A Logic for Information Flow

in Object-oriented Programs

A Logic for Information Flow

Joint work with Torben Amtoft and Shruthi Bandhakavi

Kansas State University

http://www.cis.ksu.edu/~ab

Anindya Banerjee

http://www.cis.ksu.edu/~ab
Permits JML-style programmer assertions.

Flow-sensitive specs.

Uses alias information ([Jif, Banerjee/Naumann] don't).

Uses local reasoning about state [O'Hearn/Reynolds/Tang/...]

Specialization for interprocedural information flow
Information flow regulates confidentiality.

- Data is secret (High) or public/observable (Low).
- Confidentiality: High inputs do not influence Low output.
- Channelless (end-to-end property).
- Typical analyses based on security types, e.g.,
- Flow sensitive [Volpano/Smith/Irvine, Myers,...]
- Flow insensitive [Hunt/Sands].
Noninterference property [Goguen-Meseguer]: For any two runs of program, L_{out}-indistinguishable input states yield L_{out}-indistinguishable output states.

Equivalently [Cohen]: L_{out} independent of initial H_{in}.

Noninterference concept:

- Classified channels
- Unclassified channels
- Program

\[
\begin{align*}
\{ & \text{classified channels} \} & \{ & \text{out} \} \\
\{ & \text{unclassified channels} \} & \{ & \text{in} \} \\
\{ & \text{out} \} & \{ & \text{in} \} \\
\end{align*}
\]
Noninterference property

Equivalently [Cohen]: Low-indistinguishable input states yield Low-indistinguishable output states.

For any two runs of program, Low-indistinguishable input states yield Low-indistinguishable output states.

Noninterference: L := l; l := h; | := h - h; | := h; | := h; | := h.

Insecure:

\[\text{h := l; if h then l := 7 else l := 8 (indirect flow)}\]

Secure:

\[\text{h := l; l := h; h := l} \]
Noninterference

Security types: well-typed programs are noninterferent.

Noninterference property [Goguen-Meseguer]: For any two runs of program, \(L \)-indistinguishable input states yield \(L \)-indistinguishable output states.

Equivalently [Cohen]: \(L \) out independent of initial \(H \) in.

Secure: \(h := \lfloor h \rfloor \)
\[l := h \]
\[l := h - h \]
\[l := h \]
\[l := l \]
\[l := h \]
\[l := l - h \]
\[l := h \]
\[l := 7 \]

Insecure: \(h := \lfloor h \rfloor \)
\[l := h \]
\[l := 7 \]
\[l := h \]
\[l := h \]
\[l := h \]
\[l := l \]
\[l := l \]
\[l := 8 \]

(indirect flow)
Security types: well-typed programs are noninterferent.

Insecure:

```plaintext
h := l
```

Equiv-alently [Cohen]: L out independent of initial H in.

Secure:

```plaintext
h := l; l := h
```

Noninterference property [Goguen-Meseguer]: For any two runs of program, L-indistinguishable input states yield L-indistinguishable output states.

Noninterference channels

Classified channels

Unclassified channels
Object Examples
Object Examples

\[x_1.b : \text{secret} = \text{secret} \]

\[x_2.b : \text{secret} = \text{secret} \]

\[x_2 = : z \]

\[x_1.b : \text{secret} = \text{secret} \]
Object Examples

x_1 \cdot b := \text{secret} \quad \text{OK}

x_2 := z \quad \text{OK}

z := x_2 \cdot b \quad \text{OK}
Object Examples
Object Examples

\[x_1.\ b := \text{secret}; \quad // \text{OK} \]
\[z := x_2.\ b; \quad // \text{OK} \]

\[x_1 := x_2; \quad // \text{Reject!} \]

\[x_1 . b := \text{secret}; \quad // \text{OK} \]
\[z := x_2.\ b \]
Aliasing distinguishes these examples.

\[b \cdot x =: z \]

// Reject

\[x_1 := b \cdot x \]

\[x_1 := x_2' := \text{secret} \]

// OK

\[x_2 := x \cdot x \]

// Reject

\[z := x_2 \cdot b := \text{secret} \]

