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Abstract. A semantic definition is given for instance-based pointer con-
finement (alias control); this provides a form of encapsulation suited to
many object-oriented designs. A syntax-directed static analysis is de-
fined and proved, using a compositional semantics, to imply semantic
confinement. Previous work by the authors, reviewed here, shows that
this notion of confinement ensures a strong information-hiding property.
The language studied here has features of sequential Java including mu-
table state, private fields, dynamic binding and inheritance, recursive
classes, casts and type tests, and mutually recursive methods.

1 Introduction

One of the main benefits of object-oriented programming is information hiding
and encapsulation: classes and visibility controls offer encapsulation without sac-
rificing extensibility and flexibility. But it is well known that the unfettered use
of shared references to mutable objects is error-prone and can violate intended
encapsulation. Quite a few proposals have been made for confinement, i.e., alias
control (see, e.g., [CNP01,Boy01,VB01] and citations therein). Most proposals
have been accompanied by an intuitive explanation of a property intended to
be ensured, justified by examples and design patterns. Some proposals have in-
cluded precise definitions of syntactic conditions necessary for the property; in
some cases the conditions are impractically restrictive, which led to alternative
proposals. No “obviously right” notion has emerged, partly because it is not easy
to give precise arguments for a complex language and partly because there are
several different, if related, properties of interest.

One useful confinement property is unique, i.e., unshared, references. These
have strong properties (e.g., [Lea00,Boy01]); but for many purposes sharing is
needed. Sharing can often be confined to the scope of a module, i.e., a sealed or
closed package [Szy99], as shown in [VB01,GPV01]. This facilitates a coarse form
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of encapsulation that is quite useful, e.g., in debugging and security. Stronger and
more fine-grained confinement is needed for reasoning about specifications using
“modifies clauses” [MPH00,DLN98,LN00] and for justifying program transfor-
mations [BN02]. The present paper addresses confinement that is instance-based
in that an object of public class is viewed as owning certain objects that consti-
tute its internal representation [CPN98,CNP01,MPH00]. This form of confine-
ment is applicable to many situations in practice, but our contribution is not
just to treat this form; rather, we explore an approach, based on denotational
semantics, that can be adapted to other forms.

The literature on confinement reflects the search for confinement notions that
ensure strong properties but are not unduly restrictive or complicated. Example
programs are an essential guide in this search, as are practical considerations
to do with static checking. However, in order to find the most general and least
restrictive conditions, a complementary approach is to proceed from a desired se-
mantic property. In many cases there is a property that seems intuitively clear,
e.g., “there is exactly one object with a reference to this object”, or “objects
of a module-scoped class are encapsulated in their defining module”. But this
is not the same as a precise semantic definition. Moreover, properties such as
those just mentioned are not in themselves important. What matters are their
consequences. For example, unique references help achieve non-interference be-
tween threads without the performance penalties of locking [Lea00]. Module- and
instance-confined references provide numerous benefits of encapsulation, e.g.,
frame axioms needed for modular reasoning about mutable state [LN00,Mül01]
and behavior-preserving replacement of components [Fow99,Szy99].

In previous work [BN02], we give a semantic definition of instance-based
confinement closely related to the “ownership model” [CPN98,Mül01]. A typical
application is for container classes: A public class A serves as an interface for
an abstract collection of objects. It has private fields pointing to objects that
constitute an internal data structure providing a concrete representation. The
representation objects have some type Rep with module scope, and confinement
means that references to Rep objects cannot be leaked to clients outside the
module. Besides giving a precise notion of instance-based confinement, which
has been done before (e.g., [CPN98,Mül01]), we formalize and prove a desired
consequence: an abstraction theorem that says behavior of a client is independent
of the internal representation of an object of class A, provided that the represen-
tation objects are confined. The theorem formalizes representation independence
in terms of simulation relations which are widely used for reasoning about data
abstraction [Rey84,LV95,dRE98], secure information flow [MS92,ABHR99], pro-
gram analysis [NNH99], and program transformation [HHS93].

The present paper makes three contributions. First, we give a static analysis
of instance-based confinement. That is, we define confinement as a property of
program syntax. The definition is syntax-directed and does not require any code
annotations or flow analyses. It can be checked in linear time, and is modular:
the check for client classes is independent from the checks for A and Rep and
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their subclasses. The second contribution of the paper is a proof of soundness
for the analysis: syntactic confinement implies semantic confinement.

Perhaps the most important contribution of our work is to show how a simple
denotational semantics can be used in a straightforward way to study confine-
ment and encapsulation. Prior to our work in [BN02], it was widely believed that
small-step operational semantics was more suited to deal with the complicated
interactions between features of rich languages like Java.

The semantics directly captures the operational semantics of dynamic bind-
ing and of the heap. But it abstracts from intermediate steps of computation
and is compositional so proofs can be done by structural induction on syntax,
without secondary inductions on computation steps. Compositional proofs facil-
itate extension to additional language features [HHS93] and may be beneficial
for high-assurance applications involving mobile components [App01].

When we set out to prove the abstraction theorem [BN02], we believed that
our initial definition of confinement was an accurate formalization of the in-
tuitive notion suited to instance-based representation independence. But the
construction of a detailed proof of the abstraction theorem was instrumental in
uncovering significant errors in that definition. We also believed that the seman-
tic formulations would be useful for other purposes, and this is supported by
our experience with static analysis. The semantic definition of confinement only
needed to be strengthened slightly, but without loss of generality, in order to
serve as inductive hypothesis for the soundness proof. The analysis was defined
hand in hand with construction of the proof.

The rest of the paper is organized as follows. Sections 2–5 summarize the rel-
evant parts of our previous work [BN02]. Section 2 introduces the language and
gives the formal syntax including typing rules. Section 3 gives the formal seman-
tics. Section 4 discusses confinement and representation independence informally,
mentioning several design patterns for which instance-based confinement is suit-
able. Section 5 gives the semantic definition of confinement. Section 6 gives the
static analysis and Section 7 proves the soundness result. Section 8 assesses the
work and remaining challenges.

On first reading, it may be preferable to skip the formal typing rules an
Section 2, as well as the semantic definitions (Section 3). Readers familiar with
[BN02] can skip Sections 2 and 3 and skim Sections 4 and 5.

2 Language Syntax and Typing

The syntax is based on that of Java, with some restrictions for ease of formaliza-
tion; for example, “return” statements appear only at the end of a method, and
heap effects (new and field update) occur in commands rather than expressions.
There are a couple of minor deviations from Java, e.g., the keyword var marks
local variable declarations.
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A program consists of a collection of class declarations like the following one.

class Boolean extends Object {
bool f;
unit set(bool x){ this.f := x; return unit }
bool get(){ skip; return this.f } }

Instances of class Boolean have a private field f with the primitive type bool.
There is no constructor; fields of new objects are given their Java defaults (null,
false). Fields are considered to be private to their class and methods public: fields
are only visible to methods declared in this class, but methods are visible to all
classes. Fields are accessed in expressions of the form this.f, using “this” to
refer to the current object. In subsequent examples we omit returns for the unit
value; the singleton type, unit, corresponds to Java’s “void”. Object types are
implicitly references: assignment creates aliases and == compares references.

