for the rules. A few more ex-
amples appear in Section 4.1. Although our type system is
quite general, it disallows some sensible programs such as
those involving declassification. On the other hand, it ad-
mits some declarations that are sound but not very useful,
such as variables of type(C,L) for H-classC.

In Section 3 we give the formal syntax and denotational
semantics of the underlying language for which we con-
sider security annotations. Java is sufficiently complicated
that it is a challenge to formalize its syntax in a readable
way. We adapt the formalization of a smaller fragment of
Java, FJ [17], which mixes standard notations from type
theory with Java-like syntax. We extend FJ by adding im-
perative features, and modify it by treating fields as private
(class-visible) rather than public. The semantics is defined
in terms of an ordinary typing system; it does not depend
on security annotations.

In Section 4 we give the typing system for security anno-
tations. In practice, one would want to specify security pol-
icy by labelling certain inputs and outputs, leaving the rest
to automated inference, but that is beyond the scope of the
paper, as is label polymorphism. For expository purposes,
it is convenient to use separate subsumption and subtyping
rules that express, for example, that anL expression can al-
ways be used in a context where anHexpression is allowed.
But for proofs it is more convenient to use syntax-directed
rules that incorporate subsumption. For lack of space we
give only the syntax-directed rules for our system, at the
cost that the rules have rather many constraints on security
levels. Readers unfamiliar with this style of specifying a
flow analysis are encouraged to read Volpano and Smith’s
clear and succinct presentation [32].

Our main result, in Section 6, is a noninterference the-
orem: For a program with annotations satisfying the rules,
fields, variables, and method results with labelL do not de-
pend on those with labelH. As in work cited in the intro-
duction, noninterference is formalized in terms of an equiv-
alence relation on states. Here a state consists of an envi-
ronmentη and a heaph. For two states(η, h) and(η′, h′)
to be equivalent, written(η, h) ∼ (η′, h′), means that they
agree onL-variables and onL-fields of heap objects. The
noninterference theorem says that if a typable program is
executed in the two related states(η, h) and (η′, h′), the
outcomes are also related. What this means is that changes
to high security inputs cannot be observed at low outputs.

The main noninterference result pertains to the methods
of a complete program consisting of a collection of classes
that can involve mutually recursive fields and methods. The
semantics of such a program is given as a fixpoint and the
main result is proved by induction. This proof depends on
a main lemma saying that commands are noninterfering—
safe, for short—under the assumption that the methods they
call are safe. Safety depends on confinement.

Section 5 is concerned with confinement. In [32], nonin-
terference is proved on the basis of two lemmas called sim-
ple security and confinement. Simple security corresponds
roughly to ourL-confinement and safety Lemmas 5.1 and
6.1 for expressions. These results say that anL-expression
cannot distinguish between related states. Confinement in
[32] corresponds to what we callH-confinement, which
pertains toH-commands: such commands do not assign
to L-variables or fields. Noninterference for conditionals
depends onH-confinement: A conditional withH-guard
can behave differently in equivalent states, so the statement
parts must be restricted to beH-commands.

To deal with the heap, we use a property calledL-
confinement. The language includes subclassing and sub-
sumption, and we allow anL-class to have anH-subclass.
As a result, simple typing does not prevent certainH to L
flows. Moreover, anL-object can be aliased by both anL-
and anH-variable. Hence, we must show that a typableL-
expression never denotes anH-pointer and that commands
preserve the invariant thatL-variables andL-fields contain
noH-pointers.

Besides controlling direct information flows,L-
confinement is also needed to treat dynamic memory alloca-
tion and the equivalence∼ for heaps. An environment maps
variable identifiers to values, whereas a heap maps locations
to values. One need only defineη ∼ η′ for η andη′ with
the same domain. In a simple imperative language, anH-
command can distinguish between∼-related states but the
distinction appears in terms of the states of variables (and
termination). In a language with heap allocation, there is
also the possibility of differing allocations. Thus it is un-
reasonable forh ∼ h′ to require identical domains. But
allocation must depend on the domain of the heap, to en-
sure freshness. Ifh ∼ h′ allows different domains then an
L-command could potentially distinguish by observing the
behavior of the allocator.

In a language with pointer arithmetic, comparison using
< is a real problem. In Java, pointers are abstract: they can
be compared only by=. Although two related heaps could
result in different allocations, one can argue that no infor-
mation is leaked toL-commands because they cannot make
useful distinctions between pointer values. One could for-
malize this idea by requiring that, for theL part of related
heaps, the domains need not be equal but rather there should
be a bijection between them so that corresponding objects
are related. From related states, allocation of a newL-object
would add a pair to the bijection. Although this approach
appears viable, we have avoided it for two reasons. First,
the added complication would pervade all definitions and
results. We prefer to follow the lead of Volpano and Smith
in using simple standard semantic notions to the extent pos-
sible. Second, although it is easy to see how to maintain the
bijection in a small step semantics, it is not as simple in a

3



compositional semantics. Some other possibilities for relat-
ing heaps are in [29, 30], though we have not pursued these
ideas.

Our approach depends on the allocator satisfying a mild
parametricity condition which is also needed for the ab-
straction theorem of [3]. The condition says that the choice
of a fresh location for an object of classC depends only
on currently-allocatedC objects. Capability-based systems
provide similar abstractions. The benefit here is that the def-
inition of h ∼ h′ can simply require thath andh′ have the
same domain forL-objects. We have not imposed a condi-
tion that the heaps are garbage-free. Garbage in the initial
state has no influence on the final state. One might have
thought that we would need to garbage-collect in order for
the final states to be related, but this is not necessary.

3. Language: syntax and semantics

This section presents the language without security an-
notations; it is this language for which the semantics is de-
fined. The language is the same as the core language in [3],
from which we have also borrowed expository material. To
make the paper more self-contained, we give complete typ-
ing rules and semantic definitions. For further explanation
and justification of the definitions, the reader is advised to
consult [3].

The grammar is based on given sets of class names (with
typical elementC), field names (f ), method names (m), and
variable/parameter namesx (including this). Barred identi-
fiers likeT indicate finite lists, e.g.,T f stands for a listf
of field names with corresponding typesT .

T ::= bool | unit | C
CL ::= class C extends C { T f ; M }
M ::= T m(T x) {S; return e}
S ::= x := e | x.f := e | x := new C() | e.m(e) |

if e S else S | var T x := e in S | S; S
e ::= x | e.f | e.m(e) |

e==e | (C) e | null | e instanceof C

Without formalizing it precisely, we assume there is a class
Object with no fields or methods which can be used as a
superclass. Additional base types, such as integers, can be
treated in the same way asbool andunit .

Table 1 gives the typing rules. A typing environmentΓ is
a finite function from variable names to types. A judgement
of the formΓ; C ` e : T says thate has typeT in the
context of a method of classC, with parameters and local
variables declared byΓ. A judgementΓ; C ` S : com
says thatS is a command in the same context. To simplify
the typing rules and semantic definitions, we assume that
variable and parameter names are not re-used.

A complete program is given as aclass tableCT that as-
sociates each declared class name with its declaration. The
typing rules make use of auxiliary notions that are defined
in terms ofCT , so the typing relatioǹ depends onCT
but this is elided in the notation. Because typing of each
class is done in the context of the full table, methods can be
mutually recursive, and so can field types.

Methods and classes are considered public. The rules for
field access and update enforce visibility: fields of a class
are accessible only to methods of that class, as in Java’s
private visibility.

