
RC24541 (W0804-103) April 28, 2008
Computer Science

IBM Research Report

A Language for Information Flow:
Dynamic Tracking in Multiple Interdependent Dimensions

Avraham Shinnar
Harvard University
Cambridge, MA

Marco Pistoia
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Anindya Banerjee
Kansas State University

Manhattan, KS

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Language for Information Flow
Dynamic Tracking in Multiple Interdependent Dimensions

Avraham Shinnar1, Marco Pistoia2, and Anindya Banerjee3

1 Harvard University, Cambridge, Massachusetts, USA, shinnar@eecs.harvard.edu
2 IBM T. J. Watson Research Center, Hawthorne, New York, USA, pistoia@us.ibm.com

3 Kansas State University, Manhattan, Kansas, USA, ab@cis.ksu.edu

Abstract. This paper presents λI , a language for dynamic tracking of infor-
mation flow across multiple, interdependent dimensions of information. Typ-
ical dimensions of interest are integrity and confidentiality. λI supports arbi-
trary domain-specific policies that can be developed independently. λI treats
information-flow metadata as a first-class entity and tracks information flow on
the metadata itself (integrity on integrity, integrity on confidentiality, etc.).
This paper also defines IMPOLITE, a novel class of information-flow policies for
λI . Unlike many systems, which only allow for absolute-security relations, IM-
POLITE can model more realistic security policies based on relative-security re-
lations. IMPOLITE demonstrates how policies on interdependent dimensions of
information can be simultaneously enforced within λI ’s unified framework.

1 Introduction

This paper addresses the need for general information-flow systems that allow
for expressive policy specifications. Security-enforcement mechanisms in exist-
ing commercial languages, such as Java and the Common Language Runtime
(CLR), are imprecise and unsound [1]. Research systems, such as Jif [2], Flow
Caml [3], and Information-Based Access Control (IBAC) [1], are sound, but re-
strict the class of policies that can be enforced. In particular, existing systems
can only encode absolute-security relations—from the point of view of integrity,
all the principals responsible for the value of an expression must be equally
trusted with respect to any security-sensitive use of that expression, while in a
confidentiality setting, it is only possible to control who has access to sensitive
data, without being able to control who has access to the confidentiality policy
itself. Additionally, static enforcement methodologies generally require the pro-
gram to be statically labeled with information-flow-policy annotations—a sig-
nificant burden on the developer, which may limit the portability of the program
and restrict who can configure the information-flow policy of the program.

This paper introduces λI , a language that can precisely track information
flow in multiple dimensions, such as integrity and confidentiality, without re-
stricting the type of tracked data or the enforceable policies. Next, this paper

presents IMPOLITE, a class of policy-enforcement systems that can simultane-
ously enforce integrity and confidentiality policies on both the data manipulated
by a program and the information-flow metadata kept by the systems.

IMPOLITE supports relative-security relations. From the point of view of
integrity, different principals often have varying degrees of responsibility for a
given value v . For example, a principal p may be responsible for having de-
fined v , but the identity of p is only trusted up to the Certificate Authority a
that signed p’s certificate. Systems that only support absolute-security relations
typically require that not only p, but also a be sufficiently trusted to define v .
Conversely, λI allows policies to make security decisions based on whether or
not p is trusted to define v and a is trusted to certify p’s identity. Security deci-
sions can be based on the history and structure of influences.

Access-control-based security models, such as those adopted by Java and
the CLR, assign permissions to classes via class loaders [4]. In Java, every new
Class c is assigned a ProtectionDomain, which encapsulates c’s permis-
sions. A malicious class loader can easily escalate c’s privileges by assigning the
provider of c (modeled as a CodeSource object cs) a ProtectionDomain
with AllPermission in it, as follows:

new ProtectionDomain(cs,new AllPermission().newPermissionCollection())

The integrity level R of c is not constrained by the integrity level S of the class
loader that assigned R to c. For this reason, the literature [5, 6] has empha-
sized that the permission q to instantiate a class loader is implicitly equiva-
lent to AllPermission [4, Section 8.2.5]. Thus, any program using Java’s
built-in URLClassLoader to load code over the network—a very common
operation—is implicitly granted AllPermission. The fact that c has in-
tegrity level R should only be trusted up to S—the integrity level of c’s class
loader. To address this issue, unlike other programming languages, λI allows
addressing information-flow metadata as information. For example, R is the in-
tegrity metadata on the underlying datum c and S is the integrity metadata on
the integrity metadata R. In λI , this is written S [〈R〉][〈c〉], using frames [7–9].
Frame R denotes the integrity of c; frame S denotes the integrity of R[〈c〉].

Common systems are also incapable of using relatively-trusted integrity-
enforcement mechanisms. An installed SecurityManager can enforce any
policy it desires [4, Section 8.2.5] [6, Section 7.5.1]. Thus, a malicious imple-
mentation, by simply doing nothing, can make any permission check succeed:

public void checkPermission(Permission perm) {}

This is the same as granting AllPermission to arbitrary code! Clearly, se-
curity decisions need to be constrained by the enforcer’s integrity level.

More generally, programs make decisions based on the integrity levels of
the data they use. However, an intruder can affect a program by influencing the

2

integrity level of a value—not necessarily the value itself. Consider the case of
a library method m that takes a parameter A a and performs a callback, a.f. An
intruder can choose to inject implementations of a.f with different integrity
levels, for example R1[〈a .f 〉] or R2[〈a .f 〉]. On a subsequent security check in-
volving a.f, R1 may be sufficiently trusted, whereas R2 may not. Thus, the
intruder will have been able to influence the control flow of the program. λI

handles this situation by framing the frame of a.f with the frame A of the
attacker, as in A[〈R1〉][〈a .f 〉] and A[〈R2〉][〈a .f 〉], tracking the influences on the
metadata R1 and R2, respectively. This problem can affect more than two levels
of integrity since the values injected by the attacker may already have longer his-
tories of influences, resulting in A[〈R1〉][〈S1〉][〈a .f 〉] and A[〈R2〉][〈S2〉][〈a .f 〉]. This
demonstrates the need for potentially unbounded (but finite) levels of framing.

Similarly, confidentiality levels may themselves need to be confidential, re-
quiring multiple (unbounded) levels of frames. Integrity and confidentiality lev-
els can also be interdependent; confidentiality levels can have integrity levels,
which can have confidentiality levels, etc.

1.1 Contributions

Section 3 presents λI , an expressive language for dynamic information-flow
tracking in multiple, interdependent dimensions. Information-flow tracking is
built into λI , which allows programs to access and manipulate information-flow
metadata. λI dynamically maintains security metadata throughout the execution
of a program for subsequent policy decisions. Unlike previous work [8, 1], λI

allows frames on frames, fully accounting for frames used as storage channels.
λI tracks information-flow dynamically, which potentially allows it to ac-

cept more programs then static systems—such as type-based information-flow
systems—at the cost of greater overhead. Dynamic systems must be careful to
address implicit flows: preventing an action can be as harmful as causing it.
Handling these flows correctly requires the use of a write oracle, as discussed in
Section 3.3. A write oracle essentially calculates to what locations code might
write—a modifies set—which is required by many program-verification tools,
such as Java Modeling Language (JML) [10].

