
Modular and Constraint-based Information Flow

Inference for an Object-oriented Language

Qi Sun?1, Anindya Banerjee??2, and David A. Naumann? ? ?1

1 Stevens Institute of Technology, USA {sunq,naumann}@cs.stevens-tech.edu
2 Kansas State University, USA ab@cis.ksu.edu

Abstract. This paper addresses the problem of checking programs writ-
ten in an object-oriented language to ensure that they satisfy the in-
formation flow policies, confidentiality and integrity. Policy is specified
using security types. An algorithm that infers such security types in a
modular manner is presented. The specification of the algorithm involves
inference for libraries. Library classes and methods maybe parameterized
by security levels. It is shown how modular inference is achieved in the
presence of method inheritance and override. Soundness and complete-
ness theorems for the inference algorithm are given.

1 Introduction

This paper addresses the problem of checking programs to ensure that they sat-
isfy the information flow policies, confidentiality and integrity. Confidentiality,
for example, is an important requirement in several security applications – by
itself, or as a component of other security policies (e.g., authentication), or as
a desirable property to enforce in security protocols [1]. In the last decade, im-
pressive advances have been made in specifying static analyses for confidentiality
for a variety of languages [14]. Information flow policy is expressed by labeling
of input and output channels with levels, e.g., low, or public, (L) and high, or
secret, (H) in a security lattice (L ≤ H). Many of these analyses are given in
the style of a security type system that is shown to enforce a noninterference
property [6]: a well-typed program does not leak secrets.

Previous work of Banerjee and Naumann provides a security type system
and noninterference result for a class based object-oriented language with fea-
tures including method inheritance/overriding, dynamic binding, dynamically
allocated mutable objects, type casts and recursive types [3]. It is shown how
several object-oriented features can be exploited as covert channels to leak se-
crets. Type checking in Banerjee and Naumann’s security type system requires
manually annotating all fields, method parameters and method signatures with
security types.

? Supported in part by NSF grant CCR-0208984 and NJCST.
?? Supported in part by NSF grants CCR-0296182 and CCR-0209205.

? ? ? Supported in part by NSF grant CCR-0208984 and NJCST.

The primary focus of this paper is the automatic inference of security type
annotations of well-typed programs. In this paper, we are not interested in full
type inference, and assume that a well-typed program is given. There are several
issues to confront. First, we demand inference of some, possibly all, security
levels of fields in a class. This means that security types of fields will involve
level variables and the same is true for method types where level variables will
appear in types of method parameters and in the result type.

The second issue, a critical challenge for scalability, is achieving modular
security type inference for class-based languages. A non-modular, whole-program
inference, say, for the language in [3], would perform inference in the context of
the entire class table; if method m in class A is called in the body of method n

declared in class B, then the analysis of B.n would also involve the analysis of
A.m. Moreover, every use of A.m in a method body would necessitate its analysis.
Our insistence on modular inference led us to the following choices: code is split
into library classes (for which inference has already been performed) and the
current analysis unit (for which inference is currently taking place). Inference
naturally produces polymorphic types; so it seemed appropriate to go beyond
previous work [3] and make libraries polymorphic. To track information flow,
e.g., via field updates, constraints on level variables are imposed in the method
signature; thus library method signatures appear as constrained polymorphic
types. To avoid undecidability of inference due to polymorphic recursion [8, 7],
mutually recursive classes and methods in the current analysis unit are analyzed
monomorphically. 1

Because we are analyzing an object-oriented language, the third issue we con-
front is achieving modular inference in the presence of method inheritance and
override. The current analysis unit can contain subclasses of a library class with
some library methods overridden or inherited. To achieve modularity, we require
that the signature of a library method is invariant with respect to subclassing.
Getting the technical details correct is a formidable challenge and one which we
have met. We provide some intuition on the problem presently.

The research reported in this paper is being carried out in the context of a
tool, currently under development, that handles the above issues. The tool helps
the programmer design a library interactively by inferring the signatures of new
classes, together with a constraint set showing the constraints that level variables
in the signature must obey. The security types of the new classes are inferred in
the context of the existing library. The new code may inherit library methods
– this causes the polymorphic signature of a library method to be instantiated
at every use of the method, and the instantiated constraints will apply to the
current context.

Handling method override is more subtle; modularity requires that the poly-
morphic type inferred for a library method must be satisfied by all its overriding
methods. For an overriding method in a subclass, if the inference algorithm

1 It is possible that because we are not doing full type inference, polymorphic recursion
in this setting is decidable. But we do not yet have results either way.

2

generates constraints that are not implied by the constraints of the superclass
method, then the unit must be rejected.

To cope with such a situation, there are a couple of approaches one may
adopt. Because changing library code makes the inference process non-modular,
one can change the code in the subclass, by relabeling field and parameter levels
with ground constants in a sensible way, and re-run the tool to deliver the relaxed
signatures. (This will be illustrated by an example in section 4.2). A more prac-
tical approach is that during library design, the designer may want to consider
anticipated uses of those library methods that are expected to be overridden in
subclasses. The inferred signature of such library methods – an extreme example
being abstract methods with no implementation – may be too general; hence,
the designer may want to make some of the field types and method signatures
more specific. Then, there would be more of a possibility that the constraints in
the method signatures of library methods will imply those in the signatures of
the overriding methods. Thus the security type signature we assume for library
methods is allowed to be an arbitrary one.

