
A Logic for Information Flow in Object-Oriented Programs

Torben Amtoft Sruthi Bandhakavi Anindya Banerjee
Department of Computing and Information Sciences
Kansas State University, Manhattan KS 66506, USA

{tamtoft,sruthi,ab}@cis.ksu.edu

Abstract
This paper specifies, via a Hoare-like logic, an interprocedural and
flow sensitive (but termination insensitive) information flow anal-
ysis for object-oriented programs. Pointer aliasing is ubiquitous in
such programs, and can potentially leak confidential information.
Thus the logic employs independence assertions to describe the
noninterference property that formalizes confidentiality, and em-
ploys region assertions to describe possible aliasing. Programmer
assertions, in the style of JML, are also allowed, thereby permitting
a more fine-grained specification of information flow policy.

The logic supports local reasoning about state in the style of
separation logic. Small specifications are used; they mention only
the variables and addresses relevant to a command. Specifications
are combined using a frame rule. An algorithm for the computation
of postconditions is described: under certain assumptions, there
exists a strongest postcondition which the algorithm computes.

1. Introduction
An information flow policy, concerned with protecting confiden-
tiality of data, must ensure that during program execution, data does
not flow to a channel unauthorized to receive the data [10]. The
typical setting for checking confidentiality of data involves chan-
nels with different clearance levels1, e.g., High for sensitive/private
channels and Low for public channels, and a program that manipu-
lates data arriving at input channels (with different clearance levels)
and produces results that may flow into output channels (with dif-
ferent clearance levels). In this setting, confidentiality of data can
be assured provided that, during program execution, data meant for
High output channels do not flow into Low output channels. Co-
hen [14] advanced an equivalent, deductive formulation for assur-
ing confidentiality: from the text of the program, and by observing
only the data in Low output channels (hereafter called Low outputs)
an attacker cannot deduce any information about the data in High
input channels (hereafter called High inputs). In other words, for
confidentiality to hold, Low outputs must not depend on High in-
puts in any way. It is this notion of independence that is explored
in this paper in the context of object-oriented programs.

Here are some simple examples that illustrate whether or not a
program satisfies confidentiality. In each example, the variable l is a

1 In general, these levels form a security lattice, with Low ≤ High.

c©ACM, 2006. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Proceedings of
POPL 2006.

Low output and the variable h is a High input. First, the assignment
l := h violates confidentiality directly due to the data flow from
h to l . Second, the conditional if h > 0 then l := 1 else l := 0
violates confidentiality indirectly due to control flow: while nei-
ther assignment by itself violates confidentiality, information as to
whether or not h > 0 is revealed by whether or not l is 1 after the
execution. In contrast, the command l := h ; l := 0 satisfies confi-
dentiality although it has a subpart that does not: no deductions can
be made about the input value of h from the output value of l , since
the latter is always 0.

Information flow analysis has been used to statically certify[15]
that confidentiality holds in all possible execution paths of a pro-
gram. Typical information flow analyses, surveyed by Sabelfeld
and Myers [24], are often specified using security type systems [26,
19, 22, 6, 18]. The security guarantee provided by a well-typed pro-
gram is this: no High inputs will flow to Low outputs either directly,
via data flow, or indirectly, via control flow, during program execu-
tion. The type systems mentioned above, except for the recent [18],
are flow insensitive, and this is a source of imprecision. Indeed,
such type systems reject all the example programs above, including
the benign one, for they require every subprogram be well-typed
whether or not it contributes to the final answer. The subprogram,
l := h , in the benign example, fails to type.

Extant security type systems for object-oriented programs [6,
19] have yet another source of imprecision that arises due to the
way aliasing is handled. In object-oriented programs, fields of a
class – in addition to program variables – are annotated with se-
curity levels. However, if an object is assigned to a High variable,
then the Low fields of the object cannot be updated [6, 19]. Thus
the field update, z .info := 42, is rejected by the security type sys-
tem in case info has level Low and z has level High. The reasoning
is as follows: consider two Low variables, p and q , which are as-
signed objects o1 and o2 respectively. Now consider the command
if h > 7 then z := p else z := q which appears secure since a
High variable is updated under a High guard. However, depending
on h , either z and p are aliases of o1, or z and q are aliases of o2. A
subsequent update of z ’s info field will reveal information about h:
if q .info is not 42 after the field update, we know that h > 7 holds.
A similar reasoning requires a method call like x .m(y) to update
only High fields in the body of method m , in case the receiver x
is High. Such reasoning, while sound, is imprecise: aliasing may
not be present at all, in which case, both the field update and the
method call is benign.

Our challenges are twofold. First, we prefer a flow sensitive
specification of information flow analysis. We also want to han-
dle pointer aliasing in a manner that is more precise than extant
approaches which do not perform any alias analysis.

The second challenge is to obtain a modular specification for
an interprocedural information flow analysis. (Ideally, this would
allow us to obtain a static checker for information flow). To be

1 2005/11/28

specific, we want our analysis to be compositional in the state.2

We want local reasoning about the heap where aliasing happens;
this means that when we analyze a command, we are only allowed
to consider the footprint of the command on the state, i.e., we can
only consider the variables and parts of the heap that are used by
the command [21, 23] – nothing else.

Contributions. The primary contribution of this paper is to meet
both of the above challenges by specifying an interprocedural in-
formation flow analysis using a Hoare-like logic. Assertions in the
logic are stateful and describe aliasing properties – region asser-
tions – as well as information flow properties – independence as-
sertions. To reason about outgoing method calls in method bodies,
we require method summaries to provide a contract about asser-
tions that must be met before a call and assertions that must hold
after a call.

Importantly, the logic uses fundamental ideas from separation
logic [21, 23] to provide local reasoning about state. As we clar-
ify in the sequel, specifications in the logic are small or local: the
intuition is that these specifications convey the “bare essence” of
reasoning about a command. The reasoning can be elaborated in
different contexts, and larger specifications may be obtained by way
of a frame rule. Indeed, with region and independence assertions,
our specification yields an interprocedural static checker for infor-
mation flow.

Our second contribution is to extend the logic with program-
mer assertions so that a more fine-grained specification of informa-
tion flow policy can be obtained. Programmer assertions can take
the form “x is a constant”, or “variables x and y are equal”, or
“x = k(y)”, where k is a mathematical function: such assertions
are also allowed, e.g., in JML [12]. In contrast to region and inde-
pendence assertions, however, programmer assertions may require
runtime checking or verification by a theorem prover. We show ex-
amples of the use of programmer assertions in concert with region
and independence assertions for verifying observational purity [7]
and for demonstrating selective dependency [14]. Nevertheless, we
do not have an automatic checker in the presence of programmer
assertions. At some points in the checking process, “logical impli-
cations” need to be decided. We do not know whether there exists
a useful proof system to decide the logical implications. But we
provide a few simple heuristics to ease the burden of checking.

A minor contribution of the paper is concerned with complete-
ness issues for the logic with assertions restricted to region and
independence assertions only. For this sub-logic, we give an algo-
rithm that computes postconditions from preconditions and show
that, under certain extra assumptions, the sub-logic is complete:
there exists a strongest postcondition that the algorithm computes3.
Alas, the algorithm is non-modular. The main difficulty lies with
interprocedural analysis, for which the procedure summaries must
be discovered and updated on the fly. We leave this issue for a fu-
ture paper.

2. Examples
Local Reasoning about Aliasing. Recall that local reasoning
about a command entails reasoning only about the footprint of
the command. In the command, z .info := 42, for example, reason-
ing is permitted only with variable z , the location in the heap that z
denotes, and the contents of the info field – nothing else. Since we

2 It is not compositional reasoning per se we are interested in, since it
is “perfectly possible to be compositional and global (in the state) at the
same time, as was the case in early denotational models of imperative
languages” [21].
3 By “strongest” postcondition we mean the strongest among the assertions
accepted by our logic, rather than the strongest among the assertions which
are “semantically correct” (a larger set).

are interested in static checking, we need to abstract the concrete
heap location denoted by z .

Abstract locations (as in, e.g., [20]) are used to abstract sets of
concrete heap locations. A region assertion x L, read “x at L”,
asserts that L abstracts the concrete location denoted by x .

Suppose two abstract locations L1 and L2 are disjoint, i.e., they
abstract two disjoint sets of concrete locations. Then, if x L1

and y L2 hold, we infer that x , y must not alias a concrete
location. (In contrast, if L1,L2 are not disjoint, then x , y may alias).

Region assertions may also take the form L1.f L2, so as
to deal with aliasing caused by heap-allocated values, e.g, x .f . The
intuition is that for any concrete location `1 that is abstracted by L1,
if field f of `1 contains concrete location `2, then `2 is abstracted
by L2.