λI separates a unified information-flow tracking mechanism from domain-
specific policies via lazy policy enforcement. λI delays making policy decisions
until interactions with the outside world arise. At that point, it presents the policy
enforcer with a structured view of the relevant influences. A program is allowed
to continue execution even when an untrusted value v1 has influenced a value v2,
which may be later used in a trusted computation, or when a confidential value
v ′1 has influenced a value v ′2, which may later become publicly observable. The
policy will only reject the program if it tries to actually use v2 or reveal v ′2.

3

λI unifies the way information flow is tracked across domains, neither in-
terpreting nor constraining the data or policies. In traditional systems, integrity
and confidentiality are generally enforced by separate mechanisms, despite their
well recognized duality [11, 12]. Additionally, non-lazy systems, generally con-
strain policies, requiring the labels to form a lattice [13]. λI treats integrity and
confidentiality uniformly and does not constrain the allowable policies.

As discussed in Section 3.4, λI is a rich language that supports essential
information-flow primitives such as endorsement and declassification. Addition-
ally, λI can encode the Java doPrivileged (Assert in the CLR) and doAs
constructs, which allow trusted code to ignore the permissions of its callers and
run methods with different permissions, respectively.

Section 4 introduces Information Management POlicies in a LImited Trust
Environment (IMPOLITE), a novel class of security policies, enforceable on λI ,
that allow relative-security relations on multiple interdependent dimensions of
information. Existing systems, such as IBAC [1], can be modeled as instantia-
tions of IMPOLITE. In IBAC, integrity labels are sets of permissions, and policy
decisions treat all frames equivalently by taking their intersection. IMPOLITE

supports relative-security relations, which can depend on the structure of the
influences, whereas IBAC can only model absolute-security relations.

Section 4 states a non-interference result [14] for IMPOLITE. Appendix A
presents a full proof, which includes conditionals, closures, and the heap.

1.2 The Attacker Model

We assume a trusted-memory model; untrusted intruders can read and write
to memory, but the run-time system mediates all such accesses and maintains
information-flow metadata for subsequent inspection at enforcement time. This
allows us to support an active-attacker model [15]. Outside observers can in-
ject code into a program and monitor its public interactions. From the point of
view of integrity, trusted code can call untrusted code, and this can modify the
heap. However, if this affects security-critical events, it will be detected. Dually,
from the point of view of confidentiality, λI allows arbitrary code to read all of
memory, but detects attempts to reveal secrets to outside public observers.

Our model is timing- and termination-insensitive; an outside observer can
monitor system calls and the program’s return value, but cannot measure time
between these events or detect non-termination. We equate detected information-
flow violations with non-termination. Modulo these restrictions, we prove in
Appendix A that, for IMPOLITE policies, an active attacker cannot compromise
the security of the system.

4

2 Motivating Example
Medical NotesMedical Notes Financial InfoFinancial Info

Medical Record
… …

Mr. DoeMr. Doe PayrollPayroll Filing ClerksFiling ClerksSecretarySecretary Mr. DoeMr. Doe
= Integrity
= Confidentiality

Accounts PayableAccounts Payable Mr. DoeMr. DoeDr. SmithDr. SmithDoctorDoctor Mr. DoeMr. Doe Ms. JonesMs. Jones

Fig. 1. Model of the Medical-Record Scenario

Figure 1 models a
medical-record scenario.
A medical record is a
structure where each
field’s value may have
its own integrity and
confidentiality requirements. Those requirements may in turn have their own in-
tegrity and confidentiality requirements, necessitating a systems that can model
the complex interactions of multiple, interdependent dimensions of information.

In the scenario of Figure 1, Dr. Smith was seen by Mr. Doe. The resulting
Medical Record datum contains several fields, including some Medical Notes
and Financial Info. Integrity and confidentiality edges represent trust levels and
privacy requirements, respectively. Principals written in italic represent roles.

Integrity. The value of the Medical Notes field has Dr. Smith’s integrity stamp
on it. We model this property as Dr. Smith[〈Medical Notes〉]. Similarly, the Fi-
nancial Info was proffered by Mr. Doe, resulting in Mr. Doe[〈Financial Info〉].

Confidentiality. In an emergency, Dr. Smith’s Medical Notes must be accessible
to every Doctor. Mr. Doe may access the Medical Notes, and has also chosen to
grant his fiancée, Ms. Jones, access to the Medical Notes. The resulting confi-
dentiality label is a structure with three fields: Doctor, Mr. Doe, and Ms. Jones.

Confidentiality on Integrity. If Dr. Smith is an HIV specialist, knowing that he
was consulted could lead people to infer that Mr. Doe is HIV positive. Thus, it
is necessary to protect the Medical Notes with a confidentiality label, Payroll.

Integrity on Integrity. The integrity label on the Medical Notes is Filing Clerks,
as they certify that the Medical Notes were submitted by Dr. Smith.

Confidentiality on Confidentiality. Mr. Doe may not want his relatives to know
that he has granted Ms. Jones access to the Medical Notes. Thus, the Ms. Jones
confidentiality label is itself confidential, with a structured label containing
fields Secretary and Mr. Doe.

Integrity on Confidentiality. The Ms. Jones confidentiality label has an integrity
level of Mr. Doe, as he granted her access to the Medical Notes.

3 Language

In this section, we present a language that provides primitives for tracking and
manipulating information-flow metadata. As discussed in Section 1.2, our sys-
tem mediates all access to memory, which is assumed local. Policies are lazily

5

Variables x ,m
Field Names (F) f
Commands (C) C ::= v | let x = C in C | ref v |!v | v := v | values, let, refs

true | false | n | unit | null | primitive values
struct {f = v } | v .f | records
frame v with v | frameof v | valueof v | frames
fix m x ⇒ C | v v | if v then C else C functions, conditionals

Atomic Den. (A) a ::= true | false | n | unit | null | ` | 〈m , x ,C 〉 primitives, locations, closures
Denotations (D) d ,R ::= a | {f = d } | R[〈a〉] atomics, structs, frames
Value (V) v ::= x | d variables, denotations

Fig. 2. Frame Language Syntax

enforced immediately prior to a security-sensitive event. These policies are part
of the general system; they are not specified by the language.

We first present a core language, λF , for manipulating the metadata, and
then define the full language, λI , via a translation to λF . This separation helps
provide a clean interface to the metadata.

3.1 Core Frame Language: λF

Figure 2 presents the syntax of λF , an A-normalized language with references,
structures, conditionals, and recursive first-class functions. λF also includes
frames, a mechanism for associating information-flow metadata with data. λF

provides primitives to manipulate these frames, but does not enforce policies on
them. A frame can be any denotation, and frames can themselves be framed. De-
notations include atomic denotations, structures, and framed constructs. Framed
constructs, as seen in Figure 2, are canonicalized according to the rules in Fig-
ure 3(a) so that only atomic denotations are framed. Canonicalization empha-
sizes the underlying data, ascribing a clear, useful meaning to constructs such
as R[〈S 〉][〈3〉]+T [〈4〉]. Note that canonicalization could be done explicitly by the
frameof rule, but is broken out as separate rules to simplify the theory.

