
�

�

�

�

�

�

�

�

19

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries

ANINDYA BANERJEE, IMDEA Software Institute
DAVID A. NAUMANN, Stevens Institute of Technology

Dedicated to the memory of John C. Reynolds (1935–2013).

The hiding of internal invariants creates a mismatch between procedure specifications in an interface and
proof obligations on the implementations of those procedures. The mismatch is sound if the invariants de-
pend only on encapsulated state, but encapsulation is problematic in contemporary software due to the
many uses of shared mutable objects. The mismatch is formalized here in a proof rule that achieves flexibil-
ity via explicit restrictions on client effects, expressed using ghost state and ordinary first order assertions.
The restrictions amount to a stateful frame condition that must be satisfied by any client; this dynamic en-
capsulation boundary complements conventional scope-based encapsulation. The technical development is
based on a companion article, Part I, that presents Region Logic—a programming logic with stateful frame
conditions for commands.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—
Class invariants; correctness proofs; formal methods; programming by contract; object orientation; D.3.1
[Programming Languages]: Formal Definitions and Theory—Semantics; D.3.3 [Programming
Languages]: Language Constructs and Features—Classes and objects; modules; packages; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs—Assertions;
invariants; logics of programs; specification techniques

General Terms: Verification, Languages

Additional Key Words and Phrases: Modularity, data abstraction, data invariants, information hiding, heap
separation, resource protection

ACM Reference Format:
Banerjee, A. and Naumann, D. A. 2013. Local reasoning for global invariants, Part II: Dynamic boundaries.
J. ACM 60, 3, Article 19 (June 2013), 73 pages.
DOI:http://dx.doi.org/10.1145/2485981

1. INTRODUCTION

From the simplest collection class to the most complex application framework,
software modules provide useful abstractions by hiding the complexity of efficient

This is an expanded and revised version of a paper originally appearing in the European Symposium on
Programming, 2010.
A. Banerjee was partially supported by Madrid Regional Government Project S2009TIC-1465 Prometidos;
MINECO Project TIN2009-14599-C03-02 Desafios; EU NoE Project 256980 Nessos; US NSF grants CNS-
0627748 and ITR-0326577 and by a sabbatical visit at Microsoft Research, Redmond. D. A. Naumann was
supported in part by US NSF grants CNS-0627338, CRI-0708330, CCF-0429894, CCF-0915611; by a sabbat-
ical visit at Microsoft Research, Cambridge, and by a visiting professorship at IMDEA Software Institute.
Authors’ addresses: A. Banerjee, IMDEA Software Institute, Edificio IMDEA Software, Campus Mon-
tegancedo s/n, 28223 Pozuelo de Alarcón, Madrid, Spain; email: anindya.banerjee@imdea.org; D. A.
Naumann, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030-5991; email:
naumann@cs.stevens.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0004-5411/2013/06-ART19 $15.00
DOI:http://dx.doi.org/10.1145/2485981

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:2 A. Banerjee and D. A. Naumann

implementations. Many abstractions and most representations involve state, so the
information to be hidden includes invariants on internal data structures. Hoare [1972]
described the hiding of data invariants as what amounts to a mismatch between the
procedure specifications in a module interface, used for reasoning about client code,
and the specifications with respect to which implementations of those procedures are
verified. The implementations assume the invariant and are obliged to maintain it.
The justification is simple: A hidden invariant should depend only on encapsulated
state, in which case it is necessarily maintained by client code. Hoare’s formalization
was set in a high level object-oriented language (Simula 67), which is remarkable
because for such languages the encapsulation problem has far too many recent
published solutions to be considered definitively solved.

For reasoning about shared, dynamically allocated objects, the last decade has seen
major advances, especially the emergence of Separation Logic, which helped reduce
what O’Hearn et al. [2001] aptly called a “mismatch between the simple intuitions
about the way pointer operations work and the complexity of their axiomatic treat-
ments”. For encapsulation, there remains a gap between the simple idea of hiding an
invariant and the profusion of complex encapsulation techniques and methodologies.
The profusion is a result of tensions between

— the need to prevent violations of encapsulation due to misuse of shared references;
— the need to encompass useful designs including overlapping and nonregular data

structures, callbacks, and the deliberate use of shared references that cross encap-
sulation boundaries;

— the need for effective, modular reasoning on both sides of an interface: for client code
and for the module implementation;

— the hope of achieving high automation through mature techniques including types
and static analyses as well as theorem proving; and

— the need to encompass language features such as parametric polymorphism and
code pointers for which semantics is difficult.

This article seeks to reconcile all but the last of these and to bridge the gap using
a simple but flexible idea that complements scope-based encapsulation. The idea is to
include in an interface specification an explicit description of a key notion: the internal
state or “heap footprint” on which an invariant rests. This set of locations, called the
dynamic boundary, is designated by expressions that may depend on ordinary and
ghost state.

We formalize the idea using first-order assertions in a Hoare logic, dubbed Region
Logic, for object-based sequential programs. Our approach is based on correctness
judgments with hypotheses, to account for linking of client code to the modules used,
and a frame rule to capture hiding. These two ingredients date back to the 1970’s—
for example, Harel et al. [1977] study a logic with hypothetical judgments and even a
“frame axiom”.1 But we build directly on their novel combination in the second order
frame rule of separation logic [O’Hearn et al. 2009].

Owing to the explicit expression of footprints, region logic for first order programs
and specifications has an elementary semantics and is amenable to automation
with SMT solvers [Kroening and Strichman 2008]. For the most part, region logic is
standard Hoare logic, with classical first order assertions; it borrows from separation
logic atomic commands for heap read/write and the atomic points-to predicate. The

1Their name for the Invariance axiom of Hoare logic [Apt et al. 2009]. Another name is Constancy [Reynolds
1981, 1998].

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:3

small but crucial novelty is a form of stateful frame condition inspired by the work
of Kassios [2011]. This provides local reasoning, that is, a focus on just the locations
relevant to a command’s behavior—its footprint. Basic region logic, including a first
order frame rule, is developed in Part I of this paper [Banerjee et al. 2013].

The notion of dynamic boundary involves a non-standard proof obligation for verify-
ing a command under hypotheses about the procedures it calls: its state updates must
respect the dynamic boundaries of the modules containing those procedures. This no-
tion provides for hiding in a way that is sufficiently flexible to encompass ad hoc dis-
ciplines for encapsulation; even more, to let the formalization of such a discipline be a
matter of program annotation, with its adequacy checked by a verification tool, rather
than being fodder for research papers.

Formally, the payoff from dynamic boundaries is the validation of a second-order
frame rule. Various standard rules of Hoare logic can be retained with little change
beyond the frame conditions added in Part I, but their soundness needs to be proved
with respect to the new proof obligation.

Used directly, our logic requires programs to be instrumented with ghost code
to track footprints. This verbosity is the price paid for using standard first order
assertions—without recursive predicates—and for not baking in a particular method-
ology. However, the simplicity of the approach makes it amenable to richer assertion
languages and to syntactic sugars, supported by static analyses, for established id-
ioms like ownership types (e.g., Müller and Rudich [2007]). Region logic could serve
as translation target for lighter weight but more restrictive notations used for some
modules, while other modules are verified using more specialized specifications.

Contributions. The main contribution of Part II is the notion of dynamic boundary:
its semantics and its proof rules, in particular the second order frame rule. From this
rule we derive a “mismatch rule”, inspired by O’Hearn et al. [2009], that embodies
Hoare’s mismatch. In addition, we derive a novel variant that provides for reentrant
callbacks across module boundaries.

The main technical result is soundness of a full set of proof rules. These include
basic rules from Part I, which are extended with hypotheses and shown to be sound
for the extended notion of correctness including dynamic boundaries. Unlike many
presentations of Hoare logics, we do not assume a fixed collection of procedure decla-
rations, but rather include a letrec construct for explicit linking. Soundness of a Hoare
logic is usually proved with respect to a denotational semantics, which may be de-
rived from a transition (small-step) semantics. Although the purpose of the logic is to
prove pre-post properties, our notion of correctness with respect to dynamic bound-
aries is defined in terms of transition semantics, so our soundness proof deals di-
rectly with small steps.2 The linking rule is unremarkable, except that proving its
soundness in transition semantics is surprisingly difficult, even aside from dynamic
boundaries.

For interesting functional specifications, specification-only variables are essential—
at least the special case of postconditions with “old” expressions to refer to initial
values. For completeness, logics with procedures include substitution or adaptation
rules that cater for manipulation of specification-only variables, especially for verifica-
tion of recursive procedures. We provide a substitution rule and proper treatment of
specification-only variables, which is tricky in a logic with hypothetical judgments (or

2One might hope to avoid transition semantics, perhaps using some form of denotational model and Kripke
semantics, but so far the logic resisted attempts by ourselves and others to find such a model.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:4 A. Banerjee and D. A. Naumann

even one where procedure specifications are tied to procedure declarations [Apt et al.
2009]).

Dynamic boundaries provide an imperative notion of module, complementary to the
functional notions—scoping and parameterization mechanisms—provided by conven-
tional module systems.3 Following O’Hearn et al. [2009] we refrain from formalizing a
full-fledged module system.

Outline. Section 2 surveys the challenges and tensions listed above, using illustra-
tive examples. Section 3 briefly reviews Part I of the paper [Banerjee et al. 2013], on
which we rely. Our aim is for Part II to be understandable on its own, at least at a
high level, provided one trusts Part I for results and fine points of some formulations.
Section 4 adds recursive procedures to the programming language. Correctness judg-
ments are extended with hypotheses (procedure specifications) and proof rules are pro-
vided for procedure call and for discharge of hypotheses by procedure linking. A proof
of the linking rule is sketched, as the induction hypotheses involved are intricate even
without dynamic boundaries. Section 5 develops some technical results, motivated by
that proof sketch, that are only used to prove the linking rule (in Section 7.6). Section 6
formalizes dynamic boundaries and their semantics. It formalizes a simple notion of
module, comprised of a dynamic boundary associated with a group of procedure spec-
ifications. The semantics of correctness judgments is extended to account for dynamic
boundaries. The mismatch rule is presented and is shown to be derivable from the or-
dinary procedure linking rule together with the rule of second order framing. Section 7
extends the proof rules from Section 4 and from Part I of this article to account for dy-
namic boundaries. Soundness is proved in detail. Section 8 shows some derived rules
and applies the logic to the examples in Section 2. Section 9 introduces a mismatch
rule for the case of two modules that inter-depend by way of reentrant callbacks; the
rule is derived from the second-order frame rule. Section 10 discusses related work
and Section 11 concludes.4

2. THE CHALLENGE OF HIDING INVARIANTS ON SHARED OBJECTS

2.1. A Collection Implemented by a List

We begin with a textbook example of encapsulation and information hiding, the toy
program in Figure 1.5 Annotations include method postconditions that refer to a global
variable, pool , marked as ghost state. Ghost variables and fields are auxiliary muta-
ble state used in reasoning, but not mentioned in branch conditions or in expressions

3These are essentially functional, even though procedures in languages like ML and Java use imperative
code.
4There are three major additions compared with the conference version of this article [Naumann and
Banerjee 2010]: detailed soundness proofs including the linking rule for recursive procedures and the substi-
tution rule; a new mismatch rule for reentrant callbacks that cross module boundaries; and detailed proofs
of examples. The syntax and semantics of dynamic boundaries is revised a little, to avoid an incompleteness
in some cases of nested modules. These changes led to numerous revisions.

The published version of Naumann and Banerjee [2010] has an unsound side condition in the second-order
frame rule; the fix was announced during the conference presentation.
5The programming notation is similar to sequential Java. A value of a class type like Node is either null or
a reference to an allocated object with the fields declared in its class. Methods have an implicit parameter,
self, which may be elided in field updates; for example, the assignment lst : = null in the body of the Set
constructor is short for self.lst : = null. Variable result is the returned result; there is no explicit “return”
statement.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:5

Fig. 1. Module SET , together with library class Node. (In our formal treatment, the module consists of
global variable pool and the methods of class Set .)

assigned to ordinary state. Assignments to ghost state can be removed from a pro-
gram without altering its observable behavior, so ghosts support reasoning about that
behavior. (See Owicki and Gries [1976] and Reynolds [1981], but note that Reynolds
uses “ghost” for what we call specification-only variables.)

A region is a set of object references (which may include the improper reference, null).
Type rgn, which denotes regions, is used only for ghost state.

The specifications in Figure 1 are expressed in terms of an integer set, elements ,
which is defined rather than assigned (a “model field” in JML terminology [Leavens
et al. 2003; Leino and Müller 2006]). Abstraction of this sort is commonplace and
plays a role in Hoare’s paper [1972], but it is included here only to flesh out the ex-
ample. Our concern is with other aspects, so we content ourselves with a recursive
definition (of elts) that may seem naı̈ve in not addressing the possibility of cyclic refer-
ences. A proof of well-foundedness of the recursive definition is possible but left out for
simplicity.

Suppose the implementation of remove only removes the first occurrence of i , if any.
That is, it relies on the invariant that no integer value is duplicated in the singly
linked list rooted at lst . To cater for effective automated verification, especially using
SMT solvers, we want to avoid using reachability or other recursively defined notions
in the invariant. The ghost field rep is intended to refer to the set of nodes reachable
from field lst via nxt . The invariant is expressed using elementary set theoretic notions
including the image of a region under a field. The expression s.rep‘nxt denotes the
region consisting of nxt values of objects in region s.rep. It is used in this definition
which will be applied to nonnull references of type Set :

SetI (s :Set) =̂ (∀n,m :Node ∈ s.rep · n = m ∨ n.val �= m.val)
∧ s.lst ∈ s.rep ∧ s.rep‘nxt ⊆ s.rep ∧ s.rep‘own ⊆ {s}.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:6 A. Banerjee and D. A. Naumann

The first conjunct says there are no duplicate values among elements of s.rep. The next
says that s.rep contains the head, s.lst (which may be null). The inclusion s.rep‘nxt ⊆
s.rep says that s.rep is nxt-closed;6 this is equivalent to the following:7

∀o :Node ∈ alloc · o ∈ s.rep ⇒ o.nxt ∈ s.rep.

The special variable alloc is always the set of all currently allocated references. One
can show by induction that these conditions imply there are no duplicates in the list.
So the invariant says what we want, though not itself using any inductive predicates.
However, s.rep could be nxt-closed even if s.rep contained extraneous objects, in par-
ticular nodes reached from other instances of Set . This is prevented by the inclusion
s.rep‘own ⊆ {s}; or rather, by requiring the inclusion for every instance of Set . This
expresses that s “owns” every node in s.rep. So we adopt an invariant to be associated
with module SET :

Iset =̂ ∀s :Set ∈ pool · SetI (s).

Assuming that the constructor is called whenever an instance of Set is allocated, pool
will invariably hold all instances so that we could as well write ∀s :Set ∈ alloc · SetI (s).
We do not make that assumption in our formal development. Even with that assump-
tion, care must be taken with quantifiers in invariants, to avoid falsification by alloca-
tion (cf. [Naumann and Barnett 2006; Pierik et al. 2005]). Though Iset is global in the
sense that it effectively quantifies over all instances of Set , it is compatible with local
reasoning. We return to this in Section 3.2.

Consider this client code, acting on boolean variable b under precondition true.

var s :Set : = new Set ; var n :Node : = new Node;
s.add(1); s.add(2); n.val : = 1; s.remove(1); b : = s.contains(1);

(1)

The implementation of remove relies on the invariant SetI (s), but this is not included
as a precondition in Figure 1 and the client is thus not responsible to establish it before
the invocation of remove. As articulated by Hoare [1972], the justification is that the
invariant appears as both pre- and post-condition for verification of the methods add ,
remove, contains , and should be established by initialization in the Set constructor. And
the invariant should depend only on state that is encapsulated. So it is not falsified by
the initialization of n and still holds following s.add(2); again by encapsulation it is not
falsified by the update n.val : = 1 so it holds as assumed by s.remove.

For brevity, we call this Hoare’s mismatch: the specifications used in reasoning about
invocations in client code, that is, code outside the encapsulation boundary, differ from
those used to verify the implementations of the invoked methods. By contrast, ordi-
nary procedure call rules in program logic use the same specification at the call site
and to verify the procedure implementation. Automated, modular verifiers are often
based on an intermediate language using assert and assume statements: At a call
site, the method precondition is asserted and this same precondition is assumed for

6We do not use sets of regions. The image operator flattens, for region fields: For any region expression G,
the image region G‘rep is the union of rep images whereas G‘nxt is the set of nxt images, because rep has
type rgn and nxt has class type. Full details are in Part I [Banerjee et al. 2013].
7The range condition “n ∈ s.rep” is false in case s is null, because n ∈ s.rep is shorthand for n ∈ {s}‘rep and
{null}‘rep is empty. Our assertion logic is 2-valued and avoids undefined expressions. In this particular case,
n is not null because quantified variables range over non-null elements of the specified range; and we do not
apply SetI to null. According to Remark 3.1 in Part I of the article, we should avoid writing s.lst ∈ anything ,
and indeed if we expand the shorthand the condition is {s}‘lst ⊆ anything which is true if s is null—in
confusing contrast with the points-to predicate s.lst = y , which is false if s is null. We indulge in this abuse
of notation only in this section, and only in cases where the relevant reference is nonnull.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:7

Fig. 2. Module MM , comprised of global variables freed , flist , count , and procedures alloc and free.

the method’s implementation; so the assumption is justified by the semantics of as-
sert and assume. Hoare’s mismatch asserts the public precondition at call sites, but
assumes for the implementation an added conjunct, the invariant.

The mismatch is unsound if encapsulation is faulty, which can easily happen due to
shared references, for example, if in place of n.val : = 1 the client code had s.lst .val : = 1.
To some extent, encapsulation is provided by lexical scope of state components—for
example, field lst—and types. However, scope does not prevent that references can
be leaked to clients, for example, via a global variable of type Object. Moreover, code
within the module, acting on one instance of Set , could violate the invariant of another
instance (as allowed by “private” scope as in Java). For the sake of focus, we gloss over
scope in the examples and formalize only rudimentary scoping constructs.

Besides scope and typing, a popular technique to deal with encapsulation in the
presence of pointers is ownership (e.g., Dietl and Müller [2005] and Drossopoulou et al.
[2008]). Ownership systems restrict the form of invariants and the use of references,
to support modular reasoning at the granularity of a single instance and the internal
representation that it “owns” and on which its invariant may depend. Ownership in
this sense works well for SetI and indeed for invariants in many programs.

2.2. A Toy Memory Manager

It is difficult to find a single notion of ownership that is sufficiently flexible yet sound
for invariant hiding. Figure 2 presents a module that is static in the sense that there is
a single memory manager, not a class of them. Instances of class Node (from Figure 1)
are treated as a resource. The instances currently “owned” by the module are tracked
using variable freed . The hidden invariant in this example is recursively defined as
follows.

Imm =̂ FC (flist , freed , count)

where FC (f :Node, r : rgn, c : int) is defined, by induction on the size of r , as

(f = null ⇒ r = ∅ ∧ c = 0) ∧ (f �= null ⇒ f ∈ r ∧ c > 0 ∧ FC (f .nxt , r \ {f }, c − 1)).

The invariant says freed is the set of nodes reached from flist and count is the size. The
implementation of alloc relies on accuracy of count . It relies directly on the condition
count �= 0 ⇒ flist �= null, as otherwise the dereference flist .nxt could fault; but for
this to hold on subsequent calls the stronger condition Imm needs to be maintained as
invariant.

Consider this strange client that both reads and writes data in the free list —but not
in a way that interferes with the module.

var x , y :Node; x : = new Node; y : = alloc(); free(x); free(y);
while y �= null do y .val : = 7; y : = y .nxt ; od

(2)

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:8 A. Banerjee and D. A. Naumann

Fig. 3. Module SO . Public methods are Subject , update, get and Observer .

The loop updates val fields of freed objects, but it does not write the nxt fields, on which
the invariant depends; the client neither falsifies Imm nor causes a fault. Suppose,
however, that we replace the loop by the assignment y .nxt : = null. This falsifies the
invariant Imm , if initially count is sufficiently high, and then subsequent invocations
of alloc break.

The strange client (2) is rejected by most ownership systems due to rigid typing
or specification rules. In separation logic, “ownership is in the eye of the asserter”
[O’Hearn et al. 2009] and there is more flexibility. However, notional ownership is
expressed using the separating conjunction, which disallows shared reads. The strange
client would not be verifiable in separation logic [O’Hearn et al. 2009] except in the
relatively elaborate variants that use permissions to allow shared reads [Bornat et al.
2005]. But we can identify an encapsulation boundary in the example: clients must not
write the nxt field of objects in freed (nor write variables flist and count). The strange
client respects this boundary.

This example may appear contrived. However, sharing of references across encapsu-
lation boundaries is common in system code, at the C level of abstraction. Shared reads
also occur in programs at the level of abstraction we consider here, where references
are abstract values susceptible only to equality test and field dereference. Platforms
such as J2EE provide efficient access to databases by means of connection pools. When
a client closes a connection, it may retain a reference to the connection object and make
harmless updates, or harmful ones, if the implementation relies on good behavior of
clients rather than robust encapsulation.

We aim to facilitate reasoning based on explicit ownership invariants, as in the SET
example, but in harmony with reasoning in terms of more- or less-specialized idioms
as in the MM example and the following examples.

2.3. Observer Pattern: Cluster Invariants

Aside from separation logic, ownership has been developed mainly for instance-
oriented invariants as in the SET example. In many situations, however, the desired
granularity of local reasoning pertains to a nonhierarchical cluster of interdependent
objects.

Figure 3 is a simple version of the Observer design pattern in which an observer only
tracks a single subject. The code is exactly the same as in Part I except for the use of
ghost region sopool and its updates in the constructors Subject and Observer . Parkinson
[2007] used the example to argue against instance-oriented notions of invariant. We

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:9

Fig. 4. Specifications of methods in SO . For an observer b, subject s, and integer v , the predicate Obs(b, s, v)

is defined as b.sub = s ∧ b.cache = v .

address that issue using a single invariant predicate that in effect quantifies over
clusters of client-visible objects; each cluster is comprised of a subject and its observers.
Classes Subject and Observer are together in a module, in which methods register and
notify should have module scope. The implementation maintains the elements of O in
the nxto-linked list threaded through the observers themselves, and it relies on the
hidden invariant

Iso =̂ (∀s :Subject ∈ sopool · SubH (s)) ∧
(∀o :Observer ∈ sopool · o.sub �= null ∧ o ∈ o.sub.O)

where SubH (s) is defined as List(s .obs , s.O) ∧ s.O ⊆ sopool . Recall from Part I that
List(o, r) says the list beginning at o lies in region r (compare FC in Section 2.2). The
second conjunct of Iso says that any observer tracking a subject lies in that subject’s O
region. As with Iset , the instantiations of Iso are local in that they depend on nearby
objects, but here a subject and its observers form a cooperating cluster of objects not in
an ownership relation.

Clients may rely on separation between clusters. As an example, consider a state
in which there are two subjects s, t with s.val = 0 and t .val = 5. Consider this client:
o : = new Observer(s); p : = new Observer(t); s.update(2). Owing to separation, t .val = 5
holds in the final state.

The specifications of methods in SO appear in Figure 4 and use predicate Obs defined
in the figure’s caption. Obs connects a subject s to observer b by tracking in b ’s cache
the current value v of s ’s internal state. The specifications are the same as in Part I
except that they take into account sopool .

2.4. Overlapping Data Structures and Nested Modules

One feature of the preceding example is that there is an overlapping data structure
because a list structure is threaded through observer objects that are client visible. We
now consider another example which further illustrates overlapping data structures
and also hiding in the presence of nested modules. The module in Figure 5 consists of a
class, ObsColl , that extends Observer . Instances of ObsColl are in two overlapping data
structures. First, these objects are arranged in a cyclic doubly linked list, traversed
using next and prev pointers, whose elements may be observing the same or different
subjects. Second, each ObsColl is in the nxto-linked list of observers of its subject.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:10 A. Banerjee and D. A. Naumann

Fig. 5. Module OC . The predicate U (x :ObsColl , g : rgn) is defined as (x = null ∧ g = ∅) ∨ (x �= null ∧ null �∈
g ∧ x ∈ g ∧ x .next ∈ g ∧ x .prev ∈ g ∧ x �= x .next ∧ x �= x .prev).

The constructor of ObsColl first calls the superclass constructor, Observer , with sub-
ject s. This call adds the newly allocated object to the front of the list of observers of s.
The newly allocated object is then added to the cyclic doubly linked list by manipulat-
ing next and prev pointers.

Module OC is defined in the context of module SO , because ObsColl is a subclass
of Observer . The verification of the implementation of ObsColl will require its module
invariant Ioc but not Iso . The invariant Ioc expresses a simple property of cyclic doubly
linked lists:

Ioc =̂ ∀oc :ObsColl ∈ ocpool · oc.prev .next = oc ∧ oc.next .prev = oc.

Despite the overlapping structure, there is no interference between the code and in-
variants of modules SO and OC because different locations are involved.

Figure 5 gives the specifications of the ObsColl constructor. The precondition is the
conjunction of the two requires clauses and the postcondition is the conjunction of the
two ensures clauses. The precondition uses the predicate U defined in the caption of
the figure. Observe that U (x ,∅) ⇔ x = null and U (null, g) ⇔ g = ∅.

Interesting variations on the example include observers that track multiple subjects,
and observers that are also in the role of subject (cf. Krishnaswami et al. [2010]). Of
particular interest are callbacks between modules, as opposed to the notify/get callback
within module SO . That is the topic of Section 9.

3. REGION LOGIC REVIEW: EFFECTS AND FIRST-ORDER FRAMING

This section reviews programs and specifications from Part I [Banerjee et al. 2013], to
which the reader may refer for details.

3.1. Programming Language, States, Assertions

Our formal results are given for an idealized object-based language with syntax in
Figure 6. Programs are considered in the context of a fixed collection of class declara-
tions, of the form class K { f :T }, where field types T may make mutually recursive
reference to other classes. Classes are nothing more than named record types. We treat
type equivalence by name, though it matters little.

The syntax in Figure 6 is the same as in Part I of this article except for the addition
of procedure calls, m(x), and procedure blocks (letrec). In this section we review the
basic semantics, leaving procedures to Section 4. In Section 6, we introduce a rudimen-
tary form of module, consisting of little more than grouping of related procedures and
explicit declaration of the import relation (e.g., OC imports SO). Class declarations

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:11

Fig. 6. Programming language. Procedure call, m(x), and linking, letrec m(x :T) = C in C , are additions
to the language of Part I and are not considered until Section 4. The atomic commands are those in the first
line of the production for C , including procedure call.

and global variable declarations are considered visible in all modules. The “little
more” is the crux of Part II: each module has a dynamic boundary for encapsulation.

Typing rules enforce that type int is separated from reference types: there is no
pointer arithmetic, but references can be tested for equality. We let � range over typing
contexts that are well formed, meaning that no variable is given more than one type,
variable alloc is in dom(�), and �(alloc) = rgn. We write �, x :T for extension of � with
x that is not in dom(�); it is not defined if x is in dom(�).

Figure 5 is illustrative of the kinds of programs in which we are interested. For econ-
omy in the formal development, we do not consider subclassing, and thus we neither
consider inheritance nor dynamic dispatch. Particular examples, such as the one in the
figure, can come under the formal development by a simple translation. We inline the
code of Observer and replace the call super(s) by a call to Observer .Observer(s). Each
class must declare its own version of a method. So ObsColl will declare its own notify
method, whose body will be the same as that of Observer .notify . Adapting the formal
development to handle inheritance and dynamic dispatch is left for future work.

The semantics is based on conventional program states. We assume given an infinite
set Ref of reference values including a distinguished value, null . A �-state has a global
heap and a store; the store assigns values to the variables in �. The variable alloc is
special in that its updates are built in to the semantics of the language: newly allocated
references are added and there are no other updates. In a well-formed state, alloc
holds the set of allocated references and does not contain null . The heap maps each
allocated reference to its type (which is immutable) and its field values. The values
of a class type K are null and allocated references of type K . We abstract from the
concrete representation and assume the usual operations are available for a state σ .
For example, σ(x) is the value of variable x , σ(F) is the value of expression F , [σ | x : v]
overrides σ to map variable x to v , Type(o, σ) is the type of allocated reference o,
[σ | o.f : v] overrides σ to map field f of object o to v (for o ∈ σ(alloc)), Extend (σ , x , v)
extends σ to map x to value v (for x �∈ Dom(σ)), and σ �x removes x from the domain of
the store. (The symbol � is intended to be mnemonic for “toss”.) Heaps have no dangling
references; we do not model garbage collection or deallocation.

In a given state, the region expression G ‘f (read “G ’s image under f ”) denotes one
of two things, as mentioned in Footnote 6. If f has class type then G ‘f is the set of
values o.f where o ranges over non-null elements of G that have field f . If f has region
type, like rep in Figure 1, then G ‘f is the union of the values of f . We assume that field
names are unique, so that o has field f just if Type(o, σ) is the class that declares f .

Assertions are interpreted with respect to a single state, for example, the semantics
of the atomic “points-to” predicate x .f = E is defined by:

σ |� x .f = E iff σ(x) �= null and σ(x .f) = σ(E).

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:12 A. Banerjee and D. A. Naumann

Fig. 7. Effect specifications for methods in Figure 1. For contains, the effect is empty.

