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1. INTRODUCTION

You have implemented a class [Dahl and Nygaard 1966; Arnold and Gosling 1998],
FIFO, whose instances are FIFO queues with public methods enqueue and dequeue
as well as method size that reports the number of elements in the queue. The class,
implemented in some Java-like object-oriented language, is part of a library and
is used by many programs, most unknown to you. The queue is represented using
a singly linked chain of nodes that point to elements of the queue. There is also
a sentinel node [Cormen et al. 1990]. Each instance of FIFO has a field num with
the number of nodes and a field snt that references the sentinel. You realize that a
simpler, more efficient implementation can be provided without the sentinel, using
two fields, head and tail, pointing to the end nodes in the chain. You revise method
size to return num instead of num—1 and revise the other methods suitably. You are
guided to the necessary revisions by thinking about the correspondence, sometimes
called a simulation relation, between the representations for the two versions.

Can the revisions affect the behavior of clients, that is, programs that use class
FIFO in some way or other? The answer would be yes, if some client determined
the number of nodes by reading field num directly. A client that refers to field
name snt would no longer compile. But you have taken care to encapsulate the
queue’s representation: the fields are declared to be private. By using programming
language constructs like private fields you aim to ensure that client programs depend
only on the abstraction provided by the class, not on its representation. If client
behavior is independent from the representation of FIFO, it is enough for you to
ensure equivalent visible behavior of the revised methods.

For scalable systems, scalable system-building tools, and scalable development
methods, abstraction is essential. For reasoning about a single component, e.g.,
a class, module, or local block, abstraction makes it possible to consider other
components in terms of their behavioral interface rather than their internal repre-
sentation. Abstraction is needed for the automated reasoning embodied in static
analysis tools [Cousot and Cousot 1977] and it is needed for formal and informal
reasoning about functional correctness during development and evolution [Milner
1971; Hoare 1972]. Modular reasoning has always been a central issue in software
engineering and in static analysis. With the ascendancy of mobile code it has be-
come absolutely essential. For example, it is possible for clients of FIFO to be linked
to it only at runtime, so it is impossible to check all uses to determine whether the
revisions affect them.

The need for flexible but robust encapsulation mechanisms to support data ab-
straction has been one of the driving forces in the evolution of programming lan-
guage design, from type safety and scoped local variables to module and abstract
data type constructs [Liskov and Guttag 1986]. There is a rich theoretical liter-
ature on the subject (e.g., [Plotkin 1973; Reynolds 1974; Donahue 1979; Haynes
1984; Reynolds 1984; He et al. 1986; Mitchell 1996; Lynch and Vaandrager 1995;
de Roever and Engelhardt 1998]). Many different language constructs have been
studied. There is considerable variation in the details of these theories, partly
because the intended applications vary from justifying general tools for program
analysis and transformation to justifying proof rules to be applied to specific pro-
grams as in the FIFO example. The common thread is that two implementations of
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Fig. 1. A FIFO object with its encap-
sulated representation: private fields and
nodes of a list (within the dashed rectan-
gle). One element of the queue is shown
as well as a user of the queue, but other
objects and references are omitted. The
dotted reference is an example of repre-
sentation exposure.

a component are linked by a simulation relation between the two representations.

Unfortunately, these theories are inadequate for object-oriented programs. They
deal well with the encapsulation of data structures that correspond directly to some
language construct, such as modules, local variables, or private fields. But the FIFO
example also involves encapsulation of a data structure composed of heap cells and
pointers, including aliasing with the tail field as depicted in Fig. 1.

The problem is that encapsulation provided by language constructs often runs
afoul of aliasing. For variables and parameters, aliasing can be prevented through
syntactic restrictions that are tolerable in practice (and often assumed in formal
logics and theories). Aliasing via pointers is an unavoidable problem in object
oriented programming where shared mutable objects are pervasive. Yet unintended
aliasing can be catastrophic. A version of the Java access control system was
rendered insecure because a leaked reference to an internal data structure made it
possible to forge crytographic authentication [Vitek and Bokowski 2001]. In simply
typed languages, types offer limited help: variables x,y are not aliased if they have
different types. Even this help is undercut by subclass polymorphism: in Java, a
variable x of type Object can alias y of any type.

The ubiquity and practical significance of the issue is articulated well in the man-
ifesto of Hogg et al. [1992]. A number of subsequent papers in the object-oriented
programming literature propose disciplines to control aliasing. Of particular rele-
vance are disciplines that impose some form of ownership confinement that restricts
access to designated “representation objects” (reps for short) except via their “own-
ers”, to prevent representation exposure [Leino and Nelson 2002]. A good survey
on confinement, especially ownership, can be found in the dissertation of Clarke
[2001]; see also Lea [2000],Vitek and Bokowski [2001], Clarke et al. [2001], Miiller
and Poetzsch-Heffter [2000b], Boyland [2001], Aldrich et al. [2002], and Sect. 12.1.

The contribution of this paper is a theory of representation independence for en-
capsulation of data in the heap, using ownership confinement. We follow Reynolds
[1984] in calling our main result an abstraction theorem. Some readers may prefer
the term relational parametricity.

The literature on confinement is largely concerned with static or dynamic checks
to ensure invariance of various confinement properties. One of our contributions is
to show how established semantic techniques can be used to evaluate confinement
disciplines. To prove our abstraction theorem, we use a semantic formulation of
confinement. To show that the notion is not too restrictive or too difficult to enforce,
we give a modular, syntax-directed static analysis for confinement. It accepts some
example programs that embody important object-oriented design patterns. We do
not claim, however, that it is definitive or comprehensive.
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There are a number of ways in which abstractions can be expressed using con-
structs of contemporary object-oriented languages, including modules, classes, local
variables, object instances, not to mention heap structures such as object groups.
We treat the most common situation: an instance of some class is viewed as repre-
senting an abstraction, possibly using some other objects as part of its representa-
tion.

We are aware of no previous results on representation independence that address
encapsulation of objects in the heap. Thus it is tempting to present the ideas
in the setting of a simple idealized language, say a simple imperative language
with pointers to mutable heap cells. But this would leave open some challenging
issues, such as how class-based scoping rules fit with instance-based abstraction.
We have chosen to consider a rich imperative object-oriented language with class-
based visibility, inheritance and dynamic binding, type casts and tests, recursive
types, and other features sufficient to model many programs that fit common design
patterns such as observer and factory [Gamma et al. 1995].

Previous work on representation independence has been concerned with relating
two versions of a component with respect to programs that use the component. For
a class, the designer of a class needs to consider not only users (the client interface)
but also subclasses (the protected interface). This is a source of complication in our
treatment of confinement and, to a lesser extent, in our treatment of representa-
tion independence. Our results consider replacement of one version of a class (the
“owner”) by another with the same public interface, in the context of arbitrary
classes that use it and/or are subclasses of it. On one hand, we cannot allow direct
access to the owner’s fields from subclass code, i.e., “protected” visibility. This
would entail, in general, coordinated revision of multiple classes together, whereas
for simplicity we consider revision of a single class. On the other hand, we do treat
access to reps from subclass code.

Overview and readmap. The organization of the paper is intended to make it
possible for readers with different interests to skip some parts and still get the gist
of the results.

Sect. 2 introduces the language for which our results are proved and describes
a simple example with which we review the formalization of representation inde-
pendence using simulation relations. The example is extended to one showing how
representation independence can be invalidated by leaked references to reps. The
section concludes with an informal statement of our abstraction theorem.

Sect. 3 discusses more elaborate examples that typify object-oriented programs.
A version of a Meyer-Sieber [1988] example shows how higher order programs can be
expressed. Versions of the observer pattern [Gamma et al. 1995] illustrate challenges
in formulating robust but practical notions of confinement. The section concludes
with an informal description of our notion of ownership confinement.

Sect. 4 formalizes the syntax and typing rules. Sect. 5 gives a surprisingly simple
denotational semantics in the manner of Strachey [2000]. The reader is expected to
be familiar with elementary domain theory and fixpoints but nothing beyond what
is found in introductory textbooks [Davey and Priestley 1990; Winskel 1993].

Confinement, the semantic notion, is defined formally in Sect. 6. Sect. 7 gives
the first main result, an abstraction theorem for confined programs. Sect. 8 shows
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in detail how the theorem applies to the examples in Sect. 3. Sect. 9 considers ex-
amples of the interface between an owner class and its subclasses. We formalize the
situation where the owner is declared in a module that contains some other classes,
in order to give a notion of confinement that takes into account the subclasses
of an owner —while avoiding the complexity of formalizing a module construct or
protected scope in the full generality of, say, Java. Sect. 10 proves a second abstrac-
tion theorem, for this extended language and for a generalized notion of simulation
needed for owner subclasses. Sect. 11 wraps up the technical development by defin-
ing a static analysis for confinement that accepts the examples of Sections 2, 3,
8, and 9; soundness with respect to (semantic) confinement is shown. Sect. 12
discusses related work and open challenges.

The companion technical report [Banerjee and Naumann 2004a] gives a number
of additional examples, proofs, and proof cases. Several examples use constructors
and calls to super class methods; these are explained in the paper, but are formalized
only in the technical report.

Differences from the preliminary version. Outgoing references, from representa-
tion objects to client objects, were disallowed in the preliminary version of this
paper [Banerjee and Naumann 2002]. We conjectured that they could be allowed
if restricted to read-only access as in [Miiller and Poetzsch-Heffter 2000b; Leino
and Nelson 2002]. Here we allow them without restriction, as is needed to han-
dle examples such as the observer pattern where observers may well change state
in response to events. The other major additions are as follows: module-scoped
methods, the generalized abstraction theorem, extensive worked examples, and the
static analysis for confinement.

In [Banerjee and Naumann 2002] we discuss simulation proofs of the equivalence
of “security passing style” [Wallach et al. 2000] with the lazy “stack inspection”
implementation of Java’s privilege-based access control mechanism [Gong 1999],
and then extend our language to include access control. We give an abstraction
theorem for this extended language. It was this study that led us to the main
results but in retrospect it seems tangential and is omitted.

2. REPRESENTATION INDEPENDENCE

We begin this expository section with a very simple example of representation
independence, contrived mainly to introduce the Java-like language that we will use.
Building on this example we show how pointer aliasing can invalidate representation
independence. We conclude with an informal statement of the main results. Sect. 3
deals with more challenging examples.

2.1 A first example

The concrete syntax for classes is based on that of Java [Arnold and Gosling 1998]
but using more conventional notation for simple imperative constructs. Keywords
are typeset in bold font and comments are preceded by double slash. A program
consists of a collection of class declarations like the following one.
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class Bool extends Object {
bool f; // private field
constr { skip } // public constructor
unit set(bool x){ self.f:=x} // public method
bool get(){ result :=self.f }  // public method

There are two associated methods: set takes a boolean parameter and returns noth-
ing; get takes no parameter and returns a boolean value. Methods are considered
to be public, that is, visible to methods in all classes. (Module-scoped methods are
added in Sect. 10.) Every method has a return type; the primitive type unit, with
only a single value (it), corresponds to Java’s “void” and is used for methods like
set that are called only for their effect on state.

Instances of class Bool have a field f of (primitive) type bool. A field f is accessed
in an expression of the form e.f, and in particular self.f is used for fields of the
current object; a bare identifier like x is either a parameter or a local variable.
The distinguished variable result provides the return value; it is initialized with the
default for its type (false for bool and nil for class types). Fields are considered
to be private, that is, visible only to the methods declared in the class. Visibility
is class-based, as in many mainstream object-oriented languages: an object can
directly access the private fields of another object of the same class.

When a new object is constructed, each field is initialized with the default value
for its type. Then the constructor commands are executed: the constructors de-
clared in superclasses are executed before the declared one which, is designated by
keyword constr. In subsequent examples we omit the constructor if it is skip and
we refrain from considering constructors with parameters.

The observable behavior of a Bool object can be achieved using an alternate
implementation in which the logical complement is stored in a field:

class Bool extends Object {
bool f;
constr { self.f:=true }
unit set(bool x){ self.f:=—-x }
bool get(){ result := —(self.f) } }

We do not formalize class types (“interfaces” in Java) separately from class declara-
tions. Class names are used as types and we use the term class loosely to mean the
name of a declared class. But we are concerned with relating comparable versions
of a class: as in the example above, a comparable version has the same name and
methods with the same names and signatures.

We claim that no client program using Bool can distinguish one implementation
from the other; thus we are free to replace one by the other. Of course this is not
the case if we consider aspects of client behavior such as real time or the size of
object code —but these are not at the level of abstraction of source code. Moreover,
input and output for end users is of some limited types like int or String. If a Bool
could be output directly, say displayed in binary on the screen, then an end user
could distinguish between the implementations. So we consider only clients that
use Bool objects in temporary data structures and not as input or output data.
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An example of such a client is method main in the following class. It declares
a local variable b of type Bool, with scope beginning at the keyword in. In the
absence of explicit braces, the scope of a local variable extends to the end of the
method body.

class Main extends Object {
String inout;
unit main(){ Bool b :=new Bool in
if ...self.inout...then b.set(true) else b.set(false) fi;
self.inout := convertToString(b.get()) } }

We may consider method main as a main program for which the observable state
consists of field inout. Its final value depends on some condition “...self.inout...”
on its initial value. No object of type Bool is reachable in the state of a Main object
after invocation of main, so there is no observable difference between its behavior
using one implementation of Bool and its behavior using the other.

The claim is that we need not consider specific clients; there is no use of Bool
that can distinguish between the two implementations. The standard reasoning
goes as follows.

(1) Suppose o is an object of type Bool for the first implementation and o’ an object
for the second. The correspondence between their states is described by the
following local coupling relation: o.f = —(o’.f).

(2) This relation has the simulation property:
—it holds initially (once the constructor has been executed), and
—if the two versions of set (respectively, get) are executed from related states
then the outcomes are related. (As we consider sequential programs, the
outcome is the updated heap and the return value if any.)
In short, the relation is established by the constructor and preserved by the
methods of Bool.

(3) To consider client programs we must consider program states consisting of
local variables (and parameters) along with the heap, which may contain many
instances of Bool as well as other objects. For states, we define the induced
coupling relation for a given local coupling. Primitive values and locations are
related by equality (later we refine this to a bijection, to account for differences
in allocation.) A pair of heaps are related if there is a one-to-one correspondence
between Bool objects such that they are pairwise related by the local coupling
of (1), and everything else is related by equality.

The induced coupling relation is preserved by all commands in methods of all
classes. This is the abstraction theorem.

(4) For a pair of states related by the (induced) coupling, if no Bool objects are
reachable then the states are equal. This is the identity extension lemma, which
follows from the definition of the induced coupling. Identity extension confirms
that the chosen notion of coupling relation is suited to the chosen form of
encapsulation.

It is a consequence of (3) and (4) that the two implementations cannot be distin-
guished by a client that does not input or output Bool objects. Any initial state
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for such a client is related to itself, by (4). We can consider an execution of the
client using either of the two implementations of Bool; the final states are related,
according to (3). And thus they are equal, by (4).

For program refinement, identity can be replaced by inequality in step (4). In
this paper we do not emphasize refinement, but the requisite adaptation of our
results is straightforward. For applications in program analysis, other relations are
used in step (4), e.g., for secure information flow the relation expresses equivalence
from the point of low-security observers [Volpano et al. 1996].

The abstraction theorem is a non-trivial property of the language. It would fail,
for example, if the language had constructs that allowed client programs to read
the private fields of Bool —or to enumerate the names of the private fields, or to
query the number of boolean fields that are currently true. In fact, similar facilities
can be found in some reflection libraries and in the implementation of Java’s inner
classes, but are considered to be flaws [Bhowmik and Pugh 1999].

Familiar operations on pointers, however, can also violate abstraction. For exam-
ple, with pointer arithmetic one can distinguish between two representations that
differ only in the size of storage used (e.g., representing a boolean value using one
bit of an integer versus one bit of a character). Even in the absence of pointer
arithmetic, shared references lead to the following problem.

2.2 Representation exposure

Consider the following class OBool which provides functionality similar to that of
Bool, in fact using Bool. For clarity we have chosen different method names, to
emphasize that we are not comparing this class with Bool.

class OBool extends Object {
Bool g;
constr { self.g :=new Bool; self.g.set(true) }
unit setg(bool x){ self.g.set(x) }
bool getg(){ result :=self.g.get() } }

Here is an alternate implementation of OBool.

class OBool extends Object {
Bool g;
constr { self.g:=new Bool; self.g.set(false) }
unit setg(bool x){ self.g.set(— x) }

bool getg(){ result := —(self.g.get()) } }

To describe the connection between the two implementations a suitable local cou-
pling (recall (1) in Sect. 2.1) is the following relation between an object state o for
the first implementation of OBool and o’ for the alternate one:

o.g#nil #0.g N o.gf=-(o.gf) . (%)

Invocations of setg and getg preserve this relation. For these implementations, it
is not just a private field that is to be encapsulated, but also the object referenced
by that field. This is apparent in the coupling (*) which involves both.

To describe the roles of the objects involved, we call class OBool an owner class.
Its instances “own” objects of class Bool, their representation objects, which are
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called reps for short. Together, an owner and its reps constitute what we call an
island, following Hogg [1991] (cf. Fig. 1).
Here is a suitable client for OBool.

class Main extends Object {
String inout;
unit main(){ OBool z := new OBool in
if ...self.inout...then z.setg(true) else z.setg(false) fi;
self.inout := convertToString(z.getg()) } }

This does not distinguish between the two implementations of OBool nor does it
violate the intended encapsulation boundary. But suppose we add to both versions
of OBool the following method which “leaks” a reference to the rep object.

Bool bad(){ result :=self.g }

The method gives its caller an alias to the object pointed to by the private field
g. This makes the location of the encapsulated object visible to clients. In and of
itself, access to this location is not harmful.! Like the other methods, method bad
preserves (x). But a client class C can exploit the leak as in the following command.

OBool z:=new OBool in
Bool w :=z.bad() in if w.get() then skip else abort fi

The command aborts if the new OBool is an object o’ for the second implementation
of OBool, but it does not abort for an object o for the first implementation. An
attempt to argue using the steps in Sect. 2.1 breaks down because this difference
in behavior violates the abstraction theorem, step (3): the induced coupling is not
preserved by the above code.

Identity extension, step (4), also fails. For a related pair 0,0’ of OBool objects
we have o.g = o’.g but o.g.f # o’.g.f. Thus the relation is not the identity for the
client to which, owing to method bad, the reps are visible.

The client in the example above does happen to preserve the relation (x), up to
the point where the program does or does not diverge, because it does not alter the
state of the objects it accesses. For an example where the abstraction theorem, step
(3), fails with terminating computations, consider the following client command.

OBool z := new OBool in Bool w := z.bad() in w.set(true)

This does not preserve (). To see why, suppose 0,0’ are a related pair of OBool
objects assigned to z and satisfying (). After the assignment to w, the effect of
w.set(true) is to make o.g.f = o’.g.f (both sides are true), contrary to the relation (x)
which requires 0.g.f = —(0’.g.f). This is very different from the effect of z.setg(true).

The examples show that both ingredients of representation independence —
identity extension and preservation— can fail if a rep is leaked. The challenge is
to confine pointers in a way that disallows harmful leaks and thus admits a robust

1To make this clear, one could assume that, for both versions of OBool, the Bool object is allocated
at the same location. The assumption can be formalized by adding o.g = o’.g to the local
coupling (*). Another justification is given in Sect. 10 where we show formally how the language
is “parametric in locations”.
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representation independence property —without imposing impractical restrictions.
The challenge is made more difficult by various features of Java-like languages, for
example, type casts. We consider casts now; other challenges are deferred to Sect. 3.

Suppose we change the return type for method bad, attempting to hide the type
of the rep object.

Object bad(){ result :=self.g }

Class Object is the root of the subclassing hierarchy so by subsumption it allows
references to objects of any class. The client can use a cast, “(Bool)”, to assert that
the result of z.bad() has type Bool. (In a state where the assertion is false, the cast
would cause abortion.)

OBool z:=new OBool in
Bool w := (Bool)(z.bad()) in if w.get() then skip else abort fi

Again, the client is dependent on representation.

