
A New Foundation For Control-Dependence and Slicing for

Modern Program Structures∗

Technical Report #8

Venkatesh Prasad Ranganath, Torben Amtoft,

Anindya Banerjee, John Hatcliff

Department of Computing and Information Sciences,

Kansas State University †

Matthew B. Dwyer

Department of Computer Science and Engineering,

University of Nebraska ‡

October 29, 2004

Abstract

The notion of control dependence underlies many program analysis and transformation
techniques used in numerous applications. Despite wide application, existing definitions and
approaches to calculating control dependence are difficult to apply seamlessly to modern pro-
gram structures. Such programs structures make substantial use of exception processing and
increasingly support reactive systems designed to run indefinitely.

This paper revisits foundational issues surrounding control dependence and develops defini-
tions and algorithms for computing control dependence that can be directly applied to modern
program structures. In the context of slicing reactive systems, the paper proposes a notion of
slicing correctness based on weak bisimulation and proves that the definition of control depen-
dence generates slices that conform to this notion of correctness. Finally, a variety of properties
show that the new definitions conservatively extend classic definitions. These new definitions
and algorithms for control dependence form the basis of a publicly available program slicer that
has been implemented for full Java.

1 Introduction

The notion of control-dependence underlies many program analysis and transformation techniques
used in numerous applications including program slicing applied for program understanding [18],
debugging [7], and optimizations, partial evaluation [2], compiler optimizations [6] such as global
scheduling, loop fusion, code motion etc. Intuitively, a program statement n1 is control-dependent
on a statement n2, if n2 (typically, a conditional statement) controls whether or not n1 will be
executed or bypassed during an execution of the program.

While existing definitions and approaches to calculating control dependence and slicing are widely
applied and have been used in the current form for well over 20 years, there are several aspects of

∗This work was supported in part by the U.S. Army Research Office (DAAD190110564), by DARPA/IXO’s PCES
program (AFRL Contract F33615-00-C-3044), by NSF (CCR-0306607) by Lockheed Martin, and by Intel Corporation.

†Manhattan KS, 66506, USA. {rvprasad,tamtoft,ab,hatcliff}@cis.ksu.edu
‡Lincoln NE, 68588-0115, USA. dwyer@cse.unl.edu

1

these definitions that prevent them from being applied smoothly to modern program structures
which rely significantly on exception processing and increasingly support reactive systems which are
designed to run indefinitely.

(I.) Classic definitions of control dependence are stated in terms of program control-flow graphs
(CFGs) in which the CFG has a unique end node – they do not apply directly to program CFGs
with (a) multiple end nodes or with (b) no end node. Restriction (a) means that existing definitions
cannot be applied directly to programs/methods with multiple exit points – a restriction that would
be violated by any method that raises exceptions or includes multiple returns. Restriction (b)
means that existing definitions cannot be applied directly to reactive programs or system models
with control loops that are designed to run indefinitely.

Restriction (a) is usually addressed by performing a pre-processing step that transforms a CFG
with multiple end nodes into a CFG with a single end node by adding a new designated end node
to the CFG and inserting arcs from all original exit states to the new end node [8, 18] Restriction
(b) can also be addressed in a similar fashion by, e.g., selecting a single node within the CFG to
represent the end node. This case is more problematic than the pre-processing for Restriction (a)
because the criteria for selecting end nodes that lead to the desired control dependence relation
between program nodes is often unclear. This is particularly true in threads such as event-handlers
which have no explicit shut-down methods, but are “shut down” by killing the thread (thus, there
is nothing in the thread’s control flow to indicate an exit point).

(II.) Existing definitions of slicing correctness either apply to programs with terminating ex-
ecution traces, or they often fail to state whether or not the slicing transformation preserves the
termination behavior of the program being sliced. Thus these definitions cannot be applied to reac-
tive programs that are designed to execute indefinitely. Such programs are used in numerous modern
applications such as event-processing modules in GUI systems, web services, distributed real time
systems with autonomous components, e.g. data sensors, etc.

Despite the difficulties, it appears that researchers and practitioners do continue to apply slic-
ing transformations to programs that fail to satisfy the restrictions above. However, in reality the
pre-processing transformations related to issue (I) introduce extra overhead into the entire trans-
formation pipeline, clutter up program transformation and visualization facilities, necessitate the
use/maintenance of mappings from the transformed CFGs back to the original CFGs, and introduce
extraneous structure with ad-hoc justifications that all down-stream tools/transformations must in-
terpret and build on in a consistent manner. Moreover, regarding issue (II) it will be infeasible to
continue to ignore issues of termination as slicing is increasingly applied in high-assurance applica-
tions such as reducing models for verification [9] and for reasoning about security issues where it is
crucial that liveness/non-termination properties be preserved.

Working on a larger project on slicing concurrent Java programs, we have found it necessary
to revisit basic issues surrounding control dependence and have sought to develop definitions that
can be directly applied to modern program structures such as those found in reactive systems. In
this paper, we propose and justify the usefulness and correctness of simple definitions of control
dependence that overcome the problematic aspects of the classic definitions described above. The
specific contributions of this paper are as follows.

• We propose new definitions of control dependence that are simple to state and easy to calculate
and that work directly on control-flow graphs that may have no end nodes or non-unique end
nodes, thus avoiding troublesome pre-processing CFG transformations (Section 4).

• We prove that these definitions applied to reducible CFGs yield slices that are correct according
to generalized notions of slicing correctness based on a form of weak-bisimulation that is
appropriate for programs with infinite execution traces (Section 5.1).

• We clarify the relationship between our new definitions and classic definitions by showing that
our new definitions represent a form of “conservative extension” of classic definitions: when our
new definitions are applied to CFGs that conform to the restriction of a single end node, our
definitions correspond to classic definitions – they do not introduce any additional dependences
nor do they omit any dependences (Section 4.2).

2

• We discuss the intuitions behind algorithms for computing control dependence (according
to the new definitions) to justify that control dependence is computable in polynomial time
(Section 6).

Expanded discussions, definitions and full proofs appear in the companion technical report [19] which
can be found on the project web site [21].

The proposed notions of control dependence described in this paper have been implemented in
Indus-Kaveri [13, 21] – our publicly available open-source Eclipse-based Java slicer that works on full
Java 1.4 and has been applied to code bases of up to 10,000 lines of Java application code (< 80K
bytecodes) excluding library code. Besides its application as a stand-alone program visualization,
debugging, and code transformation tool, our slicer is being used in the next generation of our
Bandera tool set for model-checking concurrent Java systems.

2 Basic Definitions

2.1 Control Flow Graphs

When dealing with foundational issues of control dependence, researchers often cast their work in
terms of a simple imperative language phrased in terms of control flow graphs. We follow that
practice here and base our presentation on a definition of control-flow graph adapted from Ball and
Horwitz [3].

Definition 1 (Control Flow Graphs)
A control-flow graph G = (N,E,n0) is a labeled directed graph in which

• N is a set of nodes that represent commands in program,

• the set of N is partitioned into two subsets NS, NP, where NS are statement nodes with each
ns ∈ NS having at most one successor, where NP are predicate nodes with each np ∈ NP

having two successors, and NE ⊆ NS contains all nodes of NS that have no successors, i.e., NE

contains all end nodes of G,

• E is a set of labeled edges that represent the control flow between graph nodes where each
np ∈ NP has two outgoing edges labeled T and F respectively, and each ns ∈ (NS − NE) has
an outgoing edge labeled A (representing Always taken),

• the start node n0 has no incoming edges and all nodes in N are reachable from n0. 2

We will display the labels on CFG edges only when necessary for the current exposition.
As stated earlier, existing presentations of slicing require that each CFG G satisfies the unique

end node property : there is exactly one element in NE = {ne} and ne is reachable from all other
nodes of G. The definition above does not require this property of CFGs, but we will sometimes
consider CFGs with the unique end node property in our comparisons to previous work.

To relate a CFG with the program that it represents, we use the function code to map a CFG node
n to the code for the program statement that corresponds to that node. Specifically, for ns ∈ NS,
code(ns) yields the code for an assignment statement, and for np ∈ NP, code(np) the code for the test
of a conditional statement (the labels on the edges for np allow one to determine the nodes for the
true and false branches of the conditional). The function def maps each node to the set of variables
defined (i.e., assigned to) at that node (always a singleton or empty set), and ref maps each node
to the set of variables referenced at that node.

A CFG path π from ni to nk is a sequence of nodes ni,ni+1, . . . ,nk such for every consecutive
pair of nodes (nj ,nj+1) in the path there is an edge from nj to nj+1. A path between nodes ni and
nk can also be denoted as [ni..nk]. When the meaning is clear from the context, we will use π to
denote the set of nodes contained in π and we write n ∈ π when n occurs in the sequence π. Path π

3

is non-trivial if it contains at least two nodes. A path is maximal if it is infinite or if it terminates
in an end node.

The following definitions describe relationships between graph nodes and the distinguished start
and end nodes [17]. Node n dominates node m in G (written dom(n,m)) if every path from the
start node s to m passes through n (note that this makes the dominates relation reflexive). Node n
post-dominates node m in G (written post-dom(n,m)) if every path from node m to the end node e
passes through n. Node n strictly post-dominates node m in G if post-dom(n,m) and n 6= m. Node
n is the immediate post-dominator of node m if n 6= m and n is the first post-dominator on every
path from m to the end node e. Node n strongly post-dominates node m in G if n post-dominates
m and there is an integer k ≥ 1 such that every path from node m of length ≥ k passes through n
[18]. The difference between strong post-domination and the simple definition of post-domination
above is that even though node n occurs on every path from m to e (and thus n post-dominates m),
it may be the case that there is a loop in the CFG between m and n that admits an infinite path
beginning at m that never encounters n. Strong post-domination rules out the possibility of such
loops between m and n – thus, it is sensitive to the possibility of non-termination along paths from
m to n. Note that domination relations are well-defined but post-domination relationships are not
well-defined for graphs that do not have the unique end node property.