Contributions and overview. This paper tackles all of the issues above. Our
previous work [3] did not cope with libraries. Here, we do; thus we provide a
new security type system for the language with polymorphic classes and methods
that guarantees noninterference. We provide an inference algorithm that, in the
context of a polymorphic library, infers security type signatures for methods
of the current analysis unit. By restricting the current analysis unit to only
contain monomorphic types, we can show that the algorithm computes principal
monomorphic types, as justified by the completeness of the inference algorithm
for such restricted units. Although there have been studies about both type
inference and information flow analysis for imperative, functional and object-
oriented programs, we have not found any work that addresses security type
inference for object-oriented programs in the presence of libraries. We believe
that the additional details required to account for modularity in the presence of
method inheritance and override are a novel aspect of our work.

After discussing two simple examples in section 2, we describe the language
extended with parameterized classes in section 3, explain the inference algorithm
in section 4 and give the soundness and completeness theorems in section 5.
Related work and a discussion of the paper appear in section 6.

2 Examples

Consider the following classes:

class TAX extends Object {
int income;
int tax(int salary){ self.income := salary; result := self.income * 0.20; }}

class Inquiry extends Object{
TAX employee; int est;
bool overpay(){int tmp:=employee.tax(1000);result:=(tmp≥self.est);}}

3

The type of method tax in class TAX, written mtype(tax, TAX), is int → int.
Assuming that income has security level H , a possible security type for method
tax, is L, H−〈H〉→H : when the level of the current object2 is L and the level of
salary is at most H then tax returns a result of level at most H and only H fields
(the H in the middle) may be updated3 during method execution. This security
type can be verified using security type checking rules for method declaration
and commands.

In security type inference, we infer security types for the level of field income
and for method tax. We assume that TAX is a well-formed class declaration.
The inference algorithm is given class TAX as input, but with income’s type
annotated, e.g., as (int, α1), where α1 is a placeholder for the actual level of the
field. It is also possible for income to be annotated with a constant level (e.g., L

or H). Apart from annotating fields, we also annotate the parameter and return
types of methods. In the sequel, we will let letters from the beginning of the
Greek alphabet range over level variables.

The type, (α2, α5−〈α3〉→α4) | {α5 ≤ α1, α3 ≤ α1, α2 ≤ α1, α1 ≤ α4} is
inferred for method tax; that is, if the level of the TAX object is at most α2 and
the level of salary is at most α5, then the level of the return result is at most α4

and fields of level at most α3 can be assigned to during execution of tax. The
first constraint precludes, e.g., assigning H value to L field.

The class TAX can now be converted into a library class, parameterized over
α1 and method tax given a polymorphic method signature.

class TAX<α1>extends Object {
(int, α1) income;
(int, α4) tax((int, α5) salary){self.income := salary; result := self.income*0.20; }}

Library class TAX<α1> can be instantiated in multiple ways in the analysis
of another class, for instance, by instantiating α1 with a ground level, say H .
The intention is that for any ground instantiation of α1, . . . , α5 that satisfies the
constraints, the body of TAX should be typable in the security type system.

The inference of class Inquiry takes place in the context of the library contain-
ing TAX. Because TAX is parameterized, the type of field employee is assumed
to be TAX<β1> and the level of employee is β2. We could have chosen the level
of employee to be H , but by typing rules, this would prevent access to a public
field, say name, of employee. Note that the level of est is completely specified.
The inferred type of method overpay is (α6, ()−〈α7〉→α8) | K. Some of the con-
straints in K generated by our inference algorithm are α6 ≤ α8, β1 ≤ α8 and
β2 ≤ α8.

Suppose Inquiry is annotated differently, so that the type of the employee
field is (TAX<H>, β2), i.e., β1 above has been instantiated to H . Then the
level of the result of the call to tax (i.e., level α8) will also be secret – this was
predicted by the constraint β1 ≤ α8. Suppose Q is an object of type Inquiry

2 i.e., the level of self. This information is used to prevent leaks of the pointer to the
current target object to other untrusted sources[3].

3 This information, called the heap effect, is required to prevent leaks due to implicit
flow via conditionals and method call [5, 3].

4

and suppose that its level is H . Then to prevent implicit information leakage
due to the call to overpay, the return result should be H [3]. This can be seen
from the constraint α6 ≤ α8 with α6, the level of Q, instantiated to H . Finally,
if employee itself is H , then the constraint β2 ≤ α8 forces the level of the return
result to be H as expected.

