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For specifying and reasoning about object-based programs it is often attractive for contracts to be expressed

using calls to pure methods. It is useful for pure methods to have contracts, including read effects, to support

local reasoning based on frame conditions. This leads to puzzles such as the use of a pure method in its own

contract. These ideas have been explored in connection with verification tools based on axiomatic semantics,

guided by the need to avoid logical inconsistency, and focusing on encodings that cater for first-order automated

provers. This article adds pure methods and read effects to region logic, a first-order program logic that features

frame-based local reasoning and provides modular reasoning principles for end-to-end correctness. Modular

reasoning is embodied in a proof rule for linking a module’s method implementations with a client that relies

on the method contracts. Soundness is proved with respect to a conventional operational semantics and uses

an extensional (that is, relational) interpretation of read effects. Applicability to tools based on SMT-solvers is

demonstrated through machine-checked verification of examples. The developments in this article can guide

the implementations of linking as used in modular verifiers and serve as basis for studying observationally

pure methods and encapsulation.
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1 INTRODUCTION

Consider a class Cell, each instance of which holds an integer value, and these methods.

method get(): int
method set(v: int) ensures self.get() = v

Consider the following client code, in a Java-like programming notation.

var c, d: Cell; c := new Cell; d := new Cell; c.set(5); d.set(6); assert c.get() = 5;

We would like to prove the asserted postcondition, by reasoning that the state read by c.get() is
disjoint from the state written by d.set(6). One problem is how to make sense of specifications that

invoke methods, like get in the assertion and in the postcondition of set. Another problem is how
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to specify frame conditions, for sound ‘local’ reasoning about disjointness of effects, even in the

presence of method calls in specifications. This article aims to solve these problems in a way that

can be used in verification tools based on automated theorem provers for first-order logic (FOL)
and proved sound with respect to standard operational semantics of programs.

A frame condition is the part of a method’s contract that says what part of the state may be

changed by an invocation of the method. Frame conditions make it possible to retain a global

picture while reasoning locally: If a predicate, say c.get()=5, can be asserted preceding a method

call, say d.set(6), then it still holds following that call—provided that the locations on which the

predicate depends are disjoint from those that may be written according to the method’s frame

condition. This obvious and familiar idea is remarkably hard to formalize in a way that is useful for

sound reasoning about programs acting on dynamically allocated mutable objects (even sequential

programs, to which we confine attention here). The challenges include how to precisely describe

locations a method may write, and to describe the locations on which a predicate depends (its read

effect or ‘footprint’), without violating abstraction boundaries. The challenge illustrated by the

example is that the predicate may itself involve a method call.

There are practical benefits to using programmed methods in postconditions, like get in the

example, as well as in preconditions and in frame conditions. This seems sensible provided that

they are pure in the sense of having no observable effects other than reading, and are terminating

so there is a definite value. The idea is that such a method is computing a function and can be used

as such in reasoning, with well known benefits of functional and data abstraction. One may call it

a pun, akin to the fundamental pun of Hoare logic: treating program variables as logical variables.

The puns make it possible for specifications to be expressed in notation close to the programming

language, making it more accessible to engineers [22].

Prior work on pure methods has addressed termination of pure methods. Versions of the Java

Modeling Language (JML) [35] allow a pure method to be called in its own postcondition, but

decreasing a measure, the same requirement as for recursive calls in the body of a method being

proved to terminate [25]. Pure method calls are also useful in frame conditions, again leading to

apparent recursion for which it is challenging to determine sound reasoning principles.

Pure methods can lead to unsatisfiable specifications. For example, naïve use of the pure method

specification

method f(x: int): int ensures result = f(x)+1

could lead to inconsistencies like the formula f(x) = f(x)+1. This example is ruled out by the re-

quirement to decrease a measure. But the formula result ∗ result = x does not call f at all; yet,
as a postcondition it too is unsatisfiable for some values of x. For purposes of runtime assertion

checking, it is clear that care must be taken with recursive calls in postconditions. But for purposes

of static verification, the potential for unsatisfiable postconditions does not itself necessitate that

a pure method call in its own postcondition must decrease a measure. Indeed, the postcondition

result = f(x) is benign.
Prior work on pure methods focused on verification-condition generation (VC-gen), usually

taking axiomatic semantics for granted rather than defining and proving soundness with respect

to operationally grounded program semantics (see [22, 25, 54, 59] and others in Section 12). The

prior work focused on methodological considerations and on encodings that work effectively with

SMT solvers. In these works, assumed specifications are encoded as axioms. The linking together

of verifications for individual methods is embodied procedurally, in the implementation of the

verification tool. This can lead to misunderstandings about what is assumed and what is proved.

The intricacies of dealing with heap structure, framing, and purity have led to soundness bugs in
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class Cell {
private value: int;
ghost foot: rgn;
pure method get(): int

requires I
reads self.foot‘any

method set(v: int)
requires I
ensures self.get() = v ∧ I
writes self.foot‘any //(in examples, read effects are omitted for impure methods)

}

Define I =̂ ∀x , y : Cell · x ∈ x .foot ∧ (x = y ∨ x .foot # y .foot). It plays the role of a public
invariant.

Fig. 1. Example: Cell.

implemented verification systems (as reported in Heule et al. [31]) as well as intricate restrictions

on VCs without clear semantic justification.

This article provides a foundational account, by way of a conventional program logic that caters

for SMT solvers by reasoning about framing using ghost state and standard first-order logic, and

that is proved sound with respect to a standard operational semantics. Our account focuses on proof
rules for linking the implementation of an interface (that is, collection of method specifications) with

a client that relies on that interface. A notion akin to Kassios’ ‘self-framing’ frame conditions [33],

used for reasoning about preservation of disjointness, emerges as important for reasoning about

read effects. Our account shows that some restrictions in prior work are unnecessary. The restriction

to decrease a measure in recursive calls is disentangled and justified directly in terms of a linking

rule.

1.1 Approach: first steps

Suppose the internal representation of Cell objects consists of an integer field value. The frame

condition for set could say it writes self.value. We use the term ‘frame condition’ to include read

effects, which are important for framing assertions that call pure methods; for example, get reads
self.value. With respect to the client code (at the beginning of Section 1), the frame condition for

the call d.set(6) would allow the postcondition of c.set(5), that is, the predicate c.get() = 5, to be

framed over the call d.set(6), yielding the desired assertion. But such specifications expose the

internal representation. They would preclude, for example, an alternative implementation that

uses, instead of integer field value, a pointer to a list of integer arrays (to represent big numbers).

Better specifications appear in Figure 1, using ghost state to describe the notional ‘footprint’

of each instance of Cell, and postconditions from which the client can deduce disjointness of the

representations of c and d. Ghost state is mutable instrumentation added for reasoning but not

affecting concrete program state. Use of ghost state for footprints is a key part of the ‘dynamic

frames’ approach [33] used in some prior work on framing and pure methods [38, 59].

Our specification is based on a type rgn, short region. A region is a set of object references. The

value of field self.foot is thus a set of references and self.foot‘value denotes the locations of the
value fields of those objects. (The notation ‘value forms an image expression.) For example, in a

state where the value of self.foot is the set {p, q}, the set of locations denoted by self.foot‘value
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is the set {(p, value), (q , value)}. In the sequel we write such pairs as p .value and q .value. The
keyword any abstracts over field names: the notation self.foot‘any denotes all fields of those

objects. In a frame condition, it is the l-value—locations—that are denoted. Some other works based

on dynamic frames use location sets directly [10, 33, 59], but we follow [8] in describing location

sets in terms of fields (or data groups) and regions, because locations are not first-class values in

Java-like languages (by contrast with, say, C).

The specification of get is an example of a pure method in its own postcondition. For an example

of one in its own frame condition, we could replace the ghost field foot by region-valued method

footpm. The read effect of footpm might be footpm()‘any, making it ‘self-framing’ [33]. Figure 2

has a more interesting example with pure method calls in a precondition as well as in a frame

condition.

The specifications of get and set are abstract, in the sense that they are consistent with many

interpretations of the function get. For example, get could return self.value+7 as long as set
stores v−7. Client code should respect the abstraction, that is, be correct with respect to any

interpretation. On the other hand, a given implementation (for example, implementing get and set
by returning/setting self.value) is correct only if we interpret its specifications the right way.

By contrast with this simple example, practical applications of pure methods pose the challenge

of reasoning about observational purity, that is, benign side effects on encapsulated data represen-

tations, an old problem [32]. There are many examples, including memoization, lazy initialization,

and path compression in Union-Find structures, which involve allocation of fresh objects and

mutation of existing ones. Prior work has addressed an aspect of that challenge, namely ‘weakly

pure’ methods that allocate and even return fresh objects, though not modifying pre-existing

locations.

1.2 Summary of contributions

• We provide a logic for object-based programs with dynamic allocation, featuring state depen-

dent expressions in frame conditions that include both read and write effects for commands.

The proof rules include a frame rule and rules for linking of pure and impure methods with

their clients. The implementations of pure methods are commands which may be recursive

and may write local variables.

• We provide semantics for the judgment of correctness under hypotheses, where specifications

(pre, post, and frame) can refer to pure methods that can also be called in code. The key

notion of partial context interpretation enables us to explain and disentangle restrictions in

prior work.

• A relational semantics is used for read effects of commands, directly capturing the extensional

meaning of dependency. A key finding is the necessity of ‘framed reads’ to enable state-

dependent read effects to be composed in sequence just as write effects are.

• Soundness is proved in detail, directly in terms of a standard small step semantics.

• We explain the attractive idea of weak purity which has been explored in prior works. Our

analysis sheds light on why weak purity has turned out to be difficult to get right, which

may explain why it has fallen out of favor.

• Case studies are presented, to show how the logic relates to verification tools based on

VC-gen.

This article may serve as a foundation to guide the investigation of programming methodologies for

early detection of unsatisfiable specifications or for other concerns—but this is not a methodological

investigation. The examples are crafted to explain technical points, not to argue for or against uses

of pure methods, dynamic frames, or anything else. Although the logic may serve as a foundation
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for soundness of a VC-generator, there are many engineering considerations and comprehensive

discussion of VC-gen is beyond the scope of this article.

A preliminary version [6] of this article appeared in a conference but major changes have been

made to the semantics and core definitions. The examples have now been fully verified using SMT

solvers, weak purity is considered, and detailed proofs are provided.

Contextual remarks. The approach we take is motivated by the challenge of observational purity,

although that is not the focus of this article. The term ‘benevolent side effect’ was introduced

by Hoare in seminal work [32] on data abstraction and the hiding of invariants on encapsulated

data representations. Hiding is important for modular reasoning, but difficult to achieve in the

presence of shared mutable objects. Separation logic provides elegant and effective reasoning about

framing and hiding [47], but at the cost of going beyond FOL for assertions. In a semantic account

of observational purity for mutable objects, Naumann [46] confirmed the close connection with

encapsulation, but it remains an open problem to develop a program logic supporting observational

purity for object-based programs.

In prior work, we developed region logic (RL) [8], a Hoare logic for sequential object-based
programs, using standard FOL for assertions: the logic supports reasoning via explicit footprints

captured in frame conditions, as in Figure 1. RL provides a frame rule for local reasoning, based

on frame conditions of methods and a subsidiary judgment for framing of formulas. The frame

rule expresses that a predicate continues to hold after a method call provided the locations on

which it depends are disjoint (separated) from the locations that are writable according to the frame

condition. In addition to ordinary frame conditions, the logic formalizes encapsulation boundaries

for modules, by expressing separation between hidden state of a module and client visible state,

so that hidden module invariants are not falsified by client interaction. This idea is captured in a

second-order frame rule for linking method implementations with clients, hiding invariants [5],

inspired by a similar rule for separation logic by O’Hearn et al. [47].

Read effects of commands are a relational property [17], so one approach to framing of pure

methods would be to use a general relational logic [15, 45, 61]. In ongoing work we adapt RL to

a relational version [7], with the eventual aim to formalize observational purity in terms of the

hiding of effects. In the present article we study an ordinary (‘unary’) logic, extending RL with

read effects and pure method calls in specifications. For brevity we refer to the key papers on RL as

RLI [8] and RLII [5].

1.3 Approach: linking and partial interpretations

The primary judgment expresses correctness of a program under hypotheses about methods it may

call. The judgment is written in the following form:

Φ ; ψ ⊢ C : P { Q [ε] (1)

Please ignoreψ for now; it is discussed in due course. Judgment (1) says that under precondition P
command C does not fault; if it terminates its final state satisfies Q and the computation’s effects

are allowed by the frame condition, ε . This conclusion is under hypothesis Φ, a list of method

specifications called themethod context. What’s new in this article, beyond RL, are read effects in

ε and Φ, and pure methods used in Φ,P ,C ,Q , ε and specified in Φ.1

1
Read effects have several applications including compiler optimizations [17]. In this article we do not need read effects for

the bodies of impure methods. Nonetheless, we use the single judgment form (1) for all commands. This loses no generality,

because there is a maximally permissive read effect, and it is convenient because our syntax allows arbitrary commands for

the bodies of pure methods.
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One approach to formalizing the semantics of (1) goes by quantifying over all correct implemen-

tations of the methods specified by Φ, that is, considering behavior of C when linked with any

correct implementation. Our transition semantics uses an environment for let-bound methods;

calling a let-bound method results in execution of the body found in the method environment.

So this approach could be realized by considering all environments that also provide bodies for

methods in the hypothesis context. In this approach, the proof of soundness for the linking rule is

almost immediate, and semantics only needs to be defined for complete programs. In this paper, we

have found it convenient to take a slightly different approach that streamlines much of the technical

development. We quantify not over implementations but over possible interpretations, that is,
possible denotations of the implementations. For pure m , an interpretation φ(m) is a function:
it applies to a state and an argument value, and returns a value. For impure m , φ(m) applies
to a state and an argument value, and can return a set of states; a call to m takes a single step,

nondeterministically choosing any of those states. The semantics of (1) quantifies over all φ such

that φ(m) conforms to the specification Φ(m) for each m in dom (Φ).
To link a client C with implementation B of a method m used by C , we want C to be correct

for all interpretations of the method context Φ, which includes a specification form . But reasoning

about B can use a particular interpretation for m . For example, a client of Cell should be correct

with respect to any interpretation, including the one where get returns self.value+7. By contrast,

the expected implementations of get and set are correct only with respect to the interpretation

that returns self.value.
An interpretation might be given directly, as a mathematical definition provided by the program-

mer. Or it might be derived from the code as it is in work on VC-gen for pure methods, where pure

methods have been restricted to a simple form in order to ensure that the derived interpretation is

not inconsistent (see Section 12). We treat interpretations semantically, in order to focus on their

use rather than how to obtain them (except in Section 9). We impose no restrictions on the code

of pure methods, beyond purity of effect. We do restrict specifications in a method context, to

preclude cyclic dependencies between pure methods used in each others’ preconditions.

The role ofψ in the judgment form (1) is to provide what we call a ‘partial candidate interpretation’

for zero or more of the pure methods in Φ. The semantics of (1) quantifies not over all interpretations

φ that satisfy Φ, but only those which in addition agree withψ where it is defined. That is,ψ (m) =
φ(m) ifψ is defined onm . In the rule of consequence and other rules involving assertions, reasoning

can assume both the specifications in Φ and the partial interpretationψ of pure methods. Soψ is

a key part of the linking rule, which we sketch here in simplified form.
2
For this discussion we

elide effects. We consider a single methodm , specified as Θ =̂ m : (x :T , res:U )R { S , andψ with

dom (ψ ) = {m}, in the rule:

Φ,Θ; ⊢ C : P { Q Φ,Θ;ψ ⊢ B : R { res = m(x ) ψ |= Φ,Θ

Φ; ⊢ let m(x :T ):U = B in C : P { Q
(2)

A client C is linked with the implementation B of a pure methodm . The verification of C is under

the hypothesis of some specifications Φ,Θ which include the specification Θ of m as well as an

ambient library Φ. The partial candidate is empty in the judgment for C , which means that C is

correct with respect to any interpretation φ of all the methods in Φ,Θ. The verification condition

for B also has hypothesis Φ,Θ for methods, including m , that may be called in B or used in its

specification, and B must be correct with respect to any interpretation of the methods in Φ, but
only the fixed interpretation ψ of m . The linking rule discharges the hypothesis Θ about m by

providing an implementation B for it.

2
Rules with similar structure are called recursion rules in the textbook of Apt et al. [3].
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Reasoning under inconsistent hypotheses leads to vacuous conclusions. If the hypotheses in (1)

include an unsatisfiable specification for some pure method, there will exist no interpretations and

so by definition the judgment is vacuously true. Indeed, this issue is already present with impure

methods. If it is impossible to establish postcondition S then the only implementations B are those

that diverge. For the example with postcondition res = f (x ) + 1, one can use the rule to prove

correctness of B that simply calls f (x ) recursively. Of course it diverges.
There are several reasons a specification may be unsatisfiable. For example, the precondition

can preclude the postcondition (e.g., x ≥ 0 { x < 0), the frame condition may conflict with the

rest (e.g., true { y = 0 with empty frame condition), or the postcondition may be unsatisfiable

for deep mathematical reasons. In practice it may be helpful to deploy heuristic checks to detect

unsatisfiable specifications, but complete checks are not feasible.

Clearly we do not want divergent expressions in formulas. The interpretation ψ (m) must be

a total function (at least on inputs satisfying the precondition of m). It is not necessary for its

definition to be derived from B ; indeed, a useful implementation B may use loops and mutable

local variables, whereasψ (m) could be expressed in convenient mathematical notation. What is

required by the rule is that terminating executions of B yield the result defined by ψ (m); that
is postcondition res = m(x ). In addition, the condition ψ |= Φ,Θ in (2) requires that under the

assumptions Φ, the partial candidateψ does satisfy its specification Θ. (It cannot be writtenψ |= Θ,
because specification Θ may refer to pure methods in Φ.) Notice that the judgment for B does not

explicitly require it to establish the postcondition S ; to whatever extent the definition ofψ is derived

from the code B , one will in fact reason about B—including its termination—to establishψ |= Φ,Θ.
Because prior work focused on using B both as executable code and as interpretation, and on

VC-gen in which linking is not made explicit declaratively, potential divergence and unsatisfiability

were studied in terms of consistency of axioms (see Section 9 and Section 12).

Rule (2) addresses uses of pure methods for abstraction, wherein the actual interpretationψ is not

made visible to the client. This is appropriate for complicated or encapsulated data representations

and application-specific functionality. By contrast, some prior work addresses situations where the

interpretation is defined by an expression that is meaningful (and in scope) in the context of the

client. We can account for that as the variation of (2) in which the judgment for C is replaced by

Φ,Θ;ψ ⊢ C : P { Q (3)

This makes the definition of m ‘transparent’ by allowing the use ofψ in reasoning about C . Note

that ifψ (m) is expressible in terms of the ambient logical theory as some function f , then it can

also be made visible with a postcondition S that implies res = f (x ). So we consider rule (2) to have

primary importance.

Finally, there is a linking rule that accounts for how an interpretation may be derived from an

implementation. The idea is to replace in (2) the premise forB by something like Φ,Θ; ⊢ B : R { S ,
withoutψ , and to ensure somehow that B terminates without error from states that satisfy R. This

is achieved by augmenting the specification in the premise for B—but not in the hypothesis for

client C—with conditions that ensure recursive calls decrease a measure.

1.4 Outline

Section 2 formalizes the programming language, specifications, and definedness formulas derived

from specifications.

Section 3 takes the first step towards defining semantics, by defining the semantics of expressions

and formulas parameterized on the interpretation of pure methods. This is needed to dodge a

potential circularity: we interpret judgment (1) by quantifying over correct implementations, but

correctness is defined with respect to the meaning of specifications—and methods occur in the
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specifications. Aiming for a foundation for verification tools for first-order programs using SMT

solvers, we want to break the circularity and thus avoid fixpoint constructions for the semantics of

specifications and correctness judgments. To avoid circularity, Section 3 defines the semantics of

expressions and formulas in terms of an arbitrary ‘candidate interpretation’; it is not required to

satisfy any specifications, and even allows fault ( ) as an outcome, so the semantics of formulas is

three-valued. This serves to define, in Section 5, what it means for a candidate interpretation to

satisfy its specifications, and thus to define the semantics of (1).

Section 4 formalizes an extensional semantics of read effects, adapting the standard relational

notion of dependency. For deterministic programs and partial correctness this has a simple form

sometimes called termination-insensitive noninterference. For C to read only certain locations

means the following. Consider execution ofC from each of two states σ ,σ ′ that agree on the values

in those locations. If both executions terminate, the corresponding final states τ ,τ ′ agree on any

locations written or freshly allocated by C .

Nondeterminacy is allowed for impure methods, to cater for allocation. Conceptually, an allocator

depends on hidden state that is not visible at the level of source code; for a faithful model, we

allow it to be nondeterministic. This does not really complicate the technical development. The

semantics of read effects involves relating pairs of executions, for which purpose we need to deal

with differences in allocation behavior. We do this using bijective renamings (‘refperms’ in the

sequel) in a standard way [4]. The semantics of read effects ensures that correct interpretations are

quasi-deterministic in the sense that the only nondeterminacy is due to allocation.

Section 5 completes the semantics of the correctness judgment (1). For C verified under hypothe-

sis Φ that specifies pure method m called in C or used in the specification of C , linking discharges

the hypothesis as explained in Section 1.3. Using the notion of correct interpretation, we also define

what it means for a judgment to be healthy in the sense that its formulas and effect expressions

do not depend on pure methods outside the preconditions of those methods. Healthy formulas

satisfy the usual two-valued semantics of FOL, which justifies their use in SMT-based verifiers.

Healthiness is formulated in terms of definedness predicates derived syntactically from formulas

(in Section 2) as in prior work on VC-gen.

The semantics of (1) embodies what is sometimes called ‘modular correctness’ [36]. It requires

that C never calls a pure or impure method of Φ outside its precondition. This becomes explicit in

soundness proofs for linking rules.

Section 6 defines two subsidiary judgments used in the proof rules. The subeffect judgment

expresses that one effect is subsumed by another. The framing judgment expresses a bound on

the footprint or read effect of a formula: its semantics is that the formula is not falsified by state

updates that are outside its footprint—and that is the essence of framing. The footprint of a formula

is derived from the read effects specified for the pure methods on which the formula may depend.

What is important about the subsidiary judgments is their semantics, which is amenable to direct

checking using an SMT solver. However, we also give proof rules for deriving the subsidiary

judgments.

Section 6.3 explicates a notion we call framed reads, which is similar to the notion of self-framing

that Kassios introduces for reasoning about separation for freshly allocated objects (Section 12). It

turns out that this property is important for reasoning about read effects of commands. Although

the extensional semantics of a read effect involves two executions, the readable locations are

designated by an effect expression that is interpreted in one of the initial states. That asymmetry

can be problematic for composing the effects of commands in sequence, but the asymmetry goes

away if the locations on which the effect expression depends are themselves deemed readable.

The requisite definitions and results are delicate and were perhaps the most difficult part of our

investigation.
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class Comp {
specpublic chrn: listOf(Comp); // list of children
specpublic parent: Comp; //
specpublic size: int := 1; // number of descendants, including self

method add(x: Comp) // add x to the list of children of self
requires x.parent = null ∧ x < self.anc() // (first conjunct implies x not null)
ensures x.parent = self

writes self.chrn, x.parent, self.anc()‘size

pure method getSize(): int
reads self.size
ensures result = self.size

pure method anc(): rgn // get ancestors of self
reads self.anc()‘parent

}

Fig. 2. Composite example (adapted from RLI).

Section 7.1 gives the proof rules for the program correctness judgment. Section 7.2 gives examples

showing the need for framed reads. Surprisingly, it is untenable to require framed reads in all

program judgments, as explained in Section 7.1. Section 7.3 is a worked example highlighting

features of the proof system.

Section 8 proves the main theorem: soundness of the rules. The soundness proofs are intricate,

especially for the linking rules, because they are proved directly in terms of small-step operational

semantics.
3
Soundness for read effects is especially challenging because it involves reasoning about

the interpretation of effect expressions in two executions.

Section 9 discusses a variant linking rule that caters for deriving an interpretation from the

implementation of a pure method.

Section 10 demonstrates the suitability of our approach for use in SMT-based tools, and explains

informally how the logic in this article relates to VC-gen. We report on the verification of the Cell

(Figure 1) and Composite (Figure 2) implementations, together with their clients, using the Why3

verification system.
4

Section 11 considers weak purity, which allows allocation but not mutation of existing locations.

Section 12 discusses related work and Section 13 concludes. Appendix A provides some additional

proofs, and develops the theory of quasi-determinacy as needed to prove soundness of the linking

rule for impure methods.

2 PROGRAMS, SPECIFICATIONS, AND DEFINEDNESS FORMULAS

Figure 2 illustrates features of our programming and specification notations, by way of the Com-

posite pattern, a well-known verification challenge problem [1, 18, 53]. A Comp is a node of a tree,

3
Small-step semantics is essential for the FOL-based form of dynamic frames and encapsulation used in RLII and in planned

future work on observational purity.

4
Why3 is at why3.lri.fr. Our case studies are at www.cs.stevens.edu/~naumann/pub/readRLWhy3.tar .
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other nodes of which may be accessible to clients. The methods are deliberately under-specified,

for expository purposes. To verify the implementations, some invariants are needed, as discussed

later (Section 10).

Here is an example client:

var b, c, d: Comp; var i: int; ... i := d.getSize(); b.add(c); assert i = d.getSize();

Aside from the primitive data types int and rgn, the language features class types whose values are
object references. Dereferencing is implicit, as in languages like Java. The command b.add(c) faults
if the value stored in b is null; otherwise it invokes method add on the referenced object, passing

the argument c—itself a reference—by value.

To prove the postcondition asserted in the example client, we want to frame the formula

i = d.getSize() over the call b.add(c). The frame condition of add(x) says it is allowed to write

self.chrn, x.parent, and the size field of the ancestors of self. In method set (Figure 1) we use ‘any
to abstract from field names, but here size is appropriate to make visible in the interface. That is the

purpose of the specpublic annotation [35] in Figure 2: chrn, size, and parent can appear in interface

specifications but are private in the sense that client code can neither read nor write these fields.

By contrast, we do not really want to expose field chrn. A good solution would be to use a data

group [42] to abstract from it. However, the data group any is not appropriate in this case, because

it would encompass self.parent and self.size which are not written by method add. The frame

condition would be less precise using self.anc()‘any. In order to avoid formalizing data groups in

this article, we simply mark self.chrn as specpublic. See RLI for more discussion of this facet of

information hiding.
5

In order to reason using the frame rule, we establish a subsidiary judgment written

⊢ rd i , d , d .size frm i = d .getSize()

which says the formula i = d .getSize() depends only on the values of i , d , and d .size . The rules
for framing let us establish this judgment based on the specification of getSize . The frame rule also

requires us to establish validity of a so-called separator formula. This formula is determined from

the frame of the formula and from the write effect of add. The function ·/. generates the separator
formula and is defined by recursion on syntax. Please note that ·/. is not syntax in the logic; it’s

a function in the metalanguage that is used to obtain formulas from effects. In the example, we

compute ε ·/. (rd i , d , d .size), where ε is the write effect of add. The computed formula is the

disjointness {d} # b.anc() , which says the singleton region {d } is disjoint from the set of ancestors;

equivalently, d < b.anc(). The disjointness needs to hold following the elided part of the example

client above.

In general, η ·/. ε is a formula which implies that the locations writable according to ε are disjoint
from the locations readable according to η. (See Lemma 6.6).

In this article we are concerned with pure methods that are implemented and used in code. In

the case of anc, the implementation iteratively or recursively traverses parent pointers. The chosen
specification avoids the use of descendants, in contrast to RLI or [53].

2.1 Programs

Figure 3 gives the grammar of programs. It is taken from RLII, with three additions providing for

pure methods: a command for linking a result-returning method with its client, and method calls

as expressions. These have a single parameter and a single method, to streamline the technical

5
Owing to the postcondition specified for getSize, the assignment i:=d.getSize() establishes both i=d.getSize() and i=d.size.
One can frame i=d.size over the call b.add(c) to establish assertion i=d.size, which is a reasonable specification given that

size is specpublic. But the point is to have a simple example of a pure method in a specification.
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m, p ∈ MethName x , y , z ∈ VarName f , g ∈ FieldName K ∈ DeclaredClassNames

(Types) T ::= int | rgn | K
(Program Expressions)E ::= x | c | null | E ⊕ E | m(E )where c is in Z, ⊕ is in {=,+, . . .}

(Region Expressions) G ::= � | x | {E } | G‘f | G ⊗ G | m(F ) where ⊗ is in {∪,∩, \}

(Expressions) F ::= E | G

(Commands) C ::= skip | x := F | x := new K | x := x .f | x .f := x

| if E then C else C | while E do C | C ;C | var x :T in C

| m(x ) | let m(x :T ) = C in C | let m(x :T ):T = C in C

Fig. 3. Programming language, highlighting additions to RLII. Take careful note of categories E ,G ,F .

development, but the generalization to multiple parameters and methods is straightforward and

used in examples. We use over-line notation to indicate multiple elements, e.g., T for a list of types.

Assume given a fixed collection of classes. A class has a name and some typed fields. We do not

formalize dynamic dispatch or even associate methods with classes; so the term method is just

short for procedure, and a class amounts to a named record type. Distinct classes have distinct field

names.
6
The letters T ,U ,V are used for types and B ,C ,D for commands. The letters E ,F ,G

are only used for their respective categories in Figure 3.

Values of type K are references to objects of class K (including the improper reference null).

Value of type rgn are sets of references of any type. Typing rules ensure there are no dangling

references in reachable states.
7
Aside from allocation and dereference, the only operation on

references is equality test. Dereference occurs in the load and store commands x := y .f and

x .f := y , which we call field access and field update. It can also occur due to image expressions, in

the form x := F where x : rgn. For example x := {y}‘f reads y .f in states where y , null; it sets x
to � when y = null. We make the semantics precise in Section 3.2.

Please note that ‘x .f ’ is not an expression; rather, it is part of the syntax of the primitive field

access/update commands. It is also part of the syntax of the points-to predicate ‘x .f = E ’ introduced

later. Null dereference is not a cause for faults in the semantics of formulas.

The linking construct, let m(x :T ):U = C in C ′, designates that m returns a result, of type U .

Calls ofm are expressions. We refer to result-returning methods as pure, that being their intended
use in this paper. However, neither the typing rules nor the operational semantics restricts their

effects. Purity is imposed, later, in terms of specifications and proof rules. The body C is executed

in a state with both x and the distinguished variable res, the latter initialized to the default value

for type U . The final value of res is the value of the call expression. The other linking construct,
letm(x :T ) = C in C ′, designates thatm may be impure; such methods are called in the command

form m(x ). Both constructs bind m in C ′ and bind x and m in C .

Typing contexts, ranged over by Γ, are finite maps, written in conventional form, except for

a slightly unusual notation for pure methods. For example, x : T ,m : (y :U ), p : (y :U , res:V )
declares state variable x , impure method m , and pure method p. The judgment Γ ⊢ E : T means

6
Owing to the simple model of classes, the notation G‘any can be defined as shorthand for G‘f where f is the list of all

field names. In a richer model with visibility restrictions, one would use a notion like data groups [42].

7
A fine point: To avoid complications in the substitutions used in some proof rules, we require that in any callm(z ) of an
impure method, the variable z does not occur free in the relevant specifications. Similarly, in a call y := m(z ) of a pure

method, we require that y, z do not occur free in the relevant specifications. This minor technicality is formalized in RLI/II

by partitioning the set of variable names into so-called Locals and others; that way the restriction can be expressed without

reference to specifications. For clarity in this article we simply ignore the issue.
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Γ, x : T ⊢ C

Γ ⊢ var x :T in C

Γ(m) = (x :T )

Γ, z :T ⊢ m(z )

Γ(m) = (x :T , res:U )

Γ, y :U , z :T ⊢ y := m(z )

Γ ⊢ F : T F is call-free x . alloc

Γ, x :T ⊢ x := F

(f :T ) ∈ Fields(Γy) x . alloc

Γ, x :T ⊢ x := y .f

(f :T ) ∈ Fields(Γx )

Γ, y :T ⊢ x .f := y

Γ,m : (x :T ), x : T ⊢ B Γ,m : (x :T ) ⊢ C B is let-free

Γ ⊢ let m(x :T ) = B in C

Γ,m : (x :T , res:U ), x : T , res : U ⊢ B Γ,m : (x :T , res:U ) ⊢ C B is let-free

Γ ⊢ let m(x :T ):U = B in C

Γ ⊢ C Γ ⊢ D Γ ⊢ E : int

Γ ⊢ if E then C else D

Γ ⊢ C Γ ⊢ E : int

Γ ⊢ while E do C

Fig. 4. Typing rules for commands.

that E is syntactically well-formed (swf ) and has type T . The judgment Γ ⊢ C means that

command C is swf. Most of the typing rules are straightforward and omitted. For expressions, here

are three rules of note:

Γ ⊢ F : T Γ(m) = (x :T , res:U )

Γ ⊢ m(F ) : U

Γ ⊢ E : K

Γ ⊢ {E } : rgn

Γ ⊢ G : rgn (f :K ′) or (f :rgn) is in Fields(K )

Γ ⊢ G‘f : rgn

If Γ ⊢ G : rgn then Γ ⊢ G‘f : rgn for any field name f of region or reference type. In case f : K ,

the value of G‘f is the set of f -values of objects in G . In case f : rgn, the value of G‘f is the union

of the f -values.
For commands, the typing rules are in Figure 4. The rules are designed to restrict assignments so

that there are only two ways method calls occur in commands: m(z ) for impure m and y := m(z )
for pure m . This loses no generality but streamlines the formalization. (For example, it avoids

the need to define small-step semantics of method calls in expressions.) An additional restriction

on method bodies B , that they are let-free, simplifies the transition semantics.
8
A typing rule is

given for a single pure method, and another rule for a single impure one, for readability. For a let
that binds several methods simultaneously, the typing rule checks the body of each method in the

context of all the method signatures, to allow mutual recursion.

8
Its consequence is that we are not fully modeling a module system, because any library in scope for a method is also in

scope for its clients. The same restriction is imposed in RLII.
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For simplicity, the program syntax does not include designation of ghost code as such. In the

examples, anything of type rgn can be considered ghost state, and we sometimes use the keyword

ghost for emphasis. A modern analysis of ghost code is provided by Filliatre et al. [26].

2.2 Specifications

The syntax of formulas is standard.

P ::= E = E | x .f = E | G ⊆ G | (∀x : K ∈ G · P ) | (∀x : int · P ) | P ∧ P | P ∨ P | ¬P

We write Γ ⊢ P to express that P is swf in context Γ, and omit the straightforward typing rules.

The points-to predicate x .f = E , adapted from separation logic, says x is non-null and the f
field of the referenced object is equal to the value of E . (The only change from RLI Section 4.2

is that now E can have pure method calls.) The formula ∀x : K ∈ G · P quantifies over all

non-null references of type K in G . For disjointness of regions it is convenient to write G # H
for G ∩H ⊆ {null}. Note that for f of type region, there is no primitive x .f = G ; but that can be

desugared as {x }‘f ⊆ G ∧G ⊆ {x }‘f .
Effect expressions are given by

ε ::= rd x | rdG‘f | wr x | wrG‘f | ε, ε | (empty)

For brevity we use the term effect for effect expressions throughout the article, though we also use

‘effect’ informally to refer to actual computational effects.

We abbreviate a compound effect wr x , rd x as rw x and we often treat compound effects as sets

rather than lists. We use identifiers ε,η,δ for effects, and P ,Q ,R,S for formulas. Note that, by

contrast, E ,F ,G are used for different kinds of expressions (as in Fig. 3). Finally, we write wr x .f
to abbreviate wr {x }‘f .

Effects must be swf for the context Γ in which they occur: rd x and wr x are swf if x ∈ dom(Γ);
rdG‘f , andwrG‘f are swf if Γ ⊢ G : rgn. By contrast with the typing rule forG‘f as an expression,

which requires the type of f to be a reference type or rgn, we need no restriction on the type of f
in the context of an effect. That is because in an effect, G‘f refers to the expression’s l-value, that

is, the locations it designates.

The function writes(ε) discards all but the write effects, for example, writes(wr x , rd y ,wr z ) =
wr x ,wr z . Similarly, reads(ε) is the read effects in ε .

Specifications for impure methods take the form (x :T )R { S [η]. For pure methods they take

the form (x :T , res:U )R { S [η]. Here R is the precondition, S the postcondition, and η the effects.
It is in the following that we restrict pure to have no side effects except possibly divergence.

Definition 2.1 (swf specification). For these specifications to be swf in context Γ, η must not

include wr x or rd x . Moreover, R and η must be typable in Γ, x :T . Postcondition S must be typable

in Γ, x :T , for the impure form, or Γ, x :T , res:U , for the pure form. Finally, for a pure method there

must be no write effects in η.

It is standard in Hoare logic to disallow writes to the parameter, in order for postconditions to

refer to initial parameter values. Although the body of a pure method will write res, the semantics

is a return value, not an observable mutation of state. As a design choice, we require that the

specification not include rd x (for parameter x ), though it may include effects that refer to x , for
example, rd {x }‘f . In the semantics the argument value is handled specially. In the proof rules for

method call, read effects are included for the argument expression. In the proof rules for linking,

the premise for the method body does include rd x .
For simplicity, we do not formalize specification-only variables (logical constants) in specifi-

cations. A sound formalization of specification-only variables has been worked out in RLII, and

should carry over to the present setting.
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As mentioned in Section 1, for purposes of ordinary framing there is no need to track read effects

of impure methods. However, they are needed for commands used in the body of a pure method.

(They are also needed for reasoning about observational purity and data abstraction.) For simplicity

the formalism in this article makes no distinction, that is, it tracks read effects for all methods and

commands. This loses no generality, because in any context Γ there is a read effect that imposes no

restriction: rd vars(Γ), rd alloc‘any. The distinguished variable alloc is explained in the next section.

Amethod context Φ is a finite map from method names to specifications. We are interested in

specifications that may refer to global variables declared in some typing context Γ that is method-
free, that is, dom (Γ) ⊆ VarName . Moreover, specifications in Φ are allowed to refer to any of the

pure methods in Φ; the specification of p may have calls to p in its postcondition and effect, or

p and m may refer mutually to each other—subject to the restriction that calls in preconditions

of pure methods must exhibit acyclic dependency. To make this restriction precise, we define a

relation ≺Φ on names of pure methods: m ′ ≺Φ m iff m ′ occurs in the precondition of Φ(m), for
m,m ′ specified in Φ as pure methods.