Subsumption is built in to the rules using the subtyp-
ing relation≤ on T specified as follows. For base types,
bool ≤ bool andunit ≤ unit . For classesC andD,
we haveC ≤ D iff either C = D or the class declaration
for C is class C extends B { . . . } for someB ≤ D.

To define some auxiliary notations, let

CT (C) = class C extends D { T 1 f ; M }

and letM be in the listM of method declarations, with
M = T m(T 2 x) {S; return e}. We record the typing
information by definingmtype(m,C) = (x : T 2) → T .
For the declared fields, we definedfieldsC = T 1 f and
type(f, C) = T 1. To include inherited fields, we define
fieldsC = dfieldsC ∪ fieldsD, and assumef is disjoint
from the names infieldsD. The built-in classObject has
no methods or fields. Note thatmtype(m,C) is defined only
if m is declared or inherited inC.

A class table is well formed if each of its method decla-
rations is well formed according to the following rule.

(x : T , this : C); C ` S : com
(x : T , this : C); C ` e : U U ≤ T
mtype(m,D) is undefined or equals(x : T )→ T

C extends D ` T m(T x){S; return e}

Turning to semantics, the state of a method in execution
is comprised of aheaph, which is a finite partial function
from locations to object states, and anenvironmentη, which
assigns locations and primitive values to local variables and
parameters. Every environment of interest includes the dis-
tinguished variablethis which points to the target object. A
command denotes a function from initial state to either a
final state or the error value⊥.

For locations, we assume that a countable setLoc is
given, along with a distinguished entitynil not in Loc. We
treat object states as mappings from field names to val-
ues. To track the object’s class we assume given a func-
tion loctype : Loc → ClassNames such that for eachC
there are infinitely many locations̀with loctype ` = C.
We write locs C for {` | loctype ` = C}. The assumption
aboutloctype ensures an adequate supply of fresh locations,
given that the domain of any heap is finite.
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Γ; C ` x : Γx

Γ; C ` e1 : T
Γ; C ` e2 : T

Γ; C ` e1==e2 : bool

Γ; C ` null : B

Tf ∈ dfieldsC
Γ; C ` e : C
Γ; C ` e.f : T

mtype(m,D) = (x : T )→ T
Γ; C ` e : D
Γ; C ` e : U U ≤ T

Γ; C ` e.m(e) : T

Γ; C ` e : D B ≤ D
Γ; C ` (B) e : B

Γ; C ` e : D B ≤ D
Γ; C ` e instanceof B : bool

Γ; C ` unit : unit

x 6= this
Γ; C ` e : T T ≤ Γx

Γ; C ` x := e : com

Γx = C Tf ∈ dfieldsC
Γ; C ` e : U U ≤ T
Γ; C ` x.f := e : com

x 6= this B ≤ Γx
Γ; C ` x := new B( ) : com

mtype(m,D) = (x : T )→ T
Γ; C ` e : D Γ; C ` e : U U ≤ T

Γ; C ` e.m(e) : com

Γ; C ` e : bool
Γ; C ` S1 : com Γ; C ` S2 : com

Γ; C ` if e S1 else S2 : com

Γ; C ` S1 : com Γ; C ` S2 : com
Γ; C ` S1; S2 : com

Γ; C ` e : U (Γ, x : T ); C ` S : com U ≤ T
Γ; C ` var T x := e in S : com

Table 1. Typing rules for expressions and commands.

[[bool ]] = {true, false} [[unit ]] = {•} [[C]] = {nil} ∪ {` | ` ∈ Loc ∧ loctype ` ≤ C}

η ∈ [[Γ]] ⇔ dom η = dom Γ ∧ ∀x ∈ dom η . η x ∈ [[Γx]]

s ∈ [[C state]] ⇔ doms = fieldsC ∧ ∀f ∈ fieldsC . sf ∈ [[type(f, C)]]

h ∈ [[Heap]] ⇔ dom h ⊆fin Loc ∧ ∀` ∈ dom h . h` ∈ [[(loctype `) state]]

[[C, (x : T )→ T ]] = [[x : T , this : C]]→ [[Heap]]→ ([[T ]]× [[Heap]])⊥

[[MEnv ]] ⊆ (C : ClassNames) 9 (m : MethodNames) 9 [[C,mtype(m,C)]]

Table 2. Semantic domains.

Methods are associated with classes, in amethod envi-
ronment, rather than with instances. For this reason the se-
mantic domains, given in Table 2, are rather simple. There
are no recursive domain equations to be solved. In ad-
dition to domains like[[T ]] and [[Γ]] that correspond di-
rectly to syntactic notations, we use the following domains:
[[Heap]] is the set of heaps,[[C state]] is the set of states
of objects of classC, [[MEnv ]] is the set of method en-
vironments (we write9 for finite partial functions), and
[[(C, (x : T )→ T )]] is the set of meanings for methods of
classC with resultT and parametersx : T .

The sets[[Heap]], [[bool ]], [[C]], and [[C state]] are or-
dered by equality. We write→ for continuous function
space, ordered pointwise, andX⊥ for domainX with added
bottom element⊥. Each set[[(C, (x : T )→ T )]] has a least

element (the constantly-⊥ function) and least upper bounds
of ascending chains, and this suffices for the fixpoint se-
mantics. Without giving a precise formalization, we require
that [[MEnv ]] contain exactly the partial functionsµ such
thatµCm is defined for all classesC declared inCT and
methodsm declared or inherited inC.

The semantics is defined for an arbitrary allocator, but
the noninterference theorem depends on parametricity.

Definition 1 (Allocator, parametric)
An allocator is a location-valued functionfresh such that
loctype(fresh(C, h)) = C and fresh(C, h) 6∈ domh, for
all C, h. An allocator isparametricif domh1 ∩ locsC =
domh2 ∩ locsC impliesfresh(C, h1) = fresh(C, h2). 2

For example, ifLoc = N the function fresh(C, h) =
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min{` | loctype ` = C ∧ ` 6∈ domh} is parametric.

It is straightforward to show that, as in Java, no program
constructs create dangling pointers, but it is slightly simpler
to formulate the definitions to allow dangling pointers. Like
cast failures, dereferences of dangling pointers andnil are
considered an error. We identify all errors, and divergence,
with the improper value⊥.

The semantics is defined by induction on typing judge-
ments, and for all typings fore andS we have

[[Γ; C ` e : T ]] ∈ [[MEnv ]]→ [[Γ]]→ [[Heap]]→ [[T ]]⊥
[[Γ; C ` S : com]] ∈

[[MEnv ]]→ [[Γ]]→ [[Heap]]→ ([[Γ]]× [[Heap]])⊥

To streamline the treatment of⊥ in the semantic definitions,
we use a metalanguage construct,let d = E1 in E2, with
the following meaning: If the value ofE1 is⊥ then that is
the value of the entire let expression; otherwise, its value
is the value ofE2 with d bound to the value ofE1. This
construct is only exploited in the semantic definitions; later,
in definitions of properties, we handle⊥ explicitly.

Function update is written, e.g.,[η | x 7→ d]. In the se-
mantics of local variables, we write� for domain restriction:
if x is in the domain of functionη thenη � x is the function
like η but withoutx in its domain.

