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Abstract. Ownership confinement expresses encapsulation in heap struc-
tures, in support of modular reasoning about effects, representation in-
dependence, and other properties. Most previous proposals for static
enforcement of ownership confinement require annotations of whole pro-
grams using intricate type systems that are difficult to validate. More-
over, few proposals deal with transfer and sharing of ownership. We show
how consideration of a reasoning objective suggests a particular pattern
of ownership amenable to lightweight and modular imposition of confine-
ment. We show how the pattern extends to handle transfer, at the cost
of a heavier analysis.

1 Introduction

For scalability in reasoning about programs, be it informal reasoning by devel-
opers or automated reasoning embodied in static analysis tools, modularity is
essential. Modularity is achieved using encapsulation mechanisms such as visi-
bility modifiers for object fields, but cannot be achieved fully in object-oriented
programs without control of sharing of objects in the heap —for which we use the
general term confinement. This paper reports on work towards a theory for rea-
soning about representation independence (i.e., class equivalence) for sequential
Java programs on the basis of a flexible form of ownership confinement. To han-
dle ownership transfer, it turns out that we also need an additional confinement
property which is similar to the recent proposal called external uniqueness [9].
To be useful, a confinement discipline should (a) ensure some invariant that
facilitates modular reasoning about some property of interest; (b) be sufficiently
flexible to be applicable and useful for an interesting class of programs; and (c)
be amenable to efficient static checking. Let us consider some example invari-
ants, loosely described. Uniqueness is often used to strongly delimit effects, e.g.,
to avoid the need for a lock [16]: the invariant is that the object referenced from
a unique field is not accessible from anywhere else. Boyapati et al. [5] use a
form of ownership as basis for a locking discipline: if a thread holds a lock on
a certain object, it need not lock objects owned by that object. Strong forms
of ownership have been proposed for various kinds of modular reasoning [14,
15,10,7,23,20,1]. A typical ownership invariant is that an owned object is not
accessible except via the object that owns it. Ownership is ubiquitous, as it is

* e-mail:ab@cis.ksu.edu; Supported by NSF grants CCR-0209205 and CCR-0296182.
** e-mail:naumann@cs. stevens-tech.edu; Supported by NSF grant CCR-0208984.



a natural embodiment of aggregation and the encapsulation of representations.
Achieving such encapsulation is a key design objective, as it supports local rea-
soning about mutable state, in the form of frame specifications (the “modifies”
clause, frame rules) [19,17], equivalence between versions of a class [3,2], and
general non-interference assertions [8,4].

In previous work [3], we formulated a semantic notion of ownership and
proved that it is a sufficiently strong invariant to justify representation indepen-
dence, i.e, modular reasoning about equivalence of class implementations using
the standard notion of simulation [18,13,21,11]. This notion of ownership has
several restrictions that make it inflexible in ways similar to some of the earlier
proposals [14,15]. One restriction is that encapsulated representation objects
may not have outgoing references to clients of the owner. In the full version [2]
of [3], this restriction was lifted and a static analysis given for confinement. The
analysis is modular in the sense that constraints are imposed only on the owner
class and its representation class(es).

The present paper extends our previous work by overcoming two other re-
strictions that have also been challenging for other work on ownership: multiple
ownership and ownership transfer, i.e., transfer of representations between own-
ers. A leading example of multiple ownership is collection classes, where a col-
lection object encapsulates nodes of a data structure but allows access to those
nodes by iterators. An example of ownership transfer is a group of collections,
such as task queues among which tasks are transfered for load balancing.

2 Representation independence and ownership

We consider a simple example of representation independence, to show the sig-
nificance of ownership confinement for showing equivalence between two versions
of a class. This leads us to focus on a particular pattern of heap encapsulation
which is applicable to a wide class of programs and which admits a lightweight
static analysis (i.e., syntax-directed and requiring no program annotations).

Consider class ListNode in Fig. 1. Its instances are used in class Fifo; the
nodes reachable from an instance of Fifo comprise the representation thereof. We
use Java-like notation; in particular, class types are implicitly reference types.
Here and throughout we consider fields to be private; methods are public unless
otherwise indicated.

Privacy of fields front and rear helps encapsulate the objects that are intended
to comprise an internal data structure which should not be directly accessible
to clients of the queue. Not all reachable objects are within the representation,
however; the contained items are not.