A CFG G is reducible if E can be partitioned into disjoint sets Ef (the forward edge set) and Eb

(the back edge set) such that (N,Ef) forms a DAG in which each node can be reached from the entry
node n0 and for all edges e ∈ Eb, the target of e dominates the source of e. All “well-structured” pro-
grams give rise to reducible control-flow graphs, including Java programs. Our definitions and most
of our correctness results apply to irreducible CFGs as well, but our bi-simulation-based correctness
of slicing result only holds for reducible graphs since bi-simulation requires ordering properties that
can only be guaranteed on reducible graphs.

2.2 Program Execution

The execution semantics of program CFGs is phrased in terms of transitions on program states
(n, σ) where n is a CFG node and σ is a store mapping the corresponding program’s variables
to values. A series of transitions gives an execution trace through p’s statement-level control flow
graph. It is important to note that when execution is in state (ni, σi), the code at node ni has not
yet been executed. Intuitively, the code at ni is executed on the transition from (ni, σi) to successor
state (ni+1, σi+1). Execution begins at the state node n0, and the execution of each node possibly
updates the store and transfers control to an appropriate successor node. Execution of a node
ne ∈ NE produces a final state (halt, σ) where the control point is indicated by a special label halt

– this indicates a normal termination of program execution. The presentation of slicing in the next
section involves arbitrary finite and infinite non-empty sequences of states written Π = s1 , s2,
For a set of variables V , we write σ1 =V σ2 when for all x ∈ V , σ1(x) = σ2(x).

2.3 Notions of Dependence and Slicing

A program slice consists of the parts of a program p that (potentially) affect the variable values
that are referenced at some program points of interest [22]. Traditionally, the program “points of
interest” are called the slicing criterion. A slicing criterion C for a program p is a non-empty set of
nodes {n1, . . . , nk} where each ni is a node in p’s CFG.

The definitions below recall the two basic notions of dependence that appear in slicing of sequen-
tial programs: data dependence and control dependence [22].

Data dependence captures the notion that a variable reference is dependent upon any variable
definition that “reaches” the reference.

Definition 2 (data dependence) Node n is data-dependent on m (written m
dd
→ n – the arrow

pointing in the direction of data flow) if there is a variable v such that

4

1. there exists a non-trivial path π in p’s CFG from m to n such that for every node m′ ∈
π − {m,n}, v /∈ def(m′), and

2. v ∈ def(m) ∩ ref(n). 2

Control dependence information identifies the conditionals that may affect execution of a node
in the slice. Intuitively, node n is control-dependent on a predicate node m if m directly determines
whether n is executed or “bypassed”.

Definition 3 (control dependence) Node n is control-dependent on m in program p (written

m
cd
→ n) if

1. there exists a non-trivial path π from m to n in p’s CFG such that every node m′ ∈ π−{m,n}
is post-dominated by n, and

2. m is not strictly post-dominated by n. 2

For a node n to be control-dependent on predicate m, there must be two paths that connect m with
the unique end node e such that one contains n and the other does not. There are several slightly
different notions of control-dependence appearing in the literature, and we will consider several of
these variants and relations between them in the rest of the paper. At present, we simply note that
the above definition is standard and widely used (e.g., see [17]).

We write m
d
→ n when either m

dd
→ n or m

cd
→ n. Constructing a program slice proceeds by

finding the set of CFG nodes SC (called the slice set) from which the nodes in C are reachable via
d
→.

Definition 4 (slice set) Let C be a slicing criterion for program p. Then the slice set SC of p with
respect to C is defined as follows:

SC = {m | ∃n . n ∈ C and m
d

→∗ n}.

2The notion of slicing described above is referred to as “backward static slicing” because the
algorithm starts at the criterion nodes and looks backward through the program’s control-flow graph
to find other program statements that influence the execution at the criterion nodes. In this paper
we consider only backward slices, but our definitions of control dependence can also be applied we
computing forward slices.

In many cases in the slicing literature, the desired correspondence between the source program
and the slice is not formalized because the emphasis is often on applications rather than foundations,
and this also leads to subtle differences between presentations. When a notion of “correct slice” is
given, it is often stated using the notion of projection [23]. Informally, given an arbitrary trace Π of
p and an analogous trace Πs of ps, ps is a correct slice of p if projecting out the nodes in criterion
C (and the variables referenced at those nodes) for both Π and Πs yields identical state sequences.
We will consider slicing correctness requirements in greater detail in Section 5.1.

3 Assessment of Existing Definitions

3.1 Variations in Existing Control Dependence Definitions

Although the definition of control dependence that we stated in Section 2 is widely used, there are
a number of (sometimes subtle) variations appearing in the literature. One dimension of variation
is whether the particular definition captures only direct control dependence or also admits indirect
control dependences. For example, using the definition of control dependence in Definition 3, for

Figure 1 (a), we can conclude that a
cd
→ f and f

cd
→ g however a

cd
→ g does not hold because g does

not post-dominate f. The fact that a and g are indirectly related (a does play a role in determining
if g is executed or bypassed) is not captured in the definition of control dependence itself but in

5

the transitive closure used in the slice set construction (Definition 4). However, some definitions of
control dependence [18] incorporate this notion of transitivity directly into the definition itself as we
will illustrate later.

Another dimension of variation is whether the particular definition is sensitive to non-termination
or not. Consider Figure 1 (a) where node c represents a post-test that controls a loop – which may

be infinite (one cannot tell by simply looking at the CFG). According to Definition 3, a
cd
→ d

but c
cd
→ d does not hold (because d post-dominates c) even though c may determine whether d

executes or never gets to execute due to an infinite loop that postpones d forever. Thus, Definition 3
is non-termination insensitive.

We now further illustrate these dimensions by recalling definitions of strong and weak control
dependence given by Podgurski and Clarke [18] and used in a number of works including the study
of control dependence by Bilardi and Pingali [4].

Definition 5 (Podgurski-Clarke Control Dependence)

• n2 is strongly control dependent on n1 (n1
PC−scd
→ n2) if there is a path from n1 to n2 that does

not contain the immediate post dominator of n1.

• n2 is weakly control dependent on n1 (n1
PC−wcd

→ n2) if n2 strongly post dominates n′

1, a successor
of n1, but does not strongly post dominate n′′

1 , another successor of n1. 2

The notion of strong control dependence above roughly corresponds to Definition 3, but it cap-
tures indirect control dependence whereas Definition 3 captures only direct control dependence. For

example, in Figure 1, in contrast to Definition 3 we have a
PC−scd
→ g because there is a path afg which

does not contain the immediate post-dominator of a. However, one can show that when used in the
context of Definition 4 (which computes the transitive closure of dependences), the two definitions
give rise to the same slices.

The notion of weak control dependence above subsumes the notion of strong control dependence

(n1
PC−scd

→ n2 implies n1

PC−wcd

→∗ n2) and it captures weaker dependences between nodes induced by

non-termination, that is, it is non-termination sensitive. Note that for Figure 1 (a), c
PC−wcd

→ d
because d does not strongly post-dominate b: the presence of the loop controlled by c guarantees
that there does not exist a k such that every path from node b of length ≥ k passes through d.

In assessing the above variants of control dependence in the context of program slicing, it is
important to note that slicing based on Definition 3 or the strong control dependence above can
transform a non-terminating program into a terminating one (i.e., non-termination is not preserved
in the slice). In Figure 1 (a), assume that the loop controlled by c is an infinite loop. Using the
slice criterion C = {d} would include a but not b and c (we assume no data dependence between
d and b or c) if the slicing is based on strong control dependence. Thus, in the sliced program, one
would be able to observe an execution of d, but such an observation is not possible in the original
program because execution diverges before d is reached. In contrast, the difference between direct
and indirect statements of control dependence seem to largely technical stylistic decision in how the
definitions are stated.

Very few works consider the non-termination sensitive notion of weak control dependence above.
We conjecture that there are at least two reasons for this. First, although it bears the qualifier
“weak”, weak control dependence is actually a stronger relation (relating more nodes) and will
thus include more nodes in the slice. Second, many applications of slicing focus on debugging
and program visualization and understanding, and in these applications having slices that preserve
non-termination is less important than having smaller slices. However, slicing is increasingly used
in security applications and as a model-reduction technique for software model checking. In these
applications, it is quite important to consider variants of control dependence that preserve non-
termination properties since failure to do so could allow inferences to be made that compromise
security policies, for instance invalidate checks of liveness properties [9].

6

(a)

a

e

b

c

d

f

g

h

(c)

a

e

b

c

f

g

h

j

d

i

e

a

c f

d

b

a

b

c

d

e

(b)

AugmentedUnaugmented

Figure 1: (a) is a simple CFG. (b) illustrates how a CFG that does not have a unique exit node
reachable from all nodes can be augmented to have unique exit node reachable from all nodes. (c)
is a CFG with multiple control sinks of different sorts.

3.2 Unique End node restriction on CFG

All definitions of control dependences that we are aware of require that CFGs satisfy the unique end
node requirement – but many software systems fail to satisfy this property. Existing works simply
require that CFGs have this property, or they suggest that CFGs can be augmented to achieve this
property, e.g., using the following steps: (1) insert a new node e into the CFG, (2) add an edge
from each exit node (other than e) to e, (3) pick an arbitrary node n in each non-terminating loop
and add an edge from n to e. In our experience, such augmentations complicate the system being
analyzed in several ways. If the augmentation is non-destructive, a new CFG is generated which
costs time and memory. If the augmentation is destructive, this may clash with the requirements
of other clients of the CFG, thus necessitating the reversal of the augmentation before subsequent
analyses can proceed. In addition, having multiple end nodes (e.g., an exceptional exit and a regular
return) flow into a single new end node causes semantically different information to flow together.

