
�

�

�

�

�

�

�

�

18

Local Reasoning for Global Invariants, Part I: Region Logic

ANINDYA BANERJEE, IMDEA Software Institute and Kansas State University
DAVID A. NAUMANN and STAN ROSENBERG, Stevens Institute of Technology

Dedicated to the memory of Stephen L. Bloom (1940–2010).

Shared mutable objects pose grave challenges in reasoning, especially for information hiding and modularity.
This article presents a novel technique for reasoning about error-avoiding partial correctness of programs
featuring shared mutable objects, and investigates the technique by formalizing a logic. Using a first-order
assertion language, the logic provides heap-local reasoning about mutation and separation, via ghost fields
and variables of type “region” (finite sets of object references). A new form of frame condition specifies write,
read, and allocation effects using region expressions; this supports a frame rule that allows a command to
read state on which the framed predicate depends. Soundness is proved using a standard program seman-
tics. The logic facilitates heap-local reasoning about object invariants, as shown here by examples. Part II of
this article extends the logic with second-order framing which formalizes the hiding of data invariants.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Class
invariants; correctness proofs; formal methods; programming by contract; object orientation; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory—Semantics; D.3.3 [Programming Languages]:
Language Constructs and Features—Classes and objects; modules; packages; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Programs—Assertions; invariants; logics of
programs; specification techniques

General Terms: Verification, Languages

Additional Key Words and Phrases: Modularity, data abstraction, data invariants, information hiding, heap
separation, resource protection

ACM Reference Format:
Banerjee, A., Naumann, D. A., and Rosenberg, S. 2013. Local reasoning for global invariants, Part I: Region
logic. J. ACM 60, 3, Article 18 (June 2013), 56 pages.
DOI:http://dx.doi.org/10.1145/2485982

1. INTRODUCTION

Typed, object-oriented languages like Java are widely used. One reason for the popu-
larity of typed object-oriented languages is their strong support for modularity in the

This is an expanded and revised version of a paper originally appearing in European Conference on Object-
Oriented Programming, 2008.
A. Banerjee was partially supported by Madrid Regional Government Project S2009TIC-1465 Prometidos;
MINECO Project TIN2009-14599-C03-02 Desafios; EU NoE Project 256980 Nessos; US NSF grants CNS-
0627748 and ITR-0326577 and by a sabbatical visit at Microsoft Research, Redmond. D. A. Naumann and S.
Rosenberg were supported in part by US NSF grants CNS-0627338, CRI-0708330, CCF-0429894, and CCF-
0915611. D. A. Naumann was partially supported by a sabbatical visit at Microsoft Research, Cambridge,
and by a visiting professorship at IMDEA Software Institute.
Authors’ addresses: A. Banerjee, IMDEA Software Institute, Edificio IMDEA Software, Campus Monte-
gancedo s/n, 28223 Pozuelo de Alarcón, Madrid, Spain; email: anindya.banerjee@imdea.org; D. A. Naumann
and S. Rosenberg, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030-5991;
email: naumann@cs.stevens.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0004-5411/2013/06-ART18 $15.00
DOI:http://dx.doi.org/10.1145/2485982

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:2 A. Banerjee et al.

form of the “class” and “package” (module) constructs, which provide encapsulation
boundaries by means of scoping and typing. Because objects are mutable and dynam-
ically allocated, there is another dimension of potential modularity: Local reasoning
[O’Hearn et al. 2001] aims to focus on the relatively small number of objects or lo-
cations pertinent to the execution of a particular program phrase or the specification
thereof. Local reasoning is difficult to achieve because the local structure of the heap,
and the locality properties of programs, are not explicitly represented by program syn-
tax or conventional logic formulas. Furthermore, sharing of mutable objects can and
often does compromise the encapsulation that programmers intend to provide using
classes and packages.

This two-part article addresses the challenge of modular reasoning about programs
written in such languages, especially procedure-modular reasoning and its automa-
tion using theorem provers. Procedure-modular reasoning simply means: (a) each pro-
cedure body is verified separately, and (b) in verifying a procedure body, reasoning
about any procedure call in the body is done in terms of the specification rather than
the implementation of the called procedure. For modular reasoning, data invariants
over encapsulated state play a critical role—which is sufficiently well known to be a
standard topic in programming textbooks. Yet sound modular reasoning is difficult to
achieve, in part because data invariants are “global”, in two senses.

Invariants are global in a temporal sense: an invariant is a state predicate intended
to hold in many states of a computation. At the least, a package invariant holds when-
ever control enters or leaves the package, that is, on calls and returns of its public
procedures [Hoare 1972]. For state shared among concurrent threads, invariants hold
when control may be transferred between threads. Concurrency is not a central con-
cern in this paper. But many object-oriented programs are structured in ways that in-
volve “reentrant callbacks” [Barnett et al. 2004] which, like concurrency, yields control
flow that is not in accord with the hierarchical structure of program modules. To cope
with reentrancy and local reasoning, various disciplines have been proposed, including
some deployed as special type systems. Like type systems in general, these disciplines
hinge on “all-states” invariants. The most successful such discipline is ownership (e.g.,
Müller [2002], Clarke and Drossopoulou [2002], and Boyapati et al. [2003]), which is
widely applicable; yet many design patterns involve local object structures for which
ownership is not applicable.

Invariants are also global in a “spatial” sense (where space refers to memory or
state). An obvious informal notion of class invariant is a formula that denotes a condi-
tion on instance fields. Local reasoning would then focus on maintaining the invariants
of those objects directly involved in the execution of a particular program phrase. How-
ever, the intention is that the object invariant holds for all instances of the class—a
spatially global condition. Furthermore, the invariant for an object often refers to other
objects, ranging from those that serve as its internal representation to those that are
peers in heterogeneous clusters visible to clients of an API. The granularity of use-
ful locality varies widely and does not simply correspond to the syntactic structure of
classes and packages. Notions like ownership, permissions, and capabilities have been
proposed to express, enforce, and exploit locality for invariants—and these notions are
themselves based on all-states invariants that impose structural constraints on the
entire heap.

In addition to local and modular reasoning, automation is also critical for scalability.
In view of recent advances in automated theorem proving, especially first order
SAT Modulo Theories (SMT) provers, we seek means to formulate specifications of
procedures, and class/package invariants, in first order logic with a minimum of novel
logical or notational machinery. We address the standard embodiment of modular-
ity for invariants, namely hiding them: They do not appear in specifications of the

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:3

procedures exported by an interface, but may be used for reasoning about implementa-
tions within the module, as famously articulated by Hoare [1972]. We address locality
in a granularity-neutral way: An invariant may pertain to a single object, or an object
and its internal representation, or a heterogeneous cluster of client-accessible objects.
Such clusters arise in many design patterns and application programs. Locality is
embodied in frame conditions: the part of a procedure specification that designates
what part of the state is susceptible to change, together with frame-based reasoning
that “all else is unchanged”. A command’s frame condition is sometimes called its
“footprint” and often specified by an explicit “modifies clause”.

The key ideas that we investigate are inspired by separation logic [O’Hearn et al.
2001], in which specifications implicitly designate local footprints on which a command
acts. Our approach is to reason about footprints explicitly, as sets of locations expressed
in terms of sets of objects (references) and their fields. Use of explicit footprints for
frame conditions was pioneered by Kassios, who dubbed it “dynamic framing” [Kassios
2011]. To cater for reasoning by SMT solvers, we express footprints using mutable
auxiliary fields and variables (commonly known as ghost state). This minimizes the
need for inductively defined predicates in specifications, and it entirely avoids two
key features by which separation logic achieves elegant and concise specifications: the
“separating conjunction” of the assertion language and the implicit specification of
frame conditions via a special interpretation of preconditions in Hoare triples. The
price to be paid in our approach is the need for programmers or tools to annotate
programs with ghost instrumentation.

Contributions and Outline. One of our contributions is to develop the idea of
dynamic framing in the form of conventional—but stateful!—frame conditions for
procedures. A second contribution is a novel notion of all-steps frame condition, the
“dynamic boundary”, that specifies stateful encapsulation boundaries and supports
hiding of invariants. This two-part article explores these ideas by formalizing and us-
ing a Hoare logic with explicit frame conditions. We call it “region logic” due to the key
role of what we call regions: sets of object references. Part II of the article [Banerjee and
Naumann 2013] focuses on reasoning under hypotheses, that is, assumed specifica-
tions of procedures, and on the hiding of package invariants. Part I lays the foundation
by formalizing a Hoare logic with frame conditions that may involve ghost state, for a
programming notation similar to Java source code. Hoare logic is a convenient setting
in which to address the sequential composition of stateful frame conditions, which is
an issue because effects can have effects. (In other words, a command can interfere
with a frame condition, as we explain.) Formalization of a logic also facilitates com-
parison with other work, in particular separation logic. Our logic is proved sound and
examples are given to illustrate the ideas and indicate the range of applicability. Let us
emphasize, however, a virtue of stateful frame conditions: They do not require a really
new logic, but rather make effective use of ordinary logic and program annotations.

Automated verification tools typically embody proof rules at the level of procedures
and modules but not at the level of individual commands in procedure bodies. Rather,
verification conditions are generated. But Hoare logic models, and even guides the
design of, the axiomatic semantics embodied by verification conditions. Elsewhere we
explore the automation of our specifications, including a pragma for framing as well as
automated checking of the separation judgment used in our frame rule [Banerjee et al.
2008a; Rosenberg 2011; Rosenberg et al. 2010].

In more detail, Part I is organized as follows. Section 2 sketches an example to illus-
trate features of the logic, including frame conditions for commands as well as fram-
ing and local reasoning for global invariants. Section 3 formalizes the programming
language and Section 4 presents the assertion language, essentially sorted first-order

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:4 A. Banerjee et al.

logic with a region sort equipped with set theoretic operations. Section 5 formalizes
effects using regions. Section 6 investigates the separation of a formula’s footprint
from the write effect of a command. Section 7 defines correctness statements for com-
mands, gives the proof rules including a frame rule, and proves soundness for the logic.
Section 8 presents worked examples involving reasoning with loops and allocation.
Section 9 discusses related work at some length, including the important precursors
mentioned above and also our prototype verification tool based on the logic. Section 10
concludes Part I.

It is in procedure specifications that frame conditions play their most important
role, as emphasized by examples in Part I. However, procedures are not included in
the logic formalized in Part I. This lets us focus on other aspects of the development,
laying groundwork for Part II. Inheritance is not considered in either part, as it is
an orthogonal issue and our approach is compatible with the standard techniques of
supertype abstraction and behavioral subtyping [Leavens and Naumann 2013; Liskov
and Wing 1994].

Part II of this article is concerned with information hiding. We extend the program-
ming language to include procedures and a simple notion of package, termed “mod-
ule” therein. Correctness statements are generalized to judgments with hypotheses
that specify procedures. We propose to expose in each module interface a “dynamic
boundary”, essentially a frame condition that must be respected by clients and which
prevents them from interfering with internal invariants. We develop proof rules for
the hiding of module invariants, derived from a “second order frame rule” like that
of separation logic [O’Hearn et al. 2009]. Hiding means that an invariant is assumed
(and must be reestablished) by implementations of a module’s procedures, but is not
mentioned in interface specifications of those procedures.

Dynamic boundaries designate an all-steps notion of frame condition. To define
that, a transition semantics (i.e., small-step operational semantics) is used for the
semantics of correctness judgments. The semantics is unusual in that it involves
a sort of big-step semantics for calls to procedures for which specifications are
provided as hypotheses. The semantics provides an elementary basis on which to
prove soundness of our second-order frame rule—but it comes at the cost of validating
all of the proof rules with respect to transition semantics. Direct use of transition
semantics to validate proof rules for loops (in Part I) and for the linking of procedure
implementations requires somewhat intricate reasoning. These detailed proofs are
one difference between Part II and the conference version thereof [Naumann and
Banerjee 2010]. Another difference is that we derive from the second order frame rule
not only a rule for linking hierarchical modules (as in O’Hearn et al. [2009]) but also
a rule for mutual linking of modules with intermodule callbacks.

Although procedures are not formalized in Part I, it would not be difficult to extend
the logic of Part I to include procedures and hypothetical judgments, using a pre/post
denotational semantics (as in O’Hearn et al. [2009]).1 It is for semantics of dynamic
boundaries that we need small steps.

2. BACKGROUND AND OVERVIEW OF PARTS I AND II

This section sketches a toy example, based on the Composite design pattern [Gamma
et al. 1995]. It serves to illustrate issues in reasoning about separation and data invari-
ants (for which reason it was the challenge problem for a workshop [Robby et al 2008])

1In the conference version [Banerjee et al. 2008c] we did use denotational semantics. Aside from what is
mentioned in the article, the other differences between Part I and the conference version are that here we
give a full set of proof rules, both syntax-directed and structural, and we give additional examples.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:5

Fig. 1. Initial sketch of an embodiment of the Composite design pattern. The frame condition “size and desc
field of every ancestor of self” is formalized in Eq. (6).

and our approach to these issues. Another example, based on the Observer pattern, is
developed in more detail in Section 3.

The code in Figure 1 declares a class of “Composite” objects. Fields lt and rt have
type Comp, values of which are the improper reference, null, and references to allo-
cated objects of type Comp. Each Composite references a parent as well as a maximum
of two children. (The limit of two is one of several crude features chosen for simplicity.)
Method add is used to add a child to a Comp designated by the implicit receiver pa-
rameter, self. Note that “self.” is usually elided, for example, in the code of add the test
lt = null abbreviates self.lt = null.

The modifier specpublic is used in specification languages such as JML [Leavens
et al. 2003] to designate private (or protected) fields that are made visible in public
specifications like those given here. Like many specifications in practice, those shown
in the figure provide useful information that falls short of full functional specification.
That will still be the case after we revise the example to flesh out the ellipses and
correct some flaws.

The intended use of field size is to hold the number of descendants. Later, we formal-
ize the invariant size = 1 + sz (lt) + sz (rt), where the pure function sz is defined by

sz (p :Comp) =̂ if p = null then 0 else p.size (1)

The purpose of the loop in the body of add is to maintain this invariant for all Comps.

Frame Conditions and Separation. A frame condition (often termed “modifies
clause”) is part of a method’s specification that lists parts of the state that may be
changed by the execution of the method. Note that a frame condition pertains to
all heap locations but its expression mentions only the heap locations that may be
modified. In this sense, a frame condition abbreviates a postcondition to the effect that
every location has its initial value except those mentioned. This form of specification
embodies a significant design decision: The modifiable locations are designated

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:6 A. Banerjee et al.

independent of the conditions under which they may be modified (e.g., for method add ,
field rt is in fact only written when lt �= null).

Succinct frame conditions facilitate reasoning about “obvious reasons” for absence
of interference between program phrases—in particular frame conditions help avoid
the case explosion that arises with naı̈ve reasoning about potential aliasing. For ex-
ample, imagine a client program where the composite objects represent hierarchically
organized visible elements in a graphical user interface window. The client could be an
editor for musical compositions, with one window that displays standard score notation
and another window for setup of audio effect processing. An operation on one window
might “obviously” not interfere with the other, nor with the state of the underlying
application data.

The use of frame conditions does not preclude finer information, which can be ex-
pressed in postconditions.2 For example, one conjunct of the ensures clause of add
could be old(lt) �= null ⇒ lt = old(lt) (where old expressions are interpreted in the
initial state). (More realistically, the postcondition would say that the children of self
are its previous children plus c. For that matter, the representation of children might
be encapsulated.)

There are two benefits from using conventional frame conditions, that is, those that
designate modifiable locations unconditionally. One benefit is to facilitate framing, that
is, reasoning that an assertion is unaffected by a command, as in the frame rule dis-
cussed later in this overview. Frame rules resemble the axiom or rule of Invariance.3
For framing to be sound, it suffices for the modifies clause to conservatively approxi-
mate all locations that may be written. The other benefit is that unconditional effects
compose in a simple manner: the effect of a composed program is often the union of its
effects. The expressive effects we explore in the sequel are especially good for framing
and mostly, but not always, compose by union.

As an example use of frame conditions, suppose the client program has variables
b, c, d of type Comp and variable audio that points to an object with boolean field
acyclic. Imagine that audio.acyclic indicates the absence of feedback loops in the au-
dio processing setup. Obviously, this value is not changed by the invocation b.add(c),
because the frame condition in Figure 1 says fields lt , rt , size are modifiable, not field
acyclic. Such simple reasoning is sound in languages where distinct field names have
distinct locations, as in Java and the language of this article.

In reasoning about the call b.add(c), one might naı̈vely say the value of d .size re-
mains unchanged because d is not b or c, but this is incorrect: variable d may well
have the same value as b, that is, reference the same object. Nor would it be sufficient
to require precondition d �= b; the program may write the size field of many objects.
What is needed is a precise way to designate the ancestors of self. Then, it can be spec-
ified that add writes the size only of ancestors. The client can reason that d .size is not
changed by b.add(c) if d is not an ancestor of b.

Recall from Section 1 that one of our goals in this work is to be able to specify such
spatial frame conditions with a minimum of logical and notational machinery, in order
to support reasoning based on automated first-order theorem provers. To define an-
cestors is easy enough using the transitive closure of parent , but there is another way
which avoids the logical complexity of transitive closure. Our approach leans heavily

2The form of frame conditions we explore in this article can be extended to express conditional effects, using
conditionals in region expressions, but that strays from the main points.
3See Apt et al. [2009] or Apt [1981], where these are attributed to Gorelick [1975] and Harel [1979]. In-
variance has a side condition that refers directly to the program text, whereas frame rules rely only on
specifications.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:7

on regions. In our usage, a region is a set of references, possibly also containing null.4
There is no implication that regions partition the heap. A location, in our terminology,
is a reference paired with a field name. A set of modifiable locations is designated by a
region expression together with a field name. The frame condition of add will include
ancestors(self)‘size; this designates the size fields of objects in the region ancestors(self),
using notation explained later.

For expository purposes, we define ancestors in terms of descendants. Our reasoning
about descendants is carried out using ghost state, that is, mutable auxiliary state that
is deleted by the compiler but serves for reasoning about partial correctness. Ghost
state must not influence the “underlying computation”, that is, it does not appear
in branching conditions or assignments to non-ghost variables or fields. In examples,
ghost declarations and commands appear in gray boxes.

Field desc in class Comp is ghost state intended to hold the set of (references to)
descendants of self. Our use of ghost state relies heavily on invariants.

Localized Global Invariants. Field size is non-ghost data that will be used by the
program, for example, there could be a public method getSize that relies on size rather
than a time-consuming traversal of the tree. The invariant mentioned at the beginning
of Section 2 should hold for every Comp, that is, the program maintains ∀o :Comp ·
ok(o) where o ranges over currently allocated references of type Comp (which excludes
null) and ok is defined by

ok(p :Comp) =̂ p �= null ∧ p.size = 1 + sz (p.lt) + sz (p.rt). (2)

This is a pure first-order, nonrecursive condition, with an interesting property: if it
holds for every composite then the structure is acyclic and moreover each size is indeed
the count of descendants. To formalize and prove this property requires induction—
which is worthwhile in that it convinces us the specification is interesting. On the other
hand, the formulation (2) facilitates purely first order reasoning about the invariant
being preserved by the code.

The condition ∀o :Comp · ok(o) is brutally global in quantifying over all nonnull ref-
erences of type Comp. It could be made slightly less global by restricting o to range
over some designated pool of objects of interest. Global conditions in specifications,
or as data invariants, might seem inimical to local reasoning and frame conditions.
What matters, however, is not whether some reasoning is expressed in terms of global
conditions—but rather, whether there are effective ways to factor out parts as they
are relevant. Owing to the form of the definition of ok(p), the invariant (2) admits
local reasoning quite handily. Suppose that before an invocation b.add(c) we have
∀o :Comp · ok(o). The code falsifies ok at b, then restores it but falsifies ok at b.parent ,
and so forth. The loop maintains as invariant that all composites except p are ok , until
p becomes null. A relevant factorization of this global invariant is obtained by splitting
it into the equivalent formula ok(p) ∧ (∀o :Comp · o �= p ⇒ ok(o)). Later, we show how
such splitting is used in frame-based local reasoning.

As another example, one can imagine a programmer declaring as an object invariant
the condition (lt = null ∨ lt .parent = self) ∧ (rt = null ∨ rt .parent = self) to capture the
linking on which the implementation of add relies. The intent is for this to hold of all
relevant objects; let us re-state it as such:

∀o, p :Comp · o.parent = p ⇐⇒ p.lt = o ∨ p.rt = o (3)

One benefit of global invariants in this style is that they offer granularity-neutral
treatment of invariants. The examples so far center on a single object and those

4In Banerjee et al. [2008c], regions cannot contain null.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:8 A. Banerjee et al.

directly reached from its fields. In more complicated situations, the natural gran-
ularity may involve a cooperating cluster of objects, with each cluster more or less
separate from other clusters. For example, each effect processing setup in our music
editor may be represented by a number of interdependent objects, but each setup is
entirely separate from the others. The Observer example studied later has a natural
granularity: a subject and its observers. (In its proof we split off a conjunct for
one cluster just like we split off ok(p) above.) Complete separation is not always in
evidence: an observer may also play the role of subject, observed by others. This is
akin to the dependencies of a Composite on both its children and parents.

Given (3), it becomes possible to enforce that each desc field holds the set of descen-
dants. Consider the following condition on a composite o:

o ∈ o.desc ∧ (o.parent = null ∨ o ∈ o.parent .desc) ∧ o.desc‘desc ⊆ o.desc (4)

The second conjunct can be read as “o is its parent’s descendant, if it has a parent”. The
third conjunct expresses that desc is transitively closed, using our field image notation,
‘desc, explained in this article. It is equivalent to this formula: ∀p ∈ o.desc · p.desc ⊆
o.desc. The idea is to find conditions that, if satisfied by all composites, are sufficiently
strong to ensure that o.desc is the set of o ’s descendants—while avoiding inductive
predicates or functions—just as (2) ensures that the size fields are accurate. (Sufficient
conditions are explored in Rosenberg et al. [2010]; the illustrative ones given here are
not enough.) With descendants in hand, we can define

ancestors(p) = {o ∈ alloc | p ∈ o.desc}. (5)

The special variable alloc contains the set of allocated object references.
Image expressions like o.desc‘desc play an important role in frame conditions. The

r-value of this expression is the union of all p.desc where p ranges over elements of the
region o.desc. The l-value of this expression is a set of locations, namely the locations
of the desc fields of objects in o.desc. Similarly, the l-value of ancestors(self)‘size is a set
of locations, namely the size fields of ancestors of self—just what we want in the frame
condition for add .