As formalized by the Null Absorption property, null is used as a form of
frame terminator, and is absorbed by framing. Struct Lifting is an assumption
common to many languages, including ML: denotations are identical to the sin-
gleton tuple (in our language a simple struct) containing that denotation.

The Struct Lifting and Distribution properties of Figure 3(a) imply a form
of associativity on frames, d1[〈d2〉][〈d3〉] ≡ d1[〈d2[〈d3〉]〉]. This interpretation is
compatible with the ABLP calculus for access control in distributed systems by
Abadi, et al. [16] as will be discussed in Section 5.

6

PRIMITIVES

(true, h) ↓(true, h). . .
FRAMING

(frame d with R, h) ↓(R[〈d〉] , h)
VALUE PROJECTION

(valueof R[〈d〉], h) ↓(d , h)

FRAME PROJECTION

(frameof R[〈d〉], h) ↓(R, h)
STRUCTURE CREATION
(struct {f = d }, h) ↓({f = d }, h)

FIELD PROJECTION

({fi = di }.fi , h) ↓(di , h)

REF
` < dom(h) passive d

(ref d , h) ↓(`, [h | ` 7→ d])

ASSIGNMENT
passive d

(` := d , h) ↓(unit, [h | ` 7→ d])

DEREFERENCING

(!R[〈`〉], h) ↓((h `), h)

IF TRUE
(C1, h) ↓(d , h ′) passive d

(if R[〈true〉] then C1 else C2, h) ↓(d , h ′)

IF FALSE
(C2, h) ↓(d , h ′) passive d

(if R
[
〈false〉

]
then C1 else C2, h) ↓(d , h ′)

LET
(C1, h) ↓(d1, h1) (C2[d1/x], h1) ↓(d , h ′)

(let x = C1 in C2, h) ↓(d , h ′)

METHOD APPLICATION
C [d/x][〈m , x ,C 〉/m], h) ↓(d ′, h ′)

(R[〈〈m , x ,C 〉〉] d , h) ↓(d ′, h ′)

NULL ABSORPTION: null[〈d1〉][〈null〉][〈d2〉]≡d1[〈d2〉]
STRUCT LIFTING: d ≡ {.1 = d }
DISTRIBUTION: d

[〈
{fi = di }

〉]
≡ [{fi = d [〈di 〉]}]

(a) Frame Canonicalization

METHOD DEFINITION

(fix m x ⇒ C , h) ↓(〈m , x ,C 〉 , h)

passive d ≡ d contains no closures.
(b) passive Denotations

Fig. 3. Frame Language Semantics

Throughout the paper, we will write d1[〈d2〉] for all denotations d2, and as-
sume canonicalization is implicitly performed as per Figure 3(a).

Figure 3 describes the semantics of λF . d [d1/x] is standard capture avoiding
substitution of d1 for x in d . λF provides recursive closures as a form of fix.
frame with, frameof, and valueof are the introduction and elimination forms
for framed constructs. passive, as expressed in Figure 3(b), is a predicate on
denotations indicating the absence of closures within them. Only passive de-
notations can be put in the heap and returned from conditionals. Additionally,
writes are restricted to bare (unframed) locations. These restrictions will be ex-
plained and motivated in Section 3.2, which introduces λI .

3.2 Information-Flow Language: λI

Figure 4 defines λI by translation to λF . λI compiles to λF by tracking control-
and data-flow, framing every value with its dependencies. It includes all of the
λF commands and a few more, as described in Figure 4(a). Programs (top-
level commands) are translated by prepending two let bindings for special heap
locations, pc and meth , created and used by the system, as defined in Figure

7

Commands C (λI ⊃ λF) ::= . . . | getpc

| getmeth | v .f := v | assert R in C
(a) Information Flow Language Syntax

Tp(C) = let pc = ref null in
let meth = ref null in [[C]]

(b) Translation of the top level program

[[v]] ≡ v
[[frameof v]] ≡ frameof v
[[fix m x ⇒ C]] ≡ fix m x ⇒ [[C]]
[[let x = C1 in C2]] ≡ let x = [[C1]] in [[C2]]
[[ref v]] ≡ ref taint(v)
[[valueof v]] ≡ valueof v
[[v .f]] ≡ v .f
[[getpc]] ≡ !pc
[[!v]] ≡ frame !v with (frameof v)
[[frame v1 with v2]] ≡ frame v1 with v2

[[struct {f = v }]] ≡ struct {f = v }
[[getmeth]] ≡ !meth
[[v1.f1.f2.fn := v2]]

≡ v1 := taint field(!v1, [f1, f2, . . . , fn], v2)

[[v1 v2]] ≡ let R = frameof v1 in
let v ′2 = frame v2 with !meth in
set(meth = R) in
set(pc = taint(R)) in

frame (v1 v ′2) with R
[[assert R in C]] ≡

let R′ = frame R with !meth in
set(pc = R′) in [[C]]

[[if v then C1 else C2]] ≡
let R = frameof v in
set(pc = taint(R)) in

let y = if v then [[C1]] else [[C2]] in
tainter(wo(C1) ∪ wo(C2));
frame y with R

With the following helper functions:
C1; C2 ≡ let = C1 in C2

taint(v) ≡ frame v with !pc
set(var = R) in C ≡ let old = !var in

var := frame null with R; let ret = C in var := old ; ret

taint field(v1, f ::fl , v2) ≡ let xk = v1.fk in taint field(v1, [], v2) ≡ taint(v2)
let z = taint field(xi ,fl , v2) in struct{f0 = x0, . . . , fi−1 = xi−1, fi = z , fi+1 = xi+1, . . .}

tainter(set) ≡ foldl (;)unit
(
map

(
λ(v ,fl)→ v := taint field(v ,fl , !v .fl1.fln)

)
set

)
Fig. 4. Information Flow Language→ Frame Language Translation

4(b). pc is used to track the current control dependencies. meth records the
frame of the currently executing function; it is changed upon function invocation
and restored upon function return. The translation then proceeds recursively on
the program’s command, propagating influences as needed. For example, the
ref rule taints (meaning, frames with pc) the value being written to memory,
recording the influence of the current control dependencies. Dereferencing a
location frames the looked-up value with the frame of the location.

f() { g(); }
g() {
name=getName();
... }

getName() {
return "log"; }}

Fig. 5. Relative Trust

Influence is relative. In Figure 3.2, getName com-
pletely trusts the string log. Method g trusts the string
as much as it trusts getName. This trust is independent
of g’s callers; f does not influence the trust level. The ap-
plication rule of λI frames the function’s argument with
the frame of the caller (its meth frame) and the return
value with the frame of the invoked function.