Many systems have threads where the main control loop has no exit – the loop is “exited”
by simply killing the thread. For example, in Xt library, most applications create widgets, register
callbacks, and call XtAppMainLoop() to enter an infinite loop that manages the dispatching of events
to the widgets in the application. In PalmOS, applications are designed such that they start upon
receiving a start code, execute a loop, and terminate upon receiving a stop code. However, the
application may choose to ignore the stop code once it starts, and hence, not terminate except
when it is explicitly killed. In such cases, a node in the loop must be picked as the loop exit
node for the purpose of augmenting the CFG. However, this can disrupt the control dependence
calculations. In Figure 1 (b), we would intuitively expect e,b,c, and d to be control dependent on a

in the unaugmented CFG. However, a
PC−wcd

→ {e, b, c} and c
PC−wcd

→ {b, c, d, f} in the augmented CFG.

It is trivial to prune dependences involving f. However, there are new dependences c
PC−wcd

→ {b, c, d}
which did not exist in the unaugmented CFG. Although a suggestion to delete any dependence on c
may work for the given CFG, it fails if there exists a node g that is a successor of c and a predecessor

of d. Also, a
PC−wcd

→ d exists in the unaugmented CFG but not in the augmented CFG, and it is not
obvious how to recover this information.

We address these issues head-on by considering alternate definitions of control-dependence that
do not impose the unique end-node description.

4 New Dependence Definitions

In previous definitions, a control dependence relationship where nj is dependent on ni is specified
by considering paths from ni and nj to a unique CFG end node – essentially ni and the end node
delimit the path segments that are considered. Since we aim for definitions that apply when CFGs
do not have an end node or have more than one end node, we aim to instead specify that nj is control

7

dependent on ni by focusing on paths between ni and nj . Specifically, we focus on path segments that
are delimited by ni at both ends – intuitively corresponding to the situation in a reactive program
where instead of reaching an end node, a program’s behavior begins to repeat itself by returning
again to ni. At a high level, the intuition remains the same as in, e.g., Definition 3 – executing
one branch of ni always leads to nj , whereas executing another branch of ni can cause nj to be
bypassed. The additional constraints that are added (e.g., nj always occurs before any occurrence of
ni) limits the region in which nj is seen or bypassed to segments leading up to the next occurrence of
ni – ensuring that ni is indeed controlling nj . The definition below considers maximal paths (which
includes infinite paths) and thus is sensitive to non-termination.

Definition 6 (ni
ntscd
→ nj) In a CFG, nj is (directly) non-termination sensitive control de-

pendent on node ni if ni has at least two successors, nk and nl,

(1) for all maximal paths from nk, nj always occurs and it occurs before any occurrence of ni.
(2) there exists a maximal path from nl on which either nj does not occur, or nj is strictly preceded

by ni. 2

We supplement a traditional presentation of dependence definitions with definitions given as formulae
in computation tree logic (CTL) [5]. CTL is a logic for describing the structure of sets of paths in a
graph, making it a natural language for expressing control dependences. Informally, CTL includes
two path quantifiers, E and A, which define that a path from a given node with a given structure
exists or that all paths from that node have the given structure. The structure of a path is defined
using one of five modal operators (we refer to a node satisfying φ as a φ-node): Xφ states that
the successor node is a φ-node, Fφ states the existence of a φ-node, Gφ states that a path consists
entirely of φ-nodes, φUψ states the existence of a ψ-node and that the path leading up to that node
consists of φ-nodes, finally, the φWψ operator is a variation on U that relaxes the requirement that
a ψ-node exist. In a CTL formula path quantifiers and modal operators occur in pairs, e.g., AFφ
says on all paths from a node a φ node occurs. A formal definition of CTL can be found in [5].

The following CTL formula captures the definition of control dependence above.

ni
ntscd
→ nj = (G,ni) |= EX(A[¬niUnj]) ∧ EX(E[¬njW(¬nj ∧ ni)]).

Here, (G,ni) |= expresses the fact that the CTL formula is checked against the graph G at node ni.
The two conjuncts are essentially a direct transliteration of the natural language above.

We have formulated the definition above to apply to execution traces instead of CFG paths. In
this setting one needs to bound relevant segments by ni as discussed above. However, when working
on CFG paths, the definition conditions can actually be simplified to read as follows: (1) for all
maximal paths from nk, nj always occurs, and (2) there exists a maximal path from nl on which nj

does not occur. The corresponding CTL formula is

ni
ntscd
→ nj = (G,ni) |= EX(AF(nj) ∧ EX(EG(¬nj)).

See [19] for the proof that these two definitions are equivalent on CFGs.

To see that this definition is non-termination sensitive, note that c
ntscd
→ d in Figure 1 (a) since

there exists a maximal path (an infinite loop between b and c) where d never occurs. Moreover, the

definition corresponds to our intuition in Section 3.2 in that, in Figure 1 (b unaugmented) a
ntscd
→ e

because there is an infinite loop through b, c, d and a
ntscd
→ {b, c, d} because there is maximal path

ending in e that does not contain b, c, or d. In Figure 1 (c), note that d
ntscd
→ i because there is an

infinite path from j (cycle on j,d) on which i does not occur.
We now turn to constructing a non-termination insensitive version of control dependence. The

definition above considered all paths leading out of a conditional. Now, we need to limit the reasoning
to finite paths that reach a terminal region of the graph. To handle this in the context of CFGs that
do not have the unique end-node property, we generalize the concept of end node to control sink –
a set of nodes such that each node in the set is reachable from every other node in the set and there

8

is no path leading out of the set. More precisely, a control sink κ is a set of CFG nodes that form a
strongly connected component such that for each n ∈ κ each successor of n is also in κ. It is trivial
to see that each end node forms a control sink and each loop without any exit edges in the graph
forms a control sink. For example, {e} and {b, c, d} are control sinks in Figure 1 (b unaugmented),
and {e} and {d, i, j} are control sinks in Figure 1 (c). c-sink denotes a set-valued function on nodes
such that c-sink(n) = S where if n belongs to a control sink then S is set of nodes representing
that sink, otherwise S = ∅.

For a control flow graph, its strongly connected components form a DAG, which the control sinks
being the leaves. This shows:

Lemma 1 All finite paths can be extended into sink-bounded paths. 2

Existing definitions of non-termination insensitive control dependence rely on reasoning about
paths from the conditional to the end node. We generalize this to reason about paths from a
conditional to control sinks. The set of sink-bounded paths from nk (denoted SinkPaths(nk)) contains
all π such that π is a path from nk to a node ns such that ns belongs to a control sink.

Definition 7 (ni
nticd
→ nj) In a CFG, nj is (directly) non-termination insensitively control

dependent on ni if ni has at least 2 successors, nk and nl,

(1) for all paths π ∈ SinkPaths(nk), nj ∈ π.
(2) there exists a path π ∈ SinkPaths(nl) such that nj 6∈ π and if π leads to a control sink κ,

nj 6∈ κ. 2

This definition is expressed in CTL as

ni
nticd
→ nj = (G,ni) |= EX(ÂF(nj)) ∧ EX(Ê[¬njU(c-sink? ∧ nj 6∈ c-sink)])

where Â and Ê represent quantification over sink-bounded paths only. c-sink? evaluates to true only
if the current node belongs to a control sink and c-sink returns the sink set associated with the
current node.

To see that this definition is non-termination insensitive, note that c 6
nticd
→ d in Figure 1 (a) since

there does exist a path from b to a control sink ({e} is the only control sink) that does not contain

d. Again, in Figure 1 (b unaugmented) a
nticd
→ e because there is a path from b to the control sink

{b, c, d} and neither the path nor the sink contain e, and a
nticd
→ {b, c, d} because there is a path

ending in control sink {e} that does not contain b, c, or d. It is interesting to note that in Figure 1 (c),

our definition concludes that d 6
nticd
→ i because although there is a trivial path from d to the control

sink {d, i, j}, i belongs to that control sink. This is because our definition inherently captures a form
of fairness – since the backedge from j guarantees that d will be executed an infinite number of times,
the only way to avoid executing i would be to branch to d on every cycle. The consequence of this
property is that even though there may be control structures inside of a control sink, they will not
give rise to any control dependences. In applications where one desires to detect such dependences,
one would apply the definition to control sinks in isolation with back edges removed.

In languages like Java, exception-based control flow paths give rise to control flow graphs with

shapes similar to that in Figure 2 (a). In this CFG, b
cd
→ c, b

cd
→ d, and c

cd
→ d. In case of b

cd
→ d,

it is possible for the control to reach d even if the control flows along b → c. Hence, b does not

decisively decide if control can by pass d. However, in case of c
cd
→ d, c does decisively decide if

control can by pass d. The decisiveness stems from the fact that there is a choice at the control
point such that it prevents the control from reaching the given program point before reaching the
control point. Hence, the relation can be defined as follows.

Definition 8 (ni
dcd
→ nj) In a CFG, nj is (directly) decisively control dependent on node ni

if ni has at least two successors, nk and nl,

9

(1) for all maximal paths from nk, nj always occurs and nj strictly precedes ni.
(2) for all maximal paths from nl, nj does not occur, or nj is strictly preceded by ni. 2

Observe that the above definition implies Definition 6.
This stronger form of control dependence is useful to answer the questions - “Which is the control

point beyond which the control cannot reach the given program point?” This information is useful
when trying to understand procedures with multiple exit points that are embedded in nested control
structure.

4.1 Examples

Consider Figure 1 (c). According to Definition 6, a
ntscd
→ b as the first execution of b depends on the

choice made at a. Likewise, a
ntscd
→ c and a

ntscd
→ f . Similarly, f

ntscd
→ g. Independent of the choice made

at f, the control will always reach h. Hence, f 6
ntscd
→ h but a

ntscd
→ h. Similarly, a

ntscd
→ e. b can be

executed n+1 times and value of n depends on the choice at c. Hence, c
ntscd
→ b. If b → c → b is an

infinite loop, control will never reach d. The length of the loop is dependent on the choice made at c.