Definition 2.2 (syntactically well-formed context). A context Φ is swf in Γ provided that

• Γ is method-free

• the transitive closure, ≺+Φ, is irreflexive, and

• each specification is swf in the context Γ, sigs(Φ).

Here sigs extracts the types of methods. For example, let Φ0 be m : (x :T )R { S [η], p :

(y :V , res:U )P { Q [ε]. Then sigs(Φ0) is m : (x :T ), p : (y :V , res:U ). Note that we use comma to

separate disjoint contexts.

An example swf context is given by the specifications of get and set from Fig. 1, and another is

given by the specifications of add , getSize , and anc from Fig. 2. (To be precise, the specifications

need to include self as an explicit parameter, and in both cases a constructor method can be added.)

Although we do not formalize modules per se, the linking constructs model linkage of a client

to a set of methods that implement an interface. Definition 2.2 has an interesting consequence

for linking. Pure method specifications can make mutually recursive reference to each other, and

specifications of pure methods can refer to pure methods, but specifications of pure methods cannot

refer to impure ones. In addition, for a pure method implementation to satisfy its specification, it

cannot invoke any impure method m (unless the m’s specification has no writes, in which case

calling m is useless). So any verifiable linkage can be written in the form

let p0(x0:T0):U0 = B0 ; . . . ; pk (xk :Tk ):Uk = Bk in
let m0(y0:V0) = C0 ; . . . ; mn (yn :Vn ) = Cn in D

(4)

where the impure bodies Ci can call both pure and impure methods. This enables us to formulate

separate proof rules for linking of pure and impure methods.

At this point we have all but one of the ingredients to define what it means for a correctness

judgment (1) to be swf. What is missing is the partial candidate interpretationψ , to be defined in

Section 3.

2.3 Definedness

Sound proof rules for correctness judgments prevent a pure method from being applied outside its

precondition, to avoid the need to reason about undefined or faulty values. To this end, we use

definedness formulas [24], see Figure 5. The idea is that in states where df (P ,Φ) holds, evaluation
of P does not depend on values of pure methods outside their preconditions. We use the notation

Px
F for capture-avoiding syntactic substitution of F for x .
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df (x ,Φ) = true
df (c,Φ) = true
df (null,Φ) = true
df (E1 ⊕ E2,Φ) = df (E1,Φ) ∧ df (E2,Φ) where ⊕ is in {=,+, . . . }
df (G‘f ,Φ) = df (G ,Φ)
df (G1 ⊗ G2,Φ) = df (G1,Φ) ∧ df (G2,Φ) where ⊗ is in {∪,∩, \}
df (m(F ),Φ) = df (F ,Φ) ∧ Px

F where Φ(m) = (x : T , res : U )P { Q [ε]

df (E1 = E2,Φ) = df (E1,Φ) ∧ df (E2,Φ)
df (x .f = E ,Φ) = x , null⇒ df (E ,Φ)
df (G1 ⊆ G2,Φ) = df (G1,Φ) ∧ df (G2,Φ)
df (∀x : int · P ,Φ) = ∀x : int · df (P ,Φ)
df (∀x : K ∈ G · P ,Φ) = df (G ,Φ) ∧ ∀x : K ∈ G · df (P ,Φ)
df (P1 ∧ P2,Φ) = df (P1,Φ) ∧ (P1 ⇒ df (P2,Φ))
df (P1 ∨ P2,Φ) = df (P1,Φ) ∧ (¬P1 ⇒ df (P2,Φ))
df (¬P ,Φ) = df (P ,Φ)

df (ε,Φ) = df (G0,Φ) ∧ . . . ∧ df (Gn ,Φ)
where G0 . . .Gn are the regions with rdGi ‘f or wrGi ‘f in ε

Fig. 5. Definedness formulas for expressions, formulas, and effects in swf method context Φ.

Although the clause for df (m(F ),Φ) refers to a method specification that may refer to another

pure method in its precondition, df is well-defined, owing to the requirement that ≺+Φ is irreflexive

(and dom (Φ) is finite, so this is well founded). It is straightforward to show that if Γ ⊢ P then its

definedness formula is well-formed in the same context, that is, Γ ⊢ df (P ,Φ).
For example, let Φ have specification

9 div6by : (x :int, res:int)x , 0 { res = 6/x [ ]. Let P be

y , 0 ∧ div6by(y) > 3. Then df (P ,Φ) is valid because

df (P ,Φ)
= df (y , 0,Φ) ∧ (y , 0⇒ df (div6by(y) > 3,Φ))
= y , 0⇒ df (div6by(y) > 3,Φ)
= y , 0⇒ df (div6by(y),Φ)
= y , 0⇒ df (y , 0,Φ) ∧ y , 0

= y , 0⇒ y , 0

A definedness formula may itself include calls to pure methods. For example, if Φ also has m :

(x :int, res:int)x , 0 ∧ div6by(x ) > 5 { true [] then df (m(y) = m(y),Φ) has conjuncts including
y , 0 and div6by(y) > 5.

An expression or formula is considered well-formed if its definedness formula is valid, in addition

to it being swf (see Definition 5.5). To define validity, we need semantics.

3 SEMANTICS OF EXPRESSIONS, FORMULAS, AND PROGRAMS

Recall that we aim to interpret hypothetical correctness judgments by quantifying over all interpre-

tations φ that conform to the hypotheses. To define what it means for φ(m) to conform, we need

semantics of expressions, formulas, and effects—and these depend on the meaning of pure method

9
Note that any method is allowed to read its parameter(s) and write res, but these effects are not supposed to be included in

the specification so the effect for div6by is empty.
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calls. To break this circularity, we define in this section a notion of candidate interpretation, and

define the semantics of formulas and expressions with respect to any candidate interpretation φ.

3.1 Preliminaries

Assume given an infinite set Ref of reference values including a distinguished ‘improper reference’

null. We use o and occasionally p to range over non-null references. A Γ-state is comprised of a

global heap and a store; We refrain from giving a complete concrete representation but instead

describe the interface. The store is a type-respecting assignment of values to the variables in Γ.
Note that if σ is a Γ-state then it is a vars(Γ)-state, where vars drops methods and retains only

variables. Letters σ ,τ ,υ range over states.
There is a distinguished variable, alloc : rgn, updates of which are built into the program

semantics. Code cannot assign alloc; this restriction is imposed by the typing rules (Figure 4). The

semantics of new updates alloc so that in any state it holds the set of all allocated references and

does not contain null. We are generally concerned with contexts Γ that include alloc.
Treating alloc as a program variable, albeit with special semantics and restricted use, helps

streamline the semantic developments and it makes for an expressive assertion language. The main

use of alloc in program proofs is for reasoning about freshness, and for practical purposes it may

be advisable to use special notation for freshness.

We write σ (x ) for the value of variable x in state σ , and Vars(σ ) for the variables of σ (this is

called Dom(σ ) in RLI/II). We write o .f for a non-null reference o paired with field name f (that is,

a heap location), and σ (o .f ) to look up field f of the object referenced by o in the heap. We write

[σ | x : v ] to update variable x to value v , write [σ + x : v ] to extend σ with additional variable x , and
write [[Γ]] for the set of Γ-states. For o a non-null reference that is allocated in σ we write Type(o,σ )
for the class of the object it references, and otherwise Type(o,σ ) is undefined. In contexts where

σ (x ) cannot be null, we abbreviate σ (σ (x ).f ) as σ (x .f ). Write [[T ]]σ for the set of values of type

T in state σ . Thus [[int]]σ = Z and [[K ]]σ = {null} ∪ {o |o ∈ σ (alloc) ∧ Type(o,σ ) = K }. Besides
states, the faulting outcome  is used for runtime errors (null-dereference), and also to signal

precondition violations (described later). These are not considered to be values or states. In RLII,

 is written fault and a notational distinction is made between runtime error and precondition

violation.

As basis for semantics of expressions and formulas, we define the notion of candidate Γ-
interpretation, for a given typing context Γ. A candidate interpretation θ is, roughly, a mapping on

the method names in Γ such that if Γ(m) = (x : T , res : U ) then θ (m) is a function such that for

any T -value t and state σ , θ (m)(σ , t) is a U -value or  . This notion reflects that value-returning

methods are intended to be pure. If Γ(m) = (x : T ) then θ (m) is a function such that for any

T -value t and state σ , θ (m)(σ , t) is a set of states possibly including  . These conditions are made

precise below, by giving θ (m) a dependent type.10

For statesσ ,τ , to express that τ is possible afterσ we say τ succeedsσ , andwriteσ ↪→ τ , provided
that σ (alloc) ⊆ τ (alloc) and σ is compatible with τ in the sense that Type(o,σ ) = Type(o,τ ) for all
o ∈ σ (alloc).

Definition 3.1 (candidate interpretation, partial candidate). For a typing context Γ, a candidate
Γ-interpretation θ is a mapping from the method names in Γ such that

(pure) if Γ(m) = (x : T , res : U ) then θ (m) is a function of type

(σ ∈ [[Γ]]) × [[T ]]σ → ([[U ]]σ ∪ { })

10
We say ‘function’, and use symbol→, for total functions. We use the notation (σ ∈ [[Γ]]) × [[T ]]σ for dependently type

pairs, that is, pairs (σ , v ) such that σ is in [[Γ]] and v is in [[T ]]σ .
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[[E1 ⊕ E2]]θσ = let v1 = [[E1]]θσ in let v2 = [[E2]]θσ in v1 ⊕ v2

[[m(F )]]θσ = let v = [[F ]]θσ in θ (m)(σ , v )
[[{E }]]θσ = let v = [[E ]]θσ in {v }
[[�]]θσ = �

[[G1 ⊗ G2]]θσ = let X1 = [[G1]]θσ in let X2 = [[G2]]θσ in X1 ⊗ X2

[[G‘f ]]θσ = let X = [[G]]θσ in {σ (o .f ) | o ∈ X ∧ o , null ∧ Type(o,σ ) = DeclClass(f )}
if f : K for some K

= let X = [[G]]θσ in
⋃
{σ (o .f ) | o ∈ X ∧ o , null ∧ Type(o,σ ) = DeclClass(f )}

if f : rgn

Fig. 6. Semantics of selected program and region expressions, for state σ and candidate interpretation θ . The
 -strict let-binder is used: ‘let v = X in Y ’ denotes  if X denotes  . Here ⊕ is in {=,+, . . . } and ⊗ is in
{∪,∩, \}. Also, DeclClass(f ) is the class in which f is declared.

(impure) if Γ(m) = (x : T ) then θ (m) is a function of type

(σ ∈ [[Γ]]) × [[T ]]σ → P([[Γ]] ∪ { }) such that σ ↪→ τ for all σ , t ,τ with τ ∈ θ (m)(σ , t)

For method context Φ that is swf in typing context Γ, a candidate Φ-interpretation is just a

candidate (Γ, sigs(Φ))-interpretation.
A partial candidate Φ-interpretation, or just partial candidate, is a θ defined on some but

not necessarily all of the pure methods in Φ, satisfying condition (pure) for each m on which θ is

defined.

Note that a candidate Φ-interpretation is defined on pure methods in Φ and acts on Γ-states. To
avoid confusion, please note that a candidate Γ-interpretation is a mapping on the method names

in dom (Γ) which acts on Γ-states, which are vars(Γ)-states. The term ‘candidate Φ-interpretation’
elides the typing context Γ for Φ; and in that case the interpretation is defined on methods in Φ
acting on Γ-states since for Φ to be swf in Γ implies that Γ is method-free.

Definition 3.2 ((swf) correctness judgment). A correctness judgment takes the form Φ;ψ ⊢Γ C :

P { Q [ε] whereψ is a partial candidate for Φ. The judgment is swf iff Φ is swf in Γ and C ,P ,Q , ε
are all swf in Γ, sigs(Φ). We often elide Γ.11

3.2 Semantics of expressions, formulas, and commands

The denotation of an expression in context Γ ⊢ F : T in candidate Γ-interpretation θ and state σ is

written [[Γ ⊢ F : T ]]θσ and defined straightforwardly. See Figure 6, where we write [[F ]] for short.
Note that

[[Γ ⊢ E : T ]]θ ∈ (σ ∈ [[Γ]]) → [[T ]]σ ∪ { }
The second line in Figure 6 is for application m(F ) of a pure method: evaluate F to get a value v ,
then apply the function θ (m) to the pair (σ , v ).

The semantics is designed to cater for convenient reasoning with regions used as ghost code. In

particular, the semantics of image expression G‘f never faults unless due to method calls in G . For

example, in a state where x is null, the value of {x }‘f is simply the empty set. (See RLI for more

discussion.)

11
In RLII, methods are allowed in Γ in this situation and in subsequent definitions like Definition 5.2. This is a technicality

that facilitates proof of the program linking rule, the premise judgment of which may be applied to sub-traces involving

let-bound methods and intermediate states with extended typing contexts. RLII is extremely careful about typing of such

configurations, at the cost of extra generality of definitions and lemmas such as Definition 4.3 which may be applied to

intermediate configurations. Here we gloss over this uninteresting fine point.
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[[E1 = E2]]θσ = let v1 = [[E1]]θσ in let v2 = [[E2]]θσ in (v1 = v2)

[[x .f = E ]]θσ = if σ (x ) = null then false else let v = [[E ]]θσ in (σ (x .f ) = v )
[[G1 ⊆ G2]]θσ = let X1 = [[G1]]θσ in let X2 = [[G2]]θσ in (X1 ⊆ X2)

[[Γ ⊢ ∀x : int · P ]]θσ =  if [[Γ, x : int ⊢ P ]]θ [σ + x : v ] =  for some v ∈ Z
= true if [[Γ, x : int ⊢ P ]]θ [σ + x : v ] = true for all v ∈ Z
= false otherwise

[[Γ ⊢ ∀x : K ∈G · P ]]θσ =  if [[G]]θσ =  or [[Γ, x : K ⊢ P ]]θ [σ + x : o] =  
for some o in ([[G]]θσ ) \ {null} with Type(o,σ ) = K

= true if [[Γ, x : K ⊢ P ]]θ [σ + x : o] = true
for all o in ([[G]]θσ ) \ {null} with Type(o,σ ) = K

= false otherwise

[[P1 ∧ P2]]θσ = let b1 = [[P1]]θσ in if b1 = false then false else let b2 = [[P2]]θσ in b2

[[P1 ∨ P2]]θσ = let b1 = [[P1]]θσ in if b1 = true then true else let b2 = [[P2]]θσ in b2

[[¬P ]]θσ = let b = [[P ]]θσ in not b

Fig. 7. Formulas: three-valued semantics, [[Γ ⊢ P ]]θσ ∈ {true, false, } where σ ranges over Γ-states. Typing
context is elided in most cases. As in Figure 6, the  -strict let-binder is used.

σ |=θ E1 = E2 iff [[E1]]θσ = [[E2]]θσ

σ |=θ x .f = E iff σ (x ) , null and σ (x .f ) = [[E ]]θσ
σ |=θ G1 ⊆ G2 iff [[G1]]θσ ⊆ [[G2]]θσ

σ |=Γθ ∀x : int · P iff [σ + x : v ] |=Γ,x :int
θ P for all v ∈ Z

σ |=Γθ ∀x : K ∈G · P iff [σ + x : o] |=Γ,x :K
θ P

for all o in ([[G]]θσ ) \ {null} with Type(o,σ ) = K

σ |=θ P1 ∧ P2 iff σ |=θ P1 and σ |=θ P2

σ |=θ ¬P iff σ ̸ |=θ P

Fig. 8. Two-valued semantics of formulas.These clauses hold when σ |=θ df (P ,Φ) (Lemma 5.3).

Using the semantics for expressions, the 3-valued semantics of formulas is defined in Figure 7.

The satisfaction relation |=Γθ is defined by

σ |=Γθ P iff [[P ]]θσ = true (5)

Later we show that when the definedness formulas hold, the usual 2-valued clauses hold for |=Γθ
(see Figure 8 and Lemma 5.3).

Strictly speaking, the semantic definitions go by induction on typing derivations. For clarity we

elide typing contexts when they can be inferred from context. Here is why that is safe to do. The

typing rules admit addition of extra variables, for example, if Γ ⊢ E : T and x < dom (Γ) then Γ, x :

U ⊢ E : T . Furthermore, for Γ, x :U -state σ we have [[Γ, x : U ⊢ E : T ]]θσ = [[Γ ⊢ E : T ]]θ (σ ↾x ).
If φ(m) = θ (m) for all pure methods m , then

σ |=φ P iff σ |=θ P for all σ ,P (6)

because the semantics of formulas does not depend on impure methods.

Implicit coercion. In the semantics of expressions and commands, candidate interpretations are

applied to states with more variables than the ones in scope for method context Φ. For clarity we

implicitly coerce the interpretations to such states, as follows. Suppose Φ is swf in Γ and θ is a

candidate Φ-interpretation. So each θ (m) acts on Γ-states (that is, elements of [[Γ]]). Suppose Γ′ ⊇ Γ,
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declaring additional variables xs . Ifm is pure then for σ ∈ [[Γ′]] define θ (m)(σ , v ) = θ (m)(σ↾xs, v ).
Here σ↾xs has the same heap as σ but the store is defined only on dom (Γ). This coercion is implicitly

used in the semantic clause for m(F ) in Figure 6, and in the transition rules for y := m(z ) in
Figure 9.

For impurem , which returns a state, the coercion is slightly more complicated. Let us write σ + s
for a Γ′-state where s is the valuation of the extra variables xs and σ is a Γ-state. Define

θ (m)(σ + s, v ) = {τ + s | τ ∈ θ (m)(σ , v )} ∪ { |  ∈ θ (m)(σ , v )}

The extra variables remain, unchanged, in the non- case. This coercion is implicitly used in the

transition rules for m(z ) in Figure 9.

Transition semantics. The transition relation depends on a candidate interpretation θ , for calls of

pure and impure methods specified in the method context. The transition relation

θ
7−→ is defined in

Figure 9, for arbitrary candidate interpretation θ .
The transition semantics is defined for configurations of the form ⟨C , σ , µ⟩ where µ is a

method environment, that is, a mapping from method names to bodies of the form (x :T . C ) and
(x :T , res:U .C ). This caters for streamlined notation but requires that we disallow re-declaration of

method names. The transition rules for let use the notation for extension of a mapping; this works

because, by an invariant due to typing, the bound method cannot already be in the environment.

The control state in a configuration can be an extended command, that is, possibly containing

end-markers. The end-marker elet(m) causes m to be removed from the method environment;

ecall(x , . . .) and evar(x , . . .) cause some local variables to be removed from the state. In this article

we gloss over fine points concerning extended commands, in particular typing of intermediate

configurations, for which see RLII. Apropos the rules for sequence, we identify skip;C with C .

The call of a let-bound method m executes the body µ(m) with variables renamed to avoid

clashes with the calling context. We call this an environment call. In case of a pure method the

call takes the form y := m(z ) and there is some extra bookkeeping to assign the final value of res
(or rather, a fresh instance thereof) to y . Note that in addition to the designated variable res, we
use similarly named variables like res′.
We use the term context call for calls to methods that are in the interpretation θ rather than

in the environment µ. For such a pure method call y := m(z ), the transition semantics takes a

step that assigns to y a value that could also be written as [[m(z )]]θσ (see Figure 6). The transition

semantics of a call m(z ), for impure m in θ , takes a single step to a final state (or  ) given by θ (m).
In proofs later, we rely on several straightforward properties of the transition semantics. For

example, if Γ ⊢ C and θ is a candidate interpretation of Γ then for any σ and suitable µ, ⟨C , σ , µ⟩

has at least one successor under

θ
7−→ unless C is skip or a call to an impure method. This can be

checked by inspection of the transition rules. In case of an impure method call m(z ), it is possible
that, even if σ satisfies the precondition, the set θ (m)(σ ,σ (z )) is empty.

For a pure method call y := m(z ) that is a context call, the only effect is to assign y . If it is an
environment call, there may well be other modifications of state because the transition semantics

executes the body like any other command.

4 SEMANTICS OF EFFECTS

This section lays groundwork for defining, in Section 5, correct interpretations and the semantics

of correctness judgments. The key notion, called ‘allowed dependence’, provides a sequentially

composable formulation of dependency for read effects in frame conditions. It is defined using a

notion of ‘agreement’ that also plays a role in the framing of formulas.
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τ ∈ θ (m)(σ ,σ (z ))

⟨m(z ), σ , µ⟩
θ
7−→ ⟨skip, τ , µ⟩

 ∈ θ (m)(σ ,σ (z ))

⟨m(z ), σ , µ⟩
θ
7−→  

θ (m)(σ ,σ (z )) = v v ,  

⟨y := m(z ), σ , µ⟩
θ
7−→ ⟨skip, [σ | y : v ], µ⟩

θ (m)(σ ,σ (z )) =  

⟨y := m(z ), σ , µ⟩
θ
7−→  

o ∈ Fresh(σ ) Fields(K ) = f : T σ1 = New(σ , o,K , default(T ))

⟨x := new K , σ , µ⟩
θ
7−→ ⟨skip, [σ1 | x : o], µ⟩

µ(m) = (x :T .C ) x ′ < Vars(σ ) C ′ = C x
x ′

⟨m(z ), σ , µ⟩
θ
7−→ ⟨C ′; ecall(x ′) , [σ + x ′:σ (z )], µ⟩

µ(m) = (x :T , res:U .C ) x ′ < Vars(σ ) res′ < Vars(σ ) C ′ = C x,res
x ′,res′

⟨y := m(z ), σ , µ⟩
θ
7−→ ⟨C ′; y := res′; ecall(x ′, res′) , [[σ + x ′:σ (z )] + res′: default(U )], µ⟩

⟨let m(x :T ) = B in C , σ , µ⟩
θ
7−→ ⟨C ; elet(m) , σ , [µ +m : (x :T .B )]⟩

⟨let m(x :T ):U = B in C , σ , µ⟩
θ
7−→ ⟨C ; elet(m) , σ , [µ +m : (x :T , res:U .B )]⟩

x ′ < Vars(σ ) C ′ = C x
x ′

⟨var x : T in C , σ , µ⟩
θ
7−→ ⟨C ′; evar(x ′), [σ + x ′: default(T )], µ⟩

⟨evar(x ), σ , µ⟩
θ
7−→ ⟨skip, σ ↾x , µ⟩ ⟨elet(m), σ , µ⟩

θ
7−→ ⟨skip, σ , µ↾m⟩

⟨ecall(x ), σ , µ⟩
θ
7−→ ⟨skip, σ↾x , µ⟩

⟨C , σ , µ⟩
θ
7−→ ⟨C ′, σ ′, µ⟩

⟨C ;D , σ , µ⟩
θ
7−→ ⟨C ′ ;D , σ ′, µ⟩

⟨C , σ , µ⟩
θ
7−→  

⟨C ;D , σ , µ⟩
θ
7−→  

σ (E ) , 0

⟨if E then C else D , σ , µ⟩
θ
7−→ ⟨C , σ , µ⟩

σ (E ) = 0

⟨if E then C else D , σ , µ⟩
θ
7−→ ⟨D , σ , µ⟩

σ (E ) = 0

⟨while E do C , σ , µ⟩
θ
7−→ ⟨skip, σ , µ⟩

σ (E ) , 0

⟨while E do C , σ , µ⟩
θ
7−→ ⟨C ;while E do C , σ , µ⟩

Fig. 9. Transition rules, parameterized by a candidate interpretation θ . New(σ , o,K , v ) extends σ by adding
o to alloc and by mapping o to a K -record with field values v and type K . Requires o < σ (alloc).
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A location is either a variable name x or a heap location
12
comprised of a reference o and field

name f . We write o .f for such pairs. For any state σ , define the set of all locations by

locations(σ ) = Vars(σ ) ∪ {o .f | o ∈ σ (alloc) ∧ f ∈ Fields(Type(o,σ ))}

Define rlocs(σ ,θ , ε), the locations denoted by read effects of ε in σ (using θ ), by

rlocs(σ ,θ , ε) = {x | ε contains rd x } ∪ {o .f | ε contains rdG‘f with o ∈ [[G]]θσ }

For write effects, define wlocs mutatis mutandis. Note that rlocs(σ ,θ , ε) = rlocs(σ ,θ , reads(ε)) and
likewise for wlocs. Here θ is any candidate interpretation of the typing context, left implicit, for ε
and σ .
Write effects constrain what locations may be updated, between an initial and a final state.

Definition 4.1 (allows change, σ→τ |=θ ε). Let effect ε be swf in Γ, let σ and τ be Γ-states and
let θ be a candidate interpretation (for some Φ that is swf in Γ). Say ε allows change from σ to τ
under θ , written σ→τ |=θ ε , iff σ ↪→ τ and

(a) for every y in dom(Γ), either σ (y) = τ (y) or y is in wlocs(σ ,θ , ε)
(b) for every o ∈ σ (alloc) and every f in Fields(Type(o,σ )), either σ (o .f ) = τ (o .f ) or o .f is in

wlocs(σ ,θ , ε).

In (b), region expressions in ε are interpreted in the initial state because frame conditions need

only report writes to fields of pre-existing objects and not freshly allocated objects. Define the

written, pre-existing locations by

written(σ ,τ ) = {x | σ (x ) , τ (x )} ∪ {o .f | o .f ∈ locations(σ ) ∧ σ (o .f ) , τ (o .f )}

Then σ→τ |=θ ε iff σ ↪→ τ and written(σ ,τ ) ⊆ wlocs(σ ,θ , ε).

Read effects and allowed dependence. Read effects constrain what locations the outcome of a

computation can depend on. Dependency is expressed by considering two initial states that agree

on the set of locations deemed readable, though they may differ arbitrarily on other locations.

Agreement between a pair of states needs to take into account variation in allocation, as the relevant

pointer structure in the two states may be isomorphic but involve differently chosen references.

Let π range over partial bijections on Ref \ {null}. Write π (p) = p ′ to express that π is defined

on p and has value p ′. A refperm from σ to σ ′ is partial bijection π such that

• dom(π ) ⊆ σ (alloc) and rng (π ) ⊆ σ ′(alloc)
• π (p) = p ′ implies Type(p,σ ) = Type(p ′,σ ′) for all p, p ′

Define p
π
∼ p ′ to mean π (p) = p ′ or p = null = p ′. Extend

π
∼ to a relation on integers by i

π
∼ j

iff i = j . For reference sets X ,Y , define X
π
∼ Y iff π restricts to a bijection between X and Y .

The image of refperm π on location set W is written π (W ) and defined for variables and heap

locations by

x ∈ π (W ) iff x ∈W o .f ∈ π (W ) iff (π−1(o)).f ∈W (7)

In words: variables map to themselves, and a heap location p .f is transformed by applying π to the

reference p.

Definition 4.2 (agreement on a location set, Lagree). For a set W of locations, and π a refperm

from σ to σ ′, define

Lagree(σ ,σ ′,π ,W ) iff ∀x ∈W · σ (x )
π
∼ σ ′(x ) ∧

∀(o .f ) ∈W · o ∈ dom(π ) ∧ σ (o .f )
π
∼ σ ′(π (o).f )

12
In RLI/II the term ‘location’ is used differently: it means heap location.
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As noted earlier, an important example of a location set is that denoted by a read effect. We often

instantiate W by rlocs(. . .), as in the following key definition of what it means for two states to

agree on the locations denoted by a read effect.

Definition 4.3 (agreement on read effects, Agree). Let ε be an effect that is swf in Γ. Consider Γ-
states σ ,σ ′. Let π be a partial bijection. Let θ be a candidate interpretation (for some Φ that is swf in

Γ). Say σ and σ ′ agree on ε modulo π , written Agree(σ ,σ ′, ε,π ,θ ), iff Lagree(σ ,σ ′,π , rlocs(σ ,θ , ε)).

As an abbreviation, define Agree(σ ,σ ′, ε,θ ) = Agree(σ ,σ ′, ε,π ,θ ) where π is the identity on

σ (alloc) ∩ σ ′(alloc).
Agreement on some rdG‘f (modulo π ) implies that σ (G) ⊆ dom (π ). However, it is important

to note that agreement on rdG‘f does not imply [[G]]θσ
π
∼ [[G]]θσ

′
. For example, let G be the

singleton {x } of reference variable x and consider states where σ (x ) = o, σ ′(x ) = o ′, σ (o .f )
π
∼

σ ′(π (o).f ) but π (o) , o ′.
Agreement on location sets has a kind of symmetry:

Lagree(σ ,σ ′,π ,W ) implies Lagree(σ ′,σ ,π−1,π (W )) for all σ ,σ ′,π ,W (8)

By contrast, Definition 4.3 of agreement on read effects is left-skewed, in the sense that it refers

to the locations denoted by effects interpreted in the left state. So agreement on read effects does

not in general exhibit a symmetry property like (8). For example, consider these states, written in

suggestive notation:

σ = [alloc:{o, p}, r :{o}, o .f :3, p .f :4] σ ′ = [alloc:{o, p}, r :{o, p}, o .f :3, p .f :5] (9)

We have Agree(σ ,σ ′, id , rd r ‘f ), with id the identity relation on {o, p}, but unfortunately we do not
have Agree(σ ′,σ , id , rd r ‘f ). The asymmetry makes working with agreement somewhat delicate.

At a higher level, there will be symmetry, for two reasons. One has to do with the notion of

framed reads, to which we return in Section 6.3. Roughly, it means that if rd r ‘f is in the effects

then so is rd r . The other reason is that the semantics of correctness judgments, defined in the

following Section 5, imposes a condition on all pairs of executions. The condition is a property

parameterized by states σ ,σ ′,τ ,τ ′. Intuitively, the condition says that if σ and σ ′ agree on given

read effects ε , then τ and τ ′ agree on any preexisting locations that were written as well as on any

fresh locations. In uses of the condition, σ ,σ ′ are initial states and τ ,τ ′ are the corresponding final

states resulting from executions of a command or applications of a candidate interpretation. First,

define

freshRefs(σ ,τ ) = τ (alloc) \ σ (alloc)
freshLocs(σ ,τ ) = {p .f |p ∈ freshRefs(σ ,τ ) ∧ f ∈ Fields(Type(p,τ ))}

Definition 4.4 (allowed dependence, σ ,σ ′⇒τ ,τ ′ |=θ ε). We say ε allows dependence from σ ,σ ′

to τ ,τ ′, and write σ ,σ ′⇒τ ,τ ′ |=θ ε , iff for all π if Agree(σ ,σ ′, ε,π ,θ ) then there is ρ ⊇ π with

ρ(freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )).

Note that the first conjunct is equivalent to ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and this is the

form we often use in proofs.

Like Definition 4.3, this definition is left-skewed, both because ε is interpreted in the left state

σ and because the fresh and written locations are determined by the left transition σ to τ . The
asymmetry is tamed, in later sections, through the use of framed reads and application of the

condition to all pairs of executions.
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5 SEMANTICS OF CORRECTNESS JUDGMENTS

This section completes the semantic definitions for program correctness judgments.

Recall that for syntactic substitution we use the notation Px
E . In addition, for clarity we also use

substitution notation for values, even references—although strictly speaking the syntax does not

include reference literals.
13
This is only done in certain contexts, for which we define the following

abbreviations. If Γ, x : T ⊢ P and σ ∈ [[Γ]] and v is a value in [[T ]]σ , we write

σ |=Γθ Px
v to abbreviate [σ + x : v ] |=Γ,x :T

θ P

If ε contains neither wr x nor rd x then σ→τ |=θ ε
x
v abbreviates [σ + x : v ]→[τ + x : v ] |=θ ε . Finally,

wlocs(σ ,θ , εxv ) abbreviates wlocs([σ + x : v ],θ , ε).
A correct candidate interpretation, called context interpretation, is one that satisfies its specifica-

tions.

Definition 5.1 (context interpretation). Let Φ be swf in Γ and let φ be a candidate Φ-interpretation.
Say φ is a Φ-interpretation iff for each m in dom (Φ)
• If m has specification (x :T , res:U )P { Q [ε], then for any σ ∈ [[Γ]] and v ∈ [[T ]]σ ,
(a) φ(m)(σ , v ) =  iff σ ̸ |=φ Px

v

(b) if σ |=φ Px
v then letting w = φ(m)(σ , v ) we have σ |=φ Qx,res

v,w

(c) if σ |=φ Px
v then we have the following: for any σ ′ ∈ [[Γ]], v ′ ∈ [[T ]]σ ′ with σ ′ |=φ Px

v ′ ,

and any refperm π from σ to σ ′, letting w = φ(m)(σ , v ) and w ′ = φ(m)(σ ′, v ′):

if Agree([σ + x : v ], [σ ′ + x : v ′], (ε, rd x ),π ,φ) then w
π
∼ w ′

• If m has specification (x :T )P { Q [ε] then for any σ ∈ [[Γ]] and v ∈ [[T ]]σ ,
(d)  ∈ φ(m)(σ , v ) iff σ ̸ |=φ Px

v , and also  ∈ φ(m)(σ , v ) implies φ(m)(σ , v ) = { }.
(e) For all τ ∈ φ(m)(σ , v ), if σ |=φ Px

v then τ |=φ Qx
v and σ→τ |=φ ε

x
v

(f) For all τ ,σ ′,τ ′, v ′, if
– σ |=φ Px

v ,

– σ ′ |=φ Px
v ′ ,

– τ ∈ φ(m)(σ , v ), and
– τ ′ ∈ φ(m)(σ ′, v ′)
then [σ + x : v ], [σ ′ + x : v ′]⇒τ ,τ ′ |=φ (ε, rd x ).

We refer to the second part of (d), that is,  ∈ φ(m)(σ , v ) implies φ(m)(σ , v ) = { }, as fault
determinacy because it says faulting is mutually exclusive with non-fault outcomes.

We use the notation for allowed dependence in the read effect condition (f). However, since the

read effect of a pure method refers only to final values, not states, we cannot use that notation

in (c). Apropos (a) and (d), the negated satisfaction is equivalent to saying [[P ]]φ [σ + x : v ] is  or

false , as per (5). Apropos (c), (e), and (f), recall that a swf specification does not include wr x or

rd x for its parameter x , so it is safe to use the substitution abbreviations.
14
Note that the definition

makes sense even if pure m occurs in its own specification, or in the specification of some other

pure m ′ in Φ for which the specification refers to m .

Recall from Section 1 that a correctness judgment includes a partial candidateψ that interprets

zero or more of the pure methods in the method context Φ of the judgment. The judgment makes a

claim about program executions (using transition semantics, Figure 9), which rely on a candidate

interpretation φ defined on all methods, pure and impure, of Φ. Validity of a judgment is in terms

13
We do not want literals in formulas, as otherwise we would lose the agreement lemmas or else need to include literal

values in read effects. For clarity, we refrain from using reference literals (other than null) anywhere.

14
Enabling these abbreviations is the main reason we decided to omit wr x and rd x from specifications and instead add the

effects explicitly in the method call and method linking proof rules. Note that we do not use a substitution abbreviation for

agreement, which involves two parallel states.
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of those φs that are Φ-interpretations (Definition 5.1). To define validity, the last ingredient is to

connect the partial candidate ψ in the judgment with the context interpretations φ over which

the judgment quantifies. We say φ extends ψ if φ(m) = ψ (m) for every m on whichψ is defined.

Representing maps by their graphs, this amounts toψ ⊆ φ.

Definition 5.2 (valid judgment). A swf correctness judgment Φ;ψ ⊢Γ C : P { Q [ε] is valid iff

the following conditions hold for all Φ-interpretations φ such that φ extends ψ , and all states σ

such that σ |=
Γ,sigs(Φ)
φ P .

(Safety) It is not the case that ⟨C , σ , _⟩
φ
7−→∗  .

(Post) τ |=φ Q for every τ with ⟨C , σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩

(Write) σ→τ |=φ ε for every τ with ⟨C , σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩

(Read) For all τ ,σ ′,τ ′, if ⟨C , σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩, ⟨C , σ ′, _⟩

φ
7−→∗ ⟨skip, τ ′, _⟩, and σ ′ |=φ P

then σ ,σ ′⇒τ ,τ ′ |=φ ε .

Because the judgment is swf, Γ is method-free hence the only relevant method environment is

the empty one, written _ . In (Post) and (Read) we omit Γ, sigs(Φ) from |=φ . In (Read), note that the

final states should agree on any location that is written, and on any freshly allocated locations. The

significance of this is evident, for example, in the soundness proofs for sequence and while. As

anticipated in the discussion following (8), note that if ⟨C , σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩ and ⟨C , σ ′, _⟩

φ
7−→∗

⟨skip, τ ′, _⟩ as in the antecedent of (Read), and the initial states satisfy the precondition P , then

(Read) can also be instantiated with the states swapped, to obtain σ ′,σ⇒τ ′,τ |=φ ε .
It is possible for the specification of a pure method to be unsatisfiable, and thus for there to

be no Φ-interpretations. If the partial candidate interpretationψ is defined for some m but does

not satisfy Φ(m) then there are no Φ-interpretations that extend ψ . In both cases, the judgment

is semantically valid, though of no use because the vacuous hypothesis cannot be discharged by

linking with any method implementations. As remarked in Section 1.3, for practical purposes one

would want to check early for non-satisfyingψ (m), and for unsatisfiable specifications.

For impure methods, in case σ satisfies the precondition and no state satisfies the postcondition

the code can diverge. As ours is a partial correctness logic, such an implementation can be correctly

linked. In this situation a candidate interpretation φ(m) can have φ(m)(σ , v ) = �.

Healthiness and well-formed correctness judgments. The definitions up to this point apply even

if pure methods are called outside their precondition. However, a specification or correctness

judgment that involves a pure method called outside its precondition is unlikely to capture an

intuitively meaningful requirement. For understandable proof rules, and to stay within FOL for

assertions, we will disallow such specifications and correctness judgments. That is the purpose of

Definition 5.5 to follow.

Lemma 5.3 (two-valued semantics of formulas). (a) If φ is a Φ-interpretation and σ |=φ
df (P ,Φ) then [[P ]]φσ is not  . (b) For any σ and any Φ-interpretation φ, if σ |=φ df (P ,Φ) then the

condition σ |=φ P satisfies the usual defining clause, see Figure 8.

Proof. For part (a), a similar lemma for expressions is needed as follows.