The price we pay for this precise frame condition is that the desc field must be up-
dated to maintain (4). The update is for reasoning, not execution, so it may as well
be expressed succinctly; see the foreach command in Figure 1. Like any update, the
update of desc is included in the frame condition.

The expression ancestors(self)‘size in the frame condition is different from the ex-
pression {x }‘parent there. (In the frame condition, x .parent is sugar for {x }‘parent . We
will come back to this point in more detail in Section 3 where we will be precise on
when such sugaring is permissible.) Note that ancestors(self) is stateful: its r-value fol-
lowing a call is different from its r-value in the pre-state of a call because, by definition
(5), ancestors(self) depends on the field desc and desc is mutable. By contrast, x is a
value parameter; in a postcondition it refers to the argument value (and so within the
procedure implementation it is not assignable).

To see the impact of a stateful frame condition, let b, c, d :Comp point to distinct
objects and let c, d be roots, that is, ancestors(c) = {c} and ancestors(d) = {d}. Con-
sider the sequence b.add(c); c.add(d). It attaches c as child of b,5 which gives c new
ancestors. According to the frame condition, the call c.add(d) changes the desc fields
of the current ancestors of c. The frame condition interprets the region expression
ancestors(self) in the pre-state, and its interpetation in the pre-state of the second call
to add is {c} ∪ ancestors(b); this is different from the interpretation of ancestors(self) in
the pre-state of the first call, where it is simply {c}.
5Or diverges if b already has two children.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:9

As a design choice that caters for automation, we do not use sets of sets. Rather, the
image of a field of type rgn is flattened, as described above for o.desc‘desc. In general,
if f is a field of reference type and G is a region expression, then the r-value of G ‘f is
the set of v such that v = o.f for some o ∈ G—that it is the usual image of a set under
a relation. However, if f is of type rgn, then G‘f is the union of the f -values.

Abstraction and Information Hiding. There is an inconsistency in the declarations
of Figure 1. Fields rt and lt appear in the frame condition, which is part of the public
interface used by client code outside class Comp, but these fields are declared private.
(That is, they are visible only within code of Comp,and they are an implementation
detail, so not suitable to be specpublic.) There is an established way to avoid exposing
internal fields in interfaces. A data group is a public field name designated as an ab-
straction of some private (or protected) fields [Leino 1998; Leino et al. 2002]. We revise
our example by declaring

private lt , rt :Comp in datagroup chldrn;

We revise the frame condition to use self.chldrn in place of self.lt and self.rt . The final
version is

modifies chldrn, x .parent , ancestors(self)‘size, ancestors(self)‘desc. (6)

Within the scope of lt , rt , the definition of chldrn must be visible: in reasoning about
the implementation of some method in Comp, we need to know that add interferes with
lt , rt . Data groups are particularly useful in connection with subclassing, but this topic
is beyond our scope. So too are mechanisms such as model fields for abstraction in pre-
and postconditions (see Section 9).

An extreme case of abstraction pertains to representation invariants, that is, those
that pertain entirely to internal state—and so can be hidden entirely. As an example,
suppose we want client programs to have access to the size of a composite. Our decla-
ration does not allow client code to refer to field size but there could be a public method
getSize. It might have no specification beyond its suggestive name, or it might even be
specified in terms of the recursive definition of the size of a tree. But the code would
rely on field size, and thus on invariant ∀o :Comp · ok(o). This is an example of an
invariant that pertains to state that should be encapsulated so clients cannot inter-
fere with it. As articulated by Hoare [1972], the hiding of internal invariants creates
a mismatch: the invariants should not appear at all in the public interface, but should
be required as precondition and ensured as postcondition for the purpose of checking
the implementation of add and any other method of Comp. The ellipses in the pre- and
postcondition of add (Figure 1) would then be read as empty or as the invariant.

Hoare’s mismatch is sound insofar as encapsulation prevents clients from interfering
with module internals. A popular concept for encapsulation of shared mutable objects
is ownership, which imposes hierarchical structure on the heap and restricts updates
(or access) to ensure that an invocation on some receiver o can only update locations in
objects transitively owned by o (e.g., Clarke and Drossopoulou [2002] and Aldrich and
Chambers [2004]). One facet of ownership is that it serves to encapsulate invariants
that depend only on owned objects. Another facet is that ownership provides a kind of
implicit frame condition for clients: the owner is always allowed to update its owned
objects, so that the owned objects need not appear in the frame condition. However,
ownership is not enough as witnessed by the composite pattern.

The composite pattern has been raised as a specification challenge [Leavens et al.
2007; Robby et al 2008] because, despite the hierarchical structure of objects, it does
not fit ownership: clients may have references to internals. For example, a client

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:10 A. Banerjee et al.

program could have variables b, c of type Comp, with c a descendant of b. Ownership
systems disallow this, or prevent the client from doing useful things with c.

One objective of our work is to provide sound and flexible means to hide internal
invariants at convenient granularities including but not limited to those for which
ownership is suited. Part II of this article develops a “second order frame rule” that
accounts for the hiding of an invariant within a module, where a module consists of
one or more classes. This account uses a straightforward notion of hypothetical correct-
ness: a command is verified under assumptions that comprise some procedure specifi-
cations. The form of our second order frame rule, adapted from the “hypothetical frame
rule” introduced by O’Hearn et al. [2009], caters for a single invariant formula such as
the global invariants discussed previously. The key novelty is to include, in a module
interface, a kind of frame condition, which we call the dynamic boundary, that des-
ignates the encapsulation boundary within which invariants are hidden. In Part I of
this article, we lay the groundwork by formalizing in region logic the key ingredients
of framing, namely, regions, separation, and frame conditions.

A Logic with Stateful Frame Conditions. Elsewhere, we present experiments with
this approach to framing and invariants, including verification of the Composite im-
plementation and non-trivial clients using an automated verifier based on axiomatic
semantics [Banerjee et al. 2008a; Rosenberg 2011; Rosenberg et al. 2010]. Here, our
goal is to investigate the approach by formalizing it as a Hoare logic.

Verification tools are typically compositional at the level of methods and modules.
For a clear understanding of compositionality of effects in sequenced commands as
well as in mismatched method specifications, a logic is an appropriate formalization.
Within commands, verifiers are often based on verification conditions [Floyd 1967]—
weakest preconditions or symbolic execution—rather than directly implementing
compositional proof rules. However, such rules bring to light the technical issues,
disentangled from issues such as heap model and avoidance of redundancy in weakest
precondition formulas.

One pleasant feature of compositionality at the level of commands is that, for atomic
commands, we can use “small axioms” [O’Hearn et al. 2001] that focus on the local
part of the state. For example, the axiom for field update can be instantiated for the
command p.size : = p.size + c.size as follows:

{ p �= null ∧ y = p.size + c.size } p.size : = p.size + c.size { p.size = y } [wr p.size] .

Variable y serves to snapshot an initial value. Note that for brevity the frame condition
is written in square brackets. The tag, wr , indicates a write effect; the tag is often
omitted, as writes are the most oft-occurring effect.

Our logic includes a so-called “frame” rule inspired by that of separation logic
[O’Hearn et al. 2001; Reynolds 2002]. The purpose is to conjoin a formula to both pre-
and postcondition, if the command cannot interfere with the value of the formula. For
example, a procedure call rule yields {Q } b.add(c) {Q ′ } [ε] where ε is the frame con-
dition and Q ,Q ′ the pre- and postcondition given by the specification, all instantiated
for b and c. In particular, from (6), ε is the list of write effects

b.chldrn, c.parent , ancestors(b)‘size, ancestors(b)‘desc.

In a proof, we might choose to strengthen Q to some P that implies d is not in the
ancestors of b. From {P } b.add(c) {Q ′ } [ε] we want to derive the following, by framing
the formula d .size = 10.

{P ∧ d .size = 10 } b.add(c) {Q ′ ∧ d .size = 10 } [ε] . (7)

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:11

This is given by our frame rule, with two provisos written P  δ frm (d .size = 10)
and P ∧ d .size = 10 ⇒ δ ./. ε, where δ is the read effect rd d , rd d .size. The “framing
judgment”

P  δ frm d .size = 10

says that in P -states, the value of formula d .size = 10 depends only on the values
of d and d .size. Here d .size is a sugared form of {d}‘size. The operator ./. generates a
conjunction of region disjointness formulas, given a list of read effects and a list of
write effects. In this example the separator δ ./. ε compares the relevant read effect
ancestors(b)‘size and the relevant write effect d .size. The comparison yields the single
disjointness formula, {d} # ancestors(b), which is equivalent to d /∈ ancestors(b). (The
operator ./. is defined in Section 6.2.)

As another example, suppose some method in class Comp needs to swap two non-
null children, say using temporary t in the command C =̂ t : = lt ; lt : = rt ; rt : = t . We
want to show that C maintains the invariant, that is, this judgment:

{ ∀o :Comp · ok(o) } C { ∀o :Comp · ok(o) } [t , self.lt , self.rt] .

By reasoning about assignments (proof rules in Figure 16) and the definition of ok(o),
we can show

{ ok(self) } C { ok(self) } [t , self.lt , self.rt] . (8)

Now we use the frame rule to conjoin to (8) ∀o :Comp · o �= self ⇒ ok(o), which
yields pre- and postcondition ok(self) ∧ (∀o :Comp · o �= self ⇒ ok(o)), which simplifies
to ∀o :Comp · ok(o). (Formally, we use the rule of consequence for that simplification.)
To use the frame rule, we find read effects that frame the formula ∀o :Comp · o �=
self ⇒ ok(o). These are as follows (using \ for set subtraction):

rd alloc, rd self,
rd (alloc \ {self})‘rt , rd (alloc \ {self})‘lt ,
rd (alloc \ {self})‘size, rd (alloc \ {self})‘lt ‘size, rd (alloc \ {self})‘rt ‘size

(9)

(In Section 6, we show how the read effects are obtained.) Next, we must show the
separation condition. Note that there are no variables in common between the write
effects and the read effects. However, fields lt , rt occur in both. (Field size is read but
not written.) Hence, the separation condition is

{self} # (alloc \ {self}),
which is equivalent to self /∈ (alloc \ {self}).

To emphasize this reasoning idiom, we sketch another example. Our music editing
application may have a number of windows open at once. Consider an editing operation
that applies to audio setups. The application maintains invariant ∀w :AudioWindow ·
valid(w) where valid imposes conditions on the audio setup and its rendering in the
window. To reason about an operation, edit , one would focus on the body of edit , which
updates fields of self and some other objects. These would falsify valid(self) and then
for non-trivial reasons restore it. Having established that the body of edit preserves
valid(self), we would frame6 the formula ∀w :AudioWindow · w = self ∨ valid(w) and
then check that it is separate from the writes of edit .

An interesting but annoying feature of the logic is that stateful effects are subject
to interference. This may explain why the simple approach we explore here had not

6The term “frame” traditionally refers to that which does not change, but frame conditions specify what may
change. To avoid confusion, we refrain from using “frame” by itself as a noun.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:12 A. Banerjee et al.

Fig. 2. Programming language. We confuse category names with typical elements (e.g., E ). The atomic
commands are skip and the various forms of assignment.

been pursued long before the work of Kassios [2011]. Consider this subsequence in an
unfolding of the loop body of add .

p : = p.parent ; p.size : = p.size + x .size; (10)

What is the effect? The effect of the assignment to p.size, in isolation, can be expressed
by wr p.size, because the initial value of p is indeed the object whose size is updated.
But for the displayed sequence, it is not the initial value of p but rather of p.parent
whose size gets updated. In our terminology, the effect wr p.size is not immune from
the effect, wr p, of the first assignment. The proof rule for sequencing combines effects
of the commands in sequence, but imposes an immunity condition on them. To ver-
ify the displayed sequence, we first use a rule of state-dependent effect subsumption,
ascribing to p.size : = p.size + x .size the effect wr ancestors(self)‘size, which is sound ow-
ing to an invariant of the loop: p ∈ ancestors(self). The effect wr ancestors(self)‘size is
immune from update of p. Immunity is the topic of Section 6.3.

One way to implement these ideas in an automated verifier is to desugar frame con-
ditions to their semantics as postconditions. Then nothing explicit needs to be done
about immunity. The effect of assignments on expressions in frame conditions is calcu-
lated just like the effect of assignments on expressions in other formulas. In our exper-
iments using an SMT solver we also found that the prover is able to handle quantified
global invariants without assistance, at least those like ok that refer concretely to the
state. On the other hand, in case of inductively defined predicates (encoded as uninter-
preted functions plus axioms) and predicates expressed using procedural abstraction,
some explicit framing hints are valuable [Rosenberg et al. 2010]. A hint generates a
framing judgment as additional verification condition, as we discuss in Section 6 where
we also provide a deductive system for framing judgments.

3. PROGRAMMING LANGUAGE

This section presents an illustrative language for which we formalize the programming
logic.

3.1. Syntax

A program consists of a command C in the context of some class declarations. The
grammar for types, commands etc. is in Figure 2. A class declaration class K { T f }
introduces a type name K ; values of this type are null and references to mutable
objects with typed fields f :T . Here and throughout, identifiers with an overline range
over lists. In addition to int and reference types, there is type rgn with values ranging
over finite sets of references. Field names are globally unique, by assumption, so we
can say f :T to abbreviate that there is a class that declares field f :T .

There is no need in this article for syntax to distinguish between ghost fields and
variables (i.e., those that instrument the program, or sometimes just its assertions,
to facilitate reasoning [Owicki and Gries 1976; Reynolds 1981]) and ordinary ones.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:13

Indeed, region expressions cannot influence control flow or the value of nonre-
gion fields/variables, so they can only serve as ghosts for reasoning. Ghost state
of other types is also useful. In Section 8.3, we consider the elimination of ghost
instrumentation.

Program expressions (E in Figure 2) do not depend on the heap: y .f is not an expres-
sion but rather part of the atomic command x : = y .f for reading a field. The restriction
to heap independent expressions serves, as in separation logic, to simplify rules for
reasoning about assignments: we need not worry about chains of dereferences, such as
x .f .g , in program expressions and the possibility of faults arising out of dereferencing
null when, for example, either x or x .f denotes null . Another consequence of the re-
striction is that an ordinary assignment, x : = F , can never fault. It also helps simplify
the framing rules (Figure 15).

Region expressions (G in Figure 2) of the form G ‘f (read “G ’s image under f ”) are
restricted to fields f of some class type K or type rgn. If f is of class type, then G ‘f
denotes the set of f -images of all non-null references in G ’s denotation; but if f : rgn,
then G ‘f denotes the union of the f -images. This restriction pertains to the use of
regions for their r-value. It lets us use a single region type; otherwise, we would need
int sets too. In effect, which refer to the l-value, f can have any type.

The example in Section 2 uses set comprehension notation to define the region
ancestors(self); this we omit in the formalization, but see Remark 6.3 in Section 6.
In effect, we include one special case: The region expression G /K denotes the subset
of G of references of type K (including null if it is in G).

There are no binding constructs for region expressions. Field identifiers are consid-
ered disjoint from variable identifiers. We define Vars(G), the variables that occur in
G , by Vars(x ) = {x }, Vars({E }) = Vars(E ), Vars(G ‘f ) = Vars(G), and otherwise as the
union of variables of subexpressions.

The following is an important note on the notations x .f and {x }‘f .

Remark 3.1. As mentioned in Section 2, we often use x .f as syntax sugar for {x }‘f ,
but only in the following cases.

— When f is of type rgn and {x }‘f occurs in an assertion or effect and is interpreted for
its r-value. For f : rgn, this disallows an assignment y : = x .f but permits an assertion
b ∈ x .f (which is false when x = null) or an effect wr x .f ‘g (which refers to an empty
set of locations when x = null).

— When f is interpreted for its l-value in an effect (and f has any type).

Other uses risk ambiguity or confusion. For example, for f :K the putative expression
x .f would have type K whereas {x }‘f has type rgn. Also, in case f : rgn and y : rgn the
syntax allows both commands y : = x .f and y : = {x }‘f , which differ when x is null.7

3.2. Typing

There is an ambient class table comprising a well-formed collection of class declara-
tions. We write Fields(K ) for the field declarations f :T of class K . A field name f
uniquely determines the class, DeclClass(f ), that declares it; so DeclClass(f ) = K iff
there is some T such that (f :T ) is in Fields(K ). Note that int is separated from refer-
ence types: there is no pointer arithmetic but references can be tested for equality.

A typing context, �, is a finite mapping of variable names to types. It is well formed
if its domain at least contains the distinguished variable, alloc, with �(alloc) = rgn;
consequently alloc cannot appear in non-ghost code. In the sequel, we will only consider

7For practical use, sugaring in this case is likely to be harmless because the annotation may imply x �= null.
In this paper we err on the side of precision.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:14 A. Banerjee et al.

Fig. 3. Typing rules for region expressions.

Fig. 4. Typing rules for commands.

well-formed contexts. We write �, x :T for extension of � with x that is not in dom(�);
it is not defined if x is in dom(�).

The judgment �  F :T says that in context �, region or program expression F has
type T . We omit the typing rules for program expressions since they are standard. The
typing rules for region expressions appear in Figure 3. The typing rules make some
distinctions between region expressions G and program expressions E . In particular,
whether variable x is a program expression or a region expression can only be deter-
mined by way of its typing. The typing rule for singleton region {E } enforces that E is
of reference type. The typing rule for region dereference, G ‘f , checks that f is declared
to be of reference type or type rgn.

The judgment �  C says C is a well-formed command in context �; furthermore
there is no assignment to variable alloc. The typing rules for commands appear in
Figure 4; typing prevents “field not defined” errors. For brevity, we omit a Boolean
type: The guard for an if- or while-command has type int and any nonzero value is
interpreted as true.

Our treatment of typing is intended to ensure coherence of definitions in subsequent
sections, and in particular to streamline the formulation of the proof rules for cor-
rectness, with a minimum of fuss. Because the language is first order, we can treat
bindings rather simply, as the following result shows.

LEMMA 3.2 (CONTEXT EXTENSION FOR COMMANDS). The following rule is
admissible:

�  C x does not occur bound in C

�, x :T  C

That is, if the premise is derivable then so is the conclusion, given the proviso. Further-
more, if x occurs bound in C , then �, x :T  C is not derivable.

PROOF. There is a typing rule for each construct, and no other typing rules. The
proof of admissibility goes by induction on the typing derivation of �  C . The only

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:15

Fig. 5. Operations on state σ . Here x ranges over variable names; o is an element of Ref ; v is a value in σ

(i.e., an integer, null , or an element of σ(alloc)).

binding construct is var and it removes the bound variable from the context. That is
also why the last part of the lemma holds.

Remark 3.3. It is straightforward to add subtyping based on subclasses, but to keep
the focus on the main novelties, we refrain from formalizing it. In the presence of
subtyping, it would be convenient to replace the untyped region type by types of the
form rgn(K ); such regions hold references to objects of type K and its subtypes, so
untyped regions are retained as rgn(Object). The distinguished variable alloc could be
replaced by a family of variables, so allocK would hold the references of type K and its
subtypes.

Untyped regions are an important means of abstraction: an interface can expose
that there are some objects, without revealing their types.

3.3. Semantics

The semantics is based on conventional program states. We abstract from the concrete
representation of states and merely assume the operations in Figure 5 are available.

We assume given a set Ref of reference values including a distinguished value, null .
A �-state has a global heap and a store. The store assigns values to the variables in
� and to the variable alloc : rgn which is special in that its updates are built into the
language semantics as follows: newly allocated references are added and there are
no other updates to alloc. In a well-formed state, alloc holds the set of all allocated
references and does not contain null .

The heap maps each allocated reference to its (immutable) type and field values. The
values denoted by class type K (Figure 2) are null as well as all allocated references of
type K . The values of type rgn are sets of allocated references and null ; in other words,
in a given state σ , regions are subsets of σ(alloc) ∪ {null }. Heaps have no dangling
references: there is no “dispose” operation or garbage collection.

We emphasize that a well-formed �-state σ satisfies

σ(x ) ∈ σ(alloc) ∪ {null } for all x ∈ dom(�) of class type
σ(r) ⊆ σ(alloc) ∪ {null } for all r with �(r) = rgn

and similarly for object fields. Henceforth, by state we always mean well-formed state.
The semantics of program expressions E in state σ , written σ(E ), is straightforward

and omitted. Note that σ(E ) is always a value (of appropriate type), never fault ;

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:16 A. Banerjee et al.

Fig. 6. Semantics of region expressions.

moreover, it only depends on the store, not the heap.8 We now consider the semantics
of region expressions G in state σ , written σ(G). The semantics of a region variable y is
σ(y) (see Figure 5). The semantics for other region expressions appear in Figure 6. The
meaning of singleton region {E } is {σ(E )}, that is, the singleton set containing the value
of E . Because E is heap-independent, E is guaranteed to have a value and there is no
possibility of a null-pointer dereference. In a given state region expression, G ‘f denotes
one of two things. If f has class type, then G‘f is the set containing the f -images of
all non-null references of G that have field f ; but if f : rgn, then G ‘f denotes the union
of the f -images. The meaning of G1 ∪ G2 is the union of the meanings of G1,G2, etc.

The transition semantics of commands appears in Figure 7. The semantics operates
on configurations of the form 〈C , σ 〉 where command C , the control state, is typable in
some context � and σ is a �-state. Here, C is an extended command that may include
the atomic evar(x ), which does not occur in source programs but is used in the seman-
tics to mark the end of the scope of a local variable. Well formedness is preserved by
the transition relation, in the following sense: If 〈C , σ 〉 �−→ 〈C ′, σ ′〉, then there is some
�′ that extends � (for local variables) such that �′  C ′ and σ ′ is a �′-state. Variable
alloc is suitably updated by the transition rule for new, cf. the New function in Figure 5.
As in many works (e.g., Apt et al. [2009]) we consider a control state of the form skip;D
to be identical to D . This avoids the need for a separate rule for the terminating step
of C in a sequence C ;D .