Fig. 8. Grammar of effects and state predicates.

The operator “old” used in specifications like those in Figure 1 can be desugared using
specification-only variables. (For example, this is the role of X in Figure 4.) We do not
use quantified variables of type rgn. Quantified variables of class type range over non-
null, currently allocated references: σ |�� (∀x :K ∈ G · P) iff Extend (σ , x , o) |��,x :K P
for all o ∈ σ(alloc) ∩ σ(G) such that Type(o, σ) = K . To assert that elements of G have
type K one writes G ⊆ G/K using the type restriction /K .

3.2. Effect Specifications and the Framing of Commands and Formulas

We augment the specifications in Figure 1 with the effect specifications in Figure 7.
Effects are given by the grammar in Figure 8. We omit tags wr and rd in lists of effects
of the same kind. In this article, read effects are used for formulas and write effects as
frame conditions for commands and methods; commands are allowed to read anything.
Freshness effect frG is used for commands; it says that the value of G in the final state
contains only (but not necessarily all) references that were not allocated in the initial
state.

The effect specification for the constructor method, Set(), says variable pool may be
updated. For add , the effect wr alloc means that new objects may be allocated. The effect
wr self.any says that any fields of self may be written. The effect wr self.rep‘any says
that any field of any object in self.rep may be written; in fact, none are written in our
implementation, but this caters for other implementations. The effect wr self.rep‘any is
state dependent, because rep is a mutable field.

In general, let G be a region expression and f be a field name. The effect wrG ‘f
refers to l-values: the locations of the f fields of objects in G—where G is interpreted
in the initial state. A location is merely a reference paired with a field name.

An effect of the form wr x .f abbreviates wr {x }‘f . In case x is null, this is well defined
and designates the empty set of locations. One may also allow f to be a data group
[Leino et al. 2002], for example, the built-in data group “any” that stands for all fields
of an object.

We say σ ′ is compatible with σ , and write σ � σ ′, provided Type(o, σ) = Type(o, σ ′)
for all o ∈ σ(alloc) ∩ σ ′(alloc). We say σ ′ succeeds σ , and write σ ↪→ σ ′, provided σ � σ ′
and σ(alloc) ⊆ σ ′(alloc). These relations make sense for states of any type, not neces-
sarily the same type.

For effect ε that is well formed in �, and �′-states σ , σ ′ for some �′ ⊇ �, we say ε
allows change from σ to σ ′, written σ→σ ′ |� ε, if and only if σ ↪→ σ ′ and

(a) for every y in dom(�′), either σ(y) = σ ′(y) or wr y is in ε
(b) for every o in σ(alloc) and every f in Fields(Type(o, σ)), either σ(o.f) = σ ′(o.f) or

there is G such that wrG ‘f is in ε and o is in σ(G)
(c) for each frG in ε, we have σ ′(G) ⊆ σ ′(alloc) \ σ(alloc).

The need to consider �′ different from � should become clear in Section 4.2.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:13

We extend Hoare triples with frame conditions in brackets, so that {P } C {P ′ } [ε]
says that σ→σ ′ |� ε as well as σ ′ |� P ′, for any P -state σ from which C can yield σ ′.

Formulas Are Framed by Read Effects. We aim to make explicit the footprint of Iset ,
which will serve as a dynamic boundary expressing the encapsulation that will allow
Iset to be hidden from clients. First, we frame the object invariant SetI (s) (Section 2.1),
which will be used for “local reasoning” at the granularity of a single instance of Set .
We choose to frame8 it by

δ0 =̂ rd s, s.(rep, lst), s.rep‘(nxt , val , own)

(abbreviating s.rep, s.lst , s.rep‘nxt , s.rep‘val , and s.rep‘own). A read effect designates
l-values. Here, δ0 allows to read variable s, fields rep and lst of the object currently
referenced by s if any, and the fields nxt , val , and own of any objects in the current
value of s.rep.

We use a judgment for framing of formulas, for example, true � δ0 frm SetI (s) says
that SetI (s) depends at most on the locations designated by δ0. The judgment involves
a formula, here true, because framing by state-dependent effects may hold only under
some conditions on that state. For example, we have

s ∈ pool � rd s, pool ‘(rep, lst) frm s.lst ∈ s.rep.

The semantics of judgment P � δ frm P ′ is specified as follows. We write Agree(σ , τ , δ)
to say σ agrees with τ on locations designated by δ. More precisely (see Definition 5.2
in Part I): Let δ be an effect that is well-formed in �. Let �′ ⊇ � and �′′ ⊇ �. Let σ
be a �′-state and τ a �′′-state. We say that σ and τ agree on δ, written Agree(σ , τ , δ),
provided that σ � τ and moreover the following hold.

(a) For all rd x in δ, we have σ(x) = τ(x).
(b) For all rdG ‘f in δ and all o ∈ σ(G) ∩ τ(alloc) with Type(o, σ) = DeclClass(f), we

have σ(o.f) = τ(o.f).

In Section 6, we instantiate this definition with intermediate states that may extend �
with additional local variables and procedure parameters. That is why we need �′, �′′.

A framing judgment P �� δ frm P ′ is called valid written P |�� δ frm P ′, iff for all
�-states σ , σ ′,

if Agree(σ , σ ′, δ) and σ |�� P ∧ P ′ then σ ′ |�� P ′. (3)

(See Definition 6.1 in Part I.) There are two ways to establish a framing judgment. One
is to directly check its validity. That can be automated using an SMT prover provided
the heap model admits quantification over field names, to express agreement. The
validity condition is in the ∀ fragment and automation worked well in our experiments
[Rosenberg et al. 2010]. The other way is to use inference rules for the framing judg-
ment. These include syntax-directed rules together with first-order provability and ef-
fect subsumption. As an example, the rule for framing a quantified formula, say a judg-
ment P � η frm (∀x :K · x ∈ G ⇒ P ′), has a premise of the form P ∧ x ∈ G � η′ frm P ′
and requires η to subsume the footprint of G . (See Part I for these rules.) For Iset ,
we can use the specific judgments above to derive true � δset frm Iset , where δset is
rd pool , pool ‘(rep, lst), pool ‘rep‘(nxt , val , own). This is subsumed by θset , where

θset =̂ rd pool , pool ‘any, pool ‘rep‘any.

8The term “frame” traditionally refers to that which does not change, but frame conditions specify what may
change. To avoid confusion we refrain from using “frame” by itself as a noun.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:14 A. Banerjee and D. A. Naumann

A Frame Rule. To verify the implementations in Figure 1 we would like to reason in
terms of a single instance of Set . Let Badd be the body of method add . We can verify that
Badd satisfies the frame conditions wr alloc, self.any and thus those for add in Figure 7.
Moreover, we can verify the following.

{SetI (self) } Badd {SetI (self) ∧ elements = old(elements) ∪ {i} } [alloc, self.any] (4)

From this local property, we aim to derive that Badd preserves the global invariant Iset .
It is for this reason that SetI (s) includes ownership conditions. These yield a separation
property:

Iset ⇒ (∀s, t :Set ∈ pool · s = t ∨ s.rep # t .rep) (5)

because if n �= null, and n is in s.rep ∩ t .rep then n.own = s and n.own = t . Here, #
denotes disjointness of sets. To be precise, G # G ′ abbreviates G ∩ G ′ ⊆ {null}. Now Iset
is logically equivalent to SetI (self) ∧ Iexcept , with δx framing Iexcept , defined as

Iexcept =̂ ∀s :Set ∈ pool \ {self} · SetI (s)

δx =̂ rd self, pool , (pool \ {self})‘(rep, lst), (pool \ {self})‘rep‘(nxt , val , own)

We aim to conjoin Iexcept to the pre- and postconditions of (4). To make this precise,
we use a syntax-directed operator ./. on effects. Given read effects δ and write effects
ε, the separator formula given by δ ./. ε is a conjunction of disjointness formulas, de-
scribing states in which writes allowed by ε cannot affect the value of a formula with
footprint δ. The formula δ ./. ε is defined by induction on the syntax of effects. For ex-
ample, rd x ./. wr y is true or false according to whether x and y are the same variable,
and rdG ‘f ./. wrH ‘f is the disjointness formula G #H . The key property of a separator
formula is this. For effects δ, ε that are well formed in �, �′ ⊇ �, and �′-states σ , τ , if
σ→τ |� ε and σ |� δ ./. ε, then Agree(σ , τ , δ) (Lemma 6.8, “separator agreement” in
Part I). �′ is used to account for agreement for intermediate states that may have local
variables and procedure parameters as in Section 6.

For our example, it happens that δx
./. (wr self.any, wr alloc) is true. So, to complete

the proof of {Iset }Badd {Iset ∧ elements = old(elements) ∪ {i} }, the key step is to take Q to
be Iexcept and δ to be δx in the frame rule:

FRAME
� {P } C {P ′ } [ε] P � δ frm Q P ∧ Q ⇒ δ ./. ε

� {P ∧ Q } C {P ′ ∧ Q } [ε]
.

The proof is completed using the rule of consequence and the logical equivalence of Iset
to SetI (self) ∧ Iexcept .

Soundness of rule FRAME is a direct consequence of frame validity. Note that by
definition P � δ frm Q is valid iff P ∧ Q � δ frm Q is valid.

Similar reasoning verifies the implementation of remove. For verifying remove, the
precondition P in FRAME will be true ∧ Iset because true is the precondition of remove
in Figure 1. The effects of remove include wr self.rep‘any and the relevant separator
formula δx

./. wr self.rep‘any involves nontrivial disjointnesses:

(pool \ {self}) # self.rep ∧ (pool \ {self})‘rep # self.rep.

The second conjunct is a consequence of the ownership property (5) which follows from
Iset . The first conjunct follows from the fact that elements of self.rep have type Node
and those of pool \ {self} have type Set . This fact could be used if we strengthen SetI (s)
to say type(Node, s.rep) and strengthen Iset to say type(Set , pool). Alternatively, one
can verify the implementation of remove for effects wr self.lst , self.rep‘(nxt , own), which

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:15

gives rise to a different separator formula. These effects are not suitable to appear in
the interface specification, but are subsumed by the ones in Figure 1.

4. PROCEDURES AND HYPOTHETICAL JUDGMENTS

This section extends the language of Part I with procedure blocks and procedure calls.
The construct “letrec m(x :T) = B in C ” links client command C with implementa-
tion B of procedure m. Often program logic is formalized using a fixed association
between procedure specifications and implementations (e.g. Apt et al. [2012]), but here
we model linking using program configurations that contain a procedure environment.
The command letrec m(x :T) = B in C extends the environment, binding m to B , and
proceeds to execute C . Calls to m in C retrieve and execute B . The linking rule, that is,
the proof rule for letrec, requires C to be verified under a hypothesis—the specification
of m—and discharges that hypothesis by requiring B to satisfy the specification. This
is the gist of the procedure call rule of Hoare [1971].

For the semantics of a hypothetical judgment like the correctness of C under an as-
sumption about m, there is an intuitively appealing semantics in terms of fully linked
programs: C is correct when linked with any B ′ that satisfies the specification of m. In
a denotational model, the semantics of C can be parameterized on the semantics of m
and quantification taken over all meanings for m that satisfy the specification. That
quantification can be avoided by interpreting the client command C with respect to
a single meaning that uses nondeterminacy to represents all correct implementations
of m. This is called the “worst program” by O’Hearn et al. [2009], where this tech-
nique helps streamline the difficult proof of soundness of the second order frame rule.
The technique has also been used in a big-step operational semantics (see Pierik and
de Boer [2005a] or Pierik [2006, Sect. 8.3]).

Refinement calculi carry the idea one step further, augmenting the programming
language with specification statements which behave as the least refined program that
satisfies a particular specification [Back and von Wright 1998; Morgan 1994; Shaner
et al. 2007]. Verification-condition generators often use the idea: The axiomatic seman-
tics of a procedure call becomes roughly an assertion (of the procedure precondition)
followed by an assumption (of its postcondition). Refinement calculi have been inter-
preted using predicate transformers, a sufficiently rich domain to include models of
least-refined programs with respect to total correctness. For partial correctness, pre-
post relations suffice for denotational semantics, in particular for the “worst programs”
in O’Hearn et al. [2009].

In this article, we do not use specification statements but rather a conventional
logic of correctness with hypotheses. The operational semantics of a program under
hypothesized procedure specifications is a conventional transition (small-step) seman-
tics, including calls of procedures in the environment (environment calls). But for con-
text calls, that is, calls of procedures in the hypothesis context, the semantics takes
a big step to the final state of the call, in accord with the specification, as in the re-
lational semantics of “worst programs”. The ultimate justification of our semantics is
the linking rule: Its soundness says precisely that correctness of C under a hypothesis
for m implies correctness of letrec m(x :T) = B ′ in C for every B ′ that satisfies that
hypothesis.

Many works prove soundness of a program logic with respect to a transition seman-
tics, but usually indirectly, via a denotational or big-step operational semantics (e.g.,
Apt et al. [2009]). Here, small steps are integral to our semantics of dynamic bound-
aries, presented in Section 6. In this section we give the proof rules for procedure calls
and the linking of procedure blocks in simplified form, without dynamic boundaries.
The soundness argument for the linking rule is sketched. The sketch brings to light the

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:16 A. Banerjee and D. A. Naumann

need for somewhat intricate technical results about the semantics which are developed
in Section 5.

4.1. Syntax Extended with Procedures

As in Part I, we restrict the syntax and semantics as follows.

Assumption 4.1. A set SpecOnlyVar ⊆ VarName \ {alloc} is designated as
specification-only. These do not occur in any command, not even in ghost code. They
do not influence allocation: Fresh (σ) = Fresh (τ) if σ differs from τ only on some
specification-only variables. Finally, we disallow wr x for specification-only x .

Owing to this treatment of specification-only variables, our proof rules and specifica-
tions follow the conventional pattern; although we are explicit about a typing context,
our syntax does not explicitly quantify specification-only variables over specifications.

Recall that typing is formalized with respect to a collection of named record-pointer
types (class declarations) that are not explicit in the typing judgments. We extend
typing contexts to include not only variable typings x :T but also procedure typings,
written m : (x :T). This designates a procedure named m with a single parameter x .
(The generalization to multiple parameters and out-parameters should be evident, and
it is not difficult to add an implicit self parameter.) We often say variable for variable
name, and assume that variables are distinct from procedure names. We still use the
letter � for typing contexts. Note that variables x have data types T and are in general
mutable, whereas procedure names are bound by letrec and are not reassignable.

As usual in Hoare logics with procedures, we want to prevent calls m(z) where z is
a global variable accessible to the implementation of m, as this would complicate the
substitutions and restrictions needed for sound proof rules. This loses no generality:
such a call can be expressed as var x :T in x : = z ;m(x). The need for this restriction
arises only in a few places; to formalize it, we posit an infinite set Locals such that

Locals ⊆ VarName \ SpecOnlyVar .

Elements of Locals can be used as local variables and procedure parameters. Elements
of VarName \ Locals can be used as global variables of the program, which model both
the program input/outputs and also those variables (like pool in SET) that are used
within particular modules. We restrict the typing rule for local variable blocks, adding
condition x ∈ Locals :

�, x :T � C x ∈ Locals

� � var x :T in C
.

We add the corresponding condition to the semantics:

x ′ /∈ dom(σ) x ′ ∈ Locals C ′ = C x
x ′

〈var x :T in C , σ 〉 �−→ 〈C ′; evar(x ′), Extend (σ , x ′, default(T))〉 . (6)

The proof rule for local blocks carries over from Part I unchanged. Here and in the
sequel, we use the compact notation like C x

x ′ for substitution of x ′ in place of x , rather
than C /x→x ′ which is used in Part I.

The typing rule for procedure call is as follows:

�(z) = T �(m) = (x :T) z ∈ Locals

� � m(z)
.

It imposes the restriction on calls discussed above. For procedure linking, the rule is

��Locals ,m : (x :T), x :T � B �,m : (x :T) � C x ∈ Locals B is letrec-free
� � letrec m(x :T) = B in C

.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:17

The parameter in a procedure binding must be in Locals . Furthermore, removing Locals
from the domain of � restricts the procedure body B so it cannot refer to variables
bound by enclosing local variable blocks. (The “toss” symbol � is used for dropping an
element or set of elements from the domain of a mapping.) The restrictions model a
language like C (and like Java without inner classes) with only top-level procedure
declarations, and it helps keep the semantics simple. A complete program will have
no free procedure names, but will have some global variables, for input and output
and module variables like pool ; these will be in �. There may also be specification-only
variables in �, for use in proofs and procedure specifications. According to our nota-
tional conventions, m in the typing rule must not occur in � (but x may be in dom(�)).
This precludes shadowing in C of one procedure binding by an inner binding to the
same name. That is convenient in the semantics because it lets us treat method envi-
ronments simply as maps. Note that the implementation B of m can make recursive
reference to m.

For the most part, we focus on linking a single procedure as in the grammar
(Figure 6). However, in discussing soundness of the proof rule for letrec we will en-
counter a fine point that pertains to the general case: simultaneous linking of n proce-
dures that may be mutually recursive. Here is the typing rule.

�′ = m1 : (x1 :T1), . . . ,mn (xn :Tn)

�, �′ � C ��Locals , �′, xi :Ti � Bi xi ∈ Locals and Bi is letrec-free, for all i
� � letrec m1(x1 :T1) = B1; . . . ;mn (xn :Tn) = Bn in C

. (7)

We do not include a rule for extending the context, but as in Part I for the other
binding constructs (var for commands and quantifiers for formulas), it is admissible. To
be precise: if � � C and m is not in dom(�) and is not bound in C then �,m : (x :T) � C
is derivable. So we retain the hygiene property from Part I that in derivable typings
no variable or procedure occurs both bound and free, nor is a binding shadowed.

4.2. Correctness Judgments and Program Semantics with Hypotheses

The operational semantics of procedure blocks uses environments. Substitution is only
used for renaming of variables, in procedure call (and variable blocks, cf. (6)), so the
store can be modeled simply as a mapping of variables to values. End-marker com-
mands are used so the control state can be modeled using a single command. In this
section, we first address the use of end-markers. Then we define specifications, on
which basis we define configurations and the transition relation. The transition se-
mantics of context calls is explained at length.

Extended Commands. Command elet(m) ends the scope of a procedure block, in the
same way as evar(x) is used for a local variable in Eq. (6). For procedure parameters
we use “end-call”, ecall(x), which has the same semantics as evar but is distinguished
for technical reasons explained in Section 5.

We use the term ordinary commands for the ones defined in Figure 6. The end-
marker commands are evar(x), ecall(x), and elet(m). An extended command is a com-
mand that may include end-markers, but only at the top level to encode a stack of open
scopes. That is, an extended command is one that matches the regular pattern

(C (; (evar(x) | ecall(x) | elet(m)))∗)∗,

where C ranges over ordinary commands. For this to make sense, we consider semi-
colon to be associative. To be very precise, the set of extended commands is quotiented

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:18 A. Banerjee and D. A. Naumann

by the equivalence relation defined by9 B ; (C ;D) ≡ (B ;C);D and skip;C ≡ C ≡
C ; skip. Treating skip as left unit obviates the need for an explict transition rule for
the terminating step of C in a sequence C ;D .

The command in a configuration can always be written as a sequence of one or more
commands that are not themselves sequences. The first is the active command, the one
that is rewritten in the next step. Define Active(C1;C2) = Active(C1) and Active(C) =
C if there are no C1,C2 such that C is C1;C2.

In the following, and in contrast with Part I of the article, we have several reasons
to interpret predicates and effects at intermediate configurations. So we consider in
detail the typability of intermediate configurations, including the control state. There
are no typing rules for end-markers, so � � C implies that C has no end-markers. In
order to formulate an invariant of the semantics concerning typing of the control state,
we inductively define a judgment � � C on extended commands C , which deals with
the end markers as follows.

� � C

� � C

� � C ��x � D

� � C ; evar(x);D
� � C ��x � D

� � C ; ecall(x);D
� � C ��m � D

� � C ; elet(m);D
.

One property of this judgment is that if � � C and Active(C) is not an end marker,
then � � Active(C). Typability in this sense is preserved by transitions: see item
(2) in Definition 4.3 and Lemma 4.6. As an example, a configuration with control
state var x :T in skip transitions to one with control state evar(x ′). Because evar(x ′)
can be written skip; evar(x ′); skip, we get � � skip; evar(x ′); skip using the previous
rules.10

Specifications and procedure contexts

Definition 4.2 (Procedure Specification, Context). A procedure context,
, is a set of
specifications, each of the form

{Q } m(x :T) {Q ′ } [ε] (8)

such that no procedure name m has more than one specification.11 For the specification
(8) to be well formed in �, all of Q ,Q ′, ε should be well-formed in ��Locals , x :T and no
m specified in
 is in dom(�). Moreover the frame condition ε should not contain wr x .
(Nor can it contain wr s for any s in SpecOnlyVar , according to Assumption 4.1.)

The use of ��Locals , x :T , with locals removed from �, allows specifications to refer
to global variables in �. The exclusion of wr x from ε enforces the usual constraint in
Hoare logics that the procedure body does not update the parameter, so that any use of
x in Q ′ and ε refers to its initial value. Note that ε may still refer to x in forms such as
wr ({x } ∪ r)‘f . A specification is not useful unless the parameter x is in Locals , in accord
with the typing rule for letrec. We write “m in
” to mean there is a specification of m
in
.

Specification languages often allow postconditions to refer to the initial state us-
ing old-expressions. One can desugar, for example, old(E) by adding specification-only

9We do not need to extend this to a congruence with respect to other program constructs, as it is only needed
to simplify notions that pertain to the control state.
10The definition of � is slightly more general than needed, in that � � C ; evar(x);D can hold even if x /∈
dom(�). That could be eliminated, but there is no need to complicate the definition of � because it is only
used in conjunction with the other conditions of Definition 4.3.
11We gain some minor streamlining of notation by restricting to a single specification per procedure, but it
is straightforward to allow multiple specifications.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:19

variable s and precondition s = E . Our formalization uses specification-only variables,
and not old-expressions, because they support simpler proof rules (e.g., for sequential
composition). A minor benefit is increased expressiveness: occasionally it is convenient
for the precondition not to determine s uniquely.

In this section, we consider hypothetical correctness judgments of the form

 �� {P } C {P ′ } [ε] . (9)

The judgment is well formed if
,P ,P ′, ε are well formed in �; moreover C is an or-
dinary command and �, sigs(
) � C . Here sigs extracts the procedure signatures; for
example, sigs applied to the single specification (8) yields m : (x :T).

Note that � may include locals used in C and in the specification of C , but the
specifications in
 only refer to � �Locals . We also allow � to declare procedures, but
this is only a technical convenience for the soundness proofs. Procedures called in C
should be in
, not �, in order to use the proof rule for procedure call.

Specification-only variables that occur in
 might seem to be scoped over the whole
judgment. But this is merely a technical artifact to streamline notation and typing. As
usual in Hoare logic, such variables are interpreted by universal quantification over
the pre- and post-condition. This is formalized in Figure 9, explained later.

As in Part I of the article, the correctness judgment is intended to say that from any
initial state that satisfies P , C does not fault and if it terminates then the final state
satisfies P ′ and the effects are allowed by ε. But we need to consider computations of
C in the context of procedures that satisfy the specifications
. We use a semantics in
which a call m(z) for m in
 takes a single step to an arbitrary outcome allowed by the
specification of m.

The correctness judgment expresses not only that C satisfies its pre/post/effect spec-
ification, but also that it does so for any implementations of the procedures in
. Such
implementations include those that fail unless the specified precondition holds; so we
need a semantics in which precondition failure can be expressed. One possibility is for
there to be no transition in case the precondition does not hold. But it turns out to
be slightly more succinct to formulate various definitions using an explicit transition
to a failure state. In Naumann and Banerjee [2010], we used fault for this purpose,
but ordinary faults due to null dereference are observable, whereas here we are trying
to capture reasoning under hypotheses, not an operational notion per se. So we use a
distinct quasi-state, p-fault , that signifies an attempt to invoke a context procedure
outside its specified precondition.

The Transition Relation. Transitions relate configurations; there are also faulting
transitions. A configuration is a triple 〈C , σ , μ〉 where C is an extended command, σ is
a state, and the procedure environment μ is a partial function from procedure names
to parameterized commands of the form (x :T .C). A �-state is comprised of a heap
and a store that assigns values to the variables of �. Procedure typings in � are not
relevant. So this definition is the same as a state, as defined in Part I of this article, for
��ProcName. A �-environment μ is a procedure environment such that dom(μ) is the set
of procedure names in dom(�) and for every m : (x :T) in � we have μ(m) = (x :T .B) for
some ordinary command B such that ��Locals , x :T � B , no specification-only variable
occurs in B , and B is letrec-free.

Definition 4.3. Let
 be well formed for �. A configuration 〈C , σ , μ〉 is compatible
with � and
 provided there is some �′ such that the following hold:

(1) �′ ⊇ � and VarName ∩ (dom(�′) \ dom(�)) ⊆ Locals
(2) �′, sigs(
) � C and σ is a �′-state and μ is a �′-environment

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:20 A. Banerjee and D. A. Naumann

Fig. 9. The transition relation

�−→
�

, eliding � in most cases.

(3) For every m in dom(�′) \ dom(�), there is exactly one elet(m) in C , and these are
the only elet commands in C .

(4) For every variable x in dom(�′) \ dom(�), there is exactly one end-marker, either
evar(x) or ecall(x), in C , and these are its only evars/ecalls.

Item (1) says that �′ extends � only with procedures and local variables (for the
currently open scopes of letrec blocks, local variable blocks, and procedure invocations).
Item (2) states simple well-formedness conditions, using the extended typing judgment
�. One consequence is that no m specified in
 is in dom(μ), as otherwise �′, sigs(
)
would not be a well formed typing context. Furthermore, no m that is letrec-bound in C
is in dom(μ) or in
. Recall that the typing rule for letrec already prevents shadowing
within procedure bodies and within C . Apropos μ being a �′-environment, note that
procedure bodies in μ are actually well formed with respect to the initial environment
�, as they cannot refer to the locals added in �′. Items (3) and (4) say there is no
shadowing among pending end-markers, and the domain of �′ is exactly the domain of
� together with those end-markers.

The transition relation

�−→
�

is defined inductively by the rules in Figure 9. A config-

uration may step to another configuration, to fault (for runtime error), and to p-fault .
The first two rules in Figure 9 are intended to succinctly reuse the semantics of

Part I, but now the commands are for the language extended with procedures. (For
example, C can be if E then B else D where B and D include procedure calls and
procedure blocks.) Moreover, the semantics of local variable blocks is revised as per (6).

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:21

The next rule is the transition for letrec; it opens the scope of a procedure block and
adds the procedure to the environment. The condition m /∈ dom(μ), which holds in
any compatible configuration, makes clear that the use of Extend is defined. The next
rule invokes a procedure by retrieving its body from the environment, renaming the
parameter apart from any in scope and adding it, with initial value, to the store. Next
come the transitions for the scope enders ecall and elet, with semantics analogous to
that for evar.

Next are the inductive cases for sequencing.12 For brevity, we sometimes write

“〈C , σ , μ〉 �−→∗ (p-)fault” to abbreviate “〈C , σ , μ〉 �−→∗ fault or 〈C , σ , μ〉
�−→∗ p-fault”.
Here we abbreviate transition rules for each kind of fault.

Remark 4.4. Apt et al. [2009] use an elegant semantics for local blocks and envi-
ronment procedure calls that avoids the need for renaming. It relies on the use of
states where every possible variable is assigned a value. The transition axiom for var
is 〈var x :T : = E in C , σ 〉 �−→ 〈x : = E ;C ; x : = σ(x), σ 〉. Note that C is used unchanged,
rather than a renamed copy as in our axiom (6). The initial value σ(x) is used as a lit-
eral in the trailing assignment, which restores the value of x in case it is in use in the
outer scope. This embodies the stack discipline while retaining a flat model of state.
The initializer expression E , evaluated in the outer scope, caters for use of local blocks
in semantics of procedure call: the axiom 〈m(z), σ 〉 �−→ 〈var x :T : = z in B , σ 〉, where
m is (x :T .B), serves even for recursive calls m(x).

In this article, we choose a somewhat different model of states and objects, and more
explicit formalization of typing. We find the renaming semantics convenient, for ex-
ample, for formulating the notion of compatible configuration (Definition 4.3); in par-
ticular the typing condition for C there is simple and useful. We also avoid the need
for reference literals to occur in extended commands. Moreover, to prove soundness of
the linking rule we need to distinguish procedure call/return from entry/exit of local
variable blocks.

Semantics of Context Procedure Calls. In case
 is empty, the transition relation
provides a standard environment-based semantics. In particular, p-fault never occurs.
The last two rules in Figure 9 amount to a relational semantics of procedures specified
in
. The ultimate justification of these transition rules is that the semantics is sound
for reasoning about closed programs, where
 is empty. The details are delicate.