Lemma A. If φ is a Φ-interpretation and σ |=φ df (F ,Φ) then [[F ]]φσ is not  .
The proof of lemma A goes by (structural) induction on F , using the definitions in Figures 5

and 6. For the base cases x , c, null, �, we have df (F ,Φ) = true. And, [[x ]]φσ = σ (x ), [[c]]φσ = c,
[[null]]φσ = null and [[�]]φσ = � (so none of them is  ).
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df (m(F ),Φ) = df (F ,Φ) ∧ Px
F , where Φ(m) = (x : T , res : U )P { Q [ε]. Thus σ |=φ df (F ,Φ),

hence by induction hypothesis, [[F ]]φσ is not  . Let v = [[F ]]φσ , so [[m(F )]]φσ = φ(m)(σ , v ). We

have σ |=φ Px
F , so by Definition 5.1 (a), φ(m)(σ , v ) is not  .

The other cases in the proof of the Lemma A are straightforward.

Having proved Lemma A, we proceed to show part (a), that is, σ |=φ df (P ,Φ) implies [[P ]]φσ ,  .
The proof goes by induction on P , using the definitions in Figures 5 and 7.

For base case x .f = E , the points-to relation, we have df (x .f = E ,Φ) = (x , null⇒ df (E ,Φ)).
Thus σ (x ) , null ⇒ σ |=φ df (E ,Φ). By Lemma A, if σ (x ) , null, then [[E ]]φσ is not  . On the

other hand, by semantics, if σ (x ) = null then [[x .f = E ]]φσ is false . Otherwise, let v = [[E ]]φσ
then [[x .f = E ]]φσ is true or false according to whether σ (x .f ) = v , and not  .

Case Γ ⊢ ∀x : K ∈ G · P .We have df (∀x : K ∈ G · P ,Φ) = df (G ,Φ)∧(∀x : K ∈ G · df (P ,Φ)).
Thus σ |=φ df (G ,Φ). By Lemma A, [[G]]φσ is not  . Also, we have [σ + x : o] |=φ df (P ,Φ), for all
o ∈ ([[G]]φσ ) \ {null} with Type(o,σ ) = K . By induction hypothesis, [[P ]]φ [σ + x : o] is not  , for
all o ∈ ([[G]]φσ ) \ {null} with Type(o,σ ) = K . So [[Γ ⊢ ∀x : K ∈ G · P ]]φσ is not  .
Case P1 ∧ P2. We have df (P1 ∧ P2,Φ) = df (P1,Φ) ∧ (P1 ⇒ df (P2,Φ)). Thus σ |=φ df (P1,Φ)

and σ |=φ (P1 ⇒ df (P2,Φ)). By induction hypothesis on P1, [[P1]]φσ ,  . If [[P1]]φσ is false , then
[[P1 ∧ P2]]φσ = false , and thus not  . If [[P1]]φσ is true , then σ |=φ P1. Hence σ |=φ df (P2,Φ) and
by the induction hypothesis on P2, [[P2]]φσ ,  . Thus [[P1 ∧ P2]]φσ = [[P2]]φσ , hence not  .
For part (b) of the lemma, a straightforward case analysis shows that when the definedness

condition holds, the clause in Figure 8 is equivalent to the definition in Figure 7. □

Definition 5.4 ( Φ;ψ -valid formula). Let Γ be a typing context and let Φ be a specification context

that is swf in Γ. Letψ be a partial candidate for Φ. Let P be a formula that is swf in Γ, sigs(Φ). Then
P is Φ;ψ -valid, written Φ;ψ |= P , if and only if σ |=φ P for all states σ and all Φ-interpretations φ
that extendψ .

Note that φ includes impure methods if Φ does, but they have no bearing on validity of the

formula, cf. (6).
The term ‘Φ;ψ -valid’ elides dependency on Γ, but the relevant typing context should always be

clear. If Φ contains an unsatisfiable specification, orψ (m) does not satisfy Φ(m) for some m , then

every P is Φ;ψ -valid, as there are no Φ-interpretations.
In a VC-gen setting, the proof obligations include definedness conditions on the specifications.

In the logic, that is manifest by the stipulation that proof rules are only instantiated with healthy

judgments.

Definition 5.5 (healthy, well-formed). Let Γ and Φ satisfy the conditions of Definition 5.4, andψ
be a partial candidate for Φ. A formula P that is swf is healthy forψ iff df (P ,Φ) is Φ;ψ -valid. A
swf impure method specification (x :T )P { Q [η] is healthy (with respect to Γ,Φ,ψ ) iff the three

formulas df (P ,Φ), df (Q ,Φ), and P ⇒ df (η,Φ) are Φ;ψ -valid. A swf pure method specification

(x :T , res:U )P { Q [η] is healthy if df (P ,Φ), P ⇒ df (Q ,Φ), and P ⇒ df (η,Φ) are Φ;ψ -valid. A
swf correctness judgment Φ;ψ ⊢Γ C : P { Q [η] is healthy iff the specifications in Φ are healthy

forψ and

• the formulas df (P ,Φ) and P ⇒ df (η,Φ) are Φ;ψ -valid, and
• either df (Q ,Φ) is Φ;ψ -valid or η has no writes other than wr res and P ⇒ df (Q ,Φ) is
Φ;ψ -valid.

The term well-formed means swf and healthy.

Note that for impure methods, and for correctness judgments, the definition requires the validity

of df (Q ,Φ) rather than the weaker condition P ⇒ df (Q ,Φ). In the case of a pure method, the pre

ACM Transactions on Programming Languages and Systems, Vol. 00, No. 00, Article 00. Publication date: March 2018.



00:26 A. Banerjee, D. A. Naumann, and M. Nikouei

and post conditions are applied to the same state, usually one that satisfies the precondition P .

But for impure methods and for correctness judgments, the post-state is typically not the same

as the pre-state. In reasoning about Q in the post state, we cannot rely on P holding, so the

weaker condition P ⇒ df (Q ,Φ) would be inadequate. The last part of the definition is to cater to

judgments for pure methods, making the condition on judgments consistent with the condition on

specifications in accord with Definition 2.1.

The definitions to this point are intricate but elementary. But by contrast with axiomatic seman-

tics, correctness is directly grounded in a conventional operational semantics. The one unconven-

tional element is that transition semantics depends on a candidate interpretation of the method

context. The ultimate confirmation that we are reasoning about program behavior is soundness of

the linking rule, which can be used to discharge all hypotheses.

Remark on valid formulas. Definition 5.4 says that Φ;ψ |= P if σ |=φ P for all states σ (and all

Φ-interpretations φ that extendψ ). Here and throughout the paper, states are required to be type

correct and self-contained in the sense that there are no dangling references; moreover the value of

alloc is exactly the set of allocated references in the heap. So, in addition to first-order tautologies

and consequences of Φ, there are some valid formulas concerning alloc, such as x ∈ alloc∪{null} for
any reference type variable x in scope. Also ∀x : K ∈ G · x .f ∈ alloc∪{null}∧x .g ⊆ alloc∪{null}
for reference (resp. region) typed field f (resp. g).

6 SUBEFFECTS, FRAMING OF FORMULAS, AND SEPARATOR FORMULAS

The proof system for correctness judgments relies on several concepts which are covered in this

section. Section 6.1 is about the subeffect judgment, which allows to weaken an effect or change

the way it is expressed. Section 6.2 covers several notions. The framing judgment delimits the read

effect of a formula. Separator formulas play a key role in the Frame rule for programs. Separator

formulas are also used in the notion of immunity which enables something like the Frame rule

for effects, and appears in the proof rules for command sequences and loops. Immunity, separator

formulas, and the framing judgment are adapted from RLI. Section 6.3 defines ‘framed reads’, a

new notion which plays a role similar to immunity but for read effects. Technically, framed reads

restores symmetry to allowed dependence.

Concerning the subeffect and framing judgments, we start with their semantics, which is

amenable to direct checking using an SMT solver. Then proof rules are given for deriving the

judgments syntactically (following RLI). In turn, these rules refer to context-validity of first-order

formulas, cf. Definition 5.4.

6.1 Subeffect

For an effect of the form wrG‘f there is the possibility of more liberal effect wrH ‘f in case

G ⊆ H . Since region expressions are state-dependent and context-interpretation dependent, so are

inclusions like the above.

For method context Φ and partial candidateψ for Φ, we define the subeffect judgment to have

the form

P ;Φ;ψ ⊢ ε1 ≤ ε2

Such a judgment is healthy iff df (P ,Φ), P ⇒ df (ε1,Φ) and P ⇒ df (ε2,Φ) are all Φ;ψ -valid. A
healthy subeffect judgment is intended to mean that under precondition P , the ‘bigger’ effect ε2 is

more permissive than ε1. Impure methods may be present in Φ but those are irrelevant here.

Definition 6.1 (valid subeffect). Awell-formed subeffect judgment is valid, written P ;Φ;ψ |= ε ≤
η, if for all Φ-interpretations φ that extendψ , and all states σ with σ |=φ P , we have rlocs(σ ,φ, ε) ⊆
rlocs(σ ,φ,η) and wlocs(σ ,φ, ε) ⊆ wlocs(σ ,φ,η).
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G1 ⊆ G2;Φ;ψ ⊢ wrG1‘f ≤ wrG2‘f G1 ⊆ G2;Φ;ψ ⊢ rdG1‘f ≤ rdG2‘f

true ;Φ;ψ ⊢ wrG1‘f ,G2‘f ≶ wr (G1 ∪G2)‘f true ;Φ;ψ ⊢ ε ≤ ε,η

true ;Φ;ψ ⊢ rdG1‘f ,G2‘f ≶ rd (G1 ∪G2)‘f
P ;Φ;ψ ⊢ ε1 ≤ ε2 P ;Φ;ψ ⊢ ε2 ≤ ε3

P ;Φ;ψ ⊢ ε1 ≤ ε3

P ;Φ;ψ ⊢ ε1 ≤ ε2

P ;Φ;ψ ⊢ ε1,η ≤ ε2,η

Φ;ψ |= P ′⇒ P P ;Φ;ψ ⊢ ε ≤ η

P ′;Φ;ψ ⊢ ε ≤ η

Fig. 10. Selected rules for well-formed subeffect judgments. We write ≶ to abbreviate two inclusion rules.

Lemma 6.2 (subeffects allow change and dependency). If P ;Φ;ψ |= ε ≤ η then the following

hold for all Φ-interpretations φ that extendψ and states σ ,σ ′,τ ,τ ′ such that σ |=φ P and σ ′ |=φ P :

(allowed change) σ→τ |=φ ε implies σ→τ |=φ η.
(agreement) Agree(σ ,σ ′,η,π ,φ) implies Agree(σ ,σ ′, ε,π ,φ)
(allowed dependency) σ ,σ ′⇒τ ,τ ′ |=φ ε implies σ ,σ ′⇒τ ,τ ′ |=φ η

The first two parts are immediate from definitions. To show the third part, (allowed depen-

dency), suppose σ ,σ ′⇒τ ,τ ′ |=φ ε and consider any σ ,σ ′,τ ,τ ′,π such that Agree(σ ,σ ′,η,π ,φ). By
(agreement) we have Agree(σ ,σ ′, ε,π ,φ) so we can use σ ,σ ′⇒τ ,τ ′ |=φ ε to get the conclusion that

there is ρ ⊇ π such that ρ(freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪
written(σ ,τ )).

Figure 10 provide rules for subeffecting, to be applied to well-formed subeffect judgments.

Lemma 6.3 (subeffect soundness). If P ;Φ;ψ ⊢ ε ≤ η is derivable by rules in Figure 10 then the

judgment is valid.

The proof goes by showing that each rule is sound, and is straightforward.

Recall that for clarity we often abuse notation and treat compound effects as sets. As a conse-

quence, it is immediate to derive judgments of the forms P ;Φ;ψ ⊢ ε, ε ≤ ε and P ;Φ;ψ ⊢ ε,η ≤ η, ε .
We get true ;Φ;ψ ⊢ ε ≤ ε by instantiating true ;Φ;ψ ⊢ ε ≤ ε,η with η as the empty effect.

6.2 Framing and separator formulas

The framing judgment has the form

P ;Φ;ψ ⊢Γ η frm Q

and is swf under evident conditions. It means that in P -states, the formula Q depends only on the

part of the state delimited by η. The judgment is healthy iff the formulas df (P ,Φ), P ⇒ df (η,Φ),
and P ⇒ df (Q ,Φ) are Φ;ψ -valid. Often we elide the context Γ in a framing judgment, as it is

usually clear from context.

Definition 6.4 (frame validity). A well-formed framing judgment is valid, written P ;Φ;ψ |=Γ

η frm Q , iff for allΦ-interpretationsφ that extendψ , all Γ-statesσ ,τ and refpermsπ , ifAgree(σ ,τ ,η,π ,φ),
and σ |=Γφ P ∧Q , then τ |=Γφ Q .

In this article, it would suffice to define frame validity in terms of the identity refperm on the

initial references σ (alloc), as that suffices for its use in the frame rule. The extra generality has
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rdG1‘f ·/. wrG2‘g = if f ≡ g or f ≡ any or g ≡ any then G1 #G2 else true
rd y ·/. wr x = if x ≡ y then false else true
δ ·/. ε = true for all other pairs of atomic effects

δ ·/. ε = true in case δ or ε is empty

(ε,δ ) ·/. η = (ε ·/. η) ∧ (δ ·/. η)
δ ·/. (ε,η) = (δ ·/. ε) ∧ (δ ·/. η)

Fig. 11. The separator function ·/. is defined by recursion on effects.

ftpt(x ,Φ) = rd x ftpt(E = E ′,Φ) = ftpt(E ,Φ), ftpt(E ′,Φ)
ftpt(G‘f ,Φ) = rdG‘f , ftpt(G ,Φ) ftpt(G1 ⊆ G2,Φ) = ftpt(G1,Φ), ftpt(G2,Φ)
ftpt(�,Φ) = � ftpt(x .f = F ,Φ) = rd x , x .f , ftpt(F ,Φ)
ftpt({E },Φ) = ftpt(E ,Φ)
ftpt(G1 ⊙ G2,Φ) = ftpt(G1,Φ), ftpt(G2,Φ) for ⊙ in {∪ ,∩ , \}
ftpt(m(F ),Φ) = reads(εxF ), ftpt(F ,Φ) for Φ(m) = (x : T , res : U )P { Q [ε]

Fig. 12. Footprints of region expressions and atomic assertions well-formed in Φ.

little cost and is convenient because we need the general form of agreement in order to formulate

quasi-determinacy (Section A.1). It is also useful in relational logic [7].

A verifier can check framing judgments in terms of the validity property (see Sec. 10 and [53]),

but our logic includes rules to derive framing judgments. A basic rule allows to infer, for atomic

formula P , the judgment true ;Φ;ψ ⊢ ftpt(P ,Φ) frm P concerning a precise footprint computed by

function ftpt which is defined in Figure 12. In the Figure, notation εxF means syntactic substitution.

Lemma 6.5 (footprint agreement). For any states, σ ,σ ′, for any expression F , for any refperm

π from σ to σ ′, for any method context Φ, and for any Φ-interpretation φ, suppose df (F ,Φ) is valid
and Agree(σ ,σ ′, ftpt(F ,Φ),π ,φ). Then [[F ]]φσ

π
∼ [[F ]]φσ

′
.

Separator formulas and immunity. The point of establishing P ;Φ;ψ ⊢ η frm Q is that code that

writes outside η cannot falsifyQ . This is expressed in the frame rule (Figure 14) by computing, from

the frame η ofQ and the frame condition ε of the code, a separator formulawhich is a conjunction

of region disjointness formulas describing states in which writes allowed by ε cannot affect the
value of a formula with read effect η. There is a related notion for effects, called immunity, which

enables a sort of framing of effects that is embodied in the proof rules for sequential composition

and for while loops.

For any η, ε the separator formula η ·/. ε is defined in Figure 11 using function ·/. which recurses

on effects. The most interesting case is the first line: rdG‘f ·/. wrH ‘f is the disjointness formula

G #H . (Throughout the paper, ≡ means syntactic identity.) We use the data group any to abstract

from all field names, so rdG‘any ·/. wrH ‘f is G # H for any f . Writes on the left and reads on

the right are ignored, so η ·/. ε is the same as reads(η) ·/. writes(ε). Note that G # H means the

intersection of the regions contains at most null, which is not an allocated reference.

One can show by structural induction on effects that for any σ and any Φ-interpretation φ:

σ |=φ η ·/. ε iff rlocs(σ ,φ,η) ∩ wlocs(σ ,φ, ε) = � .

The key property of a separator is to establish the agreement to which frame validity refers.

Lemma 6.6 (separator agreement). Consider any effects η and ε . Suppose σ→τ |=ψ ε and
σ |=ψ η ·/. ε . Then Agree(σ ,τ ,η, id ,ψ ), where id is the identity on σ (alloc).
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FrmFtpt

P is atomic

true ;Φ ⊢ ftpt(P ,Φ) frm P
FrmFtptNeg

P is atomic

true ;Φ ⊢ ftpt(P ,Φ) frm ¬P

FrmDisj

P ⊢ ε frm Q1 P ⊢ ε frm Q2

P ⊢ ε frm Q1 ∨Q2

FrmConj

P ⊢ ε frm Q1 P ∧Q1 ⊢ ε frm Q2

P ⊢ ε frm Q1 ∧Q2

Frm∀int
P ⊢Γ,x :int ε, rd x frm Q

P ⊢Γ ε frm ∀x : int · Q

Frm∀ P ;Φ;ψ ⊢ ftpt(G ,Φ) ≤ ε P ∧ x ∈ G ;Φ;ψ ⊢Γ,x :K ε, rd x frm Q

P ;Φ;ψ ⊢Γ ε frm ∀x : K ∈ G · Q

FrmEq

Φ;ψ |= Q1 ⇔ Q2 P ;Φ;ψ ⊢ ε frm Q1

P ;Φ;ψ ⊢ ε frm Q2

FrmProjCtx

P ∧Q ⊢ ε frm Q

P ⊢ ε frm Q

FrmSub

R;Φ;ψ ⊢ ε frm Q R;Φ;ψ |= ε ≤ ε ′ Φ;ψ |= P ⇒ R

P ;Φ;ψ ⊢ ε ′ frm Q

Fig. 13. Rules for the framing judgment. Typing context Γ is elided in rules where the context is the same in
every judgment of the rule. Context Φ, and Φ-interpretationψ , are elided in rules where they are the same.

The frame rule relies on separation to allow an assertion to be transferred from one point

in control flow to a later one. The proof rules for sequence and While allow a write effect to be

transferred, under a suitable notion of separation called immunity. We adapt the notion of immunity

from RLI, simply by including the context for pure methods.

Definition 6.7 (P ;Φ;ψ/ε-immune). Region expression G is said to be immune from ε under
P ,Φ,ψ , written P ;Φ;ψ/ε-immune, iff this formula is Φ;ψ -valid:

P ⇒ ftpt(G ,Φ) ·/. ε

Effect η is P ,Φ,ψ/ε-immune provided that for all G , f such that wrG‘f or rdG‘f occurs in η, it is
the case that G is P ,Φ,ψ/ε-immune. □

For example, wr x and rd x are true ;Φ;ψ/wr x -immune vacuously. On the other hand, wr {x }‘f
is not true ;Φ;ψ/wr x -immune because the region expression {x } in wr {x }‘f is not: ftpt({x },Φ) ·/.
wr x = rd x ·/. wr x = false . In contrast, wr {x }‘f is true ;Φ;ψ/ε-immune provided wr x is not in ε .

Lemma 6.8. Let G be P ,Φ,ψ/ε-immune and let φ be a Φ-interpretation that extendsψ . Then for

any σ ,σ ′ such that σ→σ ′ |=φ ε and σ |=φ P we have [[G]]φσ = [[G]]φσ
′
.

Lemma 6.9. Let η be P ,Φ,ψ/ε-immune and let φ be a Φ-interpretation that extends ψ . Then
for any σ ,σ ′ such that σ→σ ′ |=φ ε and σ |=φ P we have rlocs(σ ,φ,η) = rlocs(σ ′,φ,η) and
wlocs(σ ,φ,η) = wlocs(σ ′,φ,η).

Framing rules. Figure 13 specifies (mostly) syntax-directed rules for the framing judgment

P ;Φ;ψ ⊢ ε frm Q . The ftpt function is used for atomic formulas. For non-atomic formulas there are

syntax-directed rules, for example, the rule for conjunction allows to infer P ;Φ;ψ ⊢ ε frm Q1 ∧Q2
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from P ;Φ;ψ ⊢ ε frm Q1 and P ∧Q1;Φ;ψ ⊢ ε frm Q2. There are also subsidiary rules for subsump-

tion of effects and for logical manipulation of P . The latter means that P ;Φ;ψ ⊢ ε frm Q may be

inferred from R;Φ;ψ ⊢ ε frm Q if Φ;ψ |= P ⇒ R. These rules are adapted in a straightforward

way from RLI.

As it happens, the framing rules preserve well-formedness, so it is enough to say the axioms

must be instantiated by well-formed judgments. But later in connection with correctness judgments

we require not only the premises but also the conclusion of a rule instance to be well-formed

judgments.

Lemma 6.10 (frame soundness). Every derivable framing judgment is valid.

The proof is by induction on derivations, using soundness of the rules. Soundness of the rules is

proved using using Lemmas 6.3 and 6.5.

6.3 Framed reads

An effect ε is said to have framed reads, in method context Φ, provided that for every rdG‘f in ε ,
its footprint ftpt(G ,Φ) is in ε . For example, with r :rgn the effect rd r ‘f does not have framed reads,

but it is a subeffect of rd r ‘f , rd r which does.

In this article, the property of having framed reads is important for soundness of the proof rules

for sequence and iteration: it allows transfer of a read effect from one control point to another,

which hinges critically on symmetry of allowed dependence. It seems advisable for most judgments

and specifications to have framed reads, but not all, as discussed later in connection with the proof

rule for sequence. We prove key properties of effects with framed reads and then give examples

showing the necessity of framed reads for these properties.

If the frame conditions of pure methods in Φ have framed reads then ftpt(F ,Φ) has framed reads,

for any expression F . This carries over to framing judgments for formulas derivable by the rules in

Figure 13, with the exception of some uses of the subeffect rule.

For ε that has framed reads, if Agree(σ ,σ ′, ε,π ,θ ) then [[G]]θσ
π
∼ [[G]]θσ

′
for any rdG‘f in ε

(by Lemma 6.5). Two additional properties are important. First, although agreement is defined in

an asymmetric way, referring to the left state for interpretation of the readable locations, a kind of

symmetry holds in case of framed reads.

Lemma 6.11 (agreement symmetry). Let Φ be a method context and φ be a Φ-interpretation.
Suppose ε has framed reads and df (ε,Φ) is Φ;φ-valid. Consider any states σ ,σ ′ and any refperm π
such that Agree(σ ,σ ′, ε,π ,φ). Then

(a) rlocs(σ ′,φ, ε) = π (rlocs(σ ,φ, ε)),
(b) Agree(σ ′,σ , ε,π−1,φ).

Proof. (a) For variables the equality follows immediately by definition of rlocs and definition (7).

For heap locations the argument is by mutual inclusion. To show rlocs(σ ′,φ, ε) ⊆ π (rlocs(σ ,φ, ε)),
let o .f ∈ rlocs(σ ′,φ, ε). By definition of rlocs, there exists region G such that ε contains rdG‘f
and o ∈ [[G]]φσ

′
. Since ε has framed reads, ε contains ftpt(G ,Φ), hence from Agree(σ ,σ ′, ε,π ,φ)

by Lemma 6.5 we get [[G]]φσ
π
∼ [[G]]φσ

′
. Thus o ∈ π ([[G]]φσ ). So, we have o .f ∈ π (rlocs(σ ,φ, ε)).

Proof of the reverse inclusion is similar.

(b) For variables this is straightforward. For heap locations, consider any o .f ∈ rlocs(σ ′,φ, ε).
From (a), we have π−1(o).f ∈ rlocs(σ ,φ, ε). From Agree(σ ,σ ′, ε,π ,φ), we get σ (π−1(o).f )

π
∼ σ ′(o .f ).

Thus we have σ ′(o .f )
π −1

∼ σ (π−1(o).f ). □

The example following (9) in Section 4 shows that the lack of framed reads leads to asymmetry

of agreement.
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The second critical, but non-obvious, property is that for a pair of states σ ,σ ′ that are in

‘symmetric’ agreement and transition to a pair τ ,τ ′ forming an allowed dependence, the transitions

preserve agreement on any set of locations whatsoever.

Lemma 6.12 (preservation of agreement). LetΦ be amethod context andφ be aΦ-interpretation.
Suppose σ ,σ ′⇒τ ,τ ′ |=φ ε and σ

′,σ⇒τ ′,τ |=φ ε . Let Agree(σ ,σ ′, ε,π ,φ) and Agree(σ ′,σ , ε,π−1,φ).
Let ρ be any refperm ρ ⊇ π for which

Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )) (10)

Then for any set of locations W in σ , if Lagree(σ ,σ ′,π ,W ) then Lagree(τ ,τ ′, ρ,W ).

Note that existence of such ρ is a consequence of σ ,σ ′⇒τ ,τ ′ |=φ ε .

Proof. Using Agree(σ ′,σ , ε,π−1,φ) we appeal to σ ′,σ⇒τ ′,τ |=φ ε to obtain refperm ρ ′ ⊇ π−1

such that

Lagree(τ ′,τ , ρ ′, freshLocs(σ ′,τ ′) ∪ written(σ ′,τ ′)) (11)

Now supposeW is a set of locations inσ such that Lagree(σ ,σ ′,π ,W ). We show Lagree(τ ,τ ′, ρ,W ).
For x ∈W , either x ∈ written(σ ,τ ) or σ (x ) = τ (x ).

• If x ∈ written(σ ,τ ) then from from (10), we have τ (x )
ρ
∼ τ ′(x ).

• If σ (x ) = τ (x ), we claim that σ ′(x ) = τ ′(x ). Then from Lagree(σ ,σ ′,π ,W ) we have τ (x ) =
σ (x )

π
∼ σ ′(x ) = τ ′(x ).

We prove the claim by contradiction. If it does not hold then x ∈ written(σ ′,τ ′). By (11)

this implies τ ′(x )
ρ′
∼ τ (x ) = σ (x )

π
∼ σ ′(x ). Then, since ρ ′ ⊇ π−1

, we would have σ ′(x ) =
π (π−1(τ ′(x ))) = τ ′(x ), which is a contradiction.

For o .f ∈W , either o .f ∈ written(σ ,τ ) or σ (o .f ) = τ (o .f ).

• If o .f ∈ written(σ ,τ ) then from (10), we have τ (o .f )
ρ
∼ τ ′(ρ(o).f ).

• If σ (o .f ) = τ (o .f ), we claim that σ ′(π (o).f ) = τ ′(π (o).f ). Then from Lagree(σ ,σ ′,π ,W ) we
have τ (o .f ) = σ (o .f )

π
∼ σ ′(π (o).f ) = τ ′(π (o).f ).

The claim σ ′(π (o).f ) = τ ′(π (o).f ) is proved by contradiction. If it does not hold then π (o).f ∈

written(σ ′,τ ′). By (11) this implies τ ′(π (o).f )
ρ′
∼ τ (ρ ′π (o).f ) = τ (o .f ) = σ (o .f )

π
∼ σ ′(π (o).f ).

Then, since ρ ′ ⊇ π−1
, we would have σ ′(π (o).f ) = π (π−1(τ ′(π (o).f ))) = τ ′(π (o).f ), hence

σ ′(π (o).f ) = τ ′(π (o).f ), which is a contradiction.

This completes the proof of Lagree(τ ,τ ′,π ,W ) for heap locations. □

Lemma 6.13 (freshness symmetry). Let Φ be a method context and φ be a Φ-interpretation. Sup-
poseσ ,σ ′⇒τ ,τ ′ |=φ ε andσ

′,σ⇒τ ′,τ |=φ ε . SupposeAgree(σ ,σ ′, ε,π ,φ) andAgree(σ ′,σ , ε,π−1,φ).
Let ρ be any refperm ρ ⊇ π for which

ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and
Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )) (12)

Then we have Lagree(τ ′,τ , ρ−1, freshLocs(σ ′,τ ′)).

Proof. From Agree(σ ′,σ , ε,π−1,φ) and σ ′,σ⇒τ ′,τ |=φ ε , there is a refperm ρ ′ ⊇ π−1
for which

ρ ′(freshLocs(σ ′,τ ′)) ⊆ freshLocs(σ ,τ ) and Lagree(τ ′,τ , ρ ′, freshLocs(σ ′,τ ′) ∪ written(σ ′,τ ′)). From
(10), we have ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′). From Definition 4.2, we know that ρ and ρ ′ are
total on freshLocs(σ ,τ ) and freshLocs(σ ′,τ ′) respectively. Since ρ and ρ ′ are bijections, we have
|freshLocs(σ ,τ )| = |freshLocs(σ ′,τ ′)|. So we get ρ(freshLocs(σ ,τ )) = freshLocs(σ ′,τ ′). Now from

(12) using (8) we get Lagree(τ ′,τ , ρ−1, ρ(freshLocs(σ ,τ ))). Hence Lagree(τ ′,τ , ρ−1, freshLocs(σ ′,τ ′)).
□
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Example 6.14. This example shows that allowed dependence is not symmetric, in general, and

that symmetric instances of allowed dependence are necessary for the preservation of agreement

Lemma 6.12. Consider the typing context

Γ =̂ alloc : rgn, r : rgn, x : K

and consider type K with Fields(K ) = {f : int}. In this example we suppose that that method

context and its candidate interpretation are empty and we omit them. Now consider the following

four states, written in suggestive notation, and implicitly giving reference o type K .

σ =̂ [alloc:{o}, r :�, o .f :3] σ ′ =̂ [alloc:{o}, r :{o}, o .f :3] τ =̂ σ τ ′ =̂ [σ ′ | o .f : 4]

Consider the effect rw r ‘f . We have rlocs(σ , rw r ‘f ) = � and rlocs(σ ′, rw r ‘f ) = {o .f }. So we

get Agree(σ ,σ ′, rw r ‘f ) and Agree(σ ′,σ , rw r ‘f ) (for the identity refperm on {o}). We also have

written(σ ,τ ) = freshLocs(σ ,τ ) = �. Thus we get Lagree(τ ,τ ′, id , freshLocs(σ ,τ ) ∪ written(σ ,τ )).
But written(σ ′,τ ′) = {o .f } and τ (o .f ) , τ ′(o .f ). Thus we do not have

Lagree(τ ′,τ , id , freshLocs(σ ′,τ ′) ∪ written(σ ′,τ ′))

This shows that allowed dependence is not symmetric: σ ,σ ′⇒τ ,τ ′ |= rd r ‘f but not σ ′,σ⇒τ ′,τ |=
rd r ‘f . Finally, let W = {o .f }; then we have Lagree(σ ,σ ′, id ,W ) but not Lagree(τ ,τ ′, id ,W ).
Agreement is not preserved.

Note that the states in this example do not arise in any method interpretation, because an

interpretation is required to satisfy the allowed dependency both ways around (that is, the bound

variables σ ,σ ′ in Def. 5.1 can be instantiated by both σ ,σ ′ and σ ′,σ above). The next example is

another where agreement fails to be preserved. But since it has symmetric allowed dependence, it

can be part of an interpretation. This is used in Section 7 to show the necessity of framed reads

conditions in the proof rules for sequence and iteration.

Example 6.15. This example builds on (9) which shows that agreement on effects is not symmetric.

This example illustrates the necessity of symmetric agreement for preservation of agreements in

Lemma 6.12. Consider the typing context Γ =̂ alloc : rgn, r : rgn, x : K , j : int, where K is a type

with with Fields(K ) = {f : int}. Consider the method context

Φ =̂ m() : P { true [rw r ‘f ]

for impure parameterless m . Let the precondition be this very particular condition:

P =̂ 1 ≤ |r | ≤ 2 ∧ (∀a, b : K ∈ alloc · a .f = 3 ∧ b .f = 5⇒ r = {a, b})

The effect of m() does not have framed reads. Since Φ does not contain any pure methods, we use

the empty interpretation, and omit it. Consider distinct references o, p and the following states:

σ =̂ [alloc:{o, p}, r :{o}, x :o, j :0, o .f :3, p .f :4] σ ′ =̂ [alloc:{o, p}, r :{o, p}, x :o, j :0, o .f :3, p .f :5]

τ =̂ σ τ ′ =̂ [σ ′ | o .f : 6]

Consider the effect rw r ‘f . We have rlocs(σ , rw r ‘f ) = {o .f } and rlocs(σ ′, rw r ‘f ) = {o .f , p .f }.
Since σ (o .f ) = 3 = σ ′(o .f ), we have Agree(σ ,σ ′, rw r ‘f ) (eliding the identity refperm of {o, p}).
But since σ (p .f ) , 5 = σ ′(p .f ), we do not have the symmetric agreement Agree(σ ′,σ , rw r ‘f ).

Sincewritten(σ ,τ ) = freshLocs(σ ,τ ) = �, we have Lagree(τ ,τ ′, id , freshLocs(σ ,τ )∪written(σ ,τ )).
So we have σ ,σ ′⇒τ ,τ ′ |= rw r ‘f . We also have the symmetric instance of allowed dependence,

that is, σ ′,σ⇒τ ′,τ |= rw r ‘f , because the antecedent in its definition, Agree(σ ′,σ , rw r ‘f ,π ), is
false for all π . To show that preservation of agreement fails, we consider W = {o .f }. We have

Lagree(σ ,σ ′, id ,W ), but not Lagree(τ ,τ ′, id ,W ).
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Example 6.16. Although Example 6.15 seems contrived, the states σ ,σ ′,τ ,τ ′ can in fact arise in

programs. Here we give an interpretation φ, of Φ in Example 6.15, such that φ(m)(σ ) = {τ } and
φ(m)(σ ′) = {τ ′}. Consider the map defined for all states υ by

φ(m)(υ) =


{ } if ¬P
{υ ′} if ∃q , t ∈ [[K ]]υ ·

q , t ∧ υ(r ) = {q , t} ∧ υ(q .f ) = 3 ∧ υ(t .f ) = 5 ∧ υ ′ = [υ | q .f : 6]

{υ} otherwise

For brevity in this example we omit the argument value; strictly, we should define φ(m)(v )(υ) as
above, independent of value v . Notice that the second clause is well defined owing to P . One can

check that φ(m)(σ ) = {τ } and φ(m)(σ ′) = {τ ′}. We show that φ is indeed a Φ-interpretation. Let
υ ∈ [[Γ]].

• We have  ∈ φ(m)(υ) iff υ ̸ |= P .

• For all κ ∈ φ(m)(υ), we have κ |= True and υ→κ |= rw r ‘f , because written(υ,κ) ⊆
wlocs(υ, rw r ‘f ).
• For all κ, υ ′, κ ′ and π , if υ |= P , υ ′ |= P , κ ∈ φ(m)(υ), κ ′ ∈ φ(m)(υ ′) and Agree(υ,υ ′, rw r ‘f ,π ),
then there are two cases:

(a) Suppose |υ(r )| = 1, or υ(r ) = {q , t}, and {υ(q .f ),υ(t .f )} , {3, 5}. Then we have κ =
φ(m)(υ) = υ. Thus written(υ,κ) = freshLocs(υ,κ) = �, so Lagree(κ,κ ′,π , freshLocs(υ,κ) ∪
written(υ,κ)).

(b) Suppose υ(r ) = {q , t} where υ(q .f ) = 3 and υ(t .f ) = 5. So κ = [υ | q .f : 6]. Also, we

have rlocs(υ, rw r ‘f ) = {q .f , t .f }, written(υ,κ) = {q .f }, and freshLocs(υ,κ) = �. From
Agree(υ,υ ′, rw r ‘f ,π ), we know that there are references q ′ = π (q) and t ′ = π (t) such that

υ ′(q ′.f ) = 3 and υ ′(t ′.f ) = 5. Since υ ′ |= P , we have υ ′(r ) = {q ′, t ′}. Thus κ ′ = [υ ′ | q ′.f : 6]

by definition of φ(m). So we have Lagree(κ,κ ′,π , freshLocs(υ,κ) ∪ written(υ,κ)).

7 PROOF SYSTEM FOR PROGRAM CORRECTNESS

This section gives the proof system and works out an example. Soundness is proved in Section 8.

Besides correctness judgments, the rules involve side conditions: validity of formulas, subeffects,

and framing judgments. The linking rule for pure methods features one other condition based on

the following notion which was introduced in Section1.3 in connection with (2).

Definition 7.1 (correct partial candidate). Let Φ and Φ,Θ both be swf and Θ a specification of pure

methods only. Letψ be a partial candidate for Φ. Let θ be a candidate interpretation of Θ. We say θ
is a correct partial candidate for Φ,Θ;ψ , written

θ |= Φ,Θ;ψ

provided that for anyΦ-interpretationφ that extendsψ , the candidateφ∪θ is a (Φ,Θ)-interpretation.15

We tend to use comma for union of disjoint partial maps in the context of judgments, for example,

Φ,Θ. In other contexts it sometimes seems more clear to use ∪.