Note that the cast could not be used if the scope of class name Bool did not include
the client. This suggests a focus on modules (“packages” in Java) for confinement
of pointers, as has been studied by Vitek and Bokowski [2001] among others (see
Sect. 12). But in our example the field has private scope, each rep is associated
with a single owner, and the coupling relation is expressed in terms of a single
owner. Our results account for this sort of instance-based encapsulation. Instance-
based encapsulation facilitates more local or modular reasoning —in particular,
a local coupling pertains to a single instance of the owner class. It is suited to
many common design patterns, as we illustrate in the sequel, and it is similar
to the value-oriented notions used for representation independence in functional
languages [Reynolds 1984; Mitchell 1986; 1991].

2.3  Overview of results

In the examples above, class OBool is viewed as providing an abstraction. It is
just as sensible to consider Bool as providing an abstraction for which OBool is a
client. We do not annotate programs with a fixed designation of owners and reps.
Rather, we study how to reason about a class, say Own, that one has chosen to
view as an abstraction with encapsulated representation. Instances of any subclass
of Own are also considered to be owners. A second class, say Rep, is designated
as the type of reps for Own (reps can be any subclass of Rep). In practice, Rep
could be an interface or class type, and there could be multiple Rep classes; these
generalizations are straightforward but would complicate the formalization.

A complete program is a closed collection of class declarations, called a class
table.? We consider an idealized Java-like language similar to the sequential frag-
ment of C++ (without pointer arithmetic), Modula-3, Oberon, C#, Eiffel, and
other class-based languages. It includes subclassing and dynamic dispatch, class
oriented visibility control, recursive types and methods, type casts and tests (Java’s
instanceof), and a simple form of module.

20ur theory provides for modular reasoning about a single class in the context of an arbitrary
class table. But it simplifies the semantic model to assume that the class table is closed.

Journal of the ACM, Vol. V, No. N, Month 20YY.



June 6, 2005 . 11

Roughly speaking, a class table C'T is confined, for Own and Rep, if all of its
methods preserve heap confinement. A confined heap is one where the objects can
be partitioned into some owner islands (recall Fig. 1) along with a block of client
objects as in Fig. 5. Furthermore, there are no references from clients to reps. (We
use the term client for all objects except owners and reps.)

Sect. 3 discusses confinement in more detail and the formal definitions are the
subject of Sect. 6. The full significance of the definitions does not become clear
until Sect. 9 where we study subclasses of Own: an object of such a type inherits
the methods and private fields of Own, which manipulate reps. To be useful, owner
subclasses must have some access to reps. On the other hand, as mentioned in
Sect. 1, full access is not granted in our formulation since we treat revision of a
single class.

Our objective is to compare versions of Own that may use different reps. We say
CT and CT’ are comparable if they are identical except for having different versions
of class Own, and those two versions declare the same public methods. The two
versions of Own may well use different rep classes, say Rep and Rep’. Without loss
of generality, our formalization has both Rep and Rep’ present in C'T and in CT".

A key question is how to formalize local couplings, step (1) of the proof method
outlined in Sect. 2.1. To allow useful data structures, we need to allow represen-
tations to include pointers to client objects (e.g., elements of the FIFO queue in
Fig. 1). But if a coupling depends on the state of some object that can be up-
dated by clients, it is difficult to reason modularly about the two versions of Own.
We have chosen to use relations that depend only on encapsulated state. Put dif-
ferently: those things on which a coupling depends are considered as part of the
island. Although other alternatives merit study, this one makes for transparent
application of the formal results to interesting examples (this is done in Sects. 8
and 9). Moreover, it is straightforward to define the induced coupling.

A local coupling is a relation between a pair of owner islands for comparable C'T'
and CT’. A simple example is given by (x) above in Sect. 2.2. More interesting is the
observer example, discussed in Sect. 3, which uses a linked list of client objects (the
observers). In Fig. 7 on page 37, a local coupling is depicted in which the observer
objects occur as dangling pointers from the corresponding islands. The point is
that both versions are manipulating the same observer objects in the same way,
including the invocation of methods on those objects. So the state of the observer
objects is not relevant in the local coupling —nor could it be, if the reasoning is to
be carried out in a modular way independent of the particular clients.

In a related pair of islands, both owners have the same class, which may well be
a proper subclass of Own.

The induced coupling relation for heaps relates h to h' just if there are confining
partitions of h and A’ for which corresponding islands are pairwise related by the
local coupling. Moreover, there is an exact correspondence between client objects
in h and h’. Primitive values are related by equality. Locations are related by an
arbitrary bijective renaming, which is needed to account for differences in allocation
behavior.

The induced coupling is a simulation if it is preserved by the methods of class
Own in CT and in CT’. A method declared in one version of Own may be inherited
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in the other version; it is the behavior of those methods that matters.

The abstraction theorem says that the induced coupling is preserved by all meth-
ods of all classes, provided that it is a simulation and both class tables are confined.
The identity extension lemma says that the induced coupling is the identity, after
garbage collection, for client states in which no owners are reachable.

Sect. 7 gives the formal definitions for coupling and simulation in the special case
where locations of objects other than reps are related by equality. The abstraction
and identity extension results are proved there in detail. Sect. 10 generalizes the
definitions to allow an arbitrary bijection on locations; abstraction and identity
extension are proved for the general case. The special case is of interest because
it is simpler and adequate for some non-trivial examples like those of Sect. 3 (as
shown in Sect. 8). Examples that require the general case are given in Sect. 9; they
are subclasses of Own that construct reps and pass them to methods of Own as
in the factory pattern [Gamma et al. 1995]. Notation is more complicated for the
general case but the proofs are not very different from the special case.

These results are proved in terms of a semantic formulation of confinement; in-
deed, the details of this formulation come directly from what is needed in the proofs.
Sect. 11 gives a syntax-directed static analysis: typing rules that characterize safe
programs and a soundness proof that safety implies confinement. Our objective is
to round out the story by showing how confinement can be achieved in practice,
not to give a definitive treatment of static analyses. But our analysis accepts many
natural examples and the constraints are clearly motivated in the proof of sound-
ness. The analysis is modular: It does not require code annotations and the only
constraint it imposes on client programs is that they cannot manufacture reps.

3. OWNERSHIP CONFINEMENT

This section considers two examples of representation independence. The first is
an object-oriented version of an example given by Meyer and Sieber [1988] as a
challenge for semantics of Algol. It illustrates the expressiveness of object-oriented
constructs, specifically the use of callbacks which go against the hierarchical calling
structure which typifies the simplest forms of procedural and data abstraction.

The second example is an instance of the observer pattern [Gamma et al. 1995]
which is widely used in object-oriented programs. In addition to callbacks it involves
a non-trivial data structure and outgoing references from representation objects to
clients. Note that we use the term client not just for objects that use the abstraction
(owner class) of interest, by instantiating it or calling its methods, but for all objects
except instances of the owner and its reps.

This section concludes with an overview of our semantic notion of confinement,
Sect. 3.3, to which some readers may want to jump now.

3.1 Callbacks

Meyer and Sieber [1988] consider the following pair of Algol commands:
var n:=0; P(n:=n+2); if n mod 2 = 0 then abort else skip fi (%)
var n:=0; P(n:=n+2); abort ()

Both invoke some procedure P, passing to it the command n :=n+2 that acts on
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local variable n. (That is, P is passed a parameterless procedure whose calls have
the effect n:=n+2.) For any P, the commands are equivalent: both abort. The
reason is that in the first example n is invariably even: P is declared somewhere
not in the scope of n so the variable can only be affected by (possibly repeated)
executions of n:=n+2 and this maintains the invariant.

The difficulty in formalizing this argument is due to the difficulty of capturing
the semantics of lexically scoped local variables and procedures in a language where
local variables can be free in procedures that can be passed as arguments to other
procedures. It appears even more difficult, and remains an open problem, to cope
with assignment of such procedures to variables (see Sect. 12.1).

Now we consider a Java-like adaptation of the example, due to Peter O’Hearn.
In place of local variable n it uses a private field g in a class A. Instead of passing
the command n:=n+2 as argument, an A-object passes a reference to itself; this
gives access to a public method inc that adds 2 to the field.

class A extends Object {
int g; // (the default integer value is 0)
unit callP(C y){ y.P(self); if self.g mod 2 = 0 then abort else skip fi }
unit inc(){ self.g:=selfg +2} }

In the context of this class and some declaration of class C with method P, the
Algol command (x) corresponds to the command

Cy:=new Cin A x:=new A in x.callP(y) (1)

This aborts because after calling y.P, method callP aborts. The command () also
corresponds to () but in the context of an alternative implementation of class A:

class A extends Object {
int g;
unit callP(C y){ y.P(self); abort }
unit inc(){ self.g:=selfg +2} }

In Example 8.3, we use the abstraction theorem to prove equivalence of the two
versions using local coupling relation o.g = o’.g A o.g mod 2 = 0. This relation is
preserved by arbitrary P because P can affect the private field g only by calls to
inc.3

The example illustrates what are known as callbacks in object-oriented programs.
When an A-object invokes y.P(self) it passes a reference to itself, by which y may
invoke a method on the A-object which is in the middle of executing method callP
—a callback to A. If in () we replace x.callP(y) by x.callP(self), and assume that
(1) is a constituent of a method of class C, then we get a callback to C.

3As Reynolds [1978] shows (see also [Reddy 2002]), instance-based object-oriented constructs can
be expressed in Algol-like languages, but the latter are in some ways significantly more powerful.
The Java version of the example can be seen as giving an explicit closure (method inc) to represent
the command n:=n+2. The fact that we can prove the result in a simple semantic model can
be explained by saying the language is defunctionalized [Reynolds 1972; Banerjee et al. 2001] and
lacks true higher order constructs. So P ranges over more limited procedures than in Algol.

Journal of the ACM, Vol. V, No. N, Month 20YY.



14 . A. Banerjee and D. A. Naumann

The point of the Algol example is modular reasoning about (%) and (1) indepen-
dent from the definition of P. For the object-oriented version we can also consider
reasoning independent from subclasses of A. If instead of (}) we consider a method

unit m(Cy, A x){ x.callP(y) }

then there is the possibility that m is passed an argument x of some subtype of A
that overrides inc. By dynamic binding, the overriding implementation would be
invoked by callP. One might expect that, for modular reasoning, we need to require
that inc and callP satisfy the conditions of behavioral subclassing [Liskov and Wing
1994; Dhara and Leavens 1996]. But note that the subclass cannot directly access
private field g, so no matter what the overriding methods do they cannot violate
the invariant that g is even. Representation independence does not depend on be-
havioral subclassing. But behavioral subclassing is essential for modular reasoning,
in particular to prove the simulation property (step (2) in Sect. 2.1).

3.2 The observer pattern

In this subsection we consider variations on the often-used Observer design pat-
tern [Gamma et al. 1995], which involves a non-trivial recursive data structure
using multiple rep objects and outgoing references to client objects. Further varia-
tions are given in Sect. 9.

We focus attention on the abstraction provided by an Observable object (some-
times called the “subject” role). It maintains a list of so-called observers (“views”)
to be notified when some event occurs. Its public method add allows the addition
of an observer object to the list. The public method notifyAll represents the event
of interest; for our purposes, its effect is simply to invoke method notify on each
observer in the list. What notify does is not relevant, so long as it is confined. This
example is similar to “collection classes” which hold a set of references to client
objects; a comparison method may be invoked on the clients for sorting etc.

In the first version of the observer example, Fig. 2, most of the work is done by
the owner class Observable, which uses rep class Node to store observers in a singly
linked list. Versions in more object-oriented style can be found in the companion
technical report [Banerjee and Naumann 2004a].

Fig. 3 gives example client classes AnObserver and Main. Class AnObserver records
notifications in its state. Method main constructs and initializes an Observable,
installs an observer, ob, and invokes notifyAll; upon termination, ob.count = 1 and
no Observable is reachable.

Fig. 4 gives another version of Observable, using a sentinel node [Cormen et al.
1990], for the sake of an example. In Sect. 8 we show equivalence of the versions of
Figs. 2 and 4 as an application of the abstraction theorem and identity extension.
The coupling relation describes the correspondence between a pair of lists, one
with and one without a sentinel node (see Fig. 7). It is enough to say that the
same Observer locations are stored in the lists, in the same order: The state of the
Observer is not relevant —nor could it be in a modular treatment, as class Observer
has no fields. To reason about outgoing calls, namely to notify, it is enough to show
that the two implementations make the same calls. Those calls may lead to calls
back to the Observable, but encapsulation ensures that those calls are the only way
the behavior of notify can depend on, or affect, the Observable.
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class Observer extends Object { // “abstract class” to be overridden in clients
unit notify(){ abort } }

class Node extends Object { // rep for Observable
Observer ob;
Node nxt; // next node in list
unit setOb(Observer 0){ self.ob:=o0 }
unit setNext(Node n){ self.nxt:=n }
Observer getOb(){ result := self.ob }
Node getNext(){ result := self.nxt } }

class Observable extends Object { // owner
Node fst; // first node in list
unit add(Observer ob){ Node n:=new Node; n.setOb(ob); n.setNext(self.fst); self.fst:=n }
unit notifyAll(){ Node n := self.fst; while n # null do n.getOb().notify(); n:=n.getNext() od } }

Fig. 2. First version of observer pattern, in procedural style.

class AnObserver extends Observer {
int count;
unit notify(){ self.count := self.count+1 } }

class Main extends Object {
AnObserver ob;
unit main(){
ob := new AnObserver; Observable obl := new Observable; obl.add(ob); obl.notifyAll() } }

Fig. 3. Example client for Observable.

class Node2 extends Object { // rep for Observable
Observer ob;
Node2 nxt;
unit setOb(Observer o){ self.ob:=o0 }
unit setNext(Node2 n){ self.nxt :=n }
Observer getOb(){ result := self.ob }
Node2 getNext(){ result :=self.nxt } }
class Observable extends Object // owner {
Node2 snt; // sentinel node pointing to list
constr { self.snt := new Node2 }
unit add(Observer ob){
Node2 n := new Node2; n.setOb(ob); n.setNext(self.snt.getNext()); self.snt.setNext(n); }
unit notifyAll(){
Node2 n :=self.snt.getNext(); while n # null do n.getOb().notify(); n:=n.getNext() od } }

Fig. 4. Version of observable that uses sentinel node, in procedural style

Except for the bad method of Sect. 2.1, all of the examples discussed so far satisfy
the confinement conditions discussed next.

3.3 Confinement

Fig. 5 illustrates instance-based owner confinement; in this case Nodes are confined
to their owning Observable. Following Hogg [1991], we use the term island for the
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Observable

Fig. 5. Confinement example.
Rounded boxes are instances of
the indicated class. Solid arrows
represent allowed pointers. Dashed
boxes indicate owner islands, each
consisting of one owner and its reps.

Observable

Observer

sub-heap consisting of an owner and its reps. Dashed lines in the Figure depict two
islands. Our notion of owner confinement imposes four conditions on islands; here
are the first three:

(1) there are no references from a client object to a rep;
(2) there are no references from an owner to reps in a different island;
(3) there are no references from a rep to reps in a different island.

The Figure exhibits most allowed references, but we also allow an owner and its
reps to reference another owner (see Fig. 6 on page 28). An example is given in
Sect. 9.1. Note that heap confinement is a state predicate. The full definition,
formalized in Sect. 6, deals with preservation of this predicate by commands and
with leaks via parameter passing in outgoing method calls from island to client.

In class-based languages with inheritance, there is a subclass (or “protected”)
interface in addition to the public one. This raises the possibility of expressing
encapsulation of reps for not only (instances of) the owner class but also its sub-
classes. Because we study the replacement of a single class, not a class together
with its subclasses, we must treat subclasses like clients in that fields they declare
may not point to reps. To the list of conditions above we add:

(4) references from an owner’s fields to its reps are only in the private fields of the
owner class.

In order not to abandon the expressiveness of subclassing, however, we allow sub-
class methods to manipulate reps: they may be constructed, stored in local vari-
ables, and passed to the owner. This fits well with the factory pattern [Gamma
et al. 1995] which allows owner behavior to be adapted in owner subclasses with-
out violating encapsulation. To balance the paper, we have deferred the relevant
examples to Sect. 8. Sect. 12 has further discussion of the “protected” interface.
Confinement is formulated using class names. Two incomparable class names,
Own and Rep, are designated. An object is considered to be an owner (respectively,
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arep) if its type is Own (resp. Rep) or a subtype thereof. Incomparability is a mild
restriction that enforces a widely-followed discipline of distinguishing between rep
objects (e.g., nodes in a linked list) and objects representing abstractions (e.g., a
list). The technical benefit of incomparability is that if C' and D are incomparable,
which we write C' % D, then an expression of type C never has a value of type D.

We aim for clear separation between the semantic property needed for the ab-
straction theorem —restrictions on the heap as described above— and the syntactic
conditions used by the static analysis to enforce the confinement property. For per-
spicuity, the separation is not absolute: the “semantic” property includes conditions
on method signatures. For example, we impose the restriction that the return type
of a public owner method is incomparable to Rep.

Our use of types to formulate alias restrictions allows heterogeneous data struc-
tures, but is slightly restrictive in that there is a single common superclass for all
reps and that class cannot also be used by clients. (Generalizations are mentioned
in Sect. 2.3.) A more substantial restriction is due to the fact that class Object is
comparable to all classes. Because Java lacks parametric polymorphism, Object is
often used to express generics, e.g., a list containing elements of arbitrary type. A
method to enumerate the list would have return type Object, which violates our
restriction on owner methods. This restriction could be dropped in favor of more
sophisticated conditions to ensure that no rep is returned (see Sect. 12). But in
practice many generics have some sort of constraint expressed by a class or inter-
face type —like Observer in our examples, or Comparable for data structures that
depend on an ordering. These do not run afoul of our restriction. In any case, the
use of Object for generics is widely deplored because it undercuts the benefits of
typing; parametric types are clearly preferable.

Some works on confinement have considered all the confinement properties in-
tended to be satisfied by a program, using hierarchical notions of ownership [Clarke
et al. 2001; Miiller 2002]. For example, a Set could own the header of a list which in
turn owns the nodes of the list. This is not necessary for our purposes (see Sect. 12).
To analyse the abstraction provided by the set, we would consider both the header
and nodes to be reps. On the other hand, to replace one header implementation by
another, Set is irrelevant; we choose Own to be the header and Rep for the nodes.

What our formalization does not allow is for a single class to be considered as
both an abstraction to be revised and as an internal representation thereof. An
instance of Own cannot be part of the island of another instance of Own; in other
words, islands are not nested. Reps for one instance of Own can point to another
instance of Own, allowing, for example, a collection to contain collections of the
same kind. But a collection cannot use another collection of the same kind as part
of its encapsulated representation. This restriction is not needed for soundness of
simulation. Nested islands can be handled, at the cost of a healthiness condition
on couplings, saying that the coupling holds recursively on nested islands (this is
worked out by Cavalcanti and Naumann [2002, Def. 5] for a language without shar-
ing). The restriction simplifies our theory and fits comfortably with the notations
we borrow from Separation Logic. It precludes, for example, a class List that
serves both as the interface used by clients and also as the recursive node type.
Such examples are considered poor programming practice.
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4. SYNTAX

This section formalizes the language, for which purpose we adapt some notations
from Featherweight Java [[garashi et al. 2001].# To avoid burdening the reader with
straightforward technicalities we deliberately confuse concrete syntax with abstract
syntax. We do not distinguish between classes and class types. We confuse syntactic
categories with names of their typical elements. Barred identifiers like T' indicate
finite lists, e.g., T f stands for a list f of field names with corresponding types T
The bar has no semantic import; 7' has nothing to do with 7.

The grammar is based on given sets of class names (with typical element C' and
including at least Object), field names (f), method names (m), and names (z) for
parameters and local variables. In most respects self and result are like any other
variables but self cannot be the target of assignment.

Grammar
r 1
T := bool| unit|C data type
CL:= class C extends C { T f; M } class declaration
M == T m(T 7) {S} method declaration
S u=uz:=el|efi=e assign to variable, to field
| x:=newC object construction
| z:=em((e) method call
| Tx:=einS local variable block
| if ethen SelseSfi|S; S conditional, sequence
e == z |null|true | false | it variable, constant
| efle=e field access, equality test
| eisC|(C)e type test, cast

Class Object has no fields, no methods, and no proper superclass. Additional
primitive types, such as integers, can be treated in the same way as bool and unit
(integers can also be represented, e.g., in unary using linked lists).