We now show two examples in which region assertions are
used to reason locally about aliasing. Consider a method getNode
which, given the head of a linked list and an integer i , returns
the node at position i in the list. Each node has two fields: data
denoting the value in the node, and next denoting the next node
in the list. We consider two implementations of getNode: in the
first, a pointer to the i th node is returned, creating an alias; in the
second, a copy of the i th node is returned – this does not create
an alias. The bodies of getNode for the two implementations are
shown below; the distinguished variable, result, holds the return
result of a method.

n := head ; j := 0;
while (n 6= null) && (j < i) do

{n := n.next ; j := j + 1; }
result := n

Example 1: Node i is aliased

n := head ; j := 0;
while (n 6= null) && (j < i) do

{n := n.next ; j := j + 1; }
if n 6= null then

{newNode := new Node;
newNode.data := n.data; newNode.next := null;
result := newNode; }

else {result := null}

Example 2: Node i is not aliased

Consider the first two commands of Example 1, where we assume
that L is the abstract location in which the list is allocated. Because
head points to the first node in the list, head L is part of
the precondition of the program, which also contains the assertion
L.next L. For the command n := head , we get the small
specification:

{head L} n := head {n L}

The specification says that from precondition head L, the post-
condition n L can be asserted. Note how the region assertions
in the specification mention facts about head and n , nothing else.
Next, for the command j := 0, we get the small specification4

{true} j := 0 {j int} . To combine the specifications for the
two commands above, we use, in a manner similar to separation
logic, a frame rule (also see [11]): because n is not modified by
j := 0, the frame rule allows us to add n L as conjunct to both
its pre- and postconditions. To wit:

{n L} j := 0 {j int,n L}

4 The assertion j int, expressing that j has an integer value, is strictly
speaking redundant, since we shall assume that we are dealing with “well-
typed” programs where a variable/field may contain an integer iff it has been
assigned the type int. Therefore such assertions may be omitted.

2 2005/11/28

Now the two specifications can be combined to obtain the following
specification for the sequential composition, n := head ; j := 0.

{head L} n := head ; j := 0 {j int, n L}

The invariant for the while loop is {n L,L.next L}, which
we may write in abbreviated form as {(n,L.next) L}. To show
that the preamble establishes this invariant from the program’s
precondition, we may apply the frame rule once more on the above
specification, adding L.next L to both pre- and postcondition;
this is valid since no next field is modified by the preamble. Thus:

{(head ,L.next) L} n := head ; j := 0 {(n,L.next) L}

To show that the invariant is maintained by the while loop, we
show the stronger property that each assignment in the loop body
maintains the invariant. For n := n.next the small specification is
{(n,L.next) L} n := n.next {n L} . Now the frame rule
(applicable since no next field is modified) gives us

{(n,L.next) L} n := n.next {(n,L.next) L}

In a similar (but simpler) way, we can show {(n,L.next)
L} j := j + 1 {(n,L.next) L} . Finally, for result := n , the
small specification is

{n L} result := n {result L}

By a few more applications of the frame rule, we obtain the follow-
ing specification for the body, B1, of getNode .

{(head ,L.next) L} B1 {(n,L.next , result) L}

As expected, n and result may alias the same location in the heap.
In Example 2, the precondition for the entire method body, B2,

of getNode is the same as that of B1, namely, (head ,L.next)
L. The crucial difference is the occurrence of the command
newNode := new Node where we may choose an arbitrary
abstract location to abstract the concrete location being created.
Choosing L1, we get the small specification

{true} newNode := new Node {newNode L1} .

Applying the frame rule repeatedly, we can derive postcondition5

{(n,L.next) L, (result ,newNode) L1,L1.next ⊥}

for B2. The key observation is that provided L and L1 are disjoint,
n and result must not alias the same location in the heap.

Information Flow Analysis and Independences. A baseline cor-
rectness property for information flow analysis is noninterfer-
ence [17] (the negation of Cohen’s notion of dependency [14])
which is formalized via an “indistinguishability” relation on states.
Two states are indistinguishable if they agree on values of their Low
variables (but may differ on values of High variables). Noninter-
ference holds if any two runs of a program starting in two initially
indistinguishable states, yield two final states that are also indistin-
guishable. In other words, a program is noninterfering, if for any
pair of runs, changes to its High input variables are unobservable
via its Low output variables; hence, reverting to a point made in the
introduction, Low outputs are independent of High inputs.

The small specifications of our analysis are designed to answer
the following question, encompassing noninterference as a special
case6: given two runs which initially agree on variables x1 . . . xn ,
will they at the end agree on variables y1 . . . ym? Accordingly,
we introduce independence assertions of the form xn, such that a
positive answer to the above question amounts to the specification

5 The abstract location ⊥ abstracts null pointers only.
6 As can be seen by letting x1 . . . xn , and y1 . . . ym , be the Low variables.

{x1n, . . . , xnn} {y1n, . . . , ymn} . In general, we shall con-
sider assertions of the form an, where a is an abstract address:
either a variable, or a field access of the form L.f .

Leveraging the above reading of noninterference, Amtoft and
Banerjee specified, as a Hoare-like logic, a termination insensitive
information flow analysis for simple imperative programs [2] (later
extended to a termination sensitive analysis [3]). This paper ex-
tends that logic to handle programs written in a core, Java-like,
object-oriented language. Also, unlike [2, 3], this paper employs a
standard style semantics.

Aliasing, Independences and Local Reasoning. We consider the
following example adapted from Askarov’s master’s thesis [4].

class X{
int q;
int getQ(){result := self .q};
unit setQ(int n){self .q := n}}

What can we say about the body of getQ? First, we consider
region assertions. Suppose assertions self ρ1 and ρ1.q
int hold for the precondition of getQ . Then we can assert that
result int holds in the postcondition of getQ . Think about ρ1

as a metavariable which will be instantiated by abstract locations at
the point of call. For instance, if the receiver in the call to getQ is
at abstract location L, then ρ1 will be substituted by L.

Next, we consider independence assertions. Given that self
ρ1 holds for the precondition of getQ , we want to check whether
the postcondition contains resultn. That is, under which condi-
tions will two runs agree on the final value of result? For that to be
the case, the runs must agree on the initial value of self .q , a suffi-
cient condition for which is that ρ1.qn holds in the precondition;
also (since self .q depends on self), the runs must agree on self . A
convenient method summary for getQ is thus the following

{self ρ1, self n, ρ1.qn} getQ {resultn} .

On the other hand, if the independence assertions in the precon-
dition do not hold at the point of call, we are unable to conclude
resultn in the postcondition.

In a similar manner, we can compute the following method
summary for setQ :

{self ρ1, self n,nn, ρ1.qn} setQ {ρ1.qn}

This says that in order for two runs to agree on the final value of
the q fields of “corresponding” (as formalized in Sec. 4) objects
abstracted by ρ1, they must agree on the initial value of n , and
on the initial value of self (as otherwise, the two runs would
update non-corresponding objects). Also, because there may be
other objects abstracted by ρ1 than the one which self points to
(and these objects did not have their q field updated), the runs must
agree on the initial value of all q fields; this requirement can be
omitted in the case where ρ1 abstracts one concrete location only,
i.e., in the case of “strong update”.

Now consider the program
X x1; X x2 := new X ;
x1 := x2; //alias created
x1.setQ(secret);
z := x2.getQ()

where, because x1 and x2 are aliases, the value of secret is leaked
to z . Let us see how checking independences might help detect the
leak. We recall what noninterference means: two runs that initially
agree on all variables except for secret , must agree on the final
value of z . A proof of noninterference, in our framework, would
thus amount to establishing a specification where zn is in the
postcondition, without having to assume that secretn is in the
precondition. Below, we argue that this is impossible.

3 2005/11/28

First assume that the location allocated by new is abstracted
by L2; then we have x2 L2 and x1 L2. With the aim of
proving that zn holds after the call to getQ , we consult the method
summary for getQ where we substitute self by x2, and result by
z , and ρ1 by L2. Looking at the resulting precondition, we see that
we must show that x2n and L2.qn holds before the call to getQ ,
that is, after the call to setQ . We therefore consult the summary for
setQ where we substitute self by x1, n by secret , and ρ1 by L2.
Looking at the resulting precondition, we see that we must at least
show that secretn holds. But this yields the desired contradiction.

Suppose the aliasing were removed in a slight modification of
the above program, where z is once again the output variable:

X x1 := new X ; X x2 := new X ; //no alias
x1.setQ(secret); z := x2.getQ()

Now x1 and x2 do not alias the same heap location. The postcon-
dition for the first assignment asserts {x1 L1, x1n}, and that for
the second asserts {x2 L2, x2n}, where L1 and L2 are assumed
disjoint to reflect the absence of aliasing. As before, to establish
that zn holds after the call to getQ , we must show that x2n and
L2.qn holds after the call to setQ . But since locations abstracted
by L2 are not modified by the call to setQ , this follows from the
frame rule (since we may assume that L2.qn holds before the call).
In summary, because of the absence of aliasing, the assertion zn
does hold finally, even if secretn does not hold initially. This is in
contrast to the previous example.

It is instructive to see how an existing type-based information
flow analysis system, like Jif [19], handles the above programs.
Assume that the variables secret and x1 are typed High, and x2

and field q are typed Low. Since q is Low, the method setQ has a
begin label of Low, which says that the method can only be called
if the program counter of the caller is no more restrictive than Low.
But the level of the receiver (x1) is High. This is one reason why
Jif rejects this program. In general, the above check ensures that if
there are any low aliases of x1 in the future – e.g., x2 in the first
program – they should not be able to read the value of q assigned
by setQ . In the second example there is no aliasing. Yet, Jif rejects
this example also, because the call to setQ is untypable.