Every reachable configuration has a successor unless the command is skip. A ter-
minating computation ends in a configuration of the form 〈skip, σ 〉 or else fault . If
〈C , σ 〉 �−→∗ 〈skip, σ ′〉 then σ ′ is a �-state (owing to nesting local variable blocks). We
assume the set VarName is infinite, as otherwise the transition for local variable block
could get stuck (once we add recursive procedures, in Part II).

The semantics in Figure 7 is parameterized by the allocator Fresh that appears
in Figure 5. Thus our results encompass deterministic allocators (when the set
determined by Fresh (σ ), for some state σ , is a singleton) as well as the maximally
nondeterministic one used in separation logic. There is no deallocation so the domain
of the heap only grows, and once allocated the type of a reference never changes.

The following property of semantics can be proved by induction on the length of the
computation sequence.

LEMMA 3.4. For �  C , let σ be a �-state, with x /∈ dom(�). Let v be a value of type
T . Let τ be the (�, x :T )-state such that τ = Extend(σ , x , v). Then:

(a) 〈C , τ 〉 �−→∗ fault iff 〈C , σ 〉 �−→∗ fault
(b) 〈C , σ 〉 �−→∗ 〈skip, σ ′〉 iff 〈C , τ 〉 �−→∗ 〈skip, Extend(σ ′, x , v)〉

8The only faults are null dereference in field access and update commands, since we consider programs that
satisfy usual Java-style typing rules. We assume for simplicity that arithmetic operators are error-avoiding.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:17

Fig. 7. Small step operational semantics, �−→, for commands. In the transition rule for var, the notation C x
x ′

denotes substitution of x ′ for x in C .

In the lemma, if T is a reference type, K , then v should be in σ(alloc) with
Type(v , σ) = K . Note also that any outcome from τ can be written in the form
Extend (σ ′, x , ), that is, Extend (σ ′, x , v) for some v .

4. ASSERTION LANGUAGE

This section formalizes an assertion language. In brief, it is first order logic with region
image expressions and a “points-to” predicate. We begin with an example that will be
used through the rest of the article.

4.1. Example: An Implementation of the Observer Pattern

Figure 8 provides code for the Observer pattern. We notice several methods in the
figure, including constructor methods Subject() and Observer(s). Although we defer for-
malizing methods to Part II [Banerjee and Naumann 2013], in this article, we will
be considering bodies of these methods as commands in context. For example, the
context for the body of register is alloc : rgn, self :Subject , b :Observer ; the context for
update is alloc : rgn, self :Subject ,n : int; and the context for the constructor Observer(s)
is alloc : rgn, self :Observer , s :Subject .

We now give an explanation of the implementation of the pattern. An object
s :Subject has a pointer to a list of observers rooted at obs and all observers of s

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:18 A. Banerjee et al.

Fig. 8. Observer pattern.

reside in region O . The current value of s ’s internal state is in the field val . An ob-
ject o :Observer has a pointer, sub, to the subject to which it belongs and has a field,
cache, which contains what o believes to be the current value of its subject. The nxto
field points to the next element in the list of observers.

Method register is intended to be used only by code in class Observer and not by
clients. It inserts an object o to the front of the subject’s list of observers and notifies o
of its current state. The method also performs a ghost field update: it adds o to region
field O .

Method update updates the current state of the subject and notifies all observers of
the subject. Notification is the job of notify : it is called on a newly allocated observer
from register but more interestingly, also called from within the update method. Like
register , the method notify is intended to be used only by code in class Subject and
not by clients. The call to notify results in a callback to the Subject ’s get method. The
assignment to self.cache in the body of notify can be seen as sugar for the command

var t :Subject in var u : int in t : = self.sub; u : = t .get(); self.cache : = u;

where t , u are local variables.
The particular usages of register and notify described here could be formalized by

putting the classes Subject and Observer together in a package and considering the
methods to be package-scoped. In Part II, we formalize this kind of scoping by consid-
ering the two classes to comprise a module.

4.2. Syntax and Semantics of Assertions

Figure 9 gives the grammar for assertions. Quantification is over int and class types
only. In the latter case a bounding region is required as in (∀x :K ∈ pool · P) where
the quantification is over all currently allocated references of type K in region pool .
Quantifying over allocated objects is usual [Calcagno et al. 2003; Pierik and de Boer
2005b] and important for certain global invariants. There are also formulas for inclu-
sion of regions. For example, G ‘f ⊆ H is an instance of the syntax G ⊆ G in Figure 9.
It says that the f -image of every nonnull object in G is in H . A convenient feature is
the ability to refer to all fields, as in G ‘any ⊆ G . Here, any is like a data group [Leino

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:19

Fig. 9. Formulas: grammar and semantics. Semantics of ∨ and ∃ is by de Morgan duality.

Fig. 10. Syntax sugar for formulas. See also Remark 3.1.

1998] in that it stands for all fields.9 The formula x .f = E is like the points-to predi-
cate in object-oriented separation logic [Parkinson and Bierman 2005]; it says that x
is non-null and the value of its f field is E . The semantics is two-valued and classical.
We omit the various mathematical types needed for practical application; they can be
treated just like int.10

Several syntax sugars are defined in Figure 10. Note that in formulas, if f : rgn then
x .f = G can be used as sugar for {x }‘f = G without ambiguity. But please keep in mind
the important Remark 3.1 at the end of Section 3.1.

Rules for the well-formedness judgment �  P are mostly straightforward, and omit-
ted, but we note the following:

(f :T ) ∈ Fields(�x ) �  E :T
�  x .f = E

�, x :K  P �  G : rgn

�  ∀x :K ∈ G · P .

The first rule is only applicable for T �≡ rgn, because program expressions E
cannot be typed as regions (recall Section 3.2). The comparison of region expressions
for equality can be done by employing the abbreviation G = G ′ as in, for example,
formulas x .g = r where g and r have type rgn. The second rule disallows quantification
over regions and demands that the bound variable x not appear in the bound, G , of
the quantification. This facilitates framing and loses no generality.

A minor technicality is that we do not include a rule of context extension for formulas
(nor for expressions). As in the case of commands—viz. Lemma 3.2—context extension

9We do not formalize data groups, but an ordinary data group would be declared to abstract a specific set of
fields. One can treat any as the extreme case of all fields in the entire program.
10A boring technicality: An integer expression like x > 3 (which evaluates to 1 or 0) can be lifted to the
formula (x > 3) �= 0, which, of course, abbreviates ¬((x > 3) = 0).

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:20 A. Banerjee et al.

is admissible in this sense: if �  P and x does not occur bound in P then �, x :T  P
is derivable. Moreover if x does occur bound in P then �, x :T  P is not derivable.
In brief, a variable cannot occur both free and bound in a formula. Nor can a variable
binding be shadowed. This property is sometimes known as hygiene.

The semantics of a well-formed formula �  P is given as a satisfaction relation,
written σ |�� P and defined for all �-states σ . The definition is in Figure 9. In most
cases we elide � since it is unchanged throughout. For the semantics of ∀, recall that
the bound variable ranges over nonnull, allocated references; note the use of Extend,
which is well defined owing to the hygiene property remarked above.

A formula in context � is called valid iff it is true in all well-formed states. This use
of the term “valid” is appropriate because we consider a fixed model rather than a class
of models.

In case we have �  P and also �, x :T  P , the semantics is unchanged:

σ |��,x :T P iff σ �x |�� P for any (�, x :T )-state σ . (11)

We use Reynolds’ notation for substitution in formulas, writing P/x→F for substi-
tution of F for x in P . For our purposes, substitution is capture-rejecting: we consider
P/x→F to be meaningless if a variable in F would be captured by a binding in P .
This only matters in connection with rule SUBST in Figure 17. It is straightforward to
show these properties about substitution and update of expressions and formulas:

σ(G/x→F ) = [σ | x : σ(F )] (G) (12)
σ |�� P/x→F iff [σ | x : σ(F )] |�� P (13)

for all σ , x ,F ,G ,P such that G/x→F and P/x→F are well formed in �.
The assertion language includes integers and we are reasoning about a standard

interpretation, so any rules we give will be incomplete according to Gödel. For later
reference, we mention some valid formulas that highlight features of the assertion
language.

Remark 4.1. Because states are well formed in the sense defined in Section 3.3,
the following are valid.

null /∈ alloc ∧ G \ {null} ⊆ alloc (for any region expression G)

x = null ∨ x ∈ alloc (for x declared as x :K )

The following formulas are also valid (using some syntax sugars, cf. Figure 10,
Remark 3.1).

E ∈ {E }
x .f = y ⇒ x �= null

x = null ⇒ {x }‘f # G

x = null ⇒ x .f # G (only well-formed for f : rgn; the consequent abbreviates {x }‘f # G)
x .f .g = E ⇒ x �= null ∧ x .f �= null

(the antecedent abbreviates ∃y :K ∈ alloc · x .f = y ∧ y .g = E , where f :K )
x ∈ G1 ∧ G1‘f ⊆ G2 ⇒ {x }‘f ⊆ G2 (consequent can be written x .f ⊆ G2 only if f : rgn)
G # (G1 ∪ G2) ⇔ G # G1 ∧ G # G2

x ∈ G ⇔ x ∈ G/K (for x declared as x :K )
G /K # G /L (if K and L are incomparable classes: K � L and L � K )
x ∈ G1 ∧ y ∈ G2 ∧ G1 # G2 ⇒ x �= y ∨ (x = null ∧ y = null)

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:21

Fig. 11. Specifications for Observer pattern. Methods register and notify are not part of the public interface.

It is tempting to use ∈ notation like x .f ∈ G as sugar for {x }‘f ⊆ G but we rarely do
because there is a potential confusion. This would be true in case x is null, as {x }‘f is
empty if x is null. By contrast, the points-to predicate x .f = E is false when x is null.

4.3. Specifications for the Observer Pattern

Inductive Predicates. An important feature of our logic is that inductive predicates
can often be avoided, as emphasized in Section 2. Nonetheless, inductive predicates are
compatible with the logic. In fact, regions provide a convenient way to define inductive
predicates over possibly cyclic structures. The recursive predicate List(b, r) defined
here expresses that b points to null-terminated list and that the region r is exactly the
set of all nodes of the list. Our running example involves a subject together with its
list of Observers. Thus, variable b and field nxto have type Observer .

List(b :Observer , r : rgn) =̂ (b = null ⇒ r = ∅) ∧
(b �= null ⇒ b ∈ r ∧ List(b.nxto, r \ {b}))

Note that “b.nxto” is not in the syntax of expressions (Figure 2); we let List(b.nxto, r \
{b}) abbreviate the formula

∀p :Observer ∈ {b}‘nxto · List(p, r \ {b}).
The List predicate involves an explicit region, r , for the “footprint” of the list. The re-
cursion is well founded with respect to the subset order on regions, because regions are
finite and because sublists lie in a smaller region, r \ {b}. When using List in a framing
judgment we will see (Section 6) that the footprint of List will be explicit. In separa-
tion logic, a similar definition of the List predicate would be defined using separating
conjunction, with well-foundedness based on another parameter like a mathematical
list.

We do not formalize recursively defined predicates; indeed, we do not formalize pred-
icate definitions, though we use them in examples.

The Specifications. To specify the methods of Figure 8 we use the predicates SubH
and Obs (adapted from Parkinson [2007]):

SubH (s) =̂ List(s .obs , s.O)

Obs(b, s, v) =̂ b.cache = v ∧ b.sub = s

SubH (s) is an invariant of Subject . It says that all observers of s are in a list whose
nodes comprise region s.O . The invariant Obs(b, s, v) is an invariant of Observer . It
says that b is an observer of subject s and that b ’s view of s ’s internal state is v .

With these definitions, the method specifications in Figure 11 are mostly self-
explanatory. Note the presence of dereference chains, for example, self.cache =

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:22 A. Banerjee et al.

self.sub.val , in the postcondition of notify . This formula can be rendered in our assertion
language as

∀s ∈ {self}‘sub · ∀v : int · s.val = v ∧ self.cache = v .

We will continue to use sugared versions of field access in the examples and
leave desugaring to the reader. The “ ” in Obs(o, self, ) abbreviates an existential
quantification.

The given specifications are suitable for use by clients. As we will see in Part II, the
implementations rely on a data invariant that needs to be conjoined to the pre- and
postconditions of the public specifications (but not to the specifications of register or
notify). Parkinson uses a predicate SubObs in the specifications of the public methods.
This predicate is a conjunction of the predicates SubH and Obs. We factor out SubH so
we can treat it as a hidden invariant (in Part II).

The implementations have been checked using the VERL tool [Rosenberg 2011;
Rosenberg et al. 2010]; the software distribution includes example clients. Of course,
the specifications need to be augmented with frame conditions, which are given in
Section 5.1.

5. EFFECTS

Effects are used in frame conditions and also for framing of formulas. This section
presents basic semantic notions concerning effects; these are used throughout both
Part I and Part II of the article. In the overview Section 2, frame conditions consist of
write effects, and the frame of a formula consists of read effects. Despite these differ-
ing uses, we formalize a single syntactic category of effects. There is nothing essential
about this design choice and it can be confusing, but it does streamline some formula-
tions. Collapsing both kinds of effects also caters for using read effects for commands,
as needed for extensions of the logic to concurrency, for reasoning about program trans-
formations, and for pure method calls and model fields in assertions. The addition of
read effects for commands requires only modest changes to the proof rules in Section 7.
However, the semantics of read effects for commands is intricate, as we remark here;
so to streamline this article, we omit them.

Effects are given by the grammar

ε ::= ε, ε | (empty) | rd x | rdG‘f | wr x | wrG ‘f | frG .

The latter five forms are called atomic effects, so an effect amounts to a list of atomic
effects.11 Sometimes we abuse notation and treat an effect as a set of atomic effects.
Besides ε, we also use identifiers δ and η for effects and tend to use δ to indicate that
read effects are of interest.

The idea is that rd x allows variable x to be read, rdG ‘f allows read of the f field of
objects in G , wr x allows update of variable x . For the distinguished region variable,
alloc, that holds the set of all allocated references and is automatically updated by
the allocator, wr alloc allows allocation and rd alloc allows dependence on the set of
allocated objects. The effect wrG ‘f designates a set of l-values at which updates are to
be allowed; these l-values are locations (o, f ) where o ∈ G is an object with field f . For
this purpose, we interpret G in the initial state. By contrast, frG says that all elements
of G in the final state are freshly allocated.

As emphasized in Section 2, some effects are state dependent. For example, for field
g : rgn, the effect wr self.g‘f permits update of f field of any reference currently in self.g .

11Different from other syntactic categories, we do not use overlines to indicate lists of atomic effects. We did
so in [Banerjee et al. 2008c]. And there we used the term “effect” for atomic effect and “effect set” for effect.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:23

Fig. 12. Effects for the Observer Pattern. For this example, we do not need freshness effects.

In accord with remarks in Section 3.1, an effect of the form wr x .f abbreviates wr {x }‘f
(mutatis mutandis for rd x .f ). In case x is null, this is well defined and designates the
empty set of locations. In examples, we also allow f to be a data group [Leino 1998], to
abstract over concrete fields. In particular, the effect wr self.any says that any fields of
self may be written.

A command may have a freshness effect, written frG . It says that the value of G in
the final state contains only (but not necessarily all) references that were not allocated
in the initial state. Freshness effects are not essential, because they can be expressed
via pre- and postconditions. But they are convenient in reasoning about sequenced
commands, to mask updates to fresh objects. For example, consider the sequence x : =
new Comp; x .size : = 0 in using class Comp from Section 2, By itself, the field update
x .size : = 0 has effect wr {x }‘size. But in the prestate of the sequence, {x } cannot possibly
contain the updated object. Indeed, no pre-existing object is updated.

We omit tags wr and rd in lists of effects of the same kind, for example, wr y , {y}‘f
abbreviates wr y , wr {y}‘f . Note that the elements of the list are separated by a comma
as in y , {y}‘f above. In this article, we do not use read effects in frame conditions for
commands; instead, a command may read anything. So in frame conditions of com-
mands we drop the wr tag but retain fr . Finally, we use the abbreviation, for example,
wr x .(f , g) to denote wr x .f , x .g .

5.1. Effects for the Observer Pattern

Figure 12 shows the effects we choose to specify for the methods in the running exam-
ple. Consider, for example, the effects wr s.val and wr s.O ‘cache of s.update(n). Recall
that s.O is a region. The effect wr s.val licenses the write of the val field of s, and
wr s.O ‘cache licenses the write of the cache field of any object in the set s.O . Further-
more, s.O is stateful: its interpretation may change from state to state owing to assign-
ment to s and/or s.O . However, owing to the absence of effect wr s.O we know that the
O field of s is not mutated by s.update(n).

The effect for notify records that a call to it will result in the writing of an observer’s
cache field. The effect for register records that O was written when an observer b was
added to the existing list of observers of a subject. It also takes into account the ef-
fect of notify . The effect for update records that the subject’s val field is updated and
also takes into account the effects accrued as a result of calling notify . The body of
constructor Subject is verified with respect to effects wr self.(obs , val ,O). Similarly the
body of constructor Observer is verified with respect to effects wr self.(sub,nxto, cache)
in addition to the effects mentioned in Figure 12. However, the effects on self for the
constructors get masked because we are only concerned with the write effects of objects
already allocated in the pre-state of the constructor method, and constructors are only
invoked with new. This explains the empty effects of Subject and Observer in Figure 12.

As a matter of interface design, it seems wise to include wr alloc in the effects of most
methods, because even if the current implementation does no allocation alternative

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:24 A. Banerjee et al.

implementations might. In a full-fledged concrete syntax, wr alloc should probably be
implicitly the default, but that would be a needless complication in this article. For the
sake of brevity, our examples only use wr alloc where it is necessary.

5.2. Syntax and Semantics of Effects

Effects must be well formed (wf) for the context � in which they occur: rd x and wr x
are wf if x ∈ dom(�); rdG ‘f , wrG ‘f , and frG are wf if G is wf in �. The empty effect
is wf in any context and ε, η is wf if ε and η are. The subeffect rules given later allow
effects to be put in a normal form where there is at most one freshness effect, at most
one read of given field, etc. Note that in contrast to the typing of region expressions
G ‘f , in effects wrG ‘f and rdG ‘f the field f can have any type.

We say σ ′ is compatible with σ , and write σ � σ ′, provided Type(o, σ) = Type(o, σ ′)
for all o ∈ σ(alloc) ∩ σ ′(alloc). We say σ ′ succeeds σ , and write σ ↪→ σ ′, provided σ � σ ′
and σ(alloc) ⊆ σ ′(alloc). The semantics has the property that the type of an allocated
reference never changes: 〈C , σ 〉 �−→∗ 〈C ′, σ ′〉 implies σ ↪→ σ ′. We adopt notation from
Amtoft et al. [2006] in the following.

Definition 5.1 (Changes Allowed by Write and Freshness Effects). Let effect ε be
well formed in � and let σ , σ ′ be �′-states for some �′ ⊇ �. We say ε allows change
from σ to σ ′, written

σ→σ ′ |� ε

iff σ ↪→ σ ′ and the following all hold:

(a) for every y in dom(�′), either σ(y) = σ ′(y) or wr y is in ε
(b) for every o ∈ σ(alloc) and every f in Fields(Type(o, σ)), either σ(o.f ) = σ ′(o.f ) or

there is G such that wrG ‘f is in ε such that o is in σ(G)
(c) for each G such that frG is in ε, we have σ ′(G) ⊆ σ ′(alloc) \ σ(alloc).

In Part I, this definition is only instantiated with �′ = �. The extra generality is only
needed in Part II of this article, where it is used in the semantics of procedure calls.

The definition is formulated for effects in general, but it “ignores” read effects. That
is, read effects in ε have no bearing on whether σ→σ ′ |� ε or not.

Recall that we always assume alloc ∈ dom(�), whence by Definition 5.1(a), if
σ ′(alloc) �= σ(alloc) then wr alloc is in ε. Note also that wrG ‘f in Definition 5.1(b) refers
to writes of f fields of objects in the pre-state, σ . However, frG in Definition 5.1(c) refers
to freshly allocated objects that are present in the post-state, σ ′, but absent in σ .

Definition 5.2 (Agreement on Read Effects). Let ε be an effect that is well formed
in �. Let �′ ⊇ � and �′′ ⊇ �. Let σ be a �′-state and τ be a �′′-state. Say that σ and τ
agree on ε, written Agree(σ , τ , ε), provided σ � σ ′ and moreover the following hold:

(a) for all rd x in ε, we have σ(x ) = τ(x )
(b) for all rdG ‘f in ε and all o ∈ σ(G) ∩ τ(alloc) with Type(o, σ) = DeclClass(f ), we

have σ(o.f ) = τ(o.f )

For (b), note that o ∈ σ(G) ∩ τ(alloc) implies o �= null .
In Part I, this definition is only instantiated with �′ = �′′ = �. The extra generality

is only needed in Part II of this article.
The condition σ � σ ′ says the states must agree on types of all objects in common.

Usually12 we consider states such that σ ↪→ σ ′, in which case Definition 5.2(b) implies
agreement on f for all o ∈ σ(G), because then we have o ∈ σ ′(alloc) and Type(o, σ) =

12In fact, throughout Part I and Part II, but not in the relational version of the logic, under development.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:25

Type(o, σ ′) hence f ∈ Fields(Type(o, σ ′)). But even then, it need not be the case that
o ∈ σ ′(G), for example, in case G is a variable r such that σ(r) �= σ ′(r). For a given
effect, one might expect agreement to be a symmetric relation on states, but that is not
the case owing to the interpretation of stateful effects in the first state (i.e., σ in (b)).