Table 3 gives the semantics of expressions and Table 4
gives the semantics of commands. The definitions are
straightforward renderings of the operational semantics [2].
For example, the value ofe.f in state(η, h) is⊥ if the value
of e is ⊥ or is not indom h; otherwise, the value ofe is
some locatioǹ ∈ dom h, so the object stateh` is a finite
map withf ∈ dom (h`) and the value ofe.f is h`f . Field
updatex.f := e in state(η, h) does not change the environ-
ment; the new heap[h | ` 7→ [h` | f 7→ d]] updatesh by
replacingh` with the object state[h` | f 7→ d] obtained by
updating fieldf to have the valued of e.

For method call as an expression,e.m(e), the value is⊥
unless the value ofe is somè ∈ dom h. In that case, letd
be the method meaning given byµ for methodm at the dy-
namic type(loctype `) of e. The result of the call is obtained
by applyingd to the initial heaph and to the environment
[x 7→ d, this 7→ `] whered is the list of values of arguments
e. The result, if not⊥, is a pair(d0, h0); for method call
as expression, the value ofe.m(e) is d0. Note thath0 is
discarded; for expository simplicity we do not model side
effects of expressions (see Section 7 for a discussion). For
method call as command,d0 is discarded and the new state
is η, h0, as the call has no effect on the environmentη of the
caller.

The semantics of a class table is the method environ-
ment, µ̂, given as the least upper bound of the ascending

[[Γ; C ` x : T ]]µηh = ηx

[[Γ; C ` null : B]]µηh = nil

[[Γ; C ` unit : unit ]]µηh = •
[[Γ; C ` e1==e2 : bool ]]µηh
= let d1 = [[Γ; C ` e1 : T ]]µηh in

let d2 = [[Γ; C ` e2 : T ]]µηh in (d1 = d2)
[[Γ; C ` e.f : T ]]µηh
= let ` = [[Γ; C ` e : C]]µηh in

if ` 6∈ dom h then⊥ elseh`f

[[Γ; C ` e.m(e) : T ]]µηh
= let ` = [[Γ; C ` e : D]]µηh in

if ` 6∈ dom h then⊥ else

let (x : T )→ T = mtype(m,D) in

let d = µ(loctype `)m in

let d = [[Γ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in d0

[[Γ; C ` (B) e : B]]µηh
= let ` = [[Γ; C ` e : D]]µηh in

if ` ∈ dom h ∧ loctype ` ≤ B then ` else⊥
[[Γ; C ` e instanceof B : bool ]]µηh
= let ` = [[Γ; C ` e : D]]µηh in

` ∈ dom h ∧ loctype ` ≤ B

Table 3. Semantics of expressions.

chainµ ∈ N→ [[MEnv ]] defined as follows.

µ0 Cm = λη. λh. ⊥
µj+1 Cm = [[M ]]µj if m is declared asM in C
µj+1 Cm = µj+1Bm if m is inherited fromB in C

[[M ]]µηh
= let (η0, h0) = [[(x : T , this : C); C ` S : com]]µηh in

let d = [[(x : T , this : C); C ` e : T ]]µη0h0 in (d, h0)
where in classC we haveM = T m(T x){S; return e}.

4. Security typing

In this section we annotate the syntax of Section 3 with
security labels. Where a typeT could occur, i.e., in declara-
tions of fields, parameters, and local variables, we use pairs
(T, κ) whereκ is a security level. Such a pair, writtenτ ,
is called asecurity type. The security levels areL andH,
orderedL ≤ H. We writeκ1 t κ2 to denote least upper
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[[Γ; C ` x := e : com]]µηh
= let d = [[Γ; C ` e : T ]]µηh in ([η | x 7→d], h)
[[Γ; C ` x.f := e : com]]µηh
= let ` = ηx in if ` 6∈ dom h then⊥ else

let d = [[Γ;C ` e : U ]]µηh in (η, [h | ` 7→ [h` | f 7→d]])
[[Γ; C ` x := new B( ) : com]]µηh
= let ` = fresh(B, h) in

([η | x 7→`], [h | ` 7→ [fieldsB 7→ defaults]])
[[Γ; C ` e.m(e) : com]]µηh
= let ` = [[Γ; C ` e : D]]µηh in

if ` 6∈ dom h then⊥ else

let (x : T )→ T = mtype(m,D) in

let d = µ(loctype `)m in

let d = [[Γ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in (η, h0)
[[Γ; C ` S1; S2 : com]]µηh
= let (η0, h0) = [[Γ; C ` S1 : com]]µηh in

[[Γ; C ` S2 : com]]µη0h0

[[Γ; C ` if e S1 else S2 : com]]µηh
= let b = [[Γ; C ` e : bool ]]µηh in

if b then [[Γ; C ` S1 : com]]µηh
else[[Γ; C ` S2 : com]]µηh

[[Γ; C ` var T x := e in S : com]]µηh
= let d = [[Γ; C ` e : U ]]µηh in

let (η0, h0) = [[(Γ, x : T ); C ` S]]µ[η | x 7→d]h in

(η0�x, h0)

Table 4. Semantics of commands.

bound. The grammar is revised as follows.

κ ::= L | H
τ ::= (T, κ)

CL ::= class C κ extends C { τ f ; M }
M ::= τ m(τ x) κ {S; return e}
S ::= . . . | var τ x := e in S | . . .

Tables 5 and 6 give typing rules for annotated programs.
We write ∆ for typing environments that assign security
types. A judgement∆; C ` S : (com κ1, κ2) says that
S assigns only to variables (locals and parameters) of level
≥ κ1 and to object fields of level≥ κ2 (see Lemma 5.4).

In Section 2 we noted that security typing can be pre-
sented more perspicuously using separate subtyping and

subsumption rules. For example, our rule forx := e in Ta-
ble 6 could give the command the type(com κ1,H), rather
than including the unconstrainedκ4 and the constraintκ3 ≤
κ1, as there is no heap effect and the most precise environ-
ment information isκ1. Even for a syntax-directed system,
it may be possible to avoid subsumptions for primitive com-
mands, given those built into rules for command constructs
like sequencing. But care needs to be taken because lev-
els in a method declaration cannot be changed in overriding
declarations, and primitive commands can occur as method
bodies. We err on the side of generality.

The rules use versions of the auxiliary functionsmtype
etc. that take security levels into account. Let

CT (C) = class C κ1 extends D { τ1 f ; M }

and letM be in the listM of method declarations, with

M = τ1 m(τ2 x) κ2 {S; return e}

The security version of mtype is defined by
smtype(m,C) = (x : τ2) κ2−→ τ1. Corresponding to
dfields, fieldsandtype, we definesdfields, sfieldsandstype
which differ only in that they give security types, e.g.,
sdfieldsC = τ1 f .

We also need a functionlevel that gives the level as-
sociated with the class itself: for the declaration above,
levelC = κ1. Define levelObject = L. For locations,
definelevel` = level(loctype `).

The rule for method declaration imposes the condition
that an overriding definition cannot change the parameter
or return types, nor the heap effect. The rule for class dec-
laration restricts inheritance of methods. This is discussed
in Section 4.1 below.

We use the symbol† to erase annotations:(T, κ)† = T ,
and this extends to erasure for typing environments, com-
mands, and method declarations in the obvious way. For
example, ifM is the method declaration

(bool , L) m((bool , L) x) L {x := x; return x}

thenM† is bool m(bool x) {x := x; return x}.
For any judgement∆; C ` S : (com κ1, κ2) deriv-

able using the rules in Tables 5 and 6, the erased judgement
∆†; C ` S† : com is derivable using the rules of Table 1.
Conversely, any program typable using the rules of Table 1
can be annotated everywhere byL and typed by the rules in
Tables 5 and 6.