λI provides access to the underlying frame with,
frameof, and valueof commands in λF , allowing code to access and manip-
ulate the information-flow metadata. In particular, this allows code to endorse

8

and declassify data in integrity and confidentiality environments, respectively.
λI also adds in some new commands. assert in allows the programmer to explic-
itly ignore control dependencies. This is akin to doPrivileged in Java and
Assert in the CLR. If a library wants to write to a log file, it can use assert in
to do so, even if the client does not have the required permissions. getpc and
getmeth help the programmer selectively ignore some control dependencies.

λI also adds in an assignment command that modifies part of a structure. As
witnessed by the translation, this can be done in λF . If this command were not
provided, however, its encoding would conservatively taint the entire structure.

3.3 Restrictions

To ensure soundness, λI restricts conditionals, closures, and the heap.

location = "Shire";
if(b)location="Mordor";
destroy(location);

Fig. 6. Branch Not Taken

Conditionals and the Heap: The Write Oracle. In
Figure 3.3, if an attacker can set b to false, Shire
will be destroyed instead of Mordor. To prevent this
indirect flow of information, the translation in
wo(C) returns a set that con-
tains a pair (v ,fl) for each path
v .f1.fn that C may modify.
wo may be conservative

Fig. 7. Write Oracle: wo

Figure 4(a) employs an online write oracle wo, de-
fined in Figure 3.3. wo returns the locations that
may be written by a conditional’s branches. The
translation marks these locations as influenced by
b, correctly accounting for these indirect flows.

For expository purposes, Figure 4 simplifies the way λI uses wo because
locations modified in a conditional will be re-tainted by wo. If we track modified
locations in written , we only want to taint (wo(C1) ∪ wo(C2)) \ written . If wo
were perfect, and C2 is the branch not taken, we could just taint wo(C2)\written .
However, given a conservative (but still sound) wo, tainting (wo(C1) ∪ wo(C2)) \
written is necessary. Consider in fact a wo for Figure 3.3 that believes that the
true branch writes to another variable, tower. If b is true, tower will not be
tainted; if b is false, tower will be tainted by wo. Thus, by controlling b, an
attacker could influence the frame on the value of tower without detection.

The Heap: Bare (Unframed) Locations. λF , and hence λI , disallows writes
to framed locations, obviating the need to taint most of the heap to correctly
account for indirect flows. A location must only be trusted by the writing code,
forcing code to endorse (with valueof) locations before writing to them.

Closures, the Heap and Conditionals: Passivity. λF , and hence λI , also pre-
vent closures from being in the heap or returned from conditionals. An attacker
can prevent a closure in the heap from being invoked by overwriting it, and

9

similarly for conditionals. Figure 3.3 presents pseudo-code for a command that
returns one of two closures, depending on b. If trusted code invokes the re-
turned function, then by falsifying b an attacker can cause n to not be written,

if(b) (fix a x=>n:=5)
else (fix a x=>unit)

Fig. 8. if and Closures

a potential information-flow violation. wo does not
return n, as n is not modified in the conditional.
A similar problem exists for the heap, which ne-
cessitates the passive restriction on denotations in the heap. If a location
l has (fix a x => n := 5) stored in it, and an attacker overwrites l with
(fix a x => unit), then when trusted code dereferences and invokes l , n will
retain its old value, but the attacker’s influence would not be tracked.

3.4 Properties

The Frame Canonicalization rules of Figure 3(a) succinctly describe the inter-
play between frames and structures, allowing λI to track multiple dimensions of
information in an interdependent fashion. Structures can also be used to encode
structured information. A plus function, given arguments A[〈3〉] and B [〈4〉]
could return {part1 = A, part2 = B }[〈7〉], encoding the set containing A and B .

Using valueof, λI can model many useful security-related primitives, such
as endorsement and declassification, which allow trusted code to trust an (oth-
erwise) untrusted value and to reveal private data to public parties, respectively.

Another common primitive in security-related systems (see, for example,
Java’s doAs [4]) allows executing a method with an authenticated principal’s
permissions. In λI , this is encoded by endorsing a closure with the principal’s
permissions. When invoked, the closure will run with the altered permissions.

Section 1 discussed how existing systems, such as Java and the CLR, are
unable to provide relatively-trusted class loaders or security enforcers. While it
does not support the object model used in those examples, λI does solve the
problems they illustrate. When modeled in λI , a class-loader’s permission as-
signments will be framed by its integrity level. Similarly, λI allows anyone to
install a SecurityManager, but that will be framed with the integrity level
of its setter. In λI , an access-control test would be encoded using frameof and
conditionals, and the system automatically tracks all the dependencies.

4 IMPOLITE: A Novel Security Model

In this section, we present the IMPOLITE class of policies.4 The goal is to test di-
agrams such as Figure 1 against a specified policy. For IMPOLITE, we introduce

4 Some mathematical conventions: unbound variables are assumed to be quantified with a top
level ∀. Types are omitted where easily inferable.

10

a non-interference result, which is proven in Appendix A. An IMPOLITE system
can handle multiple dimensions of information, as well as structured informa-
tion, such as the encoding of sets presented in Section 3.4. Unlike traditional
policies, IMPOLITE policies can encode relative-security relations.

Definition 1 (validfor : |=). |=⊆ (F ×A) × (F ×A)
read as: (f1, a1) validfor (f2, a2)

|= must satisfy the following properties:

• No Data: ("", a)|=("", null)
• On Frames: (f , a)|=("", a ′) =⇒ (f , a)|=("", a ′′)

The underlying data (denotations’ leaves)
are given field name "". These properties
ensure that |= does not depend on those data.

The validfor relation encodes relative-security relations. In the scenario
of Section 2, (C,Payroll)|=(I,Dr. Smith) encodes the property that Payroll em-
ployees may know that Dr. Smith is the integrity label on Medical Notes. As in
Figure 1, symbols C and I stand for confidentiality and integrity, respectively.

Definition 2 (join). join : F → {F × bool } → bool
join must satisfy the following properties:

• Monotonicity: join f {fi = bi } =⇒ join f {fi = bi ∨ ci }

• Top Conjunction: join "" {fi = bi } ≡
∧

i bi

→

→

No “takebacks”
All underlying data must pass

Doctor, Mr. Doe, and Ms. Jones are all granted access to the Medical Notes.
In λI , this is encoded using a structure with field names part1, part2, part3, as
explained in Section 3.4. We use join to determine how to handle aggregates
such as {part1 = Doctor , part2 = Mr. Doe, part3 = Ms. Jones}. In dimension
C, and with field names part1, part2, part3, the join predicate will return true
if a Doctor, Mr. Doe, or Ms. Jones attempts access (as in standard literature on
confidentiality). As long as the join predicate satisfies the above properties,
it may implement more complicated decisions, such as always requiring the
presence of a specific user (say, Mr. Doe), along with Ms. Jones or a Doctor.

We now state the full (parameterized) test for IMPOLITE.