A convenient simplification is to preclude side effects in expressions. No such
restriction is imposed on the syntax, but the semantics discards effects of ex-
pressions, so our results are only interesting for programs that do not exploit
expression effects.

To formalize the language, we adapt some notations from Featherweight Java
[IPW99]. To avoid burdening reader with straightforward technicalities we delib-
erately confuse surface syntax with abstract syntax, and we do not distinguish
between classes and class types. We also confuse syntactic categories with names
of their typical elements. Barred identifiers like T indicate finite lists, e.g., T f
stands for a list f of field names with corresponding types T . The bar has no
semantic import; T has nothing to do with T . The grammar is based on given
sets of class names (with typical element C), field names (f), method names
(m), and variable/parameter names x including the distinguished name this.

T ::= bool | unit | C
e ::= x | e.f | e.m(e) | e==e | (C) e | null | e instanceof C | unit
S ::= x := e | x.f := e | x := new C() | e.m(e)

| if e S1 else S2 | var T x := e in S | S; S
M ::= T m(T x){S; return e}
CL ::= class C extends C { T f ; M }

Other base types, such as integers, can be treated in the same way as bool, so
we omit them for brevity.

Well formed class declarations are specified by rules [Car97] below and in
Table 1. A judgement of the form Γ ; C ` e : T says that e has type T in the
context of a method of class C, with parameters and local variables declared by
Γ . A judgement Γ ; C ` S : com says that S is a command in the same context.
A typing environment Γ is a finite function from variable names to types. To
simplify the typing rules and semantic definitions, we assume that variable names
are not re-used and are distinct from parameter names.
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Γ ; C ` x : Γx

Γ ; C ` e1 : T
Γ ; C ` e2 : T

Γ ; C ` e1==e2 : bool

Γ ; C ` null : B

Tf ∈ dfieldsC
Γ ; C ` e : C

Γ ; C ` e.f : T

mtype(m,D) = (x : T )→ T
Γ ; C ` e : D

Γ ; C ` e : U U ≤ T
Γ ; C ` e.m(e) : T

Γ ; C ` e : D B ≤ D
Γ ; C ` (B) e : B

Γ ; C ` e : D B ≤ D
Γ ; C ` e instanceof B : bool

Γ ; C ` unit : unit

x 6= this
Γ ; C ` e : T T ≤ Γ x
Γ ; C ` x := e : com

Γx = C Tf ∈ dfieldsC
Γ ; C ` e : U U ≤ T
Γ ; C ` x.f := e : com

x 6= this B ≤ Γx
Γ ; C ` x := new B( ) : com

mtype(m,D) = (x : T )→ T

Γ ; C ` e : D Γ ; C ` e : U U ≤ T
Γ ; C ` e.m(e) : com

Γ ; C ` e : bool
Γ ; C ` S1 : com Γ ; C ` S2 : com

Γ ; C ` if e S1 else S2 : com

Γ ; C ` S1 : com Γ ; C ` S2 : com

Γ ; C ` S1; S2 : com

Γ ; C ` e : U (Γ, x : T ); C ` S : com U ≤ T
Γ ; C ` var T x := e in S : com

Table 1. Typing rules for expressions and commands.

A complete program is given as a class table CT that associates each declared
class name with its declaration. The typing rules make use of auxiliary notions
that are defined in terms of CT , so the typing relation ` depends on CT but
this is elided in the notation. Because typing of each class is done in the context
of the full table, methods can be mutually recursive, and so can field types. The
rules for field access and update enforce privacy. Subsumption is built in to the
rules using the subtyping relation ≤ on T specified as follows. For base types,
bool ≤ bool and unit ≤ unit. For classes C and D, we have C ≤ D iff either
C = D or the class declaration for C is class C extends B { . . . } for some
B ≤ D.

To define some auxiliary notations, let M be in M , with

CT (C) = class C extends D { T f ; M }
M = T m(T x){S; return e}

Then we define mtype(m,C) = (x : T ) → T . For the declared fields, we de-
fine dfieldsC = T f and type(f, C) = T . To include inherited fields, we define
fieldsC = dfieldsC∪fieldsD, and assume f is disjoint from the names in fieldsD.
The undeclared class Object has no methods or fields. Note that mtype(m,C)
is undefined if m is not declared or inherited in C.
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[[bool]] = {true, false} [[unit]] = {•} [[C]] = {nil} ∪ {` | ` ∈ Loc ∧ loctype ` ≤ C}

η ∈ [[Γ ]] ⇔ dom η = dom Γ ∧ ∀x ∈ dom η . η x ∈ [[Γ x]]

s ∈ [[C state]] ⇔ doms = fieldsC ∧ ∀f ∈ fieldsC . sf ∈ [[type(f, C)]]

h ∈ [[Heap]] ⇔ dom h ⊆ Loc ∧ ∀` ∈ dom h . h` ∈ [[(loctype `) state]]

[[C, (x : T )→ T ]] = [[x : T , this : C]]→ [[Heap]]→ ([[T ]]× [[Heap]])⊥

[[MEnv ]] = (C : ClassNames) 9 (m : MethodNames) 9 [[C,mtype(m,C)]]

Table 2. Semantic domains.

A class table is well formed if each of its method declarations are well formed
according to this rule:

(x : T , this : C); C ` S : com
(x : T , this : C); C ` e : U U ≤ T
mtype(m,D) is undefined or equals (x : T )→ T

C extends D ` T m(T x){S; return e}

3 Semantics

The state of a method in execution is comprised of a heap h, which maps locations
to object states, and an environment η, which assigns locations and primitive
values to local variables and parameters. Every environment of interest includes
this which points to the target object. A command denotes a function from initial
state to either a final state or the error value ⊥.

We assume that a countable set Loc is given, along with a distinguished entity
nil not in Loc. A heap h is a finite partial function from Loc to object states.
To streamline notation, we treat object states as mappings from field names to
values. We also need to track the object’s class. This could be done using an
extra, immutable field, but for some definitions it is convenient to associate the
class with the location. We assume given a function loctype : Loc → ClassNames
such that for each C there are infinitely many locations ` with loctype ` = C.
We write locs C for {` | loctype ` = C} and locs(C↓) for {` | loctype ` ≤ C}.
We assume given an allocator function fresh such that loctype(fresh(C, h)) = C
and fresh(C, h) 6∈ domh, for all C, h. For example, if Loc = N the function
fresh(C, h) = min{` | loctype ` = C ∧ ` 6∈ domh} is an allocator.