// OK

\[x_1 := \text{secret} := x \cdot x \]

// OK

Object Examples
Checking Noninterference

Check (Hoare-style) triple
\[
\{ x_1 \Downarrow \, \ldots \, \Downarrow x_n \} P \{ y_1 \Downarrow \, \ldots \, \Downarrow y_m \}
\]

Independence Assertions

Given any two runs of \(P \):

- If observable inputs \(u_{x_1}, \ldots, u_{x_n} \) agree (precondition), then observable outputs \(u_{y_1}, \ldots, u_{y_m} \) agree in the same two runs (postcondition).

Check (Hoare-style) triple
\[
\{ x_1 \Downarrow \, \ldots \, \Downarrow x_n \} P \{ y_1 \Downarrow \, \ldots \, \Downarrow y_m \}
\]
Checking Noninterference

Check (Hoare-style) triple

\(\{ x_1, \ldots, x_n \} P \{ y_1, \ldots, y_m \} \)

Independence Assertions

... Independence Assertions ...

\(\{ x_1, \ldots, x_n \} \parallel \{ y_1, \ldots, y_m \} \)

Check (Hoare-style) triple

Two-state semantics of assertions correspond to two runs of program:

\(\begin{align*}
\text{If observable inputs } x_1, \ldots, x_n \text{ agree (precondition)} & \implies \\
\text{Then observable outputs } y_1, \ldots, y_m \text{ agree in the same two runs (postcondition).} & \implies \\
\text{If observable inputs } x_1, \ldots, x_n \text{ agree (precondition)} & \implies \\
\text{Then any two runs of } P & \implies
\end{align*} \)

POPL, 2006-1-11 / 6-a
Program secure. ⊢

\[\{l \triangleright \text{lost}\} \quad \{l \triangleright \text{recovered}\}\]

\[0 =: l\]

\[\eta =: l\]

\[\{l \triangleright \} \quad \{\} \quad \{\}

\text{Does}\}

\[0 =: l, \eta =: l \quad \{l \triangleright \} \quad \{\} \quad \{\}

\text{Example:}\]
Proof rules:

\[\{ \phi \} \ \Box \ C \ \{ \phi' \} \]

\[\begin{array}{ll}
\phi & \text{assertions that hold in precondition.} \\
\phi' & \text{assertions that hold in postcondition.} \\
X & \text{is set of variables that may be modified by command } C. \\
\end{array} \]

Then \(s_1 \models \phi \) and \([\ [C]\] \ s_1 = \ s_1' \) and \([\ [C]\] \ s_2 = s_2' \) and \(\phi \models s_2 \).

Suppose \(s_1 \models \phi \) and \(s_2 \models \phi' \).

Meaning:

\[[X] \{ \phi \} \ C \ \{ \phi' \} \]
\[
\begin{array}{c}
\mathbb{F}\{x\} \{\times x\} =: x \{\times u_z \cdot \cdots \cdot \times l_z\}
\end{array}
\]

Assignment rule
Frame rule, because these variables not modified.

In larger context, can add extra variables (except x) by

Small specification: provides bare essence of reasoning.

Local reasoning: Only z_1, \cdots, z_n and x relevant to $x := E$.

\[
\begin{align*}
\{\{x\}\} \{\times x\} \mathcal{E} := \ x \ {\times \ u \ \ldots \ \times \ l z} \\
(\mathcal{E}) \ fresh \ = \ \{u \ z, \ \ldots, l z\}
\end{align*}
\]
Frame rule

Frame rule permits move from local to non-local specs. Crucial for modular analysis.

\[\phi \}
\{ \phi' \}
\{ X \}

\{ \phi \land \phi_1 \}
\{ \phi' \land \phi_1 \}
\{ X \}

if \phi_1 \circ X.

\phi_1 \circ X means variables mentioned in \phi_1 disjoint from X (not modified by C).

\phi_1 \circ X means variables mentioned in \phi_1 same before and after execution of C.

\phi_1 \circ X is invariant for C.

\phi_1 \circ X means variables mentioned in \phi_1 disjoint from X (not modified by C).