Definition 3 (IMPOLITE Test).
For some (|=, join) as per Definitions 1 and 2, define test:

test d ≡ joiner ("", null), ("", d)

tester (fpar , apar) ≡
∧

i joiner (fpar , apar)
({fi = di }) (fi , di)

joiner (fpar , apar) ≡ (fcur , a)|=(fpar , apar)∧
(fcur) (d [〈a〉]) tester (fcur , a) d

tester (,) null ≡ true
joiner (fpar , apar) ≡ join fcur

(fcur) ({fi = di }) {fi = joiner(fpar , apar)
fcur di }

test recursively descends down the structure of denotation d , using helper
methods tester and joiner. tester is called on frames, and recurses on all

11

dimensions of information. joiner recurses on frames. When given a framed
denotation, joiner checks for validity of the contents with respect to fcur (what
it, in turn, is framing), and then uses tester to recurse on the frame. When
given a structure, it uses joiner to test all of the structure’s components, and
then uses join to determine the result. Structures are used to encode dimen-
sions of information as well as the internal complexity of the information. The
mutual recursion arises from this alternating use of structures in frames, and
differentiates between these usages. When the structure represents the different
dimensions of information, the recursion is in tester; when the structure rep-
resents the internal complexity of the information, the recursion is in joiner
(and uses join to parameterize how the internal structure is interpreted).

In the scenario, tester would be invoked on the structures that encode dif-
ferent dimensions, whereas joinerwould be invoked on the aggregate {part1 =
Doctor , part2 = Mr. Doe, part3 = Ms. Jones}.

To state the non-interference result, we need the following definition:

Definition 4 (Completely Invalid).
(f , a) ∈ F×A is completely invalid iff (f , a)6|=∗ ("",null).
(f ,R) ∈ F×D is completely invalid iff all of its parts are completely invalid.

|=∗ is the reflexive transitive closure of |=

In a relative-security-relation environment, non-interference does not gen-
erally hold. By definition, a relative-security relation depends on unproven as-
sumptions about the behavior of the code. This would involve some sophisti-
cated form of program verification and is beyond the scope of our work. Never-
theless, we can prove non-interference for a stylized program which only allows
for attackers that are framed by a completely invalid denotation. Nothing these
attackers do will ever pass the IMPOLITE test.

Definition 5 (Safe). safe C iff C does not contain valueof, frameof, assert in.

valueof, frameof, and assert in can all be used to violate information flow.
valueofin particular, allows the core system to forget attacker influences. En-
dorsement and declassification, common forms of (deliberate) information-flow
violations in integrity and confidentiality contexts, respectively, can be built on
top of valueof. frameof allows code to detect the influences on a value. The
following example illustrates the possible violations that can arise. An attacker
can choose to write to a location in memory. The trusted code can then use
frameof to make a decision based on whether or not the attacker tainted the
location stored in that value. Note that using the value itself is not a problem,
but frameof allows the trusted code to detect that the attacker chose to write
something to the location, leaking a single bit of information. assert v in C ′

12

allows core code to ignore that it was called (and hence influenced) by an at-
tacker. If the code writes to a location in memory, then this allows the attacker
to cause that write to happen without the attacker’s influence being tracked.

We can now formulate our non-interference result, proven in Appendix A.

Theorem 1 (Non-Interference). Consider a safe (Def 5) λI command C ,
completely invalid (Def 4) denotations Ui ,U ′i ,U

′′
i ,U

′′′, and commands Ci ,C ′i .

Suppose ([[let xi = frame (assert Ui in Ci) with U ′′
i in C]], ∅) ↓(d1, h1)

([[let xi = frame (assert U ′
i in C ′

i) with U ′′′
i in C]], ∅) ↓(d2, h2)

Then, up to locations, test d1 ∧ test d2 =⇒ valueof d1 = valueof d2

We look at two runs of a core program C , in different environments. We
assume that completely-invalid attackers are allowed to set up the initial envi-
ronments in the two runs. Note that attacker code (and any closures it puts into
the environment) can be written in the full language; they do not have to be
safe. The theorem then states that if the IMPOLITE test succeeds in both cases,
then the underlying values were not influenced by the attacker code.

As described above, valueof, frameof, and assert in potentially violate in-
formation flow, and Theorem 1 therefore only applies to programs where the
trusted code is safe. To be more precise, if using one of these operations af-
fects the final result, the information-flow policy may be violated, otherwise
there is no problem. To formalize this, assume the existence of a completely-
invalid ε. valueof and frameof could be modified to taint their return value with
ε, and assert in to taint pc with ε. Theorem 1 would then hold without needing
any restriction on the safety of the trusted code. This would allow information-
flow violations as long as they have no influence on the final result, using the
information-flow-tracking mechanism of λI to precisely identify and check for
possible influences.

5 Related Work

Since Denning and Denning [17], there has been a large volume of work on
static checking of information flow policies [18]. Goguen and Meseguer [14]
introduce non-interference based on earlier work by Cohen [19]. Volpano, et
al. [20] are the first to show a type-based algorithm that certifies implicit and
explicit flows and also guarantees non-interference. Most of these works focus
on confidentiality. Integrity is explored by Li, et al. [21]. Based on the premise
that many software attacks subvert the execution of machine code, Abadi et al.
perform and develop a comprehensive study of control-flow integrity [22].

Myers’ Jif [2] and Pottier and Simonet’s Flow Caml [3] use type-based static
analysis to track information flow. Neither Jif nor Flow Caml allows simultane-
ous tracking of interdependent dimensions of information. Jif is based on the

13

Decentralized Label Model [23]. Section 1 has already discussed a few key dif-
ferences between Jif and our system. Another difference is that Jif considers all
memory as a channel of information, which requires that every variable, field,
and parameter used in the program be statically labeled. Labels can either be
declared or inferred. In contrast, λI ’s memory model allows for a core trusted
memory, which does not act as a channel and saves the programmer from the
burden of labeling channels. This is a realistic model assuming that the operating
system enforces memory protection across processes. Unlike static-enforcement
systems, λI only requires labeling channels that represent communications with
the outside world. Furthermore, λI supports a very flexible policy-enforcement
mechanism, with arbitrary values as labels, and arbitrary information-flow tests.

Pistoia, et al. [1] describe IBAC, a unified access-control and information-
flow system that uses access-control labels for information flow. The IBAC lan-
guage supports a subset of the features available in λI . IBAC’s non-interference
can be viewed as an instantiation of the IMPOLITE non-interference result, with
a restricted validfor relation in which (1) join is ∧, and (2) if a frame S
is validfor another frame R, then it is validfor all frames. Thus, IBAC
does not support any relative-security relationships. The use of the intersection
operator by IBAC can be viewed as a policy-driven optimization of this test.

With robust declassification, Myers, et al. enforce the principle that only
high-integrity data be declassified, and declassification be performed only in
high-integrity contexts [15]. Qualified robustness provides an attacker a lim-
ited ability to affect what information may be released by programs [24]. An
endorse primitive is used to upgrade the integrity of data. The RX language
allows integrity and confidentiality metapolicy labels on roles [25, 26]. Deeper
interactions between integrity and confidentiality are not investigated.