It is straightforward to show that, as in Java, no program constructs create
dangling pointers, but it is slightly simpler to formulate the definition to allow
dangling pointers. Like cast failures, dereferences of dangling pointers and nil are
considered an error. Rather than model exceptions, we identify all errors, and
divergence, with the improper value ⊥.
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Table 2 gives the semantic domains. In addition to domains like [[T ]] and [[Γ ]]
that correspond directly to syntactic notations, we use the following domains:
[[Heap]] is the set of heaps, [[C state]] is the set of states of objects of class C,
[[MEnv ]] is the set of method environments, and [[(C, (x : T )→ T )]] is the set of
meanings for methods of class C with result T and parameters x : T .

To cater for the fixpoint semantics of recursively defined methods, each do-
main is taken to be a partially ordered set with least upper bounds of ascending
chains [DP90]. The sets [[Heap]], [[bool]], [[C]], and [[C state]] are ordered by equal-
ity. We write → for continuous function space, ordered pointwise, and X⊥ for
domain X with added bottom element ⊥. We write9 for finite partial functions.

In the formalization of confinement, we use the relation >6≤ on types defined by
T >6≤ U ⇔ T 6≤ U ∧T 6≥ U . We often exploit the properties T ≤ U ⇒ [[T ]] ⊆ [[U ]]
and T >6≤ U ⇒ [[T ]] ∩ [[U ]] = ∅.

The semantics is defined by induction on typing judgements, and for all
typings for e and S we have

[[Γ ; C ` e : T ]] ∈ [[MEnv ]]→ [[Γ ]]→ [[Heap]]→ [[T ]]⊥
[[Γ ; C ` S : com]] ∈ [[MEnv ]]→ [[Γ ]]→ [[Heap]]→ ([[Γ ]]× [[Heap]])⊥

The definitions use a metalanguage construct, let d = E1 in E2, with the
following meaning: If the value of E1 is ⊥ then that is the value of the entire
let expression; otherwise, its value is the value of E2 with d bound to the value
of E1. Function update is written, e.g., [η | x 7→ d]. In the semantics of local
variables, we write � for domain restriction: if d1 is in the domain of function d2

then d2 � d1 is the function like d2 but without d1 in its domain.

Table 3 gives the semantics of expressions and Table 4 gives the semantics
of commands. The definitions are straightforward renderings of the operational
semantics. For example, the value of e.f in state (η, h) is ⊥ if the value of e is ⊥;
otherwise, the value of e is some location ` ∈ dom h, so the object state h` is a
finite map with f ∈ dom (h`) and the value of e.f is h`f . Field update x.f := e in
state (η, h) does not change the environment; the new heap [h | ` 7→ [h` | f 7→d]]
updates h by replacing h` with the object state [h` | f 7→d] obtained by updating
field f to have the value d of e.

For method call e.m(e), the value is ⊥ unless the value of e is some ` ∈ dom h.
In that case, let d be the method meaning given by µ for method m at the
dynamic type (loctype `) of e. The result of the call is obtained by appling d to
the initial heap h and to the environment [x 7→ d, this 7→ `] where d is the list
of values of arguments e. The result, if not ⊥, is a pair (d0, h0); for method call
as expression, the value of e.m(e) is d0 (and h0 is discarded—we do not model
side effects). For method call as command, d0 is discarded and the new state is
η, h0, as the call has no effect on the environment η of the caller.
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[[Γ ; C ` x : T ]]µηh = ηx [[Γ ; C ` unit : unit]]µηh = •
[[Γ ; C ` null : B]]µηh = nil

[[Γ ; C ` e1==e2 : bool]]µηh = let d1 = [[Γ ; C ` e1 : T ]]µηh in

let d2 = [[Γ ; C ` e2 : T ]]µηh in (d1 = d2)

[[Γ ; C ` e.f : T ]]µηh = let ` = [[Γ ; C ` e : C]]µηh in

if ` 6∈ dom h then ⊥ else h`f

[[Γ ; C ` e.m(e) : T ]]µηh = let ` = [[Γ ; C ` e : D]]µηh in

if ` 6∈ dom h then ⊥ else

let (x : T )→ T = mtype(m,D) in

let d = µ(loctype `)m in

let d = [[Γ ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in d0

[[Γ ; C ` (B) e : B]]µηh = let ` = [[Γ ; C ` e : D]]µηh in

if ` ∈ dom h ∧ loctype ` ≤ B then ` else ⊥
[[Γ ; C ` e instanceof B : bool]]µηh = let ` = [[Γ ; C ` e : D]]µηh in

` ∈ dom h ∧ loctype ` ≤ B

Table 3. Semantics of expressions.

The semantics of a class table is the method environment, µ̂, given as the
least upper bound of the ascending chain µ ∈ N→ [[MEnv ]] defined as follows.

µ0 Cm = λη. λh. ⊥
µj+1 Cm = [[M ]]µj if m is declared as M in C
µj+1 Cm = µj+1Bm if m is inherited from B in C

[[M ]]µηh = let (η0, h0) = [[(x : T , this : C); C ` S : com]]µηh in
let d = [[(x : T , this : C); C ` e : T ]]µη0h0 in (d, h0)

where, in class C, we have M = T m(T x){S; return e}.

4 Confinement and Representation Independence

This expository section describes the range of application of our notion of con-
finement, and the encapsulation property that it ensures.

One way to exploit confinement is in modular reasoning about a program,
via frame axioms for delimiting the part of state that can be modified by a
command [LN00,Mül01]. Another way to exploit confinement, described below,
is in reasoning about the modularity of a program: determining what constitutes
an encapsulated representation that can be replaced by another. Put differently,
we show how confinement can be used to achieve a sound but flexible notion of
equivalence (or refinement [CN01]) of components.
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[[Γ ; C ` x := e : com]]µηh = let d = [[Γ ; C ` e : T ]]µηh in ([η | x 7→d], h)

[[Γ ; C ` x.f := e : com]]µηh = let ` = ηx in if ` 6∈ dom h then ⊥ else

let d = [[Γ ;C ` e : U ]]µηh in (η, [h | ` 7→ [h` | f 7→d]])

[[Γ ; C ` x := new B( ) : com]]µηh = let ` = fresh(B, h) in

([η | x 7→`], [h | ` 7→ [fieldsB 7→ defaults]])

[[Γ ; C ` e.m(e) : com]]µηh = let ` = [[Γ ; C ` e : D]]µηh in

if ` 6∈ dom h then ⊥ else

let (x : T )→ T = mtype(m,Γx) in

let d = µ(loctype `)m in

let d = [[Γ ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in (η, h0)

[[Γ ; C ` if e S1 else S2 : com]]µηh = let b = [[Γ ; C ` e : bool]]µηh in

if b then [[Γ ; C ` S1 : com]]µηh

else [[Γ ; C ` S2 : com]]µηh

[[Γ ; C ` S1; S2 : com]]µηh = let (η0, h0) = [[Γ ; C ` S1 : com]]µηh in

[[Γ ; C ` S2 : com]]µη0h0

[[Γ ; C ` var T x := e in S : com]]µηh = let d = [[Γ ; C ` e : U ]]µηh in

let (η0, h0) = [[(Γ, x : T ); C ` S]]µ[η | x 7→d]h in

(η0�x, h0)

Table 4. Semantics of commands.