Programmer assertions. As noted earlier, apart from region as-
sertions and independence assertions, we also allow programmer
assertions in code. For example, for the trivial program
if x > 0 then w := 7 else w := 7, clearly wn holds (two runs
will always agree on the final value of w), although a naı̈ve analy-
sis cannot prove the assertion. However, armed with the program-
mer assertion that w is a specific constant after the conditional, the
following reasoning is sound in our framework: w being constant
“logically implies” (defined in Sec. 4) that wn holds.

We show two more examples of programmer assertions. The
first concerns observational purity [7]. Assume we repeatedly need
to apply a function expensive(z), the computation of which is very
expensive. To save time, we decide to memoize the most recent
call7. For that purpose, we introduce a class M , with fields marg
and res obeying the invariant

(marg 6= 0) ⇒ (res = expensive(marg))

and with a method

int cexp(int z){
if z = self .marg
then result := self .res
else //compute expensive(z) and store the value in result

result := expensive(z); self .marg := z ; self .res := result
assert (result = expensive(z))}

7 The generalization to full memoization appears in Sec. 6.

Obviously, the last assertion should not be checked at runtime
(this would defy the purpose of memoization), but might instead be
verified by a theorem prover, using the above-mentioned invariant.

Suppose we know that for cexp: (a) its result depends only
on z , not on memo data (marg or res) and (b) its computation
affects only an abstract location L1. If L1 is not used elsewhere, we
can consider calls to cexp “observationally pure” [7]; this notion
of purity is under consideration for extending JML [12] which
currently disallows effectful method calls in assertions.

It remains to show (a) and (b). Indeed, in Sec. 4.1, we will
see that from zn and the programmer assertion, result =
expensive(z), we can derive resultn. Hence it is easy to see that
if self L1 and zn are preconditions for cexp, then resultn
is a valid postcondition for cexp. We also observe that L1.marg
and L1.res are the only abstract addresses that may be modified by
cexp. This information appears in the following method summary
for cexp:

{self L1, zn} {resultn} [L1.marg ,L1.res].

Our second example with programmer assertions deals with se-
lective dependency and we consider an example due to Cohen [14]:
the command b := x + a mod 4 where, clearly, b is not indepen-
dent of a . However, only the lower order two bits of a are revealed
to b; nothing else is revealed. Suppose we fix the lower order two
bits of a to 3, i.e., a mod 4 = 3. Then we can prove that the “rest
of a is protected from b”, by means of the derivation8

{xn}
assert a mod 4 = 3;

{a mod 4 = 3, xn}
{(a mod 4)n, xn} (by logical implication)

b := x + a mod 4;
{bn}

That is, bn is in the postcondition, under the assumption that xn
is in the precondition, but without assuming that an is too.

The Rest of the Paper
Sec. 3 formalizes the language. Sec. 4 gives the syntax and seman-
tics of assertions. Sec. 5 specifies the logic. The full memoization
example, illustrating reasoning in the logic, appears in Sec. 6. Sec. 7
is about the computing of assertions and strongest postcondition.
Sec. 8 concludes. All proofs appear in the companion technical re-
port [1].

3. Language: syntax and semantics
Syntax. Our core language (Figure 1) is a class-based object-
oriented language with recursive classes, methods and field update.
To avoid clutter, unlike the technical report [1] we do not consider
subclassing (and thus neither dynamic dispatch, nor cast, nor type
test). The grammar is based on given sets of class names (with typ-
ical element C), expressions (E), constants ranging over integers
(c), field names (f), and method names (m). The names x , y , z ,w
are used for program variables, and k is used for mathematical
functions (e.g., mod).

The BNF is self-explanatory. One difference from usual security-
typed languages is that programmer assertions are allowed via the
command assert θ. Conjunctions and disjunctions of programmer
assertions are also allowed. A type is either a base type int, or a
“class type”, i.e., a class name C ; like Java, we have nominal (by
name) typing. We assume a function, type , that assigns a type to all
program variables and to all fields. We also assume the existence
of a class table, CT , that maps a class name to the corresponding
class declaration. A class declaration consists of a class name, e.g.,

8 The technical development in this paper does not allow assertions En
with E an expression, but it is straightforward to add them.

4 2005/11/28

T ::= int | C data type

CL::= class C { T f ;M } class declaration
M ::= T m(U u) {S} method declaration
S ::= x := E | x .f := y assign to variable, to field

| x := new C | x := y .f object construction, field access
| x := y .m(z) | S ;S method call, sequence
| if x then S else S | while x do S conditional, while
| assert θ programmer assertion

E ::= x | c | null | E op E | k(E)

variable, constants, arith. operations, arith. functions
θ ::= x = c | x = y | x = k(E) | . . . primitive assertions

| θ ∧ θ | θ ∨ θ

Figure 1. BNF of language

C , together with a list of public field declarations, e.g., T f , and a
list of method declarations, e.g., M . Consider a method m declared
as T m(U u) {S} in class C ; such a method has return type T ,
and formal parameter type U , and body S where S is a command.
We employ a distinguished variable result such that the effect of an
explicit return expression, return E , can be achieved by letting
the last assignment of S be result := E . We will assume that only
well-typed programs are checked.

Semantics. We specify the semantics in relational style; such a
semantics fits well with a Hoare-style partial correctness specifica-
tion and eases the proofs, especially since our analysis is termina-
tion insensitive. After a brief description of the semantic domains
involved, we define the semantics of commands and finally the se-
mantics of well formed class tables.

The state of a method in execution comprises a store, s , and a
heap, h . A store s (in semantic domain Store) assigns values to
local variables and parameters, where values are integer constants
or locations or the distinguished entity nil (which is not a location).
We use v to range over values, and assume that Val , the set of all
values, is partitioned into two disjoint parts, True and False. For
locations, we assume given a countable set Loc ranged over by `.
We assume each location ` has a class C associated with it, and
write type ` = C . For all constants c we write type c = int. For
each type, we define a default value of that type: default(int) = 0
and default(C) = nil .

A heap h (in semantic domain Heap) is a finite partial function
from locations to object states, where an object state is a total
mapping from field names to values. With abuse of notation, we
say that location ` is in the range of heap h if there exists location
`0 in dom(h) and a field f such that ` = h `0 f . We will work with
self-contained states: say that state (s, h) is self-contained iff (a)
for all ` in the range of s , ` is in the domain of h; and (b) for all `
in the range of h (c.f. above), ` is in the domain of h .

The meaning, [[E]], of an expression, E , is a function from
Store to Val ; its definition is standard and thus elided. Pointer
arithmetic is disallowed: in an expression E1 op E2, each [[Ei]]s
has to evaluate to an integer. The meaning of an assertion θ is a
predicate on states: [[θ]] ∈ Store ×Heap → Bool .

The semantics of a class table is a method environment µ which
provides a relational meaning, µ(C ,m), for each method m de-
clared in class C . The method environment µ is computed using
a fixpoint construction. For each class C and method name m ,
µ(C ,m) ⊆ (Store ×Heap)× (Val ×Heap).

Because a command S may contain method calls as con-
stituents, the meaning of S is with respect to a method environ-
ment µ. More precisely, [[S]]µ is a relation on input and output

states: [[S]]µ ⊆ (Store ×Heap)× (Store ×Heap). The relational
semantics of commands appears in Table 1. We explain the cases
[FieldUpd], [New] and [MethodCall] below.

In field update, x .f := y , the heap h0 is updated with the value
of y at field f of location `, where ` is the meaning of x . (We use
the notation [h0 | `.f 7→ v] to denote the update of the object state
h0 ` at field f by v).

In object allocation, x := new C , a fresh location ` of type
C is allocated in the heap; the resulting store maps x to `. The
resulting heap, h , is the old heap, h0, with its domain extended
with `. Each field f of C in the object state h ` is initialized
to the default value of type(f); this is captured by the notation
[h0 | ` 7→defaults].

For a method call, x := y .m(z), suppose that y denotes a
location ` with type ` = C , where class C contains a method m
with formal parameter u (written pars(m,C) = u). Let the initial
state be (s0, h0), and suppose that the meaning of the method m
is looked up in method environment µ, using a state whose heap
component is h0 but whose store component is a “local store”, s ′0,
that binds self to ` and u to s0(z). Let the method meaning relate
(s ′0, h0) to (v , h), where v is the return result of the method, and h
the updated heap. Upon return, local store s ′0 is discarded, and the
resulting state is heap h together with the initial store, s0, with x
updated to v .

Observe that for some (s0, h0) there may be no (s, h) with
(s0, h0) [[[S]]µ] (s, h). This will be the case in the event of an
infinite computation, a run-time error (like dereferencing a null
pointer), or a failed programmer assertion.

We are now ready for the semantics of a class table, CT .
The semantics makes explicit the fixpoint computation alluded to
earlier.

DEFINITION 3.1 (Semantics of class table, CT). [[CT]] is the
least upper bound (wrt. subset inclusion) of the ascending chain
µn (n ∈ Nats) of method environments, defined as follows (where
class C contains method m with body S):

µ0(C ,m) = ∅
(s0, h0) (µn+1(C ,m)) (v , h) ⇐⇒

∃s · (s0, h0) [[[S]]µn] (s, h) ∧ (v = s(result))

Letting µ = [[CT]], a key lemma is that for all self-contained states
(s0, h0), if (s0, h0) [[[S]]µ] (s, h) holds then (s, h) is self-contained
with dom(s0) ⊆ dom(s) and dom(h0) ⊆ dom(h). In the sequel,
we will tacitly assume that all states (s, h) are self-contained.