In most situations, an effect of interest will be self-framing in the following sense:
some of the included effects ensure that the others do not change their intepretation.
For example, in the framing analysis of Section 6, the effects of assertion x .f = 0 are
rd x , rd {x }‘f . Two states could agree on rd x ‘f even though they disagree on x and thus
on the interpretation of {x }. But this is disallowed by rd x . In the work of Kassios [2011],
self-framing is important because frames are expressed using model fields, defined
in terms of state variables. We are using explicitly updated ghost state rather than
model fields, so for our purposes there is no need to formalize the notion of self-framing
effects.

We do not formalize the use of read effects in frame conditions for commands, be-
cause their semantics involves additional complications and for our purposes in Part
I and Part II they can be omitted. Informally, the semantics of a frame condition with
read effects δ is as follows: When the command is run twice, from two initial states
that agree on δ and both satisfy the precondition, if both terminate normally then the
final states agree on the updatable locations. To make this precise involves the use of
renaming relations on references, to allow for differing allocation behavior; agreement
then becomes “agree modulo renaming”. Moreover case distinctions need to be made
for faulting and divergence.

5.3. Subeffects

Effects that are convenient and precise in a local context may not be meaningful in
another context. So we often need to subsume an effect by a weaker one. As an example,
following Eq. (10) in Section 2 we mentioned that the command p.size : = p.size + x .size
has precise effect wr p.size that can be subsumed by wr ancestors(self)‘size, under the
precondition p ∈ ancestors(self). For an effect of the form wrG ‘f , there is the possibility
of more liberal effect wrH ‘f in case G ⊆ H .

Since regions can be state-dependent, inclusions like these are state-dependent. So
we define the subeffect judgment to have the form P  ε1 ≤ ε2. It is intended to mean
that under precondition P , the “bigger” effect ε2 is more permissive than ε1. For exam-
ple, p ∈ ancestors(self)  wr p.size ≤ wr ancestors(self)‘size.

Definition 5.3 (Valid Subeffect). The judgment P  ε ≤ η is valid, written P |� ε ≤
η, iff the following hold for all σ , σ ′ such that σ |� P :

(valid write and freshness subeffect) σ→σ ′ |� ε implies σ→σ ′ |� η.
(valid read subeffect) Agree(σ , σ ′, η) implies Agree(σ , σ ′, ε).

In Figure 13, we provide syntactic rules for subeffecting. We abbreviate true  ε ≤ η
by omitting true.

LEMMA 5.4 (SUBEFFECT SOUNDNESS). Suppose P  ε ≤ η is derivable by rules in
Figure 13. Then P |� ε ≤ η.

PROOF. By induction on a derivation of P  ε ≤ η, using that each rule is sound,
that is, preserves validity. We consider two representative cases.

(Write Subeffect) G1 ⊆ G2  wrG1‘f ≤ wrG2‘f . Assume σ→σ ′ |� wrG1‘f and
σ |� G1 ⊆ G2, to show σ→σ ′ |� wrG2‘f . We have σ ↪→ σ ′ and σ(G1) ⊆ σ(G2). Be-
cause σ→σ ′ |� wrG1‘f , for every o ∈ σ(alloc) and every f ∈ Fields(Type(o, σ)), either
σ(o.f ) = σ ′(o.f ) or o ∈ σ(G1). But if o ∈ σ(G1), then o ∈ σ(G2). Hence, σ→σ ′ |� wrG2‘f

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:26 A. Banerjee et al.

Fig. 13. Subeffect rules. We write ≶ to abbreviate two inclusion rules.

because for every o ∈ σ(alloc) and every f ∈ Fields(Type(o, σ)), either σ(o.f ) = σ ′(o.f )
or there exists wrG2‘f such that o ∈ σ(G2).

(Read Subeffect) G1 ⊆ G2  rdG1‘f ≤ rdG2‘f . Assume Agree(σ , σ ′, rdG2‘f ) and σ |�
G1 ⊆ G2, to show Agree(σ , σ ′, rdG1‘f ). Consider any o ∈ σ(G1) with DeclClass(f ) =
Type(o, σ). Then, o ∈ σ(G2). Now from Agree(σ , σ ′, rdG2‘f ) and σ(G1) ⊆ σ(G2), we
have σ(o.f ) = σ ′(o.f ). Hence, Agree(σ , σ ′, rdG1‘f ).

By contrast with the rules for read and write, we do not have G1 ⊆ G2  frG1 ≤ frG2,
because the antecedent is interpreted in the pre-state whereas freshness effects refer
to regions in the post-state. Reasoning about freshness based on region inclusion is
provided by rule FRSUB, derived in Section 7.2 using rules in Figure 17.

Earlier we mentioned that data groups could be added, with appropriate adaptation
of Definitions 5.1(b) and 5.2(b). For example, Definitions 5.1(b) would allow modifica-
tion of o.f if there is a write effect wrG ‘d where o is in G and f is in the data group d .
The only addition to the logic would be the subeffect rule

f in data group d

 G ‘f ≤ G ‘d
,

and means to declare that a field is in a data group. In examples, we assume that every
field is in the data group any.

6. FRAMING AND SEPARATORS

This section formalizes the two key elements of the FRAME rule, which is found in
Figure 17 together with other rules for program correctness. The first element is the
framing judgment, P � δ frm Q . Recall from Section 2 the intended meaning is
roughly that Q depends only on the state read according to δ, or δ covers the “foot-
print” of Q in P -states.

Definition 6.1 (Frame Validity). Judgment P � δ frm Q is valid, written P |��

δ frm Q , iff for all �-states σ , σ ′, if Agree(σ , σ ′, δ) and σ |�� P ∧ Q then σ ′ |�� Q .

Often we elide the context � in a framing judgment, as it is usually clear from
context.

The other critical element in the FRAME rule is the separator. This is given by an
operator, ./., which is applied to the read effects, say δ, of a formula and the write effects,

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:27

Fig. 14. Footprints of region expressions and atomic assertions (definition of ftpt).

ε, of a command. Their separator, δ ./. ε, is a conjunction of region disjointness formulas
sufficient to ensure that if the changes from σ to σ ′ are allowed by the write effects ε,
then σ , σ ′ agree on the read effects δ. This serves to establish the agreement condition
required by Definition 6.1. The definition of ./. is in Section 6.2.

Frame validity is a first-order condition that is amenable to automated checking
by an SMT solver, as we have demonstrated in experiments using VERL [Rosenberg
et al. 2010]. More interesting is the inference problem: given P and Q , find δ such
that P |� δ frm Q . In Section 6.1, we provide a proof system for frame judgments.
This has conceptual interest, providing for a comprehensive program logic—though if
explicit proof representation is not of interest, one could as well treat frame judgments
semantically just as many program logics treat first-order validities. The rules also
serve as basis for inference heuristics that are used by the VERL implementation, to
minimize the need for user-provided frames even for recursively defined predicates.

6.1. Deductive Framing

We give rules for deriving framing judgments. First, we define the function, ftpt , to
compute the precise “footprint” of program expressions, region expressions and atomic
assertions. The footprint consists of all read effects needed to evaluate a given ex-
pression or atomic assertion. Next, we give rules for deriving a framing judgment,
P  δ frm Q . The section ends with a soundness result for derivable framing judg-
ments. The most interesting aspect is negation.

Footprints of Expressions and Atomic Assertions. For any program expression E , de-
fine its read effect, ftpt(E ), as follows:

ftpt(E ) = rd x , . . . , rd z where x , . . . , z comprise Vars(E ).

Figure 14 defines the ftpt function for region expressions and for atomic assertions.
As an example, note that ftpt(x = x ) is not ∅ but rather rd x . This is in accord with

the semantics, in which x is evaluated even though this particular equality expression
always denotes true. Framing judgments can be used to more precisely determine the
state on which an expression’s value depends.

Note that ftpt(G /K ) is just ftpt(G); indeed there is no syntax for the effect of read-
ing the type of an object. The semantics has the property that the type of an allo-
cated reference never changes and this is embodied in the definition of agreement
(Definition 5.2).

Rules for Derivable Framing Judgments. Figure 15 specifies (mostly) syntax-
directed rules for the framing judgment P  δ frm Q . The rules ensure frame validity
(Lemma 6.5). Rule FRMPROJCTX reflects the semantics (Definition 6.1), which says Q
is not falsified, though it may be truthified. This asymmetry complicates the treatment
of negation as explained here.

The rules FRMFTPT and FRMFTPTNEG say that ftpt(P) frames P as well as ¬P
when P is an atomic assertion. Rule FRMCONJ for framing a conjunction Q1 ∧ Q2

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:28 A. Banerjee et al.

Fig. 15. Rules for the framing judgment. Context � is elided in rules where the context is the same in every
judgment of the rule. Rules FRM∃int and FRM∃ are similar to FRM∀int and FRM∀; hence elided.

with δ allows Q1 to be used as hypothesis in showing that δ frames Q2. This is sound
because in a state where Q1 is false, the conjunction’s value is independent of the
value of Q2. The rule is very helpful in subsuming local effects by more global ef-
fects. For example, suppose δ = rd b, p, r , r ‘nxt and we wish to establish that the for-
mula b ∈ r ∧ p = b.nxt is framed by δ. It is clear that b ∈ r is framed by δ. But
p = b.nxt is framed by rd b, rd b.nxt , and rd b.nxt is not in δ. However, because of
b ∈ r we have rd b.nxt ≤ rd r ‘nxt using the second rule in Figure 13. Note that ∧ is
commutative—it has standard semantics. Rule FRMCONJ can be used for either con-
junct, owing to rule FRMEQ which allows use of a valid equivalence Q1 ⇔ Q2. For ex-
ample, FRMEQ allows the empty frame for the predicate x = x even though ftpt(x = x )
is rd x .

Rule FRMEQ is not concerned with framing of an equivalence, but rather use of
logical equivalence, so it is a little akin to FRMSUB. In FRMEQ, it is not sound to
weaken Q1 ⇔ Q2 to P ⇒ (Q1 ⇔ Q2). For example, let P =̂ x = y , Q1 =̂ x .f = null,
and Q2 =̂ y .f = null. Although x = y ⇒ (x .f = null ⇔ y .f = null) is valid and
x = y  rd x , x .f frm x .f = null, it is not the case that x = y  rd x , x .f frm y .f = null.

Rule FRMFTPTNEG says that ftpt(P) frames ¬P when P is an atomic assertion.
There is an obvious general rule for negation, along the lines of FRMDISJ, but it is not
sound. This is discussed further in Remark 6.6. In order to frame ¬P where P is not
atomic, one can use the negation normal form, say Q , of ¬P . In this form, negation
is only applied to atomic assertions. Rule FRMEQ says that a frame of Q frames ¬P
because Q ⇔ ¬P .

For rule FRM∀, suppose that under assumption P the quantification ∀x :K ∈ G · Q
is to be framed by some δ. By well-formedness, δ cannot mention rd x . However, within
Q , x might appear by itself, or as x .f , x .g .h, etc., in which case, Q needs to be framed
by rd x , rd x .f , rd x .g .h etc. Owing to the additional assumption x ∈ G in the second
premise of the rule, rd x .f can be subsumed by rdG ‘f , which can appear in δ.

The read effects of the formula ∀o :Comp · o �= self ⇒ ok(o), given by (9), are ob-
tained as follows. Recall that o ranges over allocated objects. By FRMEQ, it is enough
to find the read effects of the equivalent formula ∀o :Comp ∈ alloc \ {self} · ok(o). To

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:29

obtain the read effects of ok(o), we must unfold the definition of ok , according to (2).
This yields

o �= null ∧ o.size = 1 + sz (o.lt) + sz (o.rt)

The read effect for o �= null is rd o, by way of FRMFTPTNEG and FRMFTPT. For the sec-
ond conjunct, we must unfold the definition of sz , according to (1). Then, by FRMFTPT,
the read effect is rd o, rd o.size, rd o.lt , rd o.lt ‘size, rd o.rt , rd o.rt ‘size, which by FRMSUB
and FRMCONJ is the read effect of the conjunction. Having thus obtained the read ef-
fects for the body of the quantifier, we get the read effects (9) for the whole formula by
applying FRM∀.

Our running example involves the recursively defined predicate List ; such predicates
are not addressed by the framing rules given here. But on the basis of semantics one
can show the following (omitting antecedent true):

 rd b, r , r ‘nxto frm List(b, r)
 rd b, s, v , {b}‘cache, {b}‘sub frm Obs(b, s, v)

 rd s.obs , s.O , s.O ‘nxto frm SubH (s)

Recall that SubH (s) = List(s .obs , s.O).

LEMMA 6.2 (FOOTPRINT AGREEMENT). For any states, σ , σ ′, for any expression F ,
suppose Agree(σ , σ ′, ftpt(F )). Then, σ(F ) = σ ′(F ).

PROOF. Straightforward structural induction on F .

Remark 6.3. In Section 2, Eq. (5) defines the ancestors of p to be the set {o ∈
alloc | p ∈ o.desc}. The use of set comprehension in region expressions would also
provide an expressive form of conditional effects, for example, a command might write
{x | P(x ) ∧ Q}‘f , where Q is some condition on the initial state, not involving x . One
could add comprehensions by extending the grammar with G : : = {x :T ∈ G | P},
but since formulas (category P ) refer to region expressions this would make regions
and formulas mutually recursive. As a consequence, we could not use the simple ftpt
function but would rather have an inductively defined framing relation for expressions
just as for formulas. This is not technically difficult.

In the Composite example, most expressions involving ancestors occur in effects. But
there is one occurrence in an assertion, namely the loop invariant in procedure add .
The formula is p �= null ⇒ p ∈ ancestors(self) and it has valid frame rd p, self, alloc‘desc.

Frame Soundness. Now we prove that any derivable framing judgment is valid. Be-
fore that, we prove a lemma on agreements under state extension.

LEMMA 6.4. Let σ1 = Extend(σ , x , o) and σ ′
1 = Extend(σ ′, x , o). (For this to be

meaningful, we assume x does not occur in states σ , σ ′ but reference o is allocated.)
Then

(a) Agree(σ , σ ′, rd y) implies Agree(σ1, σ ′
1, rd y) for y distinct from x

(b) Agree(σ , σ ′, rdG‘f ) implies Agree(σ1, σ ′
1, rdG‘f ) for all G , f such that x does not

occur in G

PROOF. Part (a) is immediate from definitions. For part (b), consider any G and f
with x not in G , and suppose Agree(σ , σ ′, rdG ‘f ). Thus, σ � σ ′ and since � does not in-
volve variables we have σ1 � σ ′

1. To prove the main condition for Agree(σ1, σ ′
1, rdG ‘f ),

suppose o ∈ σ1(G) and o �= null and f ∈ Fields(Type(o, σ1))—to show σ1(o.f ) =
σ ′

1(o.f ). Because x is not in G , we have σ(G) = σ1(G) so o ∈ σ(G) and also

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:30 A. Banerjee et al.

f ∈ Fields(Type(o, σ)) because σ1 = Extend (σ , x , o). Thus, by Agree(σ , σ ′, rdG ‘f ), we
have σ(o.f ) = σ ′(o.f ) and thus σ1(o.f ) = σ(o.f ) = σ ′(o.f ) = σ ′

1(o.f ).

LEMMA 6.5 (FRAME SOUNDNESS). Every derivable framing judgment is valid.

PROOF. By induction on a derivation of a framing judgment P  δ frm Q , using
that each rule is sound. We proceed to prove soundness of the rules. (FRMFTPT) and
(FRMFTPTNEG) follow immediately by Lemma 6.2, the semantics of the atomic asser-
tions, and the definition of ftpt .

(FRMSUB) Suppose P  δ′ frm Q because R  δ frm Q and R  δ ≤ δ′ and P ⇒ R. Our
assumptions are that Agree(σ , σ ′, δ′) and σ |� P ∧Q . Hence, σ |� R. By Lemma 5.4, we
obtain Agree(σ , σ ′, δ). Now using σ |� Q ∧ R , by validity of premises we get σ ′ |� Q .

(FRMDISJ) Suppose Agree(σ , σ ′, δ) and σ |� P ∧ (Q1 ∨Q2). Using σ |� P , by validity
of the premises we have: σ |� Q1 implies σ ′ |� Q1 and also σ |� Q2 implies σ ′ |� Q2.
Hence, σ ′ |� Q1 ∨ Q2.

(FRMCONJ) Suppose P |� δ frm Q1∧Q2 because P |� δ frm Q1 and P∧Q1 |� δ frm Q2.
Assume that Agree(σ , σ ′, δ) and σ |� P ∧ Q1 ∧ Q2. By validity of premises, we obtain
σ ′ |� Q1 and σ ′ |� Q2. Hence, σ ′ |� Q1 ∧ Q2.

(FRMEQ) Assume Q1 ⇔ Q2 is valid, P  δ frm Q1, σ |� P ∧ Q2, and Agree(σ , σ ′, δ).
We have σ |� P ∧ Q1 on account of the validity of Q1 ⇔ Q2. So by validity of premises,
σ ′ |� Q1, which proves σ ′ |� Q2.

(FRMPROJCTX) Immediate from assumptions σ |� P∧Q , Agree(σ , σ ′, δ) and validity
of premise.

(FRM∀int) Assume P |� δ, rd x frm Q , Agree(σ , σ ′, δ), σ |� P∧∀x : int · Q . By semantics
(see Figure 9), σ |�� ∀x : int · Q iff Extend (σ , x , v) |��,x :int Q for all v ∈ Z. Let σ1 =
Extend (σ , x , v) and let σ ′

1 = Extend (σ ′, x , v), for some v ∈ Z. Then it remains to show
that σ ′

1 |� Q . By well formedness, x does not occur in P , δ, and since σ |� P and
Agree(σ , σ ′, δ), we obtain σ1 |� P and Agree(σ1, σ ′

1, δ). Since σ1(x ) = σ ′
1(x ), we have

that σ1, σ ′
1 agree on rd x (using Definition 5.2(1)). Because σ1 |� P ∧ Q , we can appeal

to the validity of the premise to obtain σ ′
1 |� Q .

(FRM∀) We assume validity of the premises, that is:

P |� ftpt(G) ≤ δ (14)
P ∧ x ∈ G |��,x :K δ, rd x frm Q . (15)

To show the conclusion

P |�� δ frm ∀x :K ∈ G · Q (16)

consider any σ , σ ′ such that σ |�� P∧∀x :K ∈ G · Q and Agree(σ , σ ′, δ). We must show
σ ′ |�� ∀x :K ∈ G · Q . To that end, we consider arbitrary p ∈ σ ′(G) \ {null } such that
Type(p, σ ′) = K , and must show

σ ′
1 |��,x :K Q where σ ′

1 = Extend (σ ′, x , p) (17)

As we are assuming Agree(σ , σ ′, δ), we can use (14) to get Agree(σ , σ ′, ftpt(G)) (by
Lemma 5.4), whence by Lemma 6.2 we get σ(G) = σ ′(G). By definition, Agree(σ , σ ′, δ)
implies σ � σ ′, hence Type(p, σ) = Type(p, σ ′) for all p ∈ σ(G) \ {null } (noting that
σ(G) \ {null } ∩ σ ′(alloc) = σ(G) \ {null } from σ(G) = σ ′(G)). As a consequence we can
use our assumption that σ |�� P ∧ ∀x :K ∈ G · Q to obtain the following.

σ1 |��,x :K Q where σ1 = Extend (σ , x , p) (18)

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:31

Now σ1(G) = σ(G) because x does not occur in G owing to well formedness of (16).
Hence from σ |�� P and preceding considerations about p we get the following.

σ1 |��,x :K P ∧ x ∈ G (19)

From Agree(σ , σ ′, δ), we get Agree(σ1, σ ′
1, δ) using that x does not occur in δ owing to

well formedness of (16). Hence, Agree(σ1, σ ′
1, (δ, rd x )) because σ1(x ) = σ ′

1(x ). So we can
instantiate (15) with σ1, σ ′

1, whence from (19) and (18) we conclude (17).
The proofs of FRM∃int and FRM∃ are similar to their ∀ counterparts and elided.

Remark 6.6. As an alternative to rule FRMFTPTNEG in Figure 15, let us consider

this general negation rule FRMNEG:
P  δ frm Q

P  δ frm ¬Q
. It is not sound for the semantics

given by Definition 6.1. For example, the judgment

x = 0  empty frm x = 1 (20)

is valid because no state satisfies x = 0 ∧ x = 1. However, x = 0  empty frm x �= 1 is
not valid: In a state where x = 0, it allows setting x : = 1 that falsifies x �= 1. Judgment
(20) does not, however, satisfy this slightly stronger version of validity:

Suppose P  δ frm Q and Agree(σ , σ ′, δ) and σ |� P . Then σ |� Q iff σ ′ |� Q .

Let us call this “two-way semantics”. It differs from Definition 6.1 by using “iff” instead
of an implication, and (20) shows that the two semantics are different.

Rule FRMNEG is sound for two-way semantics. In fact all of the framing rules are
sound for two-way semantics with the exception of FRMPROJCTX. (It can be made
sound by adding another premise: P ∧ ¬Q  δ frm Q .) The advantage of Definition 6.1
is that it is exactly the property needed for the frame rule. (A similar “Frame Property”
is fundamental to separation logic [O’Hearn et al. 2009].) An advantage of two-way
semantics is that rule FRMNEG allows disjunction and existentials to be treated as
syntax sugar (by de Morgan), and framing need not be done via negation normal form.

As for rule FRMPROJCTX, we need it to derive (20), which can be done as follows.

false  rd x frm x = 1 by FRMFTPT then FRMSUB

false  empty frm x = 1 by FRMSUB, using false  rd x ≤ empty

x = 0 ∧ x = 1  empty frm x = 1 by FRMSUB, using x = 0 ∧ x = 1 ⇔ false

x = 0  empty frm x = 1 by FRMPROJCTX

This derivation is the only use we encountered for the subeffect false  rd x ≤ empty .
The contrived nature of the example hints that for practical purposes there may

be no reason not to use two-way semantics. Both semantics are amenable to direct
checking by a first order prover. Indeed, the current version of VERL [Rosenberg et al.
2010] uses two-way semantics. The main reason for that design choice is that, following
Dafny, VERL treats framing in terms of expressions of any type, not just predicates.
For an expression X of, say, integer type, it can be useful to say that the value of X is
preserved by execution of command C . Of course, this can be expressed at the level of
predicates, in the one-way semantics, using a specification-only variable y : one takes
Q in Definition 6.1 to be the predicate y = X . Indeed, this technique can be used to
encode two-way semantics in one-way: taking Q in Definition 6.1 to be y ⇐⇒ Q gives
us the two-way semantics for Q , provided that y is not mutable.13

13Officially, our formulas do not include propositional variables, but one can use, for example, y > 0 ⇐⇒ Q .