Here is a class that uses a Boolean for its private state.

class A0 extends Object {
Boolean g;
unit init(){ this.g := new Boolean(); this.g.set(true)}
unit setg(bool x){ this.g.set(x) }
bool getg(){ return this.g.get() } }

Here is an alternative implementation of A0 that uses an isomorphic representa-
tion to achieve the same behavior.

class A0 extends Object {
Boolean g’;
unit init(){ this.g’ := new Boolean(); this.g’.set(false) }
unit setg(bool x){ this.g’.set(not(x)) }
bool getg(){ return not(this.g’.get()) } }

The following command could be a constituent of a method of a client class C.

var A0 z := null in z := new A0(); z.setg(true); b := z.getg()

The behavior of this command is independent of the encapsulated representation
of A0. Informally, this is because the client cannot access the private fields g and
g’ and the locations stored in those fields are not leaked to the client.
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More formally, we argue using a simulation relation that the behavior is the
same regardless of which implementation of A0 is chosen. First, we give a relation
between states of an object o for the first implementation and o’ for the second.
We say o and o’ are related just if either o.g = null = o’.g’ or o.g 6= null 6=
o’.g’ and o.g.f = ¬(o’.g’.f). If o,o’ are newly constructed,1 o.g = null =
o’.g’ holds. Invocations of setg and getg can and must be shown to maintain
the relation. Then it follows, by the abstraction theorem [BN02], that the relation
is maintained by all client programs. Moreover, by the identity extension lemma
[BN02], related states are identical (after garbage collection) if A0 objects are
not reachable. This implies that a client using o in a local variable2 cannot be
distinguished from one using o’.

The abstraction theorem requires that the class table be confined. For exam-
ple, suppose we add to A0 a method

Object bad(){ return this.g }

which leaks a reference to the private field g (or g’ in the second version of A0).
A client class C can exploit the leak using a (Boolean) cast:

var A0 z := null in
z := new A0(); var Boolean w := (Boolean) z.bad() in

if (w.get()) then skip else diverge;

Although the field g of A0 is not visible to methods in class C, method bad leaks
a reference to the representation object. The command diverges if the second
implementation of A0 is chosen, but does not diverge with the first implemen-
tation. Due to subtyping, such problems can occur even if class Boolean has
module scope and the client is outside the module. Another way for g to be
leaked is for it to be passed as an argument in a callback to C, e.g., if we add to
A0 a method

unit badCallback(C x){ x.m(g) }

where mtype(m,C) = (y : Boolean)→ unit.
The simulation argument given above involves a relation between a pair of

instances of class A0. In general there can be many instances, each with its own
representation objects separate from the representations of other instances. The
corresponding notion of confinement is depicted in Figure 1, which shows two
instances of an interface class A.

Our formalization of confinement is based on classes in the sense that we use
class names to distinguish between interface objects (class A), representations
(class Rep, with Rep >6≤ A) and others. We allow subclasses, e.g., representation
objects can have some subclass of Rep. This use of class names is partly an
1 In practice the relation is established by the constructors. Our omission of construc-

tors means that examples may need initialization methods and extra fields to track
whether initialization has been done. In the case at hand, nullity of g suffices.

2 If A0 is a field of the client object, that object should itself be considered the interface
and A0 part of the representation.
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Fig. 1. Confinement example. Dotted references disallowed.

artifice of formalization. In practice, the interface object might have the same
class as its representations (e.g., a simple linked list with header node), and
representations may use library classes also used by clients. But class names
are very convenient for formalization, and our formulation loses no generality
because freshly named copies of classes can be used (as in [Mül01] and, in ef-
fect, [CPN98]). An alternative formalization could use Java interfaces to give a
common super-type for all representation objects.

Module-based confinement is intended to achieve encapsulation at a larger
granularity [VB01] that is quite useful for informal practice. The information-
hiding property provided by module-based confinement is not fundamentally
different from instance-based confinement, but it appears to be more complicated
to formalize and we know of no such work for object-oriented languages.

Instance-based confinement is appropriate for many applications. The pri-
vate fields of any public class are candidates to be considered representations.
Collection classes provide examples, but many others can be found, e.g., in the
literature on design patterns [GHJV95]. For example, in the Subscribe-publish
(i.e., Observer) pattern, the set of currently subscribed clients is not accessible
to a client. The Factory, Builder, and Memento patterns also involve a sin-
gle interface object that encapsulates representation objects. In object-oriented
telecommunications middleware [Coc00], proxy objects are used to isolate clients
from services, e.g., to facilitate revocation by the provider of a shared service:
The provider cannot prevent the client from having references to the proxy, but
it can remove the proxy’s reference to the actual service object.

The leading example of [VB01], a security flaw in JDK 1.1, fits our formula-
tion of instance-based confinement. A public method of class Class was intended
to give read access to the signers of a class; but by returning a reference to the
mutable object referenced by private field signers it allowed a client class to
add a trusted principal to its signers.

Collection classes have two features that do not fit our formal definition of
confinement. First, generic collections of client objects are usually implemented
with representation objects, like tree nodes, that point back to the collected
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client objects. Second, iterator objects are like interface objects, and they point
to representations owned by another interface object. It is possible, though non-
trivial, to admit such patterns [CPN98,Mül01,CNP01].

5 Semantic Definition of Confinement

This section gives the semantic definition of confinement3 and some basic prop-
erties thereof. We use notation for heaps adapted from the pointer logic of
[IO01,Rey01].

Confinement requires that in every state the heap can be partitioned as
shown in Figure 1, for which we write hOut ∗ hA1 ∗ hRep1 ∗ hA2 ∗ hRep2. Each
object of class A is in a heap hAi and the corresponding hRepi contains its
representation objects; hOut contains all other objects. Beware that we use multi-
letter identifiers like hA that beg to be (wrongly) parsed as an application h A
of h to A.

Definition 1. An admissible partition of heap h is a set of pairwise disjoint
heaps hOut , hA1, hRep1, . . . , hAk, hRepk with h = hOut ∗ hA1 ∗ hRep1 ∗ . . . ∗ hAk ∗
hRepk and for all i • domhAi ⊆ locs(A↓) and size(domhAi) = 1

• domhRepi ⊆ locs(Rep↓)
• domhOut ∩ (locs(A↓) ∪ locs(Rep↓)) = ∅

A heap may have several admissible partitions, e.g., if there are inaccessible Rep
objects. The definitions and results do not depend on choice of partition.