Section 3 formalizes the annotated language and discuss security typing rules
for which noninterference can be shown. Next, section 4 considers a sublanguage
of the annotated language with programs annotated with level variables; for
this language we specify an algorithm that infers security types. We discuss
restrictions of the language to handle undecidability of inference and formalize
inference for inheritance and override of library methods in the current analysis
unit in a way that maintains modularity. These restrictions and treatments will
be illustrated by an example that overrides method TAX.tax in section 4.3.

3 Language and security typing

We use the sequential class-based language from our previous work [3]. The
difference is in the annotated language, where classes and methods may be poly-
morphic in levels. This allows a library class to be used in more than one way. We
make an explicit separation between a library class and a collection of additional
classes that are based on the library.

First, some terms: a unit is a collection of class declarations. A closed unit
is a collection of class declarations that is well formed as a complete program,
that is, it is a class table. The library is a closed unit from which we need its
polymorphic type signature, encoded in some auxiliary functions defined later.
A program based on a library can consist of several classes which extend and use
library classes and which may be mutually recursive. We use the term analysis
unit for the classes to which the inference algorithm is applied. Due to mutual
recursion, several classes may have to be considered together. An analysis unit
must be well formed in the sense that the union of it with the library should
form a closed unit.

The annotated language. We shall now define the syntax for library units and also
adapt the security typing rules from our previous work to the present language.
Essentially, a polymorphic library is typable if all of its ground instances are.

The grammar is in Table 1. Although identifiers with overlines indicate lists,
some of the formal definitions assume singletons to avoid unilluminating com-
plication.

Since the problem we want to address is secure information flow, all the
programs are assumed to be well formed as ordinary code; i.e. when all levels are
erased, including class parameters <λ>. Typing rules for our Java-like language
are standard and can be found in our previous paper [3]. It suffices to recall that
a collection of class declarations, called a class table, is treated as a function
CT so that CT (C) is the code for class C. Moreover, field(f, C) gives the type
of field f in class C and mtype(m, C) gives the parameter and return types for

5

Table 1. Language grammar

T ::= bool | C (where C ranges over ClassName)
κ ::= H | L (level constants)
λ ::= α | κ (level variable, constant)

U ::= T<λ> (we also use W and R for this category)

CL ::= class C<α> extends U{(U, λ) f ; M}

M ::= U m (U x){S}
S ::= x := e | e.f := e | x := new U | x := e.m(e) | S; S | U x := e in S |

if e then S else S
e ::= x | null | true | e.f | e == e | e is U | (U)e

method m declared or inherited in C. Subtyping is invariant: D ≤ C implies
mtype(m, C) = mtype(m, D).

We use T to represent an ordinary data type, while U ranges over parame-
terized class types, which take the form T<λ>. Declaration of a parameterized
class binds some variables α in the types of the superclass and fields:

class C<α> extends D<λ>{(U, λ′) f ; M}

All variables appearing in field declarations are bound at the class level. Thus the
parameterized class declaration above must satisfy a well formedness condition:
α ⊇ var(λ)∪ var(U)∪ var(λ′). These variables, if appear in method declaration
and body, are also bound in class level. The rest free variables are bound in
method level for method polymorphism.

Field types, including security label, can be retrieved by a given function
lsfield(f, U) which returns the appropriate type of field f in a (possibly instan-
tiated) class U . Thus for the declaration displayed above, lsfield (f, C<α>) =
(U, λ′), and for any λ′′ of the right length, lsfield (f, C<λ′′>) = (U, λ′)[α← λ′′].
We require that lsfield(f, U) is defined iff field(f, T) is defined, and moreover4

if U � U ′ and lsfield(f, U ′) is defined, then lsfield(f, U) = lsfield(f, U ′).
Method types, possibly polymorphic, need more delicate treatment. Types

for methods are given using a signature function lsmtype so that lsmtype(m, U),
for method m declared or inherited in class U returns m’s signature and a set
K of constraints in the form of inequalities between constants and variables.
We require that lsmtype(m, T<λ>) is defined iff mtype(m, T) is, and in that
case the signature takes the form λ0, (U, λ1)−〈λ2〉→(R, λ3)|K. The signature
expresses the following policy: If the information in “self” is at most λ0 and the
information in parameters is at most λ1 with type U , then any fields written
are at level λ2 or higher and the result level is at least λ3, with result type R

provided that the constraints K are satisfied.
Following our previous work [3], we also require invariance under subclass-

ing : if U � R and m is declared in R, then lsmtype(m, U) = lsmtype(m, R)
(regardless of whether m is inherited or overridden in U). Analogous to the sub-

4 The security subtyping relation � is defined in Table 2.

6

Table 2. Auxiliary definitions

For T, T ′ such that T ≤ T ′, we define:
instance(T<κ>, T) = T<κ>

instance(T<κ>, T ′) = let class T<α> extends T ′′<λ> = CT (T)

in instance(T ′′<λ[α← κ]>, T ′)

T<κ> � T ′<κ′> ⇔ instance(T<κ>, T ′) = T ′<κ′>

tcomp(T<λ>, T ′<λ′>) = let T ′<λ′′> = instance(T<λ>, T ′)
in ∪i {λ

′′
i ≤ λ′

i; λ
′
i ≤ λ′′

i }

classing requirement on methods in object-oriented languages, this is to ensure
information flow security in the context of dynamic method dispatch.