Modification of state. Sec. 2 presented several examples of lo-
cal reasoning that were justified by the frame rule. Such reasoning
is sound because a side condition holds for the frame rule: when
the small specification of a command is extended with other asser-
tions, the abstract addresses mentioned in the assertions are disjoint
from the corresponding abstract addresses modified by the com-
mand. Both notions are made precise in Sec. 4. But first Defini-
tion 3.2 states precisely what it means to modify concrete locations
occurring in heaps and stores.

DEFINITION 3.2. For a location ` of type C , and for a field f of
C , say that `.f is modified from heap h to heap h ′ if ` ∈ dom(h ′)
and either of the following conditions hold: (a) ` ∈ dom(h), and
h ′`f 6= h`f ; (b) ` 6∈ dom(h), and h ′`f 6= default(type f).

Variable x is modified from store s to store s ′ if x ∈ dom(s ′)
and either of the following conditions hold: (a) x ∈ dom(s), and
s(x) 6= s ′(x); (b) x 6∈ dom(s).

4. Assertions
This section formalizes abstract locations, and provides the syntax
and semantics of assertions. It also makes precise the two main

5 2005/11/28

[Assert] (s0, h0) [[[assert θ]]µ] (s, h) ⇐⇒
[[θ]](s0, h0) ∧ s = s0 ∧ h = h0

[Assign] (s0, h0) [[[x := E]]µ] (s, h) ⇐⇒
(∃v · v = [[E]]s0 ∧ s = [s0 | x 7→v]) ∧ h = h0

[FieldAcc]

(s0, h0) [[[x := y.f]]µ] (s, h) ⇐⇒
∃` ∈ Loc · (s0(y) = `
∧ s = [s0 | x 7→h0 ` f])

∧ h = h0

[FieldUpd]
(s0, h0) [[[x .f := y]]µ] (s, h) ⇐⇒

s = s0 ∧ ∃` ∈ Loc · (s0(x) = `
∧ h = [h0 | `.f 7→s0(y)])

[New]

(s0, h0) [[[x := new C]]µ] (s, h) ⇐⇒
∃` · (type ` = C ∧ ` 6∈ rng(s0) ∧
` 6∈ dom(h0) ∧ ` 6∈ rng(h0) ∧
s = [s0 | x 7→`] ∧
h = [h0 | ` 7→defaults])

[MethodCall]

(s0, h0) [[[x := y.m(z)]]µ] (s, h) ⇐⇒
(s′0, h0)µ(C ,m) (v , h) ∧ s = [s0 | x 7→v]

where ` = s0(y) and C = type `
and s′0 = [pars(m,C) 7→ s0(z), self 7→ `]

Table 1. Semantics of commands: excerpts

ingredients of the frame rule alluded to in Sec. 2, namely, the
modification of abstract addresses, and disjointness. The frame rule
can only be applied when an assertion is disjoint from the set of
abstract addresses that may be modified by a command.

Abstract Locations. We let L range over the set of abstract lo-
cations, AbsLoc. Think of L as a token that stands for a set of
concrete heap locations. We will consider the following relations
on AbsLoc: a partial ordering relation, L1 � L2, conveys that L2

contains at least those concrete heap locations that L1 contains. We
also need a symmetric relation, L1 � L2, pronounced “L1 is dis-
joint from L2”, to convey that L1 and L2 have no concrete heap
locations in common. We add a special element ⊥ to AbsLoc so
that for all L ∈ AbsLoc we have ⊥ � L and ⊥ � L. One can
think of ⊥ as the counterpart of the concrete value nil .

We assume that if L1 � L2 and L � L2 then also L � L1. We
let LI range over AbsLoc ∪ {int}. And, we let X range over sets
of abstract addresses.

Syntax of assertions As noted in Sec. 2, we have three kinds of
primitive assertions, namely, region assertion, independence asser-
tions, and programmer assertion. The BNF of assertions is this:

φ ::= θ | x LI | L.f LI | xn | L.f n | true | φ ∧ φ

An assertion is thus a (possibly empty) conjunction of primi-
tive assertions. Recall from Sec. 2 that we shall often use the set
notation to denote conjunctions of assertions. For simplicity, this
paper allows disjunction only in programmer assertions, although
the technical report allows arbitrary disjunctions of assertions.

Roughly, the meaning of x L in a state (s, h) is that
the concrete heap location denoted by x is abstracted by L. The
meaning of an is that the two current states in question, say (s, h)
and (s1, h1), agree on the value of a; agreement implies that there
is no leak of information via a . This intuition leads to the one-state
and two-state semantics for assertions in the sequel.

One-state Semantics of Assertions. To give a precise meaning
to assertions, we need to assume the existence of an extraction
relation, η, (similar to the extraction functions described in [20,
p.235]) that relates locations to abstract locations. We require that
η satisfy the following properties: (a) If L1 � L2 and ` η L1 then
` η L2; (b) If L1 � L2 then for no ` we have ` η L1 and ` η L2; (c)
` η⊥ holds for no `. For convenience, we extend η to Val , so that
c η int and nil η⊥ – thus nil η L holds for all L. But c η L holds
for no L, and ` η int holds for no `, and nil η int does not hold.

We say that η is over h if ` η L implies ` ∈ dom(h). For η over
h , we are now in a position to define the semantics of an assertion

φ in state (s, h), written, (s, h) |=η φ.

(s, h) |=η θ ⇐⇒ [[θ]](s, h)
(s, h) |=η x LI ⇐⇒ s(x) η LI
(s, h) |=η L.f LI ⇐⇒ ∀` ∈ dom(h) · ` η L ⇒

(h`f) η (LI)
(s, h) |=η xn ⇐⇒ true
(s, h) |=η L.f n ⇐⇒ true
(s, h) |=η true ⇐⇒ true
(s, h) |=η φ1 ∧ φ2 ⇐⇒ (s, h) |=η φ1 and (s, h) |=η φ2

Two-state Semantics of Assertions. Consider, e.g., the assertion
xn and consider two states (s, h) and (s ′, h ′) for which we want
the values of x to agree. If x denotes a location then, because of
different allocation behavior in h and h ′, we cannot expect s(x)
and s ′(x) to be equal. Rather we expect the former to yield location
` and the latter to yield location `′, so that the agreement can be
enforced by a bijection β that relates ` and `′. On the other hand,
not all locations need to be related to some other location, similar
to what is the case for type-based information flow analysis [6].
There, the indistinguishability relation on states (s, h) and (s ′, h ′)
is formalized using a bijection between those locations in dom(h)
and dom(h ′) that are visible to a “low observer”.

We formalize the above intuition. Let β range over bijections
from a subset of Loc to a subset of Loc. That is, if ` β `1 and ` β `2
then `1 = `2, but for some `0 there might not be any `′ such that
`0 β `

′; and if `1 β ` and `2 β ` then `1 = `2, but for some `0 there
might not be any `′ such that `′ β `0. In addition, with abuse of
notation, for all integer constants c we shall assume that c β c, and
also assume that nil β nil . We say that β is over h&h1 if ` β `1
implies ` ∈ dom(h) and `1 ∈ dom(h1).

We can now define the two-state semantics of assertion φ, writ-
ten (s, h)&(s1, h1) |=β,η,η1 φ. Here β is over h&h1, and η is over
h , and η1 is over h1; further, if ` β `1 then ` η L iff `1 η1 L. The last
condition simply says that concrete locations ` and `1 related by β
are abstracted to the same abstract location L by both η and η1.

(s, h)& (s1, h1) |=β,η,η1 xn ⇐⇒ (s x)β (s1 x)
(s, h)& (s1, h1) |=β,η,η1 L.f n ⇐⇒
∀` ∈ dom(h), `1 ∈ dom(h1) ·
` β `1 ∧ ` η L ⇒ (h ` f)β (h1 `1 f)

(s, h)& (s1, h1) |=β,η,η1 φ ⇐⇒
(s, h) |=η φ and (s1, h1) |=η1 φ, (φ is θ, x L,L.f LI)

(s, h)& (s1, h1) |=β,η,η1 true ⇐⇒ true
(s, h)& (s1, h1) |=β,η,η1 φ1 ∧ φ2 ⇐⇒

(s, h)& (s1, h1) |=β,η,η1 φ1 and (s, h)& (s1, h1) |=β,η,η1 φ2

Modification of Abstract Addresses. We now specify the condi-
tions under which an abstract address X is modified from state
(s, h) to state (s ′, h ′) under extraction relation η over heap h ′. This
is written, (s, h) → (s ′, h ′) |=η X . The abstract address X over-

6 2005/11/28

approximates the set of concrete locations that may be modified
from (s, h) to (s ′, h ′).

DEFINITION 4.1 (Modifying an abstract address).
Say that (s, h) → (s ′, h ′) |=η X iff

(a) for all y modified from s to s ′, y ∈ X .
(b) for all `.f modified from h to h ′, there exists L with ` η L such

that L.f ∈ X .

Disjointness. Recall that L1 � L2 denotes that L1 and L2 are
disjoint. We define disjointness in two stages. In the first stage, we
lift � to a relation between an abstract address and a set of abstract
addresses as follows: (a) x � X iff x 6∈ X ; (b) L.f � X iff for all
L1.f ∈ X , we have L � L1.