We say heaps h1 and h2 are disjoint if domh1 ∩ domh2 = ∅. Let h1 ∗ h2 be
the union of h1 and h2 if they are disjoint, and undefined otherwise. To say that
no objects in h1 contain references to objects in h2, we define

h1 6; h2 ⇔ ∀` ∈ domh1 . rng(h1 `) ∩ domh2 = ∅

To say that no objects in h1 except for the ones pointed to by fields f contain
references to objects in h2, we define

h1 6;f h2 ⇔ ∀` ∈ domh1 . rng((h1 `)�f) ∩ dom h2 = ∅

Definition 2 (Confined heap). Let g be the list of private fields of class A.
Heap h is confined, written conf h, iff h has an admissible partition such that
for all i, j with i 6= j we have • hOut 6; hRepi

• hRepi 6; hOut
• hAi ∗ hRepi 6; hAj ∗ hRepj
• hAi 6;g hRepi

3 To obtain an inductive hypothesis for the soundness proof, we strengthen the defini-
tion from that needed in [BN02], as follows. Definition 2 restricts references from A
to Rep objects to be via the private fields of A. Definition 3 adds constraint (c), and
confinement for environments and expressions of Rep methods (which are ensured
by (c)). For conf µ, we add that the initial environment is confined in the final heap.
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The definition imposes the restrictions of Figure 1 and, because we are concerned
with private fields of class A, it requires that references from an A object to its
representation be via those fields only.

For a program to be confined, it must preserve confinement of heaps. To
formalize this notion, we must say what it is for environments to be confined. This
leads to corresponding conditions for method environments, expressions, and
commands: essentially, they preserve confinement of the heap and environment.
In the case of method call this is difficult to formalize in purely semantic terms
so we appeal to a restriction on method signatures.

Definition 3 (Confined signature). Suppose mtype(m,C) = (x : T ) → T
where m is a method declared or inherited in class C. We say the signature of
m is confined in C provided

(a) C ≤ A ⇒ T >6≤ Rep ∧ T >6≤ A ∧ T >6≤ Rep
(b) C 6≤ A ∧ C 6≤ Rep ⇒ T >6≤ Rep
(c) C ≤ Rep ⇒ (U ≤ A ∨ U ≤ Rep) for all U ∈ T .

The restrictions may appear rather strong, but similar constraints are im-
posed, in various ways, in the literature. We have not found non-trivial examples
that are confined but do not meet these constraints.

Recall that we consider only public methods. Restriction (a) precludes exam-
ples like methods bad and badCallback in Section 4. Moreover, for a client to
pass an A-reference to an A-object o would lead to a violation of heap confine-
ment unless the reference is to o itself or o makes no use of it. In (b), restriction
T 6≤ Rep is clearly necessary, as passing a Rep-reference to a client violates
confinement. The reverse, T 6≥ Rep, is more questionable; e.g., it disallows pa-
rameters of type Object for client methods. The restriction can probably be
avoided by using more complicated semantic conditions and, for the static anal-
ysis, some form of flow analysis. But the syntactic restriction is in keeping with
the use of types in the formulation of confinement. Many uses of Object are
considered undesirable, as they relenquish the benefits of typing, but they are
unavoidable in the absence of parametric polymorphism. Future versions of Java
will include parametric polymorphism and preliminary work indicates that our
results extend easily to polymorphism as it is found in GJ [BOSW98].

We say a class C is non-rep provided C >6≤ Rep.

Definition 4 (Confined class table). Class table CT is confined iff (a) the
signature of every method in every class is confined, and (b) for every non-rep
C and every T m(T x){S; return e} in CT (C), it is the case that S, e, and all
constituents thereof are confined (see Table 5).

Proposition 1. If CT is confined, and no methods are inherited in Rep from
any B > Rep, then its semantics, µ̂, is confined; that is, conf µ̂.

The proof is omitted. It is similar to one in [BN02] but also using Definition 3(c).
The condition on inheritance deals with a problem that can be handled using

“anonymous methods” as in [VB01], but that appears to require code annota-
tions which we prefer to avoid in this paper.
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Environment η is confined for C and h, written conf C η h, iff the following holds.

C 6≤ Rep ∧ C 6≤ A ⇒ rng η ∩ locs(Rep↓) = ∅

C < A ⇒ rng η ∩ locs(Rep↓) = ∅ ∧ rng η ∩ locs(A↓) = {η this}
C = A ⇒ rng η ∩ (locs(Rep↓) ∪ locs(A↓)) ⊆ dom(hRepj ∗ hAj)

for some partition and some j with dom(hAj) = {η this}
C ≤ Rep ⇒ rng η ∩ Loc ⊆ dom(hRepj ∗ hAj)

for some partition and some j with η this ∈ dom(hRepj)

Method environment µ is confined, written conf µ, iff
(i) for all non-rep C, and all m,h, η, if conf h and conf C η h then

µCmηh 6= ⊥ ⇒ let (d, h0) = µCmηh in conf h0 ∧ d 6∈ locs(Rep↓) ∧ conf C η h0

and (ii) for all C ≤ Rep, and all m,h, η, if conf h and conf C η h then

µCmηh 6= ⊥ ⇒ let (d, h0) = µCmηh in
conf h0 ∧ conf C η h0 ∧ (d ∈ Loc ⇒ d ∈ dom(hRepj ∗ hAj))
for some partition and j with η this ∈ dom(hRepj).

For commands, we say, for non-rep C, that Γ ; C ` S : com is confined iff for any
confined h, µ and η confined in C, h:

[[Γ ; C ` S : com]]µηh 6= ⊥ ⇒ let (η0, h0) = [[Γ ; C ` S : com]]µηh in
conf h0 ∧ conf C η0 h0

For expressions, for non-rep C 6≤ A we say Γ ; C ` e : T is confined iff for any confined
h, µ, and η confined in C, h:

[[Γ ; C ` e : T ]]µηh 6= ⊥ ⇒ [[Γ ; C ` e : T ]]µηh 6∈ locs(Rep↓)

For non-rep C < A we say Γ ; C ` e : T is confined iff for any confined h, µ, and η
confined in C, h:

[[Γ ; C ` e : T ]]µηh 6= ⊥ ⇒ let d = [[Γ ; C ` e : T ]]µηh in
d 6∈ locs(Rep↓) ∧ (d ∈ locs(A↓) ⇒ d = η this)

For C = A, we say Γ ; A ` e : T is confined iff for any confined h, µ, and η confined in
A, h:

[[Γ ; A ` e : T ]]µηh 6= ⊥ ⇒ let d = [[Γ ; A ` e : T ]]µηh in
d ∈ (locs(A↓) ∪ locs(Rep↓)) ⇒ d ∈ dom(hRepj ∗ hAj)
for some partition and j with dom(hAj) = {η this}.

For C ≤ Rep, we say Γ ; C ` e : T is confined iff for any confined h, µ, and η confined
in C, h:

[[Γ ; C ` e : T ]]µηh 6= ⊥ ⇒ let d = [[Γ ; C ` e : T ]]µηh in
d ∈ Loc ⇒ d ∈ dom(hRepj ∗ hAj)
for some partition and j with η this ∈ dom(hRepj).