7.1 The proof system

Figures 14 and 15 present the proof rules. They are to be instantiated only with well-formed premises

and conclusions (Definition 5.5). To emphasize the point we make the following definitions. A

correctness judgment is derivable iff it is well-formed and can be inferred using the proof rules

instantiated with well-formed premises and conclusion. A proof rule is sound if for any instance

15
Under these conditions, if the specifications in Θ refer to methods in Φ, then Θ is not swf on its own, and then it is not

meaningful to call θ a Θ-interpretation.
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FieldUpd Φ; ⊢ x .f := y : x , null { x .f = y [wr x .f , rd x , rd y]

FieldAcc

z . x

Φ; ⊢ x := y .f : y , null ∧ z = y { x = z .f [wr x , rd y , rd y .f ]

Assign

y . x

Φ; ⊢ x := F : x = y { x = F x
y [wr x , ftpt(F ,Φ)]

Alloc

Fields(K ) = f : T

Φ; ⊢ x := new K : r = alloc { x < r ∧ alloc = r ∪ {x } ∧ x .f = default(T ) [wr x , rw alloc]

ImpureCall m : (x :T )P { Q [ε] ; ⊢ m(z ) : Px
z { Qx

z [ε
x
z , rd z ]

PureCall

y . z y < FV (Q)

m : (x :T , res:U )P { Q [ε] ; ⊢ y := m(z ) : Px
z { y = m(z ) ∧Qx,res

z,y [wr y , rd z , ε
x
z ]

ImpureLink

Θ ≡ m : (x :T )R { S [η]
Φ,Θ;ψ ⊢Γ,x :T B : R { S [rd x ,η] Φ,Θ;ψ ⊢Γ C : P { Q [ε]

Φ;ψ ⊢Γ let m(x :T ) = B in C : P { Q [ε]

PureLink

Θ ≡ m : (x :T , res:U )R { S [η]
θ |= Φ,Θ;ψ Φ,Θ;ψ ,θ ⊢Γ,x :T,res:U B : R { res = m(x ) [wr res, rd x ,η]

Φ,Θ;ψ ⊢Γ C : P { Q [ε] dom (θ ) = dom (Θ)

Φ;ψ ⊢Γ let m(x :T ):U = B in C : P { Q [ε]

TranspPureLink — same as PureLink except Φ,Θ;ψ ,θ ⊢Γ C : P { Q [ε]

Var

Φ;ψ ⊢Γ,x :T C : P ∧ x = default(T ) { P ′ [rw x , ε]

Φ;ψ ⊢Γ var x : T in C : P { P ′ [ε]

Seq

Φ;ψ ⊢ C1 : P { P1 [ε1]

Φ;ψ ⊢ C2 : P1 { Q [ε2,wrH ‘f , rdH ‘f ] ε1 and ε2 have framed reads

Φ;ψ |= P1 ⇒ H #r ε2 is P ;Φ;ψ/ε1-immune wr r < ε1

Φ;ψ ⊢ C1;C2 : P ∧ r = alloc { Q [ε1, ε2]

While

Φ;ψ ⊢ C : P ∧ x , 0 { P [ε,wrH ‘f , rdH ‘f ] ε has framed reads

ε is P ;Φ;ψ/(ε,wrH ‘f )-immune Φ;ψ |= P ⇒ H #r wr r < ε

Φ;ψ ⊢ while x do C : P ∧ r = alloc { P ∧ x = 0 [ε, rd x ]

If

Φ;ψ ⊢ C1 : P ∧ E , 0 { P ′ [ε] Φ;ψ ⊢ C2 : P ∧ E = 0 { P ′ [ε]

Φ;ψ ⊢ if E then C1 else C2 : P { P ′ [ε, ftpt(E )]

Fig. 14. Syntax-directed proof rules. The notation y . x indicates the variables are syntactically distinct.
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Frame

Φ;ψ ⊢ C : P { Q [ε] P ;Φ;ψ |= η frm R Φ;ψ |= P ∧ R ⇒ η ·/. ε

Φ;ψ ⊢ C : P ∧ R { Q ∧ R [ε]

Conseq

Φ;ψ ⊢ C : P { Q [ε] Φ;ψ |= P1 ⇒ P Φ;ψ |= Q ⇒ Q1 P1;Φ;ψ |= ε ≤ ε1

Φ;ψ ⊢ C : P1 { Q1 [ε1]

InterpIntro

Φ;ψ ⊢ C : P { Q [ε]

Φ;ψ ,ψ ′ ⊢ C : P { Q [ε]

Conj

Φ;ψ ⊢ C : P1 { Q1 [ε] Φ;ψ ⊢ C : P2 { Q2 [ε]

Φ;ψ ⊢ C : P1 ∧ P2 { Q1 ∧Q2 [ε]

Exist

Φ;ψ ⊢Γ,x :K C : x ∈ G ∧ P { Q [ε]

Φ;ψ ⊢Γ C : (∃x : K ∈ G · P ) { Q [ε]

ExistRegion

Φ;ψ ⊢Γ,x :rgn C : x = F ∧ P { Q [ε]

Φ;ψ ⊢Γ C : Px
F { Q [ε]

Fig. 15. Structural proof rules

with well-formed premises and conclusion, the conclusion is valid if the premises are valid and the

side conditions hold. In the soundness proof we make pervasive use of the healthiness of judgments.

It ensures that definedness formulas hold where they are needed, so we can use two-valued

reasoning (in light of Lemma 5.3).

Theorem 7.2. The rules in Figures 14 and 15 are sound.

An immediate corollary is that every derivable correctness judgment is valid. The proof is given

in Sections 8, with some additional cases in appendices.

Here are a few comments on the rules, in order of their appearance in the figures. The first rule,

for field update, is a ‘local axiom’ that precisely describes the effect. Note that the reference variable

x is read, in order to write the field x .f . Readers familiar with RLI (Section 7.1) and RLII (Section 7.1)

may notice that the addition of read effects for this and most subsequent rules is straightforward.

Rule FieldAcc, is another local axiom. It uses an extra variable to refer to the initial value of

y , for soundness in the case that y ≡ x . In case y . x , one can derive the convenient axiom

Φ; ⊢ x := y .f : y , null { x = y .f [wr x , rd y , rd y .f ] as noted in RLI.

Rule Assign is formulated using the ftpt function to compute the read effect (Figure 12).

Rule Alloc has a postcondition that each field f in the list f of fields has the default value for

its type. The rule uses variable r , that is not written, to snapshot the initial value of alloc in order

to express freshness by postcondition x ∈ alloc. This technique is also used in the rules Seq and

While, avoiding the need for freshness effects as in RLI/II.
16
Note that the command reads alloc.

Rule Alloc has some important consequences. First, we can derive that the allocated object

is disequal from existing ones in variables. For y of reference type (with y . x ), the formula

16
In RLI the postcondition also includes an assertion type(K , {x }) that x has type K but in this article we refrain from

including that among the primitive formulas. In RLI, the allocation rule is formulated using a freshness effect. It is shown

there that a rule like Alloc is derivable.
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y ∈ alloc ∪ {null} is valid (see remark at the end of Section 5). So the formulas r = alloc and
r = alloc∧ y ∈ r ∪ {null} are logically equivalent. Hence we can use Conseq to add y ∈ r ∪ {null}
to the precondition (and to drop irrelevant postconditions):

⊢ x := new K : r = alloc ∧ y ∈ r ∪ {null} { x < r ∪ {null} [wr x , rw alloc]

Then since y and r are not written we can use Frame to get

⊢ x := new K : r = alloc ∧ y ∈ r ∪ {null} { x < r ∪ {null} ∧ y ∈ r ∪ {null} [wr x , rw alloc]

Now use Conseq to simplify the precondition and weaken the postcondition, to get

⊢ x := new K : r = alloc { x , y [wr x , rw alloc]

which says y is distinct from the fresh reference. Furthermore, since r does not occur in the frame

or postcondition, we can use rule ExistRegion together with Conseq to eliminate the precondition

r = alloc. That yields a judgment in which alloc only occurs in the frame condition. Using similar

derivations, one can show x < s for region variable s , and x , y .g or x < y .g for a field. These

postconditions can be combined with that of Alloc through use of rule Conj.

A formula may refer to fields of a variable bound by a quantifier, and again we can derive that

a fresh reference is distinct from existing ones. For example, this formula is valid: ∀z : K ′ ∈
alloc · z .f ∈ alloc ∪ {null} ∧ z .g ⊆ alloc ∪ {null} (for f of reference type and g of region type). So

the precondition r = alloc of Alloc is logically equivalent to r = alloc ∧ P where

P =̂ ∀z : K ′ ∈ alloc · z .f ∈ r ∪ {null} ∧ z .g ⊆ r ∪ {null}
By Conseq and Frame we get

⊢ x := new K : r = alloc ∧ P { x < r ∪ {null} ∧ P [wr x , rw alloc]

Now use Conseq to simplify the precondition and weaken the postcondition, to get

⊢ x := new K : r = alloc { ∀z : K ′ ∈ alloc · x , z .f ∧ x < z .g [wr x , rw alloc]

Because for any G the formula G ⊆ alloc is valid, we can now use Conseq and Exist Region to

obtain ⊢ x := new K : true { ∀z : K ′ ∈ G · x , z .f ∧ x < z .g [wr x , rw alloc] where again
alloc appears only in the frame condition.

For future reference, we summarize these considerations by the following derivable rule.

Alloc1

y . x Fields(K ) = f : T f : K ′′ is in Fields(K ′) g : rgn is in Fields(K ′)

Φ; ⊢ x := new K : r = alloc { x , y ∧ x < r ∧ alloc = r ∪ {x } ∧ x .f = default(T )
∧(∀z : K ′ ∈ alloc · x , z .f ∧ x < z .g)

[wr x , rw alloc]

Although our small axioms for assignment are as succinct as those of separation logic, the axiom

Alloc is not quite as beautiful since its use in context involves more than mere use of the frame

rule.

Apropos rule PureCall, the command y := m(z ) is an assignment and as such establishes

postcondition y = m(z ). Calling it out as a special case enables us to also assert the postcondition

Q . The variable condition y < FV (Q), that is, y not free in Q , is included for clarity; It actually

follows from specifications being swf, using the distinction between local and global variables

mentioned in Footnote 7.

Rules PureLink and ImpureLink are for linking a client with a single method implementation,

either pure or impure. As discussed in Section 1.3, one premise of PureLink is that partial (Φ,Θ)-
interpetation θ is provided; its purpose is to give the chosen interpretation for m , to be used in

verifying the body B . By contrast, the premise for C requires correctness with respect to all
interpretations of m . This addresses the use of pure methods for abstraction, e.g., in situations

where the pure method should be ‘opaque’ because its definition acts on state that is not in scope or
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reachable for the client. As noted in connection with equation (3), there are also situations in which

it is appropriate for the interpretation to be visible to clients, addressed by this ‘transparent’ linking

rule rule TranspPureLink. It is not a derived rule, because the weaker judgment Φ,Θ;ψ ,θ ⊢Γ C :

P { Q [ε] does not entail the stronger one that requires C to be correct for all interpretations of

m .

In general, it is necessary to simultaneously link several pure and impure methods—subject to

the proviso concerning well founded dependency among pure method preconditions (see ≺+Φ in

the definition of swf method context in Section 2). Simultaneous linking is needed for multiple

pure methods that share a data representation and need to have compatible interpretations (cf. Def-
inition 7.1). However, owing to the observation in (4) following Definition 2.2, it is sufficient to

simultaneously link a set of impure methods, after which a set of pure methods can be linked.

So it suffices to have one rule like PureLink but linking multiple pure methods, and one like

ImpureLink but linking multiple impure ones. In these general rules, each method body must

satisfy its specification, in the context of all of the specifications. This can be seen in the examples

in Section 7.3. Soundness of these rules can be proved by a straightforward generalization of the

proofs in this article.

Rule Var for local variable blocks is adapted straightforwardly from RLI. The premise allows

reading and writing the local variable; these effects are dropped in the conclusion. This makes

it possible for a pure method to traverse heap structure using loops—indeed, quite complicated

algorithms can be pure methods if the language is extended to allow local variables of mathematical

types like sequences. For example, one can implement the anc function of Fig. 2 using a loop that

traverses parent pointers using an accumulator variable (or res itself) and a variable that points at

the current node.

Rules Seq and While use immunity conditions to ensure that the interpretation of effects is

consistent between the relevant points of control flow. In RLI, immunity is needed in these rules to

deal with write effects. Here, it is needed as well for read effects, but in addition we need effects to

have framed reads. This ensures that certain agreements that hold initially also hold after executing

commands in sequence, including iteratively, despite the use of state-dependent expressions in

effects. The relevant technical result is Lemma 6.12. Section 7.2 shows necessity of framed reads

conditions. Note that framed reads are not required for the effects involving the expression H to

reason about writes to freshly allocated objects. This is important, because it allows H to itself be

expressed in terms of freshly allocated objects. For an example, see the use of expression H3 in the

proof of the client of Cell in Section 7.3.

About While, note that rd x may be in ε but need not be if the loop body does not read x .
In useful code, ε will contain rw x . The grammar allows a program expression E for the guard

condition. For proving soundness it is convenient, and loses no generality, to restrict to the case of

a variable x .
The remaining rules, in Fig. 15, are for general reasoning about judgments. The adaptation of

rule Frame from RLI/II is straightforward: adding partial candidateψ and adding context Φ;ψ for

the side conditions. Similarly for the other structural rules.

Apropos Frame, observe that x := new Cell satisfies true { true [rw alloc,wr x ] but it does not
satisfy

true ∧ (∀x : Cell ∈ alloc · false) { true ∧ (∀x : Cell ∈ alloc · false) [rw alloc,wr x ] (13)

It also does not satisfy the equivalent judgment alloc = � { alloc = � [rw alloc,wr x ]. This is not
surprising: the Frame rule is inapplicable in these cases, because any frame judgment for either

formula includes rd alloc, and the command writes alloc. We return to this point in connection

with weak purity (Section 11).
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In this article the assertion language does not include quantification at type rgn. So to achieve

the effect of rule Exist for region variables we need rule ExistRegion (just as in RLI/II).

Not all valid judgments are provable. Here is an example judgment that involves a read effect

that is not observable:

. . . ⊢ x := 0; y := x : true { true [wr x ,wr y , rd x ]

Dropping rd x yields a valid judgment, because the final values are independent from the initial

value of x . This is not derivable in our proof system. The logic RLI includes ‘masking’ rules that

remove from a frame condition a write effect if the postcondition says the written location is

unchanged from its initial value. In a more general relational logic, it is possible to formulate

masking rules for read effects.

7.2 Examples showing the need for reads to be framed

Example 7.3. This example shows that in a sequence of two commands, the effect of the judgment

of the first command needs to have framed reads. Recall the specification in Example 6.15:

Φ =̂ m() : P { true [rw r ‘f ]

P =̂ 1 ≤ |r | ≤ 2 ∧ (∀a, b : K · a .f = 3 ∧ b .f = 5⇒ r = {a, b})

We use m() for the first command in sequence. The judgment Φ;� ⊢ m() : P { true [rw r ‘f ] is
valid, as it is an instance of the proof rule ImpureCall. The Frame rule yields this valid judgment:

Φ;� ⊢ m() : P ∧ x , null { x , null [rw r ‘f ]. (14)

For the second command, define

C1 =̂ j := x .f ; if j = 3 then j := −1 else j := 1

Consider the judgment

Φ;� ⊢ C1 : x , null { true [rd x .f , rd x , rw j ]. (15)

This can be derived using the proof rules; note in particular that the effect has framed reads. Using

rule Seq on (14) and (15)—but ignoring the side condition that the first judgment has framed

reads—would give us the judgment

Φ;� ⊢ m();C1 : P ∧ x , null { true [rw r ‘f , rd x .f , rd x , rw j ].

We show that this judgment is invalid because the read effect property fails. Consider the interpre-

tation φ from Example 6.16, and these states from Example 6.15:

σ =̂ [alloc:{o, p}, r :{o}, x :o, j :0, o .f :3, p .f :4] σ ′ =̂ [alloc:{o, p}, r :{o, p}, x :o, j :0, o .f :3, p .f :5]

τ =̂ σ τ ′ =̂ [σ ′ | o .f : 6]

We have Agree(σ ,σ ′, (rw r ‘f , rd x .f , rd x ,wr j )). The transitions for m() lead respectively to states

τ ,τ ′, Let κ,κ ′ be the respective states after C1 executes from τ ,τ ′. Then we have j ∈ written(σ ,κ),
κ(j ) = −1, and κ ′(j ) = 1. This contradicts Lagree(τ ,τ ′,π , freshLocs(σ ,τ ) ∪ written(σ ,τ )).

In conclusion, without the requirement of framed reads for the first command in a sequence, we

could derive invalid conclusions from valid premises.

Example 7.4. This example shows the necessity for the second command in a sequence to have

framed reads, except for locations freshly allocated by the first command in the sequence. We begin

by considering this judgment with P and Φ as above:

Φ;� ⊢ x .f := 3 : P ∧ x , null { P [rd x ,wr x .f ]. (16)
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This can be derived using FieldUpd, Frame, and Conseq, so it is valid. Using rule Seq on (14) and

(16)—but ignoring the side condition that the effect rw r ‘f of (14) has framed reads—yields

Φ;� ⊢ x .f := 3;m() : P ∧ x , null { true [rw r ‘f , rd x ,wr x .f ].

We show that this is invalid owing to its read effect. Starting from states

υ =̂ [alloc:{o, p}, r :{o}, x :o, o .f :0, p .f :4] and υ ′ =̂ [alloc:{o, p}, r :{o}, x :o, o .f :0, p .f :4]

we have Agree(υ,υ ′, id , rw r ‘f , rd x ). We also have transitions

⟨x .f := 3;m(), υ, _⟩
φ
7−→ ⟨m(), σ , _⟩

φ
7−→ ⟨skip, τ , _⟩

and ⟨x .f := 3;m(), υ ′, _⟩
φ
7−→ ⟨m(), σ ′, _⟩

φ
7−→ ⟨skip, τ ′, _⟩. Here σ ,σ ′,τ ,τ ′ are as in Example 7.3.

Notice that written(υ,τ ) = {o .f } and freshLocs(υ,τ ) = �. But since τ (o .f ) = 3 , 6 = τ ′(o .f ), we
do not have Lagree(τ ,τ ′, id , freshLocs(υ,τ ) ∪ written(υ,τ )).

In conclusion, without the requirement of framed reads for the second command in a sequence, we

could derive invalid conclusions from valid premises. For an example showing why it is untenable

to require all reads to be framed, see the use of H3 in the verification of the client in Section 7.3.

7.3 Example proof: the Cell methods and a linked client

To illustrate features of some of the rules, we sketch proofs of the implementations of the Cell
methods from Figure 16 and this linked client.

Cli =̂ d := newCell ; init(d ); set(c, 5); set(d , 4) : I ∧ c , null { I ∧ get(c) = 5 [η]

where η =̂ rw d , rw alloc, rw c.foot ‘any, rd c.foot , rd cd . More precisely, we aim to use the Pure-

Link and ImpureLink rules to prove that the linked command (cf. (4))

let get(self : Cell ) : int = res := self.value in
let set(self : Cell , v : int) = self.value := v ; init(self : Cell ) = self.foot := {self} in
Cli

(17)

has specification I ∧ c , null { I ∧ get(c) = 5[η]. Recall that rw in Figure 16 abbreviates a read

and write, e.g., rw c.foot ‘any abbreviates the effects rd c.foot ‘any,wr c.foot ‘any.
Method init serves as constructor forCell. The implementation of init is simply self.foot := {self},

which suffices for our implementation of set. But init’s specification follows good practice, which

is to allow allocation in constructors. For simplicity we treat constructors as ordinary methods, so

the specification needs to explicitly require that self is fresh with respect to preexisting state of

interest; in this example we need self < x .foot for preexisting x .
In a richer specification language, I in the figure would be declared as a class invariant—a public

one, because it is useful to clients and does not expose the internal representation.

As an abbreviation, define this variation on I :

J (s) =̂ ∀x , y : Cell ∈ s · x ∈ x .foot ∧ (x = y ∨ x .foot # y .foot)

The parameter s is just a convenience so we can write J (r ) for the instantiation J s
r , and similarly

for other instantiations of s . Note that I and J (r ) respectively are framed by rd alloc, rd alloc‘foot ,
and rd r , rd r ‘foot .

The judgment for (17) is considered in context

Γ =̂ alloc : rgn, r : rgn, c : Cell , d : Cell

The ghost variable r , declared in Γ, is used as an idiom to express freshness. It would be better for

r to be a specification variable, so it could be instantiated in different ways as needed for more

complicated clients, but we do not formalize those in this article.
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pure method get(self: Cell): int
requires self , null ∧ I
reads self.foot‘any

method set(self: Cell, v: int)
requires self , null ∧ I
ensures get(self) = v ∧ I
reads self.foot‘any
writes self.foot‘any

method init(self: Cell)
requires self.foot=� ∧ ∀x:Cell ∈ alloc\{self} · self < x.foot
requires ∀x,y:Cell ∈ alloc\{self} · x ∈ x.foot ∧ (x=y ∨ x.foot # y.foot)
ensures I
reads alloc, self.foot
writes alloc, self.foot

I =̂ ∀x,y:Cell ∈ alloc · x ∈ x.foot ∧ (x=y ∨ x.foot # y.foot)

Fig. 16. Specifications for methods of Cell, adapted from Figure 1, using syntax close to the formalization
but allowing multiple parameters (and making self explicit). The name self has no special semantics.

To use PureLink note that the hypothesis context for (17) is empty. But the hypothesis context

used for the judgment of get’s implementation comprises get’s specification; this hypothesis context
is also the one for the inner let. The use of ImpureLink requires that context be augmented by

the specifications of set and init to set up the judgments for the implementations of set and init.
Let Φ comprise the specifications, given in Figure 16, of the three methods. Then the client’s

judgment uses hypothesis context Φ. The partial candidate φ for pure method get is defined
as φ(get)(σ , o) = σ (o .value) for all states σ and non-null references o in [[Cell ]]σ such that

σ |= I . (Otherwise, φ(get)(σ , o) =  , in accord with Def. 5.1.) To save space we elide Γ,Φ,φ in the

development below, although we will point to the use of φ when necessary.

Proof of the Cell method implementations. We prove the correctness of the method implementa-

tions with respect to the specifications of get, set and init given in Figure 16.

• get: With B =̂ res := self.value , we must prove

B : self , null ∧ I { res = get(self) [wr res, rd self, rd self.foot ‘any] (18)

Using FieldAcc we can obtain B : self , null { res = self.value [wr res, rd self, rd self.value].
Note that Conseq can be used to strengthen the precondition above to self , null ∧ I . The rules
for subeffect judgments allow us to conclude {self} ⊆ self.foot |= rd self.value ≤ rd self.foot ‘any.
Because self , null ∧ I ⇒ {self} ⊆ self.foot , we get the subeffect judgment self , null ∧ I |=
rd self.value ≤ rd self.foot ‘any. Furthermore the formula res = self.value ⇒ get(self) = v is valid

by definition of φ. Now Conseq yields (18).

• set: With C =̂ self.value := v , we must prove

C : self , null ∧ I { get(self) = v ∧ I [rw self.foot ‘any, rd self, rd v ] (19)
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Rule FieldUpd yields C : self , null { self.value = v [wr self.value, rd self, rd v ]. Aiming to use

Frame with I , since I is framed by rd alloc, rd alloc‘foot , we compute the separator formula

rd alloc, rd alloc‘foot ·/. wr self.value = (rd alloc ·/. wr self.value)
∧ (rd alloc‘foot ·/. wr self.value)

= true ∧ true

Thus by Frame we obtain C : self , null ∧ I { self.value = v ∧ I [wr self.value, rd self, rd v ].
The rules for subeffect judgments allow us to conclude {self} ⊆ self.foot |= wr self.value ≤
wr self.foot ‘any, rd self.foot ‘any. Because self , null ∧ I ⇒ {self} ⊆ self.foot , we get the

subeffect judgment self , null ∧ I |= wr self.value ≤ rw self.foot ‘any. Furthermore the formula

self.value = v ⇒ get(self) = v is valid by definition of φ. Thus using Conseq we get (19).

• init: With D =̂ self.foot := {self}, we must prove

D :

self.foot = �
∧ ∀x : Cell ∈ alloc \ {self} · self < x .foot
∧ J (alloc \ {self})

{ I [rw alloc, rw self.foot , rd self] (20)

FieldUpd yields D : self , null { self.foot = {self} [wr self.foot , rd self]. Aiming to use Frame

with J (alloc \ {self}), since the formula is framed by rd alloc, rd (alloc \ {self})‘foot , rd self, we
compute the separator formula

rd alloc, rd (alloc \ {self})‘foot , rd self ·/. wr self.foot
= rd alloc ·/. wr self.foot
∧ (rd (alloc \ {self})‘foot ·/. wr self.foot)
∧ (rd self ·/. wr self.foot)

= true ∧ (alloc \ {self}#{self}) ∧ true

which is a conjunction of trues. So, by Frame we get

D : self , null ∧ J (alloc \ {self}) { self.foot = {self} ∧ J (alloc \ {self}) [wr self.foot , rd self]

Now self.foot = {self} ∧ J (alloc \ {self}) ⇒ I , and we have the subeffect judgment self ,
null ∧ J (alloc \ {self}) |= wr self.foot , rd self ≤ rw alloc, rw self.foot , rd self. By Conseq we get

D : self , null ∧ J (alloc \ {self}) { I [rw alloc, rw self.foot , rd self]

Now (20) follows by Conseq: the desired precondition can be obtained by strengthening the

precondition self , null in the above judgment, noting that self.foot = � ⇒ self , null.

Proof of the Cell client. The proof proceeds by using small axioms for the atomic commands, rule

Frame to adapt their specifications, and rule Seq to combine the commands in sequence, working

from the left. We rely on the derivable consequences of rule Alloc, which are summarized as rule

Alloc1 in Section 7.1. Using that the default value for foot : rgn is �, we get

d := newCell : r = alloc {
d < r ∧ alloc = r ∪ {d } ∧ d , c
∧ d .foot = � ∧ (∀b : Cell ∈ r · d < b .foot)

[wr d , rw alloc]

Aiming to use Frame with J (r ), since J (r ) is framed by rd r , rd r ‘foot , we use the definition of ·/.
to compute the separator formula

(rd r , rd r ‘foot) ·/. wr d ,wr alloc = (rd r ·/. wr d ) ∧ (rd r ·/. wr alloc)
∧ (rd r ‘foot ·/. wr d ) ∧ (rd r ‘foot ·/. wr alloc)

= true ∧ true ∧ true ∧ true
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Because J (r ) ∧ r = alloc⇒ true ∧ true ∧ true ∧ true is valid, by Frame we get

d := newCell : J (r ) ∧ r = alloc {
J (r ) ∧ d < r ∧ alloc = r ∪ {d } ∧ d , c
∧d .foot = � ∧ (∀b : Cell ∈ r · d < b .foot)

[wr d , rw alloc]

Again aiming to frame c , null, note that rd c frames c , null and

rd c ·/. (wr d , rw alloc) = (rd c ·/. wr d ) ∧ (rd c ·/. wr alloc) = true ∧ true

Hence by Frame we get

d := newCell : J (r ) ∧ r = alloc ∧ c , null {
J (r ) ∧ d < r ∧ alloc = r ∪ {d }
∧d , c ∧ d .foot = � ∧ c , null
∧(∀b : Cell ∈ r · d < b .foot)

[wr d , rw alloc]

By Conseq, using the validity of the formulas

I ⇒ J (r )
alloc = r ∪ {d } ⇒ d , null (because null < alloc in all states)

alloc = r ∪ {d } ∧ J (r ) ⇒ J (alloc \ {d })
alloc = r ∪ {d } ∧ ∀b : Cell ∈ r · d < b .foot ⇒ ∀b : Cell ∈ alloc \ {d } · d < b .foot

we get the following, where η1 =̂ wr d , rw alloc.

d := newCell : I ∧ r = alloc ∧ c , null {

d < r ∧ d , null
∧ d , c ∧ c , null
∧ d .foot = �
∧ ∀b : Cell ∈ alloc \ {d } · d < b .foot
∧ J (alloc \ {d })

[η1]

(21)

Now by ImpureCall

init(d ) : d .foot = � ∧ ∀x : Cell ∈ alloc \ {d } · d < x .foot ∧ J (alloc \ {d })
{ I [rw alloc, rw d .foot , rd d ]

By Frame of (d < r ∧ d , null ∧ d , c ∧ c , null), noting that (rd c, rd d , rd r ) ·/.
(wr d .foot ,wr alloc) = true ∧ true ∧ true ∧ true ∧ true ∧ true, we get

init(d ) :

d .foot = �
∧∀x : Cell ∈ alloc \ {d } · d < x .foot
∧J (alloc \ {d }) ∧ d < r
∧d , null ∧ d , c ∧ c , null

{
I ∧ d < r
∧d , null
∧d , c ∧ c , null

[rw alloc, rw d .foot , rd d ]

Using Conseq, we can rewrite this judgment as

init(d ) :

d < r ∧ d , null
∧d , c ∧ c , null
∧d .foot = �
∧∀x : Cell ∈ alloc \ {d } · d < x .foot
∧J (alloc \ {d })

{
I ∧ d < r
∧d , null
∧d , c ∧ c , null

[rw alloc, rw d .foot , rd d ]

(22)

Next we use Seq to combine (21) and (22) as follows. Observe that η1 has framed reads and

wr r < η1. Also, let η2 =̂ rw alloc, rd d . The effect of (22) can be written as η2, rw d .foot . Notice
that η2 is immune from η1 under I ∧ r = alloc ∧ c , null vacuously (since there is no region

expression of the form G‘f in η2) and η2 has framed reads. Let H1 = {d } and P1 =̂ I ∧ d <
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r ∧ d , null ∧ d , c ∧ c , null. We have P1 ⇒ H1#r is valid. Thus all side conditions of Seq

are valid. By Seq

d := newCell ; init(d ) : I ∧ r = alloc ∧ c , null {
I ∧ d < r ∧ d , null
∧ d , c ∧ c , null

[rw d , rw alloc]

(23)

By ImpureCall for set , we get

set(c, 5) : I ∧ c , null { I ∧ get(c) = 5 [rw c.foot ‘any, rd c]

Let η3 =̂ rw d , rw alloc and let η4 =̂ rw c.foot ‘any, rd c.foot , rd c. We have I ∧ c , null |=
rw c.foot ‘any, rd c ≤ η4. Aiming to frame d < r ∧ d , null ∧ d , c ∧ c , null, we compute

(rd c, rd d , rd r ) ·/. η4; this is a conjunction of trues. Thus by Frame and Conseq, we get

set(c, 5) :

I ∧ c , null ∧ d < r ∧ d , null
∧ d , c

{
I ∧ get(c) = 5 ∧ d < r ∧ d , null
∧ d , c

[η3]

(24)

Again we aim to use Seq to compose (23) and (24). Notice that both η3 and η4 have framed

reads and wr r < η3. Let H2 =̂ �, P2 =̂ I ∧ d < r ∧ d , null ∧ d , c ∧ c , null, and
P =̂ I ∧ r = alloc ∧ c , null. Then P2 ⇒ H2#r is valid. We also need to check that η4 is

immune from η3 under P . The region expressions in η4 are c.foot and {c}. Thus we need to show

the validity of P ⇒ ftpt({c}‘foot ,Φ) ·/. η3 and P ⇒ ftpt({c},Φ) ·/. η3. It suffices to show the

validity of the first implication. The validity of the second follows because ftpt({c}‘foot ,Φ) =
rd {c}‘foot , ftpt({c},Φ) = rd {c}‘foot , rd c. The validity of the first implication follows because its

consequent reduces to a conjunction of trues. To wit, by definition of separator, we have

rd {c}‘foot , rd c ·/. (wr d ,wr alloc) = (rd {c}‘foot ·/. wr d ) ∧ (rd c ·/. wr d )

∧ (rd {c}‘foot ·/. wr alloc) ∧ (rd c ·/. wr alloc)

= true ∧ true ∧ true ∧ true,

Observe that c, d are distinct variables in Γ, which is why rd c ·/. wr d = true. Thus by Seq we get

d := newCell ; init(d ); set(c, 5) : I ∧ r = alloc ∧ c , null {
I ∧ d < r ∧ d , null
∧ d , c ∧ get(c) = 5

[η3,η4]

(25)

Recall from definition of η that η = η3,η4.

By ImpureCall for set , we get

set(d , 4) : I ∧ d , null { I ∧ get(d ) = 4[η5] where η5 =̂ rw d .foot ‘any, rd d

Aiming to frame d < r ∧ d , c ∧ get(c) = 5, note that (rd c, rd d , rd r , rd c.foot , rd c.foot ‘any)·/.η5

we can use Frame to get

set(d , 4) :

I ∧ d < r ∧ d , null
∧ d , c ∧ get(c) = 5

{
I ∧ d < r ∧ get(d ) = 4

∧ d , c ∧ get(c) = 5

[η5] (26)

Now we check the side conditions of Seq to compose (25) and (26). Let H3 = d .foot and P3 =̂

I ∧ d < r ∧ d , null ∧ d , c ∧ get(c) = 5. Then P3 ⇒ H3#r is valid. Also, η has framed reads

and wr r < η. Since rd d is P/η-immune, by Seq we get

d := newCell ; init(d ); set(c, 5); set(d , 4) : I ∧ r = alloc ∧ c , null {
I ∧ d < r ∧ get(d ) = 4

∧d , c ∧ get(c) = 5 [η]

Notice that the footprint of H3 contains rd {d }‘foot and it does not make sense for this to appear in

the effect of the sequence, because it refers to a field d .foot of the freshly allocated object assigned
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to d . This shows why rule Seq does not require the entire frame condition to be read framed. By

contrast, the H1 earlier has its footprint in the effect.

Now, from Conseq, using I ∧ d < r ∧ get(d ) = 4 ∧ d , c ∧ get(c) = 5⇒ I ∧ get(c) = 5,

we get

d := newCell ; init(d ); set(c, 5); set(d , 4) : I ∧ r = alloc ∧ c , null { I ∧ get(c) = 5[η]

The variable r only serves to refer to the initial value of alloc. By rule ExistRegion the above

judgment yields

d := newCell ; init(d ); set(c, 5); set(d , 4) :

(∃r : rgn · I ∧ r = alloc ∧ c , null) {
I ∧ get(c) = 5 [η]

Then by predicate calculus and rule Conseq, using that r is not free in I , we get

d := newCell ; init(d ); set(c, 5); set(d , 4) : I ∧ c , null { I ∧ get(c) = 5[η] (27)

To finish the example we need to link the client to the implementations. Using judgments

(18), (19), (20), and (27), rules PureLink and ImpureLink yield that (17) has the specification

I ∧ c , null { I ∧ get(c) = 5[η].

8 SOUNDNESS OF THE PROOF SYSTEM

8.1 Proof of soundness for rules other than linking

We prove soundness of each rule in turn, making reference to the named conditions (Safety, Post,

Write, and Read) in Definition 5.2. The proof of While is in the Appendix, and soundness of linking

is the topic of Sections 8.2 and 8.3.

FieldAcc and Assign: These are straightforward an similar to FieldUpd which we prove in

detail. For Assign, the argument for the Read condition uses Lemma 6.5.

FieldUpd: Consider any Φ-interpretation φ, and any state σ satisfying the precondition, that is,

such that σ |=φ x , null. By semantics the configuration ⟨x .f := y , σ , _⟩ does not fault (which

proves Safety), and we have ⟨x .f := y , σ , _⟩
φ
7−→ ⟨skip, τ , _⟩ where τ =̂ [σ | x .f :σ (y)]. To prove

Post we must show τ |= x .f = y . By semantics τ |= x .f = y iff τ (x ) , null and τ (x .f ) = τ (y). Since
neither x nor y is modified by field update, τ (x ) = σ (x ) , null and τ (y) = σ (y). Thus τ (x .f ) = τ (y).
To prove Write, let ε =̂ wr x .f , rd x , rd y . Notice that wlocs(σ ,φ, ε) = {σ (x ).f }. Since τ is only

different from σ in value of x .f , we get Write in accord with Definition 4.1.

To prove Read consider ⟨x .f := y , σ ′, _⟩
φ
7−→ ⟨skip, τ ′, _⟩. Suppose σ ′ |= x , null and

Agree(σ ,σ ′, ε,π ,φ), where π is a refperm. By semantics τ ′ = [σ ′ | x .f :σ ′(y)]. Since rlocs(σ ,φ, ε) =
{x , y}, from Agree(σ ,σ ′, ε,π ,φ) we have σ (x ) π∼ σ ′(x ) and σ (y) π∼ σ ′(y). Thus τ (x .f ) π∼ τ ′(x .f ).
Also, written(σ ,τ ) = {σ (x ).f } and freshLocs(σ ,τ ) = �. These show that ρ(freshLocs(σ ,τ )) ⊆
freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )), where ρ = π .

Alloc: Consider any Φ-interpretation φ and any state σ with σ |=φ r = alloc. By semantics

it is not the case that ⟨x := new K , σ , _⟩
φ
7−→  . Instead we have ⟨x := new K , σ , _⟩

φ
7−→

⟨skip, [σ1 | x : o], _⟩, where o < σ (alloc), σ1 = New(σ , o,K , default(T )), and Fields(K ) = f : T .

Let τ = [σ1 | x : o]. (Recall that New(. . .) is defined in the caption of Figure 9.) We have that τ

satisfies the postconditions x < r , alloc = r ∪ {x }, and x .f = default(T ), by definitions.

To prove Write, that is, σ→τ |= wr x , rw alloc, observe that wlocs(σ ,φ, (wr x , rw alloc)) =
{x , alloc} and written(σ ,τ ) = {x , alloc} by definitions. To prove Read, consider additional states

σ ′,τ ′ and refperm π such that Agree(σ ,σ ′, (wr x , rw alloc),π ,φ) and ⟨x := new K , σ ′, _⟩
φ
7−→

ACM Transactions on Programming Languages and Systems, Vol. 00, No. 00, Article 00. Publication date: March 2018.



A Logical Analysis for Framing 00:45

⟨skip, τ ′, _⟩. We have rlocs(σ ,φ, (wr x , rw alloc)) = {alloc}. Thus σ (alloc) π
∼ σ ′(alloc). Define

ρ = π ∪ {(τ (x ),τ ′(x ))}. We must show

ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ ′))

Note that freshLocs(σ ,τ ) = {o .fi | fi ∈ f } and freshLocs(σ ′,τ ′) = {o ′.fi | fi ∈ f }, where o = τ (x )
and o ′ = τ ′(x ). So, we have ρ(o) = o ′. From this we get ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′). Now
we show Lagree(τ ,τ ′, ρ,written(σ ,τ )∪freshLocs(σ ,τ ′)). By definition of ρ we have τ (x )

ρ
∼ τ ′(x ). We

also have τ (alloc)
ρ
∼ τ ′(alloc) because τ (alloc) = τ (r ) ∪ {τ (x )} = σ (r ) ∪ {τ (x )}

ρ
∼ σ ′(r ) ∪ {τ ′(x )} =

τ ′(alloc). Recall freshLocs(σ ,τ ) = {o .fi | fi ∈ f }, and the fields are initialized to default values, so

we have τ (o .fi )
ρ
∼ τ ′(ρ(o).fi ) for each fi .

ImpureCall: Let Φ be m : (x :T )P { Q [ε] and φ be an arbitrary Φ-interpretation, noting that
the partial candidate is empty. To prove Φ |= m(z ) : Px

z { Qx
z [ε

x
z , rd z ], suppose σ |=φ Px

z

and let µ be a Γ-environment. Let v = σ (z ). Then we have σ |=φ Px
v . The call cannot fault from

σ , because that would contradict Definition 5.1(d) of context interpretation. The transitions are

⟨m(z ), σ , _⟩
φ
7−→ ⟨skip, τ , _⟩ for all τ ∈ φ(m)(σ , v ). By Definition 5.1(e), this yields τ |=φ Qx

v , and

σ→τ |=φ ε
x
v , which gives us τ |=φ Qx

z and σ→τ |=φ ε
x
z since σ (z ) = v .