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:32 A. Banerjee et al.

6.2. Separators

Given effects δ and ε, we define the separator formula δ ./. ε to be a conjunction of
certain disjointnesses.14 In a state where δ ./. ε holds, nothing that the read effects in δ
allow to be read can be written according to the write effects in ε. Note that ε (respec-
tively, δ) may contain read (respectively, write) effects but these do not influence the
separator.

Definition 6.7 (Separator). Define separators by recursion on the effects:

rdG1‘f ./. wrG2‘g = if f ≡ g then G1 # G2 else true

rd y ./. wr x = if x ≡ y then false else true

δ ./. ε = true for all other pairs of atomic effects
δ ./. ε = true in case δ or ε is empty
(ε, δ) ./. η = (ε ./. η) ∧ (δ ./. η)

δ ./. (ε, η) = (δ ./. ε) ∧ (δ ./. η).

In Section 2, we considered the separator of read effects rd d , rd d .size and write ef-
fects wr c.parent , wr b.lt , wr b.rt , wr ancestors(b)‘size, which, once the true conjuncts are
dropped, is {d} # ancestors(b).

Recall that in effects we write, for example, x .f as syntax sugar for {x }‘f . Thus,
rd x .f ./. wr y .f desugars to rd {x }‘f ./. wr {y}‘f which by definition is {x } # {y}. It is
equivalent to x �= y ∨ (x = null ∧ y = null).

LEMMA 6.8 (SEPARATOR AGREEMENT). Let δ and ε be effects that are well-formed
in � (whence δ ./. ε will be well-formed in �). Let �′ ⊇ �. Let σ and τ be �′-states.
Suppose σ→τ |� ε and σ |� δ ./. ε. Then Agree(σ , τ , δ).

The use of �′ in Lemma 6.8 makes it general enough so that it can be used unchanged
in Part II of the article. For the purposes of Part I, �′ = �.

PROOF. To show Agree(σ , τ , δ), note first that the hypothesis implies σ ↪→ τ , hence
σ � τ . It remains to consider conditions (a) and (b) in Definition 5.2.

(a) Consider any rd x in δ. Since σ |� δ ./. ε, there is no wr x in ε (using the definition of
δ ./. ε). So by σ→τ |� ε we have σ(x ) = τ(x ). The argument holds even for the case
that x is alloc.

(b) Consider any rdG ‘f in δ. Consider any p ∈ σ(G); we must show σ(p.f ) = τ(p.f ).
By definition, the formula δ ./. ε has a conjunct G # G ′ for any wrG ′‘f in ε. Because
σ |� δ ./. ε, we get p /∈ σ(G ′) for any wrG ′‘f in ε, so by σ→τ |� ε we have σ(p.f ) =
τ(p.f ).

Remark 6.9. In separation logic, the separating conjunction P ∗ Q says that
P and Q are both true and their truth is supported by disjoint regions of the
heap. We can approximate the intuitionistic version that allows there to be objects
outside the footprint of P and Q . Suppose ε frm P and η frm Q . Obtain η′ from η by
discarding reads of variables and replacing each region read rdG ‘f by wrG ‘f . Then,
the separation logic formula P ∗ Q says something like P ∧ Q ∧ (ε ./. η′). There is a
significant difference, however. The semantics of ∗ is that there exists a partition of
the heap, and there may be more than one partition in case P and Q do not have
unique footprints (are not “precise”). Our use of explicit footprints and ghost variables

14In the conference version, we used the 	 symbol, to allude to separating conjunction, although our opera-
tion pertains to effects not formulas and is not symmetric. Here, we choose an asymmetric symbol that can
be written in ascii as %.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:33

can be seen as skolemizing the existential implicit in ∗, since ε and η determine specific
sets of locations (asserted to be disjoint by ε ./. η′).

For example, let r be a region variable and define P(r) =̂ ∀x :Node ∈ r · x .item ≤ 0
and Q(r) =̂ ∀x :Node ∈ r · x .item ≥ 0. Let R =̂ P(r) ∧ Q(alloc \ r). Then we have
both {R } x : = new K ; x .n : = 0 {R } [x , r ]
and {R } x : = new K ; x .n : = 0; r : = r ∪ {x } {R } [x , r ]

But the reasoner must choose between these two commands. Issues with nonde-
terminacy could arise if we allowed bound region variables, for example, ∃r · P(r) ∧
Q(alloc \ r). Precise predicates are discussed further in the related work section of
Part II of this article.

6.3. Immunity

Recall from the discussion of Eq. (10) that the proof rule for sequential composition (in
Figure 16) must prevent interference between the effects of field updates and assign-
ments. This is done using a notion of immunity that we now formalize.

Definition 6.10 (P/ε-immune). Region expression G is said to be immune from ε
under P , or P/ε-immune, iff this formula is valid:

P ⇒ ftpt(G) ./. ε

Effect η is P/ε-immune provided that for all G , f such that wrG ‘f occurs in η, it is the
case that G is P/ε-immune.

For example, wr alloc‘f is P/ε-immune provided wr alloc is not in ε. Also, wr x is
true/wr x -immune (vacuously), but wr {x }‘f is not true/wr x -immune because ftpt({x }) ./.
wr x = false by Definition 6.7.

The idea is that if {P } C1 {P1 }[ε] and {P1 } C2 {P ′ }[η] are valid, and η is P/ε-immune,
then ε, η is a valid effect for the sequence C1;C2. The proof rule for sequence must also
mask writes of fresh objects, as mentioned near the beginning of Section 5.

LEMMA 6.11. Let G be P/ε-immune. Then, σ(G) = σ ′(G) for any σ , σ ′ such that
σ→σ ′ |� ε and σ |� P .

PROOF. Since G is P/ε-immune, P ⇒ ftpt(G) ./. ε. So by σ |� P , we have σ |�
ftpt(G) ./. ε. Then, from σ→σ ′ |� ε, we have by Lemma 6.8 that Agree(σ , σ ′, ftpt(G)).
Then, by Lemma 6.2, we σ(G) = σ ′(G).

The following somewhat technical result describes the effects of a succession of
states: writes to fresh objects can be dropped and effects can be joined when suitably
immune. The result is only used for the soundness proofs of the rules SEQ and WHILE
in the sequel.

LEMMA 6.12 (EFFECT TRANSFER). Suppose the following hold.

— σ0 |� P0 and σ1 |� P1.
— σ0→σ1 |� ε1.
— σ1→σ2 |� ε2, wrH ‘f .
— ε2 is P0/ε1-immune.
— for every G such that ε1 contains frG , we have G is P1/(ε2, wrH ‘f )-immune.
— σ1(H ) ∩ σ0(alloc) = ∅.

Then σ0→σ2 |� ε1, ε2.

PROOF. For each condition required by Definition 5.1 for the conclusion σ0→σ2 |�
ε1, ε2, we show that it follows from the assumptions.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:34 A. Banerjee et al.

For condition (a) of Definition 5.1, consider any x with σ0(x ) �= σ2(x ). We have either
σ0(x ) �= σ1(x ) or σ1(x ) �= σ2(x ) (or both). So wr x is in either ε1 or ε2, according to
assumptions σ0→σ1 |� ε1 and σ1→σ2 |� ε2, wrH ‘f .

For condition (b) of Definition 5.1, consider any f and any p ∈ σ0(alloc) with σ0(p.f ) �=
σ2(p.f ). Then, we have one or both of the following cases.

— σ0(p.f ) �= σ1(p.f ). Then, by assumption σ0→σ1 |� ε1, there is some G with wrG ‘f in
ε1 and p ∈ σ0(G). Then, wrG ‘f licenses the update as required by σ0→σ2 |� ε1, ε2.

— σ1(p.f ) �= σ2(p.f ). Then, by assumption σ1→σ2 |� ε2, wrH ‘f , there are two
subcases to consider: If there is G with wrG ‘f in ε2 and p ∈ σ1(G), then because
ε2 is P0/ε1-immune we have by Lemma 6.11 that σ0(G) = σ1(G) (using σ0 |� P0
and σ0→σ1 |� ε1). So wrG ‘f licenses the update as required for σ0→σ2 |� ε1, ε2.
The other subcase would be that p is in σ1(H ) and f is in the list f ; but by assump-
tion σ1(H ) ∩ σ0(alloc) = ∅, this would imply p /∈ σ0(alloc)—which contradicts the
assumption that p ∈ σ0(alloc).

For condition (c) of Definition 5.1, first consider any frG in ε1. We have

σ2(G)

= σ1(G) by Lemma 6.11, as G is P1/(ε2, wrH ‘f )-immune and σ1 |� P1
⊆ σ1(alloc) \ σ0(alloc) by assumption σ0→σ1 |� ε1 and frG in ε1
⊆ σ2(alloc) \ σ0(alloc) by σ1(alloc) ⊆ σ2(alloc) from assum. σ1→σ2 |� ε2, wrH ‘f

so frG is justified in σ0→σ2 |� ε1, ε2. Now consider any frG in ε2; we have

σ2(G)

⊆ σ2(alloc) \ σ1(alloc) by σ1→σ2 |� ε2, wrH ‘f and frG in ε2
⊆ σ2(alloc) \ σ0(alloc) by σ0(alloc) ⊆ σ1(alloc) from assumption σ0→σ1 |� ε1

7. PROGRAM CORRECTNESS

A correctness judgment takes the form � {P } C {P ′ } [ε] and is well formed provided
that P , P ′, C , and ε are well formed in �. In the sequel, we will only consider well-
formed correctness judgments. The intended meaning of the correctness judgment is
that from any initial state that satisfies P , C ’s execution does not fault , and if the exe-
cution terminates then the final state satisfies P ′. Moreover, any changes are allowed
by ε (Definition 5.1). We will present a proof system for correctness judgments.

Definition 7.1 (Derivability). A correctness judgment � {P } C {P ′ } [ε] is derivable
iff it can be obtained using the proof rules in Figures 16 and 17. In instantiating the
proof rules both premises and conclusions must be well formed.

In a correctness judgment, we often omit �. In a proof rule, this means all judgments
are for the same �. In rule VAR, the context is made explicit since the premises context
is different from the conclusion’s context. Because rules may only be instantiated so
that all the judgments are well formed, the x in rule VAR cannot occur in P , P ′, or ε.

For the substitution rule, in Figure 17, we need the following.

Assumption 7.2. A set SpecOnlyVar ⊆ VarName \ {alloc} is designated as
specification-only. These do not occur in any command, not even in ghost code. They
do not influence allocation: Fresh (σ ) = Fresh (τ ) if σ differs from τ only on some
specification-only variables. Finally, we disallow wr x for specification-only x .

The need to disallow wr x only arises in Part II of this article. Given that a
specification-only variable x cannot occur in code, the effect wr x would be pointless.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:35

Fig. 16. Correctness rules and axioms for commands.

Note that we still allow such x to occur in effects like wr {x }‘f and wr x ‘f (for x of refer-
ence and region type, respectively).

Definition 7.3 (Validity). A correctness judgment � {P} C {P ′} [ε] is valid, written
|�� {P } C {P ′ } [ε], if and only if for all �-states σ such that σ |� P the following hold:

(Safety) It is not the case that 〈C , σ 〉 �−→∗ fault.
(Post) σ ′ |� P ′, for all σ ′ such that 〈C , σ 〉 �−→∗ 〈skip, σ ′〉
(Effect) σ→σ ′ |� ε, for all σ ′ such that 〈C , σ 〉 �−→∗ 〈skip, σ ′〉

Instead of “Effect”, it is tempting to use the term “Frame”, but this might cause confu-
sion because we include freshness conditions here.

Although the assertion language does not include quantification over region vari-
ables, Definition 7.3 effectively quantifies (universally) over all variables in scope, that
is, in dom(�). For example, suppose �y = K , �x = K , �r = rgn, and ε does not include
wr r . Then, the judgment � {x ∈ r } C {y ∈ r } [ε] says that the final value of y equals
the initial value of x , because r ranges over all regions including {x }.

7.1. Proof Rules

Figure 16 gives the syntax-directed proof rules and axioms for commands while
Figure 17 gives structural rules. The axioms for variable assignment, field access, field
update and allocation are “small” [O’Hearn et al. 2001] in the sense that they describe

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:36 A. Banerjee et al.

Fig. 17. Structural rules.

the local effect only. For example, the effect of rule FIELDUPD licenses the update of
field f of the object referenced by x . The effect of rule ALLOC accounts for a newly
allocated object. Small axioms are elegant and admit simple proofs of soundness.

In rule SEQ, the effect frG ensures that elements of G are allocated during C1’s
execution, so their updates by C2 can be ignored. The condition ε2 is P/ε1-immune is
necessary for composing the effects of C1 and C2 (see the discussion in Section 6.3). As
an example to show that the condition “G is P1/(ε2, wrH ‘f )-immune” is necessary in
rule SEQ, let rep be a field of type rgn. Take G to be x .rep, P1 to be y ∈ x .rep and C2 to
be y .rep : = ∅. The effect of C2 is wr y .rep, which using rule SUBEFF can be subsumed
to wr x .rep‘rep. Now instantiate ε2 as ∅, and f as the single field rep. Note that x .rep is
not immune from wr x .rep‘rep, since the separator rd x .rep ./. wr x .rep‘rep is {x } # x .rep,
which is not implied by P1.

In rule WHILE, P is the loop invariant. The effect wrH ‘f accounts for writes to fields
of freshly allocated objects in the loop body.

The condition P ⇒ H # g , where g snapshots the set of allocated references in the
pre-state of the loop, states that objects in H did not exist in the pre-state of the loop.
Like rule SEQ, rule WHILE may seem insufficiently general, in that it requires use of
g . But if there are no writes to fresh objects, the list f can be taken to be empty, and
g can be eliminated using rules EXIST and CONSEQ. See the derived rule SIMPLESEQ
in the sequel. Examples with loops and allocation appear in Section 8.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:37

We now discuss some of the structural rules (Figure 17). Rule FRAME has the form
discussed in Section 2. Here, we comment on the antecedents in the side conditions.
As an example, let

Q =̂ r ‘f ⊆ r ∧ r ⊆ s ∧ x = y and P =̂ x �= null ∧ y /∈ s.

The judgment  {P } x .f : = x { true } [x .f ] is valid and easily proved. The judgment
 {P ∧ Q }x .f : = x {Q } [x .f ] is also valid and we would like to prove it just by Frame.
Let δ =̂ rd r , s, x , y , s‘f . We can derive Q  δ frm Q , using framing rule FRMSUB with
subeffect r ⊆ s  rd r ‘f ≤ rd s‘f ; then FRMPROJCTX and FRMSUB yield P  δ frm Q .
We also have |� P ∧ Q ⇒ δ ./. x .f , because δ ./. wr x .f is equivalent to s # {x } which is
equivalent to x ∈ s ⇒ x = null. But it is not the case that |� P ⇒ δ ./. wr x .f , which
shows the need for Q in the antecedent.

Rule SUBEFF loosens the effect clause. It can be used to weaken a specification to
get immunity for rule SEQ and to get the two premises in IF or in CONJ to match up.

Rule EXIST is typical in Hoare logics. Some authors prefer an existential elimination
rule that also quantifies the postcondition, but this can be achieved by using CONSEQ
first, by P ⇒ ∃x :T · P . The rule is stated for x of class type K ; there is a similar
rule for x : int but without the bounding region G . Rule EXISTREGION is so named
because it embodies the idiomatic use of EXIST, namely in combination with CONSEQ
to eliminate a variable. It is needed only because we eschew quantified variables of
region type. Owing to the hygiene property of derivable typing judgments, no variable
in F can be bound in P , so there is no issue of capture in the substitution. Owing to
well-formedness of the conclusion, x does not occur in C , P ′, ε, or F . Similarly, in EXIST
x does not occur in C , P ′, or ε.

Rule EXTENDCTX adds a variable to the state space. Because the premise must be
well formed, x does not occur free in it. Because the consequent must be well formed, x
does not occur bound in P , P ′, or C—recall Lemma 3.2 and the related remarks about
admissibility of context extension for formulas.

For Rule SUBST, recall that we write P/x→F for substitution of F for x in P . In
accord with our convention on well-formed rule instantiations, the result of substitu-
tion must be well formed here, for example, (x .f = y)/x→null is not. Moreover, because
the consequent must be well formed and substitution is not defined if capture would
occur, no variable bound in P is free in F . Note that the definition of substitution
distributes over the atomic effects of an effect ε, changing any occurrences of x in re-
gion expressions. There is no useful reason for ε to contain wr x , but no harm comes
of it. (In such cases, the conclusion judgment would be ill-formed unless F is just a
variable.)

The rules POSTTOFR and FRTOPOST manipulate freshness effects. The first rule
snapshots the allocated references in the prestate of C in variable r ; this variable is
not written by C . The command’s post-condition implies that all fresh objects may be
allocated in region G—the fact that G and r are disjoint accounts for freshness. Thus,
it is sound to add the effect frG to C ’s effects.

Rule FRTOPOST is the reverse of POSTTOFR. If frG is in the effects of C then fresh
objects must have been allocated in G . Hence G is disjoint from the set of all references
that were allocated in C ’s prestate and snapshotted by r ; hence, it is sound to conjoin
G ∩ r = ∅ to the post-condition P ′.

Rules VARMASK and FIELDMASK drop write effects. In VARMASK, the separator
rd y ./. wr x , ε expresses that y is not written and is distinct from x , so from validity of
P ∨ P ′ ⇒ x = y we have that x is initially and finally equal to the value of y , which is
unchanged. These rules are needed to prove, for example, { true } x : = x { true } [] and
{ x .f = 0 } x .f : = 0 { true } [] which have empty effects.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:38 A. Banerjee et al.

7.2. Derived Rules

Various derived rules are important for constructing proofs by hand. To prove com-
pleteness of the logic or for use in an automated verifier, weakest-precondition or
strongest-postcondition formulations are needed; but this is beyond the scope of this
article.

Using SUBST, one can derive the following rule from ASSIGN.

SIMPLEASSIGN
x /∈ Vars(F )

 { true } x : = F { x = F } [x ]

For field access, using SUBST with y for z in rule FIELDACC, we get the following.

SIMPLEFIELDACCESS
x �≡ y

 { y �= null } x : = y .f { x = y .f } [x ]

The backwards assignment axiom can also be derived.

BACKWARDSASSIGN  {P/x→E } x : = E {P } [x ]

Given any P , x ,E , choose variable x ′ distinct from x and let E ′ ≡ E/x→x ′ so x /∈
Vars(E ′). By ASSIGN, we have  { x = x ′ } x : = E { x = E ′ } [x ]. Now x does not occur in
P/x→E ′ so we can use it with FRAME to get

 {P/x→E ′ ∧ x = x ′ } x : = E {P/x→E ′ ∧ x = E ′ } [x ]

By predicate calculus (equality substitution), P/x→E ′ ∧ x = x ′ is equivalent to
P/x→E ∧ x = x ′ and also P/x→E ′ ∧ x = E ′ is equivalent to P ∧ x = E ′. So by CONSEQ,
we get  {P/x→E ∧ x = x ′ } x : = E {P ∧ x = E ′ } [x ], whence by CONSEQ again we get

 {P/x→E ∧ x = x ′ } x : = E {P } [x ] .

Now x ′ doesn’t occur in the command or postcondition, so by EXIST, we get

 { (∃x ′ · P/x→E ∧ x = x ′) } x : = E {P } [x ]

and by the one-point rule of predicate calculus, using that x ′ doesn’t occur in P/x→E ,
this precondition is equivalent to P/x→E . So a final use of CONSEQ yields BACK-
WARDSASSIGN.

The following expresses freshness in terms of an arbitrary region variable r in scope.
Note that r is not written (it is distinct from x for reasons of typing). So we can derive
from ALLOC the axiom

ALLOC2
Fields(K ) = f :T

 { true } x : = new K { x /∈ r ∧ type(K , {x }) ∧ x .f = default (T ) } [x , alloc]
,

using FRTOPOST, CONSEQ, and SUBEFF.
Here is a sequence rule for cases where there are no writes to fresh objects.

SIMPLESEQ

 {P } C1 {P1 } [ε1]
 {P1 } C2 {P ′ } [ε2] ε1 is fr -free ε2 is P/ε1-immune

 {P } C1 ;C2 {P ′ } [ε1, ε2]

To derive it, we begin with premise � {P } C1 {P1 } [ε1] where we make the typing
context explicit. Choosing fresh r , we obtain

�,r :rgn {P ∧ r = alloc } C1 {P1 } [ε1]

using EXTENDCTX and CONSEQ. Now, by POSTTOFR (with G : = ∅), we get

�,r :rgn {P ∧ r = alloc } C1 {P1 } [ε1, fr∅] .

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:39

From premise � {P1 } C2 {P ′ } [ε2] we get �,r :rgn {P1 } C2 {P ′ } [ε2] by EXTENDCTX.
To combine these judgments, we use SEQ instantiated with G : = ∅ and f the empty
sequence, noting that ∅ is P1/ε2-immune. This yields

�,r :rgn {P ∧ r = alloc } C1 ;C2 {P ′ } [ε1, ε2, fr∅] .

We obtain the conclusion of SIMPLESEQ using EXISTREGION (with F : = alloc) to
drop r , along with CONSEQ and SUBEFF (the latter using  ε1, ε2, fr∅ ≤ ε1, ε2, see
Figure 13).

From the freshness rules, one can derive

FRSUB
 {P } C {P ′ } [ε, frG] P ′ ⇒ G ′ ⊆ G

 {P } C {P ′ } [ε, frG ′]

as follows. Assume � {P } C {P ′ } [ε, frG] and P ′ ⇒ G ′ ⊆ G . Choose fresh variable r
not in dom(�) and so by EXTENDCTX we have �,r :rgn {P } C {P ′ } [ε, frG] and then by
CONSEQ

�,r :rgn {P ∧ r = alloc } C {P ′ } [ε, frG] .