One might wish to reduce the overhead of object construction and destruction
by substituting this data structure with another that uses an array. Provided that
the public interface does not change, this concern should be local to class Fifo. To
ensure that this change of representation does not affect the behavior of clients,
the standard reasoning (based on simulation [13]) involves showing that clients
do not depend on the internal representation, but depend only on the behavior



class ListNode {
Object item; ListNode nxt;
Object getlt(){ return item; }
ListNode getNxt(){ return nxt; }
void setlt(Object 0){ item:=o; }
void setNxt(ListNode n){ nxt:=n; } }
class Fifo { // owner of the nodes reachable from its fields
ListNode front, rear; // least, most recent
void enq(Object 0){ ListNode n:=new ListNode();
n.setlt(o); if (front==null){ front:=n; rear:=n; } else { rear.setNxt(n); rear:=n; } }
Object deq(){ ListNode n:=front;
if (front==rear){ front:=null; rear:=null; } else { front:=front.getNxt(); }
return n.getlt(); }

Fig. 1. Toy example of FIFO queue.

of Fifo observed through its public methods. It is for this that confinement is
needed: Without restrictions on aliasing to enforce encapsulation, representation
exposure can occur. A client can depend on the representation, and indeed clients
can interfere with the behavior of the queue.

Representation exposures violate various confinement properties one can
think of. One realistic example similar to the toy queue example is the Java
Class Signers bug. As discussed by Vitek and Bokowski [23], the type of the
leaked object in this example has package scope. They propose that such ob-
jects should not escape from the package and they give a static analysis for
package confinement; of course the example violates their static checking rules.

Package confinement has several limitations. Although package confinement
is an invariant that delimits the scope of effects, and in that way supports modu-
lar reasoning, it is a rather large-scale or coarse-grained property. In particular,
to use it for reasoning about substitution of one class implementation by an-
other, one would have to reason about all instances of the class at once. But
a programmer changing the representation for Fifo likely thinks in terms of a
single instance. This is typical for objects that provide a collection or other data
abstraction. Also, package confinement does not help with the situation where
some public class, e.g., HashTable, is used for encapsulated representations but
also for many other purposes. Our previous work [3] also failed to handle this
situation.

For reasoning about class equivalence, as in the queue example, it is natural to
focus on a single instance of the class to be replaced. Various forms of ownership
confinement have been proposed, in which each instance of class Fifo can be
viewed as owning its internal representation, which is not shared with other
instances. To formulate a general rule for using simulation to prove equivalence
between one implementation of a class and another, it is enough to focus on

— an instance of the class, say Own, to be replaced (e.g., a Fifo object)



Fig. 2. Confinement scheme for island j with respect to another island i.Dashed boxes
delimit partition blocks. No objects are shown. Solid lines indicate allowed references
and dotted lines indicate prohibited ones. There is no restriction within blocks.

— the internal representation for that instance —the encapsulated objects,
called reps, on which clients should not depend, and which may be replaced.
We assume these objects have a common superclass Rep (the generalization
to a covering set of superclasses is straightforward).

— Objects that are neither owners nor representations thereof —which we lump
under the term clients.

Thus we arrive at the view of the heap depicted in Fig. 2. This view has a simple
characterization in terms of types. The set of objects in the heap is partitioned®
into the following blocks:

— The client block, Ch, containing any object with type C' such that C' £ Own
and C £ Rep.

— Some islands of the form Oh; x Rh; where Oh; consists of a single owner
object (with type C, C < Own) and Rh; consists of the encapsulated repre-
sentations for that owner (each of which has some type D < Rep).?

The invariant on the heap (called heap confinement) that must be maintained
can now be formulated as restrictions on the direct points-to relation (see Fig. 2).
A heap is confined provided there is a partition (as above) such that

— Clients do not point to encapsulated reps.
— Islands are separated from each other:
e Owners do not point to reps in a different island.
e Reps do not point to reps or owners in a different island.

— The pointers from Oh; to Rh; are in private fields of Own. Methods defined
in a subclass may manipulate reps but not store them in its fields; this
allows reasoning about versions of the owner class independently from its
subclasses. (See [2] for examples of how this fits with the factory pattern.)