The subtyping relation � must take polymorphism and information flow
into account. For built-in type, we define bool � bool. Class subtyping can
be checked using the � function defined in Table 2, which propagates instan-
tiation of a class up through the class hierarchy. The definition uses another
function, instance, that carries out this propagation and constructs a suitable
instantiation of a supertype. The auxiliary definition for downcast appears in the
appendix. For use in inference, we need to generate a set of constraints such that
two types with variables are in the � relation; this is the purpose of function
tcomp. We assume that if the analysis unit mentions a parameterized class, it
provides the right number of parameters.

Security typing rules. Although the typing rules work with parameterized class
declarations and with polymorphic method signatures, the typing rules for ex-
pressions and commands in method bodies only apply to ground judgements. A
security type context ∆ is a mapping from variable names to security types. We
adopt the notation style for typing judgements from [3]. A judgement ∆ ` e :
(U, κ) says that expression e in context ∆ has security type (U, κ). A judgement
∆ ` S : com κ1, κ2 says that, in the context ∆, command S writes no variables
below κ1, which is in the store and will be gone after the execution of the method,
and no fields below κ2 , which will stay in the heap until garbage-collected.

We give the rule for method call, x := e.m(e), below. It uses the polymorphic
signature function of the method m, and requires that there must be some satis-
fying ground instance compatible with the levels at the call site; this is ensured
by requiring satisfiability of a constraint set K ′ which contains the constraints
needed to match security types of parameters and arguments.

∆, x : (U, κ) ` e : (W, κ3)

∆, x : (U, κ) ` e : (U, κ4) lsmtype(m, W) = λ0, (U ′, λ)−〈λ1〉→(U ′, λ2)|K
κ5 ≤ κ κ3 ≤ κ K ′ = K ∪K ′′ ∪ tcomp(U ′, U) ∪ tcomp(U ′, U)

K ′′ = {κ4 ≤ λ, λ2 ≤ κ, κ6 ≤ λ1, κ3 ≤ λ0, κ3 ≤ λ1} K ′ is satisfiable

∆, x : (U, κ) ` x := e.m(e) : com κ5, κ6

7

Table 3. Typing rules for method declarations and class declarations

lsmtype(m,C<κ′>) = λ0, (U, λ)−〈λ3〉→(U, λ4)|K

V = vars(λ0, (U, λ)−〈λ3〉→(U,λ4)|K)

for all I with ok(K, V, I) : let κ0, (U ′, κ)−〈κ3〉→(U ′, κ4) = I(λ0, (U, λ)−〈λ3〉→(U, λ4)) in

x : (U ′, κ), self : (C, κ0), result : (U ′, κ4) ` S : com κ1, κ2 κ3 ≤ κ2

C<κ′> extends R ` U m(U x){S}

for all M ∈M , all κ: C<κ> extends I(R) ` I(M) where I = [α← κ]

` class C<α> extends R{U f ; M}

Table 3 gives the rules for class and method declarations. A class declaration
is typable provided that all of its method declarations are. Typing a method
declaration requires checking its body with respect to all ground instantiations,
I , over the variables V given by lsmtype . We define ok(K, V, I) to mean that I

satisfies K.

Noninterference. Like FlowCaml [15], our system uses a level-polymorphic lan-
guage, both for more expressive libraries and because it is the natural result
from inference. The noninterference property asserted by a polymorphic type
is taken to be ordinary noninterference for all ground instances that satisfying
the constraints that are part of the type. By lack of space in this paper, we
omit the semantics and thus cannot formally define noninterference. Informally,
a command is noninterfering if, for any two initial states that are indistinguish-
able for L (i.e., if all H fields and variables are removed), if both computations
terminate then the resulting states are indistinguishable. Indistinguishability is
defined in terms of a ground labeling of fields and variables. A method declara-
tion is noninterfering with respect to a given type if its body is noninterfering,
where the method type determines levels for parameters and result. A class table
is noninterfering if, for every ground instantiation of every class, every method
declaration is noninterfering.

The forthcoming technical report [18] shows that if a class table is typable
by the security rules then it is noninterfering.

4 Inference

In this section we give the complete inference process. The algorithm has two
steps. In the first step (sections 4.1 and 4.2) it outputs the constraints that en-
sure the typability of the classes being checked. In the second step (section 4.3),
it takes the output from the first step, produces the parameterized signatures,
and checks the subclassing invariance of these signatures. Then the new param-
eterized signatures can be added to the library.

8

4.1 Input

One input to the inference algorithm is the pair of auxiliary functions giving
the polymorphic signatures of a library, namely, lsfield for fields and lsmtype for
methods.

The other input is the current analysis unit. Unlike library methods, all meth-
ods implemented in the analysis unit are treated monomorphically with respect
to each other during the inference, even though they may override polymorphic
methods in the library. In particular, although we do not have explicit syntax
for mutual recursion,5 mutually recursive classes are put in the same analysis
unit and are treated monomorphically. Method bodies can of course instantiate
library methods differently at different call sites.