Hence, c
ntscd
→ d. In the loop starting at d, it is possible that the control will by pass i in an iteration

while it reaches i in a subsequent iteration depending on the choice made at d. Hence, d
ntscd
→ i.

(a)

e

d c

b

a

(b)

b

a

c d

b

a

e

c

e’

c

e"

d

b

a

<=>

(c)

Figure 2: More control flow graphs.

In a non-termination insensitive setting, loops are assumed to be terminal if structurally valid
(i.e., if the loop has an exit node). Hence, in Figure 1 (c), the loop b → c → b is terminal as it has
an exit edge c → d. This implies that the loop cannot indefinitely delay the control from reaching

d. Hence, c 6
nticd
→ d. As for other dependences steming in a non-termination sensitive setting for the

same graph, most of them hold except d
ntscd
→ i. To understand why, observe that the loop starting

at d can be split into 2 loops as done in Figure 2 (c). Upon loop splitting, each loop is terminal
(but both loops together are not terminal). Hence, there can be no control dependence in the loop
starting at d (or in a control sink) in a non-termination insensitive setting.

4.2 Properties of the Dependence Relations

We begin by showing that the new definitions of control dependence conservatively extend classic
definitions: when we consider our definitions in the original setting with CFGs with unique end nodes,
the definitions coincide with the classic definitions. In addition, direct non-termination insensitive
control dependence (Definition 7) implies the transitive closure of direct non-termination sensitive
control dependence.

Theorem 1 (Coincidence Properties) For all CFGs with the unique end node property, and for
all nodes ni, nj ∈ N ,

(1) ni 6= nj and ni
cd
→ nj implies ni

nticd
→ nj

10

(2) ni
nticd
→ nj implies ni

cd
→ nj

(3) ni
PC−wcd

→ nj iff ni
ntscd
→ nj

(4) For all CFGs, for all nodes ni, nj ∈ N : ni
nticd
→ nj implies ni

ntscd
→

∗

nj 2

First, we rephrase condition (2) of Definition 3 by expanding the definition of strictly postdominates:

• Either ni = nj , or there exists a non-trivial path π from ni to the end node, e, such that nj

does not occur on this path.

Clearly, from Definition 3, ni
cd
→ ni. Next, we have the following fact.

Fact 1 ni
cd
→ nj and ni 6= nj implies ni has at least two successors.

To see this fact, suppose, towards a contradiction, that ni
cd
→ nj and ni 6= nj and ni has a single

successor nk. Consider path π from ni to nj . By condition (1) of Definition 3, any path from nk to
the end node must pass through nj . Thus any path from ni to the end node must pass through nj .
This contradicts condition (2) of Definition 3, as then ni is strictly postdominated by nj .

Thus we can restate the two conditions of Definition 3 as follows:

cd(i) ni has at least two successors nk and nl.

cd(ii) there exists a path π = ni nk . . . nj such that every node m′ ∈ π−{ni, nj} is post-dominated
by nj , and

cd(iii) there exists a path π = ni nl . . . e such that nj does not occur on this path.

We now begin the proof of Theorem 1.

Proof Proof of (1) Assume ni
cd
→ nj and ni 6= nj . Then ni has at least two successors, nk and nl.

Let π be a sink-bounded path from nk. The unique end node is the only control sink in the CFG.
We have two cases: (a) π is finite and ends with the end node: then as nk is postdominated by nj ,
nj always occurs on π. (b) π is infinite: then π is not sink-bounded. Thus this case does not occur.

Let π′ be a path from nl to the end node such that nj does not occur on this path. Clearly, π′

is sink-bounded. And, nj 6∈ π′.

Hence ni
nticd
→ nj .

Proof of (2). We have ni
cd
→ nj when ni = nj . So, consider the case ni 6= nj . Assume ni

nticd
→ nj .

Assume that on all sink-bounded paths from nk, nj always occurs. Towards a contradiction,
assume that for any path π from ni to nj , there exists a node m′ ∈ π − {ni, nj} such that there
exists a path from m′ to the end node, e, not containing nj . Consider the path ni nk . . .m

′ . . . e.
This path is a sink-bounded path from nk not containing nj . Contradiction.

Assume there exists a sink-bounded path π from nl such that nj 6∈ π and if π leads to a control
sink κ, nj 6∈ κ. Towards a contradiction, assume that for any path from ni to the end node, e,
nj occurs on this path. Since nl is a successor of ni, every path from nl to e is sink-bounded and
contains nj . Thus there does not exist a sink-bounded path from nl such that nj 6∈ π. Contradiction.

Hence ni
nticd
→ nj .

Proof of (3). For readability, we restate Podgurski-Clarke’s definition of weak control dependence
from Definition 5 and directly non-termination sensitive control dependence from Definition 6. We

have ni
PC−wcd

→ nj iff:

pcwcd(i) ni has at least two successors, nk and nl.

pcwcd(ii) nj strongly postdominates nk.

pcwcd(iii) nj does not strongly postdominate nl.

11

Next, ni
ntscd
→ nj iff:

ntscd(i) ni has at least two successors, nk and nl.

ntscd(ii) For all maximal paths from nk, nj always occurs and it occurs before any occurrence of
ni.

ntscd(iii) There exists a maximal path from nl on which either nj does not occur, or nj is strictly
preceded by ni.

We will prove the equivalence by showing that both Definition 6 and Podgurski-Clarke’s weak
control dependence are equivalent to the following simplified definition:

Definition 9 In a CFG, nj is control dependent on ni iff

(a) ni has two successors nk and nl.

(b) On all maximal paths from nk, nj occurs

(c) There exists a maximal path from nl on which nj does not occur.

First, let us argue that non-termination sensitive control dependence (Definition 6) and the
simplified definition (Definition 9) are equivalent.

Since clearly ntscd(ii) implies (b) and (c) implies ntscd(iii), we are left with showing that:
(b) implies ntscd(ii): Let π be a maximal path from nk. By (b), nj occurs there. Now assume,
towards a contradiction, that in π, ni occurs strictly before any occurrence of nj . Since there is an
edge from ni to nk, this means that the graph has a cycle containing nk but not containing nj . But
then we can find a maximal path from nk where nj does not occur, contradicting (b).

Next, we show ntscd(iii) implies (c): Let π be a maximal path from nl on which ni occurs strictly
before any occurrence of nj . If π does not contain nj , we are done. So assume that π does contain
nj , but that ni occurs strictly before. But since there is an edge from ni to nl, this means that the
graph has a cycle containing nl but not containing nj . Then we can find a maximal path from nl

where nj does not occur, as desired.
Now we show that Podgurski-Clarke’s direct weak control dependence and the simplified defini-

tion, Definition 9, are equivalent. Then we can conclude that ni
PC−wcd

→ nj iff ni
ntscd
→ nj . There are

four steps.

1. pcwcd(ii) implies (b): Let π be a maximal path from nk. We must show that nj occurs in
π. There are two possibilities:
π is finite: The last node of π must be an end node. Since nj postdominates nk, this shows
that nj occurs in π.
π is infinite: We know that there exists k such that all paths longer than k contain nj ; in
particular, π will contain nj since π is infinite, hence longer than k.

2. (b) implies pcwcd(ii): First let us show that nj dominates nk; so let π be a path from nk to
an end node. We must show that π contains nj , but this follows from (b) since π is maximal.
Next we must find a k such that all paths from nk longer than k contain nj ; we claim that
we can choose k to be one more than the number of nodes in the CFG. For let π be a path
from nk longer than k: it contains a repetition, so if nj does not occur in π we can construct
a maximal path from nk with nj not occurring, yielding a contradiction.

3. pcwcd(iii) implies (c): Here we have two cases.
nj does not postdominate nl: Then there exists a path π from nl to an end node such that nj

does not occur in π. The claim now follows since π is maximal.
For all k, there exists a path from nl longer than k where nj does not occur : With k the
number of nodes in the CFG, we infer that there exists a path from nl containing repetitions
but not containing nj ; this shows that we can construct a maximal (infinite) path from nl on
which nj does not occur.

12

4. (c) implies pcwcd(iii): Our assumption is that there exists a maximal path π from nl with
nj not occurring in π. Now there are two cases:
π is finite, with the last node being an end node: But then nj does not postdominate nl, in
particular nj does not strongly postdominate nl.
π is infinite: But then for any k, π will be a path from nl of length k not containing nj , again
showing that nj does not strongly postdominate nl.

Proof of (4). Our assumption is that ni has successors nk, nl such that (i) nj occurs on all sink-
bounded paths from nk and (ii) there exists a sink-bounded path from nl on which nj does not
occur.

Now consider a sink-bounded path π = ni, nk, . . . , nj (there exists such a path, by Lemma 1).
We can write π = [u0, u1, . . . , um] where m ≥ 1, u0 = ni, u1 = nk, um = nj . Observe that
for all i = 1 . . .m, nj occurs on all sink-bounded paths from ui to nj (otherwise (i) would be
contradicted). So, if all sink-bounded paths from nl would contain ui, all sink-bounded paths from
nl would contain nj , contradicting (ii). Thus for all i = 1 . . .m, there exists a sink-bounded path
from nl not containing ui. Now define predicates Qp such that Qp(i) holds iff i ≤ p and all maximal

paths from ui contain up. Observe that if Qp(i) does not hold but Qp(i+ 1) holds, then ui
ntscd
→ up.