The basic idea is that a configuration 〈m(z), σ , μ〉, where m is specified in
, takes
a single step to 〈skip, σ ′, μ〉, provided that σ satisfies the precondition and σ ′ is any
state that satisfies the postcondition and frame condition. If instead σ does not satisfy
the precondition, the step goes to p-fault , an artifact without operational meaning
that signifies precondition failure. For example, let
 contain the single specification
{ x ≥ 0 } m(x : int) {w > 0 } [wrw], in � = [w : int, z : int]. The successors of configuration
〈m(z), [w : 0, z : 7] , μ〉 include 〈skip, [w : 8, z : 7] , μ〉 and 〈skip, [w : 9, z : 7] , μ〉. (Here μ
is irrelevant.) On the other hand, from the configuration 〈m(z), [w : 0, z : −1] , μ〉 where
the precondition is not satisfied, the only successor is p-fault . By contrast, suppose m
is not in
 but rather the environment μ has a correct implementation, say μ(m) =
(x : int. w : = x ;w : = w+1). Then, the successor of 〈m(z), [w : 0, z : 7] , μ〉 is 〈w : = x ′;w : =
w + 1; ecall(x ′) , [w : 0, z : 7, x ′ : 7] , μ〉 for some fresh x ′. This proceeds by steps 〈w : =
w + 1; ecall(x ′), [w : 7, z : 7, x ′ : 7] , μ〉〈ecall(x ′), [w : 8, z : 7, x ′ : 7] , μ〉〈skip, [w : 8, z : 7] , μ〉.

12There is not a separate rule for termination of the first command in a sequence: if 〈C , σ , μ〉
�−→ 〈skip, σ ′, μ′〉
then we have 〈C ;D , σ , μ〉
�−→ 〈D , σ ′, μ′〉 by one of the given rules and the identity skip;D ≡ D .

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:22 A. Banerjee and D. A. Naumann

The basic idea for calls of context procedures might be formalized using the following
putative definition:

 contains {P}m(x :T){P ′}[ε]
�′ ⊇ � σ |��′

Px
z σ ′ |��′

P ′x
z σ→σ ′ |� εxz

〈m(z), σ , μ〉
�−→
�

〈skip, σ ′, μ〉
. (10)

The transition is instantiated with �′, a typing context for which σ is a state and μ an
environment. This is needed because the configuration may have been reached after
entering var and letrec blocks as well as procedure calls, so that σ and μ may include
variables and procedures not in � or
. By constraining �′ to suit σ , the definition
stipulates13 that the final state σ ′ has the same variables (and typing) as the initial
state σ . This is expressed by σ ′ |��′

P ′, because in Part I of this article we define τ |��

Q to mean: τ is a �-state and it satisfies Q (for any �, τ ,Q). The condition σ→σ ′ |� εxz
ensures that none of the extra variables are changed: the specification, including ε, will
be well formed in � and thus not contain wrw for w in dom(�′) \ dom(�). The second
rule for context call in Figure 9 needs to explicitly constrain �′ to be the right one for
σ , because the negation of σ |��′

Px
z says either σ is not a �′-state or does not satisfy

the formula.
The putative transition rule (10) has a flaw that is fixed by quantifying the

specification-only variables in the specification of m. We want the effect that those
variables are scoped, and universally quantified, over the specification, but as usual in
Hoare logic the quantification is not explicit in the syntax. The desired effect is mani-
fest in proof rules, especially SUBST, and embodied in the transition rules for context
call (in Figure 9).

As an example, let
 contain the single specification {x = s}m(x : int){w > s}[wrw]
in context � = [s : int,w : int, z : int] where s is in SpecOnlyVar . Consider configuration
〈m(z), [s : 1,w : 2, z : 3] , μ〉. In keeping with the intention that s is effectively universally
quantified over the specification, we expect the current value of s to be irrelevant (!)
and instead what matters is that there is some value for s, namely 3, for which the
precondition is satisfied. The configuration should step to any configuration of the form
〈skip, [s : 1,w :n, z : 3] , μ〉 where n > 3.

To streamline the transition rules for context call (in Figure 9), we indulge in a minor
abuse of notation. Suppose s is a list of specification-only variables that are in scope,
and n a list of values—not variables—of corresponding type. We write

σ |� Ps
n to abbreviate [σ | s : n] |� P . (11)

The point is that n may include reference values and we do not want reference literals
in formulas, so strictly speaking the substitution Ps

n is not defined. In the transition
rules, we mix notation, for example, σ |� P

x ,s
z ,n abbreviates [σ | s : n] |� Px

z . We use
identifier n for values, whereas the letters r , s, t · · · z are used for variable identifiers.
Specification-only variables are disjoint from Locals , so s is disjoint from dom(�′) \
dom(�) in the transition rules.

In practice, most preconditions P have the property that if σ |� P , then the values
n = σ(s) are uniquely determined. For example, let P be s = x . If σ |� P , then for
any n �= σ(s), [σ | s : n] �|� P . For such precondition, the first transition rule can be

13There may be more than one �′ for which a σ is well formed—only because the value null has many types—
but the choice makes no difference because no formula can make the distinction. An alternate formalization
would include typing contexts in configurations, but we prefer not.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:23

simplified considerably: this is the rule we used in this example in which the value of
s is uniquely determined to be 3 for σ |� z = s to hold.

 contains {P}m(x :T){P ′}[ε] s lists all specification-only var’s in P ,P ′, ε
�′ ⊇ � σ |��′

P
x ,s
z ,n σ→σ ′ |��′

εxz σ ′ |��′
P ′x ,s

z ,n

〈m(z), σ , μ〉
�−→
�

〈skip, σ ′, μ〉
. (12)

In this rule, n is now a schematic variable. In case there are no specification-only
variables, this is equivalent to (10).

The details of our treatment of specification-only variables are not essential. It would
be cleaner, though more verbose, to explicitly declare them in specifications, in which
case they would not be in the typing context. But our treatment achieves the same
effect. Further insight about the semantics may be gleaned from the soundness proof
for rule SUBST in Section 7.4 and from Lemma 4.10.

Remark 4.5. In a state where the precondition of a context procedure does not hold,
there is a faulting transition. We could as well add two additional transition rules for
such states. One would yield the initial configuration, so that the configuration would
have diverging computations. This would be appropriate if we were working with total
correctness. The other rule would yield a terminated configuration in which the state is
arbitrary. This would be needed if we were considering refinement between programs.

4.3. Some Definitions and Properties of Semantics

We will almost always streamline the notation, writing just

�−→ when � is clear from

context. For that reason we usually refer to compatibility just with
.
There are three sources of nondeterminacy in the semantics. One is technical: the

choice of names for local variables, and parameters in calls of environment procedures.
The second is calls of context procedures: a specification need not determine a unique
final state. Finally, the semantics of new is defined with respect to a given choice func-
tion, Fresh, that we allow to be nondeterministic (see Part I). Only the second leads
to non-determinacy that can be detected by postconditions, because formulas do not
involve pointer arithmetic or reference literals.

A trace via

�−→ is a finite sequence of configurations, possibly ending with fault or

p-fault , compatible with
 and consecutively related by

�−→. For example, for suitable

states σ , . . . we have traces

〈x : = null; x .f : = 0, σ , μ〉〈x .f : = 0, σ ′, μ〉fault

and 〈ecall(z); y : = 0, σ , μ〉〈y : = 0, σ ′, μ〉〈skip, σ ′′, μ〉. These happen to be maximal. Note
that the first configuration of a trace need not be an initial one, that is, it may contain
end-markers.

The conditions in Definition 4.3 are designed to ensure that compatibility is
invariant.

LEMMA 4.6 (PRESERVATION OF COMPATIBILITY). Suppose 〈C , σ , μ〉 is compatible

with
. If 〈C , σ , μ〉
�−→ 〈C ′, σ ′, μ′〉, then 〈C ′, σ ′, μ′〉 is compatible with
.

The proof is a matter of checking all the conditions for all the transition rules, and
using the typing rules. Preservation of compatibility relies on a restriction in the typ-
ing rule for letrec, disallowing letrec-bindings in procedure bodies (a restriction like in
ML). The loop-unfolding transition duplicates code, which may contain letrec-bindings,
but in sequence rather than nested, so shadowing is not introduced. There may be local

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:24 A. Banerjee and D. A. Naumann

variables with the same name as parameters of procedures in the environment, but it
is renamed instances of those procedures that are used for calls.

LEMMA 4.7 (ENVIRONMENT BRACKETING). If 〈C , σ , μ〉 is compatible with
 and

C has no elet, then the final environment is the initial one: 〈C , σ , μ〉
�−→∗ 〈skip, σ ′, μ′〉
implies μ′ = μ.

LEMMA 4.8 (ENVIRONMENT INVARIANCE). If m is in dom(μ) and elet(m) does not

occur in C , then 〈C , σ , μ〉
�−→∗ 〈C ′, σ ′, μ′〉 implies μ′(m) = μ(m).

The following is used to prove soundness of proof rules where the premises involve
different procedure specifications from the conclusion.14

LEMMA 4.9 (CORRESPONDENCE). Consider any 〈C , σ , μ〉 compatible with
. Let �
and ϒ be procedure contexts that specify procedures neither in dom(μ) nor in
. Then

〈C , σ , μ〉
��−→ 〈C ′, σ ′, μ′〉 iff 〈C , σ , μ〉
ϒ�−→ 〈C ′, σ ′, μ′〉, for any C ′, σ ′, μ′. Moreover

〈C , σ , μ〉
��−→ fault iff 〈C , σ , μ〉
ϒ�−→ fault and mutatis mutandis for p-fault.

PROOF. Active(C) cannot be the call of a context procedure except one in
; and the

relations

��−→ and

ϒ�−→ differ only on calls of context procedures, more precisely those
in � or ϒ .

The following is used to prove soundness of the substitution and linking rules.

LEMMA 4.10 (SPECIFICATION-ONLY VARIABLES). Suppose that 〈C , σ , μ〉 is com-
patible with �,
 and specification-only variable s is in scope. Then for any value n and
any C ′, σ ′, μ′ we have the following three properties:

〈C , σ , μ〉
�−→∗ 〈C ′, σ ′, μ′〉 implies σ(s) = σ ′(s)

〈C , σ , μ〉
�−→∗ (p-)fault iff 〈C , [σ | s : n] , μ〉
�−→∗ (p-)fault

〈C , σ , μ〉
�−→∗ 〈C ′, σ ′, μ′〉 iff 〈C , [σ | s : n] , μ〉
�−→∗ 〈C ′, [σ ′ | s : n] , μ′〉.
PROOF. By induction on number of transitions. (That is why we have C ′, though

we only need the result in case C ′ ≡ skip.) These properties rely on the fact that
specification-only variables occur neither in code (Assumption 4.1) nor in procedure
bodies in the environment (definition of �-environment). The second and third prop-
erties, which say the set of possible outcomes does not depend on the initial value of
s, also rely on the assumption (Assumption 4.1) that the allocator is insensitive to
specification-only variables.

The interesting issue is context procedure calls. Consider a call m(z) where
 con-
tains specification {P}m(x :T){P ′}[ε]. By well formedness, ε does not contain wr s, so
the first property holds owing to semantics of context call. The second and third prop-
erties say that the initial value of s does not influence the set of outcomes. For the
second property, note that the semantics (Figure 9) is defined so that it is not the value
σ(s) that determines whether the transition goes to p-fault , but rather the existence of
some value of s for which Px

z is satisfied. Moreover, the possible final states are those
which satisfy P ′x

z for any value of s that satisfies the precondition; the final value of s
is in any case the same as its initial value.

Note that the alternative semantics (10) fails to satisfy the second property. For
example, the specification for fact(x) could have P ≡ y = x for specification-only y ,

14As
 and � are comma-separated lists, one should write

,��−→ but we omit the comma.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:25

with postcondition P ′ ≡ res = y ! and effect wr res . In the context of this specification,
execution of the procedure body from an initial state where y = 3 and x = 3 would
reach a call fact(2) and then p-fault according to (10). In our semantics, the call fact(2)
transitions to a state where res = 2.

Our correctness judgment expresses only safety properties, but as sanity check we
proved liveness of the transition relation. We say a specification {Q}m(x :T){Q ′}[ε]
with specification variables s is satisfiable if for every σ with ∃n · (σ |� Qs

n) there is
at least one σ ′ with σ→σ ′ |� ε and ∀n · (σ |� Qs

n) ⇒ (σ ′ |� Q ′s
n). In case there is no

such σ ′, a configuration 〈m(x), σ , . . .〉 has no successor via

�−→. We also say “m(z) is an

unsatisfiable call from σ ”, if ∃n · (σ |� Q
x ,s
z ,n) but there is no σ ′ for which σ→σ ′ |� ε and

∀n · (σ |� Q
x ,s
z ,n) ⇒ (σ ′ |� Q ′x ,s

z ,n).

Proposition 4.11 (Liveness). Suppose 〈C , σ , μ〉 is compatible with � and
. Then

〈C , σ , μ〉 has at least one

�−→-successor unless either C is skip or Active(C) is some

m(z) that is an unsatisfiable call from σ .

PROOF. By inspection of the transition rules. We assume that Locals is infinite, so
there is an unbounded supply of local variables as needed for local blocks and pa-
rameters (in recursive procedures). (In this way, we are modeling unbounded stack
space, just as we are modeling unbounded heap.) If Active(C) is a call of procedure m,
Lemma 4.6 tells us that either m is in the environment μ, satisfying the condition for
calls of environment procedures, or it is in the context
. If m is in
, then either σ
does not satisfy the precondition for m, in which case the successor is p-fault , or it does
satisfy the precondition, in which case there are successors for all σ ′ that satisfy the
postcondition. If there are no such σ ′, it is an unsatisfiable call.

4.4. Proof Rules for Procedures

A correctness judgment
 �� {P } C {P ′ } [ε] expresses properties of C with respect to

traces via

�−→. In particular, from P -states C should not fault and its terminal states

should satisfy P ′ and be allowed by ε—the conditions dubbed “Safety”, “Post”, and “Ef-
fect” in Part I of this article. In addition, C should not p-fault due to calling a context
procedure outside its specified precondition, which we dub the “Ctx-pre” condition in
Section 6 where we define validity of judgments. In Section 6, we also associate the
procedures in
 with modules, the dynamic boundaries of which must be respected by
C . In preparation for that, let us consider proof rules for procedures.

The axiom for procedure call should not be surprising:

{P}m(x :T){P ′}[ε] �� {Px
z } m(z) {P ′x

z } [εxz] .

Recall from Part I that we allow proof rules to be instantiated only with well formed
judgments. Here, that means that z must be declared in � and indeed have type T .
Furthermore, x and z are in Locals (by typing), and ε cannot contain wr x or wr z (by
well-formedness of the specification).

What is interesting is the rule for procedure blocks. The rule itself is straightfor-
ward, but not so its soundness proof. For clarity we consider the special case of one
procedure. In the rule, � specifies the procedure to be linked and
 specifies the ambi-
ent library.

� is {Q}m(x :T){Q ′}[η]

LINK0

, � �� {P } C {P ′ } [ε]
, � ��,x :T {Q } B {Q ′ } [η]

 �� {P } letrec m(x :T) = B in C {P ′ } [ε]
.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:26 A. Banerjee and D. A. Naumann

The presence of � in the premise for B allows recursive calls, as in the typing rule.
The premise for C says not only that it does not fault, but also that it never calls

a context procedure (i.e., in
, �) outside its specified precondition. The latter prop-
erty, for procedure m of �, is forgotten in the conclusion of the rule. This exhibits a
sense in which modular reasoning is incomplete. Consider as an example the program
letrec m(x) = (y : = x) in m(0). It establishes postcondition y = 0, but this cannot be
proved if m is given a specification with precondition x �= 0. This should be no more
surprising than the fact that a correct loop may be unprovable with respect to a poorly
chosen loop invariant.

What is surprising is how difficult it is to prove the linking rule in transition seman-
tics. We consider that now, in some detail. We sketch the soundness proof for LINK0
in the case where B makes no recursive calls—neither direct calls to m nor calls to
environment procedures that call m. In the sketch, the semantics (10) is used for calls
of context procedures, that is, we ignore specification-only variables. A sketch of the
sketch is in Figure 10.

Suppose � is {Q}m(x :T){Q ′}[η]. Suppose both premises of LINK0 are valid, that is,

, � |�� {P } C0 {P ′ } [ε] and
, � |��,x :T {Q } B {Q ′ } [η]. (The identifier C0 caters for
nomenclature used in Section 5.) We must show validity of the conclusion:

 |�� {P } letrec m(x :T) = B in C0 {P ′ } [ε] .

Let μ0 be any �-environment, let σ0 be any �-state such that σ0 |� P . According to
the definition of validity in Part I, we must show Safety, that is, it is not the case that

〈letrec m(x :T) = B in C0, σ0, μ0〉
�−→∗ fault . And we must show that for any σ ′, if

〈letrec m(x :T) = B in C0, σ0, μ0〉
�−→∗ 〈skip, σ ′, μ0〉,
then (Post) σ ′ |� P ′ and (Effect) σ0→σ ′ |� ε. Validity of the premises tells us about B

and C0 under hypotheses
, �. We must therefore relate

��−→ to

�−→. More specifically,

from a given trace of letrec m(x :T) = B in C0 via

�−→ we must obtain traces of C0 and

B via

��−→ in order to make use of the premises.

By semantics, the first step is 〈letrec m(x :T) = B in C0, σ0, μ0〉
�−→
〈C0; elet(m), σ0, μ̇0〉 where μ̇0 extends μ0 by mapping m to (x :T .B). By convention, we
will use dotted names like μ̇ to indicate environments for which we are either proving
or assuming that m is in the domain and is bound to (x :T .B). (As per Lemma 4.8,
m will be in each reached environment.) Continuing on, a terminating trace from
C0; elet(m) looks like

〈C0; elet(m), σ0, μ̇0〉
�−→∗ 〈elet(m), σ ′, μ̇0〉
�−→ 〈skip, σ ′, μ0〉,
where elet(m) is present in all the configurations except the last. (See upper part of

Figure 10.) The trace 〈C0; elet(m), σ0, μ̇0〉
�−→∗ 〈elet(m), σ ′, μ̇0〉 corresponds step by

step with a trace 〈C0, σ0, μ̇0〉
�−→∗ 〈skip, σ ′, μ̇0〉 obtained by deleting elet(m) and noting
that elet(m) is identified with skip; elet(m). Conversely, any trace from 〈C0, σ0, μ̇0〉
gives rise to one from 〈C0; elet(m), σ0, μ̇0〉, by suffixing elet(m) to the control state.
Owing to these observations, it suffices to prove Safety, Post, and Effect for traces from

〈C0, σ0, μ̇0〉 via

�−→.

From 〈C0, σ0, μ̇0〉, subsequent steps via

�−→ are matched by steps via

��−→ with same
code and states, but without m in the environment, until we reach a configuration with

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:27

Fig. 10. Obtaining a trace of C0 via

��−→ from a trace via

�−→ of letrec m(x :T) = B in C0. For reasons of
typsetting we use double-head arrows to indicate transitive closure.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:28 A. Banerjee and D. A. Naumann

an active call of m. (See trace from a to b in Figure 10, where dotted arrows indicate
step-by-step match.) That is, there are C1, ρ1, z1, μ1 such that

〈C0, σ0, μ̇0〉
�−→∗ 〈m(z1);C1, ρ1, μ̇1〉 (∗)

and 〈C0, σ0, μ0〉
��−→∗ 〈m(z1);C1, ρ1, μ1〉
and the last configurations are matched, meaning that μ̇1 = Extend (μ1,m, (x :T .B))

and they have the same code and same state.15 We call this a topmost call of m, noting
that it may be reached by a chain of calls of other procedures, the first of which is a
top level call in the ordinary sense. (In terms of stack implementation, what we call
topmost would have bottom-most stack frame.)

From 〈m(z1);C1, ρ1, μ1〉, computation via

��−→ does not fault, nor does it p-

fault, because that would contradict validity of the premise for C0 (i.e.,
, � |��

{P } C0 {P ′ } [ε]). Thus, by definition of

��−→ it must be that ρ1 |� Qx

z1
, as otherwise

m(z1) would p-fault (by the last transition rule in Figure 9). Hence,

〈m(z1);C1, ρ1, μ1〉
��−→ 〈C1, σ , μ1〉 (13)

for all σ such that σ |� Q ′x
z1

and ρ1→σ |� ηxz1
. To be very precise, ρ1 and σ are states for

some �′ that extends � with procedures and local variables, z1 is in dom(�′), ρ1 |��′
Qx
z1

,
and ρ1→σ |��′

ηxz1
. (Point e in Figure 10 shows one choice of σ , which is determined

in the following discussion.)

As for the computation via

�−→—about which we must prove Safety, Post, and

Effect—the first step after (∗) is

〈m(z1);C1, ρ1, μ̇1〉
�−→ 〈Bx
x1

; ecall(x1);C1, υ1, μ̇1〉, (14)

where we look up μ̇1(m) = (x :T .B), choose a fresh identifier x1 for the parameter, and
extend the state as

υ1 = Extend (ρ1, x1, ρ1(z1)). (15)

(Now we are at the point marked c in Figure 10.) From the validity of the premise for
B , we get, by renaming of x1 for x (i.e., Lemma 7.3):

, � |��,x1 :T {Qx
x1

} Bx
x1

{Q ′x
x1

} [ηxx1
] .

Then we can extend to �′ by soundness of rule EXTENDCTX (cf. Figure 15 in the
sequel):

, � |��′,x1 :T {Qx
x1

} Bx
x1

{Q ′x
x1

} [ηxx1
] . (16)

(By well-formedness of the judgment for C0, x is not free in either
 or �.) Note that
υ1 is a (�′, x1 :T)-state; by ρ1 |��′

Qx
z1

from earlier, and definition (15) of υ1, we get
υ1 |��′,x1 :T Qx

x1
where we have made the contexts explicit for clarity. Hence, owing to

(16), computation from 〈Bx
x1

, υ1, μ1〉 via

��−→ does not fault. If it terminates, it termi-

nates in a configuration 〈skip, τ1, μ1〉 for some τ1 such that

τ1 |� Q ′x
x1

and υ1→τ1 |� ηxx1
. (17)

15We can assume such C1 exists, without loss of generality, by introducing gratuitous skip commands so
that every call occurs as the first part of some sequence.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:29

Moreover—in the absence of any recursive invocations of m—the trace

〈Bx
x1

, υ1, μ1〉
��−→∗ 〈skip, τ1, μ1〉
is matched step-for-step by a trace

〈Bx
x1

, υ1, μ̇1〉
�−→∗ 〈skip, τ1, μ̇1〉

since

��−→ and

�−→ agree except for calls to m. (See the traces from c to d in Figure 10.)
Thus, continuing from (14), we have

〈Bx
x1

; ecall(x1);C1, υ1, μ̇1〉
�−→∗ 〈ecall(x1);C1, τ1, μ̇1〉.

After another step under

�−→, we reach 〈C1, σ1, μ̇1〉 where σ1 = τ1�x1.

We aim to show that σ1 is one of the possible states σ on the right-hand side of (13),
so that 〈C1, σ1, μ̇1〉 matches one of the possible configurations 〈C1, σ , μ1〉 reached

by

��−→ as described earlier (see the point marked e in Figure 10). From (17), we get

σ1 |��′
Q ′x

z1
and ρ1→σ1 |��′

ηxz1
, by careful calculation with substitutions and using

that wr x does not occur in η (because the specification is well formed). This completes

the argument that σ1 is among the outcomes σ from the trace via

,��−→.

So far, we have shown that the computation of C0, up through the first completed

invocation of m, under

�−→ (and from the environment μ̇1 using the procedure body

B for m) leads to a configuration that is also a possible configuration from C0 under

��−→ with m as a context procedure (and thus not in the environment). (See point e in
Figure 10.) We proceed to extend the matching through the rest of the trace for C0 by
induction on the number of (topmost) calls to m. For example, the next phase, up to
the next call of m, looks like

〈C1, σ1, μ̇1〉
�−→∗ 〈m(z2);C2, σ2, μ̇2〉
and is matched by a trace via

��−→∗ up to matching 〈m(z2);C2, σ2, μ2〉. (Point f .)

If the computation under

�−→ terminates then its last configuration is of the form

〈skip, σ ′, μ0〉 and the trace under

��−→ also reaches 〈skip, σ ′, μ0〉. (Point g , which is

reached from f after some number of completed topmost calls of m, interspersed with
other steps.) That being so, we can appeal to validity of the premise for C0 to get the
Post condition σ ′ |� P and Effect σ→σ ′ |� ε. This concludes the soundness proof of rule
LINK0, if there are no recursive calls to m from B .

Remark 4.12. One might hope to formulate the proof as a simulation between the

semantics of C0 via

��−→ and its semantics via

�−→, but this approach does not seem
fruitful. The Safety property involves intermediate steps (as does the Encap property
to come in Section 6); these steps are for both code of C0 and code of B so we need to

treat the computation via

�−→ as spliced together traces of both C0 and B . Also, the

simulation approach does not help with recursion. So we take the somewhat ad hoc
approach sketched here.

In case there are recursive calls, we cannot simply appeal to the premise for Bx
x1

,

that is, to (16), to reason about execution of Bx
x1

under

�−→ with m in the environment,

because the execution of Bx
x1

under the two transition relations

�−→ and

��−→ no longer

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:30 A. Banerjee and D. A. Naumann

matches. The proof rule embodies the usual induction pattern for partial correctness,
that is, induction on recursion depth [Hoare 1971]; we need a matching induction in
the soundness proof. In particular, we want to be able to assume that the inner call of

m, executing a substitution instance of B under

�−→ (with m in the environment), is

correct.
To make this precise, we consider a variant of the semantics in which configurations

carry a bound on calling depth. It gets decreased in the transition for invocation of
a procedure in the environment, and such invocations get stuck if the bound is zero.
For any trace in the non-bounded semantics, there is a bound such that the bounded
semantics runs through the same series of states. We prove that B satisfies its spec-
ification by showing that in the bounded semantics, for all values of the bound. The
proof is by induction on the bound. In the induction case, the argument is similar to
the one above concerning C0, up to the point where B makes a recursive call to m. At
that point, the bound gets decremented and we can appeal to the induction hypothesis
which says that the inner call is correct. So the premise of the rule is used to reason
about execution of B in each topmost invocation of m, but that premise has hypoth-
esis � that recursive calls are correct, and the hypothesis is discharged by induction
on depth of recursion. Recall that what we are calling topmost calls of a procedure m
are not necessarily top level procedure calls; m may be invoked from the body of some
other procedure. In case several procedures are linked simultaneously, this means a
topmost call of any one of them, cf. Remark 5.4.

On casual reading, the term “bounded” may give the mistaken impression that we
are considering termination. We are not. As an extreme case, if the specification of m
is unsatisfiable we can still prove that B implements m, where B is simply the call
m(x). This diverges everywhere but neither faults nor writes so it satisfies premise

, � � {Q } B {Q ′ } [η].

5. TECHNICAL RESULTS FOR SOUNDNESS OF THE LINK RULE

Section 4.4 explains the soundness argument for a procedure linking rule. The
intricacy of the sketch makes clear that a detailed proof is needed, all the more so
once dynamic boundaries are added (in Section 6) to the semantics of correctness
judgments. This section develops some tools needed for the detailed proof of the link
rule (Section 7.6), and for nothing else. The section is here because it depends on
nothing more than the semantics defined in Section 4, but on first reading we suggest
skipping to Section 6.

LEMMA 5.1. Suppose Q is well formed in � and ρ is a �-state. Suppose �(x) = T ,
�(z) = T , and u /∈ dom(�). Let υ = Extend(ρ, u, ρ(z)). If ρ |�� Qx

z , then υ |��,u :T Qx
u .

The proof is an exercise in substitution, using that Q does not depend on u.
The following is similar to the correspondence Lemma 4.9, but this one lets us com-

pare the semantics when a particular procedure is in the environment versus when it
is in the context.

LEMMA 5.2 (SPECIAL CORRESPONDENCE). Consider any m,C , σ , μ̇,
 such that
〈C , σ , μ̇〉 is compatible with
 and m ∈ dom(μ̇). (Here C can be an extended com-
mand.) Let μ = μ̇�m and suppose � specifies m. Suppose C has no elet(m), so that
〈C , σ , μ〉 is compatible with
, � (noting that by compatibility, C has no letrec bind-
ing of m). Suppose Active(C) is not a call to m. Then, for any C ′, σ ′, μ̇′, we have

〈C , σ , μ̇〉
�−→ 〈C ′, σ ′, μ̇′〉 if and only if 〈C , σ , μ〉
��−→ 〈C ′, σ ′, μ′〉, where μ′ = μ̇′ �m.

Moreover, 〈C , σ , μ̇〉
�−→ fault iff 〈C , σ , μ〉
��−→ fault and mutatis mutandis for p-fault.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:31

PROOF. By cases on Active(C). When Active(C) is not a call to m, the semantics
does not depend on � or μ̇(m).

Call-Depth Bounded Semantics. A bounded configuration has the form 〈C , σ , μ〉k
where k is a natural number. One can think of k as the size of the available stack
space. A computation will get stuck (and does not fault) if it attempts to invoke a
procedure when k is 0.

The transition relation on depth-bounded configurations is written

�−→ just like for

standard configurations. It is defined so that the bound is decreased in the invocation
step and increased when the end-marker of the procedure body is reached:

k > 0 μ(m) = (x :T .C) x ′ /∈ Dom(σ) C ′ = C x
x ′

〈m(z), σ , μ〉k
�−→ 〈C ′; ecall(x ′), Extend (σ , x ′, σ(z)), μ〉k−1

〈ecall(x), σ , μ〉k
�−→ 〈skip, σ �x , μ〉k+1.