Finally, to prove Read, for any τ ,σ ′,τ ′,π suppose that σ ′ |=Γφ Px
v ′ , Agree(σ ,σ

′, (εxv , rd z ),π ,φ),

⟨m(z ), σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩ and ⟨m(z ), σ ′, _⟩

φ
7−→∗ ⟨skip, τ ′, _⟩, where v ′ = σ ′(z ). From

transition semantics τ ∈ φ(m)(σ , v ) and τ ′ ∈ φ(m)(σ ′, v ′). Because Agree(σ ,σ ′, rd z ,π ,φ), we have
v
π
∼ v ′. Thus from Definition 5.1(f), there is ρ ⊇ π with ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and

Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )).

PureCall: Recall that a swf specification for a pure method is not allowed to have a write effect.

Let φ be any Φ-interpretation. Consider any σ such that σ |=φ Px
z . Let w = φ(m)(σ ,σ (z )). Because

φ is a Φ-interpretation, we know that w is not  , see Definition 5.1(a). So ⟨y := m(z ), σ , _⟩
φ
7−→

⟨skip, τ , _⟩, where τ = [σ | y :w ]. Thus Safety is immediate. Furthermore, σ |=φ Qx,res
z,w by Defini-

tion 5.1(b) of context interpretation, hence σ |=φ Qx,res
z,y . We get the postcondition y = m(z ) by

semantics: According to the typing rule for y := m(z ), y is not in scope for the specification of m
(see also Footnote 7); thus [[m(z )]]φτ = [[m(z )]]φσ and hence τ |=φ y = m(z ).

For Write, it is immediate from semantics: τ = [σ | y :w ] and wr y is in the frame condition. For

Post, we must show τ |=φ Qx,res
z,y . Below we show that τ |=φ Qx,res

z,y iff σ |=φ Qx,res
z,w , whence we are

done. Because σ and τ possibly differ only on the value of y , and y . z , we have τ (z ) = σ (z ). Now
note that

τ |=φ Qx,res
z,y

⇔ [τ + x , res:τ (z ),τ (y)] |=φ Q , by substitution property

⇔ [τ + x , res:τ (z ),w ] |=φ Q , since τ (y) = w
⇔ [τ + x , res:σ (z ),w ] |=φ Q , since τ (z ) = σ (z )
⇔ [σ + x , res:σ (z ),w ] |=φ Q , since y < FV (Q), y . z
⇔ σ |=φ Qx,res

z,w , by abbreviation (as w is a value)

To show Read, for any τ ,σ ′,τ ′,π , suppose that Agree(σ ,σ ′, (wr y , rd z , εxz ),π ,φ), σ
′ |=φ Px

z ,

⟨y := m(z ), σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩ and ⟨y := m(z ), σ ′, _⟩

φ
7−→∗ ⟨skip, τ ′, _⟩. Letw ′ = φ(m)(σ ′,σ ′(z )).

By semantics, we have τ = [σ | y :w ] and τ ′ = [σ ′ | y :w ′]. From the agreement assumption we get,

σ (z )
π
∼ σ ′(z ). Let ρ = π . Because φ is a context interpretation, by Definition 5.1(c) we therefore

obtain w
π
∼ w ′. Hence τ (y)

π
∼ τ ′(y) and we are done because τ ,τ ′ differ from σ ,σ ′ only in y .

Seq: We only show Read, as proofs for the other conditions are straightforward adaptations of

the soundness proof in RLI. Consider any Φ-interpretation φ that extendsψ and suppose for states
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σ ,σ ′,τ ,τ ′, for refperm π , we have

σ |=φ P ∧ r = alloc, σ ′ |=φ P ∧ r = alloc, Agree(σ ,σ ′, (ε1, ε2),π ,φ), (28)

and

⟨C1;C2, σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩ and ⟨C1;C2, σ

′, _⟩
φ
7−→∗ ⟨skip, τ ′, _⟩.

We must show that there is a refperm ρ such that ρ ⊇ π and

ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) (29)

Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )) (30)

To show the agreement (29), observe by semantics and validity of the first and second premises of

the rule, there are states σ1 and σ
′
1
such that

⟨C1, σ , _⟩
φ
7−→∗ ⟨skip, σ1, _⟩ and σ1 |=φ P1 and ⟨C2, σ1, _⟩

φ
7−→∗ ⟨skip, τ , _⟩,

and

⟨C1, σ
′, _⟩

φ
7−→∗ ⟨skip, σ ′

1
, _⟩ and σ ′

1
|=φ P1 and ⟨C2, σ

′
1
, _⟩

φ
7−→∗ ⟨skip, τ ′, _⟩.

From (28) we have Agree(σ ,σ ′, ε1,π ,φ), so using the Read property of the first premise we get some

refperm ρ1 ⊇ π such that

ρ1(freshLocs(σ ,σ1)) ⊆ freshLocs(σ ′,σ ′
1
) and Lagree(σ1,σ

′
1
, ρ1,Y )

where Y = written(σ ,σ1) ∪ freshLocs(σ ,σ1).
(31)

From the first premise, we also know that σ→σ1 |=φ ε1. Since ε2 is P ,Φ,ψ/ε1-immune, from

Lemma 6.9 we have rlocs(σ1,φ, ε2) = rlocs(σ ,φ, ε2). Hence rlocs(σ1,φ, ε2) ⊆ rlocs(σ ,φ, (ε1, ε2)). Thus

from (28) using Definition 4.2, we can derive Lagree(σ ,σ ′,π , rlocs(σ1,φ, ε2)).

From validity of the first premise we have both σ ,σ ′⇒σ1,σ
′
1
|=φ ε1 and σ ′,σ⇒σ ′

1
,σ1 |=φ ε1.

Since ε1 has framed reads, using Lemmas 6.11 and 6.12, we obtain ρ1 ⊆ π such that

Lagree(σ1,σ
′
1
, ρ1, rlocs(σ1,φ, ε2)). (32)

From side conditions Φ;ψ |= P1 ⇒ H #r and wr r < ε1 of Seq, using also σ |=φ r = alloc, we have
[[H ]]φσ1 ⊆ freshRefs(σ ,σ1). Thus

rlocs(σ1,φ, rdH ‘f ) ⊆ freshLocs(σ ,σ1) ⊆ Y (33)

With a similar argument we get

rlocs(σ ′
1
,φ, rdH ‘f ) ⊆ freshLocs(σ ′,σ ′

1
) (34)

From (31) and (33), we get Lagree(σ1,σ
′
1
, ρ1, rlocs(σ1,φ, rdH ‘f )). Combined with (32) and from

Definition 4.2, we derive Lagree(σ1,σ
′
1
, ρ1, rlocs(σ1,φ, (ε2, rdH ‘f ))). By Definition 4.3 this yields

Agree(σ1,σ
′
1
, (ε2,wrH ‘f , rdH ‘f ), ρ1,φ) (35)

Recall that from the validity of the first premise we have σ ′,σ⇒σ ′
1
,σ1 |=φ ε1. Since ε1 has

frame reads, using Lemma 6.11 and (28), we have Agree(σ ′,σ , ε1,π
−1,φ). From Lemma 6.13, we get

Lagree(σ ′
1
,σ1, ρ

−1

1
, freshLocs(σ ′,σ ′

1
)). From (34), we get Lagree(σ ′

1
,σ1, ρ

−1

1
, rlocs(σ ′

1
,φ, rdH ‘

¯f )). Fur-
thermore ε2 has framed reads. So, using Lemma 6.11 and (35), we get Lagree(σ ′

1
,σ1, ρ

−1

1
, rlocs(σ ′

1
,φ, ε2)).

Thus we have Lagree(σ ′
1
,σ1, ρ

−1

1
, rlocs(σ ′

1
,φ, (ε2, rdH ‘

¯f ))). So we get

Agree(σ ′
1
,σ1, (ε2,wrH ‘f , rdH ‘f ), ρ−1

1
,φ) (36)
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Using (35) we appeal to the Read property of the second premise, that is, σ1,σ
′
1
⇒τ ,τ ′ |=φ

ε2, rdH ‘f which yields that there is a refperm ρ ⊇ ρ1 such that

ρ(freshLocs(σ1,τ )) ⊆ freshLocs(σ ′
1
,τ )

Lagree(τ ,τ ′, ρ,W ), whereW = written(σ1,τ ) ∪ freshLocs(σ1,τ ).
(37)

Observe that

written(σ ,τ ) ∪ freshLocs(σ ,τ )
⊆ written(σ ,σ1) ∪ written(σ1,τ ) ∪ freshLocs(σ ,σ1) ∪ freshLocs(σ1,τ )

= Y ∪W .

From (37), we have Lagree(τ ,τ ′, ρ,W ), so it remains to show Lagree(τ ,τ ′, ρ,Y ). By validity of the

second premise, we get σ1,σ
′
1
⇒τ ,τ ′ |=φ ε2,wrH ‘f , rdH ‘f and σ ′

1
,σ1⇒τ

′,τ |=φ ε2,wrH ‘f , rdH ‘f .
Using Lemma 6.12, from (35), (36) and (31), we get Lagree(τ ,τ ′, ρ,Y ). This completes the proof of

(30).

To complete the proof of (29), note that freshLocs(σ ,τ ) = freshLocs(σ ,σ1)∪ freshLocs(σ1,τ ), since
σ (alloc) ⊆ σ1(alloc) ⊆ τ (alloc). Thus we have

ρ(freshLocs(σ ,τ )) = ρ(freshLocs(σ ,σ1)) ∪ ρ(freshLocs(σ1,τ ))
⊆ freshLocs(σ ′,σ ′

1
) ∪ freshLocs(σ ′

1
,τ ′) from (31) and (37)

= freshLocs(σ ′,τ ′)

Frame: We must show Φ;ψ |= C : P ∧R { Q ∧R [ε], assuming validity of premises. Consider

any Φ-interpretation φ such thatψ ⊆ φ. Suppose σ |=φ P ∧ R. All the conditions in Definition 5.2

except Post are immediate from the validity of the premise, which also yields τ |=φ Q . To show Post

it remains to show τ |=φ R. Because φ is a Φ-interpretation, the premise Φ;ψ |= P ∧ R ⇒ η ·/. ε
yields σ |=φ η ·/. ε . Instantiating the premise forC with φ gives σ→τ |=φ ε (Write), so by Lemma 6.6

we have Agree(σ ,τ ,η, id ,φ) where id is the identity on σ (alloc). Now we appeal to the definition

of P ;Φ;φ |= η frm R (Definition 6.4). Hence from Agree(σ ,τ ,η, id ,φ) and σ |=φ P ∧ R we obtain

τ |=φ R.

Conseq: For all Φ-interpretation φ that extends ψ and all state σ such that σ |=φ P1, from

Φ;ψ |= P1 ⇒ P , we have σ |=φ P . Thus by validity of the premise, we conclude that transition

from ⟨C , σ , _⟩ via
φ
7−→ cannot fault. To prove post and safety, consider state τ with ⟨C , σ , _⟩

φ
7−→∗

⟨skip, τ , _⟩. Again from first premise we have τ |=φ Q and σ→τ |=φ ε . From Φ;ψ |= Q ⇒ Q1, we

get τ |=φ Q1. Since P1 Φ;ψ |= ε ≤ ε1, by Lemma 6.2 (allowed change) we have σ→τ |=φ ε1. The

read condition is the result of use of Lemma 6.2 (allowed dependency) on Read condition of the

premise.

InterpIntro: Note that by well-formedness, the union ψ ,ψ ′ is a partial candidate so if there

is any m in the domain of both then ψ (m) = ψ ′(m). Any interpretation that extends ψ ∪ ψ ′

also extends ψ , so the conclusion follows directly from the premise by semantics of correctness

judgment.

8.2 Preliminaries for soundness of linking rules

To lay groundwork, we give a high level sketch the soundness arguments for the linking rules,

which motivates some definitions and technical results adapted from RLII.

The conclusion of both linking rules is a judgment about the potentially recursive let-binding of

method name m to method body B in client C . The let-command executes by taking one step in

which B gets bound to m in the environment, followed by execution of C in that environment.
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The two premises of the rule are judgments for B and for C , both withm bound to its specification.

To prove that the let-command’s execution satisfies its specification, we show that any trace of the

let-command, in which calls to m are environment calls, gives rise to a trace of C in which calls to

m are context calls. This lets us appeal to the premise judgment for C , since its specification is the

same as that of the let-command.

To make this argument precise, we need to decompose traces with m in the environment into

segments corresponding to ‘topmost calls’ ofm , between which the code ofC is executed. Moreover,

we need to connect executions of B , in which recursive calls of m are environment calls, with

executions of B in which recursive calls are context calls, so that we can appeal to the premise

judgment for B . These arguments go by induction on the number of topmost calls to m in a trace,

and by induction on recursion depth, for which the rest of this subsection provides notation and

nomenclature.

Technical background. The active command of a configuration ⟨C , σ , µ⟩ is the command’s redex,

that is, the part that determines the transition. So Active(C1;C2) = Active(C1) and Active(C ) = C
if there are no C1,C2 such that C is C1;C2.

In the following we consider intermediate configurations that may include local variables as well

as end-markers for let-bound methods. This can be formalized by a notion of compatibility, as in

RLII (Definition 4.3 there), but here we gloss over the details with the phrase ‘well formed for an

extension of Γ’.
The following says that if a configuration is not about to callm then the behavior is independent

of whether m is in the environment or the context.

Lemma 8.1 (independence). Suppose Φ is swf in Γ and φ is a Φ-interpretation. Consider any
m,C ,σ , Ûµ,φ such that m ∈ dom( Ûµ) and ⟨C , σ , Ûµ⟩ is well formed for some extension of Γ. Let
µ = Ûµ↾m and suppose Θ specifies m and θ is a Θ-interpretation for m . Suppose C has no elet(m)
(and note that by well-formedness of the configurations, C has no let binding of m). Suppose

Active(C ) is not a call tom . Then for any C ′,σ ′, Ûµ ′ we have ⟨C , σ , Ûµ⟩
φ
7−→ ⟨C ′, σ ′, Ûµ ′⟩ if and only

if ⟨C , σ , µ⟩
φ∪θ
7−→ ⟨C ′, σ ′, µ ′⟩ where µ ′ = Ûµ ′↾m . Moreover ⟨C , σ , Ûµ⟩

φ
7−→  iff ⟨C , σ , µ⟩

φ∪θ
7−→  .

A key part of the argument for linking m with its client goes by induction on the number of

calls to m . The following notion helps in the formalization.

Definition 8.2 (m-truncated). A trace ⟨C , σ , µ⟩
φ
7−→∗ ⟨D , τ , ν⟩ is called m-truncated, if D is

either of the form y := m(z );C ′ or the form m(z );C ′, or the trace has no incomplete invocation

of m .

We use the term topmost call to refer to a call to a method m that is not invoked (directly or

indirectly) from m itself, though it may be from a chain of other method invocations.

Lemma 8.3 (decomposition for pure environment methods). Suppose µ0(m) = (x : T , res :

U .B ) and ⟨C0, σ0, µ0⟩ is compatible with Φ;φ, where m < dom (φ). Suppose ⟨C0, σ0, µ0⟩
φ
7−→∗

⟨D , τ , ν⟩. Then there is n ≥ 0 and, for all i (0 < i ≤ n), there are configurations ⟨Ci , σi , µi ⟩,
variables zi , yi , xi and resi , states τi , υi and Ûσi such that for all i (0 < i ≤ n)

(1) ⟨Ci−1, σi−1, µi−1⟩
φ
7−→∗ ⟨yi := m(zi );Ci , τi , µi ⟩ without any intermediate configurations in

which the call to m is the active command

(2) ⟨yi := m(zi );Ci , τi , µi ⟩
φ
7−→ ⟨Bx,res

xi,resi ; yi := resi ; ecall(xi , resi );Ci , υi , µi ⟩
and υi = [τi + xi , resi :τi (zi ), default(U )] (note that xi and resi are fresh parameter names.)
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(3) ⟨Bx,res
xi,resi , υi , µi ⟩

φ
7−→∗ ⟨skip, Ûσi , µi ⟩ and hence by semantics

⟨Bx,res
xi,resi ; y := resi ; ecall(xi , resi );Ci , υi , µi ⟩

φ
7−→∗ ⟨ecall(xi , resi );Ci , Üσi , µi ⟩, where Üσi =

[ Ûσi | yi : Ûσ (resi )]

(4) ⟨ecall(xi , resi );Ci , Üσi , µi ⟩
φ
7−→ ⟨Ci , σi , µi ⟩ and σi = Üσi ↾xi ↾resi

(5) ⟨Cn , σn , µn ⟩
φ
7−→∗ ⟨D , τ , ν⟩ without any completed invocations ofm—but allowing a topmost

call that is incomplete.

Lemma 8.4 (decomposition for pure interpreted methods). Suppose that µ is a method

environment such that m < dom (µ) and ⟨C0, σ0, µ0⟩ is compatible with Φ;φ, where m ∈ dom (φ).
Also, suppose ⟨C0, σ0, µ0⟩

φ
7−→∗ ⟨D , τ , ν⟩. Then there is n ≥ 0 and, for all i (0 < i ≤ n), there are

configurations ⟨Ci , σi , µi ⟩, variables zi and yi and states τi such that for all i (0 < i ≤ n)

(1) ⟨Ci−1, σi−1, µi−1⟩
φ
7−→∗ ⟨yi := m(zi );Ci , τi , µi ⟩ without any intermediate configurations in

which m is the active command

(2) ⟨yi := m(zi );Ci , τi , µi ⟩
φ
7−→ ⟨Ci , σi , µi ⟩ and σi = [τi | yi :φ(m)(τi ,τi (zi ))]

(3) ⟨Cn , σn , µn ⟩
φ
7−→∗ ⟨D , τ , ν⟩ without any completed invocations ofm—but allowing a topmost

call that is incomplete.

Lemma 8.5 (change of method environment). Consider statesσ and τ , candidate interpretation

φ and command C . Then we have ⟨C , σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩ iff ⟨C , σ , µ⟩

φ
7−→∗ ⟨skip, τ , µ⟩ for

any method environment µ with domain disjoint from the domain of φ and containing no method

bound by let in C .

A bounded configuration has the form ⟨C , σ , µ⟩k where k is a natural number. One can think

of k as the size of the available stack space. A computation will get stuck (and does not fault) if it

attempts to make an environment call on a method when k is 0.

Definition 8.6 (depth-bounded semantics). The transition relation on depth-bounded configura-

tions is written

φ
7−→ just like for standard configurations. It is defined so that the bound is decreased

in the invocation step and increased when the end-marker of the method body is reached:

k > 0 µ(m) = (x :T , res:U .C ) x ′ < Vars(σ ) res′ < Vars(σ ) C ′ = C x,res
x ′,res′

⟨y := m(z ), σ , µ⟩k
θ
7−→ ⟨C ′; y := res′; ecall(x ′, res′) , [[σ + x ′:σ (z )] + res′: default(U )], µ⟩k−1

⟨ecall(x ), σ , µ⟩k
θ
7−→ ⟨skip, σ ↾x , µ⟩k+1

The bound needs to be propagated in one of the transitions for sequence:

⟨C , σ , µ⟩k
θ
7−→ ⟨C ′, σ ′, µ ′⟩k

′

⟨C ;D , σ , µ⟩k
θ
7−→ ⟨C ′ ;D , σ ′, µ ′⟩k

′

In all other cases, the transition rule is the same as for non depth-bounded configurations except

that a single bound k is added uniformly to every configuration in the rule.

Lemma 8.7 (depth-bounded semantics). For any θ and ⟨C , σ , µ⟩ we have

(1) ⟨C , σ , µ⟩
θ
7−→∗ ⟨C ′, σ ′, µ ′⟩ iff there are k , j such that ⟨C , σ , µ⟩k

θ
7−→∗ ⟨C ′, σ ′, µ ′⟩j

(2) ⟨C , σ , µ⟩
θ
7−→∗  iff there is some k ≥ 0 such that ⟨C , σ , µ⟩k

θ
7−→∗  .

Lemma 8.8 (judgment renaming). If Φ;φ |=Γ,x :T C : P { P ′ [ε] and Γ, y : T is well formed,

then Φ;φ |=Γ,y :T C x
y : Px

y { P ′xy [ε
x
y ].

ACM Transactions on Programming Languages and Systems, Vol. 00, No. 00, Article 00. Publication date: March 2018.



00:50 A. Banerjee, D. A. Naumann, and M. Nikouei

8.3 Soundness of linking rules

Soundness of ImpureLink is proved in the appendix. In addition to features common to the

soundness proofs for the other linking rules, ImpureLink relies on a theory of quasi-determinacy

which is developed in the appendix. Soundness of TranspPureLink can be proved by an argument

very much like the one for PureLink, and we omit it. The rest of this section proves PureLink in

detail. For this, we rely on nomenclature set out in the results of Section 8.2.

Suppose that Φ and Φ,Θ are well formed in Γ. Suppose Θ is m : (x :T , res:U )R { S [η] and
dom (θ ) = dom (Θ). Suppose the side condition on correctness of the interpretation holds:

θ |= Φ,Θ;ψ (38)

Suppose the premises are valid, that is

Φ,Θ;ψ |=Γ C : P { Q [ε] (39)

Φ,Θ;ψ ,θ |=Γ,x :T,res:U B : R { res = m(x ) [wr res, rd x ,η] (40)

We are to prove validity of the conclusion of the rule:

Φ;ψ |=Γ let m(x :T ):U = B in C : P { Q [ε]. (41)

Whereas premise (40) is a judgment aboutB with any recursive calls ofm inB treated as context

calls, the following Lemma spells out the correctness property of the body B when executed with

recursive calls to m as environment calls, by connecting it with the interpretation θ (m).

Lemma 8.9 (recursive correctness). The following is a consequence of (38) and (40). Let x ′, res′

not be in dom (Γ) ∪ {x , res}. Let Γ′ be Γ, x ′ : T , res′ : U . Let σ be any Γ′-state such that σ |=ψ Rx
x ′ .

Let Ûµ be any Γ′-environment such that Ûµ(m) = (x : T , res : U .B ). Let φ be a Φ-interpretation such

thatψ ⊆ φ. Then the computation from ⟨Bx,res
x ′,res′, σ , Ûµ⟩ via

φ∪θ
7−→

(a) does not fault, and

(b) if it reaches ⟨skip, τ , Ûµ⟩, then τ = [σ | res′:θ (m)(σ ,σ (x ′))].

We defer the proof of this Lemma and proceed to prove (41).

To that end, let µ be the empty Γ-environment. Let φ be a Φ-interpretation such thatψ ⊆ φ, and
let σ be a Γ-state such that σ |=φ P . The first transition is

⟨let m(x :T ):U = B in C , σ , µ⟩
φ
7−→ ⟨C ; elet(m), σ , Ûµ⟩

where Ûµ = [µ +m : (x : T , res : U .B )]. Continuing from there, any trace of C ; elet(m) corresponds
step by step with a trace of C containing a trailing elet(m) in every configuration with exactly the

same states, followed by a final step that executes elet(m). This step just removesm from Ûµ, which
means it does not fault or change the state. Thus for (41), it is enough to prove the following:

(i) it is not the case that ⟨C , σ , Ûµ⟩
φ
7−→∗  ,

(ii) for any τ , if ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩ then τ |=φ Q and σ → τ |=φ ε ,

(iii) for all τ ,σ ′,τ ′, if ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩ and ⟨C , σ ′, Ûµ⟩

φ
7−→∗ ⟨skip, τ ′, Ûµ⟩ and

σ ′ |=Γφ P then (σ ,σ ′)⇒(τ ′,τ ) |=φ ε .

As sketched at the beginning of Section 8.2, we will connect the traces in (i)–(iii), in which m is in

the environment, with traces in which m is in the context and thus has an interpretation. Indeed,

its interpretation is given: θ (m).
To use the premises, we need a Φ,Θ;ψ -interpretation. The side condition θ |= Φ,Θ;ψ and the

assumption that φ is a Φ-interpretation directly imply that φ ∪ θ is a Φ,Θ;ψ -interpretation (see

Definition 7.1). We prove (i)–(iii) using the following claim involving φ ∪ θ .
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Claim A. For all C ′,σ ′, Ûµ ′ andm-truncated trace ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ we have

⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩, where µ ′ = Ûµ ′↾m .

Also, if C ′ = (y := m(z );D) for some y , z ,D then σ ′ |=φ∪θ Rx
z .

Note that |=φ∪θ Rx
z is the same as |=φ Rx

z because by well-formedness of context (Φ,Θ), the
precondition R of m does not invoke m .

Before proving Claim A we use it to prove (i)–(iii).

(i) Suppose ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩

φ
7−→  . If the part of this trace before faulting ism-truncated

then we have ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩ by Claim A. In this case, from ⟨C ′, σ ′, Ûµ ′⟩

φ
7−→  we have by

semanticsActive(C ′) is a field access/update. Thus by Lemma 8.1 we get ⟨C ′, σ ′, µ ′⟩
φ∪θ
7−→  . But this

contradicts the premise (39) for C . Now consider the case that the trace ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩

is not m-truncated. By Lemma 8.3 it can be decomposed as

⟨C , σ , Ûµ⟩
φ
7−→∗⟨y := m(z );D , τ , Ûν⟩
φ
7−→ ⟨Bx,res

x ′,res′ ; y := res′; ecall(x ′, res′);D , υ, Ûν⟩
where x ′, res ′ are fresh variables and υ is [τ + x ′, res ′:τ (z ), default(U )]

φ
7−→∗⟨A; ecall(x ′, res′);D , σ ′, Ûµ ′⟩ where C ′ is A; ecall(x ′, res ′);D for some A,D
φ
7−→  

So we have ⟨Bx,res
x ′,res′, υ, Ûν⟩

φ
7−→∗  . On the other hand, ⟨C , σ , Ûµ⟩

φ
7−→∗ ⟨y := m(z );D , τ , Ûν⟩ is an

m-truncated trace. So by Claim A, we have τ |=φ∪θ Rx
z and thus υ |=φ Rx

x ′ (using (6)), whence by

Lemma 8.9 ⟨Bx
x ′, υ, Ûν⟩ does not fault—a contradiction.

17
So (i) is proved.

(ii) Suppose ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩. This ism-truncated, so by Claim A, we get ⟨C , σ , µ⟩

φ∪θ
7−→∗

⟨skip, τ , µ⟩. We assumed at the outset that σ |=φ P , so σ |=φ∪θ P because P cannot mention

m (cf. (6)). Hence by premise (39) for C we have τ |=φ∪θ Q and σ→τ |=φ∪θ ε . Owing to well-

formedness of the conclusion (41), all of P ,Q , ε are well-formed in Φ. Thus |=φ∪θ is |=φ and

wlocs(σ ,φ, ε) = wlocs(σ ,φ ∪ θ , ε) (again using (6) and the analogous property for wlocs). Hence we
have τ |=φ Q and σ→τ |=φ ε

(iii) Suppose ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩ and ⟨C , σ ′, Ûµ⟩

φ
7−→∗ ⟨skip, τ ′, Ûµ⟩ Also suppose that there

is a refperm π such that Agree(σ ,σ ′, ε,π ,φ) and σ ′ |=Γφ P . The traces arem-truncated. By Claim A,

we have traces ⟨C , σ , Ûµ⟩
φ∪θ
7−→∗ ⟨skip, τ , Ûµ⟩ and ⟨C , σ ′, Ûµ⟩

φ∪θ
7−→∗ ⟨skip, τ ′, Ûµ⟩. Since rlocs(σ ,φ, ε) =

rlocs(σ ,φ ∪ θ , ε), we have Agree(σ ,σ ′, ε,π ,φ ∪ θ ). By the Read part of premise (39) for C , there is

refperm ρ such that ρ ⊇ π , ρ(freshLocs(τ ,τ ′)) ⊆ freshLocs(τ ′,τ ) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪
freshLocs(σ ,τ )).

It remains to prove Claim A and Lemma 8.9.

Proof of Claim A. To prove Claim A, we make the following somewhat intricate claim.

Claim B. For any n ≥ 0 we have the following. For all C0,σ0, Ûµ0,C
′,σ ′, Ûµ ′, and for

any m-truncated trace

⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C0, σ0, Ûµ0⟩

φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩

17
Strictly speaking, Lemma 8.9 pertains to executions of B in Γ′-states whereas υ may have additional variables; but these

have no influence on execution of B and can be deleted to make an exact connection with the Lemma.
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if the trace ⟨C0, σ0, Ûµ0⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ has exactly n completed topmost calls of m ,

and there is a trace ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C0, σ0, µ0⟩, then there is a trace

⟨C0, σ0, µ0⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩,

where µ0 = Ûµ0↾m and µ ′ = Ûµ ′↾m .

To prove Claim A, consider ⟨C0, σ0, Ûµ0⟩ to be ⟨C , σ , Ûµ⟩. Using Claim B, from trace ⟨C , σ , Ûµ⟩
φ
7−→∗

⟨C ′, σ ′, Ûµ ′⟩, we get the requisite trace ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩. For the second part of Claim

A, suppose C ′ = (y := m(z );D) for some y , z ,D . If, contrary to the claim, we have σ ′ ̸ |=φ∪θ Rx
z

then by semantics of y := m(z ) and θ being a context interpretation (that is, condition θ |= Φ,Θ;ψ

in (38)), we would have ⟨C ′, σ ′, µ ′⟩
φ∪θ
7−→  and hence ⟨C , σ , µ⟩

φ∪θ
7−→  . But this contradicts the

premise (39) for C , since σ |=φ∪θ P . So Claim A is proved.

It remains to prove Claim B, for which we rely on premise (40) via Lemma 8.9. To build the

needed trace via

φ∪θ
7−→, we go by induction on the number n of completed topmost calls of m in the

trace via

φ
7−→. Accordingly, consider an m-truncated trace

⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C0, σ0, Ûµ0⟩

φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩,

Using Lemma 8.3, we obtain intermediate states τi ,υ, Ûσ , Üσ ,σi and environments Ûµi such that the

following holds.
18

⟨C0, σ0, Ûµ0⟩
φ
7−→∗⟨y1 := m(z1);C1, τ1, Ûµ1⟩ with no invocations of m
φ
7−→ ⟨Bx,res

x1,res1
; y1 := res1; ecall(x1, res1);C1, υ1, Ûµ1⟩ where υ1 = [τ1 + x1, res1:τ1(z1), d ]

and x1, res1 are fresh and d = default(U )
φ
7−→∗⟨y1 := res1; ecall(x1, res1);C1, Ûσ1, Ûµ1⟩ where ⟨Bx,res

x1,res1
, υ1, Ûµ1⟩

φ
7−→∗ ⟨skip, Ûσ1, Ûµ1⟩

φ
7−→ ⟨ecall(x1, res1);C1, Üσ1, Ûµ1⟩ where Üσ1 = [ Ûσ1 | y1: Ûσ1(res1)]
φ
7−→ ⟨C1, σ1, Ûµ1⟩ where σ1 = Üσ1↾x1↾res1

... containing n − 1 topmost invocations of m
φ
7−→ ⟨Cn , σn , Ûµn ⟩
φ
7−→∗⟨C ′, σ ′, Ûµ ′⟩. with no completed topmost invocations of m

Say that any two configurations ⟨A, τ , Ûµ⟩ and ⟨A′, τ ′, µ⟩ arematching configurations iffA = A′,
τ = τ ′ and Ûµ = [µ +m : (x : T , res : U .B )] and hence µ = Ûµ↾m .

Below, using Lemma 8.4 we will construct a trace via

φ∪θ
7−→ that looks as follows:

⟨C0, σ0, µ0⟩
φ∪θ
7−→∗⟨y := m(z1);C1, τ1, µ1⟩ matching the configurations above, so µ1 = Ûµ1↾m
φ∪θ
7−→ ⟨C1, σ1, µ1⟩ a single step by Lemma 8.4 (2) (∗)
... containing n − 1 additional invocations of m
φ∪θ
7−→ ⟨Cn , σn , µn ⟩
φ∪θ
7−→∗⟨C ′, σ ′, µ ′⟩ again matching configurations

18
The names Ûµi indicate that each binds m to (x : T, res : U .B )), but Ûσi and Üσi are fresh names with no significance

beyond what is stated.
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By induction on n , we prove that ⟨Ci , σi , Ûµi ⟩ and ⟨Ci , σi , µi ⟩ are matching configurations

for i = 1, 2, . . . ,n in two traces. In the base case of the induction, n = 0, all but one line of the

given decomposed trace is empty. That is, we have ⟨C0, σ0, Ûµ0⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ without any

intermediate calls ofm (but possibly a call in the last configuration). Using Lemma 8.1 we can drop

m from each environment to get a step by step matching trace ⟨C0, σ0, µ0⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩.

For the inductive case, n > 0, the initial steps ⟨C0, σ0, Ûµ0⟩
φ
7−→∗ ⟨y := m(z1);C1, τ1, Ûµ1⟩ are

matched as in the base case, up to the first invocation of m , in some state τ1, environment Ûµ1, and

with continuation C1. At that point we have τ1 |=φ Rx
v , where we let v = τ1(z1)—equivalently,

τ1 |=φ∪θ Rx
v—as otherwise we have a contradiction: We just established ⟨C0, σ0, µ0⟩

φ∪θ
7−→∗ ⟨y :=

m(z1);C1, τ1, µ1⟩, and if τ1 ̸ |=φ∪θ Rx
v , then we get ⟨y := m(z1);C1, τ1, µ1⟩

φ∪θ
7−→  . Furthermore,

by hypothesis of Claim B we have ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C0, σ0, µ0⟩. Putting these together we would

obtain a faulting trace from ⟨C , σ , µ⟩ via
φ∪θ
7−→. This contradicts premise (39) for C since σ |=φ P

which gives us σ |=φ∪θ P .

Having established τ1 |=φ Rx
v , we get υ1 |=φ Rx

x1

by definition of υ1. (In the trace for

φ
7−→

displayed above, υ1 extends τ1 with x1 : v , that is, x1 : τ1(z1).) By Lemma 8.9 we have Ûσ =

[υ1 | res1:θ (m)(υ1,υ1(x1))] and hence σ1(y1) = θ (m)(τ1,τ1(z1)). On the other hand, for

φ∪θ
7−→ the pure

call rule in Figure 9 gives the step ⟨y := m(z );C1, τ1, µ1⟩
φ∪θ
7−→ ⟨C1, [τ1 | y1:θ (m)(τ1,τ1(z1))], µ1⟩.

The state [τ1 | y1:θ (m)(τ1,τ1(z1))] is identical to σ1 as defined above for the trace via

φ
7−→, justifying

our use of σ1 in the line marked (*) in the trace via

φ∪θ
7−→.

In conclusion, after the first call tom the traces reachmatching configurations, namely ⟨C1,σ1, Ûµ1⟩

and ⟨C1, σ1, µ1⟩. What remains from ⟨C1, σ1, Ûµ1⟩ onward is a trace via

φ
7−→ with n − 1 completed

invocations of m , from a configuration reachable from ⟨C , σ , Ûµ⟩ via
φ
7−→. So we can apply the

inductive hypothesis to the trace ⟨C1, σ1, Ûµ1⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩, to obtain the needed trace via

φ∪θ
7−→

and conclude the proof of Claim B.

Proof sketch for Lemma 8.9. The proof is similar to the argument for (i), (ii), (iii) in the proof,

above, of PureLink, though about the body B rather than the client C . So it uses the premise (40)

rather than the premise (39). Indeed, we need substitution instances of (40), which are available

owing to Lemma 8.8. Thus, for fresh x ′, res′, we have

Φ,Θ;ψ ,θ |=Γ,x
′
:T,res′:U Bx,res

x ′,res′ : Rx
x ′ { res′ = m(x ′) [wr res′, rd x ′,ηxx ′]

(Recall that by well-formedness, η is wr -free and does not mention res.)
To deal with recursion, we prove the conditions (a) and (b) of Lemma 8.9 for depth-bounded

semantics (Def. 8.6) and arbitrary recursion depth k . This implies Lemma 8.9 for normal semantics,

using Lemma 8.7. To prove (a) and (b) for arbitrary k we go by induction on k . For a given k , the
argument of (a), not faulting, is similar to argument of (i). The proof of (b), that the final state of

execution on the call is given by interpretation θ , is similar to proof of (ii) and (iii) combined. For

both parts of condition (b), for a given k we follow the lines of the argument for (i)–(iii), except that

where the argument (i)–(iii) appeals to Lemma 8.9, we instead appeal to the inductive hypothesis

for depth k − 1. The gist of those arguments is that we obtain an execution of B via

φ∪θ
7−→, to which

the premise (40) for B applies. From that premise we get that nothing is written except the result
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variable, and we get the postcondition res = m(x ), or rather res′ = m(x ′). So the final state τ is

unchanged from the initial state σ except for res′ whose value is given by θ (m)(σ ,σ (x ′)).

9 DERIVING INTERPRETATIONS FROM IMPLEMENTATIONS

The preceding sections develop a logic featuring a linking rule for pure methods that relies on a

provided interpretation that gives meaning to the pure method invocations in pre-, post-, and frame

conditions. It relies as well on the syntactic restriction of specification to prevent cyclic references

between preconditions, in support of definedness conditions. Aside from purity of effect, the bodies

of pure methods are unrestricted commands that may use loops and make mutually recursive calls.

In this section we consider the question of how to obtain interpretations.

The Why3 tool
19
provides one answer. Why3 provides a very expressive mathematical language,

and enables the use of interactive proof assistants when needed for proofs that are not amenable to

full automation. In rough terms, Why3 provides the full power of mathematics, which can be used

both for defining candidate interpretations and for semantic reasoning to prove they are context

interpretations. However, this answer does not help us to provide a foundation for automated

verification tools based on SMT-solvers.

Another answer is suggested by prior works in which interpretations are derived directly from

code. In these works, the body of a pure method is restricted to be a single expression, like res := E
in our notation. By Hoare’s pun, E is essentially taken to be the mathematical definition of what

we call a candidate interpretation, and VCs are defined to check that it is a context interpretation.

We proceed to sketch how this idea can be embodied in our program logic. In so doing we give a

foundational account for restrictions on specifications proposed in the prior work, and show that

the restriction of method bodies is unnecessary.

Consider a pure method specification Θ ≡ m : (x :T , res:U )R { S [η] for which the intended

implementation is command B . For the moment, assume there are no calls to p in S or in B . The

idea can be sketched using the following variation on rule PureLink.

PLinkDeriv0

Φ,Θ;ψ ⊢tot B : R { S [wr res, rd x ,η] Φ,Θ;ψ ⊢ C : P { Q [ε]

Φ;ψ ⊢ let m(x :T ):U = B in C : P { Q [ε]

Here the notation ⊢tot indicates that the judgment is meant in the sense of total correctness, that is,

B must terminate from any initial state satisfyingR. As is standard, proof rules for total correctness

require that loops are provided with variants (that is, measures that decrease), and similarly for

recursion, to which we return later.