In the formal language, expressions do not have side effects. Object construc-
tion, new, occurs only as a command x := new C that assigns to a local variable.
Method calls are not expressions but rather occur in special assignments x := e.m(€)
to allow both heap effects and a return value.

Remark 4.1 (syntactic sugar) In examples we use several abbreviations:
—A method call command e.m(€), e.g., self.g.set(true), abbreviates a call assigning

to an otherwise unused local variable.

—Assignment of a new object to a field abbreviates a local block assigning the new
object to a variable that is then assigned to the field.

—Object construction in local variable initialization abbreviates initialization to
null followed by object construction.

4But the languages differ, e.g., ours has imperative features and private fields.
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—Methods that return values but do not mutate state are used in expressions, e.g.,
the argument in self.inout := convertToString(z.getg()) and the target object in
n.getOb().notify(). These are easily desugared using fresh variables and suitable
assignments.

—skip abbreviates some no-op assignment x := x.
Since methods can be defined recursively, we omit loops.® [

A program is given as a class table C'T, a finite partial function sending class
name C' to its declaration CT'(C) which may make mutually recursive references to
other classes. Well formed class tables are characterized using typing rules which
are expressed using some auxiliary functions that in turn depend on the class table,
as is needed to allow mutual recursion. Consider a declaration

CT(C) =class C extends D {T, f; M } .

For the direct superclass of C, we define super C = D. Let M be in the list M of
method declarations, with

M = Tm(Tg E) {Sg} .

We record the typing information by defining mtype(m,C) = To—T. (Note that
To—T is not a data type in the language.) For the parameter names we define
pars(m, C) = Z. If m has no declaration in CT(C) but mtype(m, D) is defined then
m is an inherited method, for which we define mtype(m,C) = mtype(m, D) and
pars(m, C") = pars(m, D). For the declared fields, we define type(f,C) = T, and
dfieldsC = (f:T1). Here f:T; denotes a finite mapping of field names to types.
To include inherited fields, we define fieldsC' = dfieldsC U fields D and assume
f is disjoint from the names in fields D. The distinguished class Object has no
methods, fields(Object) is the empty list, and super(Object) is undefined.

A typing context T is a finite mapping from variable and parameter names to
data types, such that self € dom . Whereas the Java format T x is used in code to
give x type T, it is written x: T in typing contexts. Typing of commands for methods
declared in class C' is expressed using judgements I' - S where I' self = C. Moreover,
if mtype(m,C) = T—T and pars(m,C) = T then I'T = T and Tresult = T. We
sometimes say “command” rather than the more precise “command in context” to
refer to a derivable judgement I' - S. The judgement I' - e : T says that expression
e has type T

Definition 4.2 (subtyping , <) The class table determines a subtyping relation
<, where T' < U means T is a subtype of U, as follows. If T" or U is bool or unit
then define T' < U iff T = U. For class types C and D, define C' < D iff either
C=Dor superC <D. O

The definition of well formed class table requires that < is acyclic and as a conse-
quence we have C' < Object for all C.

Subsumption is built into the rules for specific constructs. For example, the
assignment rule allows x: D,y : E, self: C - z :=y provided that £ < D.

5But recursion cannot be coded by Landin’s trick of recursion through the heap, because methods
are statically bound to classes.

Journal of the ACM, Vol. V, No. N, Month 20YY.



20 : A. Banerjee and D. A. Naumann

Definition 4.3 (well formed class table) A class table is well formed provided
it satisfies the following conditions.

—Each class declaration class C extends D { T f; M } is well formed, that is,
each method declaration M in M is well formed, according to the rules to follow.

—If C occurs as the type of a field, parameter, or local variable in some class then
CT(C) is defined. No field or method has multiple declarations in a class.

—The subclass relation < is antisymmetric. O

The rules are straightforward renderings of the typing rules for Java, for private
fields, public methods and public classes [Arnold and Gosling 1998].

Typing of method declarations

Z:T,self: C,result: T - S
mtype(m, superC') is undefined or equals T—T
pars(m, super C') is undefined or equals T

CFTm(T7T){S}

In this method rule, the condition on mitype is the standard invariance restriction
on method types, as in Java [Arnold and Gosling 1998; Abadi and Cardelli 1996].
The last antecedent in the rule, concerning pars(m, D), ensures that all declarations
of a method use the same parameter names. This loses no generality and slightly
streamlines the formalization of the semantic domains and couplings.

Typing of expressions

I'tz:Tx Thknull:B TFit:unit I'F true:bool TI'F false:bool

F'kep:Ty They:Th I'Fe:(Tself) (f:T) € dfields(T self)
I'Fe; =ey:bool ke f:T

I'te:D B<D I'te:D B<D
'+(B)e:B 't eis B:bool

The rule for equality test allows comparison of arbitrary data types, and is ref-
erence equality in the case of class types. (If e; and e; have types not related by
<, the test e; = eq is false except when both are null.) The rule for field access
enforces private visibility: Only a method declaration in class C' can access fields
declared in CT(C) —it can access those fields on any object of its type. To access
its own fields the expression is self.f. The rule for cast is standard.®

61t is not adequate for expressions that arise through substitutions used in program logic (see Cav-
alcanti and Naumann [1999]) and in small-step semantics (see Igarashi et al. [2001]).
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Typing of commands

I'te:T T<T=z Fkep:(Tself) Theo:U 'S,
x # self U<LT (f:T) € dfields(T self) 'S,
I'Fx:=e F'Fei.fi=es I'ESy; S
I'te:D  mtype(m, D) = T—T B <Tz B # Object

P'rFe:U ULST T<Tzx xz#self x # self
't z:=em((e) I'+z:=new B
F'te:U ULST (T,x:T)FS
I'kFe:bool T'HS; Tk S x #self & domT
I' - if e then S; else Ss fi I'FTx:=ein S

In some of the command rules, the hypothesis involves a partial function which
must be defined for the hypothesis to be satisfied. For example, in the rule for
method call, mtype(m, D) must be defined and equal to T—T.

Each expression and command construct is the conclusion of exactly one typing
rule, and there are no other rules. Thus we have the following.

Lemma 4.4 A typing '+ S or I' - e: T has at most one derivation.” [

Definition 4.5 (inheritance) Method m is inherited in C from B if C < B,
there is a declaration for m in B, and there is no declaration for m in any D such

that C' < D < B. To make the class table explicit, we also say m is inherited from
Bin CT(C). O

Because the language has single inheritance, the subtyping relation < is a tree: if
D < Band D < C then B < C or C < B. If mtype(m,C) is defined for some
C then it is defined for all subclasses of C' and there is a unique ancestor class
declaring m that is least with respect to <.

Lemma 4.4 justifies proofs and definitions by structural induction on typings.
The following notion facilitates induction on inheritance chains.

Definition 4.6 (method depth) For any m and C such that mtype(m,C) is
defined, the method depth of C for m in CT is defined by depth(m,C) = 1+
depth(m, superC) if mtype(m, superC) is defined; otherwise, depth(m,C) =0. O

An immediate consequence is that if mtype(m,C) is defined and depth(m,C) =0
then C'T(C') has a declaration for m.

5. SEMANTICS

This section defines the semantic domains, then the semantics of expressions and
commands, and finally the semantics of well formed class tables.

7Strictly speaking this is not quite true, because in a context where null is typed as C it can
also be typed as some subtype of C. But this has no bearing on semantics. There are several
straightforward solutions to the problem and we leave it to the interested reader.
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Because methods are associated with classes rather than with instances, the
semantic domains are rather simple. There are no recursive domain equations
to be solved: subclassing (<) is acyclic and the cycle of recursive references via
class fields is broken via the heap. Mutually recursive method invocations can arise
through direct calls on a single object and also through callbacks between reachable
objects, as for example in the observer pattern. We impose no restrictions on such
calls. A fixpoint construction is used for the method environment which comprises
the semantics of the class table.

Often we write = between expressions involving partial functions such as those
used in typing. Unless otherwise indicated, it means strong equality: both sides
are defined and equal.

5.1 Semantic domains

The state of a method in execution is comprised of a heap h, which is a finite partial
function from locations to object states, and a store 7, which assigns locations and
primitive values to the local variables and parameters given by a typing context
I'.8 An object state is a mapping from field names to values. Function application
associates to the left, so h £ f is the value of field f of the object h ¢ at location £.

A command denotes a function mapping each initial state (h,n) either to a final
state (hg,no) or to the distinguished value L. We use the term global state for
(h,n), to distinguish it from object states. The improper value L represents non-
termination as well as runtime errors: attempts to dereference nil or cast a location
to a type it does not have.

In some languages it is a runtime error to dereference a dangling pointer, i.e., one
not in the domain of the heap. In Java dangling pointers cannot arise: there is no
command for deallocation and a correct garbage collector never deallocates reach-
able objects. For our purposes, garbage collection need not be modeled. Commands
act on heaps and stores that are closed in the sense that all locations that occur
are in the domain of the heap. The following paragraphs formalize our assumptions
about locations and then define the semantic domains.

For locations, we assume that a countable set Loc is given, along with a dis-
tinguished value nil not in Loc. To track each object’s class we assume given a
function loctype : Loc — ClassNames such that for each C' there are infinitely many
locations ¢ with loctype ¢ = C. We use the term heap for any partial function h
such that dom h Cg, Loc and each h{ is an object state of type loctype €. Object
states are formalized later. Because the domain of a heap is finite, the assumption
about loctype ensures an adequate supply of fresh locations.

We write locs C for {{ € Loc | loctype £ = C'}, and locs(C') for {¢ | loctype £ <
C'}. There is no independent meaning for the notation C|.

Definition 5.1 (allocator, parametric) An allocator is a location-valued func-
tion fresh such that loctype(fresh(C,h)) = C and fresh(C,h) & domh, for all
C,h. An allocator is parametric if domhy NlocsC = dom hy N locs C' implies
fresh(C, hy) = fresh(C, he). O

8“” is mnemonic for “environment”, the term we used in [Banerjee and Naumann 2002] to avoid

the irrelevant connotations of “stack”, before we adopted “store” following Reynolds [2001].
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For example, taking Loc = N and loctype to be arbitrary, a parametric allocator is
given by the function fresh(C,h) = min{l | loctype { = C N & dom h}.

In implementations, the object class is usually encoded as part of its state. One
could uncurry this representation of heaps and take Loc to be N x ClassNames.
Then fresh(C,h) could return (n,C) where n = min{k | (3B - (k, B) € domh)}.
This is an allocator that is not parametric, because the presence of objects of one
class affects the availability of memory for objects of other classes.

We define the semantics in terms of an arbitrary allocator fresh. The assump-
tion of parametricity is stated explicitly where it is needed, namely for the first
abstraction theorem (Sect. 7) but not the second (Sect. 10). Parametricity of the
allocator is a reasonable assumption for some applications but not all. The as-
sumption streamlines the proof of the abstraction theorem, allowing us to highlight
other issues. For the second abstraction theorem, we drop parametricity and com-
plicate the definitions of coupling and simulation by adding a bijective renaming of
locations.

In addition to heaps, it is convenient to name a number of other semantic cate-
gories that are explained in due course. In the following, # ranges over suggestive
notations and each 6 has an associated set [0] of values.

Semantic categories
I 1

0 =T |T |stateC | Heap | Heap @ T | Heap @ T | 0, | C, T, T—T | Menv

The funny symbol in Heap @ T' is meant to indicate that the set [Heap @ I'] is a
dependent form of cartesian product, specifically a heap paired with a store closed
in the heap. Stores are among the simpler semantic domains.

Semantics of types, object states, and stores

[bool] = {true, false}

[unit] = {it}

[C] {nil} Ulocs(C|)

[state C] = {s| dom s = dom(fieldsC) AY(f:T) € fieldsC - sf € [T]}
Ir] = {n| domn = domT Anself # nil A\Vz € domn - nz € [['x]}

Definition 5.2 (closed heap and store) A heap h is closed, written closed h,
iff rng(h€) N Loc C dom h, for all £ € dom h. A store n € [I'] is closed in heap h,
written closed(h,n), iff rngn N Loc C domh. O

Note that rng(h¢) is the set of values in fields of the object state h £.
Recall that fresh locations should occur nowhere in the global state. For a closed
store and heap, this follows from the requirement that fresh(C,h) € dom h.
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Semantics of global states and methods

[Heap] = {h| domh Cg, Loc A closed h
AVl € domh - hl € [state (loctype £)]}
[Heap @T] = {(h,n) | h € [Heap] A n € [T] A closed(h,n)}
[Heap @ T] = {(h,d) | h € [Heap] Ad € [T] A (d € Loc = d € domh)}
[0.] = [flU{L} (where L is some fresh value not in [])
[C, &, T—T] = [Heap ® (T:T,self:C)] — [(Heap @ T) ]
[Menv] = {p| VC,m - uCm is defined iff mtype(m, C) is defined,

and pCm € [C, pars(m, C), mtype(m, C)] if pCm defined }

Just as a class declaration CT(C) gives a collection of method declarations, the
semantics of a class table is a method environment that assigns to each class C a
method meaning p C'm for each m declared or inherited in C.

For the fixpoint construction of the method environment denoted by a class
table, we need to impose order on the semantic domains. We use the term com-
plete partial order for a poset with least upper bounds of countable ascending
chains [Davey and Priestley 1990]. The degenerate case is ordering by equality,
which is the order we use for the semantics of T, T', state C, Heap, (Heap ® I'),
and (Heap ® T). Then [(Heap @ ") 1] and [(Heap ® T') ] are complete partial or-
ders with the “flat” order: L is below anything and other comparable elements
are equal. The set [C, 7, T—T] is defined to be the space of total functions
[Heap @ (z:T,self: C)] — [(Heap ® T),], all of which are continuous because
Heap @ (z:T,self: C) is ordered by equality. The function space itself is ordered
pointwise, making it a complete partial order with minimum element A(h,n) - L.
Finally, we order [Menv] pointwise. All method environments p in [Menv] have
the same domain, determined by CT', so this is also a complete partial order, taken
pointwise. It has a minimum element, namely AC - Am - A(h,7n) - L.

Whereas [state C] consists of the states for objects of exactly class C, the set
[C] is downward closed. For data types Ty, T we have T1 < Ty = [T1] C [T2].

Definition 5.3 (incomparable, %) We write C % B for C £ BAC % B. For a
list C, C % B means C % Bforall C'in C. O

Lemma 5.4 For classes C, B, if C' % B then [C] N [B] = {nil}. For primitive T
we have [T|N[B]=2. O

The result is a direct consequence of the definitions. We often use the contrapositive:
if there is a non-nil location in both [B] and [C] then B < C or C' < B.

5.2 Semantics of expressions, commands and methods

For expressions and commands, the semantics is defined by induction on typing
derivations. As a consequence of uniqueness of typing derivations, Lemma 4.4, the
semantics is a function of typings. The meaning of a command I" F .S will be defined
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to be a function
[l S] € [Menv] — [Heap @ T'] — [(Heap @ T') ] .
The meaning of an expression I' F e : T" will be defined to be a function
[TFe:T) € [Heap @T] — [T1]

such that the result value is always in the domain of the heap if it is a location.
This is part of Lemma 5.7.

The command and expression constructs are strict in 1, except, as usual, for
the then- and else-commands in if — fi. To streamline the treatment of L in the
semantic definitions, the metalanguage construct

letd = F1in Ey

denotes L if the value of E; is L; otherwise, its value is the value of Fy with d
bound to the value of E;.

We let (h,n) € [Heap @ I'] in the following definitions. Note that identifiers in
the defining equations are as in the corresponding typing rules. For semantic values
we use the identifier d, but sometimes ¢ for elements of the sets [C]. For expressions
the semantics is straightforward; we choose the Java semantics for casts and tests.

Semantics of expressions
I 1

[T+ a:T)(h,n) = nx
[T+ null: B](h,n) = nil
[T F it :unit](h,n) = it
[T+ true:bool|(h,n) = true
[T+ false:bool](h,n) = false

[Tt e1 =ez:bool](h,n) = letdy =[I'F er:T1](h,n) in
let dy = [[F Fes :TQ]](h7T]) in
if dy = ds then true else false

[T Fe.f:T](h,n) = let¢{ =]t e:(Tself)](h,n) in

if £ = nil then Lelse h{ f
[T+ (B)e:B](h,n) = let{=[T'Fe:D](h,n)in

if £ = nil V loctype £ < B then £ else L
[T Feis B:bool](h,n) = let{=[I'F e:D](h,n)in

if £ # nil A loctype £ < B then true else false

The semantics of commands is defined by structural induction on commands. In
the semantics of commands, we write [fields B — defaults] as an abbreviation for
the function sending each f € dom(fields B) to the default value for type(f, B).
The defaults are false for bool, it for unit, and nil for classes. Function update or
extension is written like [ | z+—d]. We write | for domain restriction: if z is in the
domain of 7 then n | z is the function like  but with x dropped from its domain.
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Method calls of the form z := e.m(€) are dynamically bound: the method mean-
ing is determined by loctype £ in the semantic definition, where £ is the value of e.
By typing, loctype £ < D and pars(m, loctype £) = pars(m, D).

Semantics of commands

[T F x:=eJu(h,n) = letd=[TFe:T](h,n)in (h,[n|z—d)
[T Fei.f:=ea]u(h,n) = let{=[T'F ey:(Tself)](h,n) in

if £ = nil then L else

let d =['F ez:U](h,n) in

((h [ €—=[he] fr=d]l,n)

[T -« :=new B]u(h,n) = let £ = fresh(B,h) in
let hg = [h | £— [fields B — defaults]] in
(o, | 2]

[T F x:=em(e)]u(h,n) = let{=[I'Fe:D](h,n)in

if £ = nil then L else
let T = pars(m, D) in
let d = [T Fe:U](h,n) in
let 1 = [T — d, self — £] in
let (h1,d1) = u(loctype )ym(h,n1) in
(h1,[n | x—di])
[T F Si; Sofu(h,n) = let (hy,m) = [I'F Si]pu(h,n) in
[ Salp(hy,m)
let b= [I'F e:bool](h,n) in
if b then [I' - S1]u(h, n) else [T F Sa]p(h, n)
[T FTx:=ein SJu(h,n) = letd=[TtFe:U](h,n) in
letn; = [n | z—d]in
let (h1,m2) = [(T,2:T) F SJu(h,m) in
(1, (1))

[T F if e then S else Ss fi]u(h,n)

Semantics of method declaration

I 1
Suppose M is a method declaration in CT(C), with M = T m(T z){S}. Its
meaning [M] is the total function [Menv] — [C,Z, T—T] defined by

[M]u(h,n) = let n1 = [n | result— default] in
let (ho,m0) = [T:T,self: C,result: T+ S]pu(h,ny) in
(ho,mo result)

For precision in the semantics of a method inherited in C from B we make an
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explicit definition for the domain-restriction of a method meaning in [B, T, T—T]
to the global states (h,n) in [Heap @ T: T, self: C].

Definition 5.5 (restr) For d € [B,T, T—T] and C < B, define restr(d,C), an
element of [C, T, T—T], by restr(d,C)(h,n) = d(h,n). O

Semantics of class table and its approximation chain u;

I 1
The semantics of a well formed class table C'T, written [CT], is the least upper
bound of the ascending chain y € N — [Menv] defined as follows.

woCm = Ah,m) - L if m is declared or inherited in C
i1 Cm = [M]p; if m is declared as M in C
wit1 Cm = restr((uj+1 Bm),C) if m is inherited in C from B

Remark 5.6 (On proofs) We give some proofs in considerable detail. To avoid
repetition, we use the same identifiers as in the relevant semantic definition for
each case —often different from those in the statement of the result being proved—
taking care to avoid ambiguity. This saves explicit introduction of the identifiers
or mention of the ranges and scopes of quantification. But it requires the reader to
keep an eye on the semantic clauses. Often, without remark, we consider only the
case where the outcome and various intermediate values are non-_L.

Lemma 5.7 (semantics is well defined and typed) Let C'T be well formed.

(1) If C < B then for any I' with self ¢ domT' we have [Heap @ I',self: C] C
[Heap @ T, self: B].