4.1. Examples

We consider a program in which the HIV status of a
medical patient is to be kept confidential. A basic patient
record looks as follows. We assume that there is anL-class
String .
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∆; C ` x : ∆x ∆; C ` null : (D,κ) ∆; C ` unit : (unit , κ)

∆; C ` e1 : (T, κ1)
∆; C ` e2 : (T, κ2)

∆; C ` e1==e2 : (bool , κ1 t κ2)

(T, κ1)f ∈ sdfieldsC
∆; C ` e : (C, κ2)

∆; C ` e.f : (T, κ1 t κ2)

∆; C ` e : (D,κ) B ≤ D
∆; C ` (B) e : (B, κ)

smtype(m,D) = x : (T , κ) κ3−→ (T, κ2)
∆; C ` e : (D,κ4) ∆; C ` e : (U, κ5)
U ≤ T κ5 ≤ κ

∆; C ` e.m(e) : (T, κ2 t κ4)

∆; C ` e : (D,κ) B ≤ D
∆; C ` e instanceof B : (bool , κ)

Table 5. Security typing rules for expressions.

class LPatient L extends Object {
(String,L) name;
(String,L) getName() H {

return this.name }
(unit,L) setName((String,L) n) L {

this.name := n } }

Note thatsetName hasL-effect, as it assigns to anL-field.
MethodgetName can be declared as havingL or Heffect;
we choose the latter. A confidential field is added for HIV
status in the following class.

class XPatient L extends LPatient {
(String,H) hiv;
(unit,L) setHIV((String,H) s) H {

this.hiv := s }
(String,H) getHIV() H {

return this.hiv } }

Here is an application using such objects, written using
slight abuses of the official syntax.

class Main L extends Object {
(unit,L) main() L {

var (String,L) Lbuf := null;
var (String,H) Hbuf := null;
var (LPatient,L) lp:=readFile(...);
var (XPatient,L) xp:=new XPatient();
Lbuf := lp.getName();
Hbuf := lp.getName();

(1) xp.setName(Lbuf);
Hbuf := readFromTrustedChan(...);

(2) xp.setHIV(Hbuf); } }

After execution of line (1),LBuf , HBuf , andxp.name all
reference the same object. After execution of line (2),LBuf
aliasesxp.name , andHBuf aliasesxp.hiv . All the code
above is allowed by the security typing rules, assuming ap-
propriate types for theread methods. The following are
not allowed inmain .

(3) Lbuf := Hbuf;
(4) lp.setName(xp.getHiv());

In both (3) and (4), there is a direct flow fromH to L.
Let us consider anH-subclass ofXPatient .

class HPatient H extends XPatient {
(String,H) f;
(unit,L) setf((String,H) v) H {

this.f := v }
(String,H) getf() H {

return this.f } }

By contrast withsetName , the effect ofsetf can be de-
claredHas it assigns only to anH-field.

There is, however, a problem with inherited methods.
SupposeLPatient declared a method

(String,L) passSelf() H {
...o.m(this)... }

whereo.m is a call on some objecto of a methodmwith L
parameter. This is typable inLPatient , although it would
not be typable inHPatient where the level ofthis is
H. For a variablehp of classHPatient , an invocation
hp.passSelf() of the inherited method would result in
a flow fromH to L in the callo.m(this) .

We solve the problem in a simple way: The rule for
classes in Table 6 requires that anH-subclass of anL-class
overrides all methods of its superclass. This is unnecessar-
ily, and unacceptably, restrictive. It requires, for example,
that getName be overridden although it poses no risk of
bad flow; and an overriding declaration does not have ac-
cess to the private fieldname. The problem can be solved
in a less restrictive way using the notion of “anonymous
method” of Vitek and Bokowski [31]: such methods do
not leak the receiverthis. The static analyses described in
[31, 14] restrict inheritance only for methods that leakthis.
We expect that their constraints can be adapted easily to our
setting.
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x 6= this T2 ≤ T1 κ2 ≤ κ1 κ3 ≤ κ1

∆, x : (T1, κ1); C ` e : (T2, κ2)
∆, x : (T1, κ1); C ` x := e : (com κ3, κ4)

(T, κ2)f ∈ sdfieldsC
∆, x : (C, κ1); C ` e : (U, κ3)
U ≤ T κ1 t κ3 t κ5 ≤ κ2

∆, x : (C, κ1); C ` x.f := e : (com κ4, κ5)

x 6= this B ≤ D levelB t κ2 ≤ κ1 κ3 ≤ levelB
∆, x : (D,κ1); C ` x := new B( ) : (com κ2, κ3)

smtype(m,D) = x : (T , κ) κ3−→ (T, κ2)
∆; C ` e : (D,κ4) ∆; C ` e : (U, κ5)
U ≤ T κ5 ≤ κ κ4 t κ7 ≤ κ3

∆; C ` e.m(e) : (com κ6, κ7)

∆; C ` S1 : (com κ1, κ2)
∆; C ` S2 : (com κ3, κ4)
κ5 ≤ κ1 u κ3 κ6 ≤ κ2 u κ4

∆; C ` S1; S2 : (com κ5, κ6)

∆; C ` e : (bool , κ5)
∆; C ` S1 : (com κ1, κ3) ∆; C ` S2 : (com κ2, κ4)
κ5 ≤ κ6 u κ7 κ6 ≤ κ1 u κ2 κ7 ≤ κ3 u κ4

∆; C ` if e S1 else S2 : (com κ6, κ7)

∆; C ` e : (U, κ4)
∆, x : (T, κ1); C ` S : (com κ5, κ6)
U ≤ T κ4 ≤ κ1 κ2 ≤ κ5 κ3 ≤ κ6

∆; C ` var (T, κ1) x := e in S : (com κ2, κ3)

x : (T , κ), this : (C, κ1); C ` S : (com κ2, κ3)
x : (T , κ), this : (C, κ1); C ` e : (T, κ4)
smtype(m,D) is undefined or equalsx : (T , κ) κ3−→ (T, κ4)

C κ1 extends D ` (T, κ4) m((T , κ) x) κ3 {S; return e}

levelD ≤ κ
C κ extends D `M for eachM ∈M
If levelD 6= κ then everym with smtype(m,D)

defined is overridden inC by someM ∈M.

` class C κ extends D { τ f ; M }

Table 6. Security typing rules for commands, method declarations, and classes.

Our last examples involve information leaks via the con-
ditional control flow implicit in dynamically bound method
calls. Consider these three classes.

class YN L extends Object {
(bool,L) val(){ return true; } } }

class Y L extends YN {
(bool,L) val(){ return true; } }

class N L extends YN {
(bool,L) val(){ return false; } }

We add the following method toXPatient . The typing
rules force the result to have levelH; otherwise there would
be a bad data flow.

(YN,H) leak() H {
var (YN,H) o;
if (this.hiv) o := new Y();
else o := new N();
return o; }

In main , the expressionxp.leak().val() has levelH
due to the return type ofleak .

Here is a similar example but using the heap and method
call commands rather than expressions.

class YNh L extends Object {
(bool,H) v;
(bool,H) val(){ return v } }
(unit,L) setv((bool,H) w) H {

this.v:=w }
(unit,L) set() H {this.setv(true)} }

class Yh L extends YNh {
(unit,L) set() H {this.setv(true)} }

class Nh L extends YNh {
(unit,L) set() H {this.setv(false)} }

The leak method is the same as before but usingYNhand
its subclasses. Considerx of type(YNh,H) in

x:=xp.leak(); x.set(); ...x.val()...