Frame rule permits move from local to non-local specs. Crucial for modular analysis.
Can’t compose because \(x \times l \) don’t match!

\[
\begin{align*}
\text{[[h},x] \{\times l\} l &=: h \{\times l\} x \\
\{h\} \{\times h\} l &=: h \{\times l\} \\
\{x\} \{\times x\} l &=: x \{\times l\}
\end{align*}
\]

Example: \(l =: h \{\times l\} =: x \)
\[
[\{\text{i}, x\}] \ {\times} x \ {\times} \text{i} \ {\vdash} \text{i}, x =: x \ {\times} 1 \\
[\{\text{i}\}] \ {\times} x \ {\times} \text{i} \ {\vdash} \text{i} \ {\times} x \ {\times} 1 \\
[\{x\}] \ {\times} 1 \ {\times} x \ {\vdash} x \ {\times} 1
\]

\text{(} 1 \ {\vdash} \text{i} \text{) not modified in } x; \ \text{i} \ {\vdash} x \text{ not modified in } 1.

\text{Frame to rescue!}

\text{Can't compose because } x \ {\times} 1 \text{ don't match!}

\[
[\{\text{i}, x\}] \ {\times} \text{i} \ {\vdash} \text{i}, x =: x \ {\times} 1 \\
[\{\text{i}\}] \ {\times} \text{i} \ {\vdash} \text{i} \ {\times} 1 \\
[\{x\}] \ {\times} x \ {\vdash} x \ {\times} 1
\]

\text{Example:}
Alias analysis (in logical form)

- Not performed by previous approaches for info. flow.
- Want local reasoning about aliasing: use small specs.
 - Use abstract locations L, which abstract sets of concrete locations.
 - Abstract addresses are variables or f (abstracting heap-allocated value, e.g., $x.f$)
 - $L_1 \land L_2$ holds provided L_1 and L_2 abstract disjoint sets of concrete locs.

Not performed by previous approaches for info. flow.

Alias analyses (in logical form)
alias. Otherwise, \(x \) may alias \(y \). If \(x \bowtie L_1 \) and \(y \bowtie L_2 \) and \(L_1 \cong L_2 \) then \(x \), \(y \) must not alias. Otherwise, \(x \) may alias \(y \). If \(L_1.f \) contains \(L_2 \), then \(L_2 \) is abstracted by \(L_1 \). If \(L_1 \bowtie L_2 \), then any concrete loc. \(L_1 \) abstracted by \(L_1 \), if \(L_1 \bowtie L_2 \), then \(x \). Otherwise, \(L_1 \bowtie L_2 \).
Region assertions

\(\text{alias. Otherwise, } x, y \text{ may alias.} \)

\(x \xRightarrow{I \cap} x \) is another popular notation.

\(\text{If } x \xRightarrow{I_1} \text{ and } y \xRightarrow{I_2} \text{ then } x, y \text{ must not alias. Otherwise, } x, y \text{ may alias.} \)

\(f: I_1 \xRightarrow{f} I_2: \text{ for any concrete loc. } I_1 \text{ abstracted by } I_1, I_2. \)

\(I_1 \xRightarrow{I} I_2 \) abstracts concrete loc. denoted by \(x \).
Some small specs. for alias analysis
Need independences on abstract addresses; e.g.

\(x \ltimes \top \). Have

Back to independences
\[
\{x\} \\
\text{x} \Rightarrow x \\
f \cdot \tilde{h} =: x \\
\{ \times f \cdot \tilde{I}, \times \tilde{I} \} \Leftarrow f \cdot \tilde{I}, \tilde{I} \Leftarrow \tilde{h} \\
\text{FieldAccess}
\]
 establishing no aliasing

Aliasing examples revisited

\[x_1, x_2 \]
must be in same abs. loc.

\[x_1 \rightarrow L_1, x_2 \rightarrow L_2, L_1 \not\sqsubset L_2 \]

\[x_1 \gets secret; \]

\[x_1 \cdot b = secret; \]

\[x_1 \cdot b : secret \]

\[x_1 \cdot b : secret; \]
Observational purity

Typically use pure functions in specifications.