By well formedness of the assumption, r does not occur anywhere, so rd r ./. ε is true.
Thus, by FRTOPOST, we get �,r :rgn {P ∧ r = alloc } C {P ′ ∧ G ∩ r = ∅ } [ε, frG]. Now
apply SUBEFF, using  frG , ε ≤ ε, to get �,r :rgn {P ∧ r = alloc } C {P ′ ∧G ∩ r = ∅ } [ε].
Because P ′ ⇒ G ′ ⊆ G , we get by CONSEQ

�,r :rgn {P ∧ r = alloc } C {P ′ ∧ G ′ ∩ r = ∅ } [ε] .

So, by POSTTOFR, we get �,r :rgn {P ∧ r = alloc } C {P ′ ∧ G ′ ∩ r = ∅ } [ε, frG ′] whence
by another use of CONSEQ we get �,r :rgn {P ∧ r = alloc } C {P ′ } [ε, frG ′]. Finally, by
EXISTREGION, we obtain the conclusion of FRSUB.

In a similar manner, one can also show

FRUNION
 {P } C {P ′ } [ε, frG1, frG2]
 {P } C {P ′ } [ε, fr (G1 ∪ G2)]

.

7.3. Soundness

THEOREM 7.4. Any judgment � {P } C {P ′ } [ε] that is derivable by the rules in
Figures 16 and 17, as well as the rules in Figures 13 and 15, is valid.

PROOF. By induction on the derivation and by cases on the last rule used. In
each case, we show the proof rule is sound, that is, derives valid conclusions from
valid premises (if it has premises) when its side conditions hold. The case of FRAME
also uses frame soundness (Lemma 6.5), the case of SUBEFF also uses subeffect
soundness (Lemma 5.4), and many cases rely on validities such as null /∈ alloc, cf.
Remark 4.1.

For each rule in Figures 16 or 17, we show the three properties in Definition 7.3 for
its conclusion, assuming the side conditions and validity of the premises.

(ALLOC). Here C =̂ x : = new K . It is easy to see that Safety holds by se-
mantics: 〈C , σ 〉 �−→ 〈skip, σ ′〉 where, with o ∈ Fresh (σ ), σ ′ =̂ [σ1 | x : o] and σ1 =
New(σ , o,K , default (T )) (as in Figure 7). So it is not the case that 〈C , σ 〉 �−→∗ fault .

The Post condition to show is σ ′ |� x isK ∧ x .f = default(T ). Both are immediate
from the semantics: σ ′(x ) = o, Type(o, σ ′) = K , and σ ′(o.f ) = default(T ).

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:40 A. Banerjee et al.

Finally, we show Effect. The only variables that are updated are x and alloc. From
Figure 5, elements of Fresh (σ ) are nonnull and not in σ(alloc); by semantics, o is in
σ ′(alloc). So we have σ→σ ′ |� wr x , alloc, fr {x }.

(ASSIGN). Here, C =̂ x : = F . Consider any σ such that σ |� x = y . So σ(x ) = σ(y).
By semantics, the only transition is 〈x : = F , σ 〉 �−→ 〈skip, σ ′〉 where σ ′ = [σ | x : σ(F )].
Safety is immediate. For Effect, we appeal directly to Definition 5.1(a). For Post, we
must show σ ′ |� x = F/x→y . Note that σ ′(y) = σ(y) by Effect and y �≡ x , hence
σ ′(y) = σ(y) = σ(x ). Observe

σ ′(F/x→y)

= [σ ′ | x : σ ′(y)] (F ) by substitution lemma Eq. (13)
= [σ ′ | x : σ(x )] (F ) by σ ′(y) = σ(x ) noted above
= σ(F ) by def σ ′ and def [− |− : −]
= σ ′(x ) by def σ ′

(FIELDUPD). Here, C =̂ x .f : = F . Suppose σ |� x �= null ∧ y = F . Then σ(x ) = o for
some o and o �= null. By semantics, it is not the case that 〈C , σ 〉�−→ fault , establishing
Safety. Instead 〈C , σ 〉 �−→ 〈skip, σ ′〉 where σ ′ =̂ [ σ | o.f : σ(F )]. To establish Post we
must show σ ′ |� x .f = y .

By semantics of assertions (Figure 9), σ ′ |� x .f = y iff σ ′(x ) �= null and σ ′(x .f ) = σ ′(y).
Because neither x nor y is modified by the field update, this is equivalent to σ(x ) �= null
and σ(x .f ) = σ(y). We get σ(x ) �= null from σ |� x �= null. And we get σ(x .f ) = σ(y) from
σ |� y = F and the definition of [σ | x .f : σ(F )], which establishes Post.

Finally, to show Effect, we must show σ→σ ′ |� wr x .f . For this we appeal directly to
Definition 5.1(b).

(SEQ). Here, C =̂ C1;C2. Consider any σ such that σ |� P .
For Safety, observe that if 〈C1 ;C2, σ 〉 �−→∗ fault then by semantics either 〈C1, σ 〉 �−→∗

fault or there is σ1 with 〈C1, σ 〉 �−→∗ 〈skip, σ1〉 and 〈C2, σ1〉 �−→∗ fault . The first is ruled
out by validity of premise  {P } C1 {P1 } [ε1, frG] and σ |� P . The second is ruled out
because by the first premise we have σ1 |� P1 and then the second premise disallows
fault.

For Post, suppose we have 〈C1;C2, σ 〉 �−→∗ 〈skip, σ ′〉 for some σ ′. By semantics, there
is some σ1 with 〈C1, σ 〉 �−→∗ 〈skip, σ1〉 and 〈C2, σ1〉 �−→∗ 〈skip, σ ′〉. By the first premise,
we have σ1 |� P1, so, by the second premise, we get σ ′ |� P ′.

For Effect, we must show σ→σ ′ |� ε1, ε2, frG ; this can be obtained by instantiating
Lemma 6.12 with H : = G , σ0 : = σ , σ2 : = σ ′, ε1 : = (ε1, frG) and P0 : = P ; so it suffices to
check these conditions required by the Lemma.

— σ |� P and σ1 |� P1 from the preceding paragraphs.
— σ→σ1 |� ε1, frG , which holds by validity of the first premise of SEQ.
— σ1→σ ′ |� ε2, wrG ‘f , which holds by the second premise.
— ε2 is P/(ε1, frG)-immune, which amounts to the condition in rule SEQ that ε2 is

P/ε1-immune.
— G is P1/(ε2, wrG ‘f )-immune, which is a condition in SEQ (note that ε1 is fr -free)
— σ1(G) ∩ σ(alloc) = ∅. For this, note that by σ→σ1 |� ε1, frG , we have σ1(G) ⊆

σ1(alloc) \ σ(alloc). So the intersection is empty.

(WHILE). Here C in the theorem takes the form while E do C . For brevity define
D =̂ while E do C . We begin with a technical result on loops in small-step semantics,
which decomposes computations of D into a series of iterations like this:

〈D , σ0〉 �−→
︷ ︸︸ ︷
〈C ;D , σ0〉 �−→∗ 〈D , σ1〉 �−→

︷ ︸︸ ︷
〈C ;D , σ1〉 �−→∗ 〈D , σ2〉 �−→∗ . . .

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:41

LEMMA. For any state σ0 we have

(a) If 〈D , σ0〉 �−→∗ fault then there exists n ≥ 0 and sequence of states σ1, . . . , σn such
that 〈C , σn 〉 �−→∗ fault and

〈C , σi−1〉 �−→∗ 〈skip, σi 〉 and σi−1(E ) �= 0 for all i , 0 < i ≤ n (21)

(b) If 〈D , σ0〉 �−→∗ 〈skip, σ ′〉 there exists n ≥ 0 and states σ1, . . . , σn such that σ ′ = σn ,
σn (E ) = 0, and (21) holds.

Proof of the lemma is left to the reader.
To prove soundness of WHILE, suppose σ0 |� P ∧ g = alloc.
For Safety, suppose 〈D , σ0〉 �−→∗ fault . Then by the Lemma part (a), we have a series

of iterations and states σi , such that 〈C , σn 〉 �−→∗ fault . Using the first premise of
WHILE and assumption σ0 |� P we have by induction on i that σn |� P . And now the
premise says it is not the case that 〈C , σn 〉 �−→∗ fault , a contradiction.

For Post, suppose 〈D , σ0〉�−→∗〈skip, σ ′〉 and let n and the states σi be as in the Lemma
part (b). By induction on i , using the first premise, we have σn |� P . And by (b), we
have σn (E ) = 0.

For Effect, we again consider the iterates and prove by induction on i that σ0→σi |�
ε. The base case, i = 0, is immediate. For the inductive step, suppose 〈C , σi−1〉 �−→∗
〈skip, σi 〉, noting that σi−1 |� P ∧E �= 0 from preceding assumptions. By induction, we
have σ0→σi−1 |� ε and by premise of the rule we have σi−1→σi |� ε, wrH ‘f . We obtain
σ0→σi |� ε by instantiating Lemma 6.12 with P0 : = P ∧ g = alloc, P1 : = P ∧ E �= 0,
ε1 : = ε, ε2 : = ε, σ1 : = σi−1, and σ2 : = σi . It remains to check the condition of
Lemma 6.12:

— σ0 |� P ∧ g = alloc and σi−1 |� P ∧ E �= 0, which we have from above
— σ0→σi−1 |� ε which we have by induction.
— σi−1→σi |� ε, wrH ‘f , which we have from 〈C , σi−1〉 �−→∗ 〈skip, σi 〉 and the first

premise, using σi−1 |� P (proved previously) and σi−1(E ) �= 0 by (21).
— ε is (P ∧ g = alloc)/ε-immune, which follows from the rule’s condition that ε is

P/ε-immune
— for every frG in ε we have G is (P ∧ E �= 0)/(ε, wrH ‘f )-immune: this holds by the

rule’s condition that ε is fr -free.
— σi−1(H ) ∩ σ0(alloc) = ∅, which we have because

σi−1(H ) ∩ σ0(alloc)

= σi−1(H ) ∩ σ0(g) by σ0 |� P ∧ g = alloc
= σi−1(H ) ∩ σi−1(g) by σ0(g) = σi−1(g) because σ0→σi−1 |� ε and wr g /∈ ε

= ∅ by σi−1 |� P and P ⇒ H # g and null /∈ σ0(alloc) .

(FRAME). Suppose σ |� P ∧ Q . Our assumptions are |� {P } C {P ′ } [ε], P |� δ frm Q ,
and validity of P ∧ Q ⇒ δ ./. ε. We must show |� {P ∧ Q } C {P ′ ∧ Q } [ε]. Any σ
that satisfies P ∧ Q satisfies P , so Safety is a direct consequence of |� {P } C {P ′ } [ε].
Moreover, consider any terminating computation 〈C , σ 〉 �−→∗ 〈skip, σ ′〉. Then, Effect is
immediate: σ→σ ′ |� ε, again from the premise. We also have σ ′ |� P ′, so to show Post it
remains to show σ ′ |� Q . Now we use σ |� P∧Q and the side condition P∧Q ⇒ δ ./. ε to
first conclude σ |� δ ./. ε. Which, together with σ→σ ′ |� ε (Effect), yields Agree(σ , σ ′, δ)
(Lemma 6.8). Now we appeal to the definition of P |� δ frm Q (Definition 6.1): from
Agree(σ , σ ′, δ) and σ |� P ∧ Q we obtain σ ′ |� Q .

(EXTENDCTX). By well-formedness of the premise, x does not occur in C or in the
specification. For any (�, x :T )-state σ such that σ |��,x :T P , we have σ �x |�� P and

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:42 A. Banerjee et al.

conversely for final states and P ′, see Eq. (11) in Section 4.2. Any computation from
〈C , σ 〉 yields a computation from 〈C , σ �x 〉 with exactly the same configurations except
x is tossed. Moreover in the computation from 〈C , σ 〉, every state τ has τ(x ) = σ(x ).
Thus, validity of the conclusion follows easily from validity of the premise.

(SUBST). Restricting x to be a specification-only variable ensures that it does not
occur in C , although x is part of the state space.15 Because C does not write x , we
have

〈C , σ 〉 �−→∗ 〈skip, σ ′〉 implies σ(x ) = σ ′(x ) for all σ , σ ′ (22)
Because C neither reads nor writes x—nor depends on it via the allocator, owing to
Assumption 7.2—the set of outcomes from a state σ is the same as the set of outcomes
from a state that agrees with σ except for the value of x . Thus, for any value v and
states σ , σ ′, we have

〈C , σ 〉 �−→∗ fault iff 〈C , [σ | x : v ] 〉 �−→∗ fault (23)
〈C , σ 〉 �−→∗ 〈skip, σ ′〉 iff 〈C , [σ | x : v ] 〉 �−→∗ 〈skip, [σ ′ | x : v ] 〉 (24)

To prove soundness of the rule, suppose the premise judgment is valid:

|� {P } C {P ′ } [ε] (25)

To prove the conclusion, consider any σ such that σ |� P/x→F . Our obligations are

(Safety). It is not the case that 〈C , σ 〉 �−→∗ fault .
(Post). σ ′ |� P ′/x→F , for all σ ′ with 〈C , σ 〉 �−→∗ 〈skip, σ ′〉.
(Effect). σ→σ ′ |� ε/x→F , for all σ ′ with 〈C , σ 〉 �−→∗ 〈skip, σ ′〉.

For brevity, define τ = [σ | x : σ(F )]. From σ |� P/x→F by Eq. (13) in Section 4, we get
τ |� P . Thus, using (25), we have that 〈C , τ 〉 does not fault. Hence, it is not the case
that 〈C , σ 〉 �−→∗ fault owing to (23), which establishes Safety.

For Post, consider any σ ′ such that 〈C , σ 〉 �−→∗ 〈skip, σ ′〉. By (24), we have 〈C , τ 〉 �−→∗
〈skip, τ ′〉 where τ ′ = [σ ′ | x : σ(F )]. By (25) and preceding definitions, we have τ ′ |� P ′.
Later, we will show

σ(F ) = σ ′(F ), (26)
which implies that τ ′ = [σ ′ | x : σ ′(F )]. Hence, [σ ′ | x : σ ′(F )] |� P ′, which by (13) is
equivalent to σ ′ |� P ′/x→F . This completes the proof of Post.

To show Effect, let ε′ be the set of all effects in ε other than freshness effects. We
now prove that σ→σ ′ |� ε′/x→F ; later we use this to deal with freshness effects in ε.
By (25) and the previous definitions, we have τ→τ ′ |� ε, which by definition of τ , τ ′ is
equivalent to

[σ | x : σ(F )] →[σ ′ | x : σ(F )] |� ε. (27)
Now we prove σ→σ ′ |� ε′/x→F by cases in Definition 5.1:

(a) We have σ ′(x ) = σ(x ) by (22). If σ(y) �= σ ′(y) for some variable y , distinct from
x , then [σ | x : σ(F )] (y) �= [σ ′ | x : σ(F )] (y), so by (27) we have wr y ∈ ε′ and thus
wr y ∈ ε′/x→F .

(b) Suppose o ∈ σ(alloc) and σ(o.f ) �= σ ′(o.f ). Then o ∈ [σ | x : σ(F )] (alloc) and
[σ | x : σ(F )] (o.f ) �= [σ ′ | x : σ ′(F )] (o.f ) (recall that alloc is not a specification-only
variable, so x is not alloc). Thus, by (27) there is some wrG ‘f in ε′ with o ∈
[σ | x : σ(F )] (G). Hence, by (12) in Section 4, we have o ∈ σ(G/x→F ) so this update
is licensed by the effect wr (G/x→F )‘f which is in ε′/x→F .

15In the conference version of this article [Banerjee et al. 2008c], the restriction on x is expressed by the
conditions rd x /∈ ε and wr x /∈ ε. This turned out to be unsound.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:43

There are no freshness effects in ε′ or ε′/x→F , by definition of ε′.
Now we complete the proof of Effect by considering the freshness effects.

(c) Consider any frH in ε/x→F , that is, any frG/x→F such that frG is in ε. We
must show σ ′(G/x→F ) ⊆ σ ′(alloc) \ σ(alloc), that is, p ∈ σ ′(alloc) \ σ(alloc) for
all p ∈ σ ′(G/x→F ). Observe

p ∈ σ ′(G/x→F )

≡ p ∈ [σ ′ | x : σ ′(F )] (G) by (12)
≡ p ∈ [σ ′ | x : σ(F )] (G) by (26)
⇒ p ∈ [σ ′ | x : σ(F )] (alloc)\[ σ | x : σ(F )] (alloc) by frG ∈ ε, (27)
⇒ p ∈ σ ′(alloc) \ σ(alloc) by def [− |− : −].

The last step uses that x is not alloc (by Assumption 7.2).
It remains to prove (26). By the assumption σ |� P/x→F and the rule’s side condi-

tion (P/x→F ) ⇒ ftpt(F ) ./. (ε/x→F ), we have σ |� ftpt(F ) ./. (ε/x→F ). But freshness
effects have no bearing on separators, so ftpt(F ) ./. (ε′/x→F ) ≡ ftpt(F ) ./. (ε/x→F )
where, as above, ε′ is ε but without freshness effects. Previously, we proved σ→σ ′ |�
ε′/x→F so using Lemmas 6.8 and 6.2 we obtain (26).

(EXIST). Suppose σ is a �-state that satisfies ∃x :T ∈ G · P . Consider any p that
witnesses the existential. That is, let σp be the (�, x :T )-state with p for x , that is,
σp = Extend (σ , x , p), and suppose σp |� x ∈ G ∧ P . Note that C is well formed in
context � so it neither reads nor writes x .

By validity of the premise, we have that 〈C , σp〉 does not fault. Therefore, by
Lemma 3.4(a), 〈C , σ 〉 does not fault either thus establishing Safety. Furthermore,
by Lemma 3.4(b), if 〈C , σp〉 �−→∗ 〈skip, σ ′

p〉— where σ ′
p = Extend (σ ′, x , p)—then

〈C , σ 〉 �−→∗ 〈skip, σ ′〉. Again, by validity of the premise, σ ′
p |� P ′ and σp→σ ′

p |� ε.
Because P ′ does not mention x , we obtain σ ′ |� P ′, establishing Post. And, because ε
does not mention x , we have by Definition 5.1, that σ→σ ′ |� ε, establishing Effect.

(POSTTOFR). Safety follows by validity of the premise and, with assumption
〈C , σ 〉 �−→∗〈skip, σ ′〉, so does Post. With the assumption in hand, it remains to establish
Effect, that is, σ→σ ′ |� ε, frG . By validity of premise we get σ→σ ′ |� ε so it remains to
show σ→σ ′ |� frG , that is, the inclusion σ ′(G) ⊆ σ ′(alloc) \ σ(alloc). From σ |� P and
P ⇒ r = alloc, we have σ(r) = σ(alloc). Because rd r ./. ε, we have wr r �∈ ε, so from
σ→σ ′ |� ε we get σ ′(r) = σ(r) = σ(alloc). From σ ′ |� P ′ and P ′ ⇒ G ∩ (r ∪ {null}) = ∅
we get null /∈ σ ′(G) and we get σ ′(G) ∩ σ ′(r) = ∅, which implies σ ′(G) ∩ σ(alloc) = ∅.
By semantics, we have σ ′(G) ⊆ σ ′(alloc) ∪ {null} and then, using null /∈ σ ′(G), we get
σ ′(G) ⊆ σ ′(alloc) \ σ(alloc).

(FIELDMASK). Suppose σ |� P . Safety and Post follow by validity of premise, so that
σ ′ |� P ′, where 〈C , σ 〉 �−→∗ 〈skip, σ ′〉. It remains to show Effect, that is, σ→σ ′ |� ε,
for which we can assume σ→σ ′ |� wr {x }‘f , ε. It is enough to consider part (b) of
Definition 5.1. Suppose o ∈ alloc(σ ), f ∈ Fields(Type(o, σ)) and σ(o.f ) �= σ ′(o.f ).
If o �= σ(x ), then there exists a region G such that wrG ‘f ∈ ε such that o ∈ σ(G). If
o = σ(x ), then we reach a contradiction: σ |� rd y ./. ε and σ |� rd x ./. ε yield σ(y) = σ ′(y)
and σ(x ) = σ ′(x ), respectively; we get σ(o.f ) = σ ′(o.f ) owing to σ |� x .f = y and
σ ′ |� x .f = y , which are given by premise P ∨ P ′ ⇒ x .f = y .

8. EXAMPLES WITH LOOP AND ALLOCATION

This section presents detailed proofs of contrived examples that illustrate novel as-
pects of the proof rules, in particular immunity and freshness effects, on which earlier
examples did not touch.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:44 A. Banerjee et al.

Our approach to invariants relies heavily on ghost state, which is supposed to serve
only for specifying and reasoning about the “underlying program” from which ghost
instrumentation has been removed. The proofs in this section illustrate both the use
of specification-only variables and the use of ghost variables that are updated as part
of the program annotation. To justify the latter, Section 8.3 discusses a proof rule for
elimination of ghost variables.

8.1. Allocation in a Loop

Consider the following commands, in context � = alloc : rgn, r : rgn,n :Node:

C =̂ r : = ∅; while 1 do B

B =̂ n : = new Node; r : = r ∪ {n};
The loop does not terminate but serves our expository purpose. We shall prove

� { true } C { true } [r ,n, alloc, fr r ] (28)

Let 
 =̂ �, s : rgn. Variable s is used to snapshot the initial value of alloc. To save
space, we write ŝ to abbreviate s ∪ {null}. Later we derive


 { r ∩ ŝ = ∅ } B { r ∩ ŝ = ∅ } [r ,n, alloc] (29)

From (29), rule WHILE (instantiated with g : = s, f empty, and H : = ∅) yields


 { r ∩ ŝ = ∅ ∧ s = alloc } while 1 do B { r ∩ ŝ = ∅ ∧ 1 = 0 } [r ,n, alloc]

(The immunity condition in WHILE holds vacuously and no fields are written.) Now we
can use POSTTOFR (using r : = s,G : = r in that rule) to get


 { r ∩ ŝ = ∅ ∧ s = alloc } while 1 do B { r ∩ ŝ = ∅ ∧ 1 = 0 } [r ,n, alloc, fr r ]

and by CONSEQ on the above we have


 { r ∩ ŝ = ∅ ∧ s = alloc } while 1 do B { true } [r ,n, alloc, fr r ] (30)

Leaving (30) aside, we use SIMPLEASSIGN to get 
 { true } r : = ∅ { r = ∅ } [r ] (this
is one of the derived rules in Section 7.2). Hence, by FRAME (framing s = alloc by
rd s, rd alloc) we get


 { s = alloc } r : = ∅ { r = ∅ ∧ s = alloc } [r ]

Now, by CONSEQ using r = ∅ ∧ s = alloc ⇒ r ∩ ŝ = ∅ ∧ s = alloc, we get


 { s = alloc } r : = ∅ { r ∩ ŝ = ∅ ∧ s = alloc } [r ] . (31)

By SIMPLESEQ, from (31) and (30), we get


 { s = alloc } C { true } [r ,n, alloc, fr r ] .