The bound needs to be propagated in one of the transitions for sequence:

〈C , σ , μ〉k
�−→ 〈C ′, σ ′, μ′〉k ′

〈C ;D , σ , μ〉k
�−→ 〈C ′ ;D , σ ′, μ′〉k ′ .

In all other cases, the transition rule is the same as for non–depth-bounded configu-
rations except that a single bound k is added uniformly to every configuration in the
rule. For example, the transition for ending the scope of a local variable is

〈evar(x), σ , μ〉k
�−→ 〈skip, σ �x , μ〉k .

Note that, if 〈C , σ , μ〉k
�−→ 〈C ′, σ ′, μ′〉j , then the sum of k and the number of ecall-
commands in C is the same as the sum of j and the number of ecall-commands in
C ′. Owing to condition k > 0 in the rule for invocation, the invocation of an envi-
ronment procedure gets “stuck” if the bound is 0. This is the only change to liveness,
cf. Lemma 4.11.

LEMMA 5.3 (DEPTH-BOUNDED AND NORMAL SEMANTICS). Consider any
 and
any compatible configuration 〈C , σ , μ〉.

(1) 〈C , σ , μ〉
�−→∗ 〈C ′, σ ′, μ′〉 iff there are k , j such that 〈C , σ , μ〉k
�−→∗ 〈C ′, σ ′, μ′〉j
(2) 〈C , σ , μ〉
�−→∗ fault iff there is some k ≥ 0 such that 〈C , σ , μ〉k
�−→∗ fault.
(3) mutatis mutandis for p-fault.

PROOF. For (1), left implies right: Let k be the maximum number of ecall commands
in the configurations of the given trace. Show by induction on steps that from initial
configuration 〈C , σ , μ〉k that there is a suitable bound to add for each successive config-
uration. For the converse, show by induction on steps and cases on transition rules that
erasing bounds yields a standard computation. Now (2) and (3) follow, as the bound has
no influence on faulting.

There is also a depth-bounded version of the special correspondence Lemma 5.2, the

gist of which is: 〈C , σ , μ̇〉k
�−→ 〈C ′, σ ′, μ̇′〉l iff 〈C , σ , μ〉k
��−→ 〈C ′, σ ′, μ′〉l for all k , l ,
under conditions suitably adapted from that Lemma.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:32 A. Banerjee and D. A. Naumann

Decomposing Traces into Phases. For proof of the LINK rule, we need to break com-
putation sequences into “phases” comprised of topmost invocations of some procedures
of interest, alternating with other steps. The intuitive idea is not surprising but we
need to spell out some details in order to establish notation for later use. Keep in mind
that we are often considering nonmaximal traces, that is, they may end in a configura-
tion for which successors exist. Also, a topmost invocation of a specific procedure may
well be nested inside several levels of invocations of other procedures. We take some
care with nomenclature in the formal details, as this will be helpful for the proof of the
LINK rule.

First, we describe the basic idea as it applies to calls of both context procedures

and environment procedures. Suppose 〈C0, σ0, μ0〉
�−→∗ 〈D , τ , ν〉 and suppose m is a
procedure name (which might be declared in
 or in μ0). Then there is some number
n ≥ 0 of completed topmost invocations of m, possibly followed by an incomplete top-
most invocation if D is not skip. In more detail: for 0 < i ≤ n, there are configurations
〈Ci , σi , μi 〉, variables zi (the arguments of those calls), and states ρi (the initial states
of those calls) such that

— For all i (0 < i ≤ n), we have 〈Ci−1, σi−1, μi−1〉
�−→∗ 〈m(zi);Ci , ρi , μi 〉 without any
intermediate configurations in which m is the active command. (For example, from
point a to point b in Figure 10, and also from e to f there.)

— For all i (0 < i ≤ n), we have 〈m(zi);Ci , ρi , μi 〉
�−→∗ 〈Ci , σi , μi 〉. (For example, from
point b to point e in Figure 10.) Note that the final environment, μi , is the same
as at the beginning of the invocation.

— 〈Cn , σn , μn 〉
�−→∗ 〈D , τ , ν〉 without any completed topmost invocations of m.
The first item describes (possibly empty) phases of the trace in which control is not

inside any invocation of m, but leading up to a call of m. In case i = 1, this is the phase
of the trace before the first invocation of m (e.g., from a to b in Figure 10).

The second item describes phases consisting of a completed topmost invocation of m.
In case m is in the context, it is a single step. In case m is in the environment, there
are at least two steps (exactly two, in case the body of m is skip, namely from m(zi);Ci
to ecall(· · ·);Ci to Ci). The body of m may make recursive invocations of m, which are
complete but not topmost.

The third item allows that a trace ends by invoking m but not yet finishing that.
Nested within, there may be complete (recursive) invocations of m possibly trailing
incomplete invocations; what matters is that the topmost one is not complete. What
this looks like can be made more precise by distinguishing between context procedures
and environment procedures, as we do in this section,

Here is the pattern, with n = 2:

〈C0, σ0, μ0〉

�−→∗〈m(z1);C1, ρ1, μ1〉 without any m calls

�−→∗〈C1, σ1, μ1〉 first topmost m invocation (body of m, to completion)

�−→∗〈m(z2);C2, ρ2, μ2〉 without any m calls

�−→∗〈C2, σ2, μ2〉 second topmost m invocation

�−→∗〈D , τ , ν〉 without any (completed) m calls

Note that there may be many intermediate states between the states σi−1 and σi in
the preceding conditions. To avoid confusion, we refrain from using subscripted indices
for step-by-step numbering of configurations.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:33

There is no loss of generality in assuming that each call m(zi) occurs in a sequence
followed by some Ci , because semicolon has unit element skip (see Section 4.2).

Generalizing from a single method m, we can consider a set X of procedures, say
those declared in a particular module, which might be mutually recursive. A trace can
be decomposed to a series of topmost invocations of any m in X . This is needed to prove
the LINK rule in the general case, but for readability we will prove LINK for the special
case of a single procedure. So we state the following results just for that case.

Remark 5.4. In variable context with non-Local variable res :nat , consider the
following.

letrec p(x :nat) = even(x); odd(x + 1);
even(x :nat) = if x > 1 then odd(x − 1) else if x = 0 then skip else diverge;
odd(y :nat) = if x > 1 then even(x − 1) else if x = 1 then skip else diverge

in p(2); p(4)

We are interested in the “topmost invocations of procedures in the set {even, odd}”.
The only “top level invocations” are the two calls of p. But there are four topmost
invocations of the designated procedures: even(2) and then odd(3) then even(4) then
odd(5). There are several other invocations of even and odd , but those are recursive
calls, not topmost invocations.

For a trace to have an incomplete invocation of a context procedure m means that a
configuration is reached where a call m(z) is the active command, that is, the control
state is of the form m(z);C , but there is no successor in the trace. In this case the
possible successors would be either fault or a configuration with control state C . If
instead m is an environment procedure, an incomplete invocation takes the initial
step to Bx

u ; ecall(u);C where m is bound to (x :T .B),16 and may take successive steps
possible even to the point where the control state is ecall(u);C—but no further. That
is, it has not done item (5.5) in the following.

LEMMA 5.5 (DECOMPOSITION FOR ENVIRONMENT PROCEDURES). Suppose
μ0(m) = (x :T .B) and 〈C0, σ0, μ0〉k0 is compatible with
. Suppose 〈C0, σ0, μ0〉k0

�−→∗〈D , τ , ν〉j . Then, there is n ≥ 0 and, for all i (0 < i ≤ n), there are configurations
〈Ci , σi , μi 〉ki , variables zi and xi , states ρi , τi , and υi such that for all i (0 < i ≤ n)

(1) 〈Ci−1, σi−1, μi−1〉ki−1

�−→∗ 〈m(zi);Ci , ρi , μi 〉ki without any intermediate configura-

tions in which m is the active command
(2) 〈m(zi);Ci , ρi , μi 〉ki
�−→ 〈Bx

xi ; ecall(xi);Ci , υi , μi 〉ki−1 and υi = Extend(ρi , xi , ρi (zi))
(note that xi is a fresh parameter name)

(3) 〈Bx
xi , υi , μi 〉ki−1
�−→∗ 〈skip, τi , μi 〉ki−1 and hence by semantics17

〈Bx
xi ; ecall(xi);Ci , υi , μi 〉ki−1
�−→∗ 〈ecall(xi);Ci , τi , μi 〉ki−1

(4) 〈ecall(xi);Ci , τi , μi 〉ki−1
�−→ 〈Ci , σi , μi 〉ki and σi = τi �xi

16In case B is skip, the initial step goes directly from m(z);C to ecall(u);C .
17This is formulated to ensure that τi is the state just after execution of Bx

xi
. By semantics, it is clear that

〈B , σ , μ〉 �−→∗ 〈skip, σ ′, μ′〉 implies 〈B ;C , σ , μ〉 �−→∗ 〈C , σ ′, μ′〉. Beware, however, that 〈B ;C , σ , μ〉 �−→∗
〈C , σ ′, μ′〉 does not imply 〈B , σ , μ〉 �−→∗ 〈skip, σ ′, μ′〉. (For example, C could be a loop with body B and σ ′
reached only after several iterations.) But it does imply there are τ , μ′′ with 〈B , σ , μ〉 �−→∗ 〈skip, τ , μ′′〉 and
〈C , τ , μ′′〉 �−→∗ 〈C , σ ′, μ′〉.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:34 A. Banerjee and D. A. Naumann

(5) 〈Cn , σn , μn 〉kn
�−→∗〈D , τ , ν〉j without any completed invocations of m—but allowing
a topmost call that is incomplete (and which may contain nested invocations of m,
both complete and not).

This exhibits the role of depth bounds: the procedure body B is executed with a
bound, ki − 1, smaller than that of its calling context.

Regarding item (5.5), note that the bounds ki−1 and ki may differ: although there are
no calls to m in these configurations, there may be calls to other procedures (decreasing
the bound) or ecalls for the parameters of other procedures (increasing the bound).

In light of Lemma 5.3, we have the same decomposition for normal semantics: that
is, Lemma 5.5 holds if all depth bounds are erased.

If there is an incomplete topmost call, then item (5) can be further decomposed to
the form

〈Cn , σn , μn 〉kn
�−→∗ 〈m(z);C ′, σ ′, μ′〉l
�−→∗ 〈D , τ , ν〉j
for some z ,C ′, σ ′, μ′, l . We will need to refer to the case where there are zero steps
following the middle configuration and so D is m(z);C ′.

Definition 5.6 (m-truncated). For a trace 〈C , σ , μ〉
�−→∗ 〈D , τ , ν〉 to be m-truncated
means: If there is an incomplete invocation of m, then its call is the active command
in the last configuration. That is, D is m(z);C ′ for some z and C ′.

A trace that is not m-truncated has m in the environment, not in
. It takes
the form

〈C , σ , μ〉
�−→∗ 〈m(z);C ′, ρ, μ′〉
�−→ 〈Bx
u ; ecall(u);C ′, υ, μ′〉
�−→∗ 〈D , τ , ν〉

for some z ,C ′, u, μ′, x ,T ,B with μ′(m) = (x :T .B) and υ = Extend (ρ, u, ρ(z)). And
either

— D = A; ecall(u);C ′ for some A such that 〈Bx
u , υ, μ′〉
�−→∗ 〈A, τ , ν〉, or

— D = ecall(u);C ′ and 〈Bx
u , υ, μ′〉
�−→∗ 〈skip, τ , ν〉

To deal with the general case of linking a set X of procedures simultaneously, we
would use the notion of X -truncated, meaning: m-truncated for all m in X.

6. DYNAMIC BOUNDARIES AND SECOND ORDER FRAMING

Rule FRAME is useful for reasoning about preservation of a predicate by a command
that is explicitly responsible for it, like Iset and Badd in Section 3.2. For the client in
Eq. (1) of Section 2.1, we want Iset to be preserved, and semantically the rationale
amounts to framing—but rule FRAME is not helpful because our goal is to hide Iset
from clients. A client command in a context
 is second order in that the behavior of
the command is a function of the procedures provided by
, as is evident in the transi-
tion semantics (Figure 9). Second-order framing is about a rely-guarantee relationship
between a program component—a “module”—and a command that uses procedures of
the module. The module relies on good behavior by the client: that it respects an en-
capsulation boundary and thus unwittingly preserves the hidden invariant. In return,
the module guarantees the behavior specified in
. Our rely condition is a read effect,
called the dynamic boundary, that must be respected by the client in the sense that it
does not write the locations designated by those effects.

For a dynamic boundary to be useful it should frame the invariant to be hidden. For
example, in Section 3.2 we defined for module SET the effect θset which frames Iset .
Checking the framing judgment is a proof obligation on the module, but the dynamic
boundary must also be well formed for the client, which is obliged to respect it.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:35

Fig. 11. Modules Lib, EV and OD .

6.1. A Lightweight Formalization of Modules

For a lightweight abstract syntax of modules, we postulate

— a set ModName,
— a function mdl :ProcName → ModName to associate each procedure with its module,
— a preorder � on ModName, and
— a function bnd from ModName to read effects.

We call bnd(M) the dynamic boundary of M . The intended interpretation of M � N ,
read “M imports N ”, is that N = M or N is directly or transitively imported by M
in the sense that some procedure in M calls, directly or indirectly, some procedure in
N . In order to allow callbacks that cross module boundaries, � is not required to be
antisymmetric. We write M ∈
 to abbreviate that there is some procedure m in

with mdl(m) = M .

We have not formalized an association of global variables with modules; rather, �
should include them all. This streamlines the formal development, though it creates
clutter in some examples: We have to resort to dynamic boundaries to restrict access
in cases where module-scoped global variables would have sufficed.

Hypothetical correctness judgments in the logic have the form given in (9) but with
the addition of a module name:

 ��
M {P } C {P ′ } [ε] . (18)

The idea is that C may appear in the body of a procedure of module M . For the judg-
ment (18) to be well formed, it must satisfy the conditions following (9); in addition, for
each M in
 the boundary bnd(M) must be well formed in ��(Locals ∪ SpecOnlyVar).

Figure 11 shows a simple example with intermodule callbacks, using illustrative
concrete syntax. For this example, we choose � to be the reflexive, transitive closure of
OD � Lib, OD � EV , EV � Lib, EV � OD .

As a guide for understanding certain side conditions in the proof rules, we briefly
consider a slightly heavier formalization of modules. The heavier formalization uses

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:36 A. Banerjee and D. A. Naumann

typing judgment � �M C for code to be used in procedures of M . The typing rule
for calls requires M � mdl(m) for � �M m(z), so M will “import” any module whose
procedures it calls. The typing rule for letrec ensures that all of the procedures of a
given module are linked at once, and linked to a client of a different module. Of course,
to allow for mutual recursion between procedures of different modules, the procedures
of more than one module may be linked simultaneously. Here is the rule in the special
case where modules N0 and N1 each provide a single procedure.

�′ = m0 : (x0 :T0),m1 : (x1 :T1) ��Locals , �′, xi :Ti � Bi for all i
�, �′ � C xi ∈ Locals and Bi is letrec-free, for all i

mdl(mi) = Ni and Ni �= M for all i mdl(p) �� Ni for all p in � and all i
� �M letrec m0(x0 :T0) = B0; m1(x1 :T1) = B1 in C

. (19)

(Here “all i” means i ∈ {0, 1}, and N0 need not be distinct from N1.) This includes the
conditions in the actual typing rule (see (7) in Section 4), for example, each Bi may call
both m0 and m1 as well as procedures of the ambient context �. In addition, it requires
that the client’s module M is distinct from the modules N0 and N1. Furthermore, � has
no other procedures of N0 and N1. A closed program has a main command for some
module name Main that is not in the range of mdl . The actual rule (7) for letrec already
embodies scoping of procedure names. Both (7) and (19) allow the extreme case where
all modules are linked simultaneously, as well as the separate linking in the absence
of mutual recursion.

There are two reasons why we do not adopt the heavier formalization of modules.
First, if the typing judgment were to depend on modules it would complicate the se-
mantics, for example, Definition 4.3 of well-formed configurations, which in turn would
complicate the soundness proofs. The second reason is that, as we discuss in connec-
tion with the CALL rule in Section 7, there may be more than one choice of � that
yields sound proofs. The price we pay for the lighter formalization is that some proof
rules have side conditions conditions like Ni �= M and mdl(p) �� Ni in (19).

Remark 6.1. The judgment form is a bit odd in that the procedure specifications
are explicit, but the grouping of procedures into modules, and the associated dynamic
boundaries are not explicit. One could go further and assume a fixed association of
specifications with procedures, but we are interested in reasoning principles that in-
volve changed specifications, for example, rules LINK and SOF. For the same reason,
we do not formalize the association of invariants with modules. Another alternative is
to include bnd etc. explicitly in the judgment form, but in this article we do not have
reasoning principles that change dynamic boundaries or the import structure.

In Naumann and Banerjee [2010], the grouping of some procedures into a module
with boundary δ is expressed as
〈δ〉 and hypotheses are a list
1〈δ1〉 , . . . ,
n 〈δn 〉.
This is not quite rich enough to handle interesting situations with nested modules.

Remark 6.2. At several points, we have remarked on the practical value of data
groups. Using modules, they could be formalized along the following lines. Inside some
module, with module-scoped fields f and g , the declaration “group d includes f , g” would
declare d to be a group that abstracts f and g . For example, in the Observer example
from Section 2.3 the fields obs , sub,nxto could be included in a data group dg .

An effect wrH ‘d would license writes of o.f for o ∈ H . Abstraction from module-
scoped global variables could be done as well. If the concrete fields of distinct data
groups are distinct, then data groups would not be needed in formulas (i.e., we only use
data groups for their l-value). For example, the separator of rdG ‘d and wrH ‘d would
be G # H , so it is G and H that a client needs to reason about. Inside the module, the

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:37

separator would need to take the group declaration into account, for example, rdG ‘d ./.
wrH ‘f = G # H if f in group(d).

6.2. The Mismatch Rule

The following derived rule embodies Hoare’s mismatch in the special case of a single
procedure specification �, where � = {Q}m(x :T){Q ′}[η] and N = mdl(m).

MISMATCH

, � �M {P } C {P ′ } [ε]
P ⇒ I
, (� � I) �N {Q ∧ I } B {Q ′ ∧ I } [η]

� bnd(N) frm I N �= M mdl(p) �� N for all p in

 �M {P } letrec m = B in C {P ′ } [ε]
.

The side conditions N �= M and mdl(p) �� N may be viewed as mere syntax, ensur-
ing that C is the full scope of use of the procedure m that comprises module N (as
discussed above in connection with (19)). The important feature of rule MISMATCH is
that the client C is obliged to respect bnd(N)—and also bnd(L) for all other modules L
in
—but does not see the hidden invariant I . In practical terms, reasoning about C
is done in the scope of module M , in which I is not visible. Reasoning about the side
conditions, and about B , is done in the scope of N . The implementation B is verified
under additional precondition I and has additional obligation to reestablish I . (In the
general case, there is a list of bodies Bi , each verified in the same context against the
specification for mi .) The context
 is another module that may be used both by C and
by the implementation B of m. So B must respect bnd(L) for L in
, but it is not re-
quired (or likely) to respect bnd(N). The obligation on B refers to context � � I , not �;
this is relevant if B recursively invokes m (or, in the general case, other procedures of
N). The operation �I conjoins a formula I to pre- and postconditions of specifications:

({Q } m(x :T) {Q ′ } [η]) � I =̂ {Q ∧ I } m(x :T) {Q ′ ∧ I } [η] .

Typical formalizations of data abstraction include a command for initialization [He
et al. 1986], so a closed client program takes the form letrec m = B in (init ;C). With
dynamic allocation, it is constructors that do much of the work to establish invariants.
In order to avoid the need to formalize constructors, we use an initial condition. For
the SET example (Section 2.1), P in rule MISMATCH can be instantiated to have a
conjunct pool = ∅ which is suitable to be declared in the module interface. Note that
pool = ∅ ⇒ Iset is valid.

Remarkably, there is a simple interpretation of judgment (18) that captures the idea
that C respects a boundary bnd(M).

No step of C ’s execution may write locations designated by bnd(M) unless it
is a step of a context procedure m with mdl(m) � M .

Those locations are determined by interpreting bnd(M) in the pre-state of that step.
Before turning to the formal details, we discuss this proof obligation.

6.3. Verifying a Client of SET

Using the public specifications of the four methods of SET , it is straightforward to
prove that the client in Eq. (1) establishes b = false. But there is an additional obli-
gation, that every step respects the dynamic boundary θset . Consider the assignment
n.val : = 1 in (1), which is critical because Iset depends on field val . Since it is not a call
to a procedure of the module, we need to show the dynamic boundary is not crossed.
Formally this is similar to the condition in rule FRAME and it is expressed using ./..
The effect of n.val : = 1 is wrn.val and it must be shown to be outside the boundary
θset . By definition of ./., we have that θset

./. wrn.val is {n} # pool ∧ {n} # pool ‘rep, which

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:38 A. Banerjee and D. A. Naumann

Fig. 12. Derivation of rule MISMATCH, where � is a single specification {Q } m {Q ′ } [η], with mdl(m) = N ,
and we elide the parameter of m. Rule SOF adds I to the specifications for C . Then rule LINK combines
the judgments for B and C , followed by CONSEQ using the side condition P ⇒ I of MISMATCH. Two side
conditions for SOF are in rule MISMATCH: N �= M , mdl(p) �� N for all p in
. A third, N ∈ �, holds by
definition of � and mdl(m) = N .

simplifies to n /∈ pool ∧ n /∈ pool ‘rep. We have n /∈ pool because n is fresh and variable
pool is not updated by the client (or one can argue using the evident type invariant
about pool). The condition n /∈ pool ‘rep is more interesting. Note that Iset implies

R =̂ pool ‘rep‘own ⊆ pool \ {null}
The client does not update the default value, null, of n.own. Together, R and n.own =
null imply n /∈ pool ‘rep. Rule CXTINTRO in the sequel formalizes this kind of reasoning.

It happens that the specifications of SET provide enough information to prove,
in reasoning about a client under precondition pool = ∅, that null /∈ pool , whence
n /∈ pool ‘rep above. However, formula R manifests the way field own is being used to
describe a module-specific ownership discipline. Unlike Iset , formula R is suitable to
appear in the module interface, as a public invariant [Leavens and Müller 2007] or ex-
plicitly conjoined to the procedure specifications of SET . As it is an easy consequence
of Iset , it comes at little cost to the module specifier. Another invariant suitable to ap-
pear in the interface is type(Set , pool), which abbreviates pool ⊆ pool /Set . Yet another
is the separation condition (5) based on ownership; or we could expose field own and
the invariant that s.rep‘own ⊆ pool for all s in pool . In this article, we do not formalize
public invariants and their use by clients.

One point of this example is that “package confinement” [Grothoff et al. 2007] applies
here: references to the instances of Node used by the Set implementation are never
made available to client code. Thus, a lightweight, type-based confinement analysis of
the module could be used together with simple syntactic checks on the client to verify
that the boundary is respected. The results of an analysis could be expressed in first-
order assertions like R and thus be checked rather than trusted by a verifier.

The notion of dynamic boundary encompasses situations that are not amenable to
general purpose static analyses. A dynamic boundary is expressed in terms of state
potentially mutated by the module implementation, for example, the effect of add in
Figure 1 allows writing state on which θset depends.18 So interface specifications need
to provide clients with sufficient information to reason about the boundary. This may
be provided by a public invariant like R above, or by method contracts; we consider
MM as an example of the latter, in Section 8.

The beauty of the second-order frame rule, the form of which is due to O’Hearn et al.
[2009], is that it distills the essence of Hoare’s mismatch. Rule MISMATCH is derived
in Figure 12 from our rule SOF together with rule LINK (see Figure 13 or Section 7.6).
Omitting a couple of side conditions, rule SOF looks as follows:

, � �M {P } C {P ′ } [ε] � bnd(N) frm I N ∈ �

, (� � I) �M {P ∧ I } C {P ′ ∧ I } [ε]
.

18State-dependent effects may interfere, which is handled by the sequence rule in Part I.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:39

Notice that the conclusion conjoins I to the specification of C , just like the ordinary
FRAME rule. But the meaning of C depends on its context—that is the sense in which
the rule is second order—and I is also conjoined around the context. Another difference
from FRAME is that separation between C and the footprint, bnd(N), of I is expressed
not in terms of the end-to-end effect ε of C but rather by the step-by-step condition
that C respects the dynamic boundary (which it must because N ∈ �).

We conclude this section by formalizing the semantics of correctness judgments with
hypotheses. Section 7 presents the proof rules.

6.4. Semantics of Hypothetical Judgments

The meaning of a judgment (18)—its validity—depends not only on what is explicit
in the judgment but also on the grouping of procedures in modules (mdl), the import
relation (�), and the given dynamic boundaries (bnd).

Definition 6.3 (Respects). A step 〈C , σ , μ〉
�−→ 〈C ′, σ ′, μ′〉 respects N iff either
Agree(σ , σ ′, bnd(N)) or Active(C) is a procedure call for some m in
 with mdl(m) � N .

Definition 6.4. A correctness judgment
 ��
M {P } C {P ′ } [ε] is valid, written

 |��
M {P } C {P ′ } [ε]

iff the following holds for all �-environments μ and all �-states σ such that σ |� P :

(Safety) It is not the case that 〈C , σ , μ〉
�−→∗ fault .

(Ctx-pre) It is not the case that 〈C , σ , μ〉
�−→∗ p-fault .

(Post) σ ′ |� P ′ for every σ ′ such that 〈C , σ , μ〉
�−→∗ 〈skip, σ ′, μ〉
(Effect) σ→σ ′ |� ε for every σ ′ such that 〈C , σ , μ〉
�−→∗ 〈skip, σ ′, μ〉
(Encap) Every step reachable from 〈C , σ , μ〉 via

�−→ respects N for every N in

with N �= M .

The Safety and Ctx-pre conditions say it is not the case that 〈C , σ , μ〉
�−→∗ (p-)fault ,
using an abbreviation. The Encap condition says that for every trace

〈C , σ , μ〉
�−→∗ 〈C ′′, σ ′′, μ′′〉
�−→ 〈C ′, σ ′, μ′〉
and every N ,m for which
 specifies some p with N = mdl(p) and N �= M , either
Agree(σ ′′, σ ′, bnd(N)) or Active(C ′′) is a call to some m in
 such that mdl(m) � N .
That is, assignments in C are exempt from respecting bnd(M) and moreover the defi-
nition of “respects” exempts procedure calls from the boundaries of the modules they
import.

Note that the stated assumptions imply that 〈C , σ , μ〉 is compatible with � and

because by well-formedness of the judgment, the procedures in
 are not in dom(�).
Moreover, the Post and Effect conditions lose no generality by using the same final
environment as the initial one, by bracketing (Lemma 4.7).

In case
 is empty, validity is the same as in Part I of this article, as the Encap and
Ctx-pre conditions become vacuously true.

Remark 6.5. Consider two distinct modules M and N that both refer to a global
variable x in their respective dynamic boundaries. Suppose N ∈
. Then, an atomic
assignment such as x : = 0 in code of M cannot satisfy Encap because it cannot respect
the boundary of N . Therefore, Encap forces dynamic boundaries of any two distinct
modules either to be nonoverlapping or, if they do overlap, to not have any updates on
the overlapped part. We return to this point in Section 11.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:40 A. Banerjee and D. A. Naumann

Fig. 13. Selected syntax directed rules. We elide M from �M when it is the same for every judgment in the
rule. The notation in rule LINK assumes � the list {Q1}m1(x1 :T1){Q ′

1}[η1] , . . . , {Qn }mn (xn :Tn){Q ′
n }[ηn].

7. PROOF RULES AND SOUNDNESS

This section is devoted to presenting the proof rules and proving their soundness.

7.1. The Rules

Figure 13 gives selected rules for program constructs. Every one of the syntax-directed
rules in Part I of this article is adapted the same way: axioms have an empty procedure
context (like FIELDUPD) and the proper rules have the same context throughout (like
IF and VAR). As in Part I, an implicit side condition on all proof rules is that both
the conclusion and the premises are well formed; for example, x in rules VAR and
EXTENDCTX must not be in dom(�) as otherwise the typing context �, x :T would not
be well formed.

The authors were surprised that the axiom CALL does not need side condition
M � mdl(m), as the expected interpretation of � as an abstraction of the “can call” re-
lation between procedures (or reflexive transitive closure thereof). Indeed, in the proof
rules the only constraints on � are the negative one in SOF and the positive one in
rule CTXINTROCALL. To verify a program with multiple modules and procedures, the
“context intro” rules are needed in order to lift judgments about program fragments to
have contexts for which the whole program can be linked. Rule CTXINTRO can be used
for intramodule procedure calls where there are no effects inside module boundaries,
for example, procedures with no heap effects. But this is the exception, since frame
conditions expose effects on encapsulated state. In usual cases, rule CTXINTROCALL
is needed. Its use gives rise to constraints on the � relation. The gist of it is that the
syntactic “imports” relation can be used for �, but proofs can also be constructed using
a smaller relation: instead of “can call”, it only tracks “can call with effect on encap-
sulated state”. There is also a sense in which � needs to be compatible with lexical
nesting of letrec blocks; this is manifest in rule MISMATCH.