The declared level ofx must beH because it is assigned
from leak . The method call rule then requires forx.set
that the heap effect ofset be H, which in turn forces the
level of field v to beH. Indeed, if its level wasL then the
call x.set() would violate noninterference.
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4.2. Remarks about proofs

Proofs in the sequel involve detailed analysis of the se-
mantics and the security typing rules. For each specific
case, the semantic definition may involve several values
(e.g., the value ofe is needed in the semantics ofx := e),
and the rule may involve several types and security labels.
In writing a given proof case, we found it convenient to
write down both the rule and the semantics for reference. It
is impractical to include such redundancy in the paper, how-
ever. Instead, when it comes to proving something about a
particular construct we make free use of identifiers in the
typing rule (in Table 5 or 6), for types and labels, and iden-
tifiers in the semantic definition for semantic values (in Ta-
ble 3 or 4). We explicitly introduce identifiers for types or
values only when necessity or perspicuity demands it.

Note that the semantic definition may use different iden-
tifiers for types, as the semantics is based on the typing rules
in Table 1 rather than the security rules in Tables 5 and 6.

We streamline the proofs by ignoring⊥ outcomes in
many cases. Most of the results only pertain to non-⊥ out-
comes, and the constructs are mostly strict in⊥. Without
comment we assume various intermediate values are non-⊥
unless confusion could result.

5. Confinement

This section shows that typable programs maintain the
invariant thatL fields and variables never holdH locations.
The formalization uses the indistinguishability relation∼
also used in the main results of Section 6.

In formalizing the absence ofL-variables that refer to
H-objects, we take advantage of the fact thatnil 6∈ Loc and
⊥ 6∈ Loc. We use the short name “ok” for L-confinement.

Definition 2 (L-confinement (ok ))

• DefineLLoc = {` ∈ Loc | level` = L}.
• For heaps, defineok h iff for all ` ∈ dom h and every
f ∈ fields(loctype `), if stype(f, loctype `) = (T,L) for
someT andh`f ∈ Loc thenh`f ∈ LLoc.

• For environments, defineok ∆ η iff for every x with
∆x = (T,L) for someT , if η x ∈ Loc thenη x ∈ LLoc.

• For method environments, defineok µ iff the
following holds: for every m,C, η, h, if ok h,
ok ∆ η, and µCmηh 6= ⊥ then ok h0 and
κ3 = L ∧ d ∈ Loc ⇒ d ∈ LLoc,
where smtype(m,C) = x : (T , κ) κ2−→ (T, κ3)

∆ = x : (T , κ), this : (C, levelC)
(d, h0) = µCmηh

Lemma 5.1 (L-confinement of expressions)
Let ∆; C ` e : (T,L) and letd = [[∆†; C ` e : T ]]µηh.

If ok µ, ok ∆ η, andok h thend ∈ Loc ⇒ d ∈ LLoc.

Proof: By induction on the derivation of∆; C ` e : (T,L)
(for brevity: “induction one”). Recall from Section 4.2 that
throughout the proofs we ignore the⊥ cases.

• Case ofx: Thend = [[∆†; C ` x : T ]]µηh = ηx. The
result follows directly from assumptionok ∆ η.

• e.f : By typing, κ1 = L = κ2. Becauseκ2 = L
we can use induction one; this, together with the as-
sumption that the semantics is non-⊥, yields that there is
` = [[∆†; C ` e : C]]µηh and` ∈ LLoc and` ∈ dom h.
Now the result follows usingκ1 = L and assumption
ok h.

• e.m(e): Let ∆0 = [x : (T , κ), this : (loctype `, level`)],
and η0 = [x 7→ d, this 7→ `]. We claim thatok ∆0 η0;
then we get the result byok µ because by typingκ2 =
κ4 = L. It remains to prove the claim.

If κ = L, then by the typing rule,κ5 = L. So by in-
duction one, and since the semantics is non-⊥, we get
d ∈ Loc ⇒ d ∈ LLoc. Henceok (x : (T , κ)) [x 7→ d].
We getok (this : (loctype `, level`)) [this 7→ `] directly
from the definitions ofok andLLoc, aslevel` = L iff
` ∈ LLoc.

• (B) e: By κ = L, and because we are considering the
case where[[(B) e]]µηh 6= ⊥, we can use induction one
to obtain` ∈ Loc ⇒ ` ∈ LLoc. Moreover,` must be
in dom h otherwise the semantics is⊥. Now the result
follows directly.

• e instanceof B, e==e′, null , unit : The result
returned in each case is not inLoc. This falsifies the
antecedent in the lemma. 2

Lemma 5.2 (L-confinement of commands)
Let ∆; C ` S : (comκ1, κ2). If ok µ, ok h, ok ∆ η,

and[[∆†; C ` S† : com]]µηh 6= ⊥ thenok ∆ η0 andok h0,
where(η0, h0) = [[∆†; C ` S† : com]]µηh.

Proof: By induction on the derivation of∆; C ` S :
(com κ1, κ2), using the assumptions of the Lemma.

• x := e: This has no heap effect: the result heaph0

is h and ok h holds by assumption. We only need
to show ok (∆, x : (T1, κ1)) [η | x 7→ d], where
d = [[∆†; C ` e : T2]]µηh. Accordingly, assume that
κ1 = L. Then by typing,κ2 = L so Lemma 5.1 fore
yieldsd ∈ Loc ⇒ d ∈ LLoc.

• x.f := e: The result environmentη0 is justη, andok ∆ η
holds by assumption. We only need to showok h0,
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whereh0 = [h | ` 7→ [h` | f 7→ d]], ` = ηx and
d = [[∆†; C ` e : U ]]µηh. Since the semantics is non-
⊥, we have` ∈ dom h. Now assume that the level
κ2 of field f is L. Then by the typing rule we have
κ1 = κ3 = L. Now applying Lemma 5.1 one, we
obtain,d ∈ Loc ⇒ d ∈ LLoc. This provesok h0.

• x := new B( ): For the environment, we must show
ok (∆, x : (D1, κ1))[η | x 7→ `], where` = fresh(B, h).
Since by assumptionok ∆ η, it is enough to deal withx;
that is, ifκ1 = L we must shoẁ ∈ Loc ⇒ ` ∈ LLoc.
Indeed, the allocatorfresh yields ` ∈ Loc. But by
the typing rule,κ1 = L implies levelB = L, hence
` ∈ LLoc as required. Finally, we getok h0 , where
h0 = [h | ` 7→ [fieldsB 7→ defaults]], becauseok h by
hypothesis anddefaults contains no locations (the de-
faults arefalse andnil).

• e.m(e): We have η0 = η, and ok ∆ η by as-
sumption, so it suffices to showok h0. Let
∆0 = x : (T , κ), this : (loctype `, level`), and
η0 = [x 7→ d, this 7→ `]. We claim ok ∆0 η0; then
we get the result byok µ. The claim is proved by
the same argument as for method calls in the proof
of Lemma 5.1 (literally the same argument, owing to
the fact that the relevant identifiers are the same in
the typing rules for method call as expression and as
command).

• if e S1 else S2: Let b = [[∆†; C ` e : bool ]]µηh.
Then if b = true, the result follows by induction onS1

and if b = false, the result follows by induction onS2.