Also observe that for all i = 1 . . .m we have Qp(p) holds, but Qp(0) does not hold. Now we are
ready for the construction: We can find j1 such that Qm(j1) does not hold but Qm(j1 + 1) holds,

showing that uj1

ntscd
→ um. If j1 = 0, we are done. Otherwise, since Qj1(j1) holds but Qj1(j1 + 1)

does not hold, we can find j2 such that Qj1(j2) does not hold but Qj1(j2 + 1) holds, showing that

uj2

ntscd
→ uj1 . Now we can repeat as desired. �

For the correctness (bisimulation-based) proof in Section 5.1, we shall need a few results about
slice sets (members of which are “observable”). A crucial property is that the first observable on
any path will be encountered sooner or later on all other paths:

Lemma 2 Assume the node set Ξ is closed under termination sensitive control dependency, and
that n0 /∈ Ξ. Assume that there is a path π from n0 to n1, with n1 ∈ Ξ but for all n ∈ π with n 6= n1,
n /∈ Ξ. Then all maximal paths from n0 will contain n1. 2

Proof Assume, in order to arrive at a contradiction, that there exists a maximal path from n0 that
does not contain n1. We define a predicate Q, such that Q(n) holds iff there exists a maximal path
from n that does not contain n1. By our assumption, Q(n0) holds; clearly, Q(n1) does not hold.
Therefore, π can be written as [n0..n2n3..n1] where Q(n2) holds but Q(n3) does not hold (that is,
there is an edge from n2 to n3; note that n2 may equal n0 and that n3 may equal n1 but we know
that n1 6= n2).

We shall show that n2
ntscd
→ n1; then from n1 ∈ Ξ we from Ξ being closed under

ntscd
→ get n2 ∈ Ξ

which contradicts n1 being the only node in π which is also in Ξ.
Note that since Q(n2) holds, there exists a maximal path starting at n2 not containing n1; that

path has to have at least two elements (since n2 has an outgoing edge) and the second element
cannot be n3 (as Q(n3) does not hold). Therefore, the second element is some node n4 with n3 6= n4,
and there exists a maximal path from n4 which does not contain n1. Our final obligation is to prove
that all maximal paths from n3 contain n1, which follows since Q(n3) does not hold. �

In a similar way we can show:

Lemma 3 Assume Ξ is closed under
nticd
→ , and that n0 /∈ Ξ. Assume that there is a path π from n0

to n1, with n1 ∈ Ξ but for all n ∈ π with n 6= n1, n /∈ Ξ. Then all sink-bounded paths from n0 will
contain n1. 2

As a consequence we have the following result, giving conditions to preclude the existence of infinite
un-observable paths:

13

Lemma 4 Assume that n0 /∈ Ξ, but that there is a path π starting at n0 which contains a node in
Ξ.

• If Ξ is closed under termination insensitive control dependency, then all sink bounded paths
starting at n0 will reach Ξ.

• If Ξ is also closed under termination sensitive control dependency, then all maximal paths
starting at n0 will reach Ξ. 2

We are now ready for the main result, stating that from a given node there is a unique first ob-
servable. (For this, we need the CFG to be reducible; the irreducible graph in Fig. 2,(b) provides a
counterexample.)

Theorem 2 Assume that n0 /∈ Ξ, that n1,n2 ∈ Ξ, and that there are paths π1 = [n0..n1] and
π2 = [n0..n2] such that on both paths, all nodes except the last do not belong to Ξ.

If Ξ is closed under termination insensitive control dependency (a weaker requirement than being
closed under termination sensitive control dependency), and if the CFG is reducible, then n1 = n2.2

Proof By Lemma 1, we can extend π1 and π2 into sink-bounded paths π′

1 and π′

2. By Lemma 3,
we infer that π′

2 contains n1, and that π′

1 contains n2. If n1 6= n2, this implies that n1 is reachable
from n2, and vice versa, while both being reachable from n0, something which cannot happen in a
reducible graph. �

5 Slicing

We now describe how to slice a (reducible) CFG G wrt. a slice set SC , the smallest set containing C

which is closed under data dependence
dd
→ and also under some kind of control dependence: at least

we must require it is closed under
nticd
→ , but a stronger correctness property (Sect. 5.1) holds if it is

also closed under
ntscd
→ .

The result of slicing is a program with the same CFG as the original one, but with the code map
code1 replaced by code2. Here code2(n) = code1(n) for n ∈ SC ; for n /∈ SC then

• if n is a statement node then code2(n) is the statement skip;

• if n is a predicate node then code2(n) is cskip, the semantics of which is that it non-
deterministically chooses one of its successors.

The above definition is conceptually simple, so as to facilitate the correctness proofs. Of course,
one would want to do some post-processing, like eliminating skip commands and eliminating cskip

commands where the two successor nodes are equal; we shall not address this issue further but
remark that most such transformations are trivially meaning preserving.

5.1 Correctness Properties

The main intuition behind our notion of slicing correctness is that the nodes in a slicing criteria
C represent “observations” that one is making about a CFG G under consideration. Specifically,
for a n ∈ C, one can observe that n has been executed and also observe the values of any vari-
ables referenced at n. Execution of nodes not in C correspond to silent moves or non-observable
actions. The slicing transformation should preserve the behavior of the program with respect to C-
observations, but parts of the program that are irrelevant with respect to computing C observations
can be “sliced away”. The slice set SC built according to Definition 4 represents the nodes that
are relevant for maintaining the observations C. Thus, to prove the correctness of slicing we will
establish the stronger result that G will have the same SC observations wrt. the original code map
code1 as wrt. the sliced code map code2, and this will imply that they have the same C observations.

14

The discussion above suggests that appropriate notions of correctness for slicing reactive programs
can be derived from the notion of weak bisimulation found in concurrency theory, where a transition
may include a number of τ -moves [16]. In our setting, we shall consider transitions that do one or
more steps before arriving at a node in the slice set.

Definition 10 For i = 1, 2 we write s
i

7−→ s′ to denote that wrt. code map codei, the program
state s rewrites in one step to s′.

For i = 1, 2 we write s0
i

=⇒ s if there exists s1 . . . sk (k ≥ 1) with sk = s such that (with each
sj = (nj , σj))

• for all j ∈ {1 . . . k} we have sj−1
i

7−→ sj ;

• nk ∈ SC but for all j ∈ {1 . . . k − 1}, nj /∈ SC . 2

Definition 11 A binary relation S on program states is a bisimulation if whenever (s1, s2) ∈ S
then

(a) if s1
1

=⇒ s′1 then there exists a s′2 such that s2
2

=⇒ s′2 and (s′1, s
′

2) ∈ S, and

(b) if s2
2

=⇒ s′2 then there exists a s′1 such that s1
1

=⇒ s′1 and (s′1, s
′

2) ∈ S.

If instead of (b) we only have (c) below, we say that S is a quasi-bisimulation.

(c) if s2
2

=⇒ s′2 then either s1
1

6=⇒ or there exists a s′1 such that s1
1

=⇒ s′1 and (s′1, s
′

2) ∈ S. 2

For each node n in G, we define relv(n), the set of relevant variables at n, by stipulating that
x ∈ relv (n) if there exists a node nk ∈ SC and a path π from n to nk such that x ∈ refs(nk), but
x /∈ defs(nj) for all nodes nj occurring before nk in π.

The above is well-defined in that it does not matter whether we use code1 or code2, as it is easy
to see that the value of relv(n) is not influenced by the content of nodes not in SC , since that set is

closed under
dd
→. (Also, the closedness properties of SC are not affected by using code2 rather than

code1.)
We are now ready to state the correctness theorem:

Theorem 3 Let the relation S0 be given by (n1, σ1)S0 (n2, σ2) iff n1 = n2 and σ1 =relv(n1)
σ2.

Then (if G is reducible)

• S0 is a quasi-bisimulation;

• S0 is even a bisimulation if SC is closed under
ntscd
→ . 2

Proof (Sketch.) We must consider transitions of the form (n, σi)
i

=⇒ (n′, σ′

i); that is we have

(n, σi)
i

7−→ (n′′, σ′′

i) and either n′′ = n′ or (n′′, σ′′

i)
i

=⇒ (n′, σ′

i).
With j = 3 − i, our general goal is to simulate the above transition wrt. codej . For three cases,

listed below, we find σ′′

j such that (n, σj)
j

7−→ (n′′, σ′′

j) with σ′′

i =relv (n′′) σ
′′

j : then we are done if

n′′ = n; otherwise we apply inductive reasoning.

n ∈ SC Here σi =ref(n) σj . Therefore, if n is a predicate, the same branch will be taken; if n is a

statement, the stores will be updated with the same value.

n /∈ SC is a statement Here code2(n) = skip, and the claim follows since the value stored by

code1(n) will not belong to relv(n′′) (as SC is closed under
dd
→).

n /∈ SC is a predicate, i = 1 Then code2(n) = cskip, and the claim is trivial.

15

We are left with the interesting case where n /∈ SC is a predicate, i = 2. Two subcases:

• SC is closed under
ntscd
→ ; we must show (b) of Definition 11. But Lemma 4 tells us that there

exists n1, σ
′

1 such that (n, σ1)
1

=⇒ (n1, σ
′

1), where n1 = n′ by Theorem 2. For x ∈ relv(n′), we
have to show that σ′

1(x) = σ′

2(x), which follows since such variables cannot be modified along

the way (again since SC is closed under
dd
→).

• otherwise, we only have to show (c) of Definition 11, so assume that there exists n1, σ
′

1 such

that (n, σ1)
1

=⇒ (n1, σ
′

1). By Theorem 2 we infer that n1 = n′, and we proceed as in the
previous case. �

6 Algorithms

In this section we provide the intuition behind the algorithms to calculate various forms of control
dependences that were presented earlier. This includes a an overview of the main processing steps
of the algorithm to calculate non-termination sensitive control dependence and its adaptation to
computing other forms of dependences.

A complete description of the algorithms along their correctness and complexity analysis are
given in Section 6. In this section we provide an overview of its main processing steps and its
adaptation to computing other forms of dependence.