(2) fT'Fe:T then [I'Fe:T] € [Heap @] — [T1]-

(3) If (h,n) € [Heap®@T] and d = [['F e:T](h,n) with d # L then (h,d) €
[Heap @ T7.

(4) T+ S then [I' - S| € [Menv] — [Heap  T'] — [(Heap ®T')(].

(5) [CT] is well defined and is an element of [Menv].

The proof is lengthy because the language is big and the semantic domains impose
several invariants so that definedness amounts to type safety. The limit construction
of [CT] can be justified using a straightforward characterization of the ordering on
[Menv]. The proof is sketched in the technical report [Banerjee and Naumann
2004a] and has been machine checked using PVS [Naumann 2005].

Garbage collection is not modeled in our semantics. As a consequence, the do-
main of the heap does not shrink and this fact simplifies some definitions in the se-
quel (mainly Def. 6.3 of partition extension and Def. 10.3 of coupling with bijection
on allocated locations). To be precise, say that a method environment p is heap-
extending if n C'm (h,n) = (ho,d) implies dom h C dom hq (for all C,m, h,n, ho,d).
Lemma 5.8 (heap domain extended) (1) If [I'F S]u(h,n) = (ho,no) and p is

heap-extending then dom h C dom hg (for all S h,n, ho,n0).
(2) [CT] is heap-extending, as is each p; in its approximation chain.
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Fig. 6. Confinement scheme for is-
land j. Dashed boxes are partition
blocks. Solid lines indicate allowed
references and dotted lines indicate
prohibited ones. There is no restric-
tion within blocks.

The proof of (1) is by induction on S; it amounts to checking that no command
removes locations from the domain of the heap. The proof of (2) is by induction
on the approximation chain, using (1) for declared methods.

6. CONFINEMENT RAMIFIED

This section formalizes the semantic notion of confinement discussed in Sect. 3.3.

6.1 Confinement of states

As discussed in Sect. 3.2 we assume that class names Own and Rep are given, such
that Own % Rep and thus [Own] N [Rep] = {nil}.

We say heaps hi and ho are disjoint if dom hy N dom hy = &. Let hy % ho be the
union of hy and hs if they are disjoint, and undefined otherwise.

We shall partition the heap as h = Ch ... where Ch contains client objects and
the rest is partitioned into islands of the form OR x Rh consisting of a singleton
heap Oh with an owner object and a heap Rh of its representation objects. In such
a partition, the heaps Ch, Oh, and Rh need not be closed. An example is Fig. 5 in
Sect. 3.3; the general scheme is depicted in Fig. 6. Our use of the word “partition”
is slightly non-standard: we allow the blocks Rh; and Ch to be empty.

Definition 6.1 (admissible partition) An admissible partition of heap h is a
set of pairwise disjoint heaps Ch, Ohy, Rh1, ..., Ohy, Rhy, for k > 0, with

h = Ch x Ohq * Rhy * ...* Ohy x Rhy,
and for all ¢ (1 <i<k)

—dom Oh; C locs(Own]) and size(dom Oh;) =1 (owner blocks)
—dom Rh; C locs(Rep)) (rep blocks)
—dom Ch Nlocs(Own]) = @ and dom ChNlocs(Repl) = & (client blocks)

Definition 6.2 (confined heap, confining partition, %, 767) To say that no
object in h; contains a reference to an object in ho, we define -4 by

hi % he & VL € domhy - rng(hi €) Ndomhy =& .
To say that no object in hy contains a reference to an object in hy except via a field
in f, we define 147 by
hi 47 hy & Ve e domhy - rng((hy 0)|F) N domhy = @ .

A heap h is confined, written conf h, iff it has a confining partition. A confining
partition is an admissible partition such that for all j, 7 with j # i we have
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(1) Ch+ Rh; (clients do not point to reps)
(2) Ohj + Rhy; (owners do not share reps)
(3) Ohj 7 Rh; where § = dom(dfields(Own)) (reps are private to Own)
(4) Rhj + Rh; (reps are confined to their islands)

A heap may have several admissible partitions, because there is no inherent order
on islands and because unreachable reps can be put in any island. The definitions
and results do not depend on choice of partition. We have not found a workable
formulation that determines unique partitions. To describe the effect of confined
commands on partitions we use the following.

Definition 6.3 (extension of confining partition, <) Define h < hq iff h is
confined and for any confining partition of A,

h = Ch % Ohy % Rhy *...% Ohy x Rhy, (k> 0),
there is a confining partition of Ay,
ho = Ch® x ORY % RhY % ... % OhY x RhY |
that is an extension in the sense that it satisfies the following:

—n>k

—dom(Ch) C dom(Ch®)

~—dom(Oh;) C dom(OhY) for all j < k
—dom(Rh;) C dom(Rhj) for all j <k O
Note that h < hg implies dom h C dom hg.

Confinement of a store depends on the class in which it may occur. For owners
and reps it depends on the domain of the heap as well.

Definition 6.4 (confined store, global state) Let h be a confined heap and 7
be a store in [I', self: C] for some I'. We say 7 is confined in h for C iff

(1) C £ Rep A C % Own = rng nNlocs(Repl) = @
(2) C <Own = rngnnlocs(Repl) C dom(Rh;)
for some confining partition and j with nself € dom(Oh;)

(3) C < Rep = rngnNlocs(Rep|) C dom(Rh;)
for some confining partition and j with nself € dom(Rh;)

A global state (h,n) is confined, written conf C (h,n), iff h is confined and 7 is
confined in h for C. O

Apropos the examples in Sect. 2.1, take Rep to be Bool and suppose the sequence
z:=new OBool; w:=z.bad() occurs in a method of some client class. Executed
in a confined initial state, the state after assignment of a new OBool to z is still
confined. The assignment to w then yields a state where the heap is confined but
the client’s store is not.
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6.2 Confinement of commands and methods

A confined command is one that preserves confinement of global states. Because
command meanings depend on the method environment and expression meanings,
confinement for those is formalized first. We need to ensure that a method call
yields a heap confined for the caller. This is achieved using the condition A < hg
in the following Definition, together with Lemma 6.13 to follow.

Definition 6.5 (confined method environment) Method environment y is con-
fined, written conf p, if and only if the following holds for all C' and m with

mtype(m, C) defined. Let mtype(m,C) = T—T and pars(m,C) = 7. For all

(h,n) € [Heap @ T: T, self: CJ, if conf C (h,n) and uCm(h,n) # L then

(1) C £ Rep = h < hg Ad & locs(Repl)

(2) C < Rep = h<hoA (d€locs(Rep|) = d € dom(Rh;))
for some confining partition hg = Ch * Ohy * Rhq ...
and j with nself € dom(Rh;)

where (ho,d) = pCm(h,n). O

Note that the consequent h < hg implies conf hg, by definition of < using conf h
which follows from the antecedent conf C (h,n). Also, a confined method environ-
ment is heap-extending in the sense defined just before Lemma 5.8. So in reasoning
about commands we will not need to separately assume that the method environ-
ment is heap-extending.

Condition (1) in Def. 6.5 fails for method bad of the example in Sect. 2.2, regard-
less of whether the return type of bad is taken to be Object or Bool.

The conditions for confinement of expressions are like those for confined stores
—after all, a store provides the meaning for the expression x. The conditions are
somewhat different for confined method environments, because methods are public
and can be called both by clients and from within an owner island. (In Sect. 9,
Def. 6.5 is refined to allow module-scoped owner methods to return reps.) Also,
confinement of commands does not explicitly require partition extension h < hg like
Def. 6.5 does, because it is a consequence of the other conditions (see Lemma 6.14).

Definition 6.6 (confined expression) Let C' = I'self. Expression I' - e:T is
confined iff for any (h,n), if conf C (h,n) and [' F e: T](h,n) # L then the following
hold, where d = [I' - e: T|(h,n).
(1) C £ Rep A C % Own = d & locs(Rep)
(2) C <Own = (d € locs(Repl) = d € dom(Rh;))

for some confining partition and j with nself € dom(Oh;)
(3) C < Rep = (d €locs(Repl) = d € dom(Rh;))

for some confining partition and j with nself € dom(Rh;) O

Definition 6.7 (confined command) Let C' = I'self. Command I" - S is con-
fined iff

—conf A conf C (h,n) AT F S]u(h,n) # L = conf C (ho,no), for any p and any
(hvn)v where (h07770) = [[F t S]]:u’(ha 77)
—if S is a method call then it has confined arguments (see below). O
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Confinement of arguments means that the store, 71, passed in the semantics of
method call is confined for the callee.

Definition 6.8 (confined arguments) Let C = I'self. A call I' - z:=e.m(e)
has confined arguments provided the following holds. Suppose U is the static type
of € and D the static type of e. For any (h,n) with conf C (h,n), let

d=[T+e:U](h,n) L=[Tke:D](h,n) n=[T dself—{] .
If £ # 1, £ # nil, and L does not occur in d then conf (loctype £) (h,n1). O

A purely semantic formulation would call class table C'T confined just if [CT]
is a confined method environment. But under simple restrictions, confinement of
[CT] follows from confinement of method bodies. Thus we choose the following.

Definition 6.9 (confined class table) Class table CT is confined iff for every
C and every m with mtype(m,C) = T—T the following hold.

(1) If m is declared in C' by T m(T %){S} then S and all its constituents are
confined.

(2) If C < Own then T % Rep.

(3) If m is inherited in Own from some B > Own then T % Rep.

(4) No method m is inherited in Rep from any B > Rep. O

In Sect. 10 we add module-scoped methods on which condition (2) need not be
imposed. This condition ensures that owner methods do not return reps, which is
not ensured by confinement of the method body. Condition (4) is needed because
confinement of a method inherited from B > Rep depends on the arguments,
including self, being confined at B where reps are disallowed. Invocation of such
a method on an object of type Rep (or a subclass) would yield a store with self a
rep. A more refined restriction is to disallow inheritance into Rep only for methods
which leak self; see Sect. 12.2.

Example 6.10 Condition (2) precludes the bad method of Sect. 2.1, for both return
types Object and Bool. Except for this, all examples in Sect. 2 yield confined class
tables (e.g., the well formed class table obtained by combining Figs. 2 and 3). One
way to prove confinement for these examples is to check that they are safe according
to the static analysis of Sect. 11. O

6.3 Properties of confinement

We need a number of results about confinement. The most important is that the se-
mantics of a confined class table is a confined method environment (Theorem 6.15).
This depends on Lemma 6.14 which says that confined commands extend heap par-
titions, provided that method meanings have this property.

Lemma 6.11 If T is bool or unit, then every I' - e: T is confined.
PRrROOF. Direct from the definitions: confinement only pertains to locations. [

Lemma 6.12 Suppose rngn Nlocs(Repl) = @ and C < B. Then for any h and
any 1 € [, self: C] we have conf C (h,n) iff conf B (h,n).

PROOF. Straightforward case analysis. [
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Lemma 6.13 If conf C (h,n) and h < hg then conf C (ho,n).
ProOOF. Straightforward from the definitions. [

Although confining partitions are not unique, a given confining partition of an
initial state can be extended to one on the final state for any command.

Lemma 6.14 (extension by commands) Suppose I' + S is confined and all
its constituents are confined. Let C' = I'self. For any p,h,n with conf p and
conf C (h,n), wehave [I' - SJu(h,n) # L = h < hg, where (hg, —) = [T F STu(h,n).

PROOF. By structural induction on S. Let C' = I'self. We assume a confining
partition h = Ch % Ohy * Rhy % ... * Ohy * Rhy, is given (k may be 0, i.e., there
need not be any islands). We show how to construct confining partition hy =
Ch® x OhY + RRY % ... that extends the given one.

CASE T F ey.f:=e9. From [['F ey.f:=eo]u(h,n) # L and Lemma 5.7(3) we
have that ¢ € dom h where ¢ = [I' F ey : C](h,n). By semantics, hg = [h | £+ [h |
fr—d]]. We partition hg using the given partition for h. That is, the domain for
each block of the updated heap hg is the same as the corresponding block for h.
Clearly this extends the partition for h. To show that this partition is confining for
hg, it suffices to show that the update of hff to d satisfies the confinement property
for £. We argue by cases on loctype ¢

—loctype £ £ Own A loctype ¢ % Rep. Then Def. 6.2(1) applies; it requires d ¢
locs(Repl). By typing, loctype ¢ < C, so C £ Own A C' £ Rep. Thus by confine-
ment of e; (a constituent of e;.f := es and therefore confined by hypothesis), we
have by Def. 6.6(1) that d & locs(Rep|).

—loctype £ < Own. Def. 6.2(2) and (3) apply here. Letting j be the index of the
island with {¢} = dom(OhY) = dom(Oh;), we must show both Oh > Rh{ (for
i # j) and Oh? AT Rh]Q. By typing, loctype £ < C, so C < Own or Own < C' by
the tree property of <. We argue by cases on C.

—Own < C. By Own % Rep, we have C' £ Rep so confinement of e; at C' yields
d ¢ locs(Repl). Thus Oh + Rh; and OB -7 Rh.

—C < Own. By confinement of ey, if d € locs(Rep]) then d € dom(Rh?)
so OhY + Rh) for i # j. If C = Own then, by the typing rule for field
update, f is in the private fields § of Own, so the update cannot violate
Oh?— A9 Rh?. If C < Own then d & locs(Rep]) because if d is a rep then there
would be no confining partition, contradicting confinement of hg which holds
by confinement of S.

—loctype ¢ < Rep. Def. 6.2(4) applies in this case: we need to show Rh? A Rh?
where i # j and j is the island for £ in the partition of h. By typing, loctype £ < C,
hence C' < Rep or Rep < C. But if Rep < C then C % Own and the confinement
condition for e; (Def. 6.6(1)) at C' contradicts loctype £ < Rep, so we have C' <
Rep. Now confinement of e yields d € locs(Rep|) = d € dom(Rh;). This proves
Rh{ +> Rh, because dom(Rh;) = dom(Rh)).

CASE I'  z:=new B. In the semantic definition, hg = [h | £ — [fields B —
defaults]] where £ = fresh(B,h). Define Bh = [¢ — [fields B — defaults]] so
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ho = hx Bh. Next, we argue that h < hg. Because h is closed, £ is not in the range
of any object state in h. To construct an extending partition it suffices to deal with
the new object, as its addition cannot violate confinement of existing objects. (This
would not be the case if dangling pointers were allowed, without further restrictions
on fresh.) We define the extension and argue by cases on B.

—B & Own A B £ Rep. For a confining partition of hy we extend that for h by
defining Ch® = Ch % Bh and using the given partition of owner islands. Because
defaults contains no locations, this is a confining partition.

—B < Own. We extend the partition by adding an island OhY 41 % RRY, 41 with
Oh) 41 = Bh and RRY, 11 = @. This is a confining partition because defaults has
no locations.

—B < Rep. We can obtain a confining extension by adding Bh to any of the Rh;,
as defaults has no locations.

CASE I' F z:=e.m(€). As e.m(e) is confined, its argument values are confined.
Thus we can obtain the result directly from the semantics of e.m(€) and confinement
of p —which explicitly stipulates i < hyg.

The remaining cases are straightforward. O

Theorem 6.15 Suppose that CT is confined. Then the semantics [CT] is con-
fined, as is each p; in the approximation chain used to define it.

The proof uses fixpoint induction, which is only sound for admissible predi-
cates [Mitchell 1996], i.e., those closed under limits of ascending chains. For confine-
ment of method environments the definition is given pointwise, ultimately unfold-
ing to the property that the semantics of each method body preserves confinement.
This definition, as well as the one for the simulation R later, is in the usual form of
logical relations. By the structure of the definition, and continuity of the semantics,
the property is an admissible predicate.”

ProOF. Confinement of [CT] follows by fixpoint induction from confinement
of p,; for all ¢, which we show by induction on ¢. The base case holds because
uoCm = A(h,n) - L, for any C,m, and this is confined by definition.

For the induction step, suppose conf p;, to show conf p;11. Consider an arbitrary
m. We argue for all C' with mtype(m,C) defined, by induction on method depth
(Def. 4.6) of C for m. The base case is C' such that depth(m,C) = 0. In this case,
CT(C) has a declaration

T m(T 7){S} .
Suppose conf C (h,n) and p;11Cm(h,n) # L. Let (ho,d) = pi+1Cm(h,n), which
by definition of u;y; is obtained as
m = [n | result— default]
(ho,mo) = [T:T,self:C,result:T F S]ui(h,m)
d = ngresult
9A rigorous proof can be given using a straightforward characterization of ascending chains in

[Menv]. For a similar notion of simulation and the same semantic model, this has been machine
checked [Naumann 2005].
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Default values do not violate confinement so conf C (h,n1). As CT is confined,
S and its constituents are confined. By Lemma 6.14 we have h < hg, so by
Lemma 6.13 we have conf C (hg,n). To show the confinement condition for p;1Cm
it remains to deal with the result value d. We have conf C (hg,n0) by confinement
of S. We argue by cases on C.

—C &£ Own A C £ Rep. We need d ¢ locs(Repl), for Def. 6.5(1), and this follows
from conf C (ho,no) by Def. 6.4(1).

—C < Own. We need d ¢ locs(Repl), and since by typing we have d € [T],
Def. 6.9(2) ensures T % Rep and hence d ¢ locs(Reps]). (Note that semantic
confinement of 7y at C' < Own allows reps, so it is not enough for this case).

—C < Rep. Then we need d € locs(Rep]) to imply that d is in the domain of Rh;
for some partition and island j such that nself € dom(Rh;). This follows from
conf C (ho,no) by Def. 6.4(3).

This concludes the base case of the induction on depth.

For the induction step, i.e., depth(m,C) > 0, m may be inherited or declared in
C. If it is declared in C the argument is the same as for the case depth(m,C) =0
above. Suppose m is inherited in C from B. Now p;+1Cm = restr((pi+1Bm),C)
by definition of p;+;. By induction on depth p;y;Bm satisfies the confinement
condition for m, B. To show the condition for p;11Cm, suppose conf C (h,n). We
claim that conf B (h,n). Using the claim, we argue as follows. If y;11 Bm(h,n) # L,
let (ho,d) = pit1Bm(h,n). By induction on depth we have conf B (hg,n) and h <
ho. By Lemma 6.13 we obtain conf C (hg,n). It remains to show the confinement
condition for d and to prove the claim. We argue by cases on C.

In the following non-rep cases, the claim holds by Lemma 6.12. To apply the
Lemma, we just need to show that rngn Nlocs(Rep|) = @.

—C % OwnAC £ Rep. In this case, we have rng nNlocs(Rep|) = @ by confinement
of n at C, Def. 6.4(1).

—C < Own < B. Then Own inheri_ts m from B > OQwn, so by confinement of the
class table, Def. 6.9(3), we have T' % Rep. Also, Own % Rep, so by Lemma 5.4
we have no reps in rngn.

In the preceding cases, the condition imposed on d by Def. 6.5(1) for class C is
d & locs(Repl). But this same condition is imposed for class B, and it holds by
induction on depth. For the remaining cases we prove the claim conf B (h,n) as
follows.

—C < B < Own. Both B and C impose the same condition (Def. 6.4(2)).
—C < B < Rep. Both C' and B impose the same conditions on 7 (Def. 6.4(3)).
In these two cases the requirement for d at C, Def. 6.5(2) or (1), is the same as for
B, so it holds by induction on depth.

The case C < Rep < B cannot occur in a confined class table. If m is inherited in

C < Rep from B then it is inherited in Rep from B, and this is explicitly disallowed
in Def. 6.9(4). O
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7. FIRST ABSTRACTION THEOREM

This section formulates and proves the central result of the paper. First, we make
precise the idea of comparing two class tables that differ only in their implementa-
tion of class Own. Then we define local coupling: a relation between single instances
of class Own for the two implementations. This induces the coupling relations for
other data types, for heaps containing multiple instances of Own, and for method
meanings. Related method meanings have the simulation property: if initial states
are coupled, then so are outcomes. The main theorem says that if methods of Own
have the simulation property then so do all methods of all classes.

7.1 Comparing class tables

We compare two implementations of a designated class Own. They can have
completely different declarations, so long as methods of the same signatures are
present —declared or inherited— in both. They can use different reps, distin-
guished by class name Rep for one implementation and Rep’ for the other. We
allow Rep = Rep’. For simplicity, we assume that both Rep and Rep’ are in each
of the two compared class tables.