Also, can use methods with "benevolent side-effects" [Hoare].

Typically use pure functions in specifications.
(i) Show \(m \) modifies only locations not visible to caller.

(ii) Show result depends only on \(x \).

```java
class C {
    private Hashtable t = new Hashtable();
    // cache with key, val fields
    public U m(T x) {
        // memo function
        if (!t.contains(x)) {
            U y = costly(x);
            t.put(x, y);
        }
        U res = t.get(x);
        assert res = costly(x);
        return res;
    }
}
```

(i) Show \(m \) modifies only locations not visible to caller.

(ii) Show result depends only on \(x \).
Example class C {
1. private Hashtable t := new Hashtable; // cache with key, val fields
2. private Hashtable t := new Hashtable; // new HashTable
3. if (t.containsKey(x)) {'
4. y := costly(x); t.put(x, y);'
5. res := t.get(x);'
6. assert res = costly(x);'
7. Result := res;
8. return;
'}

(i) Show m modifies only locations not visible to caller.
(ii) Show result depends only on x. Assume x ⋈. Show x ⋈.

Example

```java
Example class C {

1. private Hashtable t := new Hashtable;
   // cache with key, val fields

2. public U m(T x) {
   // memo function
   if (!t.contains(x)) {
   x ⋉
   t.put(x, costly(x));
   }
   else {x ⋉
   }

3. {∀x
   if (t.contains(x)) {
   y := costly(x);
   t.put(x, y);
   }
   else 
   module
   }

4. {∀x
   result := res;
   }

5. {∀res
   res := costly(res);
   assert res = costly(res);
   }

6. {∀res
   res := costly(res);
   }

7. {∀res
   res := costly(res);
   assert res = costly(res);
   }

8. {∀result
   result := res;
   assert res = costly(res);
   }

(ii) Show m modifies only locations not visible to caller.
(i) Show result depends only on x. Assume x ⋉.
Assume x ⋉. Show result ⋉.

```
Example

```java
public C {
private Hashtable t := new Hashtable;
// cache with key, val fields

1. private Hashtable t := new Hashtable;
//

2. public U m(T x) {
  // memo function

3. if (!t.contains(x)) {

4. y := costly(x);
  t.put(x, y);

5. U res := (U) t.get(x);

6. assert res := costly(x);

7. result := res;

8. result depends only on x. Assume x ⋉.
}

} }

(ii) Show m modifies only locations not visible to caller.

(i) Show result depends only on x. Assume x ⋉.

♦ Assume L0 disjoint from all abstract locations used outside of m.

♦ Assume t = L0. Only t = key, L0 = val modified (by put).
```

(i) Show m modifies only locations not visible to caller.

(ii) Show result depends only on x. Assume x ⋉.
```

- Reason about observational purity, selective dependency.
- Postcondition can be computed.
- With region and independence assertions, strongest postcondition can be computed.
- There exists a sound algorithm to compute postconditions.
- Given method environment, precondition, precondition and command,
- Considered sequentinal Java-like language with programmer assertions (as in JML).
- Crucial: Interprocedural alias analysis; uses local reasoning.
- Spec. for interproc. into flow analysis; uses local reasoning.
Future Work

• In general, interested in using local reasoning for program analysis (small specs., disjointness, reasoning via Frame).

• Build a modular verifier for info. flow (or other) properties – maybe extend JML? Specify other analyses on top of alias analysis.

• Declassification: use richer assertion language, e.g., FOL, e.g., $\theta \Rightarrow x \in \theta$, where $\theta$ are assertions on events?

• Use, e.g., $\theta \subseteq x \times \theta$, where $\theta$ are assertions on events?

• Completeness of logic wrt underlying abstract interpretation.

• Support local reasoning for concurrency.

• Maybe extend JML? Specify other analyses on top of alias analysis.

• Build a modular verifier for info. flow (or other) properties – analyses (small specs., disjointness, reasoning via Frame).

• In general, interested in using local reasoning for program analysis.
Some references