Second, we define what it means for an assertion φ to be disjoint
from a set of abstract addresses, X . This relation, written φ � X ,
holds provided a � X for all abstract addresses a occurring on “the
left hand side” of assertions in φ, i.e.: (a) For all x LI occurring
in φ, x � X ; (b) For all L.f LI occurring in φ, L.f � X ; (c)
For all xn occurring in φ, x � X ; (d) For all L.f n occurring in
φ, L.f � X ; and (e) For all θ occurring in φ: if x occurs in θ then
x 6∈ X . As we shall see later (Sec. 5), φ � X is exactly the form of
the side condition of the frame rule.

An Invariance. The main result of this section is an invariance
result, intuitively stating that an assertion which is valid before ex-
ecuting a command, also remains valid after, provided it is disjoint
from any abstract address modified by the command.

To precisely state this result, we need the following notion of
“extension” of η and β: Say that η′ over h ′ extends η over h , if
dom(h) ⊆ dom(h ′) and for all ` ∈ dom(h), for all L: ` η L iff
` η′ L.
Let dom(h) ⊆ dom(h ′) and dom(h1) ⊆ dom(h ′1). Say that
β′ over h ′&h ′1 extends β over h&h1 if β = {(`, `1) ∈ β′ |
(` ∈ dom(h)) ∨ (`1 ∈ dom(h1))}. (Therefore, if ` β′ `1 and
` ∈ dom(h) then `1 ∈ dom(h1), and vice versa).

LEMMA 4.2 (Invariance). Suppose φ � X . Further, suppose
(s, h) → (s ′, h ′) |=η′ X , and (s1, h1) → (s ′1, h

′
1) |=η′

1
X ,

where η′ over h ′ extends η over h , and η′1 over h ′1 extends η1
over h1. Also, let β′ over h ′&h ′1 extend β over h&h1. Suppose
(s, h)& (s1, h1) |=β,η,η1 φ. Then

(s ′, h ′)& (s ′1, h
′
1) |=β′,η′,η′

1
φ.

4.1 Logical implication
The purpose of this section is to define a notion of implication of
assertions; this permits the deduction of more independences than
can be obtained by tracking data and control flow only.

DEFINITION 4.3 (Logically implies). Say that φ0 logically im-
plies φ, written φ0 I φ, iff (s, h)& (s1, h1) |=β,η,η1 φ0 implies
(s, h)& (s1, h1) |=β,η,η1 φ .

The above definition allows us to show that the following logical
implications are valid.

• Let θ be the programmer assertion x = c. Then θ I xn.
• Let θ be the assertion (x = y). Then (θ ∧ yn) I xn.
• Let θ be the assertion x = k(y), with k an arithmetic function.

Then (θ ∧ yn) I xn.

Several other such logical implications are possible. For applica-
tions, recall Sec. 2, and see Sec. 6.

We can define I on abstract addresses in a manner similar to
Def. 4.3. Say that X I X ′ iff (s, h) → (s ′, h ′) |=η X implies
(s, h) → (s ′, h ′) |=η X ′. Clearly, if X ⊆ X ′ then X I X ′.

5. Statically Checking Assertions via a Logic
To statically check assertions we define, in Table 2, a Hoare-like
logic whose judgements take the form

Π ` {φ0} S {φ} [X].

In the judgement, X is a set of abstract addresses that overap-
proximates the abstract addresses modified by S , φ0 are the as-
sertions that hold before execution of S , and φ are the assertions
that hold after execution of S . Π is a summary environment for
methods, such that Π(C ,m) is a (set of) summaries of the form
{ψ0} {ψ} [X ′], where the only program variables mentioned in
ψ0 are self and the formal parameter of m , where the only program
variable mentioned in ψ is result , and where X ′ does not con-
tain program variables. The reason for having a set of summaries
is polyvariance: at different call sites of the same method, differ-
ent pre-and postconditions may hold. We will often omit Π in rules
other than the rule for method call. Each judgement in Table 2 is a
small specification.

Before discussing the small specifications in more detail, we
shall define, for a judgement {φ0} S {φ} [X], its intended mean-
ing, of which our logic will be a sound (but necessarily not com-
plete) approximation.

5.1 Semantics of Judgements
DEFINITION 5.1. We say that µ |= {φ0} S {φ} [X] iff the
following holds for all s, h, s ′, h ′, s1, h1, s

′
1, h

′
1, β, η, η1. Assume

(s, h) [[[S]]µ] (s ′, h ′) and (s1, h1) [[[S]]µ] (s ′1, h
′
1) and

(s, h)& (s1, h1) |=β,η,η1 φ0.

Then there exists η′ over h ′ extending η, there exists η′1 over h ′1
extending η1, and there exists β′ over h ′&h ′1 extending β over
h&h1, such that

(1a) (s, h) → (s ′, h ′) |=η′ X
(1b) (s1, h1) → (s ′1, h

′
1) |=η′

1
X

(2) (s ′, h ′)& (s ′1, h
′
1) |=β′,η′,η′

1
φ

Conditions (1a) and (1b) say that X is a sound overapproximation
of the abstract addresses modified in S when its execution changes
the state from (s, h) to (s ′, h ′), or from (s1, h1) to (s ′1, h

′
1). Condi-

tion (2) says, under the assumption that precondition φ0 holds for
the initial pair of states (s, h) and (s1, h1), that the postcondition φ
holds for the modified states (s ′, h ′) and (s ′1, h

′
1). Note that these

conditions hold vacuously in case of non-termination, or run-time
error (since then, states (s ′, h ′) and (s ′1, h

′
1) would not exist).

Conjunction Rule not Sound in Semantic Model. It may be the
case that µ |= {φ0} S {φ1} [X] and µ |= {φ0} S {φ2} [X] hold
separately, but µ |= {φ0} S {φ1 ∧ φ2} [X] does not hold. For a
concrete example, consider the following program S :

if z then x := new C ; y := x else x := new C ; y := new C

Using Def. 5.1, we can semantically establish xn and yn sepa-
rately, but not xn∧yn. To see this, consider the initial states (s, h)
and (s1, h1), evolving into states (s ′, h ′) and (s ′1, h

′
1). Our goal is

to find β′ extending β such that (s ′ x)β(s ′1 x) and (s ′ y)β(s ′1 y);
this is trivial if s(z) and s1(z) assume the same truth value, so as-
sume that s(z) ∈ True but s1(z) ∈ False. Then there exists fresh
location ` such that s ′(x) = s ′(y) = `, and there exists fresh loca-
tions `x 6= `y such that s ′1(x) = `x and s ′1(y) = `y . To establish
xn, we define β′ such that ` β′ `x ; similarly, to establish yn, we
define β′ such that ` β′ `y . But to establish both xn and yn, we
would need ` β′ `x and ` β′ `y , which conflicts with β′ being a
bijection.

7 2005/11/28

5.2 Syntax-directed Rules
Table 2 gives the details of some small specifications. First note
that ordinary assignment, x := E , is split into three cases – pure as-
signment, where E is an arithmetic expression; pointer assignment,
where E is a variable z denoting a location; and null assignment,
where E is null.

Next note that for a given small specification, its region asser-
tions are always relevant, in that those occurring in the precon-
dition must be established by the context, whereas the indepen-
dence assertions may or may not be relevant, depending on whether
those occurring in the precondition are established by the con-
text. Therefore certain specifications should be read as two spec-
ifications (for space reasons, we do not show both), with the “op-
tional” independence assertions being listed right of a semicolon.
For example, [PointerAssign] should be read as the two rules:
{z ρ} x := z {x ρ} [{x}] and {z ρ, zn} x := z {x
ρ, xn} [{x}].

Many of the rules in Table 2 have already been motivated by
means of examples in Sec. 2, so below we shall discuss only a few,
and also give the rule for method calls.

The postcondition of [New] asserts that x will be at some
abstract address L with L 6= ⊥; furthermore, xn always holds and
x is modified. The rule mirrors the concrete semantics of new,
where a fresh location is allocated in the heap, except that we do
not require freshness of L.

Next we discuss [If], which is similar to the rule for conditionals
in Hoare logic, except that in the presence of independences, some
side conditions may be needed. Two cases:

(a) If φ0 logically implies xn, then we know that in states (s, h)
and (s1, h1), both s(x) and s1(x) will have the same (integer)
value, so the same branch of the conditional will be taken
during evaluation. Hence, there is no indirect control flow, and
thus no need for any side conditions. (In the context of security,
this case amounts to the guard of the conditional being “low”).

(b) Alternatively, in states (s, h) and (s1, h1), s(x) and s1(x) may
differ, causing different branches of the conditional to be taken.
In this case, in order to assert wn at the end of the conditional,
it does not suffice to assert wn at the end of each branch, since
this merely says that two runs choosing the same branch will
agree on the value of w . What we need is that:

1. w is not modified in any branch. (In the context of security,
this amounts to “no write down” under a “high guard” [8]).

2. the two runs agree on the value of w before the conditional.

The first demand can be encoded as I(φ) � X ; the second, as
φ0 I I(φ). Here, the notation I(φ) denotes φ’s projection to
its independence assertions.