Definition 7.1 (comparable class tables, non-rep class) Suppose class names
Own, Rep, Rep’ are given, such that Own % Rep and Own % Rep’. We say C is a
non-rep class iff C £ Rep and C £ Rep’. Well formed class tables CT and CT" are
comparable provided the following hold.

(1) CT and CT' are identical except for their values on Own. (In particular,
CT(Rep) = CT'(Rep) and CT(Rep’) = CT'(Rep').)
We write -, for the typing relations determined by CT,CT’ respectively,
and similarly for the auxiliary functions, such as mtype, mtype’. We also write
[-],[—] for the respective semantics and assume that the same allocator, fresh,
is used for both [—] and [-]'.

(2) superOwn = super’ Own.

(3) For any m, either mtype(m, Own) and mtype' (m, Own) are both undefined or
both are defined and equal. O

Example 7.2 Let CT be given by Figs. 2 and 3, with Node2 from Fig. 4. Let C'T’
be given by Figs. 4 and 3 together with Observer from Fig. 2. These are comparable,
taking Rep to be Node and Rep’ to be Node2. [

Note that the typing relations I' = — and I" -’ — are the same except if I'self =
Own. Similarly, dfieldsC = dfields’ C unless C = Own.

Instead of condition (3), one could require that CT(Own) and CT’(Own) de-
clare the same methods. But that would disallow some situations that occur in
practice. Suppose class C' extends B by adding a method m implemented using
calls to methods inherited from B. This might be the easiest way to achieve desired
functionality for m, but there could be an alternative data structure that is more
efficient for m and for the methods of B. An alternative implementation of C' could
add that data structure and override the methods of B to use it. One can argue that
the program is poorly designed, e.g., because space for attributes of B is wasted
in C objects. Better designs are possible. Nonetheless, such examples do arise
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in practice; allowing them complicates the proof of Theorem 7.20 but none of the
other results. The main consequence we need from condition (3) is the following.

Lemma 7.3 If mtype(m, C) is defined then depth(m,C) = depth’(m, C).
ProoOF. Straightforward. O

One can imagine a theory in which an owner subclass has different declarations
in CT and CT’. But we are concerned with an abstraction provided by a single
class rather than by a collection of classes, so we require CT(C) = CT’(C') even for
C < Own. In Sect. 7.3 we impose a restriction on owner subclasses that is needed
for the first abstraction theorem. The issue is explored in Sect. 9 and the restriction
lifted in Sect. 10.

7.2 Coupling relations and simulation

The definitions are organized as follows. A local coupling L is a suitable relation on
islands. This induces a family of coupling relations, R 6 for each semantic category
f. Then comes the definition of simulation, a coupling that is preserved by all
methods of Own and established by the constructor.

Definition 7.4 (local coupling, £) Given comparable class tables, a local cou-
pling is a binary relation £ on heaps —not necessarily closed— such that the fol-
lowing holds: For any h, b/, if Lhh' then there is a location ¢ with loctype £ < Own
and partitions h = Oh * Rh and b’ = OR’ « Rh' such that

(1) dom Oh = {{} = dom Oh'

(2) dom(Rh) C locs(Repl) and dom(Rh") C locs(Rep'|)

(3) hef = h'Lf for all f € dom(fields(loctype £)) with f ¢ g and f & §', where
g = dom(dfields(Own)) and g’ = dom(dfields'(Own)) O

Example 7.7 below shows why we allow £ to act on heaps that are not closed.

Although £ is unconstrained for the private fields and reps, condition (3) deter-
mines it for fields of proper subclasses of Own (while allowing £ to depend on these
fields). Once we have defined the induced relation R, item (3) will be equivalent
to the condition R (type(f, loctype £)) (hef) (h'€f). Because CT and CT' are well
formed, the declared field names g and g’ of CT(Own) and CT'(Own) are not
declared in proper subclasses or superclasses of Own. So f in (3) ranges over fields
including those declared in proper superclasses and subclasses of Own.

Exzample 7.5 Sect. 2.2 discusses this coupling relation:
o.g #nil £ .gNo.gf=-(d.gf) .

For this example we take both Rep and Rep’ to be Bool, and Own to be OBool.
The displayed formula can be interpreted as local coupling relation £ which relates
h to b’ just if

h=[l— g Lo by = [f—d]] and h'=[l;— [g— L]l — [f — —d]]
for some boolean d and locations ¢; in locs(OBool) and ¢3,¢3 in locs(Bool). We
assume that the class table contains only Bool, OBool, and some client classes. If

OBool had subclasses, the relation on their fields would be determined by condition
(3) above. O
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Fig. 7. Local coupling example: a
related pair of islands. Labels indi-
cate locations as described in Exam-
ple 7.7. Note dangling pointers {2
and ¢4 and sentinel node 4.

Ezxzample 7.6 Sect. 3.1 uses the formula o.g = o’.g A 0.g mod 2 = 0. This can be
interpreted as the local coupling that relates h to h' just if there is some ¢ with
loctype £ < A, h and h' have domain {¢}, and h £ g = h' £ g = 2 x m for some integer
m>0. O

Example 7.7 The Observer examples show why we allow a local coupling £ to
relate non-closed heaps. Consider the version in Fig. 2. Here Rep is Node, Own is
Observable, and there is a client class Observer. Fig. 5 illustrates two instances of
this simple data structure. Fig. 4 gives code for an alternative version which uses
an extra node as sentinel for the list. The sentinel does not point to an Observer.
Fig. 7 depicts a corresponding pair of heaps for the two alternatives, using arrows
without destination objects to indicate dangling pointers. Upon initialization of an
Observable, there are no installed Observers, so for the version of Fig. 2 we should
have fst = nil. But in the alternative version, this should correspond to snt holding
the location of a Node2 with ob = nil and nxt = ndl. This is established by the
constructor in Fig. 4. An attempt at formalizing the correspondence is as follows:

(o.fst = nil = o’ .snt.nxt) V (o.fst # nil # o’.snt.nxt A a(o.fst) = a’(0’.snt.nxt))

where «, o are functions that yield the list of locations in the ob fields of successive
nodes. But how should this formula be interpreted if, say, o’.snt = nil or there is
sharing such as a chain with cyclic tail? Separation logic [Reynolds 2001] offers a
precise way to formulate such definitions but its development is at an early stage.
We simply sketch the coupling in terms of semantics: £ h h’ iff either h and h’ have
the form

h =[£— [fst — nil]]

R =€ [snt— £p)], £f — [ob — nil, nxt — nil]]

or they have the form

h = [ [fst— ¢1], {1 — [ob+— Lo, nxt — {3], €3 — [ob +— Ly, nxt — .. .],...]
B =1L+ [snt— 5], £} — [ob — nil, nxt — £]],
0y — [ob — fo,nxt — £4], £5 — [ob — Ly, nxt — .. ], .. ]

for some locations ¢ in locs(Observable), ¢1,/¢s,... in locs(Node), £(, 04,05, . .. in
locs(Node2), and €2, 44, ... in locs(Observer]). Note that the owners are at the same
location, /¢, as are the referenced Observer objects at £o,44,.... No correspondence
is required between locations ¢y, fs, ... and £, €1, 45, ... of reps. [

A local coupling induces a relation R Heap on arbitrary heaps by the requirement
that they have confining partitions such that islands can be put in correspondence

Journal of the ACM, Vol. V, No. N, Month 20YY.



38 : A. Banerjee and D. A. Naumann

so that pairs are related by £. The formal definition uses the induced relation
R (state C') for object states of non-rep classes C' £ Own, and this in turn is
defined in terms of R C' for non-rep classes C £ Own. For uniformity, we give
the definition of R for all 6, but forcing the case for § = state Own to be false.
Aside from the ramifications of heap confinement, the definition is induced in the
standard way for logical relations.

Definition 7.8 (coupling relation, R ) Given a local coupling relation £, we
define for each 6 a relation R § C [0] x [6]" as follows.

For heaps h, k', we define R Heap h h' iff there are confining partitions of h,h’,
with the same number n of owner islands, such that
—L (Oh; * Rh;) (Oh}  RR}) for all i in 1..n
—dom(Ch) = dom(Ch")
—TR (state (loctype £)) (h€) (h'€) for all £ € dom(Ch)

For other categories 6 we define R 6 as follows.

R bool d d’ s d=d

R unit d d’ s d=d

RCdd s d=d

RTny & Ve e domT - R (Tz) (nz) (n'x)
R (state C) s ' =

C £ Own AVf € dom(fieldsC) - R (type(f,C)) (s f) (s’ f)
R (Heap @7T) (h,n) (W',n) & R Heap hW ART nn/
R (Heap @ T) (h,d) (hW,d') & R Heap h W NRT dd
RO ad S (a=Ll=ad)Va#L#d ARIad)
R (C,7,T—T)dd < V(h,n) € [Heap QT], (W', ') € [Heap T -
R (Heap @T') (h,n) (h',n) A conf C (h,n) A conf C (R',n)
= R (Heap © T), (d(h,n)) (d (i, 1))
where I' = [ — T, self — (]
R Menv p ' < VC,m - (C is non-rep) A (mtype(m, C) is defined)
=R (C, pars(m, C), mtype(m, C)) (uCm) (1’ Cm) O
The gist of the abstraction theorem is that if the methods of Own are related by R
then all methods are. We can now express this conclusion as R Menv [CT] [CT'] .

To express the antecedent, note that the relation applicable to a method m of
Own is R (Own, T, T—T) where mtype(m, Own) = T—T and pars(m, Own) = T.
The definition of R (C,Z, T—T) quantifies over confined initial states but does not
require confinement of outcomes.'® The antecedent will also take into account that
methods may be declared or inherited.

Although the definition is technically intricate, the core idea is the extension of

a local coupling, for a single owner instance, to a heap containing potentially many

100ne might think that R Heap could be defined in terms of admissible partitions without the
assumption of confinement. But because partitions are not unique this leads to difficulties: a heap
could be confined with respect to one partition but related with respect to another.
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owners. This idea is given straightforward expression using heap partitions. By
contrast, sharing of representations between owners would require a more compli-
cated form of extension (see Sect. 12).

Definition 7.9 (simulation) A simulation is a coupling R, based on a local cou-
pling £, such that the following hold.

(1) (construction of Own establishes £) For any ¢ € locs(Ownl), any h,h’ with
R Heap h I/, and any u, i, let

ho = [h | £ [fields(loctype £) — defaults]]
hi = [W | ¢~ [fields(loctype ') — defaults']]

Then £ hg hj.

(2) (methods of Own preserve R) Let u € N — [Menv] (resp. ¢’ € N — [Menv]')
be the approximation chain in the definition of [CT] (resp. [CT’]’). For every
m with mtype(m, Own) defined, the following implications hold for every i,
where T = pars(m, Own) and T—T = mtype(m, Own).

(a) R Menv pus i, = R (Own, 7, T—T) ([M]pss) (M) i)
if m has declaration M in CT(Own) and M’ in CT’(Own)

(b) R Menv p; i, = R (Own, T, T—T) ([M]u;) (restr([Mg]’ i, Own))
if m has declaration M in CT(Own) and is inherited from B in CT'(Own),
with Mp the declaration of m in B

(c) the condition symmetric to (2b), if m is inherited in CT(Own) but declared
in CT'(Own) O

To handle constructors, condition (1) would say that £ holds upon termination
of the constructor. For constructors without method calls this can be formalized
easily (see [Banerjee and Naumann 2004a]).

The following properties are straightforward consequences of the definition.

Lemma 7.10 For all h, k' and all locations ¢ & locs(Rep|, Rep'|), if R Heap h h'
then £ € domh < £ € domh'. O

Lemma 7.11 [T] = [T] for all T, and [I'] = [[]’ for all T. O

Lemma 7.12 For any data type T, R T is the identity relation on [T] and R T,
is the identity relation on [T, ]. O

Lemma 7.13 f U <T and RU dd then RT dd. O

7.3 Restricting reps in owner subclasses

The preceding properties express a strong connection between locations for related
heaps. To ensure that this connection is preserved by object construction, we shall
assume the allocator is parametric. But it is not reasonable to require that related
heaps have the same rep locations, so parametricity cannot be exploited for reps.
As a result, the present form of simulation is not adequate for construction of reps in
subclasses of Own, although such construction is allowed by confinement. The first
abstraction theorem depends on an assumption expressed in the following terms.
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Definition 7.14 (new rep in sub-owner) We say CT has a new rep in a sub-
owner if, for some B < Rep or B < Rep’, an object construction new B occurs in
some method declaration in a class C' < Own.

If CT has no new reps in sub-owners then neither does a comparable CT’ (and vice
versa). The examples in Sects. 2 and 3 have no new reps in sub-owners; examples
which do are given in Sect. 9.

In the rest of Sect. 7 we make the following assumption. It is used in the proof
of Lemma 7.22 on which the first abstraction theorem depends. For the second
abstraction theorem the second sentence of the assumption will be dropped.

Assumption 7.15 First, CT and CT’ are confined class tables for which a simu-
lation R is given. Second, C'I" has no new reps in sub-owners and the allocator is
parametric in the sense of Def. 5.1.

7.4 ldentity extension

In our theory, R T is the identity for every data type T (Lemma 7.12), but that
is only because the interesting data is in the heap. In general, [state Own] #
[state Own]’ and R(state Own) is not the identity. Related heaps can contain owner
objects with different states that may point to completely different rep objects. But
consider executing a method on an object o from whose fields no Own objects are
reachable, i.e., Own objects are not part of the representation of 0. The resulting
heap may contain Own objects that were assigned to local variables, but if the
method is confined then those objects are unreachable in the final state.

Definition 7.16 (garbage collection, Own-free) For a set or list d of values,
define the heap gc(d, h) to be the restriction of h to cells reachable from d. For
(h,n) € [Heap @ T], define collect(h,n) = (ge(rngn,h),n). Extend collect to
[(Heap @ T') 1] by collect L = L.

Say h is Own-free just if domh Nlocs(Own|) = & and 7 is Own-free just if
rngn Nlocs(Own)) = @. State (h,n) is Own-free just if both h and n are. 0O

Lemma 7.17 (identity extension) Suppose R (Heap ® T') (h,n) (h',n’) and
Iself is non-rep. Let (h,n) and (h',n’) be confined at T'self. If collect(h,n) and
collect(h',n') are Own-free then collect(h,n) = collect(h',n').

PROOF. In confined heaps, reps are only reachable from owners. The argument
is a straightforward induction using the definition of R. [

Lemma 7.18 (diagonal) For any R given by Def. 7.8 from a local coupling, if
h € [Heap] is Own-free then R Heap h h. If, in addition, (h,n) € [Heap @ I'] then
R (Heap @T) (h,n) (h,n).

PROOF. If h is Own-free and confined then it has no reps; its admissible partition
is a single block, the clients. For such a heap it is immediate from the definition of
R that R Heap h h. If (h,n) € [Heap ® T'] then rngT is Own-free and R T' n n is
direct from the definition. O

7.5 Abstraction theorem

The proof depends on a lemma for commands, which is given following the theorem.
The other main ingredient for the proof is the following connection between R and
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the semantics of inherited methods.

Lemma 7.19 Suppose C and all class names in T are non-rep, and B < C. If
R (C,Z,T—T) d d' then R (B,Z,T—T) (restr(d, B)) (restr(d’, B)) where restr is
the restriction to global states of B (see Def. 5.5).

PROOF. Straightforward, using Lemma 5.7(1). O

Theorem 7.20 (abstraction) If CT and C'T’ are confined and R is a simulation
(as per Assumption 7.15), then R Menv [CT] [CT'] .

PROOF. We show that the relation holds for each step in the approximation chain
in the semantics of class tables (see the definition of p; following Def. 5.5). That
is, we show by induction on ¢ that

R Menv p; p; for every i € N .

The result R Menv [CT] [CT']’ then follows by fixpoint induction, as [CT] and
[CT'] are defined to be the fixpoints of these ascending chains. Admissibility of
fixpoint induction is discussed preceding the proof of Theorem 6.15.1!

For the base case, we have R (C, pars(m, C), mtype(m, C)) (o C'm) (puy C m) for
every m, C because \(h,n) - L relates to itself.

For the induction step, suppose

R Menv p; p; . (%)

We must show R Menv pit1 i, that is, for every non-rep C' and every m with
mitype(m, C') defined:

R (C, 7, T—T) (niy1 Cm) (niyy Cm) (t)

where T = pars(m,C) and T—T = mtype(m,C). For arbitrary m we show (1) for
all C with mtype(m,C) defined, using a secondary induction on depth(m,C). We
have depth'(m, C) = depth(m,C) from Lemma 7.3.

The base case is the unique C' with depth(m, C) = 0; here m is declared in both
CT(C) and CT'(C). We go by cases on C. If C = Own, we get (f) from the
assumption that R is a simulation. In detail: Using (*) and Def. 7.9(2a) we get

R (OU}n?fv T—>T) ([[M]].ul) ([[MI]]/:U/Z') )

whence (f) by definition of p;11 and pj,,. The other case is C' a non-rep class
different from Own. Then by Def. 7.1(1) of comparable class tables we have
CT(C) = CT'(C) and in particular both class tables have the same declaration

T m(T7) {S} .

To show (), suppose conf C (h,n), conf C'(h',n'), R Heap h h', and R T' n 7/,
where I' = T:T,self: C. Then by Lemma 7.22 below, using R Menv p; p), the
results from S are related. That is, either [I' - STui(h,n) = L = [T F ST ui(h',7')

HReaders familiar with Reynolds [1984] may expect that, as our language has fixpoints, the result
only holds for couplings that are |-strict and join-complete. But our local couplings have this
property, trivially, because heaps are ordered by equality. The induced coupling is strict and
join-complete by construction.
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or neither is L. In the latter case, (ho,70) is related to (h{,n) where (ho,n0) =
[T F S)ui(h,n) and (hg,ny) = [LFH S)wi(h',n'). Then, by definition of RT,
R T no ng, implies R T (no result) (n( result). Thus () holds by definition of ;41
and g ;. This concludes the base case of the secondary induction. The appeal to
Lemma 7.22 depends on conf p; and conf p} which holds by Assumption 7.15 and
Theorem 6.15.
For the induction step, suppose depth(m,C) > 0. Using the definition of depth,
the induction hypothesis is
RA(C, T, T=T) (i1 (super C)m) (piyy (superC)m) . &y
If m is declared in both CT'(C) and CT’(C') then the argument is the same as in the
base case of the secondary induction. If m is inherited in both CT(C) and CT’(C)
then (1) follows from (1) because the semantics defines p;41 C'm by restriction from
i1 (superC)m and restriction preserves simulation. (This is Lemma 7.19, which
is applicable because if B > Own and m is inherited in Own from B then T % Rep
and T % Rep' by confinement of CT,CT’, Def. 6.9(3).) The remaining possibility
is that m is declared in CT'(C) and inherited in CT’(C') from some B (or the other
way around). Then C' = Own, by comparability of CT and CT’. Using Def. 7.9(2b)
and (x) we get

R (Own, T, T—T) ([M]u;) (restr([Mp]us, Own))
and thus () by definition of p;41 and pj, ;. O

Lemma 7.21 (preservation by expressions) Consider any non-rep class C' #
Own and any I' - e: T with I'self = C. If I' - e : T" is confined and all constituents
of e are confined then the following holds: For all (h,n) € [Heap @ I'] and (b, 7n’) €
[Heap @ T, if conf C (h,n), conf C (h',7'), and R (Heap @ T') (h,n) (h',n’) then

R (Ty) ([T F e:TY(h,m) ([T H e:TT' (W, n)) -

PROOF. By induction on the derivation of I' - e:T. For each case of e, we give
an argument assuming that I', C, T, n, 7', h, h’ satisfy the hypotheses of the Lemma.

CASE T' F (B) e: B. Induction on e yields that R D £ ¢ (or else both deno-
tations of e are 1). By confinement of e, as C' # Own and C is non-rep, we have
¢ & locs(Repl) and ¢’ ¢& locs(Rep']). Thus, ¢/ = ¢ by Lemma 7.12. Hence either
both semantics yield £, whence R B, £/, or both yield | and again R B, 1 1.