The point of the rule is that no candidate interpretation is provided form (thoughψ may provide

interpretations for some other pure methods). In establishing the judgment for B , one has no

recourse to a specific interpretation of m . Nor would an interpretation be of use, given that for the

moment we assume there are no calls to m in B or in the specification. We claim the rule is sound,

essentially because it ensures that an interpretation can be derived from B .

In light of the pure method specification which allows no effects, we can define by standard

techniques a denotational semantics of B as a function from states to values (the final value of res)
and  (if B faults or diverges). We refrain from spelling out the denotational semantics; it is similar

to the one defined in Appendix Section A.1 for other purposes. So the denotational semantics

provides a candidate interpretation, say θ , for m .

By the total correctness judgment, we get a value (not  ) for every initial state that satisfies

preconditionR. That is, the conditions required for θ to be a context interpretation, that is,Φ,Θ;ψ |=

19
See why3.lri.fr and our Section 10.
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θ , are immediate consequences of the judgment for B . Moreover, this is valid: Φ,Θ;ψ ,θ ⊢ B : R {
S [wr res, rd x ,η]. Now conclusion of PLinkDeriv0 follows by exactly the proof of PureLink.

Now let us consider the general case, where there may be calls to m in its body and in its

specification. Indeed, let us consider multiple methods, among which there may be mutually

recursive calls in the bodies and in the specifications. Let us also assume there are no loops, so

nontermination can only be due to recursion. A standard example of mutual recursion are the even

and odd functions, here specified in a form taken from Leino and Müller [39].

isEven : (n : int , res : bool ) 0 ≤ n { res = (if n = 0 then true else isOdd (n − 1)) [ ]

isOdd : (m : int , res : bool ) 0 ≤ m { res = ¬isEven(m) [ ]

Obvious implementations are the commands if n = 0 then res := true else res := isOdd (n − 1) and

res := ¬isEven(m).
It is well known that for total correctness the linking rule needs to include a measure that is

decreased in recursive calls. The details can be intricate in case of mutual recursion—and even

more so in the presence of dynamic dispatch, which is outside the scope of this article. We follow

the succinct and general formulation of Apt et al. [3]. In our notation, for a single method, the idea

can be sketched as follows:

PLinkDeriv

Φ,m : (x :T , res:U )R ∧ t < z { S [η];ψ ⊢ B : R ∧ t = z { S [wr res, rd x ,η]
Φ,Θ;ψ ⊢ C : P { Q [ε] R ⇒ t ≥ 0

Φ;ψ ⊢ let m(x :T ):U = B in C : P { Q [ε]

Here t is an integer expression and z is a fresh variable, that is, z does not occur in any of the code

or specifications. Typically t is an expression in the method parameters. The judgment for B is

changed in two ways, so that t can serve as measure for the size of inputs to recursive calls. The

equation t = z is conjoined with the precondition for B , to snapshot the initial value of t , and
t < z is conjoined with the precondition in the hypothesis for m .

20
Rule PLinkDeriv ensures that

the measure is bounded from below and decreases in recursive calls. For linking mutually recursive

procedures, the judgment for each procedure body is modified as above, using the single expression

t for all.21

We would like to argue for soundness of PLinkDeriv as follows. As in the proof of recursion

lemma 8.9, we argue by induction on depth-bounded semantics that the premise for B is valid,

and moreover B is terminating from all initial states that satisfy precondition R. So a candidate

interpretation θ could be derived from the semantics of B , and as a consequence of the judgment

for B it would be a context interpretation.

The hope is that B is correct, with respect to the interpretation given by its own denotation. But

what if the specification is unsatisfiable (that is, there are some states that satisfy R for which no

result exists satisfying S )? Then the premise for B is valid, for any B whatsoever, since it quantifies

over all context interpretations. This renders the rule PLinkDeriv0 unsound because calls to m
in the client C need not behave as specified. Rule PureLink precludes this: the required context

interpretation witnesses satisfiability of the specification. What about PLinkDeriv?

In prior work it was proposed to consider calls to m in its own postcondition, or more generally

calls in postconditions of several mutually recursive methods, as recursive calls that should decrease

a measure. Rule PLinkDeriv imposes decrease of the measure for calls in B , but it is not obvious

how to express the same restriction on calls in postcondition S or in the frame condition η. One

20
The rule needs to be used together with a rule for instantiation (rule Subst in RLI), to adapt the assumed specification to

calls of m . See the discussion in Apt et al. [3] of their Rule 13 Recursion IV. Substitution for z is disallowed.

21
This may involve some encoding. For the isEven/isOdd example, a ghost variable can be used to encode that the

argument number is decreased when calling isOdd and not increased when calling isEven .
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possibility is to make use of a variation of the definedness conditions (Fig. 5) that imposes the extra

precondition t < z . We do not formalize the details here. Assuming the restriction is imposed, let

us proceed to argue why such restrictions suffice to show soundness of PLinkDeriv.

The idea is to generalize context interpretations (Def. 5.1) to approximate context interpreta-
tions that are allowed to  on some initial states satisfying the precondition. The definition of valid

judgment (Def. 5.2) is changed to allow approximate context interpretations. As remarked following

that definition, it is well defined even in case methods are called (in formulas and effects) outside

their preconditions. Soundness of PLinkDeriv hinges on a recursion lemma (akin to Lemma 8.9)

that provides a semantic result that amounts to validity of the premise for B but with context

calls replaced by environment calls. The lemma is proved using the depth-bounded semantics

(Def. 8.6) and goes by induction on depth k . Whereas the proof of Lemma 8.9 relies on the given

interpretation for semantics of formulas and effects, to prove PLinkDeriv we define a chain of

approximate interpretations θk using the denotational semantics of B . (A similar construction

is carried out in detail, for the proof of ImpureLink, in the Appendix Section A.1.) The measure

restrictions (t < z ) ensure that these interpretations are only applied to inputs for which they

deliver a non- result, so we retain two-valued reasoning about formulas.

In summary, this approach is a more nuanced take on the role of definedness conditions and

healthiness conditions. Notice that the measure restrictions are imposed in the judgment for

method body B , but are not required for the specifications used to verify the client. Moreover, the

user of the logic does not explicitly define an interpretation—indeed it may not be expressible in

assertion language (or only expressible via encodings with no practical use). Nor can they rely on

an interpretation for reasoning about formulas. So in proving the judgment for body B , calls to m
in formulas and effects become opaque, just as they are for the client: one can reason from the spec

of m but not its definition.

10 CASE STUDIES

To explain how pure methods have been encoded in verification tools based on SMT solvers, and to

demonstrate how our logic accounts for such encodings, this section presents verifications of the

running examples using the Why3 tool.
22
Why3 implements procedure-modular reasoning for a

first-order intermediate language. This tool is used because it provides VC-gen for a convenient

intermediate language with pre-post contracts, while enforcing a strict separation between program

code and mathematical formulas. This allows us to focus on VC-gen for pure methods, without the

need to delve into the routine aspects of translating pre-post contracts and code annotated with

assertions into FOL formulas. Why3 generates VCs for a range of provers but we use only SMT

solvers (Alt-Ergo, CVC3, CVC4, and occasionally Z3).

The full developments are provided as supplementary material for this article.
23
Here we present

highlights, omitting for example the import clauses in theories and modules. In principle our

encodings could be automatically generated from the source programs and specifications, but that

is not our purpose here.

Preliminaries. Why3 is carefully designed to make a clear distinction between mathematical

definitions and programs. A mathematical function is indicated by keyword function; it may have

a mathematical definition (in Why3 syntax) or be left uninterpreted. Whereas a Why3 ‘theory’

contains only math, a Why3 ‘module’ can contain program functions with mutable state, ghost

code, contracts, and annotations including assertions and loop invariants. A program function is

22
why3.lri.fr

23
The Why3 files are available at http://www.cs.stevens.edu/~naumann/pub/readRLWhy3.tar
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indicated by keyword let and is written in WhyML syntax; it has a contract and body. Keyword

val declares a program function without a body.

Roughly speaking, the VC for a program C with specification P { Q [. . .] is a first-order

formula P ⇒ wp(C ,Q), validity of which is equivalent to the judgment C : P { Q [. . .]. The
formula wp(C ,Q) is defined by structural recursion on C to be an approximate weakest (liberal)

precondition, taking into acount loop invariants, other annotations, and contracts for functions

called in C . Source-language notations in P and Q are desugared in various ways, and additional

antecedents may be used to axiomatize the programming language semantics as well as problem-

specific mathematical definitions and facts. Just as our logic requires judgments to be healthy, VCs

include definedness checks for specifications.

When targeting SMT solvers, Why3 has to translate a recursively defined mathematical function

into first-order logic, which it does by means of an uninterpreted function and definitional axioms
that express the defining clauses. Any reasoning system that allows recursive definitions relies on

proof obligations or syntactic checks that ensure the recursion is well founded. Why3 relies on

syntactic checks based on structural recursion. More on basic VC-gen can be found in [20, chapt. 5]

and [37]. The latter includes the encoding of pure methods, along the lines that we discuss in the

following.

The Why3 language (including WhyML) allows mutable objects but sharing is very limited by

design [27]. So we use mutable records and maps to explicitly model the heap in a standard way. We

treat references as an uninterpreted type, called reference as in other sections of this article. Note

that Why3 provides a library module for ML-style references, subject to restrictions that disallow

aliasing, but we are not using that module. In our model, each field is a map on references. The heap

is a record with a mutable field for each of these maps, together with a map that designates which

references are allocated and what are their types. Why3 features an ‘invariant’ declaration to be

associated with a data type; these invariants are enforced on procedure call/return boundaries. We

use data type invariants for well-formedness conditions on the heap that are ensured by type safety

of Java-like source languages: fields have type correct values and there are no dangling pointers.

Specifications in Why3 feature coarse-grained frame conditions—reads and writes clauses for

mutable fields of records—which are checked by simple syntactic analysis. We encode the finer-

grained frame conditions of our logic using postconditions and frame axioms. Why3 provides ghost

annotations and checks that ghost code does not interfere with the underlying program. We use

this feature to mark the allocation map, which is part of our heap model. We also use it to mark

ghost state in the examples, even though we do not formalize ghost annotations in the logic.

It is straightforward to encode a pair of heaps connected by a refperm (Section 4), representing

the refperm as a pair of maps subject to universally quantified axioms that one is inverse of the

other. However, for the developments in this section we only need identity refperms in agreements,

because we are not checking read effects of impure methods (see remark following Definition 6.4).

Encoding of pure methods. We verify client code, named main, with respect to a method context

Φ and linked with implementations of the methods in Φ. In accord with the proof rules PureLink

and ImpureLink, main should be verified in a context that provides contracts for the pure and

impure methods in scope. For an impure method m we make a single declaration, mCode , with
contract from Φ(m). Why3 generates VCs to verify that its body satisfies its contract, and generates

VCs for main that include the contract of mCode .
For a pure method p with specification Φ(p) = (x :T , res:U )R { S [η] we make three

declarations in Why3:

• pCode is a program function, including the implementation code of p, defined using the

Why3 let construct.
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• pUnInt is an uninterpreted function for use in specifications (where Why3 disallows the use

of pCode).
• pInt is a defined mathematical function, the chosen interpretation of p.

These are used in accord with rule PureLink. The definition of pInt is subject toWhy3’s restrictions

that ensure it is well defined as a total function. Invocations of p in the code ofmain are invocations

of pCode and so the VCs for main include the contract of pCode . We augment the contract Φ(p)
with postcondition res = pUnInt(x ) in the contract for pCode .

For reasoning about p in specifications, there are two axioms about pUnInt . The frame axiom
says that pUnInt satisfies the read effect: if σ and σ ′ agree on η and on the value of argument

expression E then they agree on the value of pUnInt(E ). The pre-post axiom says that pUnInt
satisfies its postcondition: (∀x :T · R ⇒ S res

p(x )
). These axioms express the contract Φ(p). They

are named as pFrame and pPrePost respectively, and are made available for verifying the client

command. In rule PureLink the contract is an explicit hypothesis for the client command, and for

reasoning about the implementation of p one can use the contract because it is available indirectly

through the side condition θ |= Φ,Θ;ψ and postcondition res = p(x ). As expected, one can prove

partial correctness of the non-terminating implementation of p that simply calls itself with the

given arguments.

For verification of the body of pCode , the interpretation pInt should be available, so the imple-

mentation of pCode begins with an assume statement that says pUnInt is the same as pInt . On
the other hand, no such assumption is provided for main, so its verification is done without an

interpretation of p. Of course it is also possible to make pInt available for main, providing for the

form of reasoning in the proof rule TranspPureLink, but we do not do that in the case studies.

As noted in Section 12, several prior works feature that form of reasoning and thus definitional

axioms for pure methods.

To justify the frame axiom for pUnInt , it is formulated and proved as a lemma about pInt . To
justify the pre-post axiom for pUnInt , we do not directly prove that pInt satisfies the postcondition;
instead, the contract is verified for pCode . The additional postcondition res = pUnInt(x ), together
with the assumption connecting pUnInt with pInt , entails that pInt satisfies the postcondition.
This deviates slightly from the formulation of PureLink, but is needed because Why3 provides

contracts for code (our pCode) but not for defined functions (our pInt ).
Generation and validation of VCs is different from deductive proofs using inference rules for

correctness judgments, but it may be helpful to note some parallels. Some proof rules in our

logic require (Φ;ψ )-validity of certain formulas P for some relevant method context Φ and partial

interpretation ψ (written Φ;ψ |= P according to Def. 5.4). In Why3, the pInt functions play the

role ofψ and the pre-post and frame axioms for the pUnInt functions play the role of Φ in proving

formulas.

Hiding data invariants. Although the logic in this article does not formalize the hiding of invari-

ants, we do take some care with information hiding in the case studies. To do so, we make use of

the Why3 module system, but that does not provide direct support for hiding of invariants. Internal

invariants like the ones in the Composite example do not appear in the contracts (which are public)

but are encoded using assume and assert statements within the relevant code. Our treatment of

hiding is intended to have tutorial value, not to be a comprehensive treatment.

10.1 Cell in Why3

The Cell example (Figures 1 and 16) is implemented in Why3 using one theory and three modules.

A theory only contains logical definitions.

ACM Transactions on Programming Languages and Systems, Vol. 00, No. 00, Article 00. Publication date: March 2018.



A Logical Analysis for Framing 00:59

theory Reference
type reference
constant null: reference
type rtype = Null | Unalloc | Cell

end

All of our examples in Why3 have such a theory, which is the basis for formalizing a Java-like data

model in which allocated references have an immutable class type. The type rtype provides names

for the types of allocated objects. In this example there is a single class, Cell, but in general there

may be many.

Module Heap describes the heap structure, using maps and sets from the Why3 library.

type heap = {
ghost mutable alloct: map reference rtype;
mutable value: map reference int;
ghost mutable foot: map reference (set reference);

}

A heap is a record. The first field, alloct, records the allocated references and their types. In a given

heap, the set of p for which alloct[p] is not Unalloc or Null corresponds to the value of variable

alloc in our logic. Module Heap also declares, as a Why3 data type invariant, the heap typing

invariants that are ensured by typing rules for our programming language but are not expressed as

Why3 types. Whereas the value field is given type int in the Why3 declaration of heap, we need to

use an invariant to express that the region-valued field foot has no dangling references, that is, the

field has a value in accord with its type in our source language. (In Section 10.2 we use an axiom to

express the same typing constraint on the result of the anc function.)

invariant { self.alloct[null] = Null ∧
(∀ p: reference. self.alloct[p] = Null⇒ p = null) ∧
(∀ p q: reference. self.alloct[p] = Cell⇒ mem q self.foot[p]⇒ self.alloct[q] , Unalloc)

}

In Why3, the keyword self refers to an instance of the type with which an invariant is associated,

in this case heap. Function mem is from the Why3 library module Set, from which we also use

intersection (named inter) and other functions. We typeset implication as⇒ and let it associate to

the right.

In addition to the typing of field foot, the invariant also says that the one and only reference

mapped to Null is null. This is a minor detail that is convenient because null is a value of every
reference type. As a Why3 invariant, the condition is included in the generated precondition of

code using Heap, and as a postcondition of any code that may write the heap.

The formula I , used as a public invariant in the specifications of the Cell methods in Figure 16,

is defined in module Heap as well, but named iInv.

predicate iInv1 (h: heap) = ∀ p: reference. h.alloct[p] = Cell⇒ mem p h.foot[p]
predicate iInv2 (h: heap) = ∀ p q: reference. h.alloct[p] = Cell⇒ h.alloct[q] = Cell⇒

p , q⇒ is_empty (inter h.foot[p] h.foot[q])
predicate iInv (h: heap) = iInv1 h ∧ iInv2 h

Finally, module Heap defines agreement on a reference set, specialized to the fields of Cell to

interpret effects that refer to the data group ‘any’.
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predicate agreeOnAny (h h′: heap) (ftp: set reference)
= ∀ p: reference. mem p ftp⇒ h.value[p] = h′.value[p] ∧ h.foot[p] = h′.foot[p]

Module Cell gives the specifications and implementations for the methods of class Cell (see

Figure 16). For pure method get the uninterpreted and interpreted functions are as follows.

function getUnInt (h: heap) (p: reference): int

function getInt (h: heap) (p: reference): int
= if h.alloct[p] = Cell then h.value[p] else 0

axiom getFrame: ∀ h h′: heap. ∀ p: reference.
agreeOnAny h h′ h′.foot[p]⇒ getUnInt h p = getUnInt h′ p

The axiom getFrame expresses the read effect rd self.foot ‘any. We omit the pre-post axiom for get
because it is trivial. The read effect is verified for getInt in the following form:

lemma framegetInt: ∀ h h′: heap. ∀ p: reference. h.alloct[p] = Cell⇒ h′.alloct[p] = Cell⇒
mem p h.foot[p]⇒ agreeOnAny h h′ h.foot[p]⇒ getInt h p = getInt h′ p

Note that this amounts to proving an interpretation θ (get) satisfies the frame condition in a

specification Θ(get), which is part of the context interpretation side condition written θ |= Φ,Θ;ψ
in rule PureLink. Aside from the read effect, we encode the pre-post condition as a contract on

getCode, though in this case there is no non-trivial postcondition. So the only thing to prove about

getCode is that its result equals that of getInt, in accord with the postcondition res = get(self ) in
the premise for get in PureLink. This is expressed as a postcondition in the contract for getCode.

predicate getInterpreted =
∀ h: heap. ∀ p: reference. h.alloct[p] = Cell⇒ getUnInt h p = getInt h p

let getCode (h: heap) (s: reference): int
requires { iInv h ∧ h.alloct[s] = Cell }
ensures { iInv h ∧ getUnInt h s = result }

=
assume { getInterpreted };
h.value[s]

let setCode (h: heap) (s: reference) (v: int): unit
requires { iInv h ∧ h.alloct[s] = Cell }
ensures { iInv h ∧ getUnInt h s = v }
writes { h.value }
ensures { ∀ p: reference. h.alloct[p] = Cell⇒

not mem p h.foot[s]⇒ agreeOnAny h (old h) (h.foot[p]) }
=

assume { getInterpreted };
h.value← set h.value s v

Owing to the assumption getInterpreted, the verification of getCode and setCode can rely on the

definition of getInt as well as its frame condition, for reasoning about getUnInt which appears in

the specifications. (Indeed, the frame condition is available both as an axiom about getUnInt and
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as a lemma about getInt.) The precondition h.alloct[s] = Cell amounts to non-nullity of s plus a
property ensured by typing of the source language. The Why3 frame condition for setCode says
that any cell’s value may be written. The postcondition following the writes clause expresses the

semantics of our finer frame condition wr self.foot ‘any.
One last feature of our Why3 model of the heap is the semantics of allocation. It is specialized to

the relevant classes, here just Cell. A previously unallocated reference is chosen nondeterministically

and its fields initialized to default values.

val newCell (h: heap): reference
ensures { (old h).alloct[result] = Unalloc }
ensures { h.alloct = Map.set (old h).alloct result Cell }
ensures { h.foot[result] = empty ∧ h.value[result] = 0 }
writes { h.alloct }

The last part of module Cell is the constructor as specified in Figure 16 and adapted to the

Why3 specification for newCell. As usual, the postcondition following the writes clause is our

fine-grained frame condition.

let init (h: heap) (s: reference): unit
requires { h.alloct[s] = Cell ∧ h.foot[s] = empty }
requires { ∀ p: reference. h.alloct[p] = Cell⇒ p , s⇒

(not mem s h.foot[p] ∧ mem p h.foot[p]) }
requires { ∀ p q: reference. h.alloct[p] = Cell⇒ h.alloct[q] = Cell⇒ p , s⇒ q , s

⇒ (p = q ∨ is_empty (inter h.foot[p] h.foot[q])) }
ensures { iInv h }
writes { h.foot}
ensures { ∀ p: reference. h.alloct[p] = Cell⇒ p , s⇒ h.alloct[p] = Cell⇒

h.foot[p] = (old h).foot[p] }
=

h.foot← set h.foot s (singleton s); ()

(The trailing ‘()’ is needed so Why3 can determine, by syntactic analysis, that the result does not

depend on ghost state.)

The last module provides a client, the framing example from the beginning of Section 1.

let main (h: heap): unit
=

assume { iInv h };
let c = newCell h in init h c;
let d = newCell h in init h d;
setCode h c 5;
setCode h d 4;
assert { iInv h };
assert { getUnInt h c = 5 }

Note the absence of an assumption connecting getUnInt with the interpretation getInt.
To verify the client and all the preceding code, the splitting tactic provided by Why3 generates

23 goals that are automatically verified using CVC4 in 3 seconds. Verification of main relies on

framing; it fails to verify if axiom getFrame is removed.
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10.2 Composite in Why3

Next we consider the example in Figure 2. To show that our approach caters for weak specifications,

we retain the under-specified contracts as in the Figure, though invariants are added in order to

verify the implementations. Where possible, our formalization uses annotations similar to those

used by Rosenberg et al. [53], to facilitate comparison.

The Reference theory for Composite is just like the one for Cell, but with type Comp instead of

Cell. Aside from the Reference theory, the Why3 file for Composite contains six modules. The first

of these modules is Heap.

type heap = {
ghost mutable alloct: map reference rtype;
mutable chrn: map reference (list reference);
mutable size: map reference int;
mutable parent: map reference reference;
ghost mutable depth: map reference int;

}

As in the Cell example, alloct is a ghost field that keeps track of allocated references and their types.
The others fields are those of class Comp. The map chrn represents list of children for a Composite

node. The main difference between our version and that of [53] is that we do not use a ghost field

for keeping track of descendants of a Composite (which required a number of invariants). Instead

we define a pure method anc which recursively computes the ancestors of a given Composite and

use it directly to reason about the ancestors of each Comp node.

As in the Cell example, our encoding includes an invariant for type safety. For integer field size
the Why3 type suffices. But for parent and chrn the Why3 type merely constrains the value to be a

reference and a list of references respectively. Typing rules of our source language ensure that the

parent is either null or allocated and of type Comp. Similarly for chrn. Unlike the Cell example,

the Composite is sufficiently complicated that we need to refer to type safety conditions in lemmas,

which are not in the scope of Why3’s data type invariants. So we define and use a predicate on

heaps, named okHeap, to express the type safety conditions.

The second module, CompInvs, defines some predicates to be used as private invariants for class

Composite. The first invariant is a relationship between a Composite and its parent and children.

In the notation of Section 2 it is defined as follows.

∀p : Comp · p , null⇒
(∀q : Comp · q ∈ p .chrn ⇒ q .parent = p)
∧(∀s : Comp · s = p .parent ⇒ p ∈ s .chrn)
∧p < p .chrn ∧ nodup p .chrn

where nodup checks that p .chrn does not have any duplicates. The second specifies the depth of

an element in the composite tree.

∀p : Comp · p , null⇒
p .depth ≥ 0

∧(p .parent = null⇔ p .depth = 0)

∧(p .parent , null⇒ p .depth = 1 + p .parent .depth)

In Why3 code, the name ptcdInv is used for the conjunction of the first two invariants. Maintaining

these two predicates as invariants helps to ensure the acyclicity of the chain of parents for any

given composite. The third invariant specifies the size field.

∀p : Comp · p , null⇒ (p .size > 0 ∧ p .size = 1 + (Σq ∈p .chrn · q .size))
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To be able to define the summation above, we need two extra functions in Why3, which are simple

recursive functions on lists and we omit them here. In Why3 code this invariant is called sizeInv.
The last part of CompInvs module is a mathematical definition of the list of ancestors, which is

the basis for the interpretation, ancInt, of method anc. Whereas we used a set for the footprint

region in Section 10.1, here we encode ancestors as a list. The reason is that we need induction on

ancestors, and the Why3 library module for finite sets is less well developed than the one for lists.

Based on the code in Fig. 2, one might like to formulate the definition as follows, for non-null

references p of type Comp.

f (p) =̂ if p .parent = null then Cons p Nil else Cons p (f (p .parent))

This makes p an ancestor of itself, as intended. However, this is a bogus definition, owing to the

possibility of cycles via parent. Indeed, Why3 rejects such a definition. Instead we define a predicate

is_loa with a list argument supporting a well founded induction. This technique is often used in

separation logic [52]. The predicate is_loa h p l says that l is the list of ancestors of p in heap h .

inductive is_loa (heap) (reference) (list reference) =
| Nil_l: ∀ h: heap, p: reference. okHeap h⇒ ptcdInv h⇒ is_loa h null Nil
| Tree: ∀ h: heap, p: reference, l: list reference. okHeap h⇒ ptcdInv h⇒

h.alloct[p] = Comp⇒ is_loa h h.parent[p] l⇒ is_loa h p (Cons p l)

The depth condition in ptcdInv rules out cyclic parent structure, so we can prove lemmas, not

shown, that the ancestor list exists and is unique. (It is our only use of the ghost field depth.) This
justifies an axiom to define function anc:

function anc (h: heap) (p: reference): (list reference)

axiom anc_def: ∀ h: heap, p: reference. okHeap h ⇒ ptcdInv h⇒ okReft h p Comp⇒
is_loa h p (anc h p)

The predicate okReft h p Comp above indicates that p is a value of type Comp, that is, p is either

null or allocated in heap h with type Comp.
The next two modules, SizeInvs andCompInduct, are collections of lemmas needed for reasoning

about the size field and ancestors function. Most of them are written using the let rec lemma

statement which is a way of expressing induction proofs in Why3.

The fifth module is Composite. For getSize the code is as follows.

function getSizeUnInt (h: heap) (s: reference): int

axiom getSizeFrame: ∀ h h′: heap, s: reference. h.alloct[s] = Comp⇒
h′.alloct[s] = Comp⇒ h.size[s] = h′.size[s]⇒ getSizeUnInt h s = getSizeUnInt h′ s

axiom getSizePrePost: ∀ h: heap, s: reference. h.alloct[s] = Comp⇒
getSizeUnInt h s = h.size[s]

function getSizeInt (h: heap) (s: reference): int =
if h.alloct[s] = Comp then h.size[s] else 0

lemma framegetSizeInt: ∀ h h′: heap, s: reference. h.alloct[s] = Comp⇒
h′.alloct[s] = Comp⇒ h.size[s] = h′.size[s]⇒ getSizeInt h s = getSizeInt h′ s
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predicate getSizeInterpreted =
∀ h: heap, p: reference. h.alloct[p] = Comp⇒ getSizeUnInt h p = getSizeInt h p

let getSizeCode (h: heap) (s: reference): int
requires{ h.alloct[s] = Comp }
ensures{ result = getSizeUnInt h s }

=
assume { ptcdInv h ∧ sizeInv h ∧ getSizeInterpreted };
h.size[s]

The axiom getSizeFrame is the read effect for getSize in terms of getSizeUnInt. Using RL effect

syntax, this is rd self.size . Lemma framegetSizeInt shows that read effect is correct for the given

interpretation. Unlike our other examples, the postcondition of getSize is nontrivial so its pre-post

axiom is included, named getSizePrePost.
For method anc there is an additional axiom, ancUnInt_type, that says its result is a region, that

is, no dangling references. (Compare with the invariant for field foot in Section 10.1). We omit the

pre-post axiom because in this case it is trivial.

function ancUnInt (h: heap) (s: reference): list reference

axiom ancUnInt_type: ∀ h: heap, p q: reference. h.alloct[p] = Comp⇒
mem q (ancUnInt h p)⇒ h.alloct[q] , Unalloc

axiom ancFrame: ∀ h h′: heap, p: reference. h.alloct[p] = Comp⇒
h′.alloct[p] = Comp⇒ (∀ q: reference. mem q (ancUnInt h p)⇒ q , null⇒
h.parent[q] = h′.parent[q])⇒ ancUnInt h p = ancUnInt h′ p

function ancInt (h: heap) (p: reference): list reference
= if h.alloct[p] = Comp then anc h p else Nil

let rec lemma frameancInt (h h′: heap) (p: reference)
requires { h.alloct[p] = Comp ∧ h′.alloct[p] = Comp }
requires { ∀ q: reference. mem q (ancInt h p)⇒ h.parent[q] = h′.parent[q] }
requires { ptcdInv h ∧ ptcdInv h′ }
ensures { ancInt h p = ancInt h′ p }
variant { length (ancInt h p) }

=
if h.parent[p] , null then
(assert { ancInt h p = Cons p (ancInt h h.parent[p]) };
ancInt_rd h h′ h.parent[p])

predicate ancInterpreted = ∀ h: heap, p: reference. okReft h p Comp⇒
ancUnInt h p = ancInt h p

let rec ancCode (h: heap) (s: reference): list reference
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requires{ h.alloct[s] = Comp }
ensures{ result = ancUnInt h s }
variant { ancUnInt h s }

=
assume { ptcdInv h ∧ sizeInv h ∧ ancInterpreted };
if h.parent[s] = null then Cons s Nil else Cons s (ancCode h h.parent[s])

The axiom ancFrame is the read effect for ancUnInt; in RL syntax, rd (self .anc())‘parent . To use

the read effect, we need to know that any reference in ancUnInt list is already allocated. But

since this function is not defined, we give this property as an axiom before its read effect, called

ancUnInt_alloc. Lemma frameancInt has an inductive proof that shows read effect is correct for

ancInt. The implementation of anc is given as a recursive function. We verify that it returns the

same list of ancestors as ancUnInt.
A private method addtosizeCode is defined after that (not shown). For a given heap h , reference

s and integer v this method just adds v to the size of ancestors of s . This method breaks sizeInv, so
clients cannot call it directly. It is only used by addCode so a full functional spec is appropriate,

which mentions private fields.

A private ghost method depthUpdate is defined after addtosizeCode. For a given heap h and

reference x this method updates the depth of x and its descendents to ensure ptcdInv h.
The last method in the Composite module is addCode.

let addCode (h: heap) (s x: reference): unit
requires { h.alloct[x] = Comp ∧ h.alloct[s] = Comp }
requires { h.parent[x] = null ∧ not (mem x (ancUnInt h s)) }
ensures { h.parent[x] = s }
writes { h.parent, h.size, h.chrn, h.depth }
ensures { ∀ p: reference. h.alloct[p] = Comp⇒
not (mem p (ancUnInt (old h) s))⇒ h.size[p] = (old h).size[p] }

ensures { ∀ p: reference. h.alloct[p] = Comp⇒ x , p⇒
h.parent[p] = (old h).parent[p] }

=
assume { ptcdInv h ∧ sizeInv h ∧ getSizeInterpreted ∧ ancInterpreted };
let l = ancCode h s in
h.chrn← set h.chrn s (Cons x h.chrn[s]);
h.parent← set h.parent x s;
depthUpdate h x;
addtosizeCode h s h.size[x];
assert{ l = ancInt h s ∧ sizeInv h ∧ ptcdInv h }

For a heap h and two references x and s , this method adds x as a child of s , provided that parent of
x is null and x is not in the ancestors of s . The effects of this method using the syntax of RL are

wr self‘any, wr self.anc()‘size and wr x .parent . Note that this method writes self.chrn ; however,
to hide the internal structure of Composite from the client, we use wr self‘any in RL. Why3 does

not have the abstraction, any, so we are forced to have h .chrn in the writes of this method. In the

body of addCode the immutable variable l is used to guide the provers to the fact that ancestors of

s are not changing. The invariants of Composite class are assumed at the beginning of body and

asserted at the end.
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The last module is ClientOfComposite containing the client from the beginning of Section 2. It

does not import CompInvs, as it relies on the public specifications of Composite and not on the

private invariants or the interpretations ancInt and getSizeInt. The client code is as follows.

let main (h: heap) (b c d: reference): unit
requires { h.alloct[b] = Comp ∧ h.alloct[c] = Comp ∧ h.alloct[d] = Comp }
requires { not mem d (ancUnInt h b) ∧ h.parent[c] = null }
requires { not (mem c (ancUnInt h b)) ∧ not mem c (ancUnInt h d) }

=
let i = getSizeCode h d in

addCode h b c;
assert { i = getSizeUnInt h d ∧ i = h.size[d] };

This uses immutable variable i, but the heap h is mutable and indeed updated by addCode. The main

point of the example is that the value of d .getSize(), computed by getSizeCode, is unchanged by

the call to addCode, and this fact can be established owing to its frame condition. The preconditions

of main reflect those of the call to add. In addition to the postcondition i = getSizeUnInt h d from

the beginning of Section 2, we prove a second postcondition: i = h.size[d]. This follows by the

pre-post axiom, getSizePrePost.
Using the module system of Why3, we make sure that this module only has access to Heap and

Composite. This means that the internal structure and the invariants of Composite class are hidden

from the client as in Figure 2. For the pure methods, the interpretations are syntactically visible in

the client module, but there is no assumption connecting them with the uninterpreted methods;

So the client verification relies only on the uninterpreted versions and their contracts. The first

postcondition (i = getSizeUnInt h d) fails to verify if the frame axiom for getSize is omitted, and

the second postcondition (i = h.size[d]) fails to verify if the pre-post axiom is omitted.

To verify the client and all the preceding code, Why3 generates 23 goals (coincidentally the

same number as for Cell). We use the splitting tactic provided by Why3 only for goals that are not

otherwise verified. Using Alt-Ergo, CVC3 and CVC4, the goals all verify, in a total of 83 seconds.

11 WEAK PURITY

In this article, a pure method’s code can have no effects except writes to local variables and non-

termination; and the associated interpretation must be total on states that satisfy the method’s

precondition. Much of the prior work on pure methods addresses weak purity which allows the

additional effect of allocation; a weakly pure method may use and even return a reference to

freshly allocated objects. This section reviews weak purity with reference to prior works. Section 12

reviews related work in connection with other topics.

The use of pure and weakly pure methods in specifications is motivated by the need for functional

abstraction and by the opportunity to leverage, for purposes of specification, pure functions that

happen to be defined as part of the program under consideration. To introduce issues raised by

weak purity we quote from the survey paper of Hatcliff et al. [29], which identifies three problems

with pure methods. One is “verifying that the method is well defined and does not lead to an

unsound axiomatization” (they cite [25] and [23] which we discuss further in Section 12). The issue

is that most reasoning systems are based on total functions whereas code can diverge. To reconcile

potential non-termination of pure methods with their use in specifications it suffices to leverage

preconditions and definedness conditions, as shown in the preceding sections of this article.

The second problem identified by Hatcliff et al. is “checking that the method really is pure, that

is, free of side effects. This is not as simple as a syntactic check for assignment statements, because
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pure method plus1(self: Cell): Cell
requires self , null ∧ I
ensures get(result) = get(plus1(self)) ∧ I
reads self.foot‘any, self.foot, alloc
writes alloc

Fig. 17. Specifications of method plus1

one wants to allow the method body to, for example, allocate new objects (perhaps an iterator

object or a string builder) and modify their state. Hence, the desired check is that of observational

purity, which says that the method may have some side effects, but it appears pure to any observer.”

(Here they cite [12, 21, 46, 55]). If the side effects are of any use, they are surely observable in the

intended context; what is meant here is any observer outside the relevant encapsulation boundary.

Observational purity has been identified decades ago [32] but has yet to be formalized in a program

logic or general verification system that handles object-based programs. For example, RLII has a

proof rule for hiding of invariants on encapsulated state but not for hiding of effects on it.

Weak purity is an attractive special case of observational purity: it applies in many practical

situations but appears to avoid the need to bring encapsulation into the picture. Put differently,

allocation in Java-like languages is an abstraction with a built-in encapsulation boundary: owing to

absence of pointer arithmetic, the state of the allocator is not observable. The most broadly relevant

kind of application is where a query method needs to allocate data structures used to compute a

result, and possibly to represent that result, in the program itself.
24
Several verification systems

allow the use of weakly pure methods in specifications [22, 23, 25, 59] with varying degrees of

justification. The current trend, however, seems to be to insist on strong purity, as in Dafny [38]

and Why3. Our analysis in this section may help explain the trend.

Allocation is one cause of Hatcliff et al.’s third problem with pure methods: they “are not

necessarily deterministic. More precisely, calling a pure method twice may yield two different

results, because the side effects supposedly not visible to observers cause the second call to start in

a slightly different state. This means that pure methods cannot be represented as mathematical

functions of their arguments and of an unchanging heap. One solution is to make the definition

of observational purity strict enough to avoid this situation; another is to allow slightly different

results and to prevent callers from assuming anything more than some sort of equivalence between

the results.” (Here citing [40]).

As an example the Java expression new Cell () == new Cell () is always false—apparently
violating reflexivity of equality! Our desugared language does not include such expressions; instead,

allocation is at the level of commands. Nonetheless the problem is still present in our language,

in which the phenomenon can be illustrated this way: the command var y , z : Cell in y :=

new Cell ; z := new Cell establishes postcondition y , z .
The idea of the first solution is to restrict programs and specifications sufficiently that it is sound

to ignore the effects. To make this precise and to justify it, a first step is to consider threaded
semantics of expressions in formulas [25]. This is just like ordinary program semantics of expres-

sions that can have side effects: to evaluate the comparison new Cell = new Cell in a state σ , first
the left argument new Cell is evaluated, yielding both a value and an updated state τ in which the

24
The other kind of application has been featured in JML, which has been designed to avoid the need for mathematical

types beyond those of the programming language itself, so in particular ubiquitous mathematical abstractions like sets and

sequences are defined by Java libraries rather than logical theories.
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second argument is evaluated. Threaded semantics is necessary to make sense of expressions in

which subexpressions can allocate. For example, consider the specification in Fig. 17 of a method

that computes the successor of Cell , as a new object. To evaluate get(plus1(y)), the evaluation of

get must be in the new state in which the reference returned by plus1(y) is allocated. In threaded

semantics, the expression plus1(y) = plus1(y) is always false. So no implementation could satisfy

the postcondition res = plus1(self ) stipulated by PureLink in Figure 14. The specification in Fig-

ure 17 tries to avoid the problem by expressing a suitable equivalence using equality of integers, as

in the second solution in the quote above.