Concerning the specification of a method call, x := y .m(z), as-
sume that type y = C and that Π(C ,m) contains the summary
{ψ0} {ψ} [X]. Then, with φ0 = ψ0[y/self , z/pars(m,C)]
and φ = ψ[x/result],9 we have

[MethodCall] Π ` {φ0} x := y .m(z) {φ} [X ∪ {x}]

5.3 Structural Rules
There are two structural rules: [Conseq], which extends the rule of
consequence in Hoare logic, and the frame rule, [Frame].

[Conseq]
{φ1} S {φ2} [X]

{φ′1} S {φ′2} [X ′]

if φ′1 I φ1

and φ2 I φ′2
and X I X ′

9 The notation, e.g., ψ[x/result] denotes substitution of x for result in ψ.

[Frame]
{φ1} S {φ2} [X]

{φ1 ∧ φ} S {φ2 ∧ φ} [X]
if φ � X .

The frame rule is used to reason with small specifications in a larger
context. For example, for a command S1 ;S2, rule [Seq] requires
the postcondition of S1 to be the same as the precondition of S2.
As the examples in Sec. 2 depict, such a match may not always
be achievable by small specifications themselves: extra assertions
must be added by invoking [Frame]. This is sound provided the
added assertions are disjoint from the modified abstract addresses.

As suggested by the semantic considerations in Sec. 5.1, we do
not have a rule of conjunction like the one in Hoare logic (without
heaps), i.e., we cannot derive {φ0 ∧ φ′0} S {φ ∧ φ′} [X ∪ X ′]
from {φ0} S {φ} [X] and {φ′0} S {φ′} [X ′]. To see why this
would be unsound (at least in our semantic model), let S be the
command x := new C . Then, for all L1 and L2, we would have
{true} S {x L1} [{x}] and {true} S {x L2} [{x}] and by
the proposed conjunction rule therefore {true} S {x L1∧x
L2} [{x}]. But this is clearly a semantic impossibility if L1 � L2.

Remarks. (a) One may think that the small specifications lose in-
formation and may not be precise. For example, in [PointerAssign],
why did zn disappear in the postcondition? But that independence
can be recovered by [Frame], since z is not modified. (b) Simi-
larly, the rule for field update does not lose precision: if y L1

holds before then it also holds after, despite the use of [Conseq] to
“unify” L1 with the region of f (details are in [1]). (c) The techni-
cal report also shows one way to handle strong update in the rule
[FieldUpd]. An example of strong update appeared in Sec. 2 but we
do not discuss this issue any further due to lack of space. (d) In [If]
and [Conseq], I has a semantic definition. However, when all as-
sertions are restricted to region and independence assertions,I has
a syntactic characterization given by Definition 7.4 and asserted by
Theorem 7.6.

5.4 Soundness
DEFINITION 5.2 (Consistent summary environment). Say that
summary environment Π is consistent wrt. class table CT if when-
ever Π(C ,m) contains the summary {ψ0} {ψ} [X], and S is
the body of a declaration of m in C , then Π ` {ψ0} S {ψ} [X ′]
where X = {L.f | L.f ∈ X ′}.

The idea is that even if a local variable is modified by S and hence
occurs in X ′, it should not occur in X since it is not visible outside
m . On the other hand, all field updates10 are globally visible.

THEOREM 5.3 (Soundness). Let Π be a summary environment
consistent wrt. class table CT . For a method m with body S ,
suppose Π ` {φ0} S {φ} [X]. Then [[CT]] |= {φ0} S {φ} [X].

6. A Larger Example
We consider the following example due to Barnett et al. [7].

class C{
1. private Hashtable ht := new Hashtable; //cache
2. public U m(T x){
3. Hashtable t := self .ht ;
4. bool present := t .contains(x);
5. if (!present){
6. U y := costly(x);
7. t .put(x , y); }
8. U res := (U)t .get(x);
9. assert (res = costly(x));
10. result := res; } }

10 Since we are handling only public fields. In future work, we hope to
explore issues involving information hiding through private fields.

8 2005/11/28

[Assert] {true} assert θ {θ} [∅] [PureAssign]
{z1, . . . , zn} = free(E)

{true; z1n, . . . , znn} x := E {x int; xn} [{x}]

[NullAssign] {true} x := null {x ⊥, xn} [{x}] [PointerAssign] {z ρ; zn} x := z {x ρ; xn} [{x}]

[FieldAcc]

{y ρ, ρ.f %; yn, ρ.f n}
x := y.f

{x %; xn}
[{x}]

[FieldUpd]

{x ρ, y %, ρ.f %; xn, yn, ρ.f n}
x .f := y

{ρ.f %; ρ.f n}
[{ρ.f }]

[New] {true} x := new C {x ρ, xn} [{x}] where ρ 6= ⊥

[Seq]
{φ0} S1 {φ1} [X1] {φ1} S2 {φ} [X2]

{φ0} S1 ;S2 {φ} [X1 ∪X2]
[If]

{φ0} S1 {φ} [X] {φ0} S2 {φ} [X]

{φ0} if x then S1 else S2 {φ} [X]

where φ0 I xn
or I(φ) � X and

φ0 I I(φ)

Table 2. Small specifications: excerpts. A ρ (a %) is a metavariable to be instantiated by an L (an LI).

The method m is an efficient implementation of the method costly ,
employing memoization: argument-result pairs are cached in a hash
table t , with the argument as key. A call to m with some argument,
x , first checks if a value exists for key x in t (lines 4, 5); if not,
it is computed (line 6) and stored in t (line 7). At that point, we
know that the result can be retrieved from the hash table (line 8)
and returned (line 10).

We shall now argue that m is observationally pure (and hence
can be used in specifications). As in Sec. 2 (for cexp), this involves
showing (i) that result depends on x only; (ii) that m modifies only
locations not visible to the caller.

For (i), we must show that two runs which agree on the initial
value of x also agree on the final value of result . So let xn be in
the precondition, then – due to the frame rule, as x is not modified
along the way – xn holds after line (9), where by [Assert] we also
have res = costly(x). By [Conseq], this entails that resn holds
before line (10). By [PointerAssign], this entails that resultn is in
the postcondition, as desired.

For (ii), assume that Hashtable has two fields, key and val ,
and that it is in abstract location L0. The only abstract addresses
modified by m are L0.key and L0.val (as well as certain local
variables which are not visible to the caller, c.f. Definition 5.2).
The desired invisibility can then be obtained by assuming that L0

is disjoint from all abstract locations used outside of m .
For the above to work out formally, we need method summaries

such as the ones below:

{self ρ0, {self ρ0,
ρ0.key ρ1, x ρ1, ρ0.key ρ1, x ρ1,
ρ0.val ρ2, y ρ2} ρ0.val ρ2}

put get
{} {result ρ2}

[ρ0.key , ρ0.val] [∅]
Note that we do not need the summaries to contain indepen-

dence assertions. It is interesting, however, to consider how such
assertions could be added in the summary for, e.g., the method
get . Naı̈vely, we would expect (c.f. the method getQ described
in Sec. 2) that if the precondition ψ0 contains the assertions xn,
self n, ρ0.keyn, and ρ0.valn, then the postcondition ψ1 will con-
tain the assertion resultn. But in general, get cannot be imple-
mented so as to satisfy this summary. To see this we assume, in
order to arrive at a contradiction, that Sg is the body of such an
implementation. By Theorem 5.3 (and Definition 5.2), we have
µ |= {ψ0} Sg {ψ1} . Now consider two states, (s, h) and
(s1, h1), where the key s(x) (which due to xn equals s1(x)) is
mapped by the hash table to different integer values. With β cho-

sen such that β relates s(self) to s1(self) but relates no other
locations, we have (s, h)& (s1, h1) |=β,η,η1 ψ0 (since, e.g.,
ρ0.keyn vacuously holds). But with Sg transforming (s, h) into
(s ′, h ′) and (s1, h1) into (s ′1, h

′
1), it is not possible (since the in-

tegers s ′(result) and s ′1(result) are different) to define β′ such
that (s ′, h ′)& (s ′1, h

′
1) |=β′,η′,η′

1
resultn. This yields the desired

contradiction.
To fix the above situation, we need to be more concrete about

how the (hash) table is implemented. Suppose that it is a linked list,
with each record containing not only a key and a val field (both
integers), but also a next field. Then, we can implement get such
that resultn is in the postcondition, provided we include ρ0.nextn
in the precondition ψ0. To see this, consider as above two states,
(s, h) and (s1, h1), with (s, h)& (s1, h1) |=β,η,η1 ψ0. Since ψ0

contains xn, there exists an integer k such that s(x) = s1(x) = k .
Wlog., we can assume that in the first state, k occurs as the third
key in the list. That is, there exists locations `, `1, and `2 such that
s(self) = `, h `next = `1, h `1 next = `2, and h `2 key = k .
Since ψ0 contains self n, with s1(self) = `′ we have ` β `′. This
entails, since ψ0 contains ρ0.nextn and we can assume ` η ρ0,
that with h1 `

′ next = `′1 we have `1 β `′1; similarly we then infer
that `2 β `′2 with h1 `

′
1 next = `′2. Since ψ0 contains ρ0.keyn and

ρ0.valn, we now infer that h1 `
′
2 key = h `2 key = k , and that

there exists v such that h1 `
′
2 val = h `2 val = v . With (s ′, h ′) and

(s ′1, h
′
1) the final states, this shows the desired s ′1(result) = v =

s ′(result).