Le Guernic, et al. [27] consider dynamic, automaton-based, monitoring of
information flow for a single execution of a sequential program. The mechanism
is based on a combination of dynamic and static analyses. The dynamic analysis
accepts or rejects a single execution of a program without necessarily doing the
same for all other executions. The automaton guarantees confidentiality of secret
data and takes into account both direct and implicit flows. The static analysis
overapproximates implicit indirect flows and generates corresponding branch-
not-taken inputs to the automaton—similar to wo in our semantics. That work
has been recently extended to handle concurrent programs [28].

Abadi, et al. [16] introduce the says and quotes relations, and prove a form of
associativity between them. This is similar to the frames in our system and the
associativity property of our Frame Canonicalization. The speaks-for relation
introduced by them is an instance of the validfor relation used by IMPOLITE.

14

6 Discussion

This paper presented λI , a language for dynamic tracking of information flow
in multiple, interdependent dimensions. We will implement λI and apply it to
complex systems. A promising research direction is to apply λI to other dimen-
sions of information, such as non-repudiation, provenance, and concurrency.

We are also interested in exploring policy-driven optimizations. λI is less
efficient than more specialized, less expressive systems since it needs to main-
tain the entire structure of every frame. For a given policy, it should be possible
to automatically optimize λI ’s tracking mechanism. For example, IBAC only
needs to maintain the intersection of all the frames. This would be useful in a
Just In Time compiler environment, as the policy would already be known.

References

1. Pistoia, M., Banerjee, A., Naumann, D.A.: Beyond Stack Inspection: A Unified Access
Control and Information Flow Security Model. In: 28th IEEE Symposium on Security and
Privacy, Oakland, CA, USA (May 2007) 149–163

2. Myers, A.C.: JFlow: Practical Mostly-static Information Flow Control. In: 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1999),
San Antonio, TX, USA (January 1999) 228–241

3. Flow Caml: http://cristal.inria.fr/˜simonet/soft/flowcaml/.
4. Pistoia, M., Nagaratnam, N., Koved, L., Nadalin, A.: Enterprise Java Security. Addison-

Wesley, Reading, MA, USA (February 2004)
5. Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture, API

Design, and Implementation. Second edn. Addison-Wesley, Reading, MA, USA (May 2003)
6. Pistoia, M., Reller, D., Gupta, D., Nagnur, M., Ramani, A.K.: Java 2 Network Security.

Second edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (August 1999)
7. Sewell, P., Vitek, J.: Secure Composition of Untrusted Code: Wrappers and Causality Types.

In: 13th IEEE Computer Security Foundations Workshop (CSFW 2000), Cambridge, Eng-
land, UK (July 2000) 269–284

8. Fournet, C., Gordon, A.D.: Stack Inspection: Theory and Variants. In: 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2002), Portland, OR,
USA, ACM Press (January 2002) 307–318

9. Grossman, D., Morrisett, J.G., Zdancewic, S.: Syntactic Type Abstraction. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 22(6) (2000) 1037–1080

10. Java Modeling Language (JML): http://www.eecs.ucf.edu/˜leavens/JML/.
11. Biba, K.J.: Integrity Considerations for Secure Computer Systems. Technical Report ESD-

TR-76-372, USAF Electronic Systems Division, Bedford, MA, USA (4 1977)
12. Bell, D.E., LaPadula, L.: Secure Computer Systems: Mathematical Foundations. Technical

Report MTR-2547, MITRE Corporation, Bedford, MA, USA (1973)
13. Denning, D.E.: A Lattice Model of Secure Information Flow. Communications of the ACM

19(5) (May 1976) 236–243
14. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: 1982 IEEE Sym-

posium on Security and Privacy, Oakland, CA, USA, IEEE Computer Society Press (May
1982) 11–20

15

15. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing Robust Declassification. In: 14th IEEE
Computer Security Foundations Workshop (CSFW-14 2004), Pacific Grove, CA, USA, IEEE
Computer Society (June 2004) 172–186

16. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A Calculus for Access Con-
trol in Distributed Systems. ACM Transactions on Programming Languages and Systems
(TOPLAS) 15(4) (1993) 706–734

17. Denning, D.E., Denning, P.J.: Certification of Programs for Secure Information Flow. Com-
munications of the ACM 20(7) (July 1977) 504–513

18. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Journal on
Selected Areas in Communications 21(1) (January 2003) 5–19

19. Cohen, E.S.: Information Transmission in Sequential Programs. In DeMillo, R.A., Dobkin,
D.P., Jones, A.K., Lipton, R.J., eds.: Foundations of Secure Computation, Academic Press
(1978) 297–335

20. Volpano, D., Irvine, C., Smith, G.: A Sound Type System for Secure Flow Analysis. Journal
of Computer Security 4(2-3) (January 1996) 167–187

21. Li, P., Mao, Y., Zdancewic, S.: Information Integrity Policies. In: Workshop on Formal
Aspects in Security and Trust (FAST 2003), Pisa, Italy (September 2003)

22. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow Integrity: Principles, Imple-
mentations, and Applications. In: 12th ACM Conference on Computer and Communications
Security (CCS 2005), Alexandria, VA, USA, ACM (2005) 340–353

23. Myers, A.C., Liskov, B.: A Decentralized Model for Information Flow Control. In: 16th
ACM Symposium on Operating Systems Principles (SOSP 1997), Saint-Malo, France (Oc-
tober 1997) 129–142

24. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing Robust Declassification and Qualified
Robustness. Journal of Computer Security 14(2) (May 2006) 157–196

25. Swamy, N., Hicks, M., Tse, S., Zdancewic, S.: Managing Policy Updates in Security-Typed
Languages. In: 19th IEEE Computer Security Foundations Workshop (CSFW-19 2006,
Venice, Italy, IEEE Computer Society (July 2006) 202–216

26. Hosmer, H.H.: Metapolicies I. SIGSAC Review 10(2-3) (1992) 18–43
27. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based Confidentiality

Monitoring. In: Proceedings of 11th Annual Asian Computing Science Conference (ASIAN
2006), Tokio, Japan (December 2006)

28. Le Guernic, G.: Automaton-based Confidentiality Monitoring of Concurrent Programs. In:
20th IEEE Computer Security Foundations Symposium (CSF-20 2007), Venice, Italy, IEEE
Computer Society (July 2007)

A Non-Interference for IMPOLITE

We present here a proof of non-interference, Theorem 1, via some relations with
convenient properties including Reflexivity, Symmetry, and Transitivity.
Definition 6 (fails). For some (join, |=):

fails d ≡ ¬test d where join = join and (|=) = (|= ∪ |=+)
|=+ is |=’s transitive closure restricted to elements of the form (f , d) |=∗ (null, d ′)
Lemma 1 (Properties of fails).
• Atomic Success: ¬fails a
• Atomic Success: fails d [〈a〉] = fails d [〈a ′〉]
• Left Extension: fails v =⇒ fails R[〈v〉]

16

• Right Extension: fails R[〈a〉] =⇒ fails R[〈S 〉][〈a〉]
• Test Failure: fails d =⇒ ¬test d
• Completely Invalid: d completely invalid =⇒ fails d [〈null〉].