For any set V of variables, we write I∗V for some fixed renaming that maps
V to distinct variables not in V .

The signature functions, usfield and usmtype, provide the types of fields and
methods for classes in unit. We refrain from defining the simpler one, usfield .
For any set V of level variables, define usmtype(m, T, V) as follows:

1. If T has a declaration of m

– If T has a superclass U in unit that declares m, then usmtype(m, T, V) =
usmtype(m, U, V).

– Otherwise (i.e, any superclass of T that declares m is in the library),
usmtype(m, T, V) has parameter types and return type as declared in
T ; the heap effect and self level are two variables distinct from all level
variables in unit and the signature has the empty constraint set.

2. If T inherits m from its superclass U

– If U is in unit, usmtype(m, T, V) = usmtype(m, U, V).
– If U is a library class, usmtype(m, T, V) = I∗V lsmtype(m, U).

By definition, usmtype may return a type that is either monomorphic or poly-
morphic, depending on whether there are any declarations of m in unit at or
above T . If there are none, the method type is polymorphic and a renaming is
needed to ensure variable freshness. On the other hand, if there is a declaration
of m in unit at or above T , usmtype returns a fixed monomorphic type for all
call sites – even if m has also been defined in the library.

4.2 Inference rules

The inference algorithm is presented in the form of rules for a judgment that gen-
erates constraints and keeps track of variables in use in order to ensure freshness
where needed. For expressions, the judgment has the form

∆, V ` e : U α, K, V ′

where V, V ′ are sets of level variables, with V ⊆ V ′. The judgment means that
in security type context ∆, expression e has type U and level α provided the

5 In contrast with explicit syntax for mutual recursion, say, in ML

9

Table 4. Inference algorithm: selected command cases.

∆, x : (U, λ1) ` e : U ′
 α2, K1, V1

K′ = K1 ∪ {α2 ≤ λ1, α3 ≤ λ1} ∪ tcomp(U ′, U) α3, α4 /∈ V1

∆, x : (U, λ1), V ` x := e com (α3, α4), K
′, {α3, α4} ∪ V1

((λ0, (U ′, λ)−〈λ1〉→R, λ2)|K = usmtype(m, W, V1)

∨ (λ0, (U ′, λ)−〈λ1〉→R, λ2)|K = I∗V1 (lsmtype(m, W)))

∆, x : (U, λ), V ` e : W α3, K0, V0 ∆, x : (U, λ), V0 ` e : U α4, K1, V1

V ′′ = V1 ∪ var(K) ∪ var(R) ∪ var(U ′) ∪ var(λ0, λ, λ1, λ2)

K′ = K ∪K0 ∪K1 ∪ tcomp(U, U ′) ∪ tcomp(R,U) ∪K ′′

K′′ = {α4 ≤ λ, α3 ≤ λ0, α3 ≤ λ1, λ2 ≤ λ, α5 ≤ λ,α6 ≤ λ1, α3 ≤ λ}
α5, α6 /∈ V ′′ V ′ = {α5, α6} ∪ V ′′

∆, x : (U, λ), V ` x := e.m(e) com (α5, α6), K
′, V ′

constraints in K are satisfied. Each rule also has a condition to ensure freshness
of new variables, e.g., α 6∈ V . The constraints K may be expressed using other
new variables; V ′ collects all the new and existing variables. The correctness
property is that any ground instantiation I of V ′ that satisfies K results in an
expression typable in the security type system, once we instantiate α and the
other variables. This is formalized in the soundness theorem.

There is a similar judgment for commands: ∆, V ` S com (α1, α2), K
′, V ′

where V, V ′ are level variables with V ⊆ V ′ means that in security type context
∆, command S writes to variables of level α1 or higher and to fields of level α2

or higher.

We refrain from giving the full set of rules, but discussing just a few cases,
which are given in Table 4. The first rule in the table is for variable assignment.
This may help the reader become familiar with the notation. The inferred type
for the assignment is com (α3, α4), where α3, α4 are fresh. The generated con-
straint set K ′ contains the set K1 obtained during the inference of e; U ′ is the
type of e and α2 is the inferred level of e. As expected from the typing rule
for assignment, K ′ contains the constraint set {α2 ≤ λ1, α3 ≤ λ1} and also the
constraints between variables in U ′ and U generated by tcomp(U ′, U), which
ensures the subtyping relation between U ′ and U .

The most complicated rule is for method invocation (Table 4). It is developed
from the typing rule for method invocation(Table 3). One can see that the con-
ditions in the typing rule evolve to the constraints in the inference rule. There
are two cases depending on the static type of the target. If the target is defined
in the library, lsmtype will return the polymorphic method type and a renaming
I∗V is used in the rule for freshness. Otherwise, usmtype returns the appropriate
method signature, already renamed if necessary. In both cases, the type will be
matched against the calling context and constraints in the returned signature
will be integrated. The rule uses tcomp to generate constraints that ensure type
compatibility.