7. Computing Postconditions
It is time to address how to decide, and implement, our logic. For
that purpose, we shall along the way introduce several simplifying
assumptions, two of which we state already now.

ASSUMPTION 7.1. Abstract locations form a finite complete lat-
tice, with ⊥ the least element and > the greatest element, where t
“corresponds to” set union and u “corresponds to” set intersec-
tion. That is, we require that

• if L = L1 t L2 then ` η L iff ` η L1 or ` η L2

• if L = L1 u L2 then ` η L iff ` η L1 and ` η L2.

Accordingly, we also require that if L = L1 t L2 then for all L′:
L′ � L iff L′ � L1 and L′ � L2.

Recall from Sec. 4 that ⊥ approximates nil but no concrete heap
locations; on the other hand,> approximates all concrete locations.

9 2005/11/28

The next assumption is motivated by the fact that if L = L1 t
L2, then any information about L.f can be deduced from informa-
tion about L1.f and L2.f .

ASSUMPTION 7.2. Among the abstract locations are some “irre-
ducible” elements (we write irr(L) for irreducible L) such that

• if L1 6= L2 are irreducible then L1 � L2;

• for each abstract location L, there are unique irreducible ele-
ments L1, . . . ,Ln (n ≥ 0) such that L = L1 t . . . t Ln .

Recall from Sec. 4 that all disjunctions in assertions occur only
within programmer assertions θ. Thus, we can view an assertion φ
as a set (implicitly a conjunction) of primitive assertions α. It is
convenient to work with assertions where all abstract locations (on
the “left hand side”) are irreducible and occur at most once:

DEFINITION 7.3. Say that φ is normalized iff (a) if L.f L′ ∈ φ
then L is irreducible; (b) if L.f n ∈ φ then L is irreducible; (c)
if L.f L1 ∈ φ and L.f L2 ∈ φ then L1 = L2; (d) if
x L1 ∈ φ and x L2 ∈ φ then L1 = L2; (e) φ does
not contain any assertions of the form > or int; (f) φ
contains exactly one programmer assertion.

For a normalized assertion φ, the region part gives rise to a function
as follows: (a) φ(x) = int, if type x = int; (b) φ(x) = L, if
x L ∈ φ; (c) φ(x) = >, otherwise. And, given irr(L0), we
define: (d) φ(L0.f) = int, if type f = int; (e) φ(L0.f) = L, if
L0.f L ∈ φ; (f) φ(L0.f) = >, otherwise.

It is possible to write a function norm that converts an assertion
φ into a normalized assertion norm(φ) which is logically equiva-
lent. (That is, φ I norm(φ) and norm(φ) I φ; also we have
φ � X iff norm(φ) � X). For example, if L can be written as
L1 t . . .tLn where irr(L1) . . . irr(Ln), then norm will transform
an assertion L.f LI into {L1.f LI , . . . ,Ln .f LI }.

7.1 Checking Logical Implication
In Sec. 4.1, we gave a semantic definition (4.3) of logical implica-
tion. We shall show that without programmer assertions, that defi-
nition is equivalent to a syntactic characterization which is readily
implementable.

DEFINITION 7.4. For normalized ψ and ψ′, we write ψ � ψ′ iff
the following holds:

(a) if x L′ ∈ ψ′ there exists L with L � L′ such that
x L ∈ ψ

(b) it L1.f L′ ∈ ψ′ there exists L with L � L′ such that
L1.f L ∈ ψ

(c) xn ∈ ψ′ implies xn ∈ ψ
(d) L.f n ∈ ψ′ implies L.f n ∈ ψ;
(e) θ′ ∈ ψ′ implies that there exists θ ∈ ψ such that θ I θ′.

For arbitrary φ and φ′, we shall – with abuse of notation – write
φ � φ′ iff norm(φ) � norm(φ′).

Now consider the case with no programmer assertions. Then clause
(e) above is trivial (as θ′ = θ = true), so it is easy to decide �. As
shown by the results below, this amounts to deciding I.

FACT 7.5. If φ � φ′ then φ I φ′.

THEOREM 7.6. If φ and φ′ contains no programmer assertions,
then φ I φ′ is equivalent to φ � φ′.

To see why we need to assume the absence of programmer asser-
tions, observe that x = c logically implies xn whereas (x = c) �
xn does not hold. For that assumption to be removed, we would
need a much stronger version of norm that finds all instances of
logical implication hidden in programmer assertions.

Concerning how to decide X I X ′, we proceed in a similar
(but much simpler) way: we say that a set X of abstract addresses is
normalized if L is irreducible for all L.f ∈ X ; we write a function
norm that converts a set of abstract addresses into an equivalent
normalized set; finally, we establish

FACT 7.7. X I X ′ iff norm(X) ⊆ norm(X ′).

7.2 A Sound Algorithm
We shall define, inductively on S , a function sp(S , φ0) that given
a command S and a precondition φ0 (which could be “global”)
computes a pair (φ,X); here we want φ to be a postcondition of
S , and X to be the abstract addresses that may be modified by S .
With

ASSUMPTION 7.8. We assume that a consistent summary environ-
ment Π is given in advance

we can show soundness of sp wrt. to the logic:

THEOREM 7.9. If sp(S , φ0) = (φ,X) then Π ` {φ0} S {φ} [X].

The full definition of sp is11 in [1]; below we shall list the most
interesting cases which are for conditional, assignment, and method
call. (For programmer assertions, sp(assert θ, φ0) = (θ∧φ0, ∅)).

Conditionals. We call sp recursively on the two branches and
then combine, via a least upper bound operator, the resulting as-
sertions.

DEFINITION 7.10. For normalized ψ1 and ψ2, we define ψ =
ψ1 t ψ2 (which is itself normalized) as follows:

• x L ∈ ψ iff there exists L1 and L2 with L = L1 t L2 6= >
such that x L1 ∈ ψ1 and x L2 ∈ ψ2

• L0.f L ∈ ψ iff there exists L1 and L2 with L = L1 t L2 6=
> such that L0.f L1 ∈ ψ1 and L0.f L2 ∈ ψ2

• xn ∈ ψ iff xn ∈ ψ1 and xn ∈ ψ2

• L.f n ∈ ψ iff L.f n ∈ ψ1 and L.f n ∈ ψ2

• θ ∈ ψ iff there exists θ1 ∈ ψ1, θ2 ∈ ψ2 such that θ = θ1 ∨ θ2.

For arbitrary φ1 and φ2, we shall – with abuse of notation – write
φ1 t φ2 for norm(φ1) t norm(φ2).

Let φ12 be the least upper bound of the analyses of the branches.
Looking at the side conditions for [If] in the logic, we see that if
φ0 logically implies xn (with x the test), we can just return φ12.
Otherwise, in order to satisfy the second side condition, we must
remove from φ12 all independences which either are not in the
precondition, or whose abstract addresses have been modified in
S1 or in S2. The resulting code is

sp(if x then S1 else S2, φ0) =
let (φ1,X1) = sp(S1, φ0) in
let (φ2,X2) = sp(S2, φ0) in
let X = norm(X1 ∪X2) in
let φ12 = φ1 t φ2 in
let φ =if φ0 � xn

then φ12

else φ12 \ (C1 ∪ C2)
where C1 = {yn | (y ∈ X) ∨ (yn 6∈ norm(φ0))}
and C2 = {L.f n | (L.f ∈ X) ∨ (L.f 6∈ norm(φ0))}

in (φ,X)

Assignments. Assume that S is an assignment A which is not
a method call, i.e., A is either a pure assignment, a pointer as-
signment, a null assignment, a field access, a field update, or an

11 Except that we do not yet handle while loops; such would require some
kind of fixed point iteration.

10 2005/11/28

object creation. Assume that we have a nondeterministic func-
tion Choose(A, φ0) which returns a triple (ψ0, ψ,X) such that
{ψ0} A {ψ} [X] is an instance of a rule for A in the logic where
φ0 � ψ0. Then define

sp(S , φ0) =
let (ψ0, ψ,X) = Choose(A, φ0) in
let φ = ψ ∧ disj (φ0,X) in (φ,X)

Here, the function disj extracts the parts of an assertion not modi-
fied by the assignment, thus incorporating the frame rule. It is de-
fined by disj (φ,X) = {α ∈ norm(φ) | α � X }.

So far, the above definition is very non-deterministic; it will
be concretized in the next section when we consider strongest
postconditions.

Method calls. Assume that S is a method call x := y .m(w),
with type y = C where C contains a method m with formal
parameter z . Assume that we have a non-deterministic function12

Choose(m,C , φ0) which returns a triple (ψ0, ψ,X) such that
{ψ0} {ψ} [X] ∈ Π(C ,m) where φ0 � ψ0[y/self ,w/z].
Then:

sp(S , φ0) =
let (ψ0, ψ,X) = Choose(m,C , φ0) in
let φX = disj (φ0,X ∪ {x}) in
let φ = ψ[x/result] ∪ φX in (φ,X ∪ {x})

Construction of method summaries. In an actual implementa-
tion, the summary environment Π may be built incrementally, by
using sp to analyze a new method in the context of the current Π
(see, e.g., [25]). For recursive methods, however, the user might be
required to provide the summaries, as in ESC/Java [16].