Remark 1. β will be a partial injection between heap domains.

Definition 7 (Substituting free locations under β: d/h/C [β]). d [β] is the sub-
stitution of locations in d under β (β total on the free locations in d). This is
extended to heaps (by substitution on the domain and range), and commands.
Definition 8 (Failure Preservation (onD): d1Jd2). (d2 failure preserves d1)

ATOMS

a1Ja2

STRUCTS
∀i , diJd ′i

{fi = di }J {fi = d ′i }

FRAMES
fails d1 =⇒ fails d2 R1JR2

R1[〈d1〉]JR2[〈d2〉]

FAILURE
fails d2

d1Jd2

Lemma 2 (Properties of Failure Preservation(on denotations)).
• R, T, • Failure Preservation: fails d1 ∧ d1Jd2 =⇒ fails d2

Definition 9 (RD: β-indistinguishable denotations). RD holds when two de-
notations are either the same (modulo β) or will ultimately fail the final test.

ATOMS

RD β a a[β]

STRUCTS
∀i ,RD β di d ′i

RD β {fi = di } {fi = d ′i }

FRAMES
RD β P1 P2 RD β a1 a2

RD β P1[〈a1〉] P2[〈a2〉]

MUTUAL FAILURE
fails d1 fails d2

RD β d1 d2

PASSIVE FAILURE
fails d1 ∨ fails d2 passive d1 passive d2

RD β d1 d2

Lemma 3 (Properties of RD).
• Reflexivity: RD β d d [β] • Symmetry: RD β d1 d2 =⇒ RD β

−1 d2 d1

• Trans: d2Jd3 ∧ RD β d1 d2 ∧ RD β
′ d2 d3 =⇒ RD β

′ ·β d1 d3

• Extension: β′ ⊇ β ∧ RD β d1 d2 =⇒ RD β
′ d1 d2

• Testable Eq.: RDβ d d ′∧test d∧test d ′ =⇒ valueof d [β] = valueof d ′

Proof by induction. Testable Equality follows from the Test Failure property
of Lemma 1, the struct case by the Top Conjunction property of Def. 2.

Definition 10 (Failure Preservation (on heaps): h1 −β−J h2).
∀` ∈ dom β, (h1 `)J (h2 (β `))

Lemma 4 (Properties of Failure Preservation (on heaps)).
• R, T, • Failure Pres.: fails h1 ` ∧ h1 −β−J h2 =⇒ fails h2 (β `)

Definition 11 (RH : β-indistinguishable heaps).
RH β h1 h2 ⇐⇒ ∀` ∈ dom β,RD β (h1 `) (h2 (β `))

Lemma 5 (Properties of RH). • Reflexivity, Symmetry
• Trans: h2 −β

′−J h3 ∧ RH β h1 h2 ∧ RH β′ h2 h3 =⇒ RH β′ ·β h1 h3

17

Definition 12 (Simultaneous substitution: C1
C2
β〉〉

C ′1
C ′2

).

ID
C1

C2
β〉〉

C1

C2

SUBST

RD β d1 d2
C1[d1/x]
C2[d2/x]

β〉〉
C ′

1

C ′
2

C1

C2
β〉〉

C ′
1

C ′
2

Lemma 6 (Properties of Simultaneous Substitution).
• Reflexivity, (Vertical) Symmetry, Transitivity
• Extension: β′ ⊇ β ∧ C1

C2
β〉〉

C ′1
C ′2
=⇒ C1

C2
β′〉〉

C ′1
C ′2

• Decomposition: Suppose let x=C1 in D1
let x=C2 in D2

β〉〉E1
E2

. Then ∃C ′1 ,D
′
1,C

′
2 ,D

′
2

E1 = let x = C ′1 in D ′1, E2 = let x = C ′2 in D ′2, C1
C2
β〉〉

C ′1
C ′2

, D1
D2

β〉〉
D ′1
D ′2

.

Definition 13 (Failure-Preserving Evolution:d1 { d2, h1 { h2).
d1 { d2 ⇐⇒ d1Jd2 ∧ RD id d1 d2 h1 { h2 ⇐⇒ h1 −id−J h2 ∧ RH id h1 h2

Lemma 7 (Properties of Failure-Preserving Evolution).
• R, T • Transitivity with RH : RH β h1 h2 ∧ h2 { h3 =⇒ RH β h1 h3

Lemma 8 (FP Evolution Preserves Indistinguishable Heaps).
RH β h1 h2 ∧ h1 { h ′1 ∧ h2 { h ′2∧ =⇒ RH β h ′1 h ′2

Proof:RH β h1 h2 =⇒ RH β
−1 h2 h1 =⇒ RH β

−1 h2 h ′1 =⇒ RH β h ′1 h2 =⇒ RH β h ′1 h ′2

We now introduce write confinement: untrusted code’s writes are confined
(tainted), so the final heap is a failure-preserving evolution of the initial one.
Lemma 9 (Write Confinement For taint field).

(!pc, h) ↓(p, h) ∧ fails p ∧ passive d ∧ passive d2 ∧ if !pc fails,

(taint field(d ,fl , d2), h) ↓(d ′, h ′) taint field run with passive d , d2, d ′

=⇒ d { d ′ ∧ h = h ′ yields a f.p. evolution of d and the heap is unchanged

Definition 14 (n
�). n

� non-deterministically extends the ↓ relation to open com-
mands via any series of (well-formed) substitutions.

(C , h1) ↓(v , h2)

(C , h1)0
�(v , h2)

(C [w/x], h1)n−1
� (v , h2)

(C , h1)n
�(v , h2)

Lemma 10 (Write Confinement).
(!pc, h1) ↓(p, h1) ∧ fails p ∧ ([[C]], h1)n

�(v , h2) if !pc fails, and a translated command

=⇒ h1 { h2 runs with some substitutions, h2 is a f.p. evolution of h1

Proof by structural induction on [[C]]. For the application case, the translation

gives the following se-
ries of heaps: h1

meth

set
// h2

pc

set
// h3

v1 v ′2 // h4
pc

unset
// h5

meth

unset
// h6

In heap h3, !pc fails, by def of taint and the On Frames and Right Extension
properties of Lemma 1. For v1 v ′2, it follows by inversion that v1 = R[〈〈f , x ,C 〉〉]
C [d/x][〈m , x ,C 〉/m], h)n

�(d ′, h ′), so by Def. 14, (C , h)n+2
� (d ′, h ′). Then h3 {

18

h4 by the IH. Going from h2 to h3 only changes pc, and going from h4 to h5
resets it, so h2 { h5, and similarly for meth , giving h1 { h6. The conditional
case is similar. For the let case, weaken (C2[d1/x], h1)n

�(d2, h2) to (C2, h1)n+1
� (d2, h2),

and then apply the IH. The assignment case follows from Lemma 9.
Definition 15 (RC).
RC β C1 C2 ⇐⇒ C1,C2 are β-equal if for all β-equal heaps and sim. sub.