For instance-oriented reasoning about substitution of an owner class, our pre-
vious work [2] gives an abstraction theorem that formally justifies such reasoning

1 'We allow the “partition” blocks to be empty.
2 We use the symbol * for union of disjoint heaps, as in Separation Logic [22].



for programs that preserve confinement. A key point is that the basis for defining
simulations —the hypothesis of the proof rule for class equivalence— is a relation
connecting a single island for each of the two representations. Hence in light of
Figure 2, we can sharpen the reasoning that justifies replacement of one class
implementation by another: (a) The reasoner defines a basic coupling relation
for a single island: that is, how an island for one implementation corresponds
to an island for another. To connect, e.g., two versions of class Fifo, the basic
coupling relates a single island Oh * Rh for the first version (so Rh contains the
instances of ListNode for a single queue) with an island Oh’ x Rh" for the second
version (where Rh’ might contain an array or whatever other data structure is
used). (b) Next, for each method of the class, the reasoner proves the simulation
property by showing that the corresponding implementations preserve not the
coupling itself but the induced relation on complete heaps. This accounts for
the fact that client objects and other owners can be reached from the island,
while supporting per-instance reasoning. The simulation property for class Fifo,
for example, is proved in terms of methods of Fifo executing on a single instance
of Fifo (though behavior of a method may depend on objects elsewhere in the
heap, due to outgoing calls to client methods).

The present paper pursues this approach further by exploring richer notions
of confinement. To conclude this section we emphasize two points. First, confine-
ment is in the eye of the reasoner. To reason about the connection between two
implementations of a class, what matters is encapsulation of the entire repre-
sentation, regardless of whether it might be possible to further decompose that
representation into other ownership relations.® (E.g., in a more object-oriented
version, class ListNode could provide all the functionality of lists, via recursive
calls to the tail, in which case one might view each node as owning the rest of
the list. But for reasoning about Fifo, what matters is the behavior of operations
on the list.)*

The second point is about static enforcement of confinement. Once we had
found a semantic notion of confinement suitable for representation indepen-
dence, we sought a static analysis, expecting that program annotations would
be needed. But we were able to avoid that by making use of the program’s own
types in formulating confinement and confinement rules. In the present paper, we
improve our formulation and show the approach to be surprisingly flexible. But
to some extent we contradict this second point: to handle transfer of ownership
we use annotations for a form of uniqueness.

3 Thus we do not assume hierarchical ownership [7-9].

4 As an analogy, in the proof rule for loops what matters is that the body preserves
the invariant; internal structure of the loop body is not relevant. Another analogy is
the frame rule in Hoare logic, i.e., the inference of {P A R}S{Q A R} from {P}S{Q}
(for suitable R). What matters is the top-level connective A; of course R may have
structure but this is not relevant to the rule. In Separation Logic, the rule is extended
to the heap using * as top-level connective.



sharing owners

encapsulated Reps

Fig. 3. Refined confinement scheme; dotted arrows indicate disallowed references.

3 Sharing ownership

A well known challenge for ownership systems is posed by collections with which
iterators may be associated. As an example, let us extend class Fifo with method

Enumeration enum(){ return new ListEnum(front); }

where ListEnum is an iterator.

An iterator needs access to the representation, so it is not possible to reason
about it entirely separately. For the kind of example considered here, it seems
natural to consider a single primary owner, the collection itself (of type < Own)
together with a number of sharing owners, e.g., instances of ListEnum (we des-
ignate their supertype as Osh). This suggests the partition scheme depicted in
Fig. 3, where each primary owner is in an island containing its reps and shar-
ing owners. (Fig. 3 also includes a block Uh that is discussed later.) The island
is still the unit of encapsulation used for purposes of reasoning about equiva-
lence, where now the equivalence is between implementations of a pair of classes
Own, Osh (e.g., Fifo and ListEnum). Heap confinement can again be formulated
as restrictions on the direct points-to relation (see Fig. 3). The distinction be-
tween Own and Osh is important for formulating an instance-based notion of
representation-independence, in the sense that one instance of an abstraction —
defined by a class— is compared with another —given by an alternative version
of the class. The extended abstraction involves multiple objects, the iterators,
but only those for a single primary owner.