Naumann’s semantic analysis [46] considers these issues in connection with reconciling runtime

assertion checking with static verification and shows how weakly pure expressions and assertions

do not cause problems provided the assertions are insensitive to garbage collection and differences

in allocation. As in the present paper, differences in allocation are ‘quotiented away’ in the semantics

of read effects, using refperms. (Refperms also serve as basis for defining notions of agreement for

purposes such as program equivalence [7].) However, the semantic analysis only deals with the

interface between assertions and code. In this paper we are dealing with a program logic, with

elements including definedness conditions which are also needed in verification tools.

In semantics, axiomatic or otherwise, it is not difficult to formalize the threading of state through

semantics of expressions since the heap is an explicit parameter (see Section 10). There is a price

however: by explicitly modeling the program semantics, such a formalization is partly breaking

the pun of Hoare logic, whereby program variables and expressions are directly translated to

mathematical variables and expressions.

In keeping with the source language level of abstraction, verification tools like those cited in this

article do not model garbage collection. Their specification languages, however, provide means to

refer to the currently allocated objects, e.g., for the range of quantifiers. This admits formulas that

are not garbage insensitive.

The next considerations are whether effects need to be threaded through the semantics of

formulas and the semantics of effects. Let us begin with conjunction. If formulas P and Q have

weakly pure subexpressions, should Q be evaluated in the state after P has been evaluated, that is,

threaded, or should snapback semantics be used, in which Q is evaluated in the original state?

Consider these formulas:

Pa =̂ alloc = � Pf =̂ ∀x : Cell ∈ alloc · false Pn =̂ get(make()) > 0

wheremake is a pure method that returns a new Cell . In threaded semantics, Pa ∧Pn is satisfiable

whereas Pn ∧ Pa is unsatisfiable, and mutatis mutandis for Pf and Pn—breaking the symmetry

of conjunction. Idempotence of conjunction is also broken by threaded semantics: Pa ∧ Pn is

satisfiable but (Pa ∧Pn)∧ (Pa ∧Pn) is not. Given that only boolean values flow between operands

of the propositional connectives, snapback seems plausible for those. But consider a quantified

formula ∀x : K ∈ G · Q where G is a singleton expression {p(F )} with p returning a fresh

reference; evaluation of G needs to be threaded to evaluation of Q , if the latter depends on fields

of x .
Like for expressions, a verification system can explicitly thread updates through the semantics

of the propositional connectives—but this comes at high cost. The specifier loses their ability to

interpret specifications in terms of familiar mathematical and logical notions, and the verifier loses

the ability to rely on shallow embedding of logical connectives to leverage automated theorem

provers.

One reaction to these considerations is to seek restrictions on specifications such that there is no

observable difference between threaded and snapback semantics. This is the approach taken by

Naumann [46] and Darvas and Müller [25]. In our setting, an obvious restriction is to disallow in
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formulas explicit references to the ghost variable alloc. Further restrictions are needed to preclude,

for example, calls of a pure method that returns the value of alloc. And that cannot be done in

terms of the pure method’s frame condition: any method that allocates also reads alloc, so rd alloc
does not distinguish between a method that returns a new Cell and one that returns the value of

alloc.
Let us consider a formalization of weak purity in the present framework. In the semantics

of frame conditions, effects are interpreted conjunctively: for example, see the definitions of

rlocs and wlocs, and Def. 4.3. In terms of the function rlocs, snapback semantics would define

rlocs(σ ,θ , (rdG‘f , rdH ‘g)) as rlocs(σ ,θ , rdG‘f ) ∪ rlocs(σ ,θ , rdH ‘g) which among other things

makes composition of effects symmetric and idempotent—which in turn justifies our abuse of

notation, confusing lists and sets of effects. By contrast, threaded semantics for this example would

be

rlocs(σ ,θ , (rdG‘f , rdH ‘g)) = rlocs(σ ,θ , rdG‘f ) ∪ rlocs(τ ,θ , rdH ‘g)

whereτ is the state after evaluatingG inσ . So threaded semantics complicates all notions concerning

effects.

Once threaded semantics is formalized, we can prove soundness of rules like Frame. As expected,

a formula that calls a weakly pure method cannot be framed over code that allocates, just like

formulas that explicitly mention alloc (recall equation (13)).

At the level of a judgment, say . . . ⊢ C : P { Q [ε], there are several considerations about
threading versus snapback. Definition 5.2 of valid judgment quantifies over all states σ that satisfy

P . It refers to executions of C from σ , but a threaded version would execute C in states c ′ resulting
from evaluation of P in σ . Moreover, the conditions for write effects and read effects involve

evaluating expressions in the frame condition. Should effects in these too be threaded? If so, in

which order should reads, writes, and precondition be evaluated? Finally, it is the well-formed

judgments that are of real interest, which do not depend on the meaning of pure methods outside

their preconditions—recall Definition 5.5 and the definedness formulas of Figure 5. Definedness

conditions are also checked by verifiers that allow pure methods (see Section 12). Again there is

not a single obviously right way to formulate threaded semantics of these conditions, or to connect

their evaluation with the semantics of judgments.

In connection with proof rules, consider threaded interpretation of preconditions in the semantics

of judgments. The proof rules Seq and While hinge on assertions to hold at intermediate points in

computation. In a threaded interpretation of the premises of Seq, there is a state update between

evaluation of the intermediate assertion and the second command. Yet execution of the sequenced

commands involves no such update. This is one place where wewould need commands and formulas

to be insensitive to garbage collection. In verification tools and in [46] the analog is intermediate

assert statements.

We investigated variations on threaded semantics of judgments, with the goal to characterize

well-behaved specifications for which threaded and snapback semantics are equivalent. Among

other things, we used the analysis of quasi-determinacy in Section A.1 (because the interpreta-

tion of a weakly pure method returns a set of states paired with values, and must do so quasi-

deterministically). However, it is difficult to find a useful syntactic characterization because, as

remarked above, a pure method may depend on alloc for differing reasons that are not distinguished
by its frame condition. Moreover, stating a formal result requires tedious intricate definitions of

threaded semantics that have little inherent interest.

One issue that emerges is the question what ‘garbage insensitivity’ should mean in the presence

of ghost state. Though the syntax in this article does not explicitly designate ghost state, that can

be added, and for purposes of the present discussion one can simply consider everything of type
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rgn to be ghost state. If we consider ghost variables including alloc like ordinary variables, there is

no garbage to collect. An alternative is to define garbage collection in terms of what is reachable

from non-ghost variables, and then update all rgn-typed locations by removing garbage references.

Perhaps the least obvious finding in our investigation is in connectionwith linking. Rule PureLink

relies on the equality res = m(x ) to connect the mathematical interpretationψ (m) of pure method

m with the result computed by its implementation, but that is untenable in case the result can be

a fresh reference. Nor is there a way to express, at the level of the assertion language, that the

allocations defined by the interpretationψ (m) coincide with those of the implementation. In the

literature, the connection is made by restricting the implementation to simple expressions from

which a mathematical denotation can be derived and formulated in terms amenable to SMT solvers.

For a linking rule that allows arbitrary code restricted only by frame conditions with no writes

other than wr alloc, we defined a denotational semantics of weakly pure methods (along the lines

of Definition A.6 in the Appendix). We formalized, and proved sound using snapback semantics

except for expressions, a linking rule in whichψ (m) is required to be the denotation of the method

body. Such reasoning is unsatisfactory because it violates the abstraction provided by the logic and

its assertion language.

The investigation sketched in the preceding paragraphs suggests why it is so complicated

to formulate and justify sufficient restrictions on programs and their specifications to achieve

operationally sound reasoning, even for the sequential first-order programs considered in this

article. No single approach has emerged in prior work as clearly the best, balancing simplicity

of specifications, flexibility of programming, and usable proof rules or corresponding VCs. The

obvious conclusion is that weak purity is not, after all, a useful special case of observational purity.

Leino [38] reaches the same conclusion (using ‘pure’ to mean weakly pure): “pure methods are

surprisingly complicated to get right. A major problem is that pure methods do have effects; for

example, a pure method may allocate a hashtable that it uses during its computation. . .These

problems make it tricky to provide the programming logic with the desirable illusion that pure

methods are functions. . . I conclude with a slogan: pure methods are hard, functions are easy.”

12 RELATEDWORK

Pure and weakly pure methods have been studied in the context of VC-gen for various verification

systems such as ESC/Java2, Spec#, and Eiffel. We are not aware of verification tools that support

observational purity. The formulation of pure methods in these studies is roughly like ours in

Section 10: an uninterpreted function is given a pre-post axiom and a frame axiom. The formulation

of VCs in these works does not make linking explicit.

Cok [22] explains the practical importance of pure methods for conciseness and abstraction in

specifications, specifically in the Java Modeling Language (JML), and proposes to use uninterpreted

functions to encode pure methods for VC-gen and automated theorem proving. Non-termination

and exceptional termination are considered, as well as the issue of equality test for pure methods

that return freshly allocated objects. The encodings cater for the ESC/Java2 system which does not

explicitly model the heap as such: a specialized encoding is used to achieve an effect like threaded

semantics.
25

A number of earlier works point out the importance of read effects for pure methods. Frame

axioms are explicitly featured in [40], [37], and [59].

25
Cok [22] points out that pure methods essentially subsume the notion of model field used in JML and in other specification

notations. Some related works address model fields and object invariants in connection with pure methods, but those topics

are outside the scope of our formal development and we refrain from discussing them.
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Darvas and Müller [25] introduce the term ‘weak purity’ for methods that are allowed to allocate

and return fresh objects. They formulate VCs with threaded semantics, using two uninterpreted

functions for a pure method: one for the result (constrained by what we call the pre-post axiom)

and one for the updated state. They address what are called ‘recursive specifications’ in which the

postcondition refers to the method itself, and point out the unsatisfiability of specifications like

one that says f (x ) ensures res = f (x ) + 1 (but recursive method bodies are not considered). The

VCs effectively require existence of an interpretation. The VCs are shown to be consistent even in

such cases and without restriction on the use of reference equality. That is, the assumed axioms are

consistent; it is not shown that the VCs are sound with respect to operational semantics. Rudich et

al. [54] add recursive method bodies, remove weak purity, and again show consistency of VCs.

Darvas et al. [24] investigate variations on definedness conditions in the presence of mutually

recursive pure (but not weakly pure) methods, developing a formulation that avoids exponential

blowup in formula size while remaining complete.

Darvas and Leino [23] explore the approach to weak purity in which the use of reference equality

is restricted. Leino and Müller [40] develop this further: a specification can designate a ‘similarity

relation’ to be used in formulas instead of equality, and VCs are formulated to check a relational

property like our allowed dependency but requiring similarity of the result values. These and other

works exploit ownership methodologies for framing. Leino andMüller [40] use self composition [13]

for the relational property.

Leino and Müller [39] focus on the problem that specifications may be indirectly contradictory,

as in f (x ) with postcondition res = g(x ) and g(y) with postcondition res = f (x ) + 1. They provide

means to detect dependencies like this and to check satisfiability of specifications via witnesses,

together with heuristics to find witness expressions that can be used by SMT solvers to prove

satisfiabliity of the pre-post axioms in the presence of mutually recursive pure method bodies. They

give a consistency theorem that relies on somewhat complicated well founded ordering as measure

for method calls, which is less restrictive than the syntactic restrictions in [23, 25, 54].

To cater for deriving an interpretation from the implementation, works like [25] and [59] restrict

method bodies to a single return expression. In Section 9, we show why this restriction is not

necessary.We also show the role of measures for recursion: a measure is needed to prove definedness

and correctness of interpretations derived from pure method bodies. For this purpose, measure

constraints can be added to specifications, but need not be added to specifications used by clients.

As noted in Section 1.3, contradictory postconditions of pure methods are just one of several

ways in which unsatisfiable specifications arise. Inconsistencies like the interdependent f and

g above are more likely than others to be exploited by an SMT solver if used in faulty axioms.

Reasoning under the assumption of unsatisfiable specifications is harmless, in that a component’s

verification cannot be completed if it relies on methods with unsatisfiable specifications. In our

view, checks for unsatisfiable specifications, like ‘smoke tests’ for inconsistent assumptions of other

kinds, are important practical tools, perhaps especially important in the presence of inheritance

and dynamic dispatch or other features that result in unwieldy call graphs. But such checks should

not be considered part of the VCs that serve to establish correctness of programs.

We take the Cell example from the most closely related work [59] where read effects of pure

methods are specified using a form of dynamic frames, and methods may be self-framing. They

define (and implement) a VC-generator including VCs that encode the agreement semantics of

read effects, albeit only for a pair of states in succession. That avoids the need for refperms, and

suffices for framing (see remark following Definition 6.4); but not for relational reasoning for data

abstraction and encapsulation. Unlike any of the works cited above, which only prove consistency

of axioms, they give a detailed proof of soundness with respect to transition semantics, by showing

that the VCs ensure a small-step invariant that implies correctness and fault-avoidance. Axioms are
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included (and proved sound) to exploit read effects for framing. Different from our work, the body

of a pure method is required to be a single ‘return E’ statement (and not recursive). The expression

E is visible to clients, as in our rule TranspPureLink and in several of the cited works. (Their

‘implementation axiom’ is what we call a definition axiom in Section 10.) Pure methods do not

have postconditions in the formal development, but their implementation (p.453 of the paper) does

include such postconditions. Although VCs are generated modularly, we do not discern an explicit

account of linking, or an easy adaptation to cater for hiding a pure method body or invariants from

clients.

Our use of explicit ghost state in read and write effects is directly inspired by dynamic frames,

the state-dependent frame conditions introduced by Kassios [33, 34]. Kassios’ frames predicate

f frames v (where f is an expression that denotes a location set) says that the current value of

expression v depends only on the locations in f . Thus if there are no writes to the locations denoted
by f , the meaning of v is preserved. In Kassios’ terminology, this leads to a notion of ‘disjointness

of frames’ akin to what is expressed by our Frame rule: if f is the set of locations on which x
depends, g is the set of locations on which y depends, f , g are disjoint and we know that only

f is modified, then the value of y is preserved. Kassios introduces self-framing frames to reason

about the preservation of disjointness in connection with allocation. Suppose a dynamic frame g
frames itself, that is, g frames g . In a state where f and g denote disjoint sets of locations, if the

state is modified only by writing locations in f , in such a way that the value of f does not gain any

previously allocated locations, then the disjointness of f and g is preserved.

In this article our frames are expressed in terms of reference sets (regions) and effect expressions

rather than location sets. More significantly, by contrast with Kassios’ work we can use recursively

defined and parameterized pure methods, implemented by commands, to express the sets. Kassios’

frames predicate and its properties are embodied, in our work, in the frames judgment as well as the

notion of immunity (Lemma 6.9). Apropos the connection between preservation of disjointness and

effects with our notion of framed reads, note first that in this article there is no explicit notation for

freshness. By contrast, Smans et al. use a special predicate to express freshness in postconditions,

RLI/II expresses freshness in frame conditions using an effect notation, and Kassios can directly

express freshness because his notations explicitly describe relations between initial and final states.

In this article we dropped the freshness effect from RL and instead express freshness in specifications

and judgments where the precondition ‘snapshots’ the initial value of alloc and the postcondition

asserts disjointness from that snapshot. (See, e.g., the discussion of derived rule Alloc1 and its use

in the example proofs.) Consider the following specification, using some region expressions G ,H :

G = alloc ∧ ftpt(G) ·/. η { H #G [η]

If the specifications of methods called in G have framed reads then ftpt(G) has framed reads. In

this case the initial separation ftpt(G) ·/. η ensures that the final value of G is the same as its

initial value—which entails that references in H (in the final state) are fresh. Note that H #G may

imply ftpt(G) ·/. η or some other disjointness of frames, as in Kassios’ principle described above.

The significance of freshness is that it can be used to establish disjointnesses, so it seems natural to

express freshness in terms of disjointness.

The Dafny verifier features dynamic frames in a form much like that of RL, and includes pure

(but not weakly pure) methods [38]. It is under active development and has been used in large

verification efforts such as [30]. A number of other contract languages also permit the use of pure

methods, including Eiffel, JML, Spec# [11], Chalice [41], VeriCool [57], and Viper [43].

In Section 1.3 we mention a couple of approaches to the semantics of the hypothetical correctness

judgment form (1). Yet another approach goes by using nondeterminacy to represent a single ‘worst

implementation’ of each method, akin to the ‘specification statement’ used in axiomatic semantics.
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This approach facilitates proof of second-order frame rules, and is used for that purpose by O’Hearn

et al. [47] and in RLII [5]. It is also used in the conference version of this article [6]. For read effects

it requires use of a possibilistic property in ∀∃ form: For all σ ,σ ′ and all states τ reached by C
from σ , there exists τ ′ reached by C from σ ′ such that τ agrees with τ ′. Unfortunately, this seems

incompatible with linking. In checking the details of the proof of the linking rule, we were unable

to complete the argument, because the ∀∃ property would require moving back and forth between

premiss and conclusion of the rule in an unsound way. Another significant flaw in the conference

version is in the semantics of read effects. By contrast with Def. 4.4 of allowed dependence, where

it requires agreement on locations actually written, the flawed version requires agreements on

writable locations. Because not all writables get changed, it turns out to be much easier to work

with the current definition. Nevertheless, a reconciliation with the ∀∃ semantics remains an open

problem.

Framing in separation logic encompasses read and write effects, implicitly in syntax but explic-

itly in the semantics, cf. the conditions ‘safety monotonicity’ and ‘frame property’ in O’Hearn

et al. [47] where the second-order frame rule is introduced. Permission-based separation logic

allows distinguishing read effects from write effects [19]. Parkinson and Summers [50] explore the

connection between this logic and one based on implicit dynamic frames (IDF) [58]. The IDF logic

is a first-order logic extended with accessibility predicates that mediate access to heap locations.

The logic is the foundation of Chalice, an SMT-based tool for verification of multi-threaded pro-

grams. A critical concept used to forge the connection is that of a self-framing assertion. Such an

assertion provides a thread with adequate permissions to validate the assertion: interference—that

is, potential modifications of heap locations in the assertion by other threads—is impossible. All

separation logic assertions are proven to be self-framing. Chalice, like us, uses a syntactic definition

of self-framing. In this article we are not addressing concurrency. The GRASShopper tool [51] does

not feature pure methods but it provides IDF-like notation in specifications. The VCs are generated

using an encoding with explicit ghost state for procedure footprints as reference sets; application

of the frame rule is encoded in terms of these footprints and a global alloc variable. The VCs are
decidable, for specifications based on lists or similar predicates.

Hiding is useful for modularity but difficult to achieve soundly, so the state of the art is to rely

on abstraction: a predicate whose definition is opaque in the interface can be defined internally to

be the invariant. The abstract predicates approach to data abstraction [28, 29, 44, 49] has inspired

several works that cater for SMT solvers by using ghost instrumentation to encode intensional

semantics of effects in terms of permissions. One provides a VC-generator and sketches an argument

for its operational soundness [31]. Another gives a detailed semantics and soundness proof for

VCs that provide effective reasoning about recursively defined abstract predicates and abstraction

functions [60].

Parkinson and Bierman [48] formalize abstract predicates in connection with inheritance, using

statically dispatched versus dynamic handling of predicates, but do not consider pure methods.

Inheritance and dynamic dispatch are not addressed in most of the prior literature on pure methods.

Smans et al. [59] does provide detailed rules for the encoding of inheritance, adapted from Parkinson

and Bierman [48], but it is not included in their formalization or soundness proof. The encoding

addresses dynamic binding but requires all virtual methods to be overriden in every class, effectively

requiring re-verification when inheritance is used. For modular verification it is well understood

that inheritance should usually conformwith behavioral subtyping, which requires the specification

of a method at a subtype to refine its specification at a supertype [36]. In our setting that means

refinement for specifications that include read effects. This topic is left for future work.

Bao [9] investigates behavioral subtyping with explicit frame conditions, in the setting of a

fine-grained version of region logic [10] to which we return later. Bao extends the theory of [36] to
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account for frame conditions and encapsulation, and shows modular soundness for a logic with

supertype abstraction. Bao’s thesis [9] also presents a unified fine-grained region logic that features

read effects in the style of separation logic, i.e., as permission to access locations. This is used to

establish connections between fine-grained region logic and separation logic.

Relational semantics for effects is explored by Benton et al. [17]. Their interpretation of both

read and write effects quantifies over different classes of relations that are preserved. By contrast,

other work including this article treats dependency in terms of preservation of specific relations.

Benton et al. [16] consider a denotational semantics of a region-based type and effect system that

supports observational purity. The semantics uses a novel variant of logical relations (setoids) that

allows clients of a module to validate a number of effect-based program equivalences. The encoding

of the semantics for practical use in an SMT-based verifier is not evident.

Schmitt et al. [56] define and implement rules for a form of read effect for pure methods. The

setting is the KeY tool which is based on dynamic logic [14]. Dynamic frames are expressed in

terms of location sets and the assertion language features an explicit representation of the heap.

Bao et al. [10] develop a variation on region logic in which a ‘region’ is a set of locations, and in

which conditional expressions can be used in frame conditions. With the addition of pure methods

in the present article, we get some ability to express conditional effects, e.g., the effect wr p()‘f
where pure method p returns a region and has postcondition that describes the region conditioned

on the pre-state. In RL including the present paper, sets of heap locations are expressed in terms

of reference sets (denoted by region expressions G) and image expressions like G‘f which are

in some sense rectangular. For a finite non-rectangular collection of locations we can just use

singletons, say {x0}‘f0, . . . , {xn }‘fn , but this cannot express an unbounded collection of references

with non-uniform fields. (Perhaps more likely in practice would be an unbounded collection of

array references paired with differing indexes.) Use of location sets provides a way to abstract

from field names. This is featured in Smans et al. [59]. Explicit use of fields in RL provides simple

syntactic means to establish many disjointnesses. Arguably, data groups [42] are a sufficient means

of abstracting from field names. The significance of these expressive differences is perhaps best

evaluated in connection with abstraction and information hiding.

13 CONCLUSION

We have formalized and proved sound a logic for object-based programs with dynamic allocation,

with two unusual features in correctness judgments: pure methods in formulas and read effects

in frame conditions for commands. Effects are expressed flexibly by means of state dependent

expressions typically involving ghost state. A key feature is the frame rule, which says a predicate

is preserved by a command if the predicate’s read effect is separated from the command’s write

effect. Additional features—immunity and framed reads—provide what amounts to framing of frame

conditions in sequential execution (sequences and loops). Correctness judgments include hypothe-

ses, to formalize assumed method specifications. The semantics is given in terms of conventional

operational semantics, together with partial interpetations that model axioms used in prior work on

verification conditions for pure methods. The linking rules discharge hypotheses, fully grounding

correctness proofs in the operational semantics.

One intended use of the logic is as a stepping stone towards a logic for specification and ver-

ification using observationally pure methods. Another intended use of the logic is to guide the

design and validation of semi-automated verification tools based on SMT solvers and verification

condition generators. Modular verification tools implement, in effect, linking rules, though this is

not usually explicit in the literature on VC-gen. By contrast with linking rules, other proof rules are

not directly implemented, but rather guide the design of VC-gen, as well as the design of annotation

features (loop invariants, frame conditions, and the like). For example, our results suggest that for
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reasoning about read effects of commands, frame conditions in method specifications should have

framed reads. (In the logic, however, we cannot require all judgments to have framed reads, in light

of the discussion of rules Seq and While.) Instead of imposing framed reads as a restriction on

specifications, for practical purposes it can be left implicit, as it is a syntactic closure that can be

applied automatically.

Read effects are a dependency property, for which the appropriate extensional semantics is

expressed in terms of two runs of the program. A state dependent read effect denotes a set of loca-

tions in one of the two initial states. This seeming asymmetry works in part because a correctness

judgment quantifies over all pairs of runs, and in part owing to restriction to ‘framed reads’ which

ensures symmetry where it is needed. Relational Hoare logics have been developed to reason about

dependency properties [2, 15, 61]. In ongoing work [7] we are developing a relational version of

the logic. Read effects of commands play a crucial role in that logic.
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A ADDITIONAL SOUNDNESS PROOFS

A.1 Definitions and results needed to prove soundness of ImpureLink

Were it not for our aim to be compatibly with the small step encapsulation property of RLII, we

would define correctness in terms of a denotational semantics derived from the transition semantics.

We do in fact need such a semantics for use in proving ImpureLink. The proof follows the lines

sketched at the beginning of Section 8.2, and in some ways the proof of PureLink in Section 8.3.

But for PureLink we are given a context interpretation for the method to be linked, as needed to

appeal to the premises of the rule. For ImpureLink we use the denotational semantics to construct

the interpretation needed to appeal to the premises.

Quasi-determinacy. Formalization of the denotational semantics relies on a kind of determinacy

mentioned in Sec. 1 but not explicit in the body of the paper.

Definition A.1 (
π
≈, ≊π , quasi-determinacy). Fix Γ. For Γ-states σ ,σ ′, define σ

π
≈ σ ′ to mean that

π is a total bijection from σ (alloc) to σ ′(alloc) and the states agree modulo π on all variables

and all fields of all objects. That is, Lagree(σ ,σ ′,π , locations(σ )), which under these conditions is

equivalent to Lagree(σ ′,σ ,π−1, locations(σ ′)).
For outcome sets S and S ′, i.e., S ,S ′ ∈ P([[Γ]] ∪ { }), and any partial bijection π on references,

define S ≊π S ′ (read equivalence modulo π ) to mean that

(i)  ∈ S iff  ∈ S ′,
(ii) for all states σ ∈ S and σ ′ ∈ S ′ there is ρ ⊇ π such that σ

ρ
≈ σ ′, and

(iii) S \ { } = � iff S ′ \ { } = �.
A candidate interpretation φ is quasi-deterministic if

• For every pure m , φ(m) is quasi-deterministic in the following sense: if σ
π
≈ σ ′ and v

π
∼ v ′

then φ(m)(σ , v )
π
∼ φ(m)(σ ′, v ′) where we lift

π
∼ to relate  only to itself.

• For every impure m , φ(m) is quasi-deterministic in the following sense:

–  ∈ φ(m)(σ , v ) iff φ(m)(σ , v ) = { } (fault determinacy)

– σ
π
≈ σ ′ and v

π
∼ v ′ imply φ(m)(σ , v ) ≊π φ(m)(σ

′, v ′) (state determinacy)

We refer to

π
≈ as state isomorphismmodulo π . Note that item (ii) in the definition of ≊π involves

extensions of π , whereas the relations
π
∼ and

π
≈ involve only π itself. Instantiating σ ′ := σ , v ′ := v ,

and π to be identity on σ (alloc) in the condition (state determinacy) yields that all results from a

given input are isomorphic.
26

Note that for impure m , σ
π
≈ σ ′ and v

π
∼ v ′ do not imply that φ(m)(σ , v ) and φ(m)(σ ′, v ′) have

the same cardinality; but item (iii) in the definition of ≊π ensures that one contains states iff the

other does.

The following result says that expressions and formulas respect isomorphism of states, for

candidate interpretations where the relevant methods are quasi-deterministic.

Lemma A.2. Suppose σ
π
≈ σ ′. Then [[F ]]φσ

π
∼ [[F ]]φσ

′
for any F such that φ(m) is quasi-

deterministic for every m that occurs in F . Moreover σ |=φ P iff σ ′ |=φ P for any P such that

φ(m) is quasi-deterministic for every m that occurs in P .

The proof is straightforward, by induction on F and induction on P .

26
In light of these definitions and the results to follow, we could as well replace the codomain of a impure method

interpretation, i.e., P([[Γ]] ∪ { }), by P([[Γ]]) ∪ { }. The chosen formulation helps slightly streamline a few things later.
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Lemma A.3 (qasi determinacy of transitions). Let φ be a quasi-deterministic candidate

interpretation. Then

(a) The transition relation

φ
7−→ is rule-deterministic in the sense that for every configuration

⟨C , σ , µ⟩ there is at most one applicable transition rule.

(b) No configuration has both  and a non-fault successor. That is, if ⟨C , σ , µ⟩
φ
7−→ ⟨B , τ , ν⟩

then it is not the case that ⟨C , σ , µ⟩
φ
7−→  ; and if ⟨C , σ , µ⟩

φ
7−→  then ⟨C , σ , µ⟩ has no other

successor.

(c) If σ
π
≈ σ ′ and ⟨C , σ , µ⟩

φ
7−→ ⟨D , τ , ν⟩ and ⟨C , σ ′, µ⟩

φ
7−→ ⟨D ′, τ ′, ν ′⟩ then D = D ′, ν = ν ′,

and τ
ρ
≈ τ ′ for some ρ ⊇ π .

(d) If σ
π
≈ σ ′ then ⟨C , σ , µ⟩

φ
7−→  iff ⟨C , σ ′, µ⟩

φ
7−→  .

(e) For all i , if σ
π
≈ σ ′ and ⟨C , σ , µ⟩

φ
7−→

i

⟨D , τ , ν⟩ and ⟨C , σ ′, µ⟩
φ
7−→

i

⟨D ′, τ ′, ν ′⟩ then

D = D ′, ν = ν ′, and τ
ρ
≈ τ ′ for some ρ ⊇ π .

(f) If σ
π
≈ σ ′ then ⟨C , σ , µ⟩ is a stuck context call iff ⟨C , σ ′, µ⟩ is.

(g) If σ
π
≈ σ ′ and ⟨C , σ , µ⟩

φ
7−→ ⟨D , τ , ν⟩ then ⟨C , σ ′, µ⟩

φ
7−→ ⟨D , τ ′, ν⟩ and τ

ρ
≈ τ ′, for some

τ and some ρ ⊇ π .

Apropos (f), it is only impure methods that can be stuck.

Proof. (a) Consider any ⟨C , σ , µ⟩. There is no transition in caseC ≡ skip. There is no transition
in case Active(C ) is a context call for an impure methodm with argument value v and φ(m)(σ , v ) =
�. Otherwise, by cases on Active(C ) and inspection of the rules, there is exactly one rule applicable.

In the case of context call of an impure method, this relies on Def. A.1(fault determinacy).

(b) Fault and non-fault outcomes are given by different rules, so this follows from (a).

(c) By cases on Active(C ). For any command other than context call or allocation, take ρ = π and

inspect the transition rules. For example, x .f := y changes the state by updating a field with values

that are in agreement modulo π . For the case of x := E we need that [[E ]] respects isomorphism of

states, Lemma A.2. For allocation, let ρ = {(o, o ′)} ∪ π where o, o ′ are the allocated objects. For

context call, both pure and impure, we get the result by quasi-determinacy.

(d) Similar to the proof of (c), using in particular item (i) in the definition of ≊π .
(e) By straightforward induction on i , using (c).
(f) By Def. A.1(state determinacy), and using item (iii) in the definition of ≊π .
(g) Follows from (d), (e), and (f). □

Lemma A.4. Context interpretations are quasi-deterministic.

Proof. Let Φ be a well formed context and let φ be a Φ-interpretation.
First we show that φ(m) is quasi-deterministic for every purem . The argument goes by induction

on the ordering ≺Φ used in Def. 2.2. For given m , suppose σ
π
≈ σ ′ and v

π
∼ v ′. We must show

φ(m)(σ , v )
π
∼ φ(m)(σ ′, v ′). Let P be the precondition of m and note that any methods called in P

are quasi-deterministic, by induction. So σ |=φ P iff σ ′ |=φ P by Lemma A.2. Thus φ(m)(σ , v ) =  
iff φ(m)(σ ′, v ′) =  by Def. 5.1(a). In the non-fault case we get φ(m)(σ , v )

π
∼ φ(m)(σ ′, v ′) from the

read effect, Def. 5.1(c).

For any impurem , we get fault determinacy directly from Def. 5.1(d). To show state determinacy,

suppose σ
π
≈ σ ′ and v

π
∼ v ′. We must show φ(m)(σ , v ) ≊π φ(m)(σ ′, v ′). To that end, let R be

the precondition of m . Let Ûσ =̂ [σ + x : v ] and Ûσ ′ =̂ [σ ′ + x : v ′]. Thus we have Ûσ
π
≈ Ûσ ′. By

Lemma A.2 and the quasi-determinacy of pure method interpretations (proved above), we get

Ûσ |=φ R iff Ûσ ′ |=φ R. So φ(m)(σ , v ) = { } iff φ(m)(σ ′, v ′) = { } so in the faulting case we
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have φ(m)(σ , v ) ≊π φ(m)(σ ′, v ′). For the non-faulting case, suppose Ûσ |=φ R and Ûσ ′ |=φ R.

Consider any τ ∈ φ(m)(σ , v ) and τ ′ ∈ φ(m)(σ ′, v ′). We must find ρ ⊇ π such that τ
ρ
≈ τ ′. By read

effect, Def. 5.1(f), we have Ûσ , Ûσ ′⇒τ ,τ ′ |=φ ε, rd x and Ûσ ′, Ûσ⇒τ ′,τ |=φ ε, rd x . From Ûσ
π
≈ Ûσ ′, we

have Agree( Ûσ , Ûσ ′, (ε, rd x ),π ,φ) and Agree( Ûσ ′, Ûσ , (ε, rd x ),π−1,φ). By Ûσ , Ûσ ′⇒τ ,τ ′ |=φ ε, rd x , there
exists ρ ⊇ π such that Lagree(τ ,τ ′, ρ, freshLocs( Ûσ ,τ ) ∪ written( Ûσ ,τ )). Because π is total on the

initially allocated locations (according to Ûσ
π
≈ Ûσ ′), we get that ρ is total on all the locations of

τ ,τ ′. To complete the argument for τ
ρ
≈ τ ′, it remains to get agreement on W where W =̂

locations(τ ) \ (freshLocs( Ûσ ,τ )∪written( Ûσ ,τ )). Note thatW ⊆ locations( Ûσ ). So from Ûσ
π
≈ Ûσ ′ we have

Lagree( Ûσ , Ûσ ′,π ,W ). Now we can use Lemma 6.12 to get Lagree(τ ,τ ′, ρ,W ). □

Denotational semantics. We use the outcome  to represent runtime faults (null dereference) and

also the invocation of a context method outside its specified precondition (i.e., failure of modular

correctness). For purposes of approximation, we can use the empty set of outcomes to represent

undefinedness.

Definition A.5 (approximation, ⊑). Define the approximation ordering ⊑ on outcome sets, i.e., on
P([[Γ]] ∪ { }) by

S ⊑ S ′ iff S = � or S = S ′ (42)

Functions f , f ′ of type [[Γ]] → P([[Γ]] ∪ { }) are ordered pointwise: f ⊑ f ′ iff f (σ ) ⊑ f ′(σ ) for all σ .
Similarly for method interpretations: for f , f ′ of type (σ ∈ [[Γ]]) × [[T ]]σ → P([[Γ]]∪ { }) let f ⊑ f ′

iff f (σ , v ) ⊑ f ′(σ , v ) for all σ , v . This is used to define the ordering on candidate interpretations of

a given method context Φ, i.e., θ ⊑ θ ′ iff θ (m) ⊑ θ ′(m) for all m ∈ dom (Φ).

Definition A.6 (denotation of command). SupposeC is swf in Γ and θ is a candidate interpretation
for Γ. Define [[Γ ⊢ C ]]θ to be the function of type [[Γ]] → P([[Γ]] ∪ { }) defined by

[[Γ ⊢ C ]]θ (σ ) = {τ | ⟨C , σ , _⟩
θ
7−→∗ ⟨skip, τ , _⟩} ∪ ({ } if ⟨C , σ , _⟩

θ
7−→∗  else �)

where _ is the empty method environment.

Lemma A.7 (denotation monotonic). Let θ ,φ be candidate interpretations for Γ that are

quasi-deterministic. If θ ⊑ φ then [[Γ ⊢ C ]]θ ⊑ [[Γ ⊢ C ]]φ for any C .

One way to prove this is to first connect the trace-based denotational semantics (Def. A.6) with

one defined compositionally on program syntax (e.g., see Lemma 3.3 in [3]). Instead we sketch

a different argument, which relies only on the quasi-determinacy properties of the transition

relations.

Proof. Consider any σ . We must show that either [[C ]]θ (σ ) is empty or [[C ]]φ (σ ) = [[C ]]θ (σ ).

First, we show [[C ]]θ (σ ) ⊆ [[C ]]φ (σ ). Suppose ⟨C , σ , _⟩
θ
7−→∗ ⟨D , τ , µ⟩ and ⟨D , τ , µ⟩ is terminated

or transitions to  . A simple induction shows that ⟨C , σ , _⟩
φ
7−→∗ ⟨D , τ , µ⟩ because each step can

be matched: By θ ⊑ φ, the only difference between

θ
7−→ and

φ
7−→ is on context calls, and only in

case where (for some m,υ, v ) we have θ (m)(υ, v ) = � and φ(m)(υ, v ) , �. Any context call in the

execution ⟨C , σ , _⟩
φ
7−→∗ ⟨D , τ , µ⟩ must have a non-empty outcome, which can thus be matched

by φ. Finally, if the last configuration faults via θ , it also faults via φ.

Now, we show that either [[C ]]φ (σ ) ⊆ [[C ]]θ (σ ), or [[C ]]θ (σ ) = �. Suppose that, via

φ
7−→, a

terminated configuration, or  , can be reached from ⟨C , σ , _⟩. The steps can be matched via

θ
7−→,

unless and until a configuration is reachedwhere a context call appliesθ (m)(υ, v ) butθ (m)(υ, v ) = �.

ACM Transactions on Programming Languages and Systems, Vol. 00, No. 00, Article 00. Publication date: March 2018.