6.1 Non-Termination Sensitive Control Dependence

Control dependences are calculated using a symbolic data-flow analysis. Fundamentally, control
dependences are determined by reasoning about properties of sets of CFG paths; those sets are
represented symbolically in our algorithm. Specifically, for each node n1 with more than one successor
in G, the set of paths starting at n1 that begin with n1 → n2 is represented by tn1n2

. The algorithm
propagates these symbolic values to collect the effects of particular control flow choices at program
points in the CFG. For each node n3 in the CFG a set of symbolic values, Sn3n1

, is stored for
each node n1 in the CFG that has more than one successor; these sets record the set of paths
that originate from n1. The algorithm preserves the invariant that tn1n2

∈ Sn3n1
if and only if all

non-trivial non-terminal paths or terminal paths starting from n1 with n1 → n2 contain node n3.
Let Tn1

denote the outdegree of n1 and condNodes(G) denote the set of nodes with outdegree
greater than one.

The algorithm is initialized such that, for each node n1 ∈ condNodes(G), tn1n2
is inserted into

Sn2n1
for each successor n2 of n1 and n2 is marked for processing. The algorithm then proceeds by

executing the following three steps for each marked node n3; it terminates when there are no longer
any marked nodes.

1. For each node n1 ∈ condNodes(G)\n3, if |Sn3n1
| = Tn1

then, for each node n4 ∈ condNodes(G)\n3,
all symbols from Sn1n4

are inserted into Sn3n4
. This captures the property that if all non-

terminal paths or terminal paths that end in exit nodes from every successor of n4 contains
n1, then these paths will also contain n3.

2. Depending on the number of successors of n3, one of the following actions is performed if any
Sn3n5

was changed.

|succs(n3)| = 1 Let n5 be the successor of n3. For each node n4 ∈ condNodes(G) such that
Sn5n4

\Sn3n4
6= ∅, insert Sn3n4

into Sn5n4
and add n5 into the worklist. This captures

the property that all non-terminal paths or terminal paths that end in exit nodes that
contain n3 will also contain n5.

16

|succs(n3)| > 1 For each node n4, if |Sn4n3
| = Tn3

then n4 is marked for processing. This
captures the requirement that any path information change at n3 needs to be considered
at each node n4 that will occur on all non-terminal paths or terminal paths that end in
exit nodes starting from n3.

3. Unmark n3.

When there are no more marked nodes, all-path reachability information for every pair of nodes,
n3 and n1 (with outdegree greater than one), in the graph is available in Sn3n1

. The presence of a
token tn1n2

in Sn3n1
indicates that all non-terminal paths or terminal paths that end in exit nodes

starting with the edge n1 → n2 contain n3. So, if |Sn3n1
| > 0 ∧ |Sn3n1

| 6= Tn1
then, by Definition 6,

it can be inferred that n3 is directly control dependent on n1. On the other hand, if |Sn3n1
| > 0 and

|Sn3n1
| = Tn1

then, by Definition 6, it can be inferred that n3 is not directly control dependent on
n1.

6.1.1 A Walk-through

Consider the CFG in Figure 1 (c). In phase (1), tab and taf are injected into Sba and Sfa, respectively.
Likewise, tcb, tcd, tfg, tfh, tdi, and tdj are injected into Sba, Sfa, Sbc, Sdc, Sid, and Sjd, respectively,
and b, d, i, j, g, and h are marked for processing. As b has only one successor and Scc\Sbc = {tcb},
tcb is injected into Scc and c is marked for processing.

Similarly, as g has only one successor and Sgf\Shf = {tfg}, tfg is injected into Shf and h is
marked for processing. As |Shf | = Tf (Shf = {tfg, tfh}) , taf is injected into Sha as Sfa\Sha = {taf}.
Similarly, tcd ∈ Sjc.

After the propagation stops, the algorithm decidse h is directly non-termination sensitively con-

trol dependent on a as |Sha| = Ta = 2. Similarly, the algorithm decides a
ntscd
→ b, c

ntscd
→ b, c

ntscd
→ c, c

ntscd
→

d, d
ntscd
→ i, c

ntscd
→ j, a

ntscd
→ f, f

ntscd
→ g, a

ntscd
→ h and a

ntscd
→ e. As |Sjd| = Td = 2, the algorithm decides j

is not directly non-termination sensitively control dependent on d. Similarly, the algorithm decides

f 6
ntscd
→ h. For all other combinations, as |Sxy| = 0, the algorithm decides y 6

ntscd
→ x.

6.2 Non-Termination Insensitive Control Dependence

As Definition 7 implies indirect variant of Definition 6, we can prune indirect non-termination
sensitive control dependence to arrive at non-termination insensitive control dependence. For each

pair of node n1 and n2 such that n2
ntscd
→ n1, the following steps decide if the n2

nticd
→ n1.

1. As observed, no node can be non-termination insensitively control dependent on a node in the

control sink. Hence, if n2 belongs to a control sink then n2 6
nticd
→ n1. Also, if n1 belongs to a

control sink and there is only one control sink in the CFG then n2 6
nticd
→ n1. If not, proceed to

the next step.

2. Explore the graph (using DFS or BFS) starting from n2 without traversing any edges incident
on n1. The exploration is terminated when the graph is exhausted or when a node in a control
sink that does not contain n1 is encountered. In the former case, there are no paths from n2

to a control sink not containing n1, hence, n2 6
nticd
→ n1. The opposite is true in the latter case.

6.2.1 A Walk-through

Again consider the CFG in Figure 1 (c). Clearly, c
ntscd
→

∗

i. Also, note that e is the only control
sink node that does not belong to the control sink containing i. Upon exploring the CFG along all
outgoing edges from c without exploring edges emanating from i, {b, d} are reachable. Of these, b
is not a control sink node and d is a control sink node. Upon reaching d, as d belongs to the control

17

sink containing i, the algorithm will not consider d. Hence, as there is no path from c to a control

sink not containing i, c 6
nticd
→ i.

On the other hand, a
ntscd
→

∗

i. Upon exploring the CFG along all outgoing edges from a without
exploring edges emanating from i, {b, c, d, f, g, h, e} are reachable. Upon reaching e, as e is a control

sink node that does not belong to the control sink containing i, the algorithm will conclude a
nticd
→ i.

6.3 Decisive Control Dependence

As Definition 8 implies Definition 6, we can prune non-termination sensitive control dependence to
arrive at decisive control dependence. The pruning condition is the negative form of the third clause
in Definition 8 – for each successor nl of ni, there exists a maximal path such that nj occurs before
any occurrence of ni.

We use an algorithm similar to Figure 3 to calculate if there is a path from a successor of a
conditional node to a given node with no occurrences of the conditional node. The basic idea is to
represent each edge emanating from a conditional node n1 (to n2) by a token, tn1n2

, and then to
propagate the token to nodes reachable from n2. However, no token tn1ni

will be propagated from
n1 to it’s successors except in the initialization phase. Hence, if a tn1n2

is present in Sn3n1
then it

should be the case that there exists a path from n2 to n3 that does not contain n1.

6.3.1 A Walk-through

Consider the CFG in Figure 2 (a). Clearly, b
ntscd
→ d. In the above algorithm, tbc and tbd is injected

into Scb and Sdb. In contrast to the algorithm for non-termination sensitive control dependence, tbc
will be injected into Sdb as there is a path from c to d. Hence, as |Sdb| = Tb = 2, the algorithm

decides b 6
dcd
→ d.

On the other hand, similar situation occurs for d and c - c
ntscd
→ d and tcd and tce is injected

into Sdc and Sec. However, tce can never reach Sdc as there is no path from e to d. Hence, as

|Sdc| 6= Tc = 2, the algorithm decides c
dcd
→ d. However, note that if there was a back edge from e to

b, then tce can reach Sdc, in which case c 6
dcd
→ d.

6.4 Complexity

The proposed algorithms have a worst-case asymptotic complexity of O(|N|3 ×K) where K is the
sum of the outdegree of all nodes with more than one successor in the CFG. Linear time algorithms to
calculate control dependence have been proposed in the literature [18]. These algorithms, however,
rely on augmentation of the CFG. The practical cost of this augmentation varies with the specific
algorithm and control dependence being calculated. Our experience with an implementation of our
general algorithms in a program slicer for full Java suggests that, despite its complexity bound, it
can be scaled to programs with tens-of-thousands of lines of code and still return results in a matter
of seconds. We suspect that this is due in part to the elimination of the need for augmenting CFGs
in our approach.

In the proposed approach, none of the above mentioned issues arise. In fact, the proposed
algorithms merely justifies that it is possible to calculate control dependence based on the proposed
definitions in polynomial time, but does not claim optimality. Hence, it may not possible to calculate
the same information more efficiently.

7 Related Work

Fifteen years ago, control dependence was rigorously explored by Podgurski and Clarke in [18]. Since,
then there has been a variety of work related to calculation and application of control dependence

18

in the setting of CFGs that satisfy the unique end node property.
In the realm of calculating control dependence, Bilardi et.al [4] proposed new concepts related

to control dependence along with algorithms based on these concepts to efficiently calculate weak
control dependence. In [14], Johnson proposed an algorithm that could be used to calculate control
dependence in time linear in the number of edges. In comparison, in this paper we sketch a feasible
algorithm in a more general setting.

In the context of slicing, Horwitz, Reps, and Binkley [11] presented what has now become
the standard approach to inter-procedural slicing via dependence graphs. However, in the last
decade, C++, Java, and other languages that support semantically different exit points (exceptional
and normal) to a procedure have become prominent. Hence, the work of Horwitz et.al cannot
be applied directly as data dependence changes due to the semantic differences between the exit
points/statements. This issue was recently addressed by Allen and Horwitz [1]. In their effort, they
extend the previous work [11] to handle exception-based inter-procedural control flow. In this work,
they inject normal exit nodes and exceptional exit nodes in the CFG, but then preserve the unique
exit node property by connecting the normal and exceptional exit node to the unique exit node.
They also consider the first statements of try and catch blocks and throw statements as predicate
statements.