10

Table 5. Inference algorithm for method declaration and class declaration

∆, V ` S com (α1, α2), K1, V1 ∆ = [x : (U, λ); self : (U, λ0); result : (R, λ4)]

usmtype(m,C, V1) = (λ0, (U, λ))−〈λ3〉→(R, λ4)|∅

C extends D, V ` R m(U x){S} K1 ∪ {λ3 ≤ α2}, V1

∀Mi ∈M C extends D, Vi−1 `Mi Ki, Vi

V0 ` class C extends D{U f, M} ∪1≤i≤nKi, Vn

The rules apply by structural recursion to a method body, generating con-
straints for its primitive commands (like assignment and method call) and con-
straints for combining these constituents (like in if/else). The rule for method
declaration, first rule in Table 5, matches a method body with its declared type
and checks it, generating an additional constraint.

The rule for class declaration, also in Table 5, combines the constraints for all
its methods. We refrain from stating a formal rule for the complete analysis unit.
The conclusion, written lsmtype , lsfield , usmtype, usfield ` unit K, V depends
on two hypotheses. First, each class declaration in unit has been checked by
the rule in the table, yielding constraints K over variables V . This check is
obtained by enumerating the class declarations in unit, threading variable sets
from one class to the next, and then taking for K the union of the constraints.
The initial variable set contains all the fresh variables used in the definition of
usmtype and all level variables that occur in unit. The second hypothesis is that
overriding declarations do not introduce new constraints, which would invalidate
the analysis of the library which is assumed in the form of lsmtype. If this check
fails, the analysis fails. We will address the check at the end of section 4.3.

4.3 Building a new library

In this subsection we illustrate the manipulation of parameterized classes, result-
ing in a new library signature. Then we give the definitions. Finally, we outline
how subclassing invariance is checked.

Producing new signatures. Assume we define a class CreditTAX that extends
TAX. We have filled in level variables where needed.

class CreditTAX extends TAX<γ1> {
(int, γ0) credit;
(int, γ2) tax((int, γ3) salary){

self.income:=salary; result:=self.income*0.2-self.credit;}}

Assume usmtype(tax, CreditTAX, {γ0, γ1, γ2, γ3}) returns
(γs, (int, γ3))−〈γh〉→(int, γ2)|∅. We run the program on the code, and get
the output K, V , where V includes γ0, γ1, γ2, γ3 and other temporary level
variables generated during the inference.

11

To put CreditTAX into the library, we need to produce its signature. First
we define the list of formal parameters by collecting variables γ0 from field dec-
larations and γ1 from the “extends” clause. Second, we attach the generated
constraint K to each method in the unit. The converted signature for Credit-
TAX, in pseudocode, is:

class CreditTAX<γ0, γ1> extends TAX <γ1> {
credit: (int, γ0);
tax: (γs, (int, γ2))−〈γh〉→(int, γ3) | K ; }

Now we formalize the process of producing new signatures. By the algorithm
we can get (K, V) on the classes in the unit. For converting the code, let X be
the set of class names declared in unit. We study any class C ∈ X . Let V ′ be
all the variables in V that appear in the supertype or field type/label of C. Let
unit′ be unit but with every C in X replaced by C<V ′>. The unit′ is now a
parameterized class with polymorphic methods.

Now we need to combine the signatures from the library and the unit. Based
on unit′, we will build a new signature function that can access the converted
unit and the library uniformly. Assume unit′(T) = class T<α>{. . .}.

fieldmerge (lsfield , usfield)(f, T<λ>) =

if T in unit then usfield(f, T)[α← λ]

else lsfield(f, T<λ>)

methmerge (lsmtype , usmtype, K)(m, T<λ>) =
if m is inherited from class D in the library then

lsmtype(m, instance(T<λ>, D))

else (fst(usmtype(m, T, ∅))|K)[α← λ]

In methmerge, T.m is implemented in the unit. So the third parameter for
usmtype is insignificant and the constraint in the return of usmtype(m, T, ∅) is
empty. We use fst to strip off this empty constraint.

Checking method declarations for proper override. Rather than delving into al-
gorithmic optimizations, we just specify the check for overriding declarations
informally. We want to ensure that U.m properly overrides U ′.m where U ′ is a
super class of U . We assume the constraint set has been simplified in that only
level constants and variables that are in the formal class parameter list or method
type signature are kept. For example, {α ≤ β, β ≤ γ} can be transformed into
{α ≤ γ} if β is insignificant.

The condition for proper override can be expressed as: Every constraint
in the overriding method must be entailed [13] by the constraints in the over-
ridden method. For example, assume lsmtype(U, m) = (L, ()−〈α2〉→α3)|K and
lsmtype(U ′, m) = (β1, ()−〈β2〉→β3)|K

′. We want to check if U.m is properly im-
plemented. Since the level of self is L for U.m, β1 = L should be entailed by K ′.
Also, if α2 ≤ α3 ∈ K, K ′ should entail it too.