CASE I' - e is B:bool. The argument is similar to that for type cast.

Case T' F e.f:T. By induction on e we have R C, ¢ ¢, hence { = ¢ by
Lemma 7.12. In the non-L case, £ # nil. By closure of the heaps, £ € domh
and £ € domh’. We consider cases on whether C' < Own. Consider confining
partitions (Ch x Ohy * Rhy...) = h and (Ch’ * Oh} * Rh|...) = K/ that have
corresponding islands as in the definition of R Heap. In the case C' < Own, we
have ¢ € locs(Own]) and hence ¢ in some dom(Oh;). From R Heap h h' we have

L (Oh; % Rh;) (Oh! « RI,)

and thus £ € dom(OR;) by local coupling Def. 7.4(1). Since C' # Own, we know by
visibility that f is not in the private fields g of Own. Thus, as type(f, loctype £)) =
T, we have R T (hif) (h'¢f) by Def. 7.4(3) and Lemma 7.12.
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Finally, in the case C' £ Own (recall that C is non-rep and C # Own by hy-
pothesis, we have ¢ € dom(Ch) and hence ¢ € dom(Ch') by definition R Heap.
Hence R (state (loctype £)) (h€) (h'€) and thus R T (hef) (h'Lf) by definition of
R (state (loctype £)).

The remaining cases are straightforward. O

Lemma 7.22 (preservation by commands) Suppose R is a simulation, and
moreover j and p’ are confined method environments such that R Menv p p'.
Consider any non-rep class C' # Own and any I' - S with I'self = C. If T - S
is confined and all constituents of S are confined then the following holds: For all
(h,n) and (h',7), if conf C (h,n), conf C (h',n), and R (Heap @ T') (h,n) (h',n)
then

R (Heap ® T) 1 ([I'F SJu(h,m)) (IFH" SV (W,')) -
PROOF. For any C, the proof is by induction on the derivation of I" - S.

Case I' b z:=e. By confinement of e and Lemma 7.21 we have R T, d d'.
Hence, by R T' n ' and definition of R T', we have R T' [ | x+—d] [ | z— d']
whence the result.

CASE T' - e1.f :=e3. By Lemma 7.21 for e; we have R C £ ¢, hence £ = ('
by Lemma 7.12. By Lemma 7.21 for es we have R U d d’ and hence R T d d’
by Lemma 7.13, where (f:T) € dfieldsC as in the typing rule. To conclude the
argument it suffices to show

R Heap [h | L—[hl | f=d] [W | b= [RC] fr=d]] (%)

Consider confining partitions (Chx Ohy* Rhy ...) = h and (Ch'* Ohy* Rh} ...) = N’
that correspond as in the definition of R Heap h h/. We argue by cases on C.

—C < Own: Then loctype ¢ < C < Own. From typing we have e; : C' and hence
there is some ¢ with {¢} = dom(Oh;) and by R Heap h h’ we get

and so {¢} = dom(Oh}). By typing and C' # Own, field f is not in the private
fields g of Own. So () follows from R Heap h b’ and R T d d'.

—C % Own: As C is non-rep, we have ¢ € dom Ch and thus ¢ € dom Ch' by
hypothesis R Heap h h'. Moreover, R (state (loctypet)) (h€) (h’'¢) and so by
R T dd we get R (state (loctype £)) [l | f—=d] [R'€ | f+—d']. Hence ().

CASE I' + z:=new B. By confinement of x:=new B the final states are
confined: conf C (hg,no) and conf C (hg,n). We have C' £ Rep and C # Own. In
the case C' ¢ Own confinement of 1y and 7, implies rngno N locs(Repl) = @ =
rngny N locs(Rep']). So € ¢ locs(Repl) and ¢ ¢ locs(Rep'|), hence by typing
B is non-rep. In the case C < Own, we have B non-rep by Assumption 7.15
(no reps in sub-owners). Either way, B is non-rep so Lemma 7.10 applies, to
yield domh Nlocs B = domh' Nlocs B. Thus by parametricity of fresh we have
¢ = fresh(B,h) = fresh(B,h’) = ¢'. So, by Lemma 7.12 and R T'  n’ we have
R T no .

It remains to show R Heap | ho h{ in order to get the final result R (Heap ®
)1 (ho,no) (hy,nj). We argue by cases on B.
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—B £ Own: Writing fields' for the fields given by CT”, we have fields B = fields' B
and thus R (state B) [fields B — defaults] [fields' B — defaults]. So, as B is
non-rep and B # Own, we can add ¢ to Ch and Ch' to get partitions that
witness R Heap ho hy. Combining this with what was shown above we have
R (Heap @ I') L (ho,no) (hg,mp)-

—B < Own: By simulation Def. 7.9(1), we have R Heap | ho hj.

CASEI'F z:=e.m(€). By Lemma 7.21 for e we have R D ¢ ¢, hence £ = {' by

Lemma 7.12. Let n; = [self — ¢, + d] and 7} = [self — £, T El]. By confinement
of z:=e.m(e) (Def. 6.7) we have confined arguments, i.e., conf (loctype £) (h,n1)

and conf (loctype £) (h',n}). By Lemma 7.21 for € we have R U, d d and hence

RTUdd as we are considering the non- L case. Thus R [Z:T,self: loctype {] m1 7}
by Lemma 7.13. From R Menv u ' we get

R (loctype £, T, T—T) (u(loctype £)m) (1’ (loctype £)m)

hence, as h,h',n1,n; are confined and related, R (Heap ® T)1 (h1,d1) (h},d}),
where (h1,d1) = p(loctype €)m(h,n) and (hy,dy) = p'(loctype )m(h’,n'). Thus
R T dy dy and R Heap hy h). It remains to show that the updated stores [n | z+
d1] and [’ | x+— d}] are related for I". This follows from R T' d; d} and T < Tz,
using Lemma 7.13.

The remaining cases are similar. [

8. APPLICATIONS

In this section we define program equivalence and then use the abstraction theorem
to show some program equivalences for the examples discussed in Sections 2 and 3.

To establish the hypothesis of the abstraction theorem for the examples we use
the couplings given as examples in Sect. 7.2. Both the theorem and these couplings
are defined in terms of the semantics. To show that the couplings are simulations
we argue directly in terms of the semantics. For practical purposes in program
verification, the abstraction theorem would be expressed syntactically as a proof
rule and rules for program constructs would be used to establish the simulation
property [Reynolds 1981a; Jones 1986; de Roever and Engelhardt 1998].

Program equivalence. We take program to mean a well formed class table CT
together with a command I' = S. We consider the object states reachable from
variables of " to be the inputs and outputs of the program. For example, if S is
the body of method main in Sect. 2.1 then I is self:Main and what can be reached
is self and the string self.inout.

We restrict attention to confined programs, by which we mean that CT and
I' S are confined (as well as the constituent parts of S). Thus, by Theorem 6.15
the method environment [CT] is confined. To prove program equivalence using
the abstraction theorem, we need to both introduce and eliminate a simulation.
Elimination is by identity extension Lemma 7.17 and introduction is by the diagonal
Lemma 7.18.

We compare programs only for class tables CT,CT’ that are comparable in the
sense of Def. 7.1, and with commands in the same context I". As commands denote
functions on global states, the obvious notion of equivalence is that [I' F .S] and
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[T+ S’])" are equal as functions. By Lemma 7.11, [I'] = [I']’ for any T', but in
general the semantic domains differ for owner object states which may have different
private fields. A global state (h,n) € [Heap @ I'] for C'T need not be an element
of [Heap ® I'])" for CT’. However, an Qwn-free heap in [Heap] is also an element
of [Heap]'. We compare command meanings on the Own-free states, defined using
collect from Def. 7.16.

Definition 8.1 (client program equivalence) Suppose programs CT, (T" - S)
and CT’ (' +' S’) are such that CT,CT’ are comparable and confined. The pro-
grams are equivalent iff

collect([T' + S]ji(h,n)) = collect([T =" S') i’ (h,n))

for all confined and Own-free (h,n) € [Heap @ T'], where i = [CT] and ' =
[cry. o

If T'self < Own then n cannot be Own-free. The resulting vacuous quantification
makes the definition equate all commands for such I'. But we are only interested
in using the definition for clients. Simulation is the relation of interest between
owners.

The main corollary of the abstraction theorem is that if there is a simulation for
CT,CT' then CT,(I" - S) is equivalent to CT’, (T' - S) for any suitable S. For S
to be suitable means it is typable in both CT and CT’ and moreover its final states
are OQwn-free. Rather than formalize the corollary and its proof we illustrate the
reasoning in a series of examples.

Ezamples. The static analysis for confinement given in Sect. 11 can be used to
show that each of the following examples is confined for the appropriate Own and
Rep.

Ezample 8.2 Consider the command S comprising the body of method main of
class Main in Sect. 2.1 and take I" = (self: Main). As C'T we take the declarations
of Main, Bool, and the first version of OBool. For CT’ we use the second version
of OBool. Let Rep and Rep’ be Bool and Own be OBool.

To show that CT, (T'F S) is equivalent to CT’, (T F S), recall the local coupling
of Example 7.5 and let R be the induced coupling. Let (h,n) be any confined state
for T', noting that Main % Own so n is Own-free. Let g = [CT] and g’ = [CT']'.
To show

collect([I' F S]i(h,n)) = collect([T +' ST i/ (h,n)) (%)

note first that R (Heap ® T') (h,n) (h,n) by Lemma 7.18. It is straightforward to
show that R is established initially and preserved by the methods of OBool; thus
R is a simulation. The abstraction theorem yields R Menv fi ji’. This in turn
justifies application of the preservation Lemma 7.22 to command S, as its context
Main is a non-rep class and Main # Own. Thus the outcomes [I"  S]j(h,n) and
[T+ S’) i (h,n) are related by R. By definition of R, either both outcomes are L,
in which case (*) holds by definition of collect, or the outcomes are non-.L states
(ho,mo) and (hy, n)) with R (Heap ®T') (ho,no) (h,n). Note that hg and h{ each
contains at least one owner, the one constructed in S. But Main % Own, so rngno
and rngnj are Own-free. Moreover, the owners were reached only by variable z
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which is local in S; they are not reachable via fields of the objects ho(nself) or
hy(n self). That is, both collect(ho,no) and collect(hg, n}) are Own-free. Thus
by identity extension Lemma 7.17 we have collect(hg,n0) = collect(hy, n}) which
concludes the proof of (x). O

This proof depends on parametricity of the allocator, because that is needed
for the abstraction theorem. The same argument will go through, however, for the
second abstraction theorem in the sequel which drops parametricity of the allocator.

Example 8.3 Recall the Meyer-Sieber-O’Hearn example from Sect. 3.1, and in
particular the command

Cy:=new Cin A x:=new A in x.callP(y) (1)
Take (1) to be the body of method main in

class Main extends Object { unit main(){ ...} }
To be very precise we need to include a class

class Rep extends Object { }

so we can take Rep and Rep’ to be Rep which is not comparable to the classes C
and A of interest. Let Own be A. Let CT consist of the declarations of A, Rep,
Main, and an arbitrary class

class C extends Object { unit P(Az){ ...} ...}

such that methods of C satisfy the confinement conditions. Then CT and CT’
are confined, because no reps are constructed or manipulated. We use the local
coupling of Example 7.6. To appeal to the abstraction theorem, we must argue
that R is a simulation. The constructors are skip and the default value 0 for field
g establishes the relation. Preservation by inc is straightforward because both ver-
sions have the same code and it makes no method calls. We give the details for
preservation by callP. The relevant condition is Def. 7.9(2a). To show it for callP,
suppose i > 0 and R Menv p; p),. Note that u; and p) are confined, by Theo-
rem 6.15. Suppose that R (Heap ® y:C,self: A) (h,n) (h',n’) with conf A (h,n)
and conf A (h',7n'). In both versions of callP, the body is a sequence and the first
command is y.P(self). Let n; = [z — nself,self — ny] and ] = [z — 7 self, self —
7’ y] be the environments for semantics of this call. By definition of R we get
R (Heap ® z: A,self: C) (h,m) (h',n}). From the hypothesis conf A (h,n) we get
conf C (h,m) and likewise conf C (h/,n}). Applying the hypothesis R Menv u; p
to these environments we get that either u,CP(h,m) = L = p,CP(h,n1) or nei-
ther are L and R (Heap @ unit) (ho, it) (hy, it) where (ho,it) = u;,CP(h,m) and
(h, it) = u,CP(h',n;). The call is desugared to an assignment of the result value to
a local variable but the value is discarded for both versions, so the states following
the calls are (ho,n) and (h{,n') and we have R (Heap®y: C,self: A) (ho,n) (h(, 7).
In these states we have holg = hylg A hofg mod 2 = 0. So the command

if self.g mod 2 = 0 then abort else skip fi

aborts, as does its counterpart which is simply abort. This concludes the argument
that the bodies of callP are related.
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Having established the antecedents of the abstraction theorem, we conclude that
the command () preserves R. By semantics of the second version of A we know
callP aborts, so both interpretations of (f) abort. The programs are equivalent. [

This example is handled without using the identity extension Lemma 7.17, but
that is only because the example uses abortion. In subsequent examples the proof
needs all the steps from Sect. 2.1 just as in Example 8.2, though we only spell out
the interesting bits.

One can imagine a variation of Def. 7.9(2a) which requires that R Menv p p/
implies R (Own,z, T—T) ([M]u) ([M']'i) for any confined method environments
1, 1/, and not just those in the approximation chain. In fact, this suffices to prove
the abstraction theorem but it makes the theorem impossible to apply in interesting
cases. The argument in Example 8.3 would not go through because we would not
know that the semantics of a called method is at least an approximation of its
declaration.

Exzample 8.4 We consider the observer pattern, taking Own to be Observable. Let
CT be given by the first version, Fig. 2, together with the client given in Fig. 3.
Let CT' be given by the sentinel version of Fig. 4 together with Fig. 3. We consider
equivalence for the command self:Main,ob:AnObserver | S where S is the body of
Main.main. Because obl is local to S, no owners are reachable in the final state.

Taking Rep, Rep’ to be Node,Node2, we use the coupling relation of Example 7.7.
Clearly the constructors establish the relation (cf. [Banerjee and Naumann 2004a]
where constructors are formalized). To show that method add preserves it, note
that the bodies of these methods are both sequential compositions; both construct
a new node and then set its ob field to the value passed as a parameter. The next
step is to add it to the beginning of the list; the difference between the two versions
is that self.snt.nxt is assigned in Fig. 4 whereas self fst is assigned in Fig. 2. Both
versions of add then invoke methods on the new node n, so we have to show that
the results of these invocations are related. To give a precise argument in terms of
the semantics, we consider cases on i. For i = 0, both p; and p make every method
abort, in which case the body of add aborts due to method calls n.setOb(...). As
the methods in class Node and class Node2 are not recursive, their semantics is
already completely defined for ¢ = 1, so for ¢ > 0 the behavior of add in p,; and
is to insert nodes at the head of the list, maintaining the relation.

The remaining owner method is notifyAll. Again, the two versions are similar
except for skipping over the sentinel node. To argue that the calls to getNext act
correctly one considers cases as in the proof for add. For the calls to notify on
the Observer objects, recall that by the relation, the related lists contain the same
Observer pointers in the same order. The two versions thus make the same series
of invocations of notify. Each of those calls preserves the relation by hypothesis
R Menv p; p;. O

The last step of the argument, concerning invocations of notify, is like reasoning
about invocations of P in Example 8.3. This example has the additional compli-
cation of calls to objects within the owner island. The case distinction between
1 =0 and ¢ > 0 is needed because our argument is purely in semantic terms. In a
practical proof system, one would reason only in terms of the actual semantics of
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the methods involved rather than its approximants.
Exzample 8.5 Suppose we change the client of Fig. 3 to use the following.
class AnObserver extends Observer { unit notify(){ skip } }

Then in Fig. 4 we can replace the body of Observable.notifyAll by skip and still
have equivalence with the implementation of Fig. 2. What changes with respect to
Example 8.4 is that the two implementations do not make the corresponding calls
to notify. But because AnObserver.notify is skip, calling it has the same effect as
not calling it; in particular, the relation is preserved.

The argument here is not modular: by contrast with the preceding example, here
we reason directly in terms of the client code. [

9. OWNER SUBCLASSING: THE PROTECTED INTERFACE

This section considers examples involving subclasses of the owner class. Rather
than formalizing the “protected” scoping construct of Java, we consider the “sealed
package”, to address interaction between owners and reps as well as sub-owners.
We model just a single module that includes Own and some or all of the subclasses
of Own and of Rep. Some methods can be designated as having module scope
so they cannot be called from client classes; for these the confinement conditions
are relaxed. Our treatment is illustrative, not comprehensive; e.g., fields are still
considered to be private. Additional features such as protected fields should be a
straightforward addition.

Methods with protected scope can be modeled by taking the module to include
all subclasses of Own and none of Rep. We can also model the situation where a
method of Own is private to Own, or used only by reps, in which case it can be
present in CT(Own) but absent from CT’(Own); even if present in both, it need
not have the simulation property. On the other hand, if a module-scoped method
is invoked in a subclass of Own then for well-formedness it must be present in both
CT(Own) and CT'(Own); moreover, it must have the simulation property in order
for the abstraction theorem to hold. We slightly abuse the term “protected” to
refer to a module-scoped method of Own that is called in some subclass of Own.

9.1 Owner subclassing and module scope

Fig. 8 is a variation on the observer pattern in which class Observable has subclass
ObservableAcc. For accounting purposes it keeps track of the number of times each
observer has been notified. To this end, the rep class NodeAcc overrides method
notifyAll of the client class Node4. Such examples have led to our treatment of
owner subclasses: They are distinguished from clients in that their methods may
manipulate reps, but unlike Own they cannot store reps in fields.

Method addn has been added to Observable, so that ObservableAcc can construct
reps of the subtype NodeAcc and install them in the list despite that fst is a private
field not visible in ObservableAcc. Method Observable.getFirst is also added for this
purpose. But getFirst leaks a rep; it cannot be allowed in the public interface. One
possibility is to treat getFirst and addn as visible only in subclasses of Observable.
Instead, we give them module scope, meaning that calls to getFirst and addn are
allowed in subclasses of both Observable and Node4.
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class Node4 extends Object { // rep for Observable
Observer ob;
Node4 nxt;
unit setOb(Observer 0){ self.ob:=o }
unit setNext(Node4 n){ self.nxt:=n }
Observer getOb(){ result := self.ob }
Node4 getNext(){ result := self.nxt }
unit notifyAll(){ self.ob.notify(); if self.nxt # null then self.nxt.notifyAll() else skip fi } }
class NodeAcc extends Node4 {
int notifs;
unit notifyAll(){ self.notifs := self.notifs+1; super.notifyAll() }
int notifications(Observer 0){
if o = self.getOb() then result := notifs
else if self.getNext() # null then result := (NodeAcc)(self.getNext()).notifications(o)
else result:=0; fi }}
class ObservableSup extends Object { // superclass of owner; "abstract” class
unit add(Observer ob){ abort }
unit notifyAll(){ abort }
class Observable extends ObservableSup { // owner
Node4 fst; // first node of list
Node4 getFirst(){ result :=self.fst } // module scope
unit add(Observer ob){ Node4 n:=new Node4; self.addn(ob,n) }
unit addn(Observer ob, Node4 n){ n.setNext(self .fst); n.setOb(ob); self.fst:=n } // module scope
unit notifyAll(){ self fst.notifyAll() }
class ObservableAcc extends Observable {
unit add(Observer ob){ Node4 n:=new NodeAcc; self.addn(ob,n) }
int notifications(Observer ob){ result := ((NodeAcc)(self.getFirst())).notifications(ob) } }

Fig. 8. Version with owner and rep subclasses and super-call. The owner also has a superclass.

Method add in class ObservableAcc constructs a rep, violating the condition “no
reps in sub-owners” in Assumption 7.15. That assumption is needed for the first
abstraction theorem because methods of an owner subclass are like clients in that
they must preserve the induced relation. That means in particular that they manip-
ulate related —equall— rep locations. (By contrast, methods of Own preserve the
local coupling which need not impose a correspondence on rep locations, cf. Exam-
ple 8.4.) But if we compare two versions, one with sentinel node and one without,
the parametricity condition for fresh will not apply and the new objects in Observ-
ableAcc.add will be at different locations. The solution, given in Sect. 10, is to relax
equality to bijection.