We are not the first to treat sharing of ownership; see [19,5,8]. A closely
related work is that by Boyapati, Liskov, and Shrira [6] which gives an owner-
ship system that allows sharing and which is claimed to be strong enough to
support modular reasoning. As they remark, most other proposals are either too
permissive for sound local reasoning or too restrictive to handle iterators. How-
ever, while [6] states that type soundness can be proved by standard techniques



void transferTo(Fifo 0){ o.pushR(self.pullR()); }
void transferFrom(Fifo 0){ self.pushR(o.pullR()); }
void pushR(o-unique ListNode n) /*module scope*/ {
if (front==null){ front:=n; rear:=n; } else { rear.setNxt(n); rear:=n; } }
o-unique ListNode pullR() /*module scope*/ {
ListNode n := front;
if (front==rear){ front := null; rear:=null; } else { front:=front.getNxt(); }
n.setNext(null); result :=n; }

Fig. 4. Transfer of rep between owners.

and proves that their ownership types ensure a certain heap invariant, there is
no formalization of modular reasoning much less a justification that the owner-
ship invariant helps. Also, the achievement of [6] comes at the cost of requiring
inner classes for iterators; this is a reasonable program structure but complex
and challenging for formal reasoning.® Miiller [19] handles a form of sharing and
shows modular soundness for reasoning about modifies specifications; it is not
clear how to adapt this result to representation independence.

All of the works cited above suffer from the shortcoming that the owner of
an object is fixed. By contrast, our ownership invariant is a state predicate of
the form: there is a partition of objects such that certain direct references do
not exist. Our owners may traffic in reps.

4 Transfer of reps among owners

Owners may cooperate among themselves. For example, consider a number of
queues of tasks, each serving its own processor. For purposes of load balancing,
tasks from full queues can be transferred to empty ones. The public interface
could be used to dequeue from one and enqueue to the other, but it could be
difficult to do this and maintain task management information. Moreover, it
incurs a performance penalty for object allocation and deallocation.

Figure 4 gives additional methods for class Fifo. Methods transferTo and
transferFrom are for clients to use to transferring a rep from one Fifo instance
to another. For example, the call q2.transferTo(ql) would be invoked to ask g2
to transfer one of its tasks to ql. ® The other two methods are for use within
the class, and are given package scope. Lea [16] identifies three forms of transfer
via method calls: initiated by the recipient (e.g., pullR), initiated by the sender
(e.g., pushR), and symmetric (exchange). Our example shows the first two, but
exchange can be programmed similarly.

5 Another point of concern is that downcasts are omitted from [6] and it appears
that treating them requires runtime support; downcasts and subclassing pose non-
trivial challenges for ownership systems and representation independence, which are
addressed in our work and in some others (e.g., [8,1]) by purely static means.

5 Throughout the paper we omit both preconditions and error-checking code.



When is it safe to transfer a rep? As a first approximation we want uniqueness
—the rep being transferred is referenced only by a unique pointer from the
sending owner, say in island Oh; * Rh;, which is handed off to the receiving
owner, in some island Oh; * Rh;. This ensures that putting the transferred rep
in Rh; does not create bad incoming pointers to Rh;, such as might occur if the
transferred rep had been referenced by an iterator in Oh;. Outgoing pointers
from the transferred rep to clients pose no problem. But if it had a pointer to
the sending owner, or to an iterator in the sending island, the resulting state
again violates confinement.

So we want a stronger property, o-uniqueness: a rep £ in dom(Rh;) may be
transferred if the transferring owner in Ph; has a unique pointer to £. Moreover,
consider the sub-island RA’ of Rh; that is reachable from ¢ (note that ¢ is
reachable from itself). We require that no locations of type < Own or < Osh be
reachable from R and that there be no pointers into R/ from either Ph; or
Shj;. In this case, the sub-island Rh; can be moved, en masse, to the destination
island.

Although we have not completed the proofs, we are confident that these
conditions suffice for a generalization of representation independence that is still
based on a single-island simulation relation. The challenge is to prove, modularly,
that after calling a method that may transfer reps, the caller’s environment
(which may contain reps) satisfies the confinement conditions. In [2] we achieve
this because the effect of any command, and thus any method meaning, on a
confining partition is to extend it: objects may be added, but they do not move
between islands.