Rule LINK is given in the general form where one or more procedures are linked
simultaneously. See Section 7.6 for a more readable version special case, LINK1. The
difference from LINK0 discussed in Section 4.4 is the side condition that says that
the ambient modules, that is, for procedures in
, are different from the module(s) of
the procedures to be linked. The linked procedures need not be from the same module;
this caters for simultaneous linking of mutually recursive procedures whose calls cross
module boundaries, as discussed in Section 9. One might prefer to add side condition

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:41

Fig. 14. Structural rules that manipulate procedure contexts.

M /∈ �, because the rule is not really useful if M is in � (as letrec is not allowed in
procedure bodies); but this is not needed for soundness.

Rule FLDUPDATE is the same as in Part I of this article. As noted previously, all of
the atomic commands except method call are treated this way: the procedure context is
simply empty. Rule IF illustrates how the rules for control constructs are adapted sim-
ply by adding a procedure context. This works because a command respects dynamic
boundaries if its constituents do.

Figure 14 gives the structural rules that manipulate procedure contexts.
Rule SOF allows invariant I for module N to be added to the specifications for pro-

cedures of several modules (�). Other specifications (
) are unchanged; these must be
procedures outside N in accord with the side condition: mdl(m) �� N for all m in
.
Side conditions N ∈ � and N �= M , together with the premise judgment for C , ensure
that C respects the boundary of N . The elegant SOF rule of O’Hearn et al. [2009] has
no side conditions of this sort. Whereas the conditions in our rule disallow the infer-
ence in case C can interfere with I , their rule does allow to infer {P ∗ I }C {P ′ ∗ I }. If
C can write on the footprint of I , then the footprint, P , of C will overlap I and the
precondition P ∗ I will be false, so the conclusion is sound but useless.

The “context intro” rules CTXINTRO, CTXINTROIN, and CTXINTROCALL play a cru-
cial role: axioms like CALL and FIELDUPD have the minimum necessary context, so
the context needs to be extended in order to compose commands in control structure
and by linking. Extending the context is, in general, a strengthening of the correct-
ness property, owing to the Encap condition. Rule CTXINTRO is restricted to atomic
commands (i.e., procedure call and assignments, cf. Figure 6), because the side con-
dition only enforces the dynamic encapsulation boundary θ for the initial and final
states—there are no intermediate steps in the semantics of these commands. The
frame condition of a procedure often exposes that it writes within the boundary of
its own module, in which case CTXINTROCALL is needed. It enforces that the rela-
tion � reflects at least the import relations (i.e., parts of the call graph) that involve
such effects. Rule CTXINTROIN embodies two cases. The case mdl(m) = M reflects
that the Encap condition in Definition 6.4 exempts code in module M from respecting
the boundary of M . The case mdl(m) ∈
 reflects that the Encap condition depends on
what modules are in context; adding more procedures for an existing module makes no
difference.

A verification condition generator based on these rules would generate, for each
assignment command, the obligation that its effect is separate from the dynamic

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:42 A. Banerjee and D. A. Naumann

Fig. 15. Selected structural rules adapted from Part I of this article. We elide M from �M because it is the
same for the conclusion and premise judgments.

boundary of every relevant module except the current one. The relevant modules
would be determined from the syntactic import relations among modules.

Figure 15 gives selected structural rules that are adapted from those in Part I of
this article. All of the structural rules from Part I are adapted, just like the syntax
directed rules; note that EXTENDCTX is slightly generalized in that both variables
and procedures can be added to the typing context.

THEOREM 7.1. Each of the rules is sound. Hence, any derivable correctness judg-
ment is valid.

The rest of this section is devoted to proving that each rule is sound. Rule SOF is
done first, as it is the centerpiece of the work. Rule LINK is done last, as its proof is the
most lengthy. Rules for the frames judgment are kept unchanged from Part I of this
article where they are proved sound.

7.2. Proof of the SOF Rule

Assume the premise is valid:

, � |��
M {P } C {P ′ } [ε]

and assume the side conditions hold: � bnd(N) frm I , N �= M , N ∈ �, and mdl(m) �� N
for all m in
. We must prove validity of the conclusion, that is

, (� � I) |��
M {P ∧ I } C {P ′ ∧ I } [ε] . (20)

For brevity, let
− be the specifications (
, �) for the premise, and

+ be the specifications (
, � � I) for the conclusion.

Consider any �-state σ with σ |� P ∧ I and let μ be any �-environment.

Claim. Consider any trace from 〈C , σ , μ〉 via

+
�−→. Then

(a) that sequence is also a trace via

−
�−→, and

(b) I holds in every configuration of the trace.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:43

The Claim implies (20), for σ and μ, as follows. It is not the case that 〈C , σ , μ〉
+
�−→∗

fault , because that would imply 〈C , σ , μ〉
−
�−→∗ fault by Claim (a), and this contradicts

validity of the premise. Likewise, there is no p-fault . Furthermore, if the trace via
+
ends at 〈skip, σ ′, μ〉, then by validity of the premise we get σ ′ |� P ′ and σ→σ ′ |� ε. We

get σ ′ |� I from Claim (b). What remains is to show that any reachable step via

+
�−→

respects L for each L in
, (� � I) with L �= M . This follows from the corresponding
condition in validity of the premise, because L is in
, � � I iff it is in
, �.

It remains to prove the claim, which we do by induction on the length of the trace
from 〈C , σ , μ〉 via
+. The base case is when the length is 0. Then, (a) is immediate,
and using assumption σ |� P ∧ I , we get σ |� I for (b).

For the induction step, suppose that 〈C , σ , μ〉
+
�−→∗ 〈C ′′, σ ′′, μ′′〉 and either

〈C ′′, σ ′′, μ′′〉
+
�−→ 〈C ′, σ ′, μ′〉 or 〈C ′′, σ ′′, μ′′〉
+

�−→ (p-)fault . By induction, we have

〈C , σ , μ〉
−
�−→∗ 〈C ′′, σ ′′, μ′′〉 and σ ′′ |� I . Accordingly, we must show 〈C ′′, σ ′′, μ′′〉
−

�−→
〈C ′, σ ′, μ′〉 and σ ′ |� I or else 〈C ′′, σ ′′, μ′′〉
−

�−→ (p-)fault .

We show the nonfaulting alternative first. So suppose 〈C ′′, σ ′′, μ′′〉
+
�−→ 〈C ′, σ ′, μ′〉

and go by cases on Active(C ′′).

Case. Active(C ′′) is not a call to a context procedure, and is not evar, ecall, var, or
call of an environment procedure. Then, by the correspondence Lemma 4.9, we have

〈C ′′, σ ′′, μ′′〉
−
�−→ 〈C ′, σ ′, μ′〉. By premises N �= M and N ∈ �, the step respects N ,

so Agree(σ ′′, σ ′, bnd(N)). Hence by validity of the premise � bnd(N) frm I , using also
σ ′′ |� I , we get σ ′ |� I (recall Eq. (3) in Section 3). To be very precise, the premise
is �� bnd(N) frm I for some typing context � (which is the same for every judgment,
and hence elided, in rule SOF). States σ ′′, σ ′ are for some typing context �′ ⊇ �, by
semantics (preservation Lemma 4.6), noting that the only constructs that change the
typing context are evar, ecall, var, and call of an environment procedure. By definition
of frame validity and semantics of formulas, we have that |�� bnd(N) frm I implies
|��′

bnd(N) frm I , whence σ ′ |� I as above.

Case. Active(C ′′) is of the form evar(x), ecall(x), var x :T in . . ., or m(x) where m

is in the environment. Again, by Lemma 4.9, we have 〈C ′′, σ ′′, μ′′〉
−
�−→ 〈C ′, σ ′, μ′〉.

Conceptually, part (b) of the Claim holds for the same reason as in the preceding case:
The step respects N , that is, Agree(σ ′′, σ ′, bnd(N)), and so I is preserved owing to its
framing judgment. However, our formulation of “frame validity”, see Eq. (3), does not
encompass transitions that add or remove variables. That could be done, but would
be hard to motivate as it is not needed except in the present case. Instead, we argue
directly in terms of semantics. Transitions for evar(x) and ecall(x) change the state
only by removing x . By well-formedness conditions, x is not in �, and so by semantics
of formulas, we have σ ′′ |� I iff σ ′ |� I . Transitions for call of an environment proce-
dure, and for var, change the state only by adding a fresh variable not in �, so again
σ ′′ |� I iff σ ′ |� I .

Case. Active(C ′′) is a call m(z) to a procedure m with specification {V }m(x :T){V ′}[η]
in (� � I). Observe that C ′′ = m(z);D , μ′ = μ′′, and C ′ = D . And V is Q ∧ I and V ′
is Q ′ ∧ I for some Q ,Q ′ such that {Q}m(x :T){Q ′}[η] is in �. Let s be the specification-
only variables that occur in Q ,Q ′, η. Because this context call makes a nonfaulting

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:44 A. Banerjee and D. A. Naumann

transition via
+, there must be values n such that σ ′′ |� (Q ∧ I)
x ,s
z ,n (using abbrevia-

tion (11)) and also

σ ′′→σ ′ |� ηxz and ∀n · (σ ′′ |� (Q ∧ I)
x ,s
z ,n) ⇒ (σ ′ |� (Q ′ ∧ I)

x ,s
z ,n). (21)

Observe that I xz is I , because x is local to the specification of m. By well-formedness
of bnd(N), no specification-only variables occur in bnd(N), so I does not depend19 on s.
Thus, we have

∃n · σ ′′ |� (Q ∧ I)
x ,s
z ,n iff σ ′′ |� I and ∃n · σ ′′ |� Q

x ,s
z ,n , (22)

whence we have σ ′′ |� I for Claim(b). Furthermore, one of the conditions in the transi-
tion rule for m(z) via
− is ∃n · σ ′′ |� Q

x ,s
z ,n . Another is σ ′′→σ ′ |� ηxz which we have in

(21). The remaining condition for transition via
− is ∀n · (σ ′′ |� Q
x ,s
z ,n) ⇒ (σ ′ |� Q ′x ,s

z ,n).
This follows from the second conjunct of (21) using that σ ′′ |� I and I does not depend
on s.

Case. Active(C ′′) is a call to some procedure p in
. By Lemma 4.9, we have

〈C ′′, σ ′′, μ′′〉
−
�−→ 〈C ′, σ ′, μ′〉. By premise N �= M , the step respects N . So, by defi-

nition of respects, either Agree(σ ′′, σ ′, bnd(N)), and we get σ ′ |� I as in the first case
above, or else mdl(p) � N . But mdl(p) � N contradicts the premise “mdl(m) �� N for
all m in
”.

Finally, we show the faulting alternative. Suppose 〈C ′′, σ ′′, μ′′〉
+
�−→ (p-)fault , noting

that “(p-)fault” abbreviates two cases. The case 〈C ′′, σ ′′, μ′′〉
+
�−→ fault happens only if

the active command is field read or field update; then, by correspondence Lemma 4.9,

we get 〈C ′′, σ ′′, μ′′〉
−
�−→ fault , as required for the Claim (a). And there is nothing to

prove for Claim (b). The case 〈C ′′, σ ′′, μ′′〉
+
�−→ p-fault happens for a call of a context

procedure, say m. If m is in
, we get 〈C ′′, σ ′′, μ′′〉
−
�−→ p-fault by Lemma 4.9, as
−

and
+ agree on
. Otherwise, m is in � and in
+, it has specification of the form
{V }m(x :T){V ′}[η], where V is Q ∧ I for some Q . Let the specification-only variables
be s. By semantics, we have ¬(∃n · σ ′′ |� (Q ∧ I)

x ,s
z ,n). Since σ ′′ |� I and in light of (22),

we have ¬(∃n · σ ′′ |� Q
x ,s
z ,n) and thus 〈C ′′, σ ′′, μ′′〉
−

�−→ p-fault .

7.3. Proofs of the Procedure Call and Context Introduction Rules

For CALL, let � be {P}m(x :T){P ′}[ε]. Let the specification-only variables in P ,P ′, ε be
s. To prove � |��

M {Px
z } m(z) {P ′x

z }[εxz], suppose σ |� Px
z and let μ be a �-environment.

By semantics, there is no faulting transition and we have 〈m(z), σ , μ〉 ��−→ 〈skip, σ ′, μ〉
for all σ ′ such that σ→σ ′ |� εxz and ∀n · (σ |� P

x ,s
z ,n) ⇒ (σ ′ |� P ′x ,s

z ,n). These outcomes
satisfy the Safety and Effect conditions. For any such σ ′, we have σ ′ |� P ′x

z by in-
stantiating n as σ(s) and using that σ ′(s) = σ(s) because by well-formedness ε does
not allow writes of specification-only variables. Thus, the outcome satisfies Post. For
Encap, if M �= mdl(m), then we need the step to respect mdl(m), which it does by
Definition 6.3 of respects since mdl(m) � mdl(m).

19But we do not say that I sn is I , because the substitution for s is only an abbreviation used in connection
with |�; see (11).

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:45

For CTXINTRO, suppose C is an atomic command and let � be {Q}m(x :T){Q ′}[η].
Suppose the premise is valid:
 |��

M {P } C {P ′ } [ε]. To show
, � |�M {P } C {P ′ } [ε],
consider any �-environment μ and any σ with σ |� P . If C is skip, then there is no

transition via

��−→ and the only thing to prove is σ |� P ′—which we have by validity

of the premise. If C is an assignment, field update, or call of a procedure (which must

be in
, by well formedness of the premise), the possible steps via

��−→ have the form

〈C , σ , μ〉
��−→ 〈skip, σ ′, μ′〉 and 〈C , σ , μ〉
��−→ fault . By correspondence Lemma 4.9

and well formedness of C in
, these are also steps via

�−→. So by the premise, the

fault case does not happen, and by the premise, we have σ ′ |� P ′ and σ→σ ′ |� ε.
For the Encap condition, we must show the step respects N for every N in
, � with
N �= M . For N in
, this follows by validity of the premise. For N = mdl(m), from
premise P ⇒ bnd(mdl(m)) ./. ε, we get Agree(σ , σ ′, bnd(mdl(m))) using the separator
agreement lemma mentioned in Section 3 (Lemma 6.8 in Part I).

For CTXINTROCALL, the argument is again like that for CTXINTRO, except to show
that the step respects mdl(q), where q is the procedure being added to the context. It
does respect mdl(q) by Definition 6.3 using the rule’s premise mdl(m) � mdl(q).

For CTXINTROIN, let � be {Q}m(x :T){Q ′}[η] �M {P } C {P ′ } [ε]. Because the
premise of the rule is well formed, there are no calls of m in C . So for any environment

μ and state σ that satisfies P , any trace from 〈C , σ , μ〉 via

��−→ is a trace via

�−→. (In
detail, this is proved by induction on the trace, using the correspondence Lemma 4.9.)
Thus, the Safety, Post, Effect, and Ctx-pre conditions for the conclusion follow from
validity of the premise.

The Encap condition for the conclusion of CTXINTROIN requires every step to respect
every module N in
, � with N �= M . In case, the side condition mdl(m) ∈
 holds,
every N in
, � is in
 so the Encap condition for the conclusion is the same as the
Encap condition for the premise. In the other case, that is, mdl(m) = M holds, the
Encap conditions are again the same.

7.4. Proofs of the Structural Rules

Rule CONJ illustrates the situation with the remaining structural rules: the premises
and conclusion have the same procedure context,
. Validity of the conclusion involves

the transition relation

�−→ and this is the same as the transition relation for the

premises. Moreover the same command appears in the premises as in the conclusion.
So the soundness proof is quite direct from Definition 6.4. In particular, the Pre-ctx
and Encap conditions in the conclusion are the same as those of the premises.

Rules like FRAME, SUBEFF, VARMASK, and CONSEQ have more or less complicated
side conditions and manipulation of precondition, postcondition, and/or frame condi-
tion. These conditions carry over unchanged from Part I of this article. As in the case
of CONJ, the soundness argument from Part I can be extended because again the same
procedure context and command is present in the premises as in the conclusion.

The only structural rules that manipulate the typing context are EXTENDCTX, EX-
IST, and EXISTREGION. These, like CONJ, have the same procedure context and same
command in premise and conclusion. The proofs for EXIST and EXISTRGN are straight-
forward adaptations of their proofs in Part I. Owing to well-formedness of the premises
and conclusion in each case, the variable of interest does not occur free in the procedure
context or in the dynamic boundaries.

Rule EXTENDCTX has two cases, extending � with either a variable or a procedure.
In case �′ is �, x :T , by well-formedness of the premise, x does not occur in C or in the
specification. For any �, x :T -state σ we have σ |��,x :T P iff σ �x |�� P and mutatis

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:46 A. Banerjee and D. A. Naumann

mutandis for P ′. Any trace from 〈C , σ , μ〉 yields a trace from 〈C , σ �x , μ〉 with exactly
the same configurations except x tossed from the state. Thus, validity of the conclu-
sion follows easily from validity of the premise. In the other case, �′ is �,m : (y :U).
A �′-state τ is also a �-state, by definition. For any �,m : (y :U)-environment μ, any
computation from 〈C , τ , μ〉 yields a computation from 〈C , τ , μ�m〉 with exactly the
same configurations except m tossed. Again, validity of the conclusion follows easily
from validity of the premise. The main reason to allow procedures in the typing con-
text of correctness judgments is that the soundness of EXTENDCTX is used in the proof
of rule LINK.

Rule SUBST looks the same as the one in Part I; note that no substitution is per-
formed on the specifications in the context, nor on the dynamic boundaries (which, to
be well-formed, do not depend on specification-only variables). The soundness proof in
Part I hinges on the following observation. To prove the conclusion of the rule, con-
sider any σ such that σ |� Px

F . By properties of substitution this implies τ |� P where
τ = [σ | x : σ(F)]. Computations from τ are thus among those to which the premise
judgment applies. Furthermore, because x is specification-only, computations of C
fault from σ iff they fault from τ ; and if trace from σ terminates in a final state σ ′
then there is a trace from τ that terminates in [σ ′ | x : σ(F)]. Lemma 4.10 confirms
these properties in the presence of procedures. As argued in detail in Part I of this
article, these observations allow the Safety, Post, and Effect conditions for traces from
Px
F -states to be derived from those from P -states, using the premise of the rule. The

Ctx-pre-condition can be shown in the same way. The Encap condition also follows
directly from the premise, as traces from τ are among those to which the premise ap-
plies; the respects condition is interpreted exactly the same in the conclusion as in the
premise, as no substitution is involved.

7.5. Proofs of the Syntax-Directed Rules besides Call and Link

Soundness of axiom FIELDUPD is proved just as in Part I: the procedure context is
empty, so the Encap condition is vacuously true. The other syntax-directed axioms
from Part I carry over the same way, with empty procedure context: ALLOC, ASSIGN,
and FIELDACC.

The other syntax-directed rules are VAR and those for control structure. In each case,
the only difference from Part I is the addition of a fixed procedure context
 for all the
judgments and the corresponding Encap condition. Let us consider rule IF in a bit more
detail. To show validity of the conclusion, that is,
 |� {P } if E then C1 else C2 {P ′ } [ε],

we consider traces via

�−→ from initial configurations 〈if E then C1 else C2, σ , μ〉 where

σ |� P . The first step respects dynamic boundaries in
 because it does not change the
state. It goes to 〈C1, σ , μ〉 if σ(E) �= 0, in which case σ satisfies the precondition of
the assumed premise
 |� {P ∧ E �= 0 } C1 {P ′ } [ε]. That assumption takes care of the
remaining steps of computation. Similarly, if σ(E) = 0.

7.6. Proof of the Link Rule

For clarity, we prove the special case where there is a single procedure. The rule
is thus

LINK1

� is {Q}m(x :T){Q ′}[η]

, � ��

M {P } C {P ′ } [ε]
, � ��,x :T
N {Q } B {Q ′ } [η] N /∈

 ��
M {P } letrec m(x :T) = B in C {P ′ } [ε]

.

In the rest of this subsection, we assume � is {Q}m(x :T){Q ′}[η]. Proving the gen-
eral rule (Figure 13) is notationally messy but not significantly different so we merely
remark on it in passing. The reader is expected to be familiar with the argument

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:47

sketched in Section 4.4. Here, we make the inductive hypotheses more precise and
we deal with dynamic boundaries. The technical material in Section 5 is used.

Owing to the form of our letrec construct, soundness of the LINK rule involves induc-
tive reasoning about a possibly recursive procedure implementation. To prove sound-
ness of LINK, we first address the hypothetical correctness of the procedure body, in
terms of configurations where m is bound to B in the environment. Lemma 7.2 par-
allels the Safety, Post, Effect, and Encap conditions that comprise the semantics of

hypothetical judgments—but note the use of

�−→ rather than

��−→.

LEMMA 7.2 (RECURSION). Suppose N /∈
 and suppose we have the valid
judgment

, � |��,x :T
N {Q } B {Q ′ } [η] (23)

Let u be in Locals but not in dom(�) ∪ {x }. Let �′ be any extension of �, u :T ,m : (x :T).
Let μ̇ be any �′-environment such that μ̇(m) = (x :T .B). Let σ be any �′-state such that
σ |� Qx

u . Then, we have the following:20

It is not the case that 〈Bx
u , σ , μ̇〉
�−→∗ fault or 〈Bx

u , σ , μ̇〉
�−→∗ p-fault (24)

For all σ ′, if 〈Bx
u , σ , μ̇〉
�−→∗ 〈skip, σ ′, μ̇〉 then σ ′ |� Q ′x

u and σ→σ ′ |� ηxu (25)

Every reachable step from 〈Bx
u , σ , μ̇〉 via

�−→ respects L for all L ∈
 (26)

Note that the given conditions ensure that 〈Bx
u , σ , μ̇〉 is compatible with �′ and
, for

example, �′, sigs(
) � Bx
u .

For expository reasons, we defer the proof to after proving Lemma 7.4. In fact, the
proof of Lemma 7.4 relies on Lemma 7.2 and not the other way around.

LEMMA 7.3 (JUDGMENT RENAMING). Let x and y be in Locals . If
 |��,x :T
M

{P } C {P ′ } [ε] and �, y :T is well formed, then
 |��,y :T
M {Px

y } C x
y {P ′x

y } [εxy].

PROOF. As x is in Locals , the specifications
 are well formed in �, and so since y not
in � they are also well formed in �, y :T . To prove the conclusion, consider any �, y :T -
state σ and let τ be σ with y renamed to x , which can be written Extend (σ �y , x , σ(y)).
For any μ, any trace from 〈C x

y , σ , μ〉 yields a trace from 〈C , τ , μ〉 with the same
configurations except y renamed to x . (To be precise, it may be that the original trace
chooses x as a fresh variable for a local block or procedure call, in which case we first
obtain a trace by renaming x , and from this a trace with y renamed to x .) If σ |� Px

y ,
then τ |� P , so we may use validity of the premise to prove the required conditions for
the conclusion. For example, if the trace from σ reaches state σ ′, then the trace from
τ reaches τ ′ = Extend (σ ′ �y , x , σ ′(y)). Then, by the premise, we have τ ′ |� P ′, whence
σ ′ |� P ′x

y . As x and y are in Locals , the renaming has no bearing on whether modules
in
 are respected.

LEMMA 7.4 (SOUNDNESS OF LINK). Consider an instantiation of the LINK1 rule
and suppose the side condition N /∈
 and both premises are valid:

, � |��
M {P } C {P ′ } [ε] (27)

, � |��,x :T
N {Q } B {Q ′ } [η] (28)

20For (25), note that substitution instances of B do not contain endmarkers, so by bracketing (Lemma 4.7)
the final environment is the same as the initial one.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:48 A. Banerjee and D. A. Naumann

Then, the conclusion is also valid:

 |��
M {P } letrec m(x :T) = B in C {P ′ } [ε] . (29)

PROOF. To prove the conclusion, we must reason about executions via

�−→ whereas

the premises pertain to executions via

��−→. In particular, we must show the five cor-

rectness conditions Safety, Ctx-Pre, Post, Effect, and Encap for letrec m(x :T) = B in C

via

�−→. To that end, consider any �-state σ such that σ |� P and any �-environment μ.

These will be fixed throughout the rest of the proof. Let list s be the specification-only
variables that occur in the specification of m, that is, in Q , Q ′, or η.

By semantics, there is a single transition from the initial configuration:

〈letrec m(x :T) = B in C , σ , μ〉
�−→ 〈C ; elet(m), σ , μ̇〉,
where μ̇ = Extend (μ,m, (x :T .B)). Any trace of C ; elet(m) corresponds step by step
with a trace of C containing a trailing elet(m) in every configuration (and exactly the
same states), possibly followed by a final step that executes elet(m), removing m from
the environment. The step for elet(m) neither faults nor changes the state. Thus, to
prove (29), it suffices to show the following:

(i) it is not the case that 〈C , σ , μ̇〉
�−→∗ (p-)fault
(ii) for any σ ′, if 〈C , σ , μ̇〉
�−→∗ 〈skip, σ ′, μ̇〉 then σ ′ |� P ′ and σ→σ ′ |� ε

(iii) every reachable step 〈C , σ , μ̇〉
�−→∗ 〈C ′′, σ ′′, μ′′〉
�−→ 〈C ′, σ ′, μ′〉 respects every
L ∈
 with L �= M .

Recall Definition 5.6 of m-truncated traces. We will prove (i)–(iii) using the following.

Claim A. For all C ′, σ ′, μ̇′, and m-truncated traces 〈C , σ , μ̇〉
�−→∗ 〈C ′, σ ′, μ̇′〉, we have

(a) 〈C , σ , μ〉
��−→∗ 〈C ′, σ ′, μ′〉, where μ′ = μ̇′�m
(b) if C ′ = m(z);D for some z ,D , then there are values n such that σ ′ |� Q

x ,s
z ,n (i.e.,

[σ ′ | s : n] |� Qx
z)

To prove (i), suppose 〈C , σ , μ̇〉
�−→∗ 〈C ′, σ ′, μ̇′〉
�−→ (p-)fault . If the part of this trace

before faulting is m-truncated then we have 〈C , σ , μ〉
��−→∗ 〈C ′, σ ′, μ′〉 by Claim A(a).

In this case, from 〈C ′, σ ′, μ̇′〉
�−→ (p-)fault , we have by semantics Active(C ′) is a field
access/update (for fault) or a call of a context procedure p in
 (for p-fault). Thus,

by the special correspondence Lemma 5.2, we get 〈C ′, σ ′, μ′〉
��−→ (p-)fault . But this
contradicts validity of the correctness judgment for C , that is, premise (27).

In the other case for (i), the trace 〈C , σ , μ̇〉
�−→∗ 〈C ′, σ ′, μ̇′〉 is not m-truncated. In
light of the discussion following Definition 5.6, it has a prefix of the form

〈C , σ , μ̇〉
�−→∗ 〈m(z);D , ρ, ν̇〉
�−→ 〈Bx
u ; ecall(u);D , υ, ν̇〉
�−→∗ 〈A; ecall(u);D , σ ′, μ̇′〉,

where u is a fresh variable and υ is Extend (ρ, u, ρ(z)). Moreover 〈A, σ ′, μ̇′〉
�−→
(p-)fault , because this was not a completed call. So we have 〈Bx

u , υ, ν̇〉
�−→∗ 〈A, σ ′, μ̇′〉
and thus 〈Bx

u , υ, ν̇〉
�−→∗ (p-)fault . But by Claim A(b) we have ∃n · ρ |� Q
x ,s
z ,n and

thus ∃n · υ |� Q
x ,s
u ,n by the little substitution Lemma 5.1. Note that locals x , z , u are

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:49

distinct from the specification-only variables s, and by abbreviation (11) we have some

n with [υ | s : n] |� Qx
u . By Lemma 4.10 we get 〈Bx

u , [υ | s : n] , ν̇〉
�−→∗ (p-)fault . But this
contradicts correctness of Bx

u , according to Lemma 7.2(24), and using premise (28). So
(i) is proved.

To prove (ii), suppose 〈C , σ , μ̇〉
�−→∗〈skip, σ ′, μ̇〉. This is m-truncated, so by Claim A(a)

we get 〈C , σ , μ〉
��−→∗ 〈skip, σ ′, μ〉. So by the hypothesis σ |� P with which we set forth,
and premise (27), we have σ ′ |� P ′ and σ→σ ′ |� ε.

To prove (iii), suppose 〈C , σ , μ̇〉
�−→∗ 〈C ′′, σ ′′, μ̇′′〉
�−→ 〈C ′, σ ′, μ̇′〉. Consider any L ∈

such that L �= M . We show the step from σ ′′ to σ ′ respects L. In case the first part,

〈C , σ , μ̇〉
�−→∗ 〈C ′′, σ ′′, μ̇′′〉, is m-truncated, we get 〈C , σ , μ〉
��−→∗ 〈C ′′, σ ′′, μ′′〉 by Claim
A(a). Then consider subcases on Active(C ′′):
— If Active(C ′′) is not a call, or is a call to some p ∈
, then by the special corre-

spondence Lemma 5.2, using 〈C , σ , μ〉
��−→∗ 〈C ′′, σ ′′, μ′′〉, we get 〈C ′′, σ ′′, μ′′〉
��−→
〈C ′, σ ′, μ′〉, so the step respects L by premise (27) for C .

— The remaining subcase is that Active(C ′′) is a call of an environment procedure.
This includes a call of m, which is allowed by the definition of m-truncated. By
semantics, the step only writes the fresh local variable used for the parameter, and
this does not violate agreement so it respects L.