• var (T, κ1) x := e in S: First, we haveok (∆, x :
(T, κ1)) [η | x 7→ d] whered = [[∆†; C ` e : U ]]µηh.
This is because ifκ1 = L, then by typingκ4 = L, so
by Lemma 5.1 fore, d ∈ Loc ⇒ d ∈ LLoc. Induction
on S yields ok (∆, x : (T, κ1)) η1 and ok h0, where
(η1, h0) = [[(Γ, x : T ); C ` S]]µ[η | x 7→ d]h. Hence
ok ∆ (η1�x).

• S1; S2: Use induction onS1, then onS2.
2

Lemma 5.3 (L-confinement of method environments)
For eachi we haveok µi, andok µ̂. 2

The proof is by induction oni, using Lemmas 5.1 and 5.2,
and then fixpoint induction for̂µ. It follows the pattern of
the proof of Theorem 6.3, and is given in the full paper.

Object states are indistinguishable byL if their L-fields
are equal, and environments are indistinguishable if theirL-
variables are equal. In the case of heaps and object states,
the relevant levels are determined by the field declarations
in the class table. By contrast, the levels for environments

are determined by parameter and local variable declara-
tions, hence the dependence is explicit in the notation∼∆.
It is straightforward to show that each of these is an equiva-
lence relation.

Definition 3 (Indistinguishable byL)

• Fors, s′ ∈ [[C state]], defines ∼ s′ iff
∀f ∈ fieldsC . let (T, κ) = stype(f, C) in (κ = L ⇒
sf = s′f).

• Forh, h′ ∈ [[Heap]], defineh ∼ h′ iff dom h∩LLoc =
dom h′ ∩ LLoc and∀` ∈ dom h ∩ LLoc . h` ∼ h′`.
• For η, η′ ∈ [[∆†]], define η ∼∆ η′ iff ∀x ∈
dom ∆ . let (T, κ) = ∆x in (κ = L ⇒ ηx = η′x). 2

If a command is typable as(comH,κ) it does not assign
to L-variables, and if it is typable as(com κ2,H) it does
not assign toL-fields of objects.

Definition 4 (H-confined method environment)
Method environmentµ is H-confined, writtenHconf µ, if
µCmηh 6= ⊥ ⇒ h0 ∼ h, where(d, h0) = µCmηh, for all

C,m with smtype(m,C) = x : (T , κ) H−→ (T, κ). 2

Lemma 5.4 (H-confinement of commands)
Let ∆; C ` S : (com κ1, κ2). Then for allµ, η, h such that
Hconf µ and[[∆†; C ` S† : com]]µηh 6= ⊥ we have

• if κ1 = H and (η0, h0) = [[∆†; C ` S† : com]]µηh
thenη ∼∆ η0.

• if κ2 = H and (η0, h0) = [[∆†; C ` S† : com]]µηh
thenh ∼ h0.

Proof: By induction on the derivation of∆; C ` S :
(com κ1, κ2). As usual, we follow the conventions de-
scribed in Section 4.2; in particular, level identifiers in the
proof are those in the relevant rules,not κ1, κ2 as used in
the statement of the Lemma.

• x := e: This has no effect on the heap. We need to show
thatκ3 = H ⇒ η ∼(∆,x:(T1,κ1)) η0, whereη0 = [η |
x 7→ d] andd = [[∆†; C ` e : T ]]µηh. Assumingκ3 =
H, we obtainκ1 = H by the typing rule. Now the result
follows using definition∼(∆,x:(T1,H)).

• x.f := e: This has no effect on the environment, so it
suffices to show thatκ5 = H ⇒ h ∼ h0, where
h0 = [h | ` 7→ [h` | f 7→ d]], ` = ηx and d =
[[∆†; C ` e : U ]]µηh. If ` 6∈ LLoc thenh ∼ h0 be-
cause the two heaps are identical onLLoc. If ` ∈ LLoc
then we must consider the updated fieldh`f . Assuming
κ5 = H, the typing rule forces the levelκ2 of field f
to beH; nothing else is updated, soh ∼ h0 holds by
definition of∼.
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• x := new B( ): First, assumeκ2 = H. Then by typing,
κ1 = H. We must showη ∼(∆,x:(D,κ1)) η0 whereη0 =
[η | x 7→ `] and` = fresh(B, h). But this follows by
definition of∼(∆,x:(D,κ1)) sinceκ1 = H.

Next assumeκ3 = H. Then by typing,levelB = H.
Hence` 6∈ LLoc. We must showh ∼ h0, whereh0 =
[h | ` 7→ [fieldsB 7→ defaults]]. But this follows by
definition of∼ becauseh andh0 are identical onLLoc.

• e.m(e): This has no effect on the environment. For
the heap, supposeκ7 = H. Then we must show
h ∼ h0, where (d0, h0) = µ(loctype `)m[x 7→
d, this 7→ `]h, and ` = [[∆; C ` e : D]]µηh and
d = [[∆; C ` e : U ]]µηh. Becauseκ7 = H, we
have by the typing rule,κ3 = H. Moreover,

smtype(m, (loctype `)) = x : (T , κ) H−→ (T, κ2).
Hence, by assumptionHconf µ, we geth ∼ h0.

• S1; S2: First assumeκ5 = H. Then by the typ-
ing rule, κ1 = H = κ3. By induction onS1 we get
η ∼∆ η1 where we write(η1, h1) for the intermediate
state. Then by induction onS2, we getη1 ∼∆ η0 where
(η0, h0) = [[∆†; C ` S2 : com]]µη1h1. Henceη ∼∆ η0

by transitivity.

Next, assumeκ6 = H. Thenκ2 = H = κ4. And, h ∼
h0 follows by induction onS1 andS2 and transitivity.

• if e S1 else S2: First, assumeκ6 = H. Then
by the typing rule,κ1 = H andκ2 = H. Let b =
[[∆†; C ` e : bool ]]µηh. Then if b = true, the result
follows by induction onS1 and if b = false, the result
follows by induction onS2.

Next, assumeκ7 = H. Then by the typing rule,κ3 = H
andκ4 = H. Again, the result follows by induction on
S1 if b = true and by induction onS2 if b = false.

• var (T, κ1) x := e in S: First, assumeκ2 = H.
Then by the typing rule,κ5 = H. Hence by in-
duction onS, [η | x 7→ d] ∼(∆,x:(T,κ1)) η0 where
(η0, h0) = [[(∆†, x : T ); C ` S : com]]µ[η | x 7→ d]h
andd = [[∆†; C ` e : U ]]µηh. Henceη ∼∆ (η0�x).

Next, assumeκ3 = H. Then by the typing rule,κ6 = H.
And, by induction onS we geth ∼ h0. 2

Note that a commandvar (T,L) x := e in S can be
typed as∆; C ` S : (com H,κ2) so the Lemma applies
to such commands. But the typing rule ensures that noL-
variable is assigned inS. Moreover, ifκ2 = H then no
L-fields are assigned. Sox is of limited use.

Lemma 5.5 (H-confinement of method environments)
For eachi we haveHconf µi, andHconf µ̂. 2

The proof is by induction oni, using Lemma 5.4, and then
fixpoint induction. It follows the pattern of the proof of
Theorem 6.3, and is given in the full paper.

6. Noninterference

A method meaning is safe, i.e., noninterfering, provided
that, for terminating computations,L-indistinguishable ini-
tial heaps and environments lead toL-indistinguishable re-
sults.