Table 5. Confinement of environments, commands, and expressions.

14



6 Static Analysis

The static analysis is a syntactic specification of confinement for designated
classes A,Rep. It is defined in a style similar to that of typing rules. The analy-
sis is applied only to a well-formed class table, i.e., one whose class declarations
are well-formed according to the rules in Section 2. A class table is syntactically
confined iff all method declarations in all classes are syntactically confined, i.e.,
the bodies of the methods (comprising commands and expressions) are syntac-
tically confined.

We write Γ ; C � e : T to signify syntactic confinement for an expression e
typable as Γ ; C ` e : T . The analysis is defined in a compositional manner in
Table 6. For example, the analysis declares e.f confined provided e, a constituent
of e.f , is. Likewise e.m(e) is syntactically confined provided both constituents
e and e are. A consequence of compositionality is that it is straightforward to
implement a modular check for syntactic confinement. We write Γ ; C � S to
signify syntactic confinement for a command S typable as Γ ; C ` S : com.

The crux of the analysis is the constraints on types for field update, new, and
method call expressions. To confine x.f := e in a class C we need to guarantee
that if C ≤ A then the field f of the object in the heap is not updated to contain
a reference to a different A-object as this will break confinement. So we force the
type of e to be incomparable to A. To confine x := new B() in a class C we need
to guarantee that if C is a proper subclass of A, or C is an outsider (i.e, C 6≤ A
and C 6≤ Rep) then it has no direct access to Rep-objects; hence the requirement
B 6≤ Rep. Moreover, if C ≤ A, then it cannot create a reference to a different A
object as this will break confinement; hence the requirement B 6≤ A. For method
call expressions, if the caller is an A object, it is useless for the result to be any
A object but itself. To impose this on the signature of all public methods would
be too restrictive, so the analysis requires T >6≤ A for the result type of methods
called from C ≤ A.

Definition 5 (Syntactically confined class table). Class table CT is syn-
tactically confined, written �CT , iff for all classes C and all method declarations
in CT (C) we have C � T m(T x){S; return e} as defined in Table 6.

7 Soundness

The main theorem says that the static analysis is sound: that is, if the analysis
declares a class table to be syntactically confined and the signature of every
method is confined then the class table is semantically confined via the definitions
in Section 5.

Theorem 1 (Soundness of static analysis for confinement). If �CT and
every method signature in CT is confined then CT is confined.
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Γ ; C � x : Γx

Γ ; C � e1==e2 : bool

Γ ; C � null : B

Γ ; C � e : C

Γ ; C � e.f : T

mtype(m,D) = (x : T )→ T
C ≤ A ⇒ T >6≤ A
Γ ; C � e : D Γ ; C � e : U

Γ ; C � e.m(e) : T

Γ ; C � e : D

Γ ; C � (B) e : B
Γ ; C � e instanceof B : bool

x 6= this
Γ ; C � e : T

Γ ; C � x := e

C ≤ A ⇒ U >6≤ A
Γ ; C � e : U

Γ ; C � x.f := e

C 6= A ⇒ B 6≤ Rep
C ≤ A ⇒ B 6≤ A
Γ ; C � x := new B( )

Γ ; C � e : D Γ ; C � e : U

Γ ; C � e.m(e)

Γ ; C � S1 Γ ; C � S2

Γ ; C � if e S1 else S2

Γ ; C � S1 Γ ; C � S2

Γ ; C � S1; S2

Γ ; C � e : U (Γ, x : T ); C � S

Γ ; C � var T x := e in S

(x : T , this : C); C � S (x : T , this : C); C � e : U

C � T m(T x){S; return e}

Table 6. Static analysis for confined expressions, commands, and method declarations.

Proof. Condition (a) for confinement of CT requires that every method signature
is confined, which we have by hypothesis. It remains to show (b), for which it
suffices to show that for all non-rep C and all A, method bodies and constituents
of method bodies occurring in these classes are confined.

Assume �CT . Then for all classes C and all method declarations
T m(T x){S; return e} in CT (C) we have C�T m(T x){S; return e}. By the
static analysis we have (x : T , this : C); C�S and (x : T , this : C); C�e : U . By
Lemma 1 and Lemma 2 below we get that e and S, respectively, are confined.
By induction on the definition of �, syntactic confinement of an expression or
command implies syntactic confinement of its constituents. That all constituents
of e and S are confined now follows from the definition of � by inductively
applying Lemma 1 and Lemma 2.

Lemma 1. If every method signature in CT is confined and Γ ; C � e : T then
Γ ; C ` e : T is confined, for all Γ, e, T and all non-rep C.

Proof. Go by induction on Γ ; C � e : T and by cases on C. Assume conf h,
conf µ, conf C η h and every method signature in CT is confined. Assume that
an admissible partition of h is given. Also let d = [[Γ ; C ` e : T ]] and assume
that d 6= ⊥ (the case d = ⊥ is immediate).

For C 6≤ A, we must show that d 6∈ locs(Rep↓). For C < A, we must show
that d 6∈ locs(Rep↓) and that d ∈ locs(A↓) ⇒ d = η this. For C = A, we must
show d ∈ (locs(A↓) ∪ locs(Rep↓)) ⇒ d ∈ dom(hAj ∗ hRepj) for some j with
dom(hAj) = {η this}.
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We consider a few cases below; the remaining cases are in Appendix A of the
extended version of the paper [BN].

Cast expression: Recall the semantic definition.

[[Γ ; C ` (B) e : B]]µηh = let ` = [[Γ ; C ` e : D]]µηh in
if ` ∈ dom h ∧ loctype ` ≤ B then ` else ⊥

As we assume d 6= ⊥, we have d = `. If C 6≤ A, since Γ ; C � (B) e : B we have
Γ ; C � e : D, therefore, by induction on e we have ` 6∈ locs(Rep↓). If C < A,
then by induction on e we have ` 6∈ locs(Rep↓) and (` ∈ locs(A↓) ⇒ ` = η this).
If C = A, then by induction on e we have (` ∈ (locs(A↓) ∪ locs(Rep↓)) ⇒ ` ∈
dom(hAj ∗ hRepj) for some j with dom(hAj) = {η this}. In each case, these are
the conditions required for confinement of expression (B) e in class C.

Method call as an expression:

[[Γ ; C ` e.m(e) : T ]]µηh = let ` = [[Γ ; C ` e : D]]µηh in
if ` 6∈ dom h then ⊥ else
let (x : T )→ T = mtype(m,D) in
let d = [[Γ ; C ` e : U ]]µηh in
let (d0, h0) = µ(loctype `)m[x 7→ d, this 7→ `]h in d0

We assume ` ∈ dom h, as otherwise d = ⊥, and d = d0 6= ⊥.
First we consider the case of C < A or C 6≤ A. Since Γ ; C � e : D, by

induction on e we have ` 6∈ locs(Rep↓). Let η′ = [x 7→ d, this 7→ `]. We claim
that conf (loctype `)η′ h; then, we have by definition conf µ that d 6∈ locs(Rep↓).
It remains to prove the claim, for which we go by cases on loctype ` (recall that
loctype ` 6≤ Rep).