The other major challenge is to impose o-uniqueness. Whereas straightfor-
ward syntactic rules, expressed only in terms of program types, suffice to ensure
the confinement invariant in the absence of transfer, such rules do not seem
feasible for o-uniqueness. The reason is that we must delimit reachable reps
from among other reps. It seems unlikely to achieve a useful analysis that is
“lightweight” in the sense of not using annotations.

As in our previous work, our approach is to start from the ultimate ob-
jective: a reasoning principle. Both confinement and o-uniqueness are semantic
properties that suffice for a useful reasoning principle, namely a form of repre-
sentation independence that does not require global reasoning about the heap.
Although we have a satisfactory lightweight analysis for confinement, we factor
out and leave unsolved the problem of static checking for o-uniqueness. Both our
representation independence result and the soundness of our static analysis for
ownership confinement are proved on the assumption of o-uniqueness at points
designated by explicit annotations (method parameters and returns).

5 Transfer of reps between clients and owners

Leino et al [12] point out that in many cases, representation objects need to be
initialized outside the owner class [12, 8]. Resource management (such as memory
managers) poses the problem of transferring objects not only from clients to



encapsulating owners but also the reverse. Consider for example this manager
of a toy resource Rsrc.

class Rsrc { Object it; Rsrc(Object i){ it:=1i; } }
class RsrcMgr { // owner
Rsrc freeList;
RsrcMgr(int n){
for (int i:=0; i<n; i++){ Rsrc r:=new Rsrc(freeList); freeList:=r; } }
o-unique Rsrc alloc(){
Rsrc r:=freeList; freelList := (Rsrc)freeList.it; r.it :=null; return r; }
void free(o-unique Rsrc r){ r.it:=freelList; freelist:=r; } }

To handle this, we refine our confinement scheme slightly, adding a single
block of “unencapsulated reps”, Uh, as depicted in Fig. 3. (The term is mis-
leading and should be replaced; they are client objects that happen to have type
< Rep and are subject to the additional restriction that they may not be pointed
to by encapsulated reps.) This refinement deals with another shortcoming with
our lightweight formulation based on program types. The previous schemes pre-
clude the use of library types like HashTable which might be used both for the
representation of Own and for other purposes by clients. We no longer insist
that all objects of class Rep are used as reps for Own or Osh; rather, reps not
in use that way are sufficiently separate to admit static checking.

In the example above, alloc allocates a confined rep object and “returns” it
to the client. In the heap, a transfer occurs — this is why alloc’s return type
is tagged o-unique. Following transfer, the object is no longer associated with
the freelist but resides in Uh. As a result the owner no longer has access to
it. Similarly, free disposes an unencapsulated rep object and returns it to the
owner. In the heap, a transfer occurs — this is why free’s parameter is tagged
o-unique. Following transfer, the object is no longer associated with Uh, but
resides in some Rh;. As a result a client no longer has access to it.

6 (Scant) Discussion

We do not believe there is a single ownership discipline —much less static analysis
technique— useful for all purposes. But we do believe the ownership pattern
studied here is widely applicable. Once we complete a rigorous proof that it
ensures strong encapsulation, a rigorous proof that our static analysis is sound
for the confinement property, and a fair and thorough survey of related work,
we plan to extend the formal setting to encompass safe multithreading.
Confinement disciplines can and should be formally justified in terms of the
reasoning benefit: the precise confinement invariant and the reasoning conse-
quences (such as validity of a proof rule). In our experience it is easy to write
down plausible rules and definitions and much harder to get them right. Many re-
seachers including ourselves believe that confinement checking should be largely
mechanized, so reasoners (be it the programmer or other tools) are freed to fo-
cus on other things; clearly such tools will be more useful if based on sound



rules. Our work demonstrates that it is neither intractable nor entirely tedious
to prove soundness. This is not to deny the importance, even the primacy, of
gaining empirical experience using prototypes, but rather to say that positive
empirical results for a confinement proposal should not be the end of the story.

A number of different disciplines have been proposed in recent years; while
some are simply improvements on predecessors, others are incomparable in both
the confinement invariant and its intended application. This suggests there is
no single “right” notion of ownership, but rather a number of useful patterns
of program structure and reasoning. Confinement is in the eye of the reasoner.
Arguably, this implies that rather than global program annotations in support
of a particular confinement discipline and checker, lightweight disciplines and
checkers are needed.

Acknowledgement: Thanks to the anonymous referees for their feedback on
an earlier draft.
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