Apropos the side conditions of SIMPLESEQ, note in particular that wr r ,n, alloc, fr r is
(wr r/(s = alloc))-immune. Now, by EXISTREGION we reach judgment (28).

It remains to derive (29). By ALLOC2 and CONSEQ, we infer


 { true } n : = new Node {n �= null ∧ n /∈ s } [n, alloc] ,

whence by FRAME we have


 { r ∩ ŝ = ∅ } n : = new Node { r ∩ ŝ = ∅ ∧ n �= null ∧ n /∈ s } [n, alloc] .

Now we have by CONSEQ from the above


 { r ∩ ŝ = ∅ } n : = new Node { (r ∪ {n}) ∩ ŝ = ∅ } [n, alloc] (32)

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:45

We now consider the assignment r : = r ∪ {n}. We have by BACKWARDSASSIGN


 { (r ∪ {n}) ∩ ŝ = ∅ } r : = r ∪ {n} { r ∩ ŝ = ∅ } [r ] (33)

Now applying SEQ to (32) and (33) we have (29).

8.2. Updating Objects Allocated in a Loop

Consider the following:

B =̂ n : = new Node;n ′ : = n; r : = {n}; p : = n;
C =̂ n : = new Node; p.nxt : = n; p : = n; r : = r ∪ {n};
� =̂ n :Node,n ′ :Node, p :Node, r : rgn, alloc : rgn

 =̂ �, s : rgn

We shall prove

� { true } B ; while 1 do C { true } [n,n ′, p, r , alloc, fr r ] (34)

This program would be useful if we add to B an assignment root : = n ′ following the
first assignment. Then, it would create a linked list of nodes starting at root . Of course,
another guard condition would be needed too.

Let V =̂ p �= null ∧ p ∈ r ∧ (r \ {n ′}) ∩ alloc = ∅ ∧ n ′ ∈ r . First, we show

� { true } B {V } [n,n ′, alloc, r , p, fr {n ′}] . (35)

Later, we show

� {V } while 1 do C {n ′ ∈ r } [n,n ′.nxt , p, r , alloc, fr (r \ {n ′})] . (36)

Then, by SEQ on (35) and (36), and using FRUNION, we have

� { true } B ; while 1 do C {n ′ ∈ r } [n,n ′, p, r , alloc, fr r ∪ {n ′}] ,

whence by FRSUB and CONSEQ we have (34).
We first tackle (35). By ALLOC2 and CONSEQ, we have


 { s = alloc } n : = new Node {n �= null ∧ n /∈ s } [n, alloc] . (37)

By SIMPLEASSIGN and FRAME, we have


 {n �= null ∧ n �∈ s } n ′ : = n {n ′ = n ∧ n �= null ∧ n �∈ s } [n ′] . (38)

By SIMPLESEQ on (37) and (38), we get


 { s = alloc } n : = new Node;n ′ : = n {n ′ = n ∧ n �= null ∧ n �∈ s } [n,n ′, alloc]

so by CONSEQ, we have


 { s = alloc } n : = new Node;n ′ : = n {n ′ = n ∧ n �= null ∧ n ′ �∈ s } [n,n ′, alloc] .

Now by POSTTOFR, with G : = {n ′} and r : = s in the rule, and noting that {n ′} ∩ (s ∪
{null}) = ∅,


 { s = alloc } n : = new Node;n ′ : = n {n ′ = n ∧ n �= null ∧ n ′ �∈ s } [ε] ,

where ε =̂ {n,n ′, alloc, fr {n ′}}. By CONSEQ, we have


 { s = alloc } n : = new Node;n ′ : = n {n ′ = n ∧ n �= null } [ε]

and by EXISTREGION, we get

� { true } n : = new Node;n ′ : = n {n ′ = n ∧ n �= null } [ε] . (39)

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:46 A. Banerjee et al.

By SIMPLEASSIGN and FRAME

� {n ′ = n ∧ n �= null } r : = {n} {n ′ = n ∧ n �= null ∧ r = {n} } [r ] ,

whence by CONSEQ we get

� {n ′ = n ∧ n �= null } r : = {n} {n �= null ∧ n ∈ r ∧ r = {n ′} } [r ] . (40)

Now from (39) and (40), we have by SEQ

� { true } n : = new Node;n ′ : = n; r : = {n} {n �= null ∧ n ∈ r ∧ r = {n ′} } [r , ε] . (41)

By SIMPLEASSIGN and FRAME, we have

� {n �= null ∧ n ∈ r ∧ r = {n ′} } p : = n { p = n ∧ n �= null ∧ n ∈ r ∧ r = {n ′} } [p] ,

whence by CONSEQ, we get

� {n �= null ∧ n ∈ r ∧ r = {n ′} } p : = n { p �= null ∧ p ∈ r ∧ r = {n ′} } [p] . (42)

Now by SEQ on (41) and (42), we have

� { true } B { p �= null ∧ p ∈ r ∧ r = {n ′} } [ r , p, ε]

whence we get (35) by CONSEQ (using that r = {n ′} ⇒ (r \ {n ′}) ∩ alloc = ∅ and
r = {n ′} ⇒ n ′ ∈ r ).

We now tackle (36) for which the loop invariant, in context 
, is

P =̂ p �= null ∧ p ∈ r ∧ (r \ {n ′}) ∩ ŝ = ∅ ∧ n ′ ∈ r .

Here, as in Section 8.1, we write ŝ to abbreviate s ∪ {null}. For C , we will show that


 {P } C {P } [n, alloc, r .nxt , p, r ] . (43)

From (43), by SUBEFFECT (using P ⇒ r ⊆ (r \ {n ′}) ∪ {n ′}), we have


 {P } C {P } [n, alloc, (r \ {n ′}).nxt ,n ′.nxt , p, r ] .

Then, by WHILE, noting that the immunity condition holds and also that P ⇒ (r \
{n ′}) ∩ s = ∅, we get


 {P ∧ s = alloc } while 1 do C {P ∧ 1 = 0 } [n,n ′.nxt , p, r , alloc] .

By POSTTOFR (using G : = r \ {n ′} and r : = s in the rule), we get


 {P ∧ s = alloc } while 1 do C {P ∧ 1 = 0 } [n,n ′.nxt , p, r , alloc, fr (r \ {n ′})] .

Then, by CONSEQ followed by EXISTREGION on this we get (36).
It remains to establish (43). Let Q =̂ n �= null ∧ n �∈ r ∧ n �∈ s. By ALLOC2 (twice),

CONJ, and CONSEQ, we have 
 { true } n : = new Node {Q } [n, alloc], whence, by
FRAME, we have


 {P } n : = new Node {Q ∧ P } [n, alloc] . (44)

By FIELDUPD, we have


 { p �= null } p.nxt : = n { p.nxt = n } [p.nxt] ,

whence, by FRAME and CONSEQ, we have


 {Q ∧ P } p.nxt : = n {Q ∧ (r \ {n ′}) ∩ ŝ = ∅ ∧ n ′ ∈ r } [p.nxt] . (45)

By SIMPLESEQ on (44) and (45) and by SUBEFFECT (because P ⇒ p ∈ r ), we have


 {P } n : = new Node; p.nxt : = n {Q ∧ (r \ {n ′}) ∩ ŝ = ∅ ∧ n ′ ∈ r } [n, alloc, r .nxt] .

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:47

Let R =̂ n �= null ∧ n �∈ r ∧ (r ∪ {n} \ {n ′}) ∩ ŝ = ∅ ∧ n ′ ∈ r ∪ {n}. Then, by CONSEQ
we have


 {P } n : = new Node; p.nxt : = n {R } [n, alloc, r .nxt] . (46)

By SIMPLEASSIGN and FRAME, we have


 {R } p : = n { p = n ∧ R } [p] (47)

Now by SIMPLESEQ on (46) and (47) we have


 {P } n : = new Node; p.nxt : = n; p : = n { p = n ∧ R } [n, alloc, r .nxt , p]

Let W =̂ p ∈ r ∪ {n} ∧ (r ∪ {n} \ {n ′}) ∩ ŝ = ∅∧ p �= null ∧ n ′ ∈ r ∪ {n}. Then, by CONSEQ
on this equation, using n ∈ r ∪ {n}, n ∈ alloc ⇒ n �= null and p = n, we have


 {P } n : = new Node; p.nxt : = n; p : = n {W } [n, alloc, r .nxt , p] (48)

By BACKWARDSASSIGN, we have


 {W } r : = r ∪ {n} {P } [r ] . (49)

By SEQ on (48) and (49), we get (43).

8.3. Ghost Elimination

In proofs by hand, we seldom find the need for ghost variables; it is often enough to
introduce specification-only snapshot variables in specifications of subcommands, as
in the examples of the preceding sections. But those examples also use ghost variable
r in their specifications. Ghost state is not intended to be observable, so ultimately it is
used to specify internal interfaces of program components but not in specifications of
main program requirements. (But see Hofmann and Pavlova [2008].) The restrictions
needed for sensible use of ghost state are well known, but it is worth reviewing the key
ideas, which are embodied in the following proof rule:

AUX
� {P } var v :T in C {P ′ } [ ε] auxil(v ,C )

� {P } erase(v ,C ) {P ′ } [ ε]
.

The side condition auxil(v ,C ) is defined to check that the variables in the list v only
occur in assignments to variables in v , that is, they are “auxiliary” in the sense defined
by Owicki and Gries [1976]. Function erase is defined so that erase(v ,C ) replaces by
skip every assignment to a variable in v . (The use of skip ensures that the result is well
formed.) By assignment we mean the grammatical forms x : = F and x : = y .f only. The
precise definitions of auxil and erase are left to the reader.

As an example, for program C at the beginning of Section 8.1, we have auxil(r ,C ).
Furthermore, using rule SUBEFF we can drop the effect fr r from the specification (28).
Using CONSEQ and then VAR, we can introduce local variable block for r , removing it
from the typing context and making rule AUX applicable. This yields

 { true } skip; while 1 do n : = new Node; skip { true } [n, alloc] .

Similarly, from (34), we can remove n ′ and r to obtain the program

n : = new Node; p : = n; while 1 do n : = new Node; p.nxt : = n; p : = n

with effects wrn, p, alloc.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:48 A. Banerjee et al.

Soundness of rule AUX rests on this fact: For any P -state σ , letting τ extend σ with
the default initial values for v , the outcomes of C from τ are in one-to-one correspon-
dence with outcomes of erase(v ,C ) from σ .

We do not formalize the elimination of ghost fields, but their rationale is the same as
for ghost variables: they do not influence the program’s termination or other behavior
as observed in predicates on non-ghost state. In verification tools, ghost state typically
appears as special comments, ignored by the compiler but never erased per se.

9. RELATED WORK

Our approach originated in work on secure information flow analysis combining ver-
ification and type checking [Banerjee et al. 2008b]. For modular reasoning about in-
formation flow, Amtoft et al. [2006] introduce a relational logic that relies on abstract
locations to abstract sets of concrete locations at a program point as commonly done
in static analysis. In order to extend their work to declassification policies, which may
depend on complex program state conditions, we needed to enrich the assertion lan-
guage, which led to dropping their abstract interpretation of heap locations in favor of
explicit regions.

Separation Logic. An important precursor to our work is separation logic [O’Hearn
et al. 2001], a kind of Hoare logic in which a program’s precondition implicitly spec-
ifies which preexisting heap cells may be read or written by the program. This heap
footprint is the part of the heap necessary for the program to execute without memory
faults in a partial-heap semantics. A special logical connective, separating conjunction,
facilitates local reasoning as embodied in a frame rule. By contrast with our use of re-
gions, heap footprints do not appear in separation logic formulas explicitly. Instead
they are implicit in the semantics of the correctness judgment; this and the separat-
ing conjunction make possible an elegant frame rule with minimal side conditions. By
contrast, our use of explicit footprints and ghost variables can be seen as skolemizing
the existential implicit in separating conjunction (see Remark 6.9).

Because footprints are shadows of predicates, specifications in separation logic in-
volve inductive predicates for traversing data structures, often together with quan-
tification over predicates [Birkedal et al. 2005; Nanevski et al. 2006]. Higher order,
induction, and separating conjunction all pose challenges for automated reasoning.
However, exciting results have been achieved in automated static analysis using frag-
ments of separation logic [Calcagno et al. 2011] as well as in interactive verification
[Feng et al. 2008; Nanevski et al. 2010]. Although most work in separation logic is at
the C level of abstraction, the jStar verifier [Distefano and Parkinson 2008] uses sym-
bolic execution to implement a separation logic for sequential Java. The logic features
abstraction by higher order predicates [Parkinson and Bierman 2005], as we discuss
in Part II.

Methodologies. Several automated verifiers use intricate methodologies for reason-
ing about the heap in ordinary first-order logic. Our approach is inspired by the Boogie
methodology [Barnett et al. 2004; Leino and Müller 2004; Naumann and Barnett
2006], which is explicitly based on all-states invariants that use ghost fields to express
an ownership encapsulation régime. Boogie combines instance invariants into a global
condition akin to our example ∀p :Comp ∈ alloc · ok(p) in Section 2. A key feature of
the methodology is the hiding of ownership-based invariants, for which Part II of this
article offers a foundation and generalization (and discusses more related work).

Drossopoulou and Smith [2003] use regions denoted by ownership contexts to
formulate a simple, type-based frame rule that resembles ours. Another type-based
frame rule is used by Schlesinger et al. [2011] to reason about data integrity. Their
work builds on that of Lahiri et al. [2011] who use linear types and explicit partial

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:49

heaps, dubbed “linear maps”, in a classical assertion language for local reasoning
in object-based programs. The use of linear maps involves novel program constructs
including explicit transfer of objects between linear maps, which in their system
are always disjoint. The resemblance to region logic seems clear and experimental
comparisons may be interesting, for example, concerning the instrumentation burden
that seems proportional to what we have seen in experiments with region logic.

Regions as disjoint sets of references is featured in the work of Marron et al. [2008]
who formulate shape analyses where shapes of regions are characterized using stan-
dard graph-theoretic notions like trees and dags. In recent unpublished work Marron
uses injectivity of fields to encode possibly transitive ownership: if region R′ is a suc-
cessor of another region R in the shape graph and R′ has one incoming edge and this
edge is injective then one can infer that each object in R′ is owned by a unique object
in R.

The idea to use regions and explicit ghost state to express frame conditions is directly
inspired by the state-dependent effects of Kassios [2006, 2011], who worked out how it
could be done effectively without global imposition of a fixed programming discipline
like ownership. The state-dependent effects are termed dynamic frames, whence our
term “dynamic boundary” (cf. Section 2). Kassios developed his ideas in the setting of
a relational refinement theory and higher order logic; in particular, the framing of a
formula is expressed directly as a second order predicate, quantifying over all global
program states.

By contrast, we work out a Hoare logic based on first-order assertions. But there are
similarities, for example, Metatheorem 5.4.1 in his thesis is related to our notion of
immunity, as is the swinging pivots restriction of Leino and Nelson [2002, Section 8.3].
The latter grapples with stateful frame conditions of the form that we would write
wr {x }‘f and justifies soundness of their treatment in ESC/Java [Flanagan et al. 2002]
under somewhat restrictive conditions; the state of the art at that time was that
this and other JML-based tools had various unsoundnesses in connection with frame
conditions.

Like us, Smans et al. [2010] adapt Kassios’ ideas to the setting of pre/post specifi-
cations and frame conditions. Where we work with sets of object references, they use
sets of locations. (Of course, we can express finite location sets using singleton regions.)
Moreover, their sets are given by pure functions. This entails reasoning about calls of
(pure) methods in assertions. Smans et al.’s approach has been implemented in their
VeriCool verifier and applied to examples like observer and iterator. This use of proce-
dural abstraction has the benefit of abstracting from both object references and field
names. It comes at the cost of reasoning about method calls in assertions (e.g., Rudich
et al. [2008]). Our work is compatible with, but not dependent on, means of abstrac-
tion like pure methods in assertions [Naumann 2007; Rudich et al. 2008], model fields
[Leino and Müller 2006], and data groups [Leino 1998].

Smans et al. [2012] avoid the need for a modifies clause somewhat in the man-
ner of separation logic and instead infer frame conditions using special “access
predicates”, acc, with a permission-based semantics and special program constructs.
(Their methodology is dubbed “implicit dynamic frames”.) Every read/write of an ex-
pression E .f is permitted by asserting acc(E .f ). Their assertion language includes the
separating conjunction but the meaning of a formula φ1 ∗ φ2 is that φ1 ∧ φ2 holds and
the set of locations deemed accessible by the access predicates in φ1 is disjoint from
those of φ2.

Verifiers. The Jahob system [Zee et al. 2008] features extensive use of sets for rea-
soning about data structures, using both automated and interactive theorem proving.
Many of the specifications use a variable, contents , that holds the set of internal nodes

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:50 A. Banerjee et al.

of a data structure and is defined using reachability. This is used not only in pre/post-
conditions, but also in frame conditions. Many of the procedure specifications in the
Jahob distribution include “modifies contents”, which appears to mean that any field of
any element of contents may be written. (Finer-grained frame conditions, which seem
likely to be needed for client code, can be expressed using quantified postconditions,
as the assertion language is that of higher-order logic.) The example modifies specifi-
cations resemble the use of JML’s “model fields”, which are given definitions in terms
of concrete state: in a frame condition, mention of a model field is interpreted to allow
modification of that part of the state. Making this precise and usable has proved to be
difficult [Leino and Müller 2006; Leino and Nelson 2002].

The use of ghost state to encode inductive properties without induction has been
fruitful in verifications using SMT solvers (e.g., Cohen et al. [2009], Hawblitzel and
Petrank [2009], Zee et al. [2008]). The VeriCool verifier Smans et al. [2012] is SMT-
based, as is the Chalice system [Leino and Müller 2009] that uses permissions for
verification of concurrent code. In contrast to VeriCool’s use of pure method calls in
frame conditions, the Dafny tool [Leino 2010] uses ghost fields and ghost variables to
specify effects. Dafny provides a parametric type set〈K 〉 to denote sets of references of
type K . The sets are therefore akin to typed regions and are used in modifies clauses:
for example, modifies s denotes that any field of any reference in s may be modified.
Thus, Dafny’s effects are in the form we write as G ‘any in region logic. The Boogie tool
[Barnett et al. 2005] has been used for experiments with region logic specifications of
the Observer [Banerjee et al. 2008a] and Composite [Rosenberg et al. 2010] patterns.
Boogie and the tools mentioned above interface with the Z3 SMT solver [de Moura and
Bjørner 2008] to decide the generated verification conditions.

Our VERL tool described in Rosenberg [2011, Chapter 3] is based on Dafny and
translates a program annotated with region logic specifications into the intermedi-
ate specification language Boogie2 [Leino 2008]. It supports the full generality of
region logic assertions and effects: In contrast to Dafny, VERL supports effects of
the form wrG ‘f for any reference-typed, integer-typed or region-typed field f . VERL
uses a syntax-directed algorithm to compute read effects of quantified formulas and
expressions [Rosenberg 2011, Figures 3.18, 3.19] while Dafny requires programmer-
annotated read effects. Based on these annotations, Dafny generates frame axioms for
every declared function. These axioms are essentially instances of the frame validity
condition (Definition 6.1 or its two-way counterpart in Remark 6.6). The frame “ax-
ioms” are a proof obligation to be checked, and are then provided as axioms for use
by the verifier in proving assertions and postconditions. By contrast, VERL provides
“localized framing” [Rosenberg et al. 2010] via a preserves pragma with which the pro-
grammer can indicate where the frame rule could be used and the expressions whose
values must be proven to be preserved across a command.

The preserves pragma, preserves Q C , causes VERL to infer a read effect for a
framed formula Q using the syntax-directed part of the framing rules (of Figure 15).
So the inferred read effects are correct by construction and satisfy frame validity
(Definition 6.1). Instead of computing a separator and checking the condition
P ∧Q ⇒ δ ./. ε in FRAME, VERL interprets the preserves pragma by directly checking
that the command C does not interfere with the (inferred) read effects δ of Q . In other
words, VERL directly checks that the pre-state and the post-state agree modulo δ.
This allows VERL to assume that the meaning of Q remains the same before and
after execution of C . (By contrast, Dafny would assert that, and try to prove it using
frame axioms.) In our experiments [Rosenberg et al. 2010], the inferred read effects
are always sufficient. However VERL could be extended to allow a programmer to
declare finer read effects for Q . Validity of such a frame would be checked just like
Dafny’s checking of frame axioms.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:51

Berdine et al. [2005a] implement the Smallfoot verifier to automate verification of
programs whose assertions are in the symbolic heaps fragment [Berdine et al. 2005b]
of separation logic. Smallfoot uses symbolic execution of formulas and encodes the
effects of each command in the symbolic heap and (variable) store. The verifier,
VeriFast [Jacobs et al. 2010], has been developed to verify single-threaded and mul-
tithreaded C and Java programs annotated with separation logic assertions. Like the
tools inspired by Boogie, VeriFast too interfaces with the Z3 SMT solver to discharge
verification conditions.