We return to the CreditTAX example. It is not difficult to figure out that K

is the same as the constraint set (after the name conversion) in TAX.tax except

12

that there is one more inequality, γ0 ≤ γ3, in K. This is necessary to ensure
the typability of CreditTAX, but it makes the method tax more restrictive than
declared in TAX. When tax is invoked on a CreditTAX object as an instance
of TAX, the caller may assume γ0 = H, γ3 = L as a valid precondition because
TAX.tax does not impose any constraint between γ0 and γ3. But this constraint
is obviously unsatisfiable for CreditTAX.tax in the context of dynamic dispatch,
and violates the underlying policy. To make CreditTAX pass the check γ0 ≤ γ3,
one can relabel field credit with L.

We only compare constraints for a particular method — it is certainly not
the case that the constraints from the library imply all constraints for unit, e.g.,
the unit can have additional methods.

Complexity The time/space cost for the inference algorithm to generate con-
straints is low-order polynomial in the size of the program, and independent
of the security lattice. We can show that the time to generate the constraint
set is O(mn(s + t)322|P |), where m is the number of methods in the unit; n is
the length of the unit; s, t are the number of distinct variable in class level and
method level, perspectively; |P | is the size of the permission set. The size of the
generated constraint set is O(n(s + t)322|P |).

5 Soundness and completeness of the inference algorithm

5.1 Soundness

Theorem 1 (Soundness of inference algorithm).
Assume sigs ` unit K, V . 6 Let unit′ be the converted unit and sfield =
fieldmerge (lsfield , usfield) and smtype = methmerge(lsmtype, usmtype, K) be
the converted signatures, then sfield , smtype ` unit′.

5.2 Completeness of inference algorithm

In our system, the most general signatures of mutually recursive classes cannot
be represented in finite forms. Thus the inference algorithm cannot be complete,
since our algorithm will always terminate and produce finite output. We have to
restrict the classes in current analysis unit in order to prove completeness.

Define a unit to be monomorphically typed if all type references and method
invocations for the same class or method in a class body are instantiated exactly
in the same way.

Theorem 2 (Completeness).

If I(unit) is monomorphically typed in I(sigs), the constraints produced by
the algorithm for unit are satisfiable by an extension of I .

6 We use sigs to abbreviate lsfield , lsmtype , usfield , usmtype .

13

In other words, this means that the algorithm yields principal types for a monomor-
phically typed unit with respect to the polymorphic library. This is analogous
to type inference of recursive functions in ML. For example, in the ML term,
letrec f(x) = t1 in t2, all occurrences of f in t1 are monomorphic. The current
unit is comparable to t1, and t2 is comparable to classes in other units that
can use current unit polymorphically once it has been made part of a library.
The theorem relies on lemmas for expressions, commands, method and class
declarations. We only list the lemma for expressions and commands.

Lemma 1. Assume I(e) is monomorphically typed in I(sigs). If I(sigs), I(∆) `
I(e) : Uc, κ and sigs, ∆, V ` e : U α, K, V ′ where Uc is a type parameterized
over level constants, then ∃I ′ ⊇ I . ok(I ′, K, V ′) ∧ κ = I ′(α) ∧ Uc = I ′(U)

Lemma 2. Assume I(S) is monomorphically typed in I(sigs). If I(sigs), I(∆) `
I(S) : com κ1, κ2 and sig, ∆, V ` S (com α1, α2), K

′, V ′, then

∃I ′ ⊇ I . ok(I ′, K ′, V ′) ∧ κ1 = I ′(α1) ∧ κ2 = I ′(α2).

6 Related Work and Discussion

Related Work. Volpano and Smith [19], give a security type system and a
constraint-based inference algorithm for a simple procedural language. The type
system guarantees noninterference: a well-typed program does not leak sensi-
tive data. The inference algorithm is sound and complete with respect to the
type system. However, they do not handle object-oriented features, and their
suggestion to handle library polymorphism by duplicating code is impractical.

Myers [9, 10] gives a security type system for full Java, but leaves open the
problem of justifying the rules with a noninterference result. Myers, Zdancewic
and their students have implemented a secure compiler, Jif,7 that implements
the security typing rules. Jif handles several advanced features like constrained
method signature, exceptions, declassification, dynamic labels and polymor-
phism. Jif’s inheritance allows overriding methods to be more general than over-
ridden methods, which means that the constraints in the overridden method
must be stronger than the overriding method. However, inference in the system
is only intraprocedural. Field and method types are added either manually or
by default.

Simonet presents a version of ML with security flow labels, termed Flow-
Caml[16, 15] which supports polymorphism, exceptions, structural subtyping and
the module system. The type system is polymorphic and has been shown to en-
sure noninterference. Simonet and Pottier[12] give an algorithm to infer security
types. They also prove soundness of type inference.

There is a rich literature on type inference for object-oriented programs [20,
11, 2, 4, 21]. However, we are interested in security type inference, rather than
full type inference; we assume that a well-typed program is given. We found it

7 On the web at http://www.cs.cornell.edu/jif/

14

difficult to adapt the techniques in these works because they do not consider
modular inference in the presence of libraries.