7.3 Strongest Postcondition
We shall now look at conditions for when sp, as defined in the
previous section, is indeed the strongest postcondition. We want
to prove the following completeness theorem

THEOREM 7.11 (Completeness). If sp(S , φ0) = (φ,X) and
{φ0} S {φ′} [X ′], then φ I φ′ and X I X ′.

For that purpose, we need to control the nondeterminism in the
selection of abstract locations in rule [New].

ASSUMPTION 7.12. Each occurrence of “new” is associated with
a specific irreducible abstract location L0 such that the only rule
applicable for that occurrence is

{true} x := new C {x L0; xn} [{x}].
Then we can concretize, as done in Table 3, the function Choose
for assignments. Thanks to Assumption 7.12, we can show that
Choose computes the “strongest applicable version”.

DEFINITION 7.13 (Strongest Applicable Version). Given rule
schema (j ∈ J), {ψj} S {ψ′

j} [Xj]. For given φ0, we say that
j0 is the strongest applicable version if

• φ0 � ψj0

• For all j such that φ0 � ψj , it holds that ψ′
j0 � ψ′

j and
Xj0 I Xj .

Under the further assumption that the method summaries have been
constructed such that there exists a strongest applicable version
for method calls, we can prove the completeness (Theorem 7.11)
of sp, provided that � is equivalent to I (as is the case without
programmer assertions, c.f. Theorem 7.6).

12 Required because we have a set of summaries for different calling con-
texts, so we need to select the appropriate one.

8. Discussion
We have specified, via a Hoare-style logic, an interprocedural and
flow-sensitive information flow analysis for object-oriented pro-
grams. (The analysis is insensitive to termination, but we expect
that adding assertions of the form ⊥n, c.f. [3], would make it sen-
sitive to termination). Because aliasing can compromise confiden-
tiality, the logic uses region assertions to describe aliasing that may
arise between variables and between heap values. Independence as-
sertions describe the absence of leaks due to data and control flow
in a program. Together with the knowledge that particular abstract
addresses are disjoint, i.e., they must not alias, the logic can be
employed to specify a more precise information flow analysis than
extant type-based approaches. We also permit JML style program-
mer assertions in code. Such assertions allow more programs to
be deemed secure than would be permitted by region and inde-
pendence assertions alone, albeit at the cost of a fully automatic
checker. The technical report considers dynamic dispatch (which
we avoid in this paper); the proof rule for method call needs to be
augmented with side conditions as in [If].

Local reasoning about state is supported in our logic and we
show a number of examples. While ordinary Hoare logic without
aliasing is compositional by nature, aliasing makes it challenging
to reason locally about the heap. By drawing upon fundamental
ideas from separation logic, we achieve local reasoning: we use
small specifications for each command and combine specifications
via a frame rule. The small specifications only mention abstract
addresses relevant to a command and semantically correspond to
the footprint of the command in the global state [21]. The frame
rule permits a move from local to non-local specifications.

As we mentioned in Sec. 5, Table 2 specifies two sets of rules.
The reader might have noted that the rules that mention region as-
sertions only specify a points-to analysis similar to well-known
ones, e.g., [13, 9]. Data flow facts used in typical points-to anal-
yses can be viewed as assertions. Nevertheless, we have not found
in the literature an explicit Hoare-style specification of interproce-
dural points-to analysis that is based on local reasoning via small
specifications and the frame rule. On top of such a points-to analy-
sis, a host of other analyses (rather than just information flow anal-
ysis) could be specified.

There is much work that remains. We wish to experimentally
validate whether local reasoning with the frame rule indeed pro-
vides scalability. Towards this goal, we plan to extend ESC/Java213

and its assertion language, JML [12], to handle region and inde-
pendence assertions. This would provide a verification framework
for information flow properties. For checking benchmarks (e.g.,[5])
that use declassification, we conjecture that independence asser-
tions might help in statically predicting program points where de-
classification may be used.

A significantly harder problem is obtaining a modular interpro-
cedural analysis. This requires devising a modular algorithm for
computing strongest postconditions, one that discovers and updates
procedure summaries on the fly. We plan to explore how local rea-
soning might be employed in this process.

Although our logic does not have separation logic’s spatial con-
junction (?) operator, we conjecture that the semantics of assertions
could be alternatively given as follows: the meaning of e.g., x L
in state (s, h) under η, could consider a partition of h into disjoint
subheaps h1, h2 such that dom(h1) = {s(x)} with (s(x)) η L.

Our hope is that local reasoning will be used in the specification
of program analyses and — in the security context — used as
a foundation for checking security policies for practical systems
composed of components.

13 http://secure.ucd.ie/products/opensource/ESCJava2

11 2005/11/28

Choose(x := new C , φ0) =
let L0 be the designated abstract location

for this occurrence of “new” in
({}, {x L0, xn}, {x})

Choose(x := E , φ0) =
let z1, . . . , zn = free(E) in
if φ0 � z1n, . . . , znn
then ({z1n, . . . , znn}, {xn}, {x})
else ({}, {}, {x})

Choose(x := z , φ0) =
let L = φ0(z) in
if φ0 � zn
then ({z L, zn}, {x L, xn}, {x})
else ({z L}, {x L}, {x})

Choose(x := null, φ0) = ({}, {x ⊥, xn}, {x})

Choose(x := y.f , φ0) =
let L = φ0(y) = L1 t ... t Lk in
let LI = tj∈1...kφ0(Lj .f) in
if φ0 � yn,L.f n
then ({y L,L.f LI , yn,L.f n}, {x LI , xn}, {x})
else ({y L,L.f LI}, {x LI}, {x})

Choose(x .f := y, φ0) =
let L = φ0(x) = L1 t ... t Lk in
let LI ′ = φ0(y) in
let LI = tj∈{1...k}φ0(Lj .f) t LI ′ in
if φ0 � xn, yn,L.f n
then ({x L, y LI ,L.f LI , xn, yn,L.f n},

{L.f LI ,L.f n}, {L.f })
else ({x L, y LI ,L.f LI}, {L.f LI}, {L.f })

Table 3. The function Choose , given normalized φ0.

Acknowledgements
To Alex Aiken, Dave Naumann, Peter O’Hearn, John Reynolds,
Tamara Rezk, Andrei Sabelfeld, Dave Sands, Dave Schmidt, Lyn
Turbak and the POPL reviewers for discussions, comments and
encouragement. We were supported in part by NSF grants CCR-
0209205, ITR-0326577, and CCR-0296182.

References
[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information

flow analysis of pointer programs. Technical Report CIS TR 2005-1,
Kansas State University, July 2005.

[2] T. Amtoft and A. Banerjee. Information flow analysis in logical form.
In SAS, LNCS 3148, pages 100–115. Springer-Verlag, 2004.

[3] T. Amtoft and A. Banerjee. A logic for information flow analysis with
an application to forward slicing of simple imperative programs. Science
of Computer Programming, special issue of SAS 2004. To appear.

[4] A. Askarov. Secure Implementation of cryptographic protocols: A case
study of mutual distrust. Master’s dissertation, Chalmers University of
Technology, April 2005.

[5] A. Askarov and A. Sabelfeld. Security-typed languages for implemen-
tation of cryptographic protocols: A case study. In ESORICS, LNCS
3679, pages 197–221. Springer-Verlag, 2005.

[6] A. Banerjee and D. A. Naumann. Stack-based access control and secure
information flow. JFP 15(2):131–177, Mar. 2005.

[7] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% pure:
Useful abstractions in specifications. In ECOOP workshop on Formal
Techniques for Java-like Programs (FTfJP), 2004.

[8] D. Bell and L. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report MTR-2547, MITRE Corp., 1973.

[9] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and N. Umanee. Points-to
analysis using BDDs. In PLDI, pages 103–114, 2003.

[10] M. Bishop. Computer Security: Art and Science. Addison-Wesley,
2003.

[11] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in
procedure specifications. IEEE Transactions on Software Engineering
21(10):785–798, 1995.

[12] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and applications.
Electr. Notes Theor. Comput. Sci., 80, 2003.

[13] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers
and structures (with retrospective). In Best of PLDI, pages 343–359,
1990.

[14] E. S. Cohen. Information transmission in sequential programs. In
Foundations of Secure Computation, pages 297–335. Academic Press,
1978.

[15] D. Denning and P. Denning. Certification of programs for secure
information flow. CACM 20(7):504–513, 1977.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI, pages 234–245,
2002.

[17] J. Goguen and J. Meseguer. Security policies and security models. In
Proc. IEEE Symp. on Security and Privacy, pages 11–20, 1982.

[18] S. Hunt and D. Sands. On flow-sensitive security types. In POPL
2006. To appear.

[19] A. C. Myers. JFlow: Practical mostly-static information flow control.
In POPL, pages 228–241, 1999.

[20] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[21] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL, LNCS 2142, pages 1–19.
Springer-Verlag, 2001.

[22] F. Pottier and V. Simonet. Information flow inference for ML.
TOPLAS 25(1):117–158, Jan. 2003.

[23] J. C. Reynolds. Separation logic: a logic for shared mutable data
structures. In LICS, pages 55–74. 2002.

[24] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1):5–19, Jan.
2003.

[25] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-
based information flow inference for an object-oriented language. In
SAS, LNCS 3148, pages 84–99. Springer-Verlag, 2004.

[26] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

12 2005/11/28