Finally, consider the case that 〈C , σ , μ̇〉
�−→∗ 〈C ′′, σ ′′, μ̇′′〉 is not m-truncated. It has a
prefix of the form

〈C , σ , μ̇〉
�−→∗ 〈m(z);D , ρ, ν̇〉
�−→ 〈Bx
u ; ecall(u);D , υ, ν̇〉

with u a fresh variable and υ = Extend (ρ, u, ρ(z)). Moreover, we have ∃n · ρ |� Q
x ,s
z ,n

by Claim A(b). Now we consider subcases on whether Active(C ′′) is code from B :

Case. 〈Bx
u ; ecall(u);D , υ, ν̇〉
�−→∗ 〈ecall(u);D , σ ′′, μ̇′′〉 so C ′′ = ecall(u);D . Then, the

next configuration is 〈D , σ ′, μ̇′〉 where σ ′ = σ ′′ �u, C ′ = D , and μ̇′′ = μ̇′. So we have
Agree(σ ′′, σ ′, bnd(L)) because σ ′ = σ ′′�u. Thus the step respects L.

Case. 〈Bx
u ; ecall(u);D , υ, ν̇〉
�−→∗ 〈A; ecall(u);D , σ ′′, μ̇′′〉 so C ′′ = A; ecall(u);D .

We have21 A �= skip so there is some A′ with 〈A; ecall(u);D , σ ′′, μ̇′′〉
�−→
〈A′; ecall(u);D , σ ′, μ̇′〉 and C ′ = A′; ecall(u);D . Thus, 〈Bx

u , υ, ν̇〉
�−→∗ 〈A, σ ′′, μ̇′′〉
�−→
〈A′, σ ′, μ̇′〉. From ∃n · ρ |� Q

x ,s
z ,n , we get ∃n · υ |� Q

x ,s
u ,n by the little substitution

Lemma 5.1. Now, by Lemma 4.10, we have 〈Bx
u , [υ | s : n] , ν̇〉
�−→∗〈A, [σ ′′ | s : n] , μ̇′′〉
�−→

〈A′, [σ ′ | s : n] , μ̇′〉. This trace is from a state that satisfies the precondition for m, so
using Lemma 7.2 and premises N /∈
 and (28) of Lemma 7.4 we get that this last step

(from A to A′) respects L. The step in question, 〈A, σ ′′, μ̇′′〉
�−→ 〈A′, σ ′, μ̇′〉, does not
change s (by Lemma 4.10) so it too respects L.

It remains to prove Claim A. For this, we use the following.

Claim B. For any n ≥ 0, we have the following. For all C0, σ0, μ̇0,C ′, σ ′, μ̇′, and for
any m-truncated trace

〈C , σ , μ̇〉
�−→∗ 〈C0, σ0, μ̇0〉
�−→∗ 〈C ′, σ ′, μ̇′〉
21As otherwise we would be in the preceding case, since in a configuration we identify skip;X with X .

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:50 A. Banerjee and D. A. Naumann

if the trace 〈C0, σ0, μ̇0〉
�−→∗ 〈C ′, σ ′, μ̇′〉 has exactly n completed topmost calls of m,

and we have 〈C , σ , μ〉
��−→∗ 〈C0, σ0, μ0〉 where μ0 = μ̇0�m and μ′ = μ̇′�m, then we have

〈C0, σ0, μ0〉
��−→∗ 〈C ′, σ ′, μ′〉
(Note that since μ̇0 and μ̇′ are reached from 〈C , σ , μ̇〉, by bracketing they both contain
m, hence our choice of dotted identifiers.)

To prove Claim A(a), instantiate Claim B with C0, σ0, μ̇0 : = C , σ , μ̇.

To prove Claim A(b), suppose 〈C , σ , μ̇〉
�−→∗〈C ′, σ ′, μ̇′〉 and C ′ = m(z);D for some z ,D .

By Claim A(a), we have 〈C , σ , μ〉
��−→∗〈C ′, σ ′, μ′〉. Suppose, for the sake of contradiction,

that there is no n with σ ′ |� Q
x ,s
z ,n . Then, by semantics, we have 〈C ′, σ ′, μ′〉
��−→ p-fault

and so 〈C , σ , μ〉
��−→∗ p-fault . But this contradicts premise (27), since σ |� P .

PROOF OF CLAIM B. By induction on n. Using Lemma 5.5, we obtain intermediate
states ρi , τi , σi and environments μ̇i (using names μ̇i to indicate that each binds m to
(x :T .B) as there is no shadowing according to Lemma 4.6) such that

〈C0, σ0, μ̇0〉

�−→∗〈m(z1);C1, ρ1, μ̇1〉 with no invocations of m

�−→ 〈Bx

x1
; ecall(x1);C1, υ1, μ̇1〉 where υ1 = Extend (ρ1, x1, ρ1(z1)) and x1 fresh

�−→∗〈ecall(x1);C1, τ1, μ̇1〉 where 〈Bx
x1

, υ1, μ̇1〉
�−→∗ 〈skip, τ1, μ̇1〉 (+)

�−→ 〈C1, σ1, μ̇1〉 where σ1 = τ1�x1

... containing n − 1 topmost invocations of m

�−→ 〈Cn , σn , μ̇n 〉

�−→∗〈C ′, σ ′, μ̇′〉 with no completed topmost invocations of m.

By hypothesis of Claim B that the trace is m-truncated, it may be that in the final
configuration, C ′ is of the form m(z);D for some z ,D .

Recall from the proof sketch (Section 4.4) that, for any configurations 〈A, τ , μ̇〉
and 〈A′, τ ′, μ〉, we call them matching configurations iff A = A′, τ = τ ′, and
μ̇ = Extend (μ,m, (x :T .B)) and hence μ = μ̇�m.

Here, we will construct a trace via

��−→ that looks as follows:

〈C0, σ0, μ0〉

��−→∗〈m(z1);C1, ρ1, μ1〉 matching the configurations above, so μ1 = μ̇1�m

��−→ 〈C1, σ1, μ1〉 a single step (*)
... containing n − 1 additional invocations of m

��−→ 〈Cn , σn , μn 〉

��−→∗〈C ′, σ ′, μ′〉 again matching configurations.

In the base case of the induction, n = 0, all but one line of the given decomposed trace is

empty. That is, we have 〈C0, σ0, μ̇0〉
�−→∗〈C ′, σ ′, μ̇′〉 without any intermediate calls of m
(but possibly a call in the last configuration). Using special correspondence Lemma 5.2,
we can simply drop m from each environment to get a step by step matching trace

〈C0, σ0, μ0〉
��−→∗ 〈C ′, σ ′, μ′〉.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:51

For the inductive case, n > 0, the initial steps 〈C0, σ0, μ̇0〉
�−→∗ 〈m(z1);C1, ρ1, μ̇1〉 are
matched as in the base case, up to the first invocation of m, in state ρ1, environment
μ̇1, and with continuation C1. At that point, we have ∃n · ρ1 |� Q

x ,s
z1,s , because if there

is no such n we can we can derive a contradiction: We just established 〈C0, σ0, μ0〉
��−→∗

〈m(z1);C1, ρ1, μ1〉, and if ¬∃n · ρ1 |� Q
x ,s
z1,s , then we get 〈m(z1);C1, ρ1, μ1〉
��−→ p-fault .

Furthermore, by hypothesis of the claim we have 〈C , σ , μ〉
��−→∗ 〈C0, σ0, μ0〉. Putting

these together we would obtain a faulting trace from 〈C , σ , μ̇〉 via

��−→. This contradicts

assumption (27) since σ |� P . From ∃n · ρ1 |� Q
x ,s
z1,n , we get ∃n · υ1 |� Q

x ,s
x1,n by

definition of υ1 (recall υ1 = Extend (ρ1, x1, ρ1(z1)), see trace displayed earlier) and the
little substitution Lemma 5.1.

Next, we will apply Lemma 7.2 to the trace

〈Bx
x1

, υ1, μ̇1〉
�−→∗ 〈skip, τ1, μ̇1〉
obtained in this decomposition, see (+). Following that trace is one more step that
leads to state σ1. We aim to show that the step to σ1, marked (∗), may be taken via

��−→. By Lemma 4.10, we have, for any n,

〈Bx
x1

, [υ1 | s : n] , μ̇1〉
�−→∗ 〈skip, [τ1 | s : n] , μ̇1〉.
For any n such that [υ1 | s : n] |� Qx

z1
can apply (25) in Lemma 7.2, which lets us

conclude

[τ1 | s : n] |� Q ′x
x1

and υ1→τ1 |� ηxx1
. (30)

(By instantiating the Lemma by σ : = [υ1 | s : n] and σ ′ : = [τ1 | s : n].) Furthermore, by
Lemma 4.10, we have τ1(s) = υ1(s). We now show that we have a corresponding single

step 〈m(z1);C1, ρ1, μ1〉
��−→ 〈C1, σ1, μ1〉. Observe that

τ1(x1) = τ1(z1) (31)

because

τ1(x1)

= υ1(x1) by υ1→τ1 |� ηxx1
and wr x not in η (as the spec is wf)

= υ1(z1) definition of υ1
= τ1(z1) by υ1→τ1 |� ηxx1

and z1 ∈Locals (as the call is wf) so wr z1 /∈ η (as the spec is wf).

Noting that the locals x , x1, z1 are distinct from the specification-only variables s,
we have by (31) that the left conjunct of (30) is equivalent to [τ1 | s : n] |� Q ′x

z1
.

This is in context �′, x1 :T for some �′, but Q ′x
z1

does not depend on x1 so we get
[σ1 | s : n] |��′

Q ′x
z1

as σ1 = τ1�x1. So σ1 is a candidate outcome of the call m(z1) in terms
of the post condition in the semantics of context procedure call; it remains to check
the effect condition. Note that x may occur in η, but wr x cannot, so the use of x in η is
only for its r-value. So the second conjunct of (30) can be rewritten using (31) to yield

υ1→τ1 |� ηxz1

and here x1 does not occur in the effect so we can drop x1 from υ1 and τ1 to get

ρ1→σ1 |� ηxz1
.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:52 A. Banerjee and D. A. Naumann

This completes the argument that σ1 is among the possible outcomes of the call m(z1)

via

��−→, that is, the step 〈m(z1);C1, ρ1, μ1〉
��−→ 〈C1, σ1, μ1〉, marked (∗).

The next step yields 〈C1, σ1, μ1〉. What remains from this configuration onward is
a trace with n − 1 completed invocations of m, from a configuration reachable from

〈C , σ , μ̇〉. Moreover, we have 〈C , σ , μ̇〉
��−→∗ 〈C1, σ1, μ1〉. So we can apply the inductive

hypothesis to the trace 〈C1, σ1, μ̇1〉
�−→∗ 〈C ′, σ ′, μ̇′〉.
That concludes the proof of Claim B and the proof of Lemma 7.4.

The preceding proof of used Lemma 7.2. The following proof of Lemma 7.2 has a
similar structure to the proof of Lemma 7.4, but with additional intricacies—for the
bound on calling depth.

PROOF OF LEMMA 7.2. By Lemma 5.3 items (1) and (2), it suffices to prove (24–26)
in depth-bounded semantics. That is, we will prove the following by induction on k : For
all k ≥ 0, we have (I)–(III) for all u, �′, σ , μ̇, σ ′, μ̇′ and k ′ (satisfying the conditions in the
Lemma: u is in Locals but not in dom(�) ∪ {x }; �′ is any extension of �, u :T ,m : (x :T);
σ is any �′-state; μ̇ is any �′-environment such that μ̇(m) = (x :T .B); s lists the
specification-only variables in Q ,Q ′, η; and σ |� Qx

u .

(I) It is not the case that 〈Bx
u , σ , μ̇〉k
�−→∗ (p-)fault

(II) 〈Bx
u , σ , μ̇〉k
�−→∗ 〈skip, σ ′, μ̇〉k implies σ ′ |� Q ′x

u and σ→σ ′ |� ηxu for all σ ′

(III) Every reachable step from 〈Bx
u , σ , μ̇〉k via

�−→ respects every L in
.

(The judgment is for module N , but for (III) we do not need to say L �= N because by
hypothesis of Lemma 7.2 we have N /∈
.)

Note that (24–26) follow from (I)–(III) by Lemma 5.3. Conditions (I)–(III) correspond
to conditions (i)–(iii) in the proof of rule LINK above, but with Bx

u in place of C . And now
(I)–(III), with smaller k , will be our main induction hypothesis, used at points where
the LINK proof relies on Lemma 7.2. For fixed k , σ , σ ′, μ̇ we will prove the following:

Claim A′. For all C ′, σ ′, μ̇′, k ′, and m-truncated traces 〈Bx
u , σ , μ̇〉k
�−→∗ 〈C ′, σ ′, μ̇′〉k ′

we have

(a) 〈Bx
u , σ , μ〉k
��−→∗ 〈C ′, σ ′, μ′〉k ′

, where μ′ = μ̇′�m
(b) if C ′ = m(z);D for some z ,D then there are values n with σ ′ |� Q

x ,s
z ,n

Claim A′ implies (I) by an argument very similar to the soundness argument for
LINK, where Claim A implies (i). The key difference is that in one case we have to
consider behavior of an instance of B where C invokes m. In particular, we show
that instance does not fault, by appeal to Lemma 7.2. Here, we have to consider a
recursive invocation of m in Bx

u , and thus an instance Bx
w—in a configuration with

bound less than k . The bound is less than k because the configuration is reached from
〈Bx

u , σ , μ̇〉k and B has no end-markers. So we can appeal to the induction hypothesis,
specifically (I).

It was by carefully checking the details that we arrived at the current formulations
in this proof and the soundness proof for LINK. But since everything else is the same,
we do not include details here.

Claim A′ implies (II) by an argument very similar to the soundness argument for
LINK, where Claim A implies (ii) very directly. Here, we have the same direct argument
from Claim A′ using the primary hypothesis (23), the correctness of B .

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:53

Claim A′ implies (III) by an argument similar to the soundness argument for LINK
where Claim A implies (iii). There, in one subcase, we appeal to Lemma 7.2 to get that
a reachable step, executing inside an instance of B respects L. Here, the reachable step
is from a configuration with bound less than k , as it is reached from 〈Bx

u , σ , μ̇〉k , so we
can use the induction hypothesis (III).

It remains to prove Claim A′. For this, we use the following.

Claim B′. For any n ≥ 0, we have the following. For all C0, σ0, μ̇0, k0,C ′, σ ′, μ̇′, k ′
0, and

for any m-truncated trace

〈Bx
u , σ , μ̇〉k
�−→∗ 〈C0, σ0, μ̇0〉k0
�−→∗ 〈C ′, σ ′, μ̇′〉k ′

,

if the trace 〈C0, σ0, μ̇0〉k0

�−→∗ 〈C ′, σ ′, μ̇′〉k ′

has exactly n completed topmost calls of m,

and we have 〈Bx
u , σ , μ〉k
��−→∗ 〈C0, σ0, μ0〉k0 where μ0 = μ̇0�m and μ′ = μ̇′�m, then we

have 〈C0, σ0, μ0〉k0

��−→∗ 〈C ′, σ ′, μ′〉k ′

.

To prove Claim A′(a), instantiate the Claim with C0, σ0, μ̇0 : = Bx
u , σ , μ̇.

To prove Claim A′(b), suppose 〈Bx
u , σ , μ̇〉k
�−→∗ 〈C ′, σ ′, μ̇′〉k ′

and C ′ = m(z);D for

some z ,D . By Claim A′(a), we have 〈Bx
u , σ , μ〉k
��−→∗ 〈C ′, σ ′, μ′〉k ′

. Suppose, for the
sake of contradiction, that there is no n such that σ ′ |� Q

x ,s
z ,n . Then, by semantics, we

have 〈C ′, σ ′, μ′〉k ′
��−→ p-fault and thus 〈Bx
u , σ , μ〉k
��−→∗ p-fault . Hence, by Lemma 5.3,

we have 〈Bx
u , σ , μ〉
��−→∗ p-fault . But this contradicts the hypothesis (23) of the lemma

we are proving. Specifically, from (23) we obtain
, � |��,u :T
N {Qx

u } Bx
u {Q ′x

u } [ηxu] by
renaming Lemma 7.3, and then by soundness of rule EXTENDCTX we get

, � |��′
N {Qx

u } Bx
u {Q ′x

u } [ηxu] , (32)

where �′ is the type of the configuration with σ according to the hypothesis of
Lemma 7.2. Nonexistence of n would contradict (32) since we assumed at the outset
that σ |� Qx

u . So Claim A′ is proved.

PROOF OF CLAIM B′. The argument is similar to the proof of Claim B used in
proving Lemma A for soundness of LINK, except that where the latter appeals to
Lemma 7.2, here we appeal to the main induction hypothesis (II). The details involve
careful manipulation of the bound in accord with depth-bounded semantics. Using
Lemma 5.5, we obtain intermediate states ρi , τi , σi and environments μ̇i such that

〈C0, σ0, μ̇0〉k0

�−→∗〈m(z1);C1, ρ1, μ̇1〉k1 with no invocations of m

�−→ 〈Bx

x1
; ecall(x1);C1, υ1, μ̇1〉k1−1 where υ1 = Extend (ρ1, x1, ρ1(z1)) and x1 fresh

�−→∗〈ecall(x1);C1, τ1, μ̇1〉k1−1 where 〈Bx
x1

, υ1, μ̇1〉k1−1
�−→∗ 〈skip, τ1, μ̇1〉k1−1 (+)

�−→ 〈C1, σ1, μ̇1〉k1 where σ1 = τ1�x1

... containing n − 1 topmost invocations of m

�−→ 〈Cn , σn , μ̇n 〉kn

�−→∗〈C ′, σ ′, μ̇′〉k ′

with no completed invocations of m

By hypothesis of the claim that the trace is m-truncated, it may be that in the final
configuration, C ′ is of the form m(z);D for some z ,D .

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:54 A. Banerjee and D. A. Naumann

Concerning the bounds, these configurations are reached from 〈Bx
u , σ , μ̇〉k according

to the statement of Claim B′, so we have ki ≤ k for all i .
Here, we will construct a trace via

��−→ that looks as follows.

〈C0, σ0, μ0〉k0

��−→∗〈m(z1);C1, ρ1, μ1〉k1 matching steps as per Lemma 5.2

��−→ 〈C1, σ1, μ1〉k1 a single step justified in the following text
... containing n − 1 additional invocations of m

��−→ 〈Cn , σn , μn 〉kn

��−→∗〈C ′, σ ′, μ′〉k ′

again matching steps

In the base case of the induction, n = 0, all but one line of the given decomposed trace

is empty. That is, we have 〈C0, σ0, μ̇0〉k0

�−→∗ 〈C ′, σ ′, μ̇′〉k ′

without any intermediate
calls of m. Using Lemma 5.2, we can simply drop m from each environment to get a

step-by-step matching trace 〈C0, σ0, μ0〉k0

��−→∗ 〈C ′, σ ′, μ′〉k ′

.

For the inductive case, n > 0, the initial steps 〈C0, σ0, μ̇0〉k0

�−→∗ 〈m(z1);C1, ρ1, μ̇1〉k1

are matched as in the base case, up to the first invocation of m, in state ρ1, environ-
ment μ̇1, and with continuation C1. At that point, we have that there exists value(s)
n such that ρ1 |� Q

x ,s
z1,n , because otherwise we get a contradiction as follows. We just

established 〈C0, σ0, μ0〉k0

��−→∗ 〈m(z1);C1, ρ1, μ1〉k1 and if ¬(∃n · ρ1 |� Q

x ,s
z1,n), then we

would have 〈m(z1);C1, ρ1, μ1〉k1

��−→ p-fault . Furthermore, by hypothesis of the Claim,

we have 〈Bx
u , σ , μ〉k
��−→∗ 〈C0, σ0, μ0〉k0 . Putting these together, we would obtain a

faulting trace from 〈Bx
u , σ , μ̇〉k via

��−→, and thus (by Lemma 5.3) from 〈Bx
u , σ , μ̇〉 in

nonbounded semantics via

��−→, which contradicts assumption σ |��′

Qx
u and assump-

tion (23) or rather its consequence (32).
Consider any n such that [ρ1 | s : n] |� Qx

z1
(existence of such having been estab-

lished previously). Now [ρ1 | s : n] |� Qx
z1

implies [υ1 | s : n] |� Qx
x1

by definition of
υ1 = Extend (ρ1, x1, ρ1(z1)). (Noting that s is distinct from x , x1, z1.) So we have
[υ1 | s : n] |� Qx

x1
. Because k1 − 1 is less than k , we can apply the main induction hy-

pothesis (II) (instantiated by u : = x1 etc.) to the trace

〈Bx
x1

, υ1, μ̇1〉k1
�−→∗ 〈skip, τ1, μ̇1〉k1

whose existence is established previously, see (+). Now we proceed as in the proof of
Claim B, but using (23), or rather its consequence (32), we obtain [σ1 | s : n] |� Q ′x

z1
and

ρ1→σ1 |� ηxz1
. This completes the argument that σ1 is among the possible outcomes of

the call m(z1) via

��−→, justifying the single step in the trace we are constructing.22

The next step yields 〈C1, σ1, μ1〉. What remains from this configuration onward is
a trace with n − 1 completed invocations of m, from a configuration reachable from

〈Bx
u , σ , μ̇〉k . Moreover, we have 〈Bx

u , σ , μ̇〉k
��−→∗ 〈C1, σ1, μ1〉k1 . So we can apply the

22One may wonder here whether the argument is sound in case of an unsatisfiable specification. The point
is that the induction hypothesis (II) is conditioned on termination. In case of a call in a state from which the

specification is unsatisfiable, there will be no terminated configuration that needs to be matched via

�−→.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:55

inductive hypothesis—of the inner induction on n—to the trace 〈C1, σ1, μ̇1〉k1

�−→∗

〈C ′, σ ′, μ̇′〉k ′
. That concludes the proof of Claim B′ and of Lemma 7.2.

8. VERIFICATION OF THE EXAMPLES

The primary goal of this section is to round off the examples in Section 2 other than
module SET , whose treatment was finished in Section 6.3. We will provide the effect
specifications and dynamic boundaries for the examples and illustrate features of the
novel proof rules, particularly rules MISMATCH and the context introduction rules. We
will show the logic at play by working out the verification of a client in some detail.
The verification will also be justified by way of derived proof rules for constructors and
private procedures, to which we turn now.

8.1. Some Derived Rules

Constructors. In Java-like languages, constructors are distinguished procedures
named after a corresponding class and invoked only on newly allocated instances. In
contrast, this article does not consider constructors to be distinguished in this manner.

Our purpose is to derive a proof rule for constructors where a constructor has the
form new K (y), where K is a class name. We will consider the form x : = new K (y) to
be sugar for x : = new K ;K (x , y). The parameter x gets substituted for K ’s implicit pa-
rameter self during constructor call. Note that we are stretching slightly the procedure
syntax in Figure 6 in that K now has two parameters instead of one. For simplicity, we
consider that K has a single field f :T—the generalization to multiple fields is obvious.

We proceed to derive the following CONSTRUCTOR rule for the constructor command
x : = new K (y) from the sequential composition x : = new K ;K (x , y) thus showing that
the sugaring here is sensible.

CONSTRUCTOR

 is {P ∧ self �∈ r ∧ self.f = default (T)}K (self :K , u :T){P ′}[self.f , ε]
x ∈ Locals y �≡ x y �≡ alloc alloc does not occur in P

Pu
y ⇒ bnd(mdl(K)) ./. wr x , alloc εuy is Pu

y /wr x , alloc-immune

 ��,x :K
M {Pu

y } x : = new K (y) {P ′self,u
x ,y } [εuy , x , alloc, fr {x }]

Note that, because of the premise x ∈ Locals , we have by well-formedness (8) of K ’s
specification that x does not occur in P . Moreover, ε cannot write any locals. In partic-
ular, ε cannot write x and it cannot write self because, being a procedure parameter,
self is in Locals .

The rule depicts several facets of a constructor call. It shows how constructor specifi-
cations can be instantiated by substituting for the formal parameter u and the implicit
parameter self. The rule reflects allocation by way of alloc in the frame condition. Note
that constructor bodies are not precluded from performing allocations, so ε can contain
wr alloc. For the immunity of εuy , sufficient conditions are wr x is not in ε, y �≡ x , and
alloc does not appear in ε in the form wr alloc‘k for some field k . The rule masks writes
to fields of self because self is a freshly allocated object. In light of this, one can sensi-
bly omit writes to self-fields in constructor specifications as we have done in the effect
specifications for the Set constructor in Figure 7 and in the ones to come later in this
section. The preconditions self �∈ r and self.f = default (T) are used in verification of
the body of the constructor.

Derivation. We are permitted to assume the premises of CONSTRUCTOR. From
ALLOC by CONSEQ, we have

� { true } x : = new K { x .f = default (T) } [x , alloc, fr {x }] .

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:56 A. Banerjee and D. A. Naumann

By FRTOPOST, we get

� { true } x : = new K { x .f = default (T) ∧ {x } ∩ r = ∅ } [x , alloc, fr {x }]
whence by CONSEQ

� { true } x : = new K { x .f = default (T) ∧ x �∈ r } [x , alloc, fr {x }]
Let δ be a list of read effects such that � δ frm Pu

y . We can assume that δ does not
contain rd x because x is not in P (as argued earlier) and y �≡ x (premise). Likewise,
δ does not need to contain rd alloc because alloc does not occur in P and y �≡ alloc
(premises). Hence δ ./. wr x , alloc ⇔ true. So by FRAME, conjoining Pu

y , we have

� {Pu
y } x : = new K {Pu

y ∧ x .f = default (T) ∧ x �∈ r } [x , alloc, fr {x }] .

By CTXINTRO, owing to premise Pu
y ⇒ bnd(mdl(K)) ./. wr x , alloc,

 �M {Pu
y } x : = new K {Pu

y ∧ x .f = default(T) ∧ x �∈ r } [x , alloc, fr {x }] . (33)

Using CALL, we get

 �M {Pu
y ∧ x .f = default (T) ∧ x �∈ r } K (x , y) {P ′self,u

x ,y } [x .f , εuy] . (34)

We now use SEQ on (33) and (34) to obtain the conclusion of CONSTRUCTOR. This
instance of SEQ has one immunity condition, εuy is Pu

y /(wr x , alloc)-immune that is an
explicit premise of CONSTRUCTOR. The other immunity condition is

{x } is Pu
y ∧ x .f = default(T) ∧ x �∈ r/(εuy , wr x .f)-immune,

which holds because y �≡ x (premise) and because ε cannot write x as argued earlier.
Finally, rule SEQ takes care of removing the effect wr x .f because of fr {x }.
In a language that treats constructors specially, every allocation is followed by a

constructor call. One advantage of this treatment is the maintenance of invariants over
allocated objects of a certain type—the invariants can be established by the constructor
body. For example, were we to formalize constructors as obligatory calls in connection
with allocation, it would also be the case that all Set instances are in pool , that is,
alloc/Set ⊆ pool . Instead, we permit allocation to occur without a constructor being
called. Consequently, care must be taken because invariants that quantify over all
allocated objects are at risk of falsification owing to mere allocation (leading to the
pool idiom used earlier). Another consequence of treating constructors in the manner
in this article is that the preconditions self �∈ r and self.f = default(T) can be provided
by a reasoning system directly but not appear in public specifications. For that reason,
they are called free preconditions [Leino 2008]. Because we do not treat constructors
specially, the free preconditions are made explicit in the premise of the rule.

Private Procedures. Here we derive proof rule PRIVATEPROC that caters for a situa-
tion when a module implementation uses some procedures that are not present in the
module’s API. For example, in Figure 3, the Observer constructor appears in module
SO ’s API. Its implementation, called register , is absent from SO ’s API. Such procedures
do not necessarily rely on (or preserve) the module invariant; and if they do there is
no harm in making it explicit in their specifications, which are only used for reasoning
within the module implementation.

Derivation. Consider linking procedure m to client C where m may call a procedure
p not in the API of mdl(m), that is, p is module-scoped or private to mdl(m). We have
mdl(m) = mdl(p). The generalization to multiple such module-scoped procedures is
obvious so we will consider a single m and a single p.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:57

As in the LINK rule let � =̂ {Q}m(x :T){Q ′}[η]. For the private procedure, let � =̂
{R}p(y :U){R′}[ω]. Let mdl(m) = N = mdl(p). Then, N ∈ �.

PRIVATEPROC

, � ��
M {P } C {P ′ } [ε]
, �, � ��,x :T

N {Q } Bm {Q ′ } [η]

, �, � ��,y :U

N {R } Bp {R′ } [ω] N �∈

 ��
M {P } letrec m(x :T) = Bm ; p(y :U) = Bp in C {P ′ } [ε]

.

PRIVATEPROC is derivable using LINK. The main observation is that from
, � ��
M

{P } C {P ′ } [ε] one can obtain
, �, � ��
M {P } C {P ′ } [ε] by CTXINTROIN: N ∈ �

implies N ∈ (
, �) that permits application of CTXINTROIN. Now LINK can be used
on the judgments for C , Bm and Bp—because all have procedure contexts
, �, �.

Rule MISMATCH can be generalized in a similar manner by extension with a single
procedure p that is private. Let � =̂ {Q}m(x :T){Q ′}[η] and � =̂ {R}p(y :U){R′}[ω].
Let mdl(m) = N = mdl(p).