This relaxation is needed anyway, to avoid unobservable distinctions. As an
example, suppose we add to class Observable in Fig. 2 the following method:

String version(){ result := new String(“vsn 0") }
Consider an alternative that is identical in every way except for the following:
String version(){ result := new String( “trash”); result := new String(“vsn 0") }

According to Def. 7.9, the induced relation for locations of type String is equality.
But, even if the allocator is parametric, the locations returned by these two methods
are not equal. (So condition (2a) fails in Def. 7.9 of simulation.) Yet the two cannot
be distinguished in any program context. This claim is justified by the generalized
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class Observable extends ObservableSup {
Node4 fst;
Node4 getFirst(){ result :=self.fst } // module scope
Node4 makeNode(){ result := new Node4 } // module scope
unit add(Observer ob){ Node4 n:= makeNode(); n.setNext(self.fst); n.setOb(ob); self.fst:=n }
unit notifyAll(){ self fst.notifyAll() } }
class ObservableAcc extends Observable {
Node4 makeNode(){ result := new NodeAcc } // module scope
int notifications(Observer ob){ result := ((NodeAcc)(self.getFirst())).notifications(ob) } }

Fig. 9. Variation on Fig. 8 using factory pattern. Node4 and NodeAcc are as in Fig. 8.

theory of Sect. 10, where the induced relation allows an arbitrary bijection between
locations of client types like String. For this example, the bijection would get
extended to relate the returned results from the two versions.

Returning to the example in Fig. 8, the interface betweeen Observable and its
subclass ObservableAcc is awkwardly designed. An improvement is to use the fac-
tory pattern [Gamma et al. 1995] so that add itself can be inherited. In Fig. 9, we
add method makeNode, which should have module scope, and remove addn.

These examples show subclasses of reps and owners. There is inheritance into the
owner but not into the rep. Inheritance into reps is disallowed by our definition of
confined class table, because to handle it requires a more sophisticated analysis to
prevent leaks via self; a suitable analysis of “anonymous methods” is discussed in
Sect. 12.2. Inheritance into owners also needs restriction; we have chosen a simple
restriction that nonetheless allows the preceding examples.

Finally, let us consider an alternative version of Fig. 9 to illustrate the conse-
quences of allowing the owner class, but not its subclasses, to differ in comparable
class tables. In Fig. 9 the subclass ObservableAcc manipulates reps, both con-
structing a new NodeAcc and invoking method notifications declared in NodeAcc.
Although an alternative version of Observable could use an entirely different type
of nodes internally, it has to provide method getFirst with return type Node4. Be-
cause clients can manipulate objects of class ObservableAcc, methods of that class
must preserve the relation and this only holds if methods they invoke preserve the
relation. So coupling must be preserved not only by public methods of Observable
but also by those module scope methods that are invoked in ObservableAcc.

9.2 Formalization of module-scoped methods

We assume that a class table designates the class names Own and Rep and is
equipped with a predicate mscope with the interpretation that mscope(m, C) means
this method has module scope. The following changes are made to the definitions
of preceding sections.

(1) For a well formed class table, mscope must satify conditions that reflect what in
concrete syntax would be achieved by declaring Rep, Own, and some of their
subclasses inside the module: If mscope(m, C) then
—mtype(m, C) is defined,

—C < Own or C < Rep,
—mtype(m, B) is undefined for all B > Own and B > Rep, and
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—B < C or C < B implies mscope(m, B) for all B with mtype(m, B) defined

(2) The typing rule for method call has an added restriction that module-scoped
methods are visible only within the module:

I'te:D Tre:U mtype(m,D)=T—T U<T T<Tx z#self
mscope(m, D) = Tself < Own V T self < Rep
I'>z:=emf(e)

(3) For method environments, the confinement condition of Def. 6.5(1) is replaced
by the following:
—C < OwnAmscope(m,C) = conf C (ho,n)ANh < hoA(d € locs(Repl) = d €
dom(Rh;)) for some confining partition and j with nself € dom(Oh;)
—C £ Rep A (C £ Own V ~mscope(m, C)) = conf C (ho,n) ANh < ho ANd &
locs(Rep))
(4) For confinement of class tables, the restriction of Def. 6.9(2) is not imposed on
methods such that mscope(m, C').

(5) For simulation, Def. 10.10 in the sequel revises Def. 7.9(2) to require preserva-
tion of the relation only for public methods, that is, if =(mscope(m, Own)). But
those module-scoped methods that are called in sub-owners must also preserve
the relation.

To formalize this, we define prot(m, C) just if C < Own, mscope(m, Own), and
there is a call to m in some subclass of Own.

(6) Comparable class tables must agree on not only the public but also the “pro-
tected” (in the sense of prot above) methods of Own: Def. 7.1(1) is extended
to require that mscope(m, C) = mscope’ (m,C) for all C' # Own. Moreover, if
mitype(m, Own) is defined then the following hold (and mutatis mutandis for
mtype'):

— —mscope(m, Own) implies mtype' (m, Own) = mtype(m, Own) and moreover
—mscope’ (m, Own), and

—prot(m, Own) implies mtype' (m, Own) = mtype(m, Own) and mscope’ (m, Own)
(which in turn implies prot’ (m, Own)).

Exzample 9.1 Method getFirst of Observable in Fig. 8 is called in subclass Ob-
servableAcc, so prot(getFirst, Observable) holds and getFirst must be present in a
comparable class table (and be simulated).

On the other hand, consider the loop in notifyAll in Observable of Fig. 2. One
could desugar the loop to this code using a tail recursive helper method doNotif.
The helper could be given module scope and need not be called in owner subclasses;
in which case we set prot(doNotif, Observable) false. [J

Results of Sections 5 and 6 hold for the extended language; the only proof affected
by the changes is that of Theorem 6.15 which says that [CT] is confined if CT is
confined. The result holds for the revised definitions.'?

12The necessary revisions for the proof are as follows:

In the base case of the induction on depth, the argument proving confinement of p;11Cm for
the result value d goes by cases on C. The argument for the case C' < Own still holds for m
with —mscope(m, C). For the case C < Own and mscope(m, C), the revised definition requires
the result value d to satisfy d € locs(Rep|) = d € dom(Rh;) for some confining partition and j
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10. SECOND ABSTRACTION THEOREM

This section improves the first abstraction theorem in two ways. First, the result
applies to the language extended with module-scoped methods (see Sect. 9.2). The
module-scoped methods of the two versions of Own can be different unless they are
used in subclasses of Own. The second improvement is that parametricity of the
allocator is no longer required (cf. Sect. 7.3). To compare behaviors of two versions
of a program we use a bijection between locations rather than equality. This can
be seen as expressing that the language is parametric in locations, which would fail
if the language had pointer arithmetic. As discussed in Sect. 9.1, bijections handle
the problem with new reps in sub-owners that necessitates Assumption 7.15. More-
over, it allows coarsening of the notion of equivalence for commands and method
meanings so that, for example, the bodies of the two versions of method version in
Sect. 9.1 are equivalent.

Definition 10.1 (typed bijection) A typed bijection is finite bijective function
o from Locs to Locs such that o ¢ = £ implies loctype £ = loctype £'. [

Throughout the section we let ¢ range over typed bijections and sometimes omit
the word “typed”. To express how bijections cut down to bijections on partition
blocks, we use the notation o(X) for the direct image of X through o.

Definition 10.2 (local coupling, £) Given comparable class tables, a local cou-
pling is a function £ that assigns to each typed bijection a binary relation £ o on
heaps (not necessarily closed heaps) that satisfies the following. For any o, h, b’ if
L o h b’ then there are partitions h = Oh x Rh and h' = Oh’ * Rh’ and locations £
and ¢ in locs(Own]|) such that

(1) o¢ =1/ and {¢} = dom Oh and {¢'} = dom Oh’

(2) dom(Rh) C locs(Repl) and dom(Rh') C locs(Rep'|)

(3) R o (type(f, loctype £)) (hef) (W€ f) for all (f:T) € dom(fields(loctype £)) with
f € 9= dom(dfields(Own)) and f € g’ = dom(dfields'(Own)). O

Item (3) uses the induced coupling R defined below; it is a harmless forward ref-
erence because the definition of R for data types does not depend on R (or L) for
heaps. Note that we do not require dom o to include the reps, nor do we disallow
that it includes some of them.

Definition 10.3 (coupling relation, R) Suppose L is a local coupling. For each
typed bijection o we define relation R o 8 C [6] x [0]’ as follows. In the case of
method meanings and method environments the relation R is not parameterized
on a bijection; rather it quantifies over all o.

For heaps h,h’, we define R o0 Heap h h' iff there exist confining partitions of
h, k', with the same number n of owner islands, such that

with nself € dom(Ohj). This follows by definition from conf C (ho,n0)-

In the step of the induction on depth, there is case analysis on C and B, proving claim
conf B (h,n) and confinement of the result value d. For the case C' < Own < B, the argument still
holds, noting that —mscope(m, C) because in a well formed class table module-scoped methods
do not occur outside owner and rep classes. For the cases C < B < Own and C < B < Rep, the
arguments still hold, noting that the restrictions on mscope ensure mscope(m, B) = mscope(m, C)
so the relevant conditions are the same.
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—domo C domh and rngo C dom b’
—L o (Oh; * Rh;) (O * Rh.) for all i in 1..n

—o(dom(Ch)) = dom(Ch'), i.e., o restricts to a bijection between dom(Ch) and
dom(Ch")

—R o (state (loctype £)) (h€) (R'") for all £,¢" with £ € dom(Ch) and o £ ¢’

For other categories 6 we define R o 6 as follows.

R o boold d’ s d=d

R o unit d d s d=d

RoCdd s od=dVvd=nl=d
Rolnn < Vo € domT - R o (Tz) (nz) (n'z)
R o (state C) s ' =

C £ Own AVf € dom(fieldsC) - R o (type(f,C)) (s f) (s' )
R o (Heap ®T) (h,n) (W,7') & Ro Heaph ' ARo T nn
Ro (Heap ®T) (h,d) (hW,d') & Ro Heaphh' NRo T dd
Ro(0L)ad S (a=Ll=d)V(a#L#d ARobad)
R (C, 7, T—T)dd < Vo, (h,n) € [Heap @ T, (1, 1) € [Heap T -
R o (Heap @T) (h,n) (', ) A conf C (h,n) A conf C (', 7))
300 D0 R oy (Heap © T) .1 (d(h, ) (@ (', )
where I' = [Z — T, self — C]
R Menv u ' < VO,m -
(=mscope(m, C) V prot(m,C)) A (C is non-rep) A (mtype(m, C) is defined)
=R (C,pars(m,C), mtype(m,C)) (nCm) (' Cm) O

(Recall that prot is defined in (5) of Sect. 9.2.)

As an example, the body of makeNode in ObservableAcc (Fig. 9) returns a new
rep. Consider a coupling with a version using a sentinel. Given a bijection o
and related heaps h,h’, the location ¢ = fresh(Node4, h) may be different from
¢ = fresh(Noded, h') even if fresh is parametric, because h’ has extra reps, the
sentinels. But o can be extended with the pair (¢, ¢).

The following facts are straightforward consequences of the definition. The first
says that if h and b’ are related by R at o, then o is a bijection between the domains
of h and b’ except for reps.

Lemma 10.4 For all o, h, b’ and all £, ¢’ not in locs(Rep|, Rep’|), if R o Heap h h'
then o((dom h) | (locs(Repl, Rep']))) = (domb’) | (locs(Repl, Rep'])). O

Lemma 10.5 fU <Tand RoUdd then Ro T dd. O

For equivalence of values and states, we define a family of relations indexed on
categories 6. To streamline the notation, we say “x ~, a’ in [f]” here, and simply
use the symbol ~, later.

Definition 10.6 (value equivalence) For any o, we define a relation ~,, for data
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values, object states, heaps, and stores, as follows.

brog O in [C] & ol=0Vl=nil=1

dr~yd in [T7] & d=d for primitive types T
s~y 8 in [state C] << Vf € fieldsC - sf ~q 8'f

nr~e 1 in [T & Ve edomT -nx~en'x

h~g R in [Heap] < domo C domhArngo C domh/

AL € domh - h{~, W' (00)
(hyn)~o (W',1) in [Heap @T] < h~o B A ~o 1f
drp d in [0.] S d=l=dV(d#L#AdNd~yd in[0])
Lemma 10.7 (identity extension) Suppose R o (Heap @ ') (h,n) (h',n’) and

['self is non-rep. Let (h,n) and (A',n') be confined at I'self. If both collect(n, h)
and collect(n’, h') are Own-free then collect(n, h) ~o collect(n’,h’). O

In the case that o is equality, the relations R o 6 coincide with R 6 and ~, is
just equality. This yields the analog of the Diagonal Lemma 7.18 as the reader may
check.

Definition 10.8 (client program equivalence) Suppose programs CT, (T' F 5)
and CT',(I' ' S") are such that CT, CT’ are comparable and confined, and more-
over S (resp. S') occurs in C'T (resp. CT"). The programs are equivalent iff for all
confined, Own-free (h,n) and (h',7’) in [Heap ® I'] and all o with (h,n) ~, (b, ),
there is some op D ¢ with

collect([T + S)i(h,n)) ~, collect([T = S)' @' (W', 7))
where i = [CT] and i/ = [CT']). O
Lemma 10.9 Suppose B, C and all class names in T are non-rep and moreover
B<C. IftR (C,z,T-T)dd then R (B,T,T—T) (restr(d, B)) (restr(d’,B))
where restr is the restriction to global states of B (see Def. 5.5). O
As discussed in Sect. 9, the relation must be preserved not only by public methods

but also by any module scope methods that are called by methods declared in
subclasses of Own.

Definition 10.10 (simulation) A simulation is a coupling relation R such that

(1) (comstruction of Own establishes £) For any p, ¢/, any £, ¢’ in locs(Own]) with
ol =1/, and any h,h’ with R o Heap h ', let

ho = [h | £ [fields(loctype £) — defaults]]
hi = [ | ¢ [fields' (loctype €') — defaults]]
Then there is g 2 o such that £ o hg hy.

(2) (methods of Own preserve R) Let p € N — [Menv] (resp. p/ € N — [Menv]")
be the approximation chain in the definition of [CT] (resp. [CT’]’). For every
m with mtype(m, Own) defined and —mscope(m, Own) or prot(m, Own), the
following implications hold for every i, where T = pars(m, Own) and T—T =
mtype(m, Own).
(a) R Menv p; pf = R (Own, T, T—T) (IM]u:) (M) i)
if m has declaration M in CT(Own) and M’ in CT’(Own)
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(b) R Menv p; i, = R (Own, T, T—T) ([M]u:) (restr([Mg] it Own))
if m has declaration M in CT(Own) and is inherited from B in CT'(Own),
with Mp the declaration of m in B

(c) the condition symmetric to (2b), if m is inherited in CT(Own) but declared
in CT'(Own) 0O

Instead of Assumption 7.15 we need only the following.

Assumption 10.11 CT and C'T” are confined class tables for which a (generalized)
simulation R is given.

Theorem 10.12 (abstraction) R Menv [CT] [CT'] .

The proof is essentially the same as the proof of Theorem 7.20. The definition
of R Menv requires the relation to be preserved by those module-scoped methods
that are called by subowners, and this is ensured by Def. 10.10(2) of simulation.
The lemmas used in the proof are as follows.

Lemma 10.13 (preservation by expressions) Consider any non-rep class C' #
Own and any I' Fe: T with I'self = C. If I' - e: T is confined and all constituents
of e are confined then the following holds: For all o and all (h,n) € [Heap ® I'] and
(W,n') € [Heap @T]', if R o (Heap @ T') (h,n) (h',n) then

Ro (To) (U e:T)(h,m) ([0 H e:TT' (K, 1)) -
PROOF. Similar to the proof of Lemma 7.21. [

Lemma 10.14 (preservation by commands) Suppose that p and p/ are con-
fined method environments and R Menv p p'. Consider any non-rep class
C # Own and any I' - S with I'self = C. If ' - S is confined and all constituents of

S are confined then the following holds: For any o and any (h,n) € [Heap ® I'] and
(W',n') € [Heap @ T, if conf C (h,n), conf C (h',n), and R o (Heap®RT') (h,n) (b, )
then there is 09 O o such that

R oo (Heap @)1 ([0 F SJu(h,n)) ([0 ST'W'(W',9))

PROOF. The proof is very similar to the proof of the corresponding Lemma 7.22
except in the cases of method call, field update, and most interestingly new. We no
longer have the assumption of parametricity of the allocator, and we must consider
construction of reps in sub-owners.

CaASe I' F z:=e.m(e). This goes through as before except for the case where
C < Own. In that case, the called method may have module scope and this is why
such methods (designated by prot) are included in the definition of R Menwv.

CASE I' - z:=new B. By confinement of CT', this command is confined and
hence the final states are confined: conf C (ho,n0) and conf C (hy, n}). We have
C £ Rep and C # Own. Let ¢ = fresh(B,h) and ¢’ = fresh(B,h'). Define
oo = cU{(¢,¢')}. This makes o bijective because ¢, " are fresh and R o Heap h b’
implies, by definition, that dom o C dom h and rngo C dom h'.

By R o T' n 1 and definition of oy we have R g9 T 19 nj. We proceed to
show R o¢ Heap hg h{, by cases on B. Let h; = [ — [fields B — defaults]] and
Ry = [0/ — [fields' B — defaults]).
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—B % Own A B £ Rep: We have fields B = fields' B and thus
R oq (state B) [fields B — defaults] [fields' B — defaults] .

So, as B is non-rep and B # Own, we can add ¢ to Ch and ¢’ to Ch' to get
partitions that witness R oo Heap ho hy.

—B < Own: By local coupling, Def. 10.2, we get o with £ og hy h}. Moreover, h;
and h) are owner islands and the confining partitions for h, h’ extend to ones for
hxhy. and b’ x b} with o¢. Finally, by definition of R we get R oo Heap hq hj,
as ho = hxhy and hyy = b’/ x hf.

—B < Rep: Here, C' < Own or C < Rep, as otherwise the command would not be
confined. Let j be such that nself € dom(Oh; * Rh;). Add ¢ to Rh; and ¢ to
Rh;-. This yields R o¢ Heap ho h{ with hg = h* hy and h{ = h' «h}. O

11. STATIC ANALYSIS

This section gives a syntax directed static analysis for a property we call safety
which is shown to imply confinement.

The input is a well formed class table and designated class names Own and Rep.
The analysis is given for the language of Sect. 9.2. We do not claim that the analysis
is definitive, but it has the following pleasant characteristics. The restrictions are
weak enough to admit interesting programs including all the examples discussed in
the paper. The analysis is modular in the sense that, with one exception, only rep
and owner code (including subclasses) is constrained. The exception is for new: a
client cannot construct a new rep. For practical application, this can be ensured in
a modular way: Rep and its subclasses would be declared with module scope.

Definition 11.1 (safe) Class table CT is safe iff for every C' and every m with
mtype(m,C') = T—T the following hold.

(1) If m is declared in C by T m(T 7){S} then T:T,self: C,result: T > S where >
is the safety relation defined in the sequel.

(2) If C < Own and —mscope(m,C) then T % Rep.

(3) If m is inherited in Own from some B > Own then T % Rep.

(4) No m is inherited in Rep from any B > Rep.

The safety relation > is defined by the following rules. There is no restriction on
field declarations per se. A client can have a Rep type field, but can assign only
null to it.

Safety for expressions

I'>z:Tz T'>null: B T'>unit:unit I > true:bool I > false:bool

C=Tself) T'>e:C (f:T)€ dfieldsC (C =0OwnAe#self = T % Rep)
F'ef:T

I'e:T T'>ey:T I'be:D B<D I'>e:D B<D
I'>e; =ez:bool I'>(B)e:B I'>eis B:bool
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For expressions, the analysis imposes restrictions on field accesses and nothing
else. If e. f appears in the body of an owner method, then a Rep can be accessed only
via the private fields of Own; this requires e to be self (instance-based visibility).!3
If e.f appears in a sub-owner, then the private fields of Own cannot be accessed,
hence the result cannot be a Rep.