KeY [Beckert et al. 2007] is a highly automated interactive verification tool, based
on a dynamic logic [Harel et al. 2000] and targeted at the JavaCard dialect of Java.
The annotation language includes frame conditions for loops. Because regions are sim-
ply sets of references, the JML assertion language already includes almost all features
of region logic assertions, and region images can be encoded using quantifiers. An ex-
tension of JML with dynamic frames has been designed and implemented in the KeY
tool [Schmitt et al. 2010]. They include read effects in method specifications, to support
reasoning about model fields and calls of pure methods in specifications. This exten-
sion seems to have been developed independently from our work but the treatment of
frame conditions is quite similar.

Decision Procedures. Verifiers like Boogie, VERL, VeriCool, Dafny rely on axioms to
reason about assertions. For example to reason about sets of references they must rely
on axioms for sets. Such axioms are typically universally quantified. Axiomatization
of region images of the form G ‘f results in a ∀∃ quantifier prefix. It is well known that
reasoning about quantifiers is inherently hard and SMT solvers must rely on heuris-
tics on how to instantiate quantifiers. A more complete approach is to use a dedicated
decision procedure. For example, Jahob uses the BAPA procedure (Boolean Algebra
and Presburger Arithmetic) to reason about sets and their cardinalities in its asser-
tion language [Kuncak and Rinard 2007]. Suter et al. [2011] recently implemented
an extension of the decision procedure for BAPA in Z3. Rosenberg’s PhD dissertation
investigates decision procedures for quantifier free region logic assertions and has de-
veloped a complete, tableau-based decision procedure for such assertions [Rosenberg
2011, Chapter 4]. This decision procedure extends the tableau-based decision proce-
dure for the quantifier free language 2LST [Zarba 2003]—a two-sorted language of
sets of elements with any number of constant, function and predicate symbols over
the element sort in some theory T , provided as a parameter. Region logic’s assertion
language can be viewed as an extension of 2LST with a universal set (denoted by alloc)
and images.

Miscellaneous Issues. We have not investigated completeness of region logic, except
informally in the course of designing the rules and applying them in proofs. There are
a number of considerations which make it questionable what is a good formulation
of completeness. Pierik and de Boer [2005a] consider modular completeness with re-
spect to given specifications of methods; their focus is subtyping. Pierik [2006] proves
completeness of his logic for a language similar to ours, and Apt et al. [2012] prove
completeness of their logic [Apt et al. 2009] by an elegant reduction of objects and
inheritance to arrays and recursive procedures. These logics lack explicit frame condi-
tions and other features of interest here. On the other hand, these works include logics
in proof outline form. For direct use in interactive verification, proof outlines may be
more convenient than trees of judgments.

We have not modeled garbage collection in this article. Consider a complete program
x : = new K ; x : = null. The postcondition of the program establishes that there exists
no object of type K , at least once garbage is collected, but in our semantics there
does exist an object of type K . A more practical example would be where an invariant

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:52 A. Banerjee et al.

of the form ∀x :K ∈ alloc · P is maintained; once a K -object becomes unreachable,
what happens to the invariant? It might well not hold, for example, if it relates to
other state that is updated. But in our experience, useful invariants quantify over
some designated pool of objects, from which an object is likely to be removed before
it becomes unreachable. Garbage collection has been studied in connection with
separation logic [Calcagno et al. 2003].

10. CONCLUSION

The primary concern of this work is local and modular reasoning about object-based
programs. In Part I, we have focused on local reasoning by making footprints explicit
in frame conditions and expressing them as sets of references paired with their fields.
The sets of references, termed regions, can appear as annotations in program text
by way of mutable auxiliary fields and variables, often called ghost state. A practical
upshot of reasoning about regions as ghost state is that this provides enough flexibility
to encode programming disciplines such as ownership as well as disciplines embodied
in various design patterns that organize the heap in uniform or ad hoc ways.

We have developed region logic, a Hoare logic with frame conditions, that allows
local reasoning for object-based programs to be carried out with the help of region
logic’s FRAME rule. Assertions in region logic are formulas in first-order logic together
with sets: in particular one can express quantified formulas in which the bound of the
quantification is over a designated set of allocated references. The logic also features
specification-only variables, for which there is a substitution rule; this is important for
completeness in connection with procedures (which are added in Part II). The logic is
amenable to automation using SMT provers as evidenced by our SMT-based verifier,
VERL, and its application to case studies that involve challenging design patterns.
Separately, Rosenberg’s PhD dissertation [2011] has developed decision procedures for
quantifier-free region logic formulas.

VERL incorporates some of the features that we omitted from our formalization but
which are clearly desirable: data groups [Leino et al. 2002], typed regions (cf. Remark
3.3), region comprehension (cf. Remark 6.3), sequences, specification statements, for
example, foreach known as “bulk updates” in Dafny. Other features worthy of theoret-
ical study as well as inclusion in a tool are ghost parameters and injective images.

In ongoing work we are developing a relational version of region logic, along the
lines of other relational Hoare logics like that of Benton [2004]. In the course of this
work, we developed an extension of the logic that includes read effects for commands;
this is straightforward. We also hope to gain theoretical and practical insight by find-
ing embeddings between separation logic and region logic (for which Parkinson and
Summers [2011] may be relevant). Other obvious topics for investigation are (relative)
completeness of the logic, modeling of garbage collection, and extension of the logic to
concurrent programs.

Information hiding is the focus of Part II of this article. The approach of
Kassios, which we have explored here, was motivated by the hope that disciplines like
ownership for the hiding of invariants could be embodied as reasoning patterns rather
than hard-coded in a logic or verification system. Taken literally, Kassios’ approach re-
quires that the general reasoning behind soundness of a discipline like Boogie [Leino
and Müller 2004] be re-produced as part of the verification for any particular program
that uses the discipline. But the spirit of Kassios’ work is that notions like ownership
would be formalized as theorems that could be used in reasoning about many pro-
grams. One of our goals is to provide a more explicit framework in which disciplines can
be formalized and validated as such, at the level of program annotations and without
direct recourse to the underlying semantics. The goal motivates Part II of this article.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:53

ACKNOWLEDGMENTS

Many people helped with suggestions and encouragement, including Mike Barnett, Sophia Drossopoulou,
Manuel Fähndrich, Bart Jacobs, Rustan Leino, Peter Müller, Peter O’Hearn, Matthew Parkinson, Wolfram
Schulte, Jan Smans, Alexander Summers, David Walker, Hongseok Yang, and several anonymous reviewers.

REFERENCES

Aldrich, J. and Chambers, C. 2004. Ownership domains: Separating aliasing policy from mechanism. In
Proceedings of the European Conference on Object-Oriented Programming. 1–25.

Amtoft, T., Bandhakavi, S., and Banerjee, A. 2006. A logic for information flow in object-oriented programs.
In Proceedings of the ACM Symposium on Principles of Programming Languages. 91–102.

Apt, K. 1981. Ten years of Hoare’s logic, a survey, part I. ACM Trans. Program. Lang. Syst. 3, 4, 431–483.
Apt, K. R., de Boer, F. S., and Olderog, E.-R. 2009. Verification of Sequential and Concurrent Programs 3rd

Ed. Springer.
Apt, K. R., de Boer, F. S., Olderog, E.-R., and de Gouw, S. 2012. Verification of object-oriented programs: A

transformational approach. J. Comput. Syst. Sci. 78, 3, 823–852.
Banerjee, A. and Naumann, D. A. 2013. Local reasoning for global invariants, part II: Dynamic boundaries.

J. ACM. To appear.
Banerjee, A., Barnett, M., and Naumann, D. A. 2008a. Boogie meets regions: A verification experience report.

In Verified Software: Theories, Tools, Experiments. Lecture Notes in Computer Science, vol. 5295, 177–
191.

Banerjee, A., Naumann, D. A., and Rosenberg, S. 2008b. Expressive declassification policies and modular
static enforcement. In Proceedings of the IEEE Symposium on Security and Privacy. 339–353.

Banerjee, A., Naumann, D. A., and Rosenberg, S. 2008c. Regional logic for local reasoning about global
invariants. In Proceedings of the European Conference on Object-Oriented Programming. Lecture Notes
in Computer Science, vol. 5142, 387–411.

Barnett, M., DeLine, R., Fähndrich, M., Leino, K. R. M., and Schulte, W. 2004. Verification of object-oriented
programs with invariants. J. Object Technol. 3, 6, (Special Issue: ECOOP 2003 Workshop on Formal
Techniques for Java-like Programs) 27–56.

Barnett, M., Leino, K. R. M., and Schulte, W. 2005. The Spec# programming system: An overview. In Pro-
ceedings of the International Workshop on Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS 2004), Revised Selected Papers. Lecture Notes in Computer Science, vol. 3362,
49–69.

Beckert, B., Hähnle, R., and Schmitt, P. H. 2007. Verification of Object-Oriented Software: The KeY Approach.
Lecture Notes in Computer Science, vol. 4334, Springer-Verlag.

Benton, N. 2004. Simple relational correctness proofs for static analyses and program transformations. In
Proceedings of the ACM Symposium on Principles of Programming Languages. 14–25.

Berdine, J., Calcagno, C., and O’Hearn, P. W. 2005a. Smallfoot: Modular automatic assertion checking with
separation logic. In Formal Methods for Components and Objects. Lecture Notes in Computer Science,
vol. 4111, 115–137.

Berdine, J., Calcagno, C., and O’Hearn, P. W. 2005b. Symbolic execution with separation logic. In Proceedings
of the Asian Symposium on Programming Languages and Systems. Lecture Notes in Computer Science,
vol. 3780, 52–68.

Birkedal, L., Torp-Smith, N., and Yang, H. 2005. Semantics of separation-logic typing and higher-order
frame rules. In Proceedings of the IEEE Symposium on Logic in Computer Science. 260–269.

Boyapati, C., Liskov, B., and Shrira, L. 2003. Ownership types for object encapsulation. In Proceedings of
the ACM Symposium on Principles of Programming Languages. 213–223.

Calcagno, C., O’Hearn, P., and Bornat, R. 2003. Program logic and equivalence in the presence of garbage
collection. Theoret. Comput. Sci. 298, 3, 557–581.

Calcagno, C., Distefano, D., O’Hearn, P. W., and Yang, H. 2011. Compositional shape analysis by means of
bi-abduction. J. ACM 58, 6.

Clarke, D. and Drossopoulou, S. 2002. Ownership, encapsulation and the disjointness of type and effect. In
Proceedings of the ACM Conference on Object-Oriented Programming Languages, Systems, and Applica-
tions. 292–310.

Cohen, E., Dahlweid, M., Hillebrand, M. A., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., and Tobies,
S. 2009. VCC: A practical system for verifying concurrent C. In Theorem Proving in Higher Order Logics.
Lecture Notes in Computer Science, vol. 5674, 23–42.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:54 A. Banerjee et al.

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient smt solver. In Tools and Algorithms for the Construc-
tion and Analysis of Systems. Lecture Notes in Computer Science, vol. 4963, 337–340.

Distefano, D. and Parkinson, M. J. 2008. jStar: Towards practical verification for Java. In Proceedings of the
ACM Conference on Object-Oriented Programming Languages, Systems, and Applications. 213–226.

Drossopoulou, S. and Smith, M. 2003. Cheaper reasoning with ownership types. In Proceedings of the Inter-
national Workshop on Aliasing, Confinement and Ownership.

Feng, X., Shao, Z., Guo, Y., and Dong, Y. 2008. Combining domain-specific and foundational logics to verify
complete software systems. In Verified Software: Theories, Tools, Experiments. Lecture Notes in Com-
puter Science, vol. 5295, 54–69.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R. 2002. Extended static
checking for Java. In Proceedings of the ACM Conference on Programming Language Design and Imple-
mentation. 234–245.

Floyd, R. W. 1967. Assigning meanings to programs. In Proceedings of the Symposia in Applied Mathematics
19. American Mathematical Society, 19–32.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Gorelick, G. 1975. A complete axiomatic system for proving assertions about recursive and nonrecursive
programs. Tech. rep. 75, Department of Computer Science, University Toronto.

Harel, D. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science, vol. 68, Springer.
Harel, D., Kozen, D., and Tiuryn, J. 2000. Dynamic Logic. MIT Press.
Hawblitzel, C. and Petrank, E. 2009. Automated verification of practical garbage collectors. In Proceedings

of the ACM Symposium on Principles of Programming Languages. 441–453.
Hoare, C. A. R. 1972. Proofs of correctness of data representations. Acta Inf. 1, 271–281.
Hofmann, M. and Pavlova, M. 2008. Elimination of ghost variables in program logics. In Trustworthy Global

Computing 2007. Lecture Notes in Computer Science, vol. 4912, 1–20.
Jacobs, B., Smans, J., and Piessens, F. 2010. A quick tour of the VeriFast program verifier. In Proceedings of

the Asian Symposium on Programming Languages and Systems. Lecture Notes in Computer Science,
vol. 6461, 304–311. http://people.cs.kuleuven.be/∼bart.jacobs/verifast/.

Kassios, I. T. 2006. Dynamic frames: Support for framing, dependencies and sharing without restrictions. In
Formal Methods. Lecture Notes in Computer Science, vol. 4085, 268–283.

Kassios, I. T. 2011. The dynamic frames theory. Form. Aspects Comput. 23, 3, 267–288.
Kuncak, V. and Rinard, M. C. 2007. Towards efficient satisfiability checking for Boolean algebra with Pres-

burger arithmetic. In Proceedings of the International Conference on Automated Deduction. Lecture
Notes in Computer Science, vol. 4603, 215–230.

Lahiri, S. K., Qadeer, S., and Walker, D. 2011. Linear maps. In Proceedings of the ACM Workshop of Pro-
gramming Languages meets Program Verification. 3–14.

Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., and Cok, D. R. 2003. How the design of JML accommodates
both runtime assertion checking and formal verification. In Formal Methods for Components and Objects
(FMCO’02). Lecture Notes in Computer Science, vol. 2852, Springer, 262–284.

Leavens, G. T., Leino, K. R. M., and Müller, P. 2007. Specification and verification challenges for sequential
object-oriented programs. Form. Aspects Comput. 19, 2, 159–189.

Leavens, G. T. and Naumann, D. A. 2013. Behavioral subtyping, specification inheritance, and modular
reasoning. Tech. rep. CS-TR-13-03, Department of Computer Science, University of Central Florida.

Leino, K. R. M. 1998. Data groups: Specifying the modification of extended state. In Proceedings of the ACM
Conference on Object-Oriented Programming Languages, Systems, and Applications. 144–153.

Leino, K. R. M. 2008. This is Boogie 2. Manuscript KRML 178.
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf.

Leino, K. R. M. 2010. DAFNY: An automatic program verifier for functional correctness. In Proceedings
of the International Conference on Logic for Programming Artificial Intelligence and Reasoning. E. M.
Clarke and A. Voronkov Eds., Lecture Notes in Computer Science, 348–370.

Leino, K. R. M. and Müller, P. 2004. Object invariants in dynamic contexts. In Proceedings of the European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science, vol. 3086, 491–516.

Leino, K. R. M. and Müller, P. 2006. A verification methodology for model fields. In Proceedings of the
European Symposium on Programming Languages and Systems. Lecture Notes in Computer Science,
vol. 3924, 115–130.

Leino, K. R. M. and Müller, P. 2009. A basis for verifying multi-threaded programs. In Proceedings of the
European Symposium on Programming Languages and Systems. Lecture Notes in Computer Science,
vol. 5502, 378–393.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part I: Region Logic 18:55

Leino, K. R. M. and Nelson, G. 2002. Data abstraction and information hiding. ACM Trans. Program. Lang.
Syst. 24, 5, 491–553.

Leino, K. R. M., Poetzsch-Heffter, A., and Zhou, Y. 2002. Using data groups to specify and check side effects.
In Proceedings of the ACM Conference on Programming Languages, Design and Implementation. 246–
257.

Liskov, B. H. and Wing, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16, 6,
254–280.

Marron, M., Méndez-Lojo, M., Hermenegildo, M. V., Stefanovic, D., and Kapur, D. 2008. Sharing analysis of
arrays, collections, and recursive structures. In Proceedings of the ACM Workshop on Program Analysis
for Software Tools and Engineering. 43–49.

Müller, P. 2002. Modular Specification and Verification of Object-Oriented Programs. Lecture Notes in Com-
puter Science, vol. 2262.

Nanevski, A., Morrisett, G., and Birkedal, L. 2006. Polymorphism and separation in Hoare type theory. In
Proceedings of the International Conference on Functional Programming. 62–73.

Nanevski, A., Vafeiadis, V., and Berdine, J. 2010. Structuring the verification of heap-manipulating pro-
grams. In Proceedings of the ACM Symposium on Principles of Programming Languages. 261–274.

Naumann, D. A. 2007. Observational purity and encapsulation. Theoret. Comput. Sci. 376, 3, 205–224.
Naumann, D. A. and Banerjee, A. 2010. Dynamic boundaries: Information hiding by second order fram-

ing with first order assertions. In Proceedings of the Programming Languages and Systems, European
Symposium on Programming. Lecture Notes in Computer Science, vol. 6012, 2–22.

Naumann, D. A. and Barnett, M. 2004. Towards imperative modules: Reasoning about invariants and shar-
ing of mutable state. In Proceedings of the IEEE Symposium on Logic in Computer Science. 313–323.

Naumann, D. A. and Barnett, M. 2006. Towards imperative modules: Reasoning about invariants and shar-
ing of mutable state. Theoret. Comput. Sci. 365, 143–168.

O’Hearn, P. W., Reynolds, J. C., and Yang, H. 2001. Local reasoning about programs that alter data struc-
tures. In Proceedings of the Conference on Computer Science Logic. Lecture Notes in Computer Science,
vol. 2142, 1–19.

O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2004. Separation and information hiding. In Proceedings of the
ACM Symposium on Principles of Programming Languages. 268–280.

O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2009. Separation and information hiding. ACM Trans. Program.
Lang. Syst. 31, 3, 1–50.

Owicki, S. and Gries, D. 1976. An axiomatic proof technique for parallel programs I. Acta Inf. 6, 319–340.
Parkinson, M. 2007. Class invariants: The end of the road? In Proceedings of the International Workshop on

Aliasing, Confinement and Ownership.
Parkinson, M. J. and Bierman, G. M. 2005. Separation logic and abstraction. In Proceedings of the ACM

Symposium on Principles of Programming Languages. 247–258.
Parkinson, M. J. and Summers, A. J. 2011. The relationship between separation logic and implicit dynamic

frames. In Proceedings of the European Symposium on Programming Languages and Systems. Lecture
Notes in Computer Science, vol. 6602, 439–458.

Pierik, C. 2006. Validation techniques for object-oriented proof outlines. Tech. rep. 2006-5, Universiteit
Utrecht, SIKS Dissertation Series. ISBN 90-393-4217-2.

Pierik, C. and de Boer, F. 2005a. On behavioral subtyping and completeness. In Proceedings of the 7th
ECOOP Workshop on Formal Techniques for Java-like Programs. J. Vitek and F. Logozzo Eds.

Pierik, C. and de Boer, F. S. 2005b. A proof outline logic for object-oriented programming. Theoret. Comput.
Sci. 343, 413–442.

Reynolds, J. C. 1981. The Craft of Programming. Prentice-Hall.
Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings of the

IEEE Symposium on Logic in Computer Science. 55–74.
Robby, Aldrich J. 2008. Proceedings of the 7th International Workshop on Specification and Verification of

Component Systems (SAVCBS). Tech. rep. CS-TR-08-07, School of Electrical Engineering and Computer
Science, University of Central Florida.

Rosenberg, S. 2011. Region logic: Local reasoning for Java programs and its automation. Ph.D. thesis,
Stevens Institute of Technology.

Rosenberg, S., Banerjee, A., and Naumann, D. A. 2010. Local reasoning and dynamic framing for the compos-
ite pattern and its clients. In Verified Software: Theories, Tools, Experiments. Lecture Notes in Computer
Science, vol. 6217, 183–198. http://www.cs.stevens.edu/∼naumann/pub/VERL/.

Rudich, A., Darvas, A., and Müller, P. 2008. Checking well-formedness of pure-method specifications. In
Formal Methods. Lecture Notes in Computer Science, vol. 5014, 68–83.

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.



�

�

�

�

�

�

�

�

18:56 A. Banerjee et al.

Schlesinger, C., Pattabiraman, K., Swamy, N., Walker, D., and Zorn, B. 2011. Modular protections against
non-control data attacks. In Proceedings of the IEEE Computer Security Foundations Symposium.

Schmitt, P. H., Ulbrich, M., and Weiß, B. 2010. Dynamic frames in Java dynamic logic. In Formal Verification
of Object-Oriented Software (FoVeOOS) (Revised Selected Papers). Lecture Notes in Computer Science,
vol. 6528, 138–152.

Smans, J., Jacobs, B., and Piessens, F. 2012. Implicit dynamic frames. ACM Trans. Program. Lang.
Syst. 34, 1, 2:1–2:58.

Smans, J., Jacobs, B., Piessens, F., and Schulte, W. 2008. An automatic verifier for Java-like programs based
on dynamic frames. In Proceedings of the Fundamental Aspects to Software Engineering. Lecture Notes
in Computer Science, vol. 4961, Springer, 261–275.

Smans, J., Jacobs, B., Piessens, F., and Schulte, W. 2010. Automatic verification of Java programs with
dynamic frames. Form. Aspects Comput. 22, 3–4, 423–457.

Suter, P., Steiger, R., and Kuncak, V. 2011. Sets with cardinality constraints in satisfiability modulo theories.
In Proceedings of the International Conference on Verification, Model Checking, and Abstract Interpre-
tation. Lecture Notes in Computer Science, vol. 6538, 403–418.

Zarba, C. G. 2003. Combining sets with elements. In Verification: Theory and Practice. Lecture Notes in
Computer Science, vol. 2772, 762–782.

Zee, K., Kuncak, V., and Rinard, M. C. 2008. Full functional verification of linked data structures. In Pro-
ceedings of the ACM Conference on Programming Languages Design and Implementation. 349–361.

Received July 2011; revised November 2012; accepted March 2013

Journal of the ACM, Vol. 60, No. 3, Article 18, Publication date: June 2013.