A Logical Analysis for Framing 00:81

To be more precise, we have two cases. If every terminated configuration or  reached via

φ
7−→ from

⟨C , σ , _⟩ is also reached via

θ
7−→ then we have [[C ]]φ (σ ) ⊆ [[C ]]θ (σ ) and we are done. Otherwise,

suppose there is ⟨C , σ , _⟩
φ
7−→∗ ⟨D , τ , µ⟩, that leads to an outcome, but Active(D) callsm for some

v with θ (m)(τ , v ) = �, so this particular trace has no outcome via

θ
7−→. We show there are no traces

via

θ
7−→ that lead to an outcome, which proves [[C ]]θ (σ ) = �. Suppose, for the sake of contradiction,

that ⟨C , σ , _⟩
θ
7−→∗ ⟨B , υ, ν⟩ and the latter configuration is terminated or faults next. Let i be the

length of the stuck trace ⟨C , σ , _⟩
θ
7−→∗ ⟨D , τ , µ⟩ and j be the length of ⟨C , σ , _⟩

θ
7−→∗ ⟨B , υ, ν⟩. We

have i , j because ⟨D , τ , µ⟩ is non-terminated and stuck, unlike ⟨B , υ, ν⟩. If i < j then consider

the length-i prefix of the latter; say it ends at ⟨D ′, τ ′, µ ′⟩. By Lemma A.3(f), with σ ′ := σ , we have

D = D ′, µ = µ ′, and τ
π
≈ τ ′ for some π . So by Lemma A.3(e), ⟨D ′, τ ′, µ ′⟩ is stuck, contradicting

i < j . If i > j then consider the length j prefix of the first trace. By Lemma A.3(f), with σ ′ := σ ,
and Lemma A.3(e), the first trace should have terminated or faulted rather than getting stuck; again,

contradiction. □

Definition A.8 (denotation of impure method body). Suppose Φ is a swf method context in typing

context Γ and Θ is a single specification m : (x :T )R { S [η] such that Φ,Θ is swf in Γ. Suppose
B is swf as a body for m , i.e., sigs(Φ,Θ), Γ, x :T ⊢ B . Suppose φ is a candidate Φ-interpretation.
We define by induction a sequence of functions θi with domain {m} such that each θi (m) is in
(σ ∈ [[Γ]]) × [[T ]]σ → P([[Γ]] ∪ { }). Define θ0(m) as follows, for all σ ∈ [[Γ]], v ∈ [[T ]]σ :

• If σ ̸ |=φ Rx
v then θ0(m)(σ , v ) = { }

• If σ |=φ Rx
v then θ0(m)(σ , v ) = �

For i > 0 define θi (m) as follows, for all σ ∈ [[Γ]], v ∈ [[T ]]σ :

• If σ ̸ |=φ Rx
v then θi (m)(σ , v ) = { }

• If σ |=φ Rx
v then θi (m)(σ , v ) = drop(x , [[sigs(Φ,Θ), Γ, x : T ⊢ B ]]φ∪θi−1

([σ + x : v ])).

where drop(x ,−) maps −↾x over outcome sets and is defined for all τ ,S by

 ∈ drop(x ,S ) iff  ∈ S and τ ∈ drop(x ,S ) iff τ = υ↾x for some υ ∈ S

Finally, define the denotation θ by

θ (m)(σ , v ) = lubi (θi (m)(σ , v )) (43)

Note that each φ ∪ θi is a candidate interpretation of Φ,Θ, and so is φ ∪ θ .

To justify the definition, we first show that the sequence θi is an ascending chain, i.e., θi ⊑ θi+1 for

all i . The proof is by induction on i . The case θ0 ⊑ θ1 is direct from the definitions of θ0,θ1,⊑. For the
inductive step θi ⊑ θi+1, the inductive hypothesis is θi−1 ⊑ θi , which amounts to θi−1(m) ⊑ θi (m).
To prove the step, we have for any (σ , v ) that

[[sigs(Φ,Θ), Γ, x : T ⊢ B ]]φ∪θi−1
([σ + x : v ]) ⊑ [[sigs(Φ,Θ), Γ, x : T ⊢ B ]]φ∪θi ([σ + x : v ])

by Lemma A.7. So by definition of θi and θi+1 we have θi (m)(σ , v ) ⊑ θi+1(m)(σ , v ).
Notice that the least upper bound used to define θ in (43) is for an ascending chain of outcome

sets. Owing to the flat ordering on outcome sets, defined by (42), any chain consists of all empty

sets, or some empty and all the rest equal. As a direct consequence we obtain the following.

Lemma A.9. The least upper bound of the chain θi is θ . Moreover, for any (σ , v ), there is i such
that for all j ≥ i we have θ (m)(σ , v ) = θj (m)(σ , v ).
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Next, we show that each θi (m) is quasi-deterministic, provided thatφ is. The proof is by induction

on i . For θ0 it suffices that formulas respect isomorphism of states, Lemma A.2. For θi+1, using

quasi-determinacy of φ ∪ θi , we get the conditions of Lemma A.3 for

φ∪θi
7−→ . In particular, conditions

(d), (f), and (g) can be used with the definitions of [[C ]]φ∪θi and θi+1(m) to show that θi+1(m) has
the requisite properties when applied to any state,value pair.

Now we can show that φ ∪ θ is quasi-deterministic. Suppose, by Lemma A.9, that θ (m)(σ , v ) =
θi (m)(σ , v ). Then the requisite properties of θ (m)(σ , v ) hold because θi is quasi-deterministic.

The following key result says how, if B is correct and φ is a context interpretation for Φ, the θ
defined above makes φ ∪ θ be a context interpretation for Φ,Θ. (In that case, quasi-determinacy of

φ ∪ θ can be obtained via Lemma A.4.)

Lemma A.10 (context interpretation for impure). Suppose Φ,Θ is swf in Γ, where Θ is

m : (x :T )R { S [η], and suppose Φ,Θ;ψ |=Γ,x :T B : R { S [rd x ,η]. For any Φ-interpretation φ
that extendsψ , we have that φ ∪ θi from Definition A.8 is a Φ,Θ-interpretation, for all i . Moreover,

the least upper bound θ is a Φ,Θ-interpretation.

Proof. First, by induction on i we show that φ ∪ θi is a Φ,Θ-interpretation. Since φ is a context

interpretation, it is enough to show that θi (m) satisfies the conditions of Definition 5.1(d–f), taking

φ := φ ∪ θi in the Definition. For any σ ∈ [[Γ]] and v ∈ [[T ]]σ , we have the following.
Base case i = 0. All of (d), (e), and (f) are direct from the definition of θi (m).
Inductive case i > 0.

(d) If σ ̸ |=φ∪θi R
x
v then (d) is direct from the definition of θi (m). If σ |=φ∪θi R

x
v then σ |=φ Rx

v

(since m is impure). Observe that φ ∪ θi−1 is a Φ,Θ-interpretation, by induction, and it extendsψ .
So from Φ,Θ;ψ |=Γ,x :T B : R { S [rd x ,η] we get that execution of B from σ , v via φ ∪ θi−1 does

not fault; again (d) follows by definition of θi (m).
(e) We only need to consider σ , v such that σ |=φ∪θi Rx

v . Observe that φ ∪ θi−1 is a Φ,Θ-

interpretation, by induction, and it extends ψ . So from Φ,Θ;ψ |=Γ,x :T B : R { S [rd x ,η] we
get that if execution of B from σ , v via φ ∪ θi−1 terminates in a state τ then τ ↾x satisfies the

postcondition and write effect. Thus, by definition of θi (m), we get (e).
(f) Similar to the proof of (e) but considering two executions.

This finishes the proof that each φ ∪ θi is a context interpretation.
To show that φ ∪θ is a Φ,Θ-interpretation, it is enough to show that θ (m) satisfies the conditions

of Definition 5.1(d–f), taking φ := φ ∪ θ in the Definition. For each of (d), (e), and (f) the argument

goes by spelling out the condition on θ (m)(σ , v ), choosing k such that θ (m)(σ , v ) = θk (m)(σ , v )
(by Lemma A.9), and appealing to the same condition for θk (m) which is proved above. In the case

of (f) we consider two inputs, with θ (m)(σ , v ) = θk (m)(σ , v ) and θ (m)(σ
′, v ′) = θk ′(m)(σ , v ), and

choose the max of k , k ′ to complete the argument. □

Trace decomposition. The remaining lemmas needed to prove soundness of ImpureLink describe

how a trace can be decomposed into convenient segments, similar to Lemmas 8.3 and 8.4 for pure

methods.

Lemma A.11 (decomposition for impure environment methods). Let φ be a Φ-interpretation.
Suppose µ0(m) = (x : T .B ) and ⟨C0, σ0, µ0⟩ is compatible with Φ;φ, wherem < dom (φ). Suppose
⟨C0, σ0, µ0⟩

φ
7−→∗ ⟨D , τ , ν⟩. Then there is n ≥ 0 and there are configurations ⟨Ci , σi , µi ⟩, variables

zi and xi , states τi , υi and Ûσi such that for all i (0 < i ≤ n)

(1) ⟨Ci−1, σi−1, µi−1⟩
φ
7−→∗ ⟨m(zi );Ci , τi , µi ⟩ without any intermediate configurations in which

m is the active command
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(2) ⟨m(zi );Ci , τi , µi ⟩
φ
7−→ ⟨Bx

xi
; ecall(xi );Ci , υi , µi ⟩

and υi = [τi + xi :τi (zi )] (note that xi is fresh parameter names)

(3) ⟨Bx
xi
, υi , µi ⟩

φ
7−→∗ ⟨skip, Ûσi , µi ⟩ and hence by semantics

⟨Bx
xi

; ecall(xi );Ci , υi , µi ⟩
φ
7−→∗ ⟨ecall(xi );Ci , Ûσi , µi ⟩

(4) ⟨ecall(xi );Ci , Ûσi , µi ⟩
φ
7−→ ⟨Ci , σi , µi ⟩ and σi = Ûσi ↾xi

(5) ⟨Cn , σn , µn ⟩
φ
7−→∗ ⟨D , τ , ν⟩ without any completed invocations ofm —but allowing a topmost

call that is incomplete.

Lemma A.12 (decomposition for impure interpreted methods). Suppose that µ is method

environment such that m < dom (µ) and ⟨C0, σ0, µ0⟩ is compatible with Φ;φ, where m ∈ dom (φ).
Also, suppose ⟨C0, σ0, µ0⟩

φ
7−→∗ ⟨D , τ , ν⟩. Then there is n ≥ 0 and there are configurations

⟨Ci , σi , µi ⟩, variables zi and states τi such that for all i (0 < i ≤ n)

(1) ⟨Ci−1, σi−1, µi−1⟩
φ
7−→∗ ⟨m(zi );Ci , τi , µi ⟩ without any intermediate configurations in which

m is the active command

(2) ⟨m(zi );Ci , τi , µi ⟩
φ
7−→ ⟨Ci , σi , µi ⟩ and σi ∈ φ(m)(τi ,τi (zi ))

(3) ⟨Cn , σn , µn ⟩
φ
7−→∗ ⟨D , τ , ν⟩ without any completed invocations ofm —but allowing a topmost

call that is incomplete.

A.2 Soundness of the ImpureLink rule

Suppose that Θ is m : (x :T )R { S [η]. Suppose the premises of the rule are valid:

Φ,Θ;ψ |=Γ,x :T B : R { S [rd x ,η] and Φ,Θ;ψ |=Γ C : P { Q [ε] (44)

We must prove the conclusion is valid:

Φ;ψ |=Γ let m(x :T ) = B in C : P { Q [ε] (45)

That judgment is about about executions via

φ
7−→ but the premises pertain to execution via Φ,Θ-

interpretations that extendψ . For any Φ-interpretation φ that extendsψ , we will use φ ∪ θ where θ
is given by Def. A.8. Lemma A.10 says that φ ∪ θ is a Φ,Θ-interpretation. Using this interpretation,

we get the following recursion lemma.

Lemma A.13 (recursion for impure). Let x ′ not be in dom (Γ) ∪ {x }. Let Γ′ be Γ, x ′ : T . Let

σ be any Γ′-state such that σ |=ψ Rx
x ′ . Let Ûµ be any Γ′-environment such that Ûµ(m) = (x : T .B ).

Then the computation from ⟨Bx
x ′, σ , Ûµ⟩ via

φ
7−→ does not fault and if it reaches ⟨skip, τ , Ûµ⟩ then

τ ↾x ′ is in θ (m)(σ ↾x ′,σ (x ′)).

The proof of the Lemma is deferred. We proceed to prove (45).

To that end, letφ be aΦ-interpretation such thatψ ⊆ φ and letσ be a state such thatσ |=
Γ,sigs(Φ)
φ P .

We only need to consider executions from the empty environment, since by well-formedness all

method calls in C are to m or to methods let-bound within C or to methods in context Φ. For
notational clarity, let us write µ for the empty environment. To prove (45) we consider executions

from ⟨let m(x :T ) = B in C , σ , µ⟩. By transition semantics, there is a single transition from the

initial configuration as follows.

⟨let m(x :T ) = B in C , σ , µ⟩
φ
7−→ ⟨C ; elet(m), σ , Ûµ⟩

where Ûµ = [µ +m : (x : T .B )]. Any trace of C ; elet(m) corresponds step by step with a trace of C
containing a trailing elet(m) in every configuration and having exactly the same states, followed

by a final step that executes elet(m). The final step just removes m from Ûµ, which means it does
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not fault or change the state. Thus to finish the proof it is enough to prove, owing to Lemma 8.5,

the following:

(i) it is not the case that ⟨C , σ , Ûµ⟩
φ
7−→∗  ,

(ii) for any τ , if ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩ then τ |=φ Q and σ→τ |=φ ε ,

(iii) for all τ ,σ ′,τ ′,π if σ ′ |=Γφ P and Agree(σ ,σ ′, ε,π ,φ)

and ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩ and ⟨C , σ ′, Ûµ⟩

φ
7−→∗ ⟨skip, τ ′, Ûµ⟩ then there is ρ

with ρ ⊇ π , ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪
freshLocs(σ ,τ )).

We prove (i)—(iii) using the following claim.

Claim A. For all C ′,σ ′, Ûµ ′ andm-truncated trace ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩, there is

a trace ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩, where µ ′ = Ûµ ′↾m . Also, if C ′ = m(z );D for some

z ,D then σ ′ |=φ∪θ Rx
z .

(i) Suppose ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩

φ
7−→  . If the part of this trace before faulting is m-

truncated then we have ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩ by Claim A. In this case, from ⟨C ′, σ ′, Ûµ ′⟩

φ
7−→  

we have by semantics that Active(C ′) is a field access/update or a context call, and hence not a

call to m . Thus by the independence Lemma 8.1 we get ⟨C ′, σ ′, µ ′⟩
φ∪θ
7−→  . But this contradicts

validity of the correctness judgment (44) for C (instantiated by φ ∪ θ ). Now suppose that the trace

⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ is not m-truncated. From Lemma A.11 it can be decomposed as

⟨C , σ , Ûµ⟩
φ
7−→∗⟨m(z );D , τ , Ûν⟩
φ
7−→ ⟨Bx

x ′ ; ecall(x
′);D , υ, Ûν⟩ where x ′ is a fresh variable and υ is [τ + x ′:τ (z )]

φ
7−→∗⟨A; ecall(x ′);D , σ ′, Ûµ ′⟩ where C ′ is A; ecall(x ′);D
φ
7−→  

So we have ⟨Bx
x ′, υ, Ûν⟩

φ
7−→∗  . On the other hand, ⟨C , σ , Ûµ⟩

φ
7−→∗ ⟨m(z );D , τ , Ûν⟩ is anm-truncated

trace. So by Claim A, we have τ |=φ∪θ Rx
z and thus υ |=φ Rx

x ′ (using (6)), whence by Lemma A.13

⟨Bx
x ′, υ, Ûν⟩ does not fault — a contradiction. To be precise, note that υ may have additional variables

(locals and parameters) besides those of Γ, x ′ : T ; but since B does not touch them, they can be

projected out to obtain a trace to which the Lemma applies literally. So (i) is proved.

(ii) Suppose ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩. This ism-truncated, so by Claim A, we get ⟨C , σ , µ⟩

φ∪θ
7−→∗

⟨skip, τ , µ⟩. Also by the hypothesis, we have σ |=φ P . Since m is impure, |=φ∪θ is |=φ and

wlocs(σ ,φ, ε) = wlocs(σ ,φ ∪ θ , ε). So we have σ |=φ∪θ P , and again we can instantiate the premise

for C with φ ∪ θ , obtaining τ |=φ Q and σ→τ |=φ ε .

(iii) Suppose ⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨skip, τ , Ûµ⟩, ⟨C , σ ′, Ûµ⟩

φ
7−→∗ ⟨skip, τ ′, Ûµ⟩ and there is a refperm π

such that Agree(σ ,σ ′, ε,π ,φ) and σ ′ |=Γφ P . The traces arem-truncated. By Claim A, we have traces

⟨C , σ , Ûµ⟩
φ∪θ
7−→∗ ⟨skip, τ , Ûµ⟩ and ⟨C , σ ′, Ûµ⟩

φ∪θ
7−→∗ ⟨skip, τ ′, Ûµ⟩. Since rlocs(σ ,φ, ε) = rlocs(σ ,φ ∪θ , ε),

we have Agree(σ ,σ ′, ε,π ,φ ∪θ ). By the Read property of the premise for C , there is refperm ρ ⊇ π ,
such that ρ(freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )).

To prove Claim A, we consider the following claim.
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Claim B. For any n ≥ 0 we have the following. For all C0,σ0, Ûµ0,C
′,σ ′, Ûµ ′, and for

any m-truncated trace

⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C0, σ0, Ûµ0⟩

φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩

if the trace ⟨C0, σ0, Ûµ0⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ has exactly n completed topmost calls of m ,

and there is a trace ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C0, σ0, µ0⟩ then there is a trace

⟨C0, σ0, µ0⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩,

where µ0 = Ûµ0↾m and µ ′ = Ûµ ′↾m .

To prove Claim A, take ⟨C0, σ0, Ûµ0⟩ to be ⟨C , σ , Ûµ⟩. Using Claim B, from trace ⟨C , σ , µ⟩
φ
7−→∗

⟨C ′, σ ′, Ûµ ′⟩, we get trace ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩. For the second part of Claim A, suppose

C ′ is m(z );D for some z ,D . If σ ′ ̸ |=φ∪θ Rx
z then we would have ⟨C ′, σ ′, µ ′⟩

φ∪θ
7−→∗  and hence

⟨C , σ , µ⟩
φ∪θ
7−→∗  . But this would contradict the premise for C , since we assumed at the outset that

σ |=φ P . This proves Claim A.

To prove Claim B we build the needed trace via

φ∪θ
7−→, by induction on the number n of completed

topmost calls of m in the trace via

φ
7−→. Accordingly, consider an m-truncated trace

⟨C , σ , Ûµ⟩
φ
7−→∗ ⟨C0, σ0, Ûµ0⟩

φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩,

Using Lemma A.11, we obtain intermediate states τi ,υ, Ûσ ,σi and environments Ûµi (using names Ûµi
to indicate that each binds m to (x : T .B )) such that

⟨C0, σ0, Ûµ0⟩
φ
7−→∗⟨m(z1);C1, τ1, Ûµ1⟩ with no invocations of m
φ
7−→ ⟨Bx

x1

; ecall(x1);C1, υ1, Ûµ1⟩ where υ1 = [τ1 + x1:τ1(z1)] and x1 is fresh

φ
7−→∗⟨ecall(x1);C1, Ûσ1, Ûµ1⟩ where ⟨Bx

x1

, υ1, Ûµ1⟩
φ
7−→∗ ⟨skip, Ûσ1, Ûµ1⟩

φ
7−→ ⟨C1, σ1, Ûµ1⟩ where σ1 = Ûσ1↾x1

... containing n − 1 topmost invocations of m
φ
7−→ ⟨Cn , σn , Ûµn ⟩
φ
7−→∗⟨C ′, σ ′, Ûµ ′⟩. with no completed topmost invocations of m

Recall that any two configurations ⟨A, τ , Ûµ⟩ and ⟨A′, σ ′, µ⟩ are matching configurations iffA = A′,
τ = τ ′, and Ûµ = [µ +m : (x : T .B )] and hence µ = Ûµ↾m .

In accord with Lemma A.12 we will construct a trace via

φ∪θ
7−→ that looks as follows:

⟨C0, σ0, µ0⟩
φ∪θ
7−→∗⟨m(z1);C1, τ1, µ1⟩ matching the configurations above, so µ1 = Ûµ1↾m
φ∪θ
7−→ ⟨C1, σ1, µ1⟩ a single step by Lemma 8.4 (2) (∗)
... containing n − 1 additional invocations of m
φ∪θ
7−→ ⟨Cn , σn , µn ⟩
φ∪θ
7−→∗⟨C ′, σ ′, µ ′⟩ again matching configurations
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By induction on n , we prove that ⟨Ci , σi , Ûµi ⟩ and ⟨Ci , σi , µi ⟩ are matching configurations

for i = 1, 2, . . . ,n in two traces. In the base case of the induction, n = 0, all but one line of the

given decomposed trace is empty. That is, we have ⟨C0, σ0, Ûµ0⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ without any

intermediate calls ofm (but possibly a call in the last configuration). Using Lemma 8.1 we can drop

m from each environment to get a step by step matching trace ⟨C0, σ0, µ0⟩
φ∪θ
7−→∗ ⟨C ′, σ ′, µ ′⟩.

For the inductive case, n > 0, the initial steps ⟨C0, σ0, Ûµ0⟩
φ
7−→∗ ⟨m(z1);C1, τ1, Ûµ1⟩ are matched as

in the base case, up to the first invocation of m , in state τ1, environment Ûµ1, and with continuation

C1. At that point we have τ1 |=φ Qx
z1

, otherwise we can derive a contradiction: We just established

⟨C0, σ0, µ0⟩
φ∪θ
7−→∗ ⟨m(z1);C1, τ1, µ1⟩, and if τ1 ̸ |=φ∪θ Qx

z1

, then we get ⟨m(z1);C1, τ1, µ1⟩
φ∪θ
7−→  .

Furthermore, by hypothesis of the claim we have ⟨C , σ , µ⟩
φ∪θ
7−→∗ ⟨C0, σ0, µ0⟩. Putting these together

we would obtain a faulting trace from ⟨C , σ , µ⟩ via
φ∪θ
7−→. This contradicts the validity of the

correctness judgment (44) for C , which we can appeal to since σ |=φ P gives us σ |=φ∪θ P by

(6). Since τ1 |=φ Qx
z1

we get υ1 |=φ Qx
x1

. From the given trace and its decomposition, we have

⟨Bx
x1

, υ1, Ûµ1⟩
φ
7−→∗ ⟨skip, Ûσ1, Ûµ1⟩, so we have Ûσ1↾x1 ∈ θ (m)(υ1↾x1,τ1(z1)) by Lemma A.13. So by

definitions of σ1 and υ1 we have σ1 ∈ θ (m)(τ1,τ1(z1)). (Strictly speaking, if there are any extra

variables in τ1 they should be dropped from υ1 and the subsequent configurations before applying

the Lemma; then added back to the conclusion of the Lemma using the implicit coercion for

interpretations, cf. Sec. 3.2.) Now we can instantiate the transition semantics for impure call in

Fig. 9, to get ⟨m(z1);C1, τ1, µ⟩
φ∪θ
7−→ ⟨C1, σ1, µ⟩. Thus ⟨C1, σ1, Ûµ1⟩ and ⟨C1, σ1, µ1⟩ in both traces

are matching configurations.

What remains from configuration ⟨C1, σ1, Ûµ1⟩ onward is a trace with n−1 completed invocations

of m , from a configuration reachable from ⟨C , σ , Ûµ⟩. So we can apply the inductive hypothesis to

the trace ⟨C1, σ1, Ûµ1⟩
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩ to obtain the needed trace via

φ∪θ
7−→ and conclude the proof

of Claim B.

Recursion lemma. It remains to prove Lemma A.13. We just give a sketch, as most of the details

are similar to the argument for (i–iii). Here we only review the major differences. To deal with

recursion, we prove the following, which applies to σ , Ûµ etc. satisfying the hypotheses of the Lemma,

and uses depth-bounded semantics.

Main Claim For all k ≥ 0, the computation from ⟨Bx
x ′, σ , Ûµ⟩

k
via

φ
7−→, (a) does not

fault and (b) if reaches ⟨skip, τ , Ûµ⟩k then τ ↾x ′ is in θk+1(m)(σ ↾x
′,σ (x ′)).

Lemma A.13 follows directly from the Main Claim using Lemmas A.9 and 8.7, and Lemma A.10.

We proceed to prove the Main claim, by induction on k .

For the base case of k = 0 the argument of (a) is as follows. Suppose that ⟨Bx
x ′, σ , Ûµ⟩

0
φ
7−→∗

⟨C ′, σ ′, Ûµ⟩0
φ
7−→  . Since k = 0, there is no call to m in this trace before the last configuration.

So, there is a matching trace ⟨Bx
x ′, σ , Ûµ⟩

0
φ∪θ ′
7−→∗ ⟨C ′, σ ′, Ûµ⟩0, for any θ ′ such that φ ∪ θ ′ is a Φ,Θ-

interpretation. On the other hand, Active(C ′) is field access/update or context call. Thus we have

⟨C ′, σ ′, Ûµ⟩0
φ∪θ ′
7−→  . Using Lemma 8.7, we get

⟨Bx
x ′, σ , Ûµ⟩

φ∪θ ′
7−→∗ ⟨C ′, σ ′, Ûµ⟩

φ∪θ ′
7−→  

This contradicts the premise (44) for B . Thus the computation form ⟨Bx
x ′, σ , Ûµ⟩

0
via

φ
7−→ does not

fault. To prove (b) for k = 0, suppose we have ⟨Bx
x ′, σ , Ûµ⟩

0
φ
7−→∗ ⟨skip, τ , Ûµ⟩0. For abbreviation, let σ x ′

x
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be σ with x ′ renamed to x , i.e., σ x ′
x = [σ +x :σ (x ′)]↾x ′ (and the same for τ x

′

x ). By renaming each state

in the trace we get ⟨B , σ x ′
x , Ûµ⟩

0
φ
7−→∗ ⟨skip, τ x

′

x , Ûµ⟩
0
. So by definition of [[. . .]], using Lemma 8.7, we get

τ x
′

x ∈ [[sigs(Φ,Θ), Γ, x : T ⊢ B ]]φ (σ
x ′
x ) By definition of θ1(m) we get τ

x ′
x ↾x ∈ θ1(m)(σ

x ′
x ↾x ,σ

x ′
x (x ))

which simplifies to τ ↾x ′ ∈ θ1(m)(σ ↾x
′,σ (x ′)) and we are done with the base case.

To prove the inductive case k > 0, we need the following claim.

Claim A′. For all C ′,σ ′, Ûµ ′, k ′ and m-truncated trace ⟨C , σ , Ûµ⟩k
φ
7−→∗ ⟨C ′, σ ′, Ûµ ′⟩k

′

,

there is a trace ⟨C , σ , µ⟩k
φ∪θk
7−→∗ ⟨C ′, σ ′, µ ′⟩k

′

, where µ ′ = Ûµ ′↾m . Also, ifC ′ = m(z );D
for some z ,D then σ ′ |=φ∪θk Rx

z .

Using Claim A
′
and the induction hypothesis, the proof of (a) in the main claim is similar to the

argument for (i) earlier, and is omitted. To prove (b), suppose we have ⟨Bx
x ′, σ , Ûµ⟩

k
φ
7−→∗ ⟨skip, τ , Ûµ⟩k .

By Claim A
′
, we get ⟨Bx

x ′, σ , Ûµ⟩
k
φ∪θk
7−→∗ ⟨skip, τ , Ûµ⟩k . By reasoning similar to the argument above

for (b) in the base case, but using the definition of θk+1, we get τ ↾x
′ ∈ θk+1(m)(σ ↾x

′,σ (x ′)).
It remains to prove Claim A

′
. The proof follows the lines of the argument for Claim A, including

its supporting Claim B, but in place of appeals to the premise (44) for C and to Lemma A.13 for B ,

we appeal to the induction hypothesis for k − 1.

A.3 Read for While Rule

The While rule is similar to the one proved sound in [8]. Here, we only show the Read property.

While

Φ;ψ ⊢ C : P ∧ x , 0 { P [ε,wrH ‘f , rdH ‘f ] ε has framed reads

ε is P ;Φ;ψ/(ε,wrH ‘f )-immune Φ;ψ |= P ⇒ H #r wr r < ε

Φ;ψ ⊢ while x do C : P ∧ r = alloc { P ∧ x = 0 [ε, rd x ]

Let D = while x do C and η = ε, rd x . To prove Read property for this rule, consider any Φ-
interpretation φ that extendsψ . Suppose for states σ ,σ ′,τ ,τ ′ and refperm π we have

σ |=φ P ∧ r = alloc, σ ′ |=φ P ∧ r = alloc, Agree(σ ,σ ′,η,π ,φ), (46)

and

⟨D , σ , _⟩
φ
7−→∗ ⟨skip, τ , _⟩ and ⟨D , σ ′, _⟩

φ
7−→∗ ⟨skip, τ ′, _⟩.

We show that there is a refperm ρ such that ρ ⊇ π , ρ(freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′), and
Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocsσ ,τ )).
By semantics (as pointed out in Theorem 7.4 in [8]), the two traces can be decomposed into

iterations. That is, there are m,n ≥ 0 and states σ0, . . . ,σm and σ ′
0
, . . . ,σ ′n such that σ0 = σ ,

σ ′
0
= σ ′, σm = τ and σ ′n = τ

′
. And for 0 < i ≤ m and 0 < j ≤ n , we have traces

⟨C , σi−1, _⟩
φ
7−→∗ ⟨skip, σi , _⟩ and ⟨C , σ ′j−1

, _⟩
φ
7−→∗ ⟨skip, σ ′j , _⟩.

Also, we have σi (x ) , 0, σ ′j (x ) , 0, for 0 ≤ i < m and 0 ≤ j < n , and σm (x ) = 0 and σ ′n (x ) = 0.

To finish the proof, we prove the following Claim.

Claim. For all k , 0 ≤ k ≤ m , we have k ≤ n , σk |=φ P and there is a refperm ρk ⊇ π
such that rlocs(σk ,φ,η) = rlocs(σ0,φ,η) and rlocs(σ ′k ,φ,η) = rlocs(σ ′

0
,φ,η),

Agree(σk ,σ ′k , (η, rdH ‘f ), ρk ,φ) and Agree(σ ′k ,σk , (η, rdH ‘f ), ρ−1

k ,φ),
ρk (freshRefs(σ0,σk )) ⊆ freshRefs(σ ′

0
,σ ′k ),

Lagree(σk ,σ ′k , ρk ,written(σ0,σk ) ∪ freshLocs(σ0,σk )) and

Lagree(σ ′k ,σk , ρ
−1

k , freshLocs(σ
′
0
,σ ′k )).
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To prove Read, first note that from the claim we have m ≤ n and Agree(σm ,σ ′m ,η, ρm ,φ). Hence
σ ′m (x ) = σm (x ) = 0. This means that the computation starting at σ ′ stops at state σ ′m . Thusm = n .
So τ ′ = σ ′n = σ

′
m . The last statements of the claim for k = m give us

ρ(freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )),

where ρ = ρm . This finishes the soundness proof.

Proof of the claim is by induction on k . For base case of k = 0, we take ρ0 = π . From
(46), we know that Agree(σ ,σ ′,η,π ,φ). Since Φ;ψ |= P ⇒ H #r and σ |=φ P ∧ r = alloc, we
have σ0 |= H ⊆ {null}, so rlocs(σ0,φ, rdH ‘f ) = �. Thus we have Agree(σ0,σ

′
0
, (η, rdH ‘f ), ρ0,φ).

On the other hand, since ε has framed reads, η has also framed reads. So using Lemma 6.11 we

have Agree(σ0,σ
′
0
,η, ρ−1

0
,φ). With a similar argument for σ ′

0
, we get rlocs(σ ′

0
,φ, rdH ‘f ) = �. Thus

we have Agree(σ ′
0
,σ0, (η, rdH ‘f ), ρ−1

0
,φ). We also have ρ0(freshRefs(σ0,σ0)) ⊆ freshRefs(σ ′

0
,σ ′

0
),

Lagree(σ0,σ
′
0
,π ,written(σ0,σ0)∪freshLocs(σ0,σ0)) and Lagree(σ ′0,σ0,π

−1, freshLocs(σ ′
0
,σ ′

0
), because

written(σ0,σ0) = freshRefs(σ0,σ0) = freshRefs(σ ′
0
,σ ′

0
) = �.

To prove the induction step for k , 0, we assume that the claim holds for k − 1. Since k , 0 we

have σk−1(x ) , 0 (by semantics). From induction hypothesis for k − 1, we know that

Agree(σk−1,σ
′
k−1
, (η, rdH ‘f ), ρk−1,φ) and Agree(σ ′k−1

,σk−1, (η, rdH ‘f ), ρ−1

k−1
,φ) (47)

Thus σ ′k−1
(x ) , 0. This means k ≤ n , i.e., the computation starting from state σ ′

0
has at least k

iterations. Since η is ε, rd x , the agreement (47) implies

Agree(σk−1,σ
′
k−1
, (ε, rwH ‘f ), ρk−1,φ) and Agree(σ ′k−1

,σk−1, (ε, rwH ‘f ), ρ−1

k−1
,φ)

So from the Read property of the premise for C in the rule, there exists refperm ρk ⊇ ρk−1 such

that

ρk (freshRefs(σk−1,σk )) ⊆ freshRefs(σ ′k−1
,σ ′k )

Lagree(σk ,σ ′k , ρk ,written(σk−1,σk ) ∪ freshLocs(σk−1,σk ))
(48)

Also, from the Write property of the premise for C , we have σk−1→σk |=φ ε,wrH ‘f , rdH ‘f .

Since ε is P ,Φ,ψ/(ε,wrH ‘f )-immune, we have η is P ,Φ,ψ/(ε,wrH ‘f )-immune. From Lemma 6.9

and induction hypothesis for k − 1, we have

rlocs(σk ,φ,η) = rlocs(σk−1,φ,η) = rlocs(σ0,φ,η). (49)

With a similar argument we get

rlocs(σ ′k ,φ,η) = rlocs(σ ′k−1
,φ,η) = rlocs(σ ′

0
,φ,η).

From Post condition of the premise for C and the induction hypothesis, we have σk |=φ P . From

side conditions Φ;ψ |= P ⇒ H #r and wr r < ε of While, using also σ0 |=φ r = alloc, we have
[[H ]]φσk ⊆ freshRefs(σ0,σk ). Thus

rlocs(σk ,φ, rdH ‘f ) ⊆ freshLocs(σ0,σk ) (50)

With a similar argument we get

rlocs(σ ′k ,φ, rdH ‘f ) ⊆ freshLocs(σ ′
0
,σ ′k ) (51)

From induction hypothesis, we have Lagree(σk−1,σ
′
k−1
, ρk−1,written(σ0,σk−1)∪freshLocs(σ0,σk−1)).

From the premise for C and (47), we have

σk−1,σ
′
k−1
⇒σk ,σ

′
k |=φ ε,wrH ‘f , rdH ‘f ,

σ ′k−1
,σk−1⇒σ ′k ,σk |=φ ε,wrH ‘f , rdH ‘f ,

Agree(σk−1,σ
′
k−1
, (ε, rwH ‘f ), ρk−1,φ) and

Agree(σ ′k−1
,σk−1, (ε, rwH ‘f ), ρ−1

k−1
,φ).

(52)
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Lemma 6.12 yields Lagree(σk ,σ ′k , ρk ,written(σ0,σk−1)∪freshLocs(σ0,σk−1)). Sincewritten(σ0,σk ) ⊆
written(σ0,σk−1)∪written(σk−1,σk ) and freshLocs(σ0,σk ) = freshLocs(σ0,σk−1)∪freshLocs(σk−1,σk ),
from (48), we have

Lagree(σk ,σ ′k , ρk ,written(σ0,σk ) ∪ freshLocs(σ0,σk )).

and from the induction hypothesis and (48) we have

ρk (freshRefs(σ0,σk )) = ρk (freshRefs(σ0,σk−1)) ∪ ρk (freshRefs(σk−1,σk ))
⊆ freshRefs(σ ′

0
,σ ′k−1

) ∪ freshRefs(σ ′k−1
,σ ′k )

= freshRefs(σ ′
0
,σ ′k )

Thus we get

Lagree(σk ,σ ′k , ρk ,written(σ0,σk ) ∪ freshLocs(σ0,σk ))
ρk (freshRefs(σ0,σk )) ⊆ freshRefs(σ ′

0
,σ ′k )

(53)

From (52) and (48), using Lemma 6.13, we get

Lagree(σ ′k ,σk , ρ
−1

k , freshLocs(σ
′
k−1
,σ ′k )) (54)

By induction hypothesis we have

Lagree(σ ′k−1
,σk−1, ρ

−1

k−1
, freshLocs(σ ′

0
,σ ′k−1

))

Using lemma 6.12 from (52), we get

Lagree(σ ′k ,σk , ρ
′, freshLocs(σ ′

0
,σ ′k−1

))

for some ρ ′ ⊇ ρ−1

k−1
. Since freshRefs(σ ′

0
,σ ′k−1

) ⊆ σ ′k−1
(alloc), any fresh references in ρ ′ are not

relevant, so we get

Lagree(σ ′k ,σk , ρ
−1

k−1
, freshLocs(σ ′

0
,σ ′k−1

))

Since the restriction of ρ−1

k to σ ′k−1
(alloc) is equal to ρ−1

k−1
, we get

Lagree(σ ′k ,σk , ρ
−1

k , freshLocs(σ
′
0
,σ ′k−1

))

Combining with (54), since freshRefs(σ ′
0
,σ ′k ) = freshRefs(σ ′

0
,σ ′k−1

) ∪ freshRefs(σ ′k−1
,σ ′k ), we have

Lagree(σ ′k ,σk , ρ
−1

k , freshLocs(σ
′
0
,σ ′k )) (55)

The remaining part of the claim is the agreements on effects. Note (47) implies

Lagree(σk−1,σ
′
k−1
, ρk−1, rlocs(σk−1,φ,η)).

From (52) and (49), using Lemma 6.12, we get Lagree(σk ,σ ′k , ρk , rlocs(σk ,φ,η)). This means

Agree(σk ,σ ′k ,η, ρk ,φ) (56)

Using Lemma 6.11, since η has framed reads, we get

Agree(σ ′k ,σk ,η, ρ
−1

k ,φ) (57)

Now, for rdH ‘f , from (50) and (53), we get

Lagree(σk ,σ ′k , ρk , rlocs(σk ,φ, rdH ‘f )) (58)

and from (51) and (55)

Lagree(σ ′k ,σk , ρ
−1

k , rlocs(σ
′
k ,φ, rdH ‘f )) (59)

So using (56) and (58) we get Agree(σk ,σ ′k , (η, rdH ‘f ), ρk ,φ) and from (57) and (59) we get

Agree(σ ′k ,σk , (η, rdH ‘f ), ρ−1

k ,φ). This finishes the proof.
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