GENMISMATCH

, � �M {P } C {P ′ } [ε]
P ⇒ I
, �, (� � I) �N {Q ∧ I } Bm {Q ′ ∧ I } [η]

, �, (� � I) �N {R } Bp {R′ } [ω]
� bnd(N) frm I N �= M mdl(q) �� N for all q in

 ��
M {P } letrec m(x :T) = Bm ; p(y :U) = Bp in C {P ′ } [ε]

.

Rule GENMISMATCH allows private procedures that neither rely on nor preserve the
hidden invariant I . That is, the rule conjoins I to � but not to �.

To derive this rule, we follow the derivation of MISMATCH in Figure 12. First, from

, � �M {P } C {P ′ } [ε], we derive
, (� � I) �M {P ∧ I } C {P ′ ∧ I } [ε] by SOF. Next
side condition N ∈ � implies N ∈
, (� � I). This allows us to derive
, �, (� � I) �M{P ∧ I } C {P ′ ∧ I } [ε] by CTXINTROIN. Finally LINK, together with side condition
P ⇒ I and CONSEQ can be used on C , Bm and Bp to obtain the conclusion.

8.2. Module MM

This section gives the effect specifications and the dynamic boundary for the toy mem-
ory manager of Section 2.2 and makes high-level remarks on how MM works with
clients.

We specify the effects for procedure alloc to be wr result, freed ,flist , count , alloc,
freed ‘nxt . For free(n :Node) the effects are wr freed ,flist , count , freed ‘nxt . The read ef-
fects rd freed ,flist , count , freed ‘nxt can be used to frame the hidden invariant Imm . In
a practical implementation, ordinary scoping could be used to hide effects on the mod-
ule variables flist and count from clients and the ghost freed could be “spec-public” (as
in JML [Leavens et al. 2003]) that is, not accessible in code outside module MM but
accessible in specifications. So the dynamic boundary of MM could be simply freed ‘nxt .

Using the specifications in Section 2.2 together with these effect specifications, it is
straightforward to verify the client given there. The client writes freed ‘val but it does
not write freed ‘nxt , and thus it respects the dynamic boundary. So the client can be
linked with alloc and free using rule MISMATCH. By contrast with the SET example
in Section 6.3 where we use a public invariant, R, to verify that client (1) respects the
dynamic boundary θset , here it is the procedure specifications themselves that support
reasoning about the dynamic boundary. Suppose we consider a client that contains the
assignment y .nxt : = null just after y : = alloc() in (2); although this writes a nxt field,
the object is outside freed according to the specification of alloc. Hence this client is
verifiable.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:58 A. Banerjee and D. A. Naumann

Fig. 16. Effects of methods in SO .

8.3. Module SO

This section adresses module SO from Section 2.3, giving its effect specifications, its
dynamic boundary, and a client. Figure 16 gives the effects of the methods in SO as
they would appear in an API. The effects are the same as in Part I except that the
effects for constructors Subject and Observer take into account the write to sopool . Fur-
thermore, the effects for Subject and Observer do not mention updates to self-fields in
accord with rule CONSTRUCTOR. Also in accord with this rule the verification of the
body of Subject must be done with respect to the additional effects wr self.(O , obs , val)
and the free preconditions (cf. Section 8.1)

self.obs = null ∧ self.val = 0 ∧ self.O = ∅ ∧ self �∈ sopool

conjoined to X = sopool ∧ sopool ‘(obs ,O) ⊆ sopool (Figure 4).
We will write P(s) and P ′(s) respectively for the pre- and postcondition of Observer in

Figure 4. We will write εo(s) for the public effects of Observer(s) in Figure 16. Similar
to Subject above, the body of the Observer constructor must be verified with respect to
the effects εo(s) together with the effects wr self.(cache,nxto, sub). We will denote this
expanded set of effects by ε+

o (s). The body will also be verified with respect to P(s)
conjoined with the free preconditions PS , where

PS =̂ self.sub = null ∧ self.cache = 0 ∧ self.nxto = null ∧ self �∈ s.O ∧ self �∈ sopool

The effects of update and Observer(s) in Figure 16 suffice to verify this client (from
Section 2.3):

o : = new Observer(s); p : = new Observer(t); s.update(2)

with the precondition s.val = 0 ∧ t .val = 5 and the postcondition t .val = 5 (or postcon-
dition p.cache = 5). The verification relies on separation between subjects (i.e., s �= t),
the specifications of Observer and update, and rule FRAME.

For verification of the implementations in Section 2.3, we use FRAME to exploit per-
subject separation, similar to the Set example. Then, rule MISMATCH can be used to
link the client.

For framing purposes in the verification of the body of Observer , we generalize the
hidden invariant Iso in the following manner.

Iso(m : rgn,n : rgn) =̂ (∀s :Subject ∈ sopool \ m · SubH (s)) ∧
(∀o :Observer ∈ sopool \ n · o.sub �= null ∧ o ∈ o.sub.O).

Now we observe that Iso =̂ Iso(∅,∅). The verification of the body of Observer will
split off a cluster containing the subject u and the current observer self and establish
SubH (self) and self.sub �= null ∧ self ∈ self.sub.O . These local properties of the cluster
will then be used to establish the global invariant Iso (cf. the establishment of Iset in
Section 3.2).

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:59

Fig. 17. Linked ObsCall client. The ellipses elide the implementations of the methods in
so , �so and
oc .

Observe that in the invariant Iso the quantified variables s and o range over allo-
cated objects in sopool rather than in alloc (cf. Iset). The use of alloc as the range of quan-
tification would mean that the footprint of Iso would include variable alloc. Thus the
dynamic boundary, bnd(SO), could be rd alloc, alloc‘(sub, obs ,nxto,O), but this choice is
problematic. Client code like p : = new Observer(t) writes not only the effects specified
for Observer but also p and alloc. Thus, a dynamic boundary that includes alloc would
be violated by such client code. Therefore, we consider

bnd(SO) =̂ rd sopool , sopool ‘(sub, obs ,nxto,O)

This illustrates that the procedures of a module may write within the module’s bound-
ary, and these effects will be explicit in the public specifications, for example, wr sopool
of Subject and Observer(s). However, the obligation of a client is that its own direct
writes should not violate this boundary. The separator formula in the side condition of
proof rule CTXINTRO captures this obligation.

8.4. Module OC: Illustrating New Proof Rules

This section will show the use of rule MISMATCH and the different flavors of the CTX-
INTRO rule on an example that involves nested modules. Recall the example of over-
lapping data structures from Section 2.4 which we now develop in some detail. We
will consider the verification of nested clients. The detailed proofs are intricate and we
present the highlights of the proofs in this section.

The public effects of ObsColl are εc(s , oc) where

εc(s , oc) =̂ wr s.(O , obs), sopool , oc.prev , oc.prev ‘next , ocpool
In particular, εc(s , null) is wr s.(O , obs), sopool . We will write Q and Q ′, respectively, for
the pre- and postcondition of ObsColl(s , oc) (Figure 5). Using P ,P ′ for the Observer
specification as in Section 8.3, we have Q ⇔ P(s) ∧ Y = ocpool ∧ U (oc, ocpool) and
Q ′ ⇔ P ′(s) ∧ ocpool = Y ∪ {self}. The definition of U (x , r) is reproduced below from
Section 2.4.

U (x , r) =̂ (x = null ∧ r = ∅) ∨
(x �= null ∧ null �∈ r ∧ x ∈ r ∧ x .next ∈ r ∧ x .prev ∈ r ∧ x �= x .next ∧x �= x .prev).

Owing to CONSTRUCTOR, verification of body(ObsColl) must take into account updates
to self-fields. Therefore the body must be verified with respect to the expanded set of
effects ε+

c (s , oc) where

ε+
c (s , oc) =̂ εc(s , oc), wr self.(cache,nxto, sub), self.(next , prev)

Furthermore, body(ObsColl) is verified with QS conjoined to Q where, with PS defined
as in Section 8.3,

QS =̂ PS ∧ self.next = null ∧ self.prev = null ∧ self �∈ ocpool

Consider a client that constructs a new ObsColl as in Figure 17. Let
so be the
specifications of the public methods Observer , Subject , update and get , let �so be the
specifications of the module-scoped methods register and notify (see Figures 4 and 16).

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:60 A. Banerjee and D. A. Naumann

Let
oc be the specification of the public method ObsColl (in Figure 5 and near the
beginning of Section 8.4). For brevity in Figure 17, we write, for example, sigs(
oc)
rather than spelling out the procedure signatures.

The implementation of the ObsColl constructor can be verified, assuming and main-
taining Ioc , including the obligation to respect the dynamic boundary of module OC .
The client can be linked to the inner module OC using rule MISMATCH; that assembly
is then linked to the outer module SO using rule GENMISMATCH. We now sketch this
verification.

Similar to the generalization of Iso in Section 8.3, we generalize the hidden in-
variant Ioc in the following manner for the purpose of framing in the verification of
body(ObsColl).

Ioc(r : rgn) =̂ ∀oc :ObsColl ∈ ocpool \ r · oc.next .prev = oc ∧ oc.prev .next = oc

Now we observe that Ioc =̂ Ioc(∅).
The dynamic boundary for OC is defined as

bnd(OC) =̂ rd ocpool , ocpool ‘(next , prev)

Here, we will need the initial precondition Init =̂ sopool = ∅ ∧ ocpool = ∅. Finally, let

Cli =̂ s : = new Subject(); x : = new ObsColl(s , null)

End-to-end Verification of Linked Clients: Illustrating MISMATCH. One may say
there are two clients in Figure 17. The outer client is letrec sigs(
oc) = · · · in Cli .
The inner, nested client is Cli . There are multiple public methods and multiple private
methods in SO , each of whose bodies needs to be verified according to rule GENMIS-
MATCH (Section 8.1). In this section, we only show the verification of the body of the
Observer constructor in detail, eliding the rest.

To link the outer client with module SO , we use GENMISMATCH as shown in (35)–
(37) to follow. In the rule, C is instantiated with the outer client, in context
so , as
follows:

so �Main

{Init}
letrec sigs(
oc) = · · · in s : = new Subject(); x : = new ObsColl(s , null)
{true}
[x , s, alloc, sopool] .

(35)

Whereas rule GENMISMATCH shows a single public method m with body Bm , we ac-
tually have four public methods, Observer , Subject , update, and get , and so four proof
obligations for their bodies. One of these, for the body of Observer , is

�so , (
so � Iso) �SO {P(u) ∧ PS ∧ Iso } body(Observer) {P ′(u) ∧ Iso } [ε+
o (s)] . (36)

Note that this, and the premises for the other three bodies, is in context �so , (
so�Iso).
Rule GENMISMATCH shows a single private method p with body Bp ; here we have two,
register and notify . The proof obligations for their bodies, which we omit, are in context
�so ,
so . Two other premises in the rule hold because Main �= SO and the procedure
context for the whole program is empty. The remaining premises are

� bnd(SO) frm Iso and Init ⇒ Iso . (37)

For (37), it is easy to derive the frame judgment; and the implication is valid because
Iso holds vacuously when sopool = ∅.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:61

To verify (35), we use MISMATCH as shown in (38)–(40) below. The client C in
MISMATCH is instantiated with Cli and is verified in context
so ,
oc , to wit:

so ,
oc �Main

{Init}
s : = new Subject(); x : = new ObsColl(s , null)
{true}
[x , s, alloc, sopool] .

(38)

Procedure body B in MISMATCH is instantiated with body(ObsColl) and is verified in
context
so , (
oc � Ioc), to wit:

so , (
oc � Ioc) �OC {Q ∧ QS ∧ Ioc } body(ObsColl) {Q ′ ∧ Ioc } [ε+
c (s , oc)] . (39)

The remaining premises of MISMATCH are

� bnd(OC) frm Ioc and Init ⇒ Ioc (40)

and two others, which hold because Main �= OC and SO �� OC . It is easy to see that
(40) holds.

Of the outstanding obligations (36), (38), and (39), we shall consider first (38) and
then (39) before ending with (36).

Verification of Cli: Illustrating CTXINTRO and CTXINTROCALL. We will derive the
following two judgments.

so ,
oc �Main

{Init}
s : = new Subject()

{∀o ∈ s.O · Obs(o, s, s.val) ∧ s �= null
∧ s ∈ sopool ∧ sopool ‘(obs ,O) ⊆ sopool ∧ U (null, ocpool)}

[s , alloc, sopool , fr {s}]

(41)

so ,
oc �Main

{∀o ∈ s.O · Obs(o, s, s.val) ∧ s �= null
∧ s ∈ sopool ∧ sopool ‘(obs ,O) ⊆ sopool ∧ U (null, ocpool)}

x : = new ObsColl(s , null)
{true}
[x , alloc, s.(O , obs), sopool , fr {x }]

(42)

From (41) and (42) by SEQ and SUBEFF, we obtain (38).

Derivation of (41). CONSTRUCTOR and CONSEQ yield

so �Main

{sopool ‘(obs ,O) ⊆ sopool}
s : = new Subject()

{s .O = ∅ ∧ s ∈ sopool ∧ sopool ‘(obs ,O) ⊆ sopool}
[s , alloc, sopool , fr {s}]

Observe that Init implies this precondition. By FRAME, because rd ocpool ./.
wr s, alloc, sopool ⇔ true, we can conjoin ocpool = ∅ to get the postcondition s.O =
∅ ∧ s ∈ sopool ∧ sopool ‘(obs ,O) ⊆ sopool ∧ ocpool = ∅, which implies the postcondition
in (41).

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:62 A. Banerjee and D. A. Naumann

It remains to add
oc to the context to obtain (41). This is where we can use CTX-
INTRO because the client does not write within the boundary of module OC . We check
the rule’s premises: mdl(ObsColl) = OC and bnd(OC) ./. wr s, alloc, sopool , fr {s} ⇔ true.

Derivation of (42). CONSTRUCTOR and CONSEQ yield

oc �Main

{∀o ∈ s.O · Obs(o, s, s.val)
∧ s �= null ∧ s ∈ sopool ∧ sopool ‘(obs ,O) ⊆ sopool ∧ U (null, ocpool)}

x : = new ObsColl(s , null)
{true}
[x , alloc, s.(O , obs), sopool , fr {x }]

To obtain (42), it remains to add
so to the previous context. Because OC relies on an-
other library, namely SO , we can add it by CTXINTROCALL: we check that the premise
OC � SO of the rule holds.

Verification of Body of ObsColl: Illustrating CTXINTROIN. Here we are interested in
showing (39). This will follow from applying SEQ to (43) and (44). Note that ε+

c (s , oc) =
ε+
o (s), wr self.(next , prev), oc.prev ‘next , oc.prev , ocpool .

so , (
oc � Ioc) �OC

{Q ∧ QS ∧ Ioc}
super(s); if oc = null . . .

{P ′(s) ∧ Y = ocpool ∧ self.next .prev = self ∧ self.prev .next = self ∧ Ioc}
[ε+
o (s), wr self.(next , prev), oc.prev ‘next , oc.prev]

(43)

so , (
oc � Ioc) �OC { . . . } ocpool : = ocpool ∪ {self} {Q ′ ∧ Ioc } [ocpool] (44)

Derivation of (44). The postcondition in (39) is Q ′ ∧ Ioc . So by BACKWARDSASSIGN

�OC { (Q ′ ∧ Ioc)
ocpool
ocpool∪{self} } ocpool : = ocpool ∪ {self} {Q ′ ∧ Ioc } [ocpool] . (45)

We are done if we show that the precondition in (44) (indicated by the ellipses) implies
(Q ′ ∧ Ioc)

ocpool
ocpool∪{self} in (45). It remains to add the contexts. We can use CTXINTROIN

to add
oc � Ioc : the command denotes updates within module OC and we are adding
OC ’s procedures to the context. We can add
so by CTXINTRO since the command is
outside this module and so respects its dynamic boundary. Indeed, the precondition
implies bnd(SO) ./. wr ocpool as needed by the rule’s premise.

Derivation of (43). This will follow by SEQ on the judgments of super(s) and the con-
ditional. Here, we again highlight the use of CTXINTROIN in the proof of super(s). We
will consider super(s) to be a (nonconstructor) call to method Observer(s). So the effects
will be ε+

o (s) rather than εo(s). By CALL we get
so �OC {P(s) } super(s) {P ′(s) }[ε+
o (s)].

By CTXINTROIN, we can add context
oc � Ioc because super(s) is code within OC and
we are adding procedures of OC itself. Indeed, mdl(ObsColl) = OC as required by the
rule’s premise.

Verification of Observer’s Body. (36) can be derived by applying SEQ, FRAME and
CONSEQ in a routine manner on the three assignments in body(Observer). Here, we
provide some highlights of the development there.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:63

Derivation for self.sub : = u. The main idea is to start from rule FIELDUPD and
obtain

�SO { true } self.sub : = u { self.sub = u } [self.sub] .

To add the contexts �so , (
so � Iso), we use CTXINTROIN: for each such method m,
mdl(m) = SO . The rest of the derivation is routine.

Derivation for u.register(self). Recall that �so contains the specification of register .
We write this as {R}register(s){R′}[ω] where R,R′, ω are as in Figure 4. Let
R0 = R

self,s
u ,self, R0′ = R′self,s

u ,self, and ω′ = ω
self,s
u ,self. Then, CALL yields �so �SO

{R0 } u.register(self) {R0′ } [ω′]. We can add the context
so � Iso by CTXINTROIN.
Again, as in the previous case, we are adding methods in SO itself.

Derivation for sopool : = sopool ∪ {self}. We have by BACKWARDSASSIGNMENT and
CTXINTROIN

�so , (
so�Iso) �SO { (P ′(u) ∧ Iso)
sopool
sopool∪{self} } sopool : = sopool∪{self} {P ′(u)∧Iso }[sopool].

The rest of the development proceeds similarly to that of the assignment to ocpool in
the verification of body(ObsColl).

9. CALLBACKS BETWEEN MODULES

In Section 8, we saw how rule MISMATCH can be used to link one module in the con-
text of another module on which it relies. The rules SOF and LINK, from which MIS-
MATCH is derived, are not restricted to hierarchically nested modules. They support
modular reasoning about separate but interdependent modules as we show in this
section.

This rule links a client with two interdependent modules M and N , each with its
own hidden invariant and dynamic boundary. The client command B is in module L.
We consider the special case of a single procedure in each of M and N . In particular,
suppose that

� is {Q}m(x :T){Q ′}[εm] and
 is {R}n(z :U){R′}[εn] ,

where mdl(m) = M and mdl(n) = N . The rule allows the implementation, C , of m to
call n, and also the implementation, D , of n to call m. The rule is

MISMATCHX

�,
, � ��
L {P } B {P ′ } [ε]

�, (
 � I), (� � I) ��,x :T
M {Q ∧ I } C {Q ′ ∧ I } [εm]

�, (
 � J), (� � J) ��,z :U
N {R ∧ J } D {R′ ∧ J } [εn]

� bnd(M) frm I � bnd(N) frm J P ⇒ I ∧ J
mdl(p) �� M and mdl(p) �� N for all p in � L,M ,N are distinct

� ��
L {P } letrec m(x :T) = C ; n(z :U) = D in B {P ′ } [ε]

.

Here, the client B is verified using procedures
, �, and those of �. The implementa-
tion C of m relies on invariant I and the implementation D of n relies on invariant
J ; both implementations may use ambient library �. The idea is that the conditions
� bnd(M) frm I , P ⇒ I , and correctness of C are checked in the context of module M ;
the conditions � bnd(N) frm J , P ⇒ J , and correctness of D are checked in the context
of N . More to the point: P will conjoin some client-specific conditions with Init0 and
Init1, with Init0 ⇒ I and Init1 ⇒ J proved in the appropriate contexts.

Figure 11 in Section 6 is a toy example that illustrates intermodule callbacks in
the context of an ambient module. We declare the import relation to be OD � EV ,

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:64 A. Banerjee and D. A. Naumann

EV � OD , OD � Lib, EV � Lib, and Main � EV (closed reflexively and transitively).
The main module is for the following judgment:

�q �Main { x �= y } letrec . . . = . . . in even(2) { true } [x .val , y .val , x .f , y .f] ,

where �q is the specification for Lib, a single procedure {true}q(c :Ctr){true}[c.f]. It can
be derived using rule MISMATCHX instantiated with L,M ,N , � : = Main,EV ,OD , �q .

Derivation. Rule MISMATCHX can be derived as follows. For C , we instantiate SOF,
using side conditions � bnd(N) frm J , M �= N , and ∀p ∈ � · mdl(p) �� N , as follows:

�, (
 � I), (� � I) ��,x :T
M {Q ∧ I } C {Q ′ ∧ I } [εm]

� , (
 � I � J) , (� � I � J) ��,x :T
M {Q ∧ I ∧ J } C {Q ′ ∧ I ∧ J } [εm]

.

For D , we use side conditions � bnd(M) frm I , N �= M , and ∀p ∈ � · mdl(p) �� M ,
instantiating SOF as follows:

�, (
 � J), (� � J) ��,z :U
N {R ∧ J } D {R′ ∧ J } [εn]

�, (
 � J � I), (� � J � I) ��,z :U
N {R ∧ J ∧ I } D {R′ ∧ J ∧ I } [εn]

.

Using commutativity of ∧, specifically J ∧ I ≡ I ∧ J , and the definition of �, we can
normalize to get
 � I ∧ J and � � I ∧ J in both conclusions. (We return to this later.)

For D , we also use CONSEQ to commute J and I in the conclusion, so we reach

�, (
 � I � J), (� � I � J) ��,z :U
N {R ∧ I ∧ J } D {R′ ∧ I ∧ J } [εn] .

For the client B , from the premise �,
, � �L {P } B {P ′ } [ε] and side conditions we
can use SOF to get

�, (
 � I), (� � I) �L {P ∧ I } B {P ′ ∧ I } [ε]

and again use SOF to get

�, (
 � I � J), (� � I � J) �L {P ∧ I ∧ J } B {P ′ ∧ I ∧ J } [ε] .

By definition of � we have
 � I � J , � � I � J = (
, �) � I ∧ J , so we can write the
preceding judgments for B , C , and D as follows:

�, ((
, �) � I ∧ J) ��
L {P ∧ I ∧ J } B {P ′ ∧ I ∧ J } [ε]

�, ((
, �) � I ∧ J) ��,x :T
M {Q ∧ I ∧ J } C {Q ′ ∧ I ∧ J } [εm]

�, ((
, �) � I ∧ J) ��,z :U
N {R ∧ I ∧ J } D {R′ ∧ I ∧ J } [εn] .

To these three judgments we apply rule LINK. It requires M /∈ � and N /∈ �, both of
which follow from ∀p ∈ � · mdl(p) �� M . We get

� � {P ∧ I ∧ J } letrec m(x :T) = C ; n(z :U) = D in B {P ′ ∧ I ∧ J } [ε] .

Finally, to reach the conclusion of rule MISMATCHX we use its side condition P ⇒ I ∧J
and the rule of consequence.

A Fine Point. In the derivation, we replace specification
�J ∧ I by
� I ∧J , which
by definition of the syntactic operation � simply means replacing {R∧J∧I }n(z :U){R′∧
J ∧ I }[εn] by {R∧ I ∧J }n(z :U){R′ ∧ I ∧J }[εn]. Strictly speaking, to derive MISMATCHX
we would need a proof rule that allows a procedure specification to be replaced by one
with logically equivalent pre- and postconditions.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:65

More generally, it is sound to strengthen a specification in a hypothetical judgment.
To formulate a general rule, one could introduce a refinement relation � on specifi-
cations, so that {Q}m(x :T){Q ′}[ε] � {Q1}m(x :T){Q ′

1}[ε1] would imply that any imple-
mentation that satisfies {Q}m(x :T){Q ′}[ε1] also satisfies {Q1}m(x :T){Q ′

1}[ε]. Then,
lift � so that
 �
1 means that
 and
1 specify the same procedures and for each
procedure, the specification in
 refines the one in
1. The proof rule is then

1 � {P } B {P ′ } [ε]
 �
1

 � {P } B {P ′ } [ε]
.

Reasoning about refinement of specifications on the right side of � is the purpose of
structural rules such as SUBST and FRAME (and others like CONSEQ, SUBEFF, and
EXIST in Part I). The paper by Hoare [1971] on procedures introduced a rule of “adap-
tation” that is an alternative way of supporting such reasoning. As emphasized by
Naumann [2001], adaptation rules effectively approximate refinement of specifications
by validities involving the pre- and postconditions. For derivation of MISMATCHX, it
would suffice for � to be approximated as (Q1 ⇒ Q) ∧ (Q ′ ⇒ Q ′

1) ∧ ε = ε1, but for
completeness one could use conditions that better approximate refinement.

10. RELATED WORK

It is notoriously difficult to achieve encapsulation in the presence of shared, dynami-
cally allocated mutable objects [Leavens et al. 2007; O’Hearn et al. 2009]. Most current
tools for automated software verification either do not support the hiding of invariants
(e.g., Jahob [Zee et al. 2008], jStar [Distefano and Parkinson 2008], Krakatoa [Filliâtre
and Marché 2007], VCC [Cohen et al. 2009]), do not treat object invariants soundly
(e.g., ESC/Java [Flanagan et al. 2002]) or at best offer soundness for restricted situa-
tions where a hierarchical structure can be imposed on the heap (e.g., Spec# [Barnett
et al. 2005]). Some of these tools do achieve significant automation, especially by us-
ing SMT solvers [Kroening and Strichman 2008]. The KeY tool [Beckert et al. 2007]
supports hiding as in JML and provides support for sound reasoning about class in-
variants; more on that below.

Hiding is easy to encode in an axiomatic semantics—it is just Hoare’s mismatch,
phrased in terms of assert and assume statements. Some verifiers provide hiding, by
enforcing specific encapsulation disciplines through some combination of type check-
ing and extra verification conditions. For example, the Boogie methodology [Leino and
Müller 2004] used by Spec# stipulates intermediate assertions (in all code) that guar-
antees an all-states ownership invariant. Another version of Spec# [Smans et al. 2010]
generates verification conditions at intermediate steps to approximate read footprints,
in addition to the usual end-to-end check that a method body satisfies its modifies
specification. One way to enforce our requirement for respecting dynamic boundaries
would be to generate verification conditions for writes at intermediate steps, which
could be optimized away in cases where their validity is ensured by a static analysis.

Methodologies. A number of methodologies have been proposed for ownership-based
hiding of invariants (e.g., Müller et al. [2006]). Drossopoulou et al. [2008] introduce
a general framework to describe verification techniques for invariants. A number of
ownership disciplines from the literature are studied as instances of the framework.
The framework encompasses variations on the idea that invariants hold exactly when
control crosses module boundaries, for example, visible state semantics requires all
invariants to hold on all public method call/return boundaries; other proposals require
invariants to hold more often [Leino and Müller 2004].

Ownership type systems are a way to enforce hierarchical ownership with the benefit
of uniformity and a fixed semantics of when invariants hold. Recent work on ownership

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:66 A. Banerjee and D. A. Naumann

has addressed the need for clusters without a single dominating owner. Cameron et al.
[2007] give a helpful survey of ownership systems. They adapt ownership types to a
system of “boxes” (clusters) that describes rather than restricts program structure.
Thus, it does not ensure encapsulation, but they provide and prove sound an effect
system for disjointness of boxes. Müller and Rudich [2007] extend Universe Types,
which provides encapsulation and has been adopted by JML for invariants, to solve
the difficult problem of ownership transfer.

The KeY tool [Beckert et al. 2007] supports variants of visible state semantics for in-
variants, complemented by special accessibility and reachability predicates to specify
encapsulation properties that subsume ownership [Roth 2005, 2006]. A recent version
of KeY [Schmitt et al. 2010] provides dynamic frames for procedures, much in the form
we use here (see Part I for discussion); the connection with invariants has evidently
not been addressed to date.

The difficulty of generalizing ownership to fit important design patterns led
Parkinson and Bierman [2005] to pursue abstraction instead of hiding, via second
order assertions in separation logic; this has been implemented in jStar [Distefano
and Parkinson 2008]. The main idea is to permit client reasoning using “abstract
predicates”—predicates whose concrete definitions are not visible to the client.
Parkinson and Bierman [2008] consider abstract predicates in a language with inheri-
tance and dynamic dispatch. Parkinson [2007] articulates the case for specifications at
the level of object clusters and shows an example specification of the Observer pattern
that uses abstract predicates. In this article, we have alluded to a limited form of
abstraction with data groups (cf. Remark 6.2).

Often abstract predicates are used when a client needs to track phase changes of
internal data structures [Thamsborg et al. 2012]. Consider functions grant and revoke
that control granting of read access to some sensitive file in a database module. For rea-
soning purposes, a client needs to know whether a grant is successful. So the function
grant can enable reading by adding an abstract predicate to the knowledge exposed
at the interface about the module’s internal state: this abstract predicate would ap-
pear in grant ’s postcondition. Similarly revoke will omit the abstract predicate in its
postcondition but will require it in its precondition: so revoke can only be called in
states where the abstract predicate is in force, that is, after a corresponding grant is
invoked.