We have a working prototype for a whole program analysis for the language
in [3]. It accepts a class declaration that is partly annotated with level constants,
generating a constraint set and checking its satisfiability. If the code is typable,
the output will be a polymorphic type for the given program in its most general
form. The extension of the prototype for the present paper is currently under
way.

Deployment model. For an application developer, the signatures in the library
specify security requirements. The developer must annotate additional methods
in the current analysis unit with new policies. Running a check on the annotated
program can then tell whether it is secure with respect to the library policies.

For library designers, the tool is helpful in that it not only enforces the speci-
fied security policies, but also gives designers a chance to revise the result signa-
tures if the signatures appear too general and seem likely to prevent subclasses
from being implemented because subclasses cannot introduce new flows.

To make the result signatures more general for a collection of classes, it
is advisable to make the analysis unit as small as possible. Classes that make
mutually recursive references need to be analyzed together. This is the only
reason to make units have more than one class.

Conclusion. The main contribution of this paper is the specification of a modular
algorithm that infers security types for a sequential, class-based, object-oriented
language. This requires the addition of security level variables to the language
and moreover, requires classes parameterized with security levels. The inference
algorithm constructs a library where each class is parameterized by the levels
in its fields. Each method of a parameterized class can be given a polymorphic,
constrained signature. This has the additional benefit of being more expressive
and flexible for the programmer. We have given soundness and completeness
theorems for the algorithm and work is in progress on a prototype. We have
not yet experimented with the scalability of our technique to real sized pro-
grams. Such an experiment and its results will be reported in the first author’s
dissertation. Our work would also benefit from a comparison with the HM(X)
constraint-based type inference framework [17]. Our suspicion, however, is that
to prove soundness and completeness, there might be substantial overhead in
the translation of our security types to the HM(X) framework.

References

1. Martin Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, September 1999.

2. Ole Agesen. The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism. In European Conference on Object Oriented Program-
ming (ECOOP), pages 2–26, 1995.

15

3. Anindya Banerjee and David A. Naumann. Secure information flow and pointer
confinement in a Java-like language. In IEEE Computer Security Foundations
Workshop (CSFW), pages 253–270. IEEE Computer Society Press, 2002.

4. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making
the future safe for the past: Adding genericity to the Java programming language.
In Craig Chambers, editor, ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), pages 183–200, Vancouver, BC,
1998.

5. Dorothy Denning and Peter Denning. Certification of programs for secure infor-
mation flow. Communications of the ACM, 20(7):504–513, 1977.

6. J. Goguen and J. Meseguer. Security policies and security models. In Proceedings
of the 1982 IEEE Symposium on Security and Privacy, pages 11–20, 1982.

7. Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems, 15(2):253–289, April 1993.

8. Alan Mycroft. Polymorphic type schemes and recursive definitions. In Sixth Inter-
national Symposium on Programming, number 166 in Lecture Notes in Computer
Science. Springer-Verlag, 1984.

9. Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
ACM Symposium on Principles of Programming Languages (POPL), pages 228–
241, 1999.

10. Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. PhD
thesis, Laboratory of Computer Science, MIT, 1999.

11. Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In
ACM Symposium on Object Oriented Programming: Systems, Languages, and Ap-
plications (OOPSLA). ACM Press, 1991.

12. François Pottier and Vincent Simonet. Information flow inference for ML. In
ACM Symposium on Principles of Programming Languages (POPL), pages 319–
330, 2002.

13. Jakob Rehof and Fritz Henglein. The complexity of subtype entailment for simple
types. In Proceedings LICS ’97, Twelfth Annual IEEE Symposium on Logic in
Computer Science, Warsaw, Poland, June 1997.

14. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1):5–19, January 2003.

15. Vincent Simonet. Flow Caml in a nutshell. In Graham Hutton, editor, Proceedings
of the first APPSEM-II workshop, pages 152–165, March 2003.

16. Vincent Simonet. The Flow Caml System: documentation and user’s manual.
Technical Report 0282, Institut National de Recherche en Informatique et en Au-
tomatique (INRIA), July 2003.

17. Christian Skalka and François Pottier. Syntactic type soundness for HM(X). In
Proceedings of the Workshop on Types in Programming (TIP’02), volume 75 of
Electronic Notes in Theoretical Computer Science, July 2002.

18. Qi Sun, Anindya Banerjee, and David A. Naumann. Constraint-based security
flow inferencer for a Java-like language. Technical Report KSU CIS TR-2004-2,
Kansas State University, 2004. In preparation.

19. Dennis Volpano and Geoffrey Smith. A type-based approach to program secu-
rity. In Proceedings of TAPSOFT’97, number 1214 in Lecture Notes in Computer
Science, pages 607–621. Springer-Verlag, 1997.

20. Mitchell Wand. Complete type inference for simple objects. In Proc. 2nd IEEE
Symposium on Logic in Computer Science, pages 37–44, 1987.

21. Taejun Wang and Scott Smith. Precise constraint-based type inference for java.
In European Conference on Object Oriented Programming (ECOOP), 2001.

16