(i) loctype ` < A: By confined method signature, Definition 3(a), we have T >6≤
Rep and T >6≤ A, so d 6∈ locs(Rep↓) and d 6∈ locs(A↓). Now conf (loctype `)η′h⇔
(rng η′ ∩ locs(Rep↓) = ∅) ∧ (rng η′ ∩ locs(A↓) = {η′ this}). And, rng η′ ∩
locs(Rep↓) = {d, `} ∩ locs(Rep↓) = ∅, since d 6∈ locs(Rep↓) and ` 6∈ locs(Rep↓).
And, (rng η′ ∩ locs(A↓)) = {d, `} ∩ locs(A↓) = {`} = {η′ this}.

(ii) loctype ` 6≤ A: By confined method signatures, Definition 3(b), we have
T >6≤ Rep, so d 6∈ locs(Rep↓). Now conf (loctype `) η′ h ⇔ (rng η′ ∩ locs(Rep↓) =
∅). And, rng η′ ∩ locs(Rep↓) = {d, `} ∩ locs(Rep↓) = ∅, since d 6∈ locs(Rep↓)
and ` 6∈ locs(Rep↓).

(iii) loctype ` = A: Then by confined method signatures, T >6≤ A and T >6≤ Rep,
so d 6∈ locs(A↓) and d 6∈ locs(Rep↓). Now conf (loctype `) η′ h ⇔ rng η′ ∩
(locs(Rep↓) ∪ locs(A↓)) ⊆ dom(hAj ∗ hRepj) for some j where dom(hAj) =
{η′ this} = {`}. And rng η′ ∩ (locs(Rep↓) ∪ locs(A↓)) = {d, `} ∩ (locs(Rep↓) ∪
locs(A↓)) = {`} ⊆ dom(hAj ∗ hRepj), for some j and dom(hAj) = {η′ this} =
{`}.

Having proved d 6∈ locs(Rep↓) in each case, we are done with the case C 6≤ A.
For C < A we also need to show d ∈ locs(A↓) ⇒ d = η this. But the analysis
for method call as expression stipulates C ≤ A ⇒ T >6≤ A, so d 6∈ locs(A↓) and
we are done for C 6= A.
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For C = A, we must show d ∈ (locs(A↓) ∪ locs(Rep↓)) ⇒ d ∈ dom(hAj ∗
hRepj) for some j with dom(hAj) = {η this}. We go by cases on loctype `. For
loctype ` 6≤ Rep, we have d 6∈ locs(A↓) by the analysis (C ≤ A ⇒ T >6≤ A), and
d 6∈ locs(Rep↓) by the same argument as above.

It remains to consider C = A and loctype ` ≤ Rep. We claim conf (loctype `)η′h.
Then by conf µ and loctype ` ≤ Rep we have d ∈ dom(hRepj ∗ hAj) for the j
with η′ this ∈ dom(hRepj). Now by confinement of e at C = A, this must be
the same j for which {η this} = dom(hAj), so d ∈ dom(hAj ∗ hRepj) as re-
quired. Now we prove the claim conf (loctype `) η′ h, that is, we show rng η′ ∩
Loc ⊆ dom(hAj ∗ hRepj) where j is as above. By confinement of the signa-
ture of m, Definition 3(b), rng η′ ∩ Loc = rng η′ ∩ (locs(A↓) ∪ locs(Rep↓). Now
rng η′ = d, ` and ` ∈ dom(hRepj). By confinement of e and induction, we have
d ∩ (locs(A↓) ∪ locs(Rep↓)) ⊆ dom(hAj ∗ hRepj).

Lemma 2. If every method signature in CT is confined and Γ ; C � S then
Γ ; C ` S : com is confined, for all Γ, S and non-rep C.

Proof. Go by induction on Γ ; C � S and by cases on C. Assume conf h,
conf µ, conf C η h and every method signature in CT is confined. Also as-
sume [[Γ ; C ` S : com]] 6= ⊥ and let (η0, h0) = [[Γ ; C ` S : com]]. We must show
conf h0 and conf C η0 h0. We consider a few cases below; remaining cases are in
Appendix B of the extended version of the paper [BN].

Field Update:

[[Γ ; C ` x.f := e : com]]µηh = let ` = ηx in if ` 6∈ dom h then ⊥ else
let d = [[Γ ;C ` e : U ]]µηh in (η, [h | ` 7→ [h` | f 7→d]])

As we consider the non-⊥ case, we have η0 = η and h0 = [h | ` 7→ [h` | f 7→d]].
If C 6≤ A, then since conf C η h we have rng η ∩ locs(Rep↓) = ∅. Hence

` 6∈ locs(Rep↓). Also, ` 6∈ locs(A↓) since Γx = C. By the analysis, Γ ; C � e : U ,
hence by Lemma 1, d 6∈ locs(Rep↓).

We proceed to show conf h0 for the case C 6≤ A. Since h is confined, there
exists an admissible partition of h such that (hOut∗hA1∗hRep1∗. . .) = h. Clearly,
` ∈ dom(hOut); and, by confinement of h, hOut 6; hRepi. So we can partition h0

exactly as we partitioned h: hOut 6; hRepi still holds because d 6∈ locs(Rep↓).
Finally, note that conf C η0 h0 follows from conf C η h..

If C < A, then since conf C η h we have, rng η ∩ locs(Rep↓) = ∅ and
rng η ∩ locs(A↓) = {η this}. Hence ` 6∈ locs(Rep↓) and if ` ∈ locs(A↓) then
` = η this. By the analysis, Γ ; C�e : U , hence by Lemma 1, d 6∈ locs(Rep↓) and
(d ∈ locs(A↓) ⇒ d = η this). By analysis, however, U >6≤ A, hence d 6∈ locs(A↓).

We proceed to show conf h0 in the case C < A. Since h is confined, there
exists an admissible partition of h such that (hOut ∗ hA1 ∗ hRep1 ∗ . . .) = h.
Clearly, ` ∈ dom(hOut) or ` ∈ dom(hAi) for some i. In the former case, we
proceed as in the case for C 6≤ A and, using rng η ∩ locs(Rep↓) = ∅, show
conf h0 and conf C η0 h0. In the latter case, since rng η∩ locs(A↓) = {η this}, we
have ` = η this. We argue that h0 can be partitioned the same as h. Since h is
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confined, we have, i 6= j ⇒ (hAi ∗ hRepi) 6; (hAj ∗ hRepj). This implication still
holds for h0 because d 6∈ locs(Rep↓) and d 6∈ locs(A↓). Moreover, the condition
hAi 6;g hRepi is still maintained by h0, since by visibility, f is not in the private
fields g of A. Finally, note that conf C η0 h0 follows from conf C η h.