Definition 5 (Safe method environment)
We definesafe µ iff for all C,m and all h, h′, η, η′ the
following holds: If ok h, ok h′ ok ∆ η, andok ∆ η′ then
h ∼ h′ ∧ η ∼∆ η′ ∧ µCmηh 6= ⊥ 6= µCmη′h′

⇒ h0 ∼ h′0 ∧ (κ3 = L ⇒ d = d′)
where smtype(m,C) = x : (T , κ) κ2−→ (T, κ3)

∆ = x : (T , κ), this : (C, levelC)
(d, h0) = µCmηh
(d′, h′0) = µCmη′h′

2
Our main result is that the method environment denoted

by a secure class table is safe. The proof uses the following
two results which express noninterference for the expres-
sion and command constructs, respectively.

If an expression can be typed∆; C ` e : (T,L) then
its meaning is the same in twoL-indistinguishable states,
provided that it diverges in neither state.

Lemma 6.1 (Safe expressions)
Suppose∆; C ` e : (T,L). Suppose thath ∼ h′,
η ∼∆ η′, safe µ, ok µ, ok h, ok h′, ok ∆ η, ok ∆ η′, and
[[∆†; C ` e : T ]]µηh 6= ⊥ 6= [[∆†; C ` e : T ]]µη′h′. Then
[[∆†; C ` e : T ]]µηh = [[∆†; C ` e : T ]]µη′h′.

In this proof and subsequent ones, we extend the conven-
tion described in Section 4.2. When comparing semantics
for a pair of states(η, h) and(η′, h′), we use corresponding
primes on identifiers in the semantic definitions. For exam-
ple, the semantic definition of[[∆†; C ` x := e : com]]µηh
involves valued denoted bye in stateη, h, so we writed′ for
the corresponding value for[[∆†; C ` x := e : com]]µη′h′.

Proof: By induction on the derivation of∆; C ` e :
(T,L). Using the assumptions of the Lemma, we show
[[∆†; C ` e : T ]]µηh = [[∆†; C ` e : T ]]µη′h′ by cases on
e.

• x: Then [[∆†; C ` x : T ]]µηh = ηx and
[[∆†; C ` x : T ]]µη′h′ = η′x. By assumptionη ∼∆ η′

and∆x = (T,L) we haveηx = η′x.

• e1==e2: By typing, κ1 = L = κ2. Thus we can
use induction one1 to obtain[[∆†; C ` e1 : T ]]µηh =
[[∆†; C ` e1 : T ]]µη′h′ (we are considering the case
where[[e1==e2]]µηh 6= ⊥ and [[e1==e2]]µη′h′ 6= ⊥,
so by semantics the value ofe1 is also non-⊥). Sim-
ilarly, induction one2 yields [[∆†; C ` e2 : T ]]µηh =
[[∆†; C ` e2 : T ]]µη′h′. The result follows directly.
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• e.f : By typing, κ1 = L = κ2. Becauseκ2 = L we
can use induction one; this yields that there is̀ with
[[∆†; C ` e : C]]µηh = ` = [[∆†; C ` e : C]]µη′h′, as
we only consider the case that both semantics are non-
⊥. For the same reason,` is in the domain of bothh and
h′. By κ2 = L and Lemma 5.1 we havè∈ LLoc so,
by assumptionh ∼ h′, we geth` ∼ h′`; this implies
h`f = h′`f because fieldf has labelκ1 = L.

• e.m(e): By the security typing rule we
have e : (D,L), so by induction ` = `′.
Let ∆0 = x : (T , κ), this : (loctype `, level`),
η0 = [x 7→ d, this 7→ `], and η′0 = [x 7→ d

′
, this 7→ `′].

We claim thatok ∆0 η and ok ∆0 η
′ and η0 ∼∆0 η′0.

Then we get the resultd = d′ by safe µ. It remains to
prove the claims. We give the argument for the case that
x is a single identifier, as the generalization is obvious
but awkward to put into words.

For η0 ∼∆0 η′0, note that sincè = `′ it suffices to
deal with d, d′ regardless of whetherloctype ` = L.
If κ = L then we needd = d′. Now κ = L im-
plies κ5 = L by the security typing rule, and then we
get d = d′ by induction one; moreover Lemma 5.1
yields ok (x : (T , κ)) [x 7→ d]. Thusok ∆0 η because
ok (this : (loctype `, level`)) [this 7→ `] holds for anỳ .
We haveok ∆0 η

′ mutatis mutandis.

• (B) e: By κ = L, we can use induction one to obtain
` = `′. Moreover, as we are considering the case where
[[(B) e]]µηh 6= ⊥ 6= [[(B)e]]µη′h′, we have that̀ is in
bothdom h anddom h′. The result follows directly.

• e instanceof B, null , unit : All are easy. 2

Lemma 6.2 (Safe commands)
Suppose∆; C ` S : (com κ1, κ2). Suppose also

ok µ, ok h, ok h′, ok ∆ η, ok ∆ η′, safe µ, Hconf µ,
η ∼∆ η′, h ∼ h′, and [[∆†; C ` S† : com]]µηh 6= ⊥ 6=
[[∆†; C ` S† : com]]µη′h′. Thenη0 ∼∆ η′0 andh0 ∼ h′0,
where(η0, h0) = [[∆†; C ` S† : com]]µηh and(η′0, h

′
0) =

[[∆†; C ` S† : com]]µη′h′.

Proof: By induction on the derivation of∆; C ` S :
(com κ1, κ2). Under the assumptions of the Lemma, we
show[[∆†; C ` S : com]]µηh = [[∆†; C ` S : com]]µη′h′

by cases onS.

• x := e: This has no effect on the heap; we only need to
show[η | x 7→d] ∼(∆,x:(T1,κ1)) [η′ | x 7→d′], whered =
[[∆†; C ` e : T2]]µηh andd′ = [[∆†; C ` e : T2]]µη′h′.
Under the assumptionη ∼(∆,x:(T1,κ1)) η

′, it remains to
show thatκ1 = L impliesd = d′. If κ1 = L thenκ2 =
L, by typing, and then Lemma 6.1 yieldsd = d′. (Use
of Lemma 6.1 depends on the assumptionsok h etc.)

• x.f := e: This has no effect on the environment, so we
only need to show that the result heaps are related. Let
h0 = [h | ` 7→ [h` | f 7→ d]] and leth′0 = [h′ | `′ 7→
[h′`′ | f 7→ d′]]. We must showh0 ∼ h′0. If the level
κ2 of f is H, thenh0 ∼ h (andh′0 ∼ h′) becauseh0

andh are identical except for theH field f . So the result
follows by transitivity of∼. For the other case,κ2 =
L, we haveκ1 = κ3 = L by the typing rule. Since
η ∼(∆,x:(C1,κ1)) η

′, we obtain` = ηx = η′x = `′. So
it remains to show thath0`f ∼ h′0`f , i.e.,d = d′. And
this holds by Lemma 6.1 fore, using thatκ3 = L.

• x := new B( ): For the environment, we must show
[η | x 7→ `] ∼∆,x:(D1,κ1) [η′ | x 7→ `′]. By assump-
tion η ∼∆,x:(D1,κ1) η

′ it is enough to deal withx; that
is, if κ1 = L we need` = `′. By the typing rule,
κ1 = L implies levelB = L. Thus, byh ∼ h′, we
havedom h∩ locsB = dom h′ ∩ locsB; then` = `′ by
parametricity of the allocator (Definition 1).