For commands, the rules impose restrictions on new, field update, and method
call. The conditions on field update are analogous to those for field access. Object
construction z :=new B in the body of a client method cannot create a new rep.

For method call z := e.m(€), the condition labelled (a) says that if m is a client
method called from a subclass of Own or Rep, then m cannot be passed reps
as parameters. Condition (b) considers method calls from an owner class or its
subclasses: it says that if m’s type is comparable to Own then reps can be passed
as parameters only if e is self. Moreover, if e is not self, then the method cannot
return reps as result.

Safety for commands
I 1

C = Tself)  (f:T) € dfieldsC

C = (T'self) B # Object I'>e:C T'eyg:U ULT
x#£self B<Tz C =0OwnANey #self = U % Rep
C £ Rep NC & Own = B % Rep C <Own = U % Rep
I'>x:=new B I'>er.fi=eq

I'>e:D I'>e:U mtype(m, D) =T—T U<T T<Txz z#self
C = (T self) mscope(m,D) = C < OwnV C < Rep
(a) (C<OwnVC<Rep)A(D L RepA (D L OwnV —(mscope(m, D))))
=T % Rep
(b) C<Own = D%OwnV (e=self) V(T % Rep NT % Rep)
' 2:=emf(e)

x#£self T'be:T T<Tzx 'S I' S,
I'>bxz:=e I'> 515 5o
I'>e:bool T'n>S; I'> S5, 'se:U ULT (Tyz:T)>S
I' > if e then Sy else S; fi I'>Tz:=ein S

Theorem 11.2 (soundness) If CT is safe then it is confined.

PROOF. Items (2)—(4) in the definition of safety are the same as items (2)—(4)
in the definition of confinement for class tables. For item (1), the confinement
of method bodies follows from safety thereof, by Lemmas 11.3, 11.4, and 11.5 to
follow. 0O

The proofs of the following lemmas are routine and appear in the companion
technical report.

13 An expression like self.fst.nxt.nxt is not allowed in our language because we consider only private
fields; but if module-scoped fields were added, this expression would be allowed by the analysis.
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Lemma 11.3 (argument values confined) Suppose I'e:D and I' -&:U are
confined. If T' > z := e.m(€) then I' F 2 := e.m(€) has confined arguments.

Lemma 11.4 (soundness for expressions) IfI''>e: T then I' - e: T is confined.

Lemma 11.5 (soundness for commands) If I' > S then I' - S is confined.

12. DISCUSSION AND RELATED WORK

Programmers draw pictures of pointers in heap-based data structures and often
manage to get things right as far as the presence of pointers goes. For example, lists
don’t get disconnected. The absence of pointers is harder to picture and many bugs
are due to unexpected aliasing. Expectations are raised through use of encapsula-
tion constructs such as private fields and modules, but heap structure is not entirely
manifested in language constructs. Simulation relations are often used for reasoning
about abstractions and here too aliasing presents a challenge: Multiple instances
of an abstraction may reference a shared client object or be shared by multiple
clients —but client references to representation objects can violate encapsulation.
Various notions of ownership confinement have been proposed for encapsulation of
objects. We have formalized one and shown that clients are independent from con-
fined representations. Independence is formalized by an abstraction theorem that
licenses reasoning about equivalence of class implementations using simulation re-
lations. Confinement is formalized by drawing boundaries that signify the absence
of pointers.

12.1 Related work

Representation independence. The main proof technique for representation in-
dependence is so fundamental that it has appeared in many places, with a vari-
ety of names, e.g., bisimulation, logical relations, abstraction mappings, relational
parametricity (e.g., [Plotkin 1973; Reynolds 1984; Lynch and Vaandrager 1995;
de Roever and Engelhardt 1998]). Among the many uses of simulations are pro-
gram transformations and justification of logics for reasoning about data abstraction
and modification of encapsulated state.

Representation independence results are known for general transition systems [Mil-
ner 1971; Lynch and Vaandrager 1995], first order imperative languages [He et al.
1986; de Roever and Engelhardt 1998], higher order functional [Reynolds 1984;
Mitchell 1986; 1991; 1996; Power and Robinson 2000; Pitts 2000] and higher order
imperative languages [O’Hearn and Tennent 1995; Pitts 1997; Naumann 2002], and
sequential object-oriented programs without heap allocation ([Cavalcanti and Nau-
mann 2002] treats a language with class-based visibility and [Reddy 2002] treats
one with instance-based visibility). As far as we know, our results are the first
for shared references to mutable state, a ubiquitous feature in object-oriented and
imperative programs. The lacuna is mentioned in [Grossman et al. 2000].

The combination of local state with higher order procedures makes it difficult
to prove representation independence for Algol, where procedures can be passed as
arguments but not assigned to state variables. The root problem for Algol seman-
tics [Reynolds 1981b; O’Hearn and Tennent 1995] and proof rules [Olderog 1983;
German et al. 1989] is the interaction between arbitrary nesting of variable and
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procedure declarations and possibility of passing procedures as arguments. Rep-
resentation independence has been proved, using denotational semantics based on
possible worlds models [O’Hearn and Tennent 1995] and using operational seman-
tics [Pitts 1997], on which we say more below.

In imperative languages like C and Modula-3, procedures can be passed as argu-
ments and even stored in variables, but only if their free variables are in outermost
scope. This restriction greatly simplifies implementation of the language and it
makes it possible to use simple semantic models. Naumann [2002] uses such a
model to prove an abstraction theorem and apply it to Meyer-Sieber examples.!4
The constructs of a Java-like language offer similar expressive power and also admits
a simple model as we have shown in this paper.

To get an adequate induction hypothesis for an abstraction theorem, parametric-
ity needs to be imposed on the latent effects of procedure abstractions, either as a
property to be proved or as an intrinsic feature of the semantic model [Reynolds
1981b; O’Hearn and Tennent 1995]. It seems that these conditions are most eas-
ily expressed in terms of a denotational model, but if procedures can be stored in
the heap on which they act, difficult domain equations must be solved.'® Recur-
sive data types also lead to nontrivial domain equations. Even if solutions can be
found, they may be quite complex structures that are difficult to understand and
work with. Nevertheless, a modern treatment of recursive domain equations offers
some hope of progress [Reus and Streicher 2002; Reus 2003].16

Difficulties with denotational semantics led to considerable advances using op-
erational semantics [Gordon and Pitts 1998]. For Idealized Algol, in which only
integers can be stored in variables and there are no recursive types, Pitts [1997]
formalizes logical relations using operational semantics and proves equivalences like
the Meyer-Sieber example in our Sect. 3.1. Although complex domains are avoided,
an operationally based notion of logical relation can be “far from straightforward”
and “quite difficult” (in the words of Pitts [2005], discussing logical relations for
existential types in a purely functional setting).'”

One of the most relevant works using operational semantics is that of Grossman
et al. [2000] where representation independence is approached using a dynamic no-
tion of ownership by principals as in the security literature. To prove that clients
are independent from the representation of an abstraction provided by a host pro-
gram, a wrapper construct is used to tag code fragments with their owner (e.g.,
client or “host”), and to provide an opaque type for the client’s view of the ab-
straction. This is a promising approach. However, the results so far only show
“independence of evaluation” (reminiscent of nonintereference results in informa-
tion flow security [Volpano et al. 1996; Abadi et al. 1999]) and do not provide a

14The simpler of their examples can be proved directly in the model without use of simulations
[Naumann 2001].

I5Recently Levy [2002] used functor categories to give a denotational model for a higher order
language with pointers, but the model does not capture relational parametricity and the language
has neither object-oriented features nor recursive types.

16The cited work also provides semantics that is compositional at the level of classes, whereas our
semantics is given for a complete class table. Nonetheless, our result provides modular reasoning
about a single class in the context of an arbitrary class table.

ITFor functional programs, see also Sumii and Pierce [2005].
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general notion of simulation. Although Grossman et al. [2000] offer their work as a
simpler alternative to domain theoretic semantics, the technical treatment is some-
what intricate by the time the language is extended to include references, recursive
and polymorphic types.

Except for parametric polymorphism, we treat all these features, as well as others
such as subclassing, dynamic binding, type tests and casts. Although Java syntax
seems less elegant than, say, lambda calculus, it has several features that ease the
difficulties. Owing to name-based type equivalence and subtyping, and the binding
of methods to objects via their class, we can use a denotational model with quite
simple domains and fixpoint definitions in the manner of Strachey [2000].

For applications in security and automated static checking, it is important to de-
vise robust, comprehensible models that support not only the idealized languages of
research studies but also the full languages used in practice. Denotational seman-
tics has conceptual advantages, at least if the domains are simple enough to have
a clear operational significance. However, we admit that our enthusiasm for the
efficacy of denotational techniques has been tempered by the irritation of flushing
out bugs in intricate definitions and induction hypotheses.

Our abstraction theorem and identity extension lemma can be used directly to
prove equivalence of programs, where a program is a command in the context of
a class table and designated class C'. It would be reasonable to use a notion of
equivalence based on field visibility: states would be equated if they are equal after
hiding all fields except those visible in C. But this would beg the question whether
hiding imposes encapsulation that is not intrinsic to the language. In this paper we
use the finer equivalence on programs: for commands to be equivalent they must
yield outcomes that are identical, up to renaming, after garbage collection. Thus
encapsulation is formulated in terms of private fields and confined reps but the
identity extension lemma is expressed, in effect, in terms of local variable blocks
(in the style of, e.g., He et al. [1986]).

Besides the “client interface” provided by public methods and analogous to the
interfaces studied in previous work on representation independence, a class also has
a “protected” interface to its subclasses. The combination of protected and public
interfaces is complicated, but a thorough treatment of representation independence
for object-oriented programs must take it into account. For reasoning about the
protected interface, work on behavioral subclassing has used simulations to connect
a class with its subclass [Liskov and Wing 1994; Leavens and Dhara 2000] but
a formal connection has not been made with the use of simulations to connect
alternative representations. The PhD thesis of Stata [1997] considers other aspects
of the protected interface.

Confinement. Quite a few confinement disciplines have been proposed, by Hogg
[1991], Almeida [1997],Vitek and Bokowski [2001], Clarke et al. [2001], Miiller and
Poetzsch-Heffter [2000b], Boyland [2001], Lea [2000], Aldrich et al. [2002], and
Clarke [2001] (the latter has a more comprehensive recent survey). Most proposals
have significant shortcomings; they disallow important design patterns or are not
efficiently checkable. Although the aim is to achieve encapsulation and thereby
support modular reasoning in one form or another, few proposals have been formally
justified in these terms —mnone in terms of representation independence.

Journal of the ACM, Vol. V, No. N, Month 20YY.



June 6, 2005 . 61

Several works justify a syntactic discipline by proving that it ensures a confine-
ment invariant [Miiller and Poetzsch-Heffter 2000b; Clarke 2001; Aldrich et al.
2002]. Others go further and show some form of modular reasoning principle, as
we discuss in detail below. Existing justifications involve disparate techniques and
objectives, so that it is quite hard to assess and compare confinement disciplines.
One of our contributions is to show how standard semantic techniques can be used
for such assessments.

The fact that type names are semantically relevant lets us use them to formu-
late in semantic terms a condition similar to the ownership confinement notions
of Miiller [2002], Clarke et al. [2001] and their predecessors [Hogg 1991; Almeida
1997]. Whereas several papers emphasize reachability via paths, our formulation
of confinement emphasizes partitioning of heap objects and the one-step points-to
relation. In this we were inspired by the work of Reynolds [2001] that shows the
efficacy of reasoning about partition blocks that may have dangling pointers.

Reasoning on the assumption of confinement is a separate concern from enforce-
ment or checking of confinement. Semantic considerations led us to a flexible,
syntax-directed static analysis, but other analysis techniques such as model check-
ing or theorem proving for (an approximation of) the semantic confinement property
could be interesting.

It is interesting to note that we get a strong reasoning principle on the basis
of ownership confinement alone, in a form that can be checked without program
annotations. By contrast, other works use annotations and combine ownership with
uniqueness and effects (e.g., read-only) [Clarke and Drossopoulou 2002; Aldrich
et al. 2002; Miiller 2002]. Those works aim to record design decisions in all parts
of a program, to support program understanding and reasoning. We are concerned
with replacing one part; for this purpose it is not clear what annotations would be
appropriate as a design record. What is clear is that one only needs a three-way
distinction —owner, rep, and other— which can be checked rather flexibly without
recourse to special annotations or types.

Confinement figures heavily in the verification logics of Miiller and Poetzsch-
Heffter [2000a] and in some work by the group of Nelson and Leino [Leino and
Nelson 2002; Detlefs et al. 1998] where it is needed for sound reasoning about the
“modifies clause” framing the scope of effects. Subsequent to the present work,
Clarke and Drossopoulou [2002] state results on reasoning about effects, using a
confinement discipline imposed using code annotations for confinement and effects.
These works are concerned with delimiting the scope of effects, which is an impor-
tant aspect of modular reasoning, but they do not address representation indepen-
dence.

There has been much work on capturing encapsulation via visibility (lexical
scope), using existential types and subsumption (see [Bruce et al. 1999; Bruce 2002;
Pierce 2002] and references therein). None of these works addresses the problem of
confinement; they are concerned with the complex typing issues for object oriented
languages.

One of the main difficulties in designing safe and flexible type systems is due
to the desire to eliminate or minimize the use of type testing and casting which
are seen as loopholes that subvert type-based encapsulation. Indeed, parametric
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polymorphism has been much pursued as a means to cope with generic patterns
that, in current practice, are usually coded using subsumption, casts, and type
Object (a recent reference is the textbook by Bruce [2002]). Although parametric
polymorphism has obvious merit, our results show that casts and type tests are
themselves relationally parametric. It is behavioral subclassing which is at risk in
some uses of casts and tests. This does not contradict Reynolds [1984] because our
language has a nominal type system [Pierce 2002]; it is the name of a type, not its
set of values, that is involved with tests and casts.

12.2  Future challenges

Our aim is to deal with the rich languages currently in use, rather than to advance
language design. The language for which our results are given encompasses many
important features of object oriented languages. Two major features are missing
and will require substantial additional work: concurrency and parametric polymor-
phism. The interaction between parametric and subtyping polymorphism can be
non-trivial and there are a number of competing type systems. Some languages,
e.g., C++, have parametric polymorphism but with significant limitations; for Java,
parametric types are a late addition.'8

Ownership confinement is appropriate for reasoning about many designs in prac-
tice and we have shown through a series of examples that our notion is applicable
to widely used designs such as the observer and factory patterns. Two important
issues are beyond the reach of our work (and much of the previous work on confine-
ment). The first is multiple ownership. A canonical example is a collection class
with iterators. The reps for the collection are nodes of a data structure. The collec-
tion object mediates additions and deletions. To allow enumeration of elements of
the collection it is common to use iterator objects which need access to the nodes of
the data structure. It would seem that either the collection and its iterators share
joint ownership of the reps or the iterator is given a special status distinct from the
owner and from clients. Either way, multiple client-visible objects collaborate to
provide an abstraction (the iterable collection).

Another example that requires something like multiple ownership is the Observer
role of the observer pattern (vs. the Subject role), which has not been the focus
of attention in this paper. Often an observer is comprised of several objects; in
particular, the callback object on which notify is invoked is an instance of an inner
class and might be considered part of the representation of the observer, though it
is exposed to the Observable.

Ownership type systems have been given that allow some form of multiple own-
ers [Clarke 2001; Miller 2002; Aldrich et al. 2002; Aldrich and Chambers 2004].
Although our formalization of islands can be extended easily to encompass multiple
owners, it is not as clear how to extend the notion of simulation in a useful way.
Our result formalizes the notion that an owner instance provides an abstraction
and this is easily expressed in terms of the class construct. The generalization can
probably be expressed by grouping the related owners (e.g., the collection class and

18Tn [Banerjee and Naumann 2004b] we extend the semantics straightforwardly to encompass
parameterized types in the form found in the C# language [Kennedy and Syme 2001]. We also
give a representation independence theorem. There is no major difficulty.
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the iterator class) in a module, with local couplings generalized to encompass the
multiple iterators associated with a collection. Ownership type systems are under
active development. Once a robust standard notion emerges, it could provide an
appropriate general setting to which our work could be adapted.

The other challenging issue for confinement is ownership transfer. Consider a
queue that owns objects representing tasks to be performed. For load balancing,
tasks may be moved from one queue to another. In this case a task is owned by
just one queue at a time and in a given state the system is confined according
to the definition in this paper. A sequential program for transferring ownership
from one queue might look as follows: q2.task := ql.task; ql.task :=null. From a
confined initial state this need not lead to a confined final state: there could be other
references to task. But it does lead to a confined final state if g2.task is initially
the only existing reference to the task. Unique references have been extensively
studied so let us assume that a static analysis is given for uniqueness. Even with
uniqueness, our theory fails to apply, for two reasons. The first reason is a small
one: in the intermediate state two different owners reference the same task. This
problem is well known and can be surmounted: It is easy to add to our language an
atomic command with the effect of the above sequence [Minsky 1996] and to show,
given uniqueness, that it is confined. For practical purposes one would use a static
analysis to check that ql.task is a dead expression [Boyland 2001].

The second reason our theory does not apply is a technical one. To show that a
method call is confined, we need that the caller’s environment is confined in the final
heap assuming it was confined in the initial one. We get this by using a condition
stronger than confinement: from a confined state, a command or method yields
a final heap that extends the initial one in the sense of Def. 6.3. All commands
of our language yield heaps extended in this sense so all method meanings have
this property. (See the proof of Theorem 6.15.) But, by definition of extension,
h < hg says that reps that exist in h have the same owners in hg as in h, disallowing
ownership transfer.

For static analysis there are some more modest issues worthy of investigation.
The simple conditions of Def. 6.9 ensure suitable confinement of the class table
but they are unnecessarily strong. Methods inherited into rep classes are not risky
if they do not leak self; such “anonymous methods” can be statically checked as
shown by Vitek and Bokowski [2001] and Grothoff et al. [2001] in work on module-
based confinement.?’ The conditions of our static analysis may also admit useful
variations.

Having shown that simulation is sound one might proceed to study completeness.
It is not the case that our confinement conditions are necessary in general for
simulations to be preserved. A trivial simulation might depend on no confinement
at all. Also, a rep could be leaked but not exploited by any client. One can see
confinement as a kind of simulation which happens to be a rectangular predicate:
h relates to h’' just if h and h’' are confined, independent of each other. This

19In work subsequent to this paper, we give an abstraction theorem in a setting where ownership
is encoded in auxiliary state and can be transferred freely [Banerjee and Naumann 2005].

20In fact the cited work is concerned with pragmatic aspects of the analysis and does not formalize
a semantic property ensured by the analysis.
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suggests folding the confinement condition into the simulation relation, an idea
which has been studied by Reddy and Yang for a Pascal-like language.?! For
practical reasoning the benefits of treating confinement separately are clear: it
accords with informal design practice, is amenable to static checking, and ensures
soundness for a straightforward and modular notion of coupling.

The more practical question is how to express local couplings and prove the sim-
ulation property for owner methods. To formalize the couplings for the observer
examples one needs a formalism for inductive predicates on recursive data struc-
tures; separation logic appears promising for this purpose [Reynolds 2002].

Representation independence licenses reasoning about equivalence of programs
that are structurally similar [Banerjee et al. 2001; Riecke 1993]. This is quite ade-
quate for uses of simulations such as static analyses and relating alternative inter-
pretations for primitives, such as the lazy and eager access control implementations
for Java [Banerjee and Naumann 2002]. But for abstraction in program develop-
ment, typically called data refinement, it is not uncommon to consider significantly
different program structures. To establish the hypothesis of the theorem in this
case requires a full program logic. Indeed, the theorem would then provide one of
the proof rules. For first-order imperative languages, several proof systems have
been given for reasoning about two versions of an abstraction [de Roever and En-
gelhardt 1998]. Typically, relations (especially “abstraction functions”) are used to
derive from one version the specification of the other version, which is then proved
correct in a program logic. Logics for imperative object-oriented languages are at
an early stage of development [Abadi and Leino 1997; Cavalcanti and Naumann
1999; Poetzsch-Heffter and Miiller 1999; Huisman and Jacobs 2000; Huisman 2002;
Reynolds 2002].
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