For reasoning about functional correctness, the internal state of a module can be
factored into two components: a fully encapsulated part and a client visible part.
The former can be hidden and absent at the module interface, for clients do not
need to reason about fully encapsulated state. This yields succinct specifications. To
reason about properties of the latter one can expose information at the interface in
several ways, including abstract predicates, model fields [Leino and Müller 2006],
typestate [Bierhoff and Aldrich 2007], and in many case direct reference to concrete
state assessible to client code (e.g., the hasNext method of an iterator). To cope with
inheritance and dynamic dispatch, abstract predicates and model fields require some
care with scoping issues; for the others, one can use the standard notion of behavioral
subtyping [Leavens and Naumann 2013; Liskov and Wing 1994].

The Boogie methodology is generalized and extended to concurrency by Locally
Checked Invariants (LCI) [Cohen et al. 2010] which is implemented in the VCC tool
[Cohen et al. 2009]. To complement ownership, non-hierarchical dependency is tracked
in ghost state (called “claims”, generalizing the friendship discipline [Naumann and
Barnett 2006]). In LCI, invariants are associated with types, which provide a form of
abstraction. Abstract predicates also have been explored for modular reasoning about
concurrent programs, in which context they are called concurrent abstract predicates
[Dinsdale-Young et al. 2010]. It would be useful to explore invariant hiding in the

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:67

concurrency setting. LCI gives some indication of how this might be possible using
first-order techniques along the lines we are exploring in this article.

Separation Logics. Separation logic (SL) is a major influence on our work. Our SOF
rule is adapted from [O’Hearn et al. 2009], as is the example in Section 2.2. The SOF
rule of SL relies on two critical features: the separating conjunction and the tight in-
terpretation of a correctness judgment {P}C {Q}, which requires that C neither reads
nor writes outside the footprint of P . These features yield great economy of expression
(though it does not remove the annoyance of ordinary frame conditions for variables).
But conflating read with write has consequences. To get shared reads, the semantics
of separating conjunction can embody some notion of permissions [Bornat et al. 2005;
Dockins et al. 2009], which adds complication but is useful for concurrent programs
(and to our knowledge has not been combined with SOF). The SOF rule of SL also
hides effects on encapsulated state whereas our SOF rule hides only the invariant. By
disentangling the footprint from the state condition we enable shared reads, retaining
a simple semantics, but that means we cannot hide effects within the dynamic encap-
sulation boundary. The effects can be visible to clients, so they can be abstracted but
not hidden.

Both our FRAME rule and our SOF rule use ordinary conjunction to introduce an in-
variant, together with side conditions that designate a footprint of the invariant that
is separated from the write effect of a command. In SL, the corresponding rules use
the separating conjunction which expresses the existence of such footprints for the
command’s precondition and for the invariant. Reynolds gave a derivation using the
ordinary rule of conjunction (cf. CONJ in Figure 15) that shows the SOF rule of SL
is not sound without restriction to predicates that are “precise” in the sense of deter-
mining a unique footprint [O’Hearn et al. 2009].23 The semantic analysis in O’Hearn
et al. [2009] shows that the need for a unique footprint applies to region logic as well.
However, region logic separates the footprint from the formula, allowing the invariant
formula to denote an imprecise predicate while framing the formula by effects that in
a given state determines a unique set of locations.

The restriction to precise predicates for SOF in SL can be dropped using a seman-
tics that does not validate the rule of conjunction such as the one of Birkedal et al.
[2005]. They give higher order framing rules for call-by-name procedures in idealized
Algol. Such a semantics was eschewed by O’Hearn et al. [2009] because the conjunction
rule is patently sound in ordinary readings of Hoare triples. The later journal paper
of Birkedal et al. [2006] allows the rule of conjunction when invariants are restricted to
precise predicates. Dropping the conjunction rule facilitates modeling of higher order
framing rules that capture something like visible state semantics for invariants even
in programs using code pointers (e.g., Schwinghammer et al. [2010]). The metatheory
underlying the Ynot tool for interactive verification [Malecha et al. 2010] uses a model
that does not validate the conjunction rule [Petersen et al. 2008] while the rule is valid
in Hoare type theory (HTT) without restriction to precise predicates [Nanevski et al.
2010]. HTT does not have a rule akin to SOF, nor higher order frame rules, but permits
data abstraction by way of abstract predicates. Loss of the conjunction rule also occurs
in the work of Amtoft et al. [2006] who were interested in reasoning about information
flow.

Higher order separation logics and type theories offer elegant means to achieve
data abstraction and strong functional specifications of interesting design patterns

23In separation logic, predicate I is precise iff (I ∗) distributes over ∧. In this article, our example invariants
are all precise in the sense of having unique minimal footprints, but not all useful ones are, for example,
“there exists a nonfull queue”.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:68 A. Banerjee and D. A. Naumann

[Krishnaswami et al. 2009, 2010; Malecha et al. 2010] and algorithms (e.g., fast
congruence closure in Nanevski et al. [2010]). The ability to explicitly quantify over
invariants would seem to lessen the importance of hiding, but it requires considerable
sophistication on the part of the user and her reasoning tools.

Whereas the MISMATCH and SOF rules connect a module implementation to its
client while hiding the module’s invariant, the “anti-frame” rule of Pottier hides the
invariant of a module, independent of the client. The idea is attractive, and poten-
tially important for higher order programs, but it poses difficult semantic challenges
[Schwinghammer et al. 2010].

Other Hoare Logics for Object-Oriented Programs. Some early works on reasoning
about object-oriented programs are by von Oheimb and Nipkow [2002], Poetzsch-
Heffter and Müller [1999], Pierik and de Boer [2005b]. As Parkinson and Bierman
[2005] remark, “these logics do not have the framing properties of separation logic
. . . Also they do not attempt to express abstraction.” Nor do they address hiding. These
works do address subtyping and inheritance, as do many subsequent works including
Müller [2002], Parkinson and Bierman [2005, 2008], and Chin et al. [2008]. Region
logic was developed with object-oriented programs in mind and the formalization is
easily adapted to subtyping. Extant techniques for inheritance appear to be compatible
but are beyond the scope of this article.

Lahiri et al. [2011] use linear types and explicit partial heaps, dubbed “linear maps”,
in a classical assertion language for local reasoning in object-based programs. The ap-
proach resembles aspects of region logic and aspects of separation logic, but is quite
different in detail, including several novel program constructs and judgments. The pa-
per formalizes and proves sound a logic. Hiding of module invariants is provided, in a
way similar to Pottier’s anti-frame rule. The development to date does not encompass
callbacks between modules, and stored linear maps are needed to cope with nested
data structures. Because the assertion language is first order logic with maps, verifi-
cation conditions should be amenable to automated checking using SMT solvers.

The textbook of Apt et al. [2009] provides an elegant treatment of Hoare logics for
object-based programs, encompassing both partial and total correctness. Specifications
do not include frame conditions. This loss of modularity is mitigated by another limita-
tion: every procedure specification is associated with the declaration of the procedure
implementation, so one may check informally that the procedure does no unintended
updates. But there is no explicit linking rule. Soundness of the proof rules, including
method call and dynamic allocation, is proved beautifully by transforming programs
using ordinary (mutually recursive) procedures. Completeness of the logic (omitting
dynamic allocation) is also proved via this transformation [Apt et al. 2012].

For completeness, the logic(s) of Apt et al. [2009] have structural rules like exists-
introduction, conjunction, and substitution.24 Specifications take the form originated
by Hoare, in which specification-only variables are implicitly quantified (and scoped)
over pre-post specifications. It is not easy to formulate and prove a sound substitution
rule and mistakes have appeared in the literature. For this reason, many tools and
some logics (e.g., Nanevski et al. [2008]) eschew the use of specification-only variables
in favor of old-expressions in postconditions. O’Hearn et al. [2009] explicitly omit them,
for the sake of simplifying their soundness proof and analysis of second order framing.

Soundness of our rule SUBST in Figure 15 hinges on the correct semantics of context
procedure calls (Figure 9). The naı̈ve semantics described by the transition rule (10) (in
Section 4) is erroneous in its treatment of specification-only variables; it fails to have
the properties in Lemma 4.10, which are needed to prove soundness of rule SUBST,

24Our rules are similar, except that their INVARIANCE rule is generalized by our FRAME rule.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:69

and indeed the rule is unsound for that semantics. Remarkably, the semantics using
(10) does validate all of our other proof rules.25

The reasoning embodied collectively by the structural rules mentioned above can
alternatively be provided by a rule of Adaptation [Hoare 1971; Olderog 1983]. Pierik
and de Boer [2004] provide an adaptation rule for object-oriented programs. It would
be interesting to investigate an adaptation rule for region logic.

One way to cope with substitution and specification-only variables is to embed Hoare
logic in an ambient logic, treating them as meta-variables. An influential example of
this approach is the Specification Logic of Reynolds [1982]. Nipkow [2002] takes that
approach using an interactive theorem prover and an adaptation rule based on that of
Kleymann [1999].

11. CONCLUSION

In this article, we explore a novel interface specification feature: the dynamic bound-
ary that must be respected by clients. The dynamic boundary is designated by read
effects that approximate, in a way suitable to appear in the interface, the footprint
of an invariant that is hidden from clients. Explicit description of footprints is com-
plementary to syntactic mechanisms that encapsulate state named by identifiers. The
expressions whose l-values constitute the dynamic boundary are state-dependent and
thus denote different sets of locations over time.

For practical purposes, dynamic boundaries should only be used where scoping and
parameterization mechanisms are inadequate, that is, for dynamically allocated ob-
jects. For expository purposes, we formalized a rudimentary notion of module as group
of procedures; in examples we use dynamic boundaries even for static variables, to
avoid the need for a full fledged module system.

Hiding is formalized in a second order frame rule that is proved sound for a sim-
ple operational semantics of sequential programs. We show by examples that our SOF
rule handles not only invariants that pertain to several objects with a single owner but
also design patterns in which several client-reachable peers cooperate and in which
data structures may be overlapping or irregular. These are incompatible with owner-
ship and remain as challenge problems in the current literature [Berdine et al. 2007;
Leavens et al. 2007; Malecha et al. 2010]. A program may link together multiple mod-
ules, each with its own hidden invariant and dynamic boundary. Our approach en-
compasses alias confinement disciplines that are enforceable by static analysis [Dietl
and Müller 2005; Grothoff et al. 2007] as well as less restrictive disciplines that im-
pose proof obligations on clients, e.g., ownership transfers that are “in the eye of the
asserter” [O’Hearn et al. 2009].

One of our aims is to provide a logical foundation that can justify the axiomatic
semantics used in automated verifiers. Even more, we want a framework in which en-
capsulation disciplines, both specialized and general-purpose, can be specified in pro-
gram annotations and perhaps “specification schemas” or aspects—so that soundness
for hiding becomes a verification condition rather than a meta-theorem. This could im-
prove usability and applicability of verifiers, for example, by deploying disciplines on
a per-module basis. It could also facilitate foundational program proofs, by factoring
methodological considerations apart from the underlying program model embodied in
axiomatic semantics. Our approach does not rely on inductive predicates, much less
higher order ones, but, on the other hand, it does not preclude the use of more expres-
sive assertions (such as the inductive FC in the example in Section 2.2).

25The proofs for SOF and CALL are slightly simpler using (10). Notably, the proofs of LINK and its support-
ing recursion Lemma 7.2 are almost the same, but slightly simpler and no longer needing Lemma 4.10.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:70 A. Banerjee and D. A. Naumann

Because the dynamic boundary of a module encapsulates state on which depends
an invariant hidden within that module, the boundaries of distinct modules must be
disjoint in a given state. In such situations, it is possible to hide information using
suitable forms of rely-guarantee reasoning [Jones 1983], as explored for this purpose
by Naumann and Barnett [2006], Leino and Schulte [2007], and Cohen et al. [2010]. It
is an interesting question as to how such techniques relate to the approach to hiding
in this article.

Finally it remains to be seen how the approach explored here can be extended to
address the last of the needs listed in Section 1, namely more advanced programming
features such as inheritance, concurrency [Filipovic et al. 2010], code pointers, and
parametric polymorphism.

ACKNOWLEDGMENTS

Many people helped with suggestions and encouragement, including Lennart Beringer, Lars Birkedal,
Sophia Drossopoulou, Bart Jacobs, Neel Krishnaswami, Gary Leavens, Peter Müller, Aleksandar Nanevski,
Peter O’Hearn, Matthew Parkinson, Stan Rosenberg, Jan Smans, Jacob Thamsborg, Hongseok Yang, and
several anonymous reviewers.

REFERENCES

Amtoft, T., Bandhakavi, S., and Banerjee, A. 2006. A logic for information flow in object-oriented programs.
In Proceedings of the ACM Symposium on Principles of Programming Languages. 91–102.

Apt, K. R., de Boer, F. S., and Olderog, E.-R. 2009. Verification of Sequential and Concurrent Programs 3rd
Ed. Springer.

Apt, K. R., de Boer, F. S., Olderog, E.-R., and de Gouw, S. 2012. Verification of object-oriented programs: A
transformational approach. J. Comput. Syst. Sci. 78, 3, 823–852.

Back, R.-J. and von Wright, J. 1998. Refinement Calculus: A Systematic Introduction. Graduate Texts in
Computer Science, Springer-Verlag.

Banerjee, A., Naumann, D. A., and Rosenberg, S. 2013. Local reasoning for global invariants, Part I: Region
logic. J. ACM, To appear.

Barnett, M., Leino, K. R. M., and Schulte, W. 2005. The Spec# programming system: An overview. In Pro-
ceedings of the International Workshop on Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS’04). Revised Selected Papers. Lecture Notes in Computer Science, vol. 3362,
49–69.

Beckert, B., Hähnle, R., and Schmitt, P. H. 2007. Verification of Object-Oriented Software: The KeY Approach.
Lecture Notes in Computer Science, vol. 4334, Springer-Verlag.

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W., Wies, T., and Yang, H. 2007. Shape anal-
ysis for composite data structures. In Proceedings of the Computer Aided Verification. Lecture Notes in
Computer Science, vol. 4590, 178–192.

Bierhoff, K. and Aldrich, J. 2007. Modular typestate checking of aliased objects. In Proceedings of the ACM
Conference on Object-Oriented Programming Languages, Systems, and Applications. 301–320.

Birkedal, L., Torp-Smith, N., and Yang, H. 2005. Semantics of separation-logic typing and higher-order
frame rules. In Proceedings of the IEEE Symposium on Logic in Computer Science. 260–269.

Birkedal, L., Torp-Smith, N., and Yang, H. 2006. Semantics of separation-logic typing and higher-order
frame rules for Algol-like languages. Log. Meth. Comput. Sci. 2, 5:1, 1–33.

Bornat, R., Calcagno, C., O’Hearn, P. W., and Parkinson, M. J. 2005. Permission accounting in separation
logic. In Proceedings of the ACM Symposium on Principles of Programming Languages. 259–270.

Cameron, N. R., Drossopoulou, S., Noble, J., and Smith, M. J. 2007. Multiple ownership. In Proceedings of
the ACM Conference on Object-Oriented Programming Languages, Systems, and Applications. 441–460.

Chin, W.-N., David, C., Nguyen, H. H., and Qin, S. 2008. Enhancing modular OO verification with separation
logic. In Proceedings of the ACM Symposium on Principles of Programming Languages. 87–99.

Cohen, E., Dahlweid, M., Hillebrand, M. A., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., and Tobies,
S. 2009. VCC: A practical system for verifying concurrent C. In Proceedings of the Theorem Proving in
Higher Order Logics. Lecture Notes in Computer Science, vol. 5674, 23–42.

Cohen, E., Moskal, M., Schulte, W., and Tobies, S. 2010. Local verification of global invariants in concurrent
programs. In Computer Aided Verification, Lecture Notes in Computer Science, vol. 6174, 480–494.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:71

Dietl, W. and Müller, P. 2005. Universes: Lightweight ownership for JML. J. Obj. Tech. 4, 5–32.
Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. J., and Vafeiadis, V. 2010. Concurrent abstract

predicates. In Proceedings of the European Conference on Object-Oriented Programming. 504–528.
Distefano, D. and Parkinson, M. J. 2008. jStar: Towards practical verification for Java. In Proceedings of the

ACM Conference on Object-Oriented Programming Languages, Systems, and Applications. 213–226.
Dockins, R., Hobor, A., and Appel, A. W. 2009. A fresh look at separation algebras and share accounting.

In Proceedings of the Asian Symposium on Programming Languages and Systems. Lecture Notes in
Computer Science, vol. 5904, 161–177.

Drossopoulou, S., Francalanza, A., Müller, P., and Summers, A. J. 2008. A unified framework for verifi-
cation techniques for object invariants. In Proceedings of the European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science, vol. 5142, 412–437.

Filipovic, I., O’Hearn, P. W., Rinetzky, N., and Yang, H. 2010. Abstraction for concurrent objects. Theoret.
Comput. Sci. 411, 51–52, 4379–4398.

Filliâtre, J.-C. and Marché, C. 2007. The Why/Krakatoa/Caduceus platform for deductive program veri-
fication (tool paper). In Computer Aided Verification, Lecture Notes in Computer Science, vol. 4590,
173–177.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R. 2002. Extended static
checking for Java. In Proceedings of the ACM Conference on Programming Languages Design and Im-
plementation. 234–245.

Grothoff, C., Palsberg, J., and Vitek, J. 2007. Encapsulating objects with confined types. ACM Trans. Pro-
gram. Lang. Syst. 29, 6.

Harel, D., Pnueli, A., and Stavi, J. 1977. A complete axiomatic system for proving deductions about recursive
programs. In Proceedings of the Annual ACM Symposium on Theory of Computing. 249–260.

He, J., Hoare, C. A. R., and Sanders, J. 1986. Data refinement refined (resumé). In Proceedings of the Euro-
pean Symposium on Programming. Lecture Notes in Computer Science, vol. 213, Springer, 187–196.

Hoare, C. A. R. 1971. Procedures and parameters: An axiomatic approach. In Proceedings of the Symposium
on Semantics of Algorithmic Languages. E. Engeler Ed., Springer, 102–116.

Hoare, C. A. R. 1972. Proofs of correctness of data representations. Acta Inf. 1, 271–281.
Jones, C. B. 1983. Specification and design of (parallel) programs. In Proceedings of the IFIP Congress.

321–332.
Kassios, I. T. 2006. Dynamic frames: Support for framing, dependencies and sharing without restrictions. In

Formal Methods, Lecture Notes in Computer Science, vol. 4085, 268–283.
Kassios, I. T. 2011. The dynamic frames theory. Form. Asp. Comput. 23, 3, 267–288.
Kleymann, T. 1999. Hoare logic and auxiliary variables. Form. Asp. Comput. 11, 541–566.
Krishnaswami, N. R., Aldrich, J., Birkedal, L., Svendsen, K., and Buisse, A. 2009. Design patterns in sepa-

ration logic. In Proceedings of the ACM Workshop on Types in Languages Design and Implementation.
105–116.

Krishnaswami, N. R., Aldrich, J., and Birkedal, L. 2010. Verifying event-driven programs using ramified
frame properties. In Proceedings of the ACM Workshop on Types in Languages Design and Implementa-
tion. 63–76.

Kroening, D. and Strichman, O. 2008. Decision Procedures: An Algorithmic Point of View. Springer.
Lahiri, S. K., Qadeer, S., and Walker, D. 2011. Linear maps. In Proceedings of the ACM Workshop on Pro-

gramming Languages meets Program Verification. 3–14.
Leavens, G. T. and Müller, P. 2007. Information hiding and visibility in interface specifications. In Proceed-

ings of the International Conference on Software Engineering. 385–395.
Leavens, G. T. and Naumann, D. A. 2013. Behavioral subtyping, specification inheritance, and modular

reasoning. Tech. rep. CS-TR-13-03, Department of Computer Science, University of Central Florida.
Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., and Cok, D. R. 2003. How the design of JML accommo-

dates both runtime assertion checking and formal verification. In Proceedings of the Formal Meth-
ods for Components and Objects (FMCO’02). Lecture Notes in Computer Science, vol. 2852, Springer,
262–284.

Leavens, G. T., Leino, K. R. M., and Müller, P. 2007. Specification and verification challenges for sequential
object-oriented programs. Form. Asp. Comput. 19, 2, 159–189.

Leino, K. R. M. 2008. This is Boogie 2. Manuscript KRML 178.
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf.

Leino, K. R. M. and Müller, P. 2004. Object invariants in dynamic contexts. In Proceedings of the European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science, vol. 3086, 491–516.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

19:72 A. Banerjee and D. A. Naumann

Leino, K. R. M. and Müller, P. 2006. A verification methodology for model fields. In Proceedings of the Euro-
pean Symposium on Programming Languages and Systems. Lecture Science on Computer Science, vol.
3924, 115–130.

Leino, K. R. M. and Schulte, W. 2007. Using history invariants to verify observers. In Proceedings of the
European Symposium on Programming Languages and Systems. Lecture Notes in Computer Science,
vol. 4421, 80–94.

Leino, K. R. M., Poetzsch-Heffter, A., and Zhou, Y. 2002. Using data groups to specify and check side ef-
fects. In Proceedings of the ACM Conference on Programming Language Design and Implementation.
246–257.

Liskov, B. H. and Wing, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16, 6,
254–280.

Malecha, G., Morrisett, G., Shinnar, A., and Wisnesky, R. 2010. Toward a verified relational database man-
agement system. In Proceedings of the ACM Symposium on Principles of Programming Languages.
237–248.

Morgan, C. 1994. Programming from Specifications 2nd Ed. Prentice Hall.
Müller, P. 2002. Modular Specification and Verification of Object-Oriented Programs. Lecture Notes in Com-

puter Science, vol. 2262, Springer.
Müller, P. and Rudich, A. 2007. Ownership transfer in universe types. In Proceedings of the ACM Conference

on Object-Oriented Programming Languages, Systems, and Applications. 461–478.
Müller, P., Poetzsch-Heffter, A., and Leavens, G. T. 2006. Modular invariants for layered object structures.

Sci. Comput. Program. 62, 3, 253–286.
Nanevski, A., Morrisett, G., and Birkedal, L. 2006. Polymorphism and separation in Hoare type theory. In

Proceedings of the International Conference on Functional Programming. 62–73.
Nanevski, A., Morrisett, J. G., and Birkedal, L. 2008. Hoare type theory, polymorphism and separation. J.

Funct. Prog. 18, 5–6, 865–911.
Nanevski, A., Vafeiadis, V., and Berdine, J. 2010. Structuring the verification of heap-manipulating pro-

grams. In Proceedings of the ACM Symposium on Principles of Programming Languages. 261–274.
Naumann, D. A. 2001. Calculating sharp adaptation rules. Inf. Process. Lett. 77, 201–208.
Naumann, D. A. and Banerjee, A. 2010. Dynamic boundaries: Information hiding by second order framing

with first order assertions. In Proceedings of the European Symposium on Programming Languages and
Systems. Lecture Notes in Computer Science, vol. 6012, 2–22.

Naumann, D. A. and Barnett, M. 2004. Towards imperative modules: Reasoning about invariants and shar-
ing of mutable state. In Proceedings of the IEEE Symposium on Logic in Computer Science. 313–323.

Naumann, D. A. and Barnett, M. 2006. Towards imperative modules: Reasoning about invariants and shar-
ing of mutable state. Theoret. Comput. Sci. 365, 143–168.

Nipkow, T. 2002. Hoare logics for recursive procedures and unbounded nondeterminism. In Proceedings of
the Conference on Computer Science Logic. Lecture Notes in Computer Science, vol. 2471, 103–119.

O’Hearn, P. W. and Tennent, R. D., Eds. 1997. ALGOL-like Languages. vol. 1 and vol. 2, Birkhäuser, Boston,
Massachusetts.

O’Hearn, P. W., Reynolds, J. C., and Yang, H. 2001. Local reasoning about programs that alter data struc-
tures. In Proceedings of the Conference on Computer Science Logic. Lecture Notes in Computer Science,
vol. 2142, 1–19.

O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2004. Separation and information hiding. In Proceedings of the
ACM Symposium on Principles of Programming Languages. 268–280.

O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2009. Separation and information hiding. ACM Trans. Program.
Lang. Syst. 31, 3, 1–50.

Olderog, E.-R. 1983. On the notion of expressiveness and the rule of adaptation. Theoret. Comput. Sci. 24,
337–347.

Owicki, S. and Gries, D. 1976. An axiomatic proof technique for parallel programs I. Acta Inf. 6, 319–340.
Parkinson, M. 2007. Class invariants: the end of the road? In Proceedings of the International Workshop on

Aliasing, Confinement and Ownership.
Parkinson, M. J. and Bierman, G. M. 2005. Separation logic and abstraction. In Proceedings of the ACM

Symposium on Principles of Programming Languages. 247–258.
Parkinson, M. J. and Bierman, G. M. 2008. Separation logic, abstraction and inheritance. In Proceedings of

the ACM Symposium on Principles of Programming Languages. 75–86.
Petersen, R. L., Birkedal, L., Nanevski, A., and Morrisett, G. 2008. A realizability model for impredica-

tive Hoare type theory. In Proceedings of the European Symposium on Programming Languages and
Systems. Lecture Notes in Computer Science, vol. 4960, 337–352.

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

�

�

�

�

�

�

�

�

Local Reasoning for Global Invariants, Part II: Dynamic Boundaries 19:73

Pierik, C. 2006. Validation techniques for object-oriented proof outlines. Tech. rep. 2006-5, Universiteit
Utrecht, SIKS Dissertation Series. ISBN 90-393-4217-2.

Pierik, C. and de Boer, F. S. 2004. Modularity and the rule of adaptation. In Algebraic Methodology and
Software Technology. Lecture Notes in Computer Science, vol. 3116, 394–408.

Pierik, C. and de Boer, F. 2005a. On behavioral subtyping and completeness. In Proceedings of the 7th
ECOOP Workshop on Formal Techniques for Java-like Programs. J. Vitek and F. Logozzo Eds.

Pierik, C. and de Boer, F. S. 2005b. A proof outline logic for object-oriented programming. Theoret. Comput.
Sci. 343, 413–442.

Pierik, C., Clarke, D., and de Boer, F. S. 2005. Controlling object allocation using creation guards. In Formal
Methods, Lecture Notes in Computer Science, vol. 3582, Springer, 59–74.

Poetzsch-Heffter, A. and Müller, P. 1999. A programming logic for sequential Java. In Proceedings of the
European Symposium on Programming Languages and Systems. Lecture Notes in Computer Science,
vol. 1576, 162–176.

Reynolds, J. C. 1981. The Craft of Programming. Prentice-Hall.
Reynolds, J. C. 1982. Idealized Algol and its specification logic. In Tools and Notions for Program Construc-

tion, D. Néel Ed., Cambridge University Press, 121–161.
Reynolds, J. C. 1998. Theories of Programming Languages. Cambridge University Press.
Rosenberg, S., Banerjee, A., and Naumann, D. A. 2010. Local reasoning and dynamic framing for the compos-

ite pattern and its clients. In Proceedings of the Verified Software: Theories, Tools, Experiments. Lecture
Notes in Computer Science, vol. 6217, 183–198. (http://www.cs.stevens.edu/∼naumann/pub/VERL/).

Roth, A. 2005. Specification and verification of encapsulation in Java programs. In Proceedings of the Formal
Methods for Open Object-Based Distributed Systems (FMOODS). M. Steffen and G. Zavattaro Eds.,
Lecture Notes in Computer Science, vol. 3535, 195–210.

Roth, A. 2006. Specification and verification of object oriented software components. Ph.D. thesis, Karlsruhe
Institute of Technology.

Schmitt, P. H., Ulbrich, M., and Weiß, B. 2010. Dynamic frames in Java dynamic logic. In Proceedings of the
Formal Verification of Object-Oriented Software (FoVeOOS) – (Revised Selected Papers). Lecture Notes
in Computer Science, vol. 6528, 138–152.

Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., and Reus, B. 2010. A semantic foundation for hidden
state. In Proceedings of the Foundations of Software Science and Computational Structures. Lecture
Notes in Computer Science, vol. 6014, 2–17.

Shaner, S. M., Leavens, G. T., and Naumann, D. A. 2007. Modular verification of higher-order methods with
mandatory calls specified by model programs. In Proceedings of the ACM Conference on Object-Oriented
Programming Languages, Systems, and Applications. 351–368.

Smans, J., Jacobs, B., Piessens, F., and Schulte, W. 2008. An automatic verifier for Java-like programs based
on dynamic frames. In Proceedings of the Fundamental Aspects to Software Engineering. Lecture Notes
in Computer Science, vol. 4961, Springer, 261–275.

Smans, J., Jacobs, B., Piessens, F., and Schulte, W. 2010. Automatic verification of Java programs with
dynamic frames. Formal Aspects of Computing 22, 3–4, 423–457.

Thamsborg, J., Birkedal, L., and Yang, H. 2012. Two for the price of one: Lifting separation logic assertions.
Log. Meth. Comput. Sci. 8, 3.

von Oheimb, D. and Nipkow, T. 2002. Hoare logic for NanoJava: Auxiliary variables, side effects, and virtual
methods revisited. In Formal Methods, Lecture Notes in Computer Science, vol. 2391, 89–105.

Zee, K., Kuncak, V., and Rinard, M. C. 2008. Full functional verification of linked data structures. In Pro-
ceedings of the ACM Conference on Programming Language Design and Implementation. 349–361.

Received July 2011; revised November 2012; accepted March 2013

Journal of the ACM, Vol. 60, No. 3, Article 19, Publication date: June 2013.