If C = A, then since conf A η h we have, rng η ∩ (locs(A↓) ∪ locs(Rep↓)) ⊆
dom(hAj ∗ hRepj) for some j where dom(hAj) = {η this}. Since Γ x = A, there-
fore, ` ∈ locs(A↓); hence ` 6∈ locs(Rep↓) and ` ∈ dom(hAj) for some j with
` = η this. Since Γ ; A � e : U , by induction on e we have, d ∈ (locs(A↓) ∪
locs(Rep↓)) ⇒ d ∈ dom(hAk ∗ hRepk) for some k where dom(hAk) = {η this}.

By the analysis, U >6≤ A. Hence d 6∈ locs(A↓). Suppose d ∈ locs(Rep↓).
Then d ∈ dom(hRepk) for some k; choose the corresponding partition hAk so
that d ∈ dom(hAk ∗ hRepk) with dom(hAk) = {η this}. Hence k = j. So to
show conf h0, it suffices to partition the heap exactly as h; because C = A, by
visibility, f ∈ g, so hAj 6;f hRepj follows for any f ∈ g. Now conf A η h0 by
definition of confinement for η.

Now suppose d 6∈ locs(Rep↓). Then to show conf h0, it suffices to partition
the heap exactly as h, noting that d ∈ dom(hOut). And, conf A η h0 follows by
definition of confinement for η.

Assigning new:

[[Γ ; C ` x := new B( ) : com]]µηh = let ` = fresh(B, h) in
([η | x 7→`], [h | ` 7→ [fieldsB 7→ defaults]])

Then η0 = [η | x 7→ `] and h0 = [h | ` 7→ [fieldsB 7→ defaults]]. In each case we
construct a partition h0 = hOut ′ ∗ hA′1 ∗ hRep′1 . . ..

If C 6≤ A, then we have by the analysis that B 6≤ Rep. Because rng (h0`) ∩
Loc = ∅ (by definition of defaults), and h is confined, it follows that h0 is
confined using hOut ′ = [hOut | ` 7→ [fieldsB 7→ defaults]] and the rest of the
partition unchanged. Now conf Cη0h0 ⇔ rng η0∩locs(Rep↓) = ∅. And, rng η0∩
locs(Rep↓) = ({`} ∩ locs(Rep↓)) ∪ (rng η ∩ locs(Rep↓)) = {`} ∩ locs(Rep↓) = ∅

by assumption conf C η h and since ` 6∈ locs(Rep↓) from B 6≤ Rep.
If C < A, then we have by the analysis that B 6≤ A. Because rng (h0`)∩Loc =

∅, and h is confined, it follows that h0 is confined, where again the new partition
adds ` to hOut . Now conf C η0 h0 ⇔ (rng η0 ∩ locs(Rep↓) = ∅) ∧ (rng η0 ∩
locs(A↓) = {η0 this}). And, rng η0∩locs(Rep↓) = ∅ using the same reasoning as
for case C 6≤ A. Now (rng η0∩locs(A↓)) = {`}∩locs(A↓)∪(rng(η � x)∩locs(A↓)).
But since B 6≤ A, we have {`} ∩ locs(A↓) = ∅ and since conf C η h, we have
rng η ∩ locs(A↓) = {η this}. And η this = η0 this because x 6= this by typing.

If C = A, let j be such that {η this} = dom(hAj). Define the new partition
by cases on B. If B ≤ Rep, define hRep′j = [hRepj | ` 7→ [fieldsB 7→ defaults]]
and the rest the same as for the given partition of h. If B 6≤ Rep, define hOut ′ =
[hOut | ` 7→ [fieldsB 7→ defaults]] and again the rest the same. (Note that B 6≤
A by the analysis.) Now conf h0 follows since conf h and rng (h0`) ∩ Loc =
∅. To show conf A η0 h0, first note that conf A η h holds by assumption, so
rng η ∩ (locs(A↓) ∪ locs(Rep↓)) ⊆ dom(hAj ∗ hRepj). Now conf A η0 h0 ⇔
rng η0∩(locs(A↓)∪locs(Rep↓)) ⊆ dom(hA′k∗hRep′k) for some k and dom(hA′k) =
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{η0 this}. By typing rule, x 6= this, hence η0 this = η this. Choose k = j. Now
rng η0 ∩ (locs(A↓) ∪ locs(Rep↓)) = ({`} ∩ (locs(A↓) ∪ locs(Rep↓))) ∪ (rng(η �
x) ∩ (locs(A↓) ∪ locs(Rep↓))) = ({`} ∩ locs(Rep↓)) ∪ (rng(η � x) ∩ (locs(A↓) ∪
locs(Rep↓))), since by the analysis B 6≤ A. Now if ` 6∈ locs(Rep↓), the result
conf A η0 h0 follows from assumption conf A η h as we chose hRep′j = hRepj . If
` ∈ locs(Rep↓), then rng η0 ∩ (locs(A↓) ∪ locs(Rep↓)) ⊆ dom(hAj ∗ hRep′j) and
dom(hAj) = {η0 this}, as we chose hRep′j = [hRepj | ` 7→ [fields B 7→ defaults]].

8 Discussion

We have given a static analysis, in the style of a typing system, for a form
of instance-based confinement. The language studied includes mutable state,
private fields, dynamic binding and inheritance, subsumption, casts and type
tests, mutually recursive classes and mutually recursive methods.

Although earlier proposals for instance-based confinement were not formally
justified and were unacceptably restrictive, recent proposals have been presented
with precise typing systems [CPN98,CNP01,Mül01] and are even more general
than ours, e.g., they allow controlled references out of representation objects.
Unlike other work, our analysis does not require code annotations, but some an-
notations are likely needed for more refined and flexible notions of confinement.

We have proved that the static analysis ensures a semantically defined con-
finement property. Such a result is also proved in [CPN98], and argued as well
in [CNP01,Mül01]. The semantic property is somewhat implicit in [Mül01], as
that work is primarily concerned with a verification logic.

Although our proofs are somewhat intricate, complete details can be given
in the space of a few pages despite the richness of the language. Operational
semantics seems to require more complicated and less modular proofs. However,
the importance of confinement has become quite clear and its formal study is
immature so a variety of approaches need to be explored. We are particularly
interested in modular checking of self-certifying mobile code [App01], for which
purpose compositionality is important and annotation requirements should be
minimized.

The central novelty of our work is that our analysis ensures a semantic con-
finement property that in turn has been proved to ensure an encapsulation prop-
erty that is an end in itself: representation independence. A very different prop-
erty, soundness of frame axioms, is proved in [LN00] and [Mül01] using forms of
instance-based confinement. Our semantics and proof techniques appear robust
and suited to proving such results as well.

In future work we plan to address additional language features such as con-
currency, protected