Finally, we geth0 ∼ h′0 as follows. If either` or `′

is in LLoc then levelB = L so by parametricity of the
allocator we get̀ = `′, satisfying the domain condition
for h0 ∼ h′0. For the range, i.e.,h ` ∼ h′ `, the result
holds because the new object states are identical.

• e.m(e): By semantics, the command has no effect on
the environment, so it suffices to showh0 ∼ h′0. (This
is fortunate, because the statement of the Lemma uses
identifiersη0, η

′
0 that are used differently in the seman-

tics.)

We showh0 ∼ h′0 by cases onκ4. If κ4 = H then
it is possible that̀ 6= `′ and thus the two calls can
have different behavior. But by the typing constraint
κ4 ≤ κ3 we haveκ3 = H and thusHconf µ yields
h0 ∼ h ∼ h′ ∼ h′0. It remains to consider the case
κ4 = L. In this case, we havè = `′ by Lemma 6.1.
Now let ∆0 = x : (T , κ), this : (loctype `, level`),
η0 = [x 7→ d, this 7→ `], and η′0 = [x 7→ d

′
, this 7→ `′].

We claim thatok ∆0 η and ok ∆0 η
′ and η0 ∼∆0 η′0.

Then we get the resulth0 = h′0 by safe µ. Owing to our
choice of identifiers in the typing rules, the proof of the
claim is just the same as in the case for method call as
expression (see the proof of Lemma 6.1).

• S1; S2: Use induction andL-confinement (Lemma 5.2)
for S1; then induction onS2.

• if e S1 else S2: We proceed by cases on levelκ5 of
the guarde. Supposeκ5 = L. Then by Lemma 6.1 for
e, b = b′. If b = true, the result follows by induction
on S1 and if b = false, the result follows by induction
on S2. Consider the other case,κ5 = H. By typing,
κ6 = H = κ7 andκ1 = κ2 = κ3 = κ4 = H. Let
(η0, h0) = [[∆†; C ` if e S1 else S2 : com]]µηh and
(η′0, h

′
0) = [[∆†; C ` if e S1 else S2 : com]]µη′h′.
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By H-confinement Lemma 5.4 we haveη ∼∆ η0,
η′ ∼∆ η′0, h ∼ h0, andh′ ∼ h′0. Using assumptions
η ∼∆ η′ andh ∼ h′ we getη0 ∼∆ η′0 andh0 ∼ h′0
by transitivity.

• var (T, κ1) x := e in S: First, we have
[η | x 7→d] ∼(∆,x:(T,κ1)) [η′ | x 7→d′] because ifκ1 = L
then by typingκ4 = L, so, by Lemma 6.1,d = d′.
Second, we haveok (∆, x : (T, κ1)) [η | x 7→ d]
by Lemma 5.1. So we can use induction onS to get
η0 ∼(∆,x:(T,κ1)) η

′
0 andh0 ∼ h′0, and hence(η0�x) ∼∆

(η′0�x).
2

Theorem 6.3 (Noninterfering programs) The meaninĝµ
of a well-formed class table is safe:safe µ̂.

Proof: Becausesafe µ̂ is defined as a fixpoint, we first
show thatsafe µi for all i, by induction oni. Then the
result follows by fixpoint induction.

We havesafe µ0 becauseµ0Cm is constantly⊥.
Supposesafe µi, to showsafe µi+1. By definition, we

must showsafe µi+1Cm for eachC,m. There are two
cases, depending on whetherm is declared or inherited.

Supposem has declaration
M = τ1 κ1 m(τ x) κ2 {S; return e} in C and let∆ =
x : τ , this : (C, levelC). By Lemmas 5.3 and 5.5
we haveok µi and Hconf µi. Supposeok ∆ η and ok h,
and let (η0, h0) = [[(x : T , this : C); C ` S : com]]µiηh
(if the outcome is⊥ there is nothing more to prove).
By Lemma 5.2,L-confinement of commands, we have
ok ∆ η0, ok ∆ η′0, ok h, andok h′. By Lemma 6.2, safety
for commands, we haveh0 ∼ h′0 andη0 ∼∆ η′0. It re-
mains to show that if the result levelκ4 for m isL we have
d = d′. But by security typing for method declarations,
if κ4 = L then the return expressione is typedL. Using
ok µi, η0 ∼∆ η′0, etc., Lemma 6.1, safety for expressions,
yieldsd = d′. This concludes the proof ofsafe µi+1Cm.

Supposem is inherited inC from superclassD. Let
∆C = x : τ , this : (C, levelC) and∆D = x : τ , this :
(D, levelD). We claim that, for anyη, η′, ok ∆C η ⇒
ok ∆D η andη ∼∆C

η′ ⇒ η ∼∆D
η′. Thensafe µi+1Cm

follows from the claim andsafe µi+1Dm which was al-
ready proved. (Strictly speaking we are using secondary
induction on inheritance chains.)

For the claim, we only need to considerthis, as oth-
erwise∆C and ∆D are the same. Forthis, ok ∆D η re-
quires levelD = L ⇒ η this ∈ LLoc. FromC ≤ D
we get levelD ≤ levelC by the typing rule for classes.
Moreover, sincem is inherited fromC the rule requires
levelD = levelC so we are done. 2

7. Discussion

Beyond the progress reported here, much remains to be
done. Non-interference is an attractive property because it
can be easily formalized and can provide a precise descrip-
tion of end-to-end security in a system. By itself, however,
noninterference as an information flow policy can be rather
restrictive. As has been shown by several researchers, a con-
trolled amount of declassification or downgrading of sensi-
tive information is needed in realistic systems for them to be
useful. As a future extension of this work, we expect to for-
malize noninterference in the presence of declassification
following the work of Zdancewic and Myers [35].

One direction of work that we have already pursued is
adding Java’s access control mechanism to the core lan-
guage [3]. We plan to add information flow annotations to
this language. Then, allowing declassification may lead to
leakage of information, but the access control mechanism
can possibly be used to obtain a noninterference result.

Java has quite a few features beyond the language treated
here. To extend our language to the remaining features of
JavaCard [7], the semantics can be extended using standard
techniques. To treat expressions with side effects, both the
environment and the heap would be threaded through the
semantics of expressions. We have avoided this in the cur-
rent paper because it is unilluminating. Exceptional control
flow would add further semantic complications of a similar
kind. The other missing features have to do with scope and
visibility: protected fields, private and protected classes, in-
terfaces, and packages. These features can be treated in the
typing rules, similarly to our treatment of private fields, and
the semantic consequences could perhaps be exploited to
reduce the need for security annotations.

Features of Java beyond those of JavaCard pose a big-
ger challenge: threads, class loading [9], reflection, and
serialization. Specifying noninterference for such con-
structs would probably go hand-in-hand with specification
of pointer confinement and data abstraction properties.

As a step towards more general pointer confinement and
abstraction, we are already studying polymorphic classes as
in GJ [6]. Label polymorphism is also desirable [21, 20],
e.g., for library classes. Label polymorphism might lessen
the practical need forH-subclasses ofL-classes, which in
turn would allow simplification of the security typing rules.

An important implementation issue is which security an-
notations can be left implicit, to be inferred by a type recon-
struction algorithm. We have not addressed type reconstruc-
tion in the current work, but expect that techniques from
Pottieret al. can be adapted [22, 23].
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