∀h1, h2.RH β h1 h2 ∧ ∀C ′1 ,C
′
2 .

C1
C2
β〉〉

C ′1
C ′2
∧ related C ′

1 ,C
′
2 that run in those heaps

(C ′1 , h1) ↓(d1, h ′1) ∧ (C ′2 , h2) ↓(d2, h ′2) that run in those heaps, the results are

=⇒ ∃β′.β′ ⊇ β ∧ RD β
′ d1 d2 ∧ RH β′ h ′1 h ′2 β

′-equal for some β′ extension of β

Lemma 11 (Reflexivity of RC). safe C =⇒ RC β [[C]] [[C [β]]]
Proof by induction on C . For commands that do not modify the heap, set β′ = β.

For the ref case, choose β′ = β[`1 7→ `2], where `1, `2 are the new locations
chosen in the two heaps, and use. the Extension properties of Lemmas 3 and 5.

For the let case (let x = C1 in C2), use the Decomposition prop of Lemma 6.
Since sim. sub. is transitive (Lemma 6), weaken C2[d/x] to C2, apply the IH
twice, then the Transitivity and Extension props. of Lemmas 3 and 5.

For the application case, consider v1 v2 and w1 w2. The translation gives
the following heaps:
The solid lines are triv-
ial. The dashed lines
proceed as follows. By
inversion on

h1
meth

set
//

RH β
��

h2
pc

set
//

RH β
��

h3
v1 v ′2 //

RH β
��

h4
pc

unset
//

RH β′

���
�
� h5

meth

unset
//

RH β′

���
�
� h6

RH β′

���
�
�

h ′1
meth ′

set
// h ′2

pc′

set
// h ′3

w1 w ′2 // h ′4
pc′

unset
// h ′5

meth ′

unset
// h ′6

RD β v1 w1, either the closures in both are β-equal or they both fail (v1 is not
passive). If they both fail then h3 { h4 and h ′3 { h ′4 by Lemma 10. Then by
Lemma 8 RH β h ′4 h ′5, and the tainted return values will be RD as they will both
fail. Otherwise, by Def. 9 the closures must be β-equal, and so their bodies are
of the form C ,C [β]. By the transitivity of simultaneous substitution (Lemma 6)
it follows that C

C [β] β〉〉
C [d/x][〈m ,x ,C ′〉/m]

C [β][d/x][〈m ,x ,C ′[β]〉/m] . The result then follows by IH.
Since the old values of pc and meth in both heaps were RD under β, by

the Extension property of Lemma 3 they are RD under β′, and h5, h ′5 and h6, h ′6
are obtained by respectively restoring the old values of pc and meth; it follows
from Def. 11 that RH β′ h5 h ′5 and finally, RH β′ h6 h ′6.

For the conditional case, the translation of if v then C1 else C2 and
if v ′ then C1 else C2
gives the following
heaps: The solid lines
are trivial, noting that
by Def. 11 the pcs were
RD beforehand and it is

h1
pc

set
//

RH β
��

h2
Ci

i∈{1,2}
//

RH β
��

h3
wo(C1)∪wo(C2)

tainter
//

RH β′

���
�
� h4

pc

unset
//

RH β′

���
�
� h5

RH β′

���
�
�

h ′1
pc′

set
// h ′2

Ci′

i ′∈{1,2}
// h ′3

wo(C1)∪wo(C2)

tainter
// h ′4

pc′

unset
// h ′5

clear by Def. 9 that the pcs will still by RD. The dashed lines proceed as follows.

19

By inversion, for some b, b′, v=R[〈b〉], v ′=R′[〈b′〉], and RD β R[〈b〉] R′[〈b′〉]. So
either RD β R R′ and b = b′, or one (or both) of v , v ′ fails.

In the former case, the same Ci is executed in both runs, so by the IH,
RH β′ h3 h ′3 and the return values are similarly RDβ′. Since the pcs are RD, by
Def. 9, the return denotations are also RD. Since the tainter commands are
also the same, it follows by the IH that RH β′′ h4 h ′4 for some further extension
β′′. The result follows by the Extension properties of Lemmas 3 and 5.

If both v , v ′ fail, then the pcs will also fail. By Lemma 10, h2 { h4 and
h ′2 { h ′4, so by Lemma 8, RH β h4 h ′4. As the pcs fail, the result follows from
the def of taint and the On Frames and Right Extension props of Lemma 1.

If only one of v , v ′ fails, they must both be passive. WLOG, assume that
v ′ fails. Then pc′ in h ′2 fails, and so RH β h2 h ′2 by Defs 9 and 11. By Lemma 10
h ′2 { h ′3, and so RH β h2 h ′3 by the Transitivity property of Lemma 7. Let L be
the set of (location, field list) pairs written to by Ci . By Def. 3.3, wo(Ci) ⊇ L and
so wo(C1)∪ wo(C2) ⊇ L∪ wo(Ci) and wo(C1)∪ wo(C2) ⊇ L∪ wo(C1)∪ wo(C2).
Since wo(C1)∪wo(C2) ⊆ L∪wo(C1)∪wo(C2) it follows that wo(C1)∪wo(C2) =
L∪wo(C1)∪wo(C2). The lhs of the equality represents every (location, field list)
pair modified in the first execution, and the rhs represents those tainted by the
second execution. By Def. 9, all such locations will still be RD of each other, so
RH β h4 h ′4. Resetting the pcs preserves RH , so RH β h5 h ′5 holds. The return
denotations and the pcs must be passive, so the tainted return denotations are
passive and by Def. 9 the tainted return denotations are RD.

Proof of Theorem 1: The initial heaps are empty, and by Def. 11 are RH∅. Ev-
ery command in the let bindings will be run in a context where the pc fails, by
inspection of the translation of assert in and the Completely Invalid property of
Lemma 1. Let h3, h4 (and h ′3, h

′
4 in the other run) be the heaps before and after

such a command. Then by Lemma 10, h3 { h4 and h ′3 { h ′4. Given RH ∅ h3 h4,
RH ∅ h ′3 h ′4 follows by Lemma 8. Since the initial heaps are RH∅, the heaps will
still be RH∅ after all the let bound commands have run. Since Ui ,U ′i are com-
pletely invalid, fails Ui and fails U ′i and so fails di and fails d ′i by the
Completely Invalid, On Frames, and Right Extension properties of Lemma 1.

By Def. 9, RD ∅ di d ′i , and so by Def. 12, C
C ∅〉〉

C [di/xi]
C [d ′i /xi]

.

By hypothesis, safe C = C [∅]. By Lemma 11, RC ∅ C C . Denoting the
return values of the entire programs d , d ′ respectively, by Def. 15 ∃β.RDβ d d ′.
Since test d and test d ′ both succeed, by the Test. Eq. property of Lemma 3,
valueof d [β] = valueof d ′, so valueof the resulting denotations are β-equal. �

20