In contrast, our approach is simpler as the CFG is untouched even in case of exceptional exit
nodes and/or multiple normal exit nodes. As for control dependence across procedure boundaries,
the naive approach of considering the invocation site as a predicate (Soot [20] and [1]) and relating
the catch statement with the corresponding throw statement via data dependence would suffice.
If extra precision is required, then our definitions can be trivially applied to a collection of CFGs
by tweaking the proposed algorithms to utilize the information about the connectivity between the
nodes of different CFGs being considered.

For relevant work on slicing correctness, [10], Horwitz et.al. use a semantics based multi-layered
approach to reason about the correctness of slicing in the realm of data dependence. In [3], Ball et.al
used program point specific history based approach to prove the correctness of slicing for arbitrary
control flow. We build off of that work to consider arbitrary control flow with out the unique end-
node restriction. Their correctness property is a weaker property than bi-simulation – it does not
require ordering to be maintained between observable nodes if there is no dependence between these
nodes – and it holds for irreducible CFGs. Even though our definitions apply to irreducible graphs,
we need to extra structure of reducible graphs to achieve the stronger correctness property. We are
currently investigating if we can establish their correctness property using our control dependence
definitions on irreducible graphs.

In [8], Hatcliff et.al. presented notions of dependence for concurrent CFGs, and proposed a
notion of bi-simulation as the correctness property. Millett and Teitelbaum [12] study static slicing
of Promela (the model description language for the model-checker SPIN) and its application to model
checking, simulation, and protocol understanding, but they do not formalize a notion of correct slice
nor do they discuss issues related to preserving non-termination and liveness properties. Krinke
[15] considers static slicing of multi-threaded programs with shared variables, and focuses on issues
associated with inter-thread data dependence but does not consider non-termination sensitive forms
of control dependence.

8 Conclusion

The notion of control dependence is used in myriad of applications, and researchers and tool builders
increasing seek to apply it to modern software systems and high-assurance applications – even though
the control flow structure and semantic behavior of these systems does not mesh well with the require-
ments of existing control dependence dependences. In this paper, we have proposed conceptually
simple definitions of control dependence that (a) can be applied directly to the structure of modern
software thus avoiding unsystematic preprocessing transformations that introduce overhead, concep-
tual complexity, and sometimes dubious semantic interpretations, and (b) provide a solid semantic

19

foundation for applying control dependence to reactive systems where program executions may be
non-terminating.

We have rigorously justified these definitions by detailed proofs, by expressing them in temporal
logic which provides an unambiguous definition and allows them to be mechanically checked/debugged
against examples using automated verification tools, by showing their relationship to existing defini-
tions, and by implementing and experimenting with them in a publicly available slicer for full Java.
In addition, we have provided algorithms for computing these new control dependence relations, and
argued that any additional cost in computing these relations is negligible when one considers the
cost and ill-effects of preprocessing steps required for previous definitions. Thus, we believe that
there are many benefits for widely applying these definitions in static analysis tools.

In ongoing work, we continue to explore the foundations of static and dynamically calculating de-
pendences for concurrent Java programs for slicing, program verification, and security applications.
In particular, we are exploring the relationship between dependences extracted from execution traces
and dependences extracted from control-flow graphs in an effort to systematically a justify a com-
prehensive set of dependence notions for the rich features found in concurrent Java programs.

References

[1] M. Allen and S. Horwitz. Slicing java programs that throw and catch exceptions. In Procedings
of the 2003 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM ’03), pages 44–54. ACM, June 2003.

[2] L. O. Anderson. Program Analysis and Specialization for the C Programming Languages. PhD
thesis, DIKU, University of Copenhagen, DIKU, University of Copenhagen, Universit et sparken
1, DK-2100, Copenhagen ∅, Denmark., May 1994.

[3] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow. In Proceedings of the First
International Workshop on Automated and Algorithmic Debugging (AADEBUG’93), volume
749 of Lecture Notes in Computer Science, pages 206–222. Springer-Verlag, 1993.

[4] G. Bilardi and K. Pingali. A framework for generalized control dependences. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’96), pages 291–300, Philadelphia, Pennsylvania, United States, 1996. ACM, ACM Press
New York, NY, USA.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.

[6] J. Ferrante, K. J. Ottenstein, and J. O. Warren. The program dependence graph and it’s use
in optimization. ACM Trans. Prog. Lang. Syst., 9(3):319–349, July 1987.

[7] M. A. Francel and S. Rugaber. The relationship of slicing and debugging to program under-
standing. In Proceedings of the 7th IEEE International Workshop on Program Comprehension
(IWPC’99), pages 106–113, 1999.

[8] J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A formal study of slicing
for multi-threaded programs with JVM concurrency primitives. In Proceedings on the 1999
International Symposium on Static Analysis (SAS’99), Lecture Notes in Computer Science,
Sept 1999.

[9] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Journal
of Higher-order and Symbolic Computation, 13(4):315–353, 2000. A special issue containing
selected papers from the 1999 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation.

20

[10] S. Horwitz, P. Pfeiffer, and T. W. Reps. Dependence analysis for pointer variables. In Proceed-
ings of the ACM SIGPLAN ’89 Conference on Programming Language Design and Implemen-
tation (PLDI’89), pages 28–40. ACM, 1989.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM
Trans. Prog. Lang. Syst., 1990.

[12] L. I.Millett and T. Teitelbaum. Slicing Promela and its applications to model checking, sim-
ulation, and protocol understanding. In Proceedings of the 4th International SPIN Workshop,
1998.

[13] G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: Delivering Indus Java Program Slicer
to Eclipse. Available at http://projects.cis.ksu.edu/docman/admin/index.php?group id=12.,
October 2004.

[14] R. Johnson and K. Pingali. Dependence-based program analysis. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’93), pages 78–89, 1993.

[15] J. Krinke. Static slicing of threaded programs. In Proc. ACM SIGPLAN/SIGFSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE’98), pages 35–42, 1998.

[16] R. Milner. Communication and Concurrency. Prentice Hall, 1989. ISBN: 0-13-115007-3.

[17] S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann Publishers.
Inc., San Francisco, California, USA, 1997.

[18] A. Podgurski and L. Clarke. A formal model of program dependences and its implications for
software testing, debugging, and maintenance. IEEE Transactions on Software Engineering,
16(8):965–979, 1990.

[19] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A
new foundation for control-dependence and slicing for modern program struc-
tures. Technical Report 8, Kansas State University, 2004. Available at
http://projects.cis.ksu.edu/docman/admin/index.php?group id=12.

[20] Sable Group. Soot, a Java Optimization Framework. This software is available at
http://www.sable.mcgill.ca/soot/.

[21] SAnToS Laboratory. Indus, a toolkit to customize and adapt Java programs. This software is
available at http://indus.projects.cis.ksu.edu.

[22] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 3:121–189,
1995.

[23] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357, 1984.

A Details

A.1 Algorithm to calculate Non-Termination Sensitive Control Depen-

dence

Proof of correctness We show that phase (1) and (2) of the algorithm are correct by proving
that the following property holds at the end of phase (2).

tn1n2
∈ Sn3n1

if and only if each path π ∈ [n2..n1?] contains n3.

21

Non-Termination-Sensitive-Control-Dependence(G)
1 G(N, E, n0, N

E) : a control flow graph.
2 S[|N|, |N|] : a matrix of sets where S[n1, n2] represents Sn1n2

.
3 T [|N|] : a sequence of integers where T [n1] denotes Tn1

.
4 CD[|N|] : a sequence of sets.
5 workbag : a set of nodes.
6
7 # (1) Initialize
8 workbag ← ∅
9 for each n1 in condNodes(G)

10 do succs = succs(n1,G)
11 for each n2 in succs
12 do workbag← workbag ∪ {n2}
13 S[n2, n1]← {tn1n2

}
14
15 # (2) Calculate all-path reachability
16 while workbag 6= ∅
17 do flag ← false

18 n3 ← remove(workbag)
19 for each n1 in condNodes(G)\n3

20 do if |S[n3, n1]| = T [n1]
21 then for each n4 in condNodes (G)\n3

22 do if S[n1, n4]\S[n3, n4] 6= ∅
23 then S[n3, n4]← S[n3, n4] ∪ S[n1, n4]
24 flag = true

25
26 if flag and |succs(n3,G)| = 1
27 then n5 ← select(succs(n3,G))
28 for n4 in condNodes(G)
29 do if S[n5, n4]\S[n3, n4] 6= ∅
30 then S[n5, n4]← S[n5, n4] ∪ S[n3, n4]
31 workbag ← workbag ∪ {n5}
32 else if flag and |succs(n3,G)| > 1
33 then for each n4 in N
34 do if |S[n4, n3]| = T [n3]
35 then workbag← workbag ∪ {n4}
36
37 # (3) Calculate non-termination sensitive control dependence
38 for each n3 in N
39 do for each n1 in condNodes(G)
40 do if |S[n4, n3]| > 0 and |S[n3, n1]| 6= T [n1]
41 then CD[n3]← CD[n3] ∪ {n1}
42
43 return CD

Figure 3: The algorithm to calculate non-termination sensitive control dependence.

22

We shall use the only if direction as the loop invariant for the outer loops of phase (1) and (2).
At the beginning of phase (1), each token set Tn3n1

= ∅. Hence, the invariant is trivially
established. In the loops at line 9 and 11, for each immediate successor node n2 of each conditional
node n1, tn1n2

is injected into Tn2n1
. This trivially preserves the invariant at the end of the loop as

n3(= n2) occurs on all segments starting n2. The loop will terminate as the number of nodes in the
graph is finite.

Now the reasoning about phase (2).

Initialization At the beginning of phase (2), the invariant is estalished as it is preserved at the
termination of phase (1).

Maintenance |Sn3n4
| = Tn4

> 0 =⇒ (∀π ∈ [n4..n4?].(|π| > 1 =⇒ n3 ∈ π)). In other words, any
path ending at n4 can be extended to contain n3. This is captured in line 23 and the invariant
is established.

Termination Note that, even in the worst case, there can be |N|2 tokens and |N|2token sets. In each
iteration, either the size of a token set increases at least by one or remains the same. Eventually
the size of the token sets will stabilize (not increase) preventing additions of elements to the
workbag at lines 31 and 35 (by not setting flag to true in the conditional at 22). Hence, the
loop at line 16 will terminate while maintaining the invariant.

As for the if direction, the conditional at line 26 ensures that any change at a node n3 is
propagated to it’s lone successor n5 (lines 27-31) or to any node n4 that occurs on all non-trivial
paths π ∈ [n3..n3?] (line 35 combined with subsequent execution of loop at line 19). In other words,
the conditional captures the path extension mentioned in maintenance. This combined with the
termination of the phases proves the if direction of the property.

In phase (3), direct control dependence is calculated based on the available reachability infor-
mation. The termination of this phase is obvious by the finiteness of the nodes and edges of the
graph.

Complexity analysis In phase (1), for every node with multiple successors in the CFG, each
of its successors is processed. Hence, it leads to a worst-case asymptotic complexity of O(|E|) for
phase (1). In phase (3), for each node, every node in the CFG is processed leading to a worst-case
asymptotic complexity of O(|N|2) for this phase.

In phase (2), the loop at line 16 iterates till the size of the token sets represented by S stabilizes.
The maximum size of a token set S[n1,n2] is given by T [n2] which is equal to the outdegree of n2.
In each iteration, either the size of a token set increases at least by one or remains the same. In the
former case, it contributes an iteration. As the size of the token sets S[n1,n2] is bound, all token sets
of S[n1] will stabilize in a total of

∑
T [i] or less iterations. The loops in line 19 and 21 contribute

O(|condNodes(G)|2) ≈ O(|N|2) to each such iteration. Hence, the worst-case complexity of phase
(2) will be O(|N|3 ×

∑
T [i]× lg(|N|)) by factoring in the complexity O(lg |N|) of set operations.

By combining the above information, the worst-case complexity due to phase 1, 2, and 3 will
be O(|E| + |N|3 ×

∑
T [i] × lg |N| + |N|2). However, as O(|N|3 ×

∑
T [i] × lg |N|) dominates O(|N|2)

and O(|E|), the complexity will be O(|N|3 ×
∑
T [i] × lg |N| when

∑
T [i] × lg |N| > 1. It will be

O(|N|2 + |E|)) when
∑
T [i] = 0.

As in practice |condNodes(G)|2 ≈ |N|, the complexity in the case where
∑
T [i] × lg |N| > 1 will

reduce to O(|N|2 ×
∑
T [i]× lg |N|).

A.2 Algorithm to calculate Non-Termination Insensitive Control Depen-

dence

Proof of correctness The control dependence between n1 and n2 as calculated by algorithm
in Figure 3 is pruned if notcd is true. This happens only if a node n3 6= n1 such that it belongs

23

Non-Termination-Insensitive-Control-Dependence(G)
1 G(N, E, n0, N

E) : a control flow graph.
2 S[|N|, |N|] : a matrix of sets where S[n1, n2] represents Sn1n2

.
3 K[|N|] : a sequence of sets where K[n1] is the set of nodes in the control sink of n1.
4 workbag : a set of nodes.
5
6 # Calculate non-termination insensitive control dependence
7 CD = Non-Termination-Sensitive-Indirect-Control-Dependence(G)
8 for each n1 ∈ N
9 do sinks← get-nodes-of-sinks-not-containing-node(n1, G)

10 for each n2 ∈ CD[n1]
11 do visited← {n1}
12 notcd← true
13 workbag← workbag ∪ {n2}
14 while workbag 6= ∅ and notcd

15 do n3 ← remove(workbag)
16 visited← visited ∪ {n3}
17 if n3 ∈ sinks

18 then notcd← false
19 else workbag ← workbag ∪ succs(n3, G)\visited

20 if notcd

21 then CD[n1]← CD[n1]\n2

22
23 return CD

Figure 4: The algorithm to calculate non-termination insensitive control dependence.

to a control sink not containing n1 is encountered on the graph exploration starting at n2. The
exploration visits each node only once by remembering the visited nodes in visited. Also, as visited
contains n1 at the beginning of the loop at line 15, immediate successors of n1 will not be visited
unless they are reachable by edges from other nodes reachable via nodes other than n1. It is trivial
to see that all nodes reachable from n2 (not via outgoing edges of n1) will be visited. Hence, the
loop at line 15 will correctly decide if n1 is non-termination insensitively control dependent on n2.
As the loop at line 15 is repeated for each control dependence of each node, the algorithm correctly
calculates non-termination insensitively control dependence for the given CFG.

Complexity analysis The worst-case complexity of the call at line 8 is O(|N|3 ×
∑
T [i]× lg |N|+

|N|3) by factoring in the cost to calculate indirect variant of non-termination sensitive control de-
pendence from it’s direct variant. It is possible to calculate the SCCs in a graph in O(|N|+ |E|) time,
check if an SCC is control sink in O(|E|) time, and check if a control sink contains a given node in
O(|N|). Hence, the call in line 10 contributes O(|N|×|E|). The loop at line 15 may explore each edge,
hence, contributing a complexity of O(|E|). The cumulative complexity of the loops at line 9 and 11
is O(|N|)2 ×|E|) as there can be O(|N|2) non-termination sensitive control dependences in the worst
case. Hence, the worst-case complexity of the algorithm will be O(|N|3×

∑
T [i]× lg |N|+ |N|2×|E|).

A.3 Algorithm to calculate Decisive Control Dependence

Proof of correctness We shall prove that the following property holds at the end of phase (2).

tn1n2
∈ Sn3n1

if and only if there is a path from n2 to n3 not containing n1.

We shall use the only-if direction as a loop invariant for the loop at lines 15-21.

Initialization After phase (1), for each successor n2 of a conditional node n1, tn1n2
∈ Sn2n1

. The
invariant holds as there is an empty path from n2 to n2 that does not contain n1.

24

Decisive-Control-Dependence(G)
1 G(N, E, n0, N

E) : a control flow graph.
2 S[|N|, |N|] : a matrix of sets where S[n1, n2] represents Sn1n2

.
3 T [|N|] : a sequence of integers where T [n1] denotes Tn1

.
4 workbag : a set of nodes.
5
6 # (1) Initialize
7 workbag ← ∅
8 for each n1 in condNodes(G)
9 do succs ← succs(n1,G)

10 for each n2 in succs
11 do workbag← workbag ∪ {n2}
12 S[n2, n1]← {tn1n2

}
13
14 # (2) Calculate exists-a-path reachability
15 while workbag 6= ∅
16 do n3 ← remove(workbag)
17 for each n4 ∈ succs(n3, G)
18 do for each n5 ∈ condNodes(G)\n3

19 do if S[n4, n5]\S[n3, n5] 6= ∅
20 then S[n4, n5]← S[n4, n5] ∪ S[n3, n5]
21 workbag ← workbag ∪ n4

22
23 # (3) Calculate decisive control dependence
24 CD ← Non-Termination-Sensitive-Control-Dependence(G)
25 for each n1 ∈ N
26 do for each n2 ∈ CD[n1]
27 do if |S[n1, n2]| = T [n2]
28 then CD[n1]← CD[n1]\n2

29
30 return CD

Figure 5: The algorithm to calculate decisive control dependence.

Maintenance If there is a path from n6, a successor of a conditional node n5, to n3 with no
occurrence of n5 then there is a similar path from n6 to n4, a successor of n3. However, this
is not true if n5 = n3. The logic in line 19 ensures that tn5n6

∈ Sn3n5
=⇒ tn5n6

∈ Sn4n5
to

maintain the invariant while line 18 avoids the case where n5 = n3.

Termination By an argument similar to that for algorithm in Figure 3, we can conclude that the
loop at line 15 will terminate.

Upon termination, for each pair of node, n3 and n4, such that n3 → n4 exists, for all nodes
n5(6= n3), Sn3n5

⊆ Sn4n5
.

From the loop invariant we know that, if tn5n6
∈ Sn3n5

then there is path from n6, a successor
of a conditional node n5, to n3 with no occurrences of n5. If n4 is a successor of n3 then there is a
path from n6 to n4 as well. Also, Sn3n5

⊆ Sn4n5
=⇒ tn5n6

∈ Sn4n5
. Hence, the if direction of the

property holds at the end of phase (2).
As for the correctness of phase (3), it is trivial to see that Sn1n2

= T [n2] implies that there is a
path from each successor of n2 that contains n1 before any occurrence of n2. Likewise, Sn1n2

6= T [n2]
implies that there is a successor of n2 such that all paths from it does not contain n1 before any
occurrence of n2. Hence, phase (3) correctly calculates decisive control dependence.

25

Complexity analysis In phase (1) each successor of each conditional node is processed. Hence,
the worst-case complexity for phase (1) will be O(|E|).

The complexity of phase (3) is O(|N|3 ×
∑
T [i]× lg |N|). For phase (2), the complexity analysis

would be the same as that for phase (3).
In phase (4), each control dependence is explored. In the worst case, there can be |N|2 control

dependences in a CFG. Hence, the worst-case complexity of phase (3) is O(|N|2).
Hence, the worst-case complexity of the algorithm will be O(|E|+ |N|3 ×

∑
T [i]× lg |N|+ |N|2).

Special cases of worst-case complexity of algorithm in Figure 3 can be applied here as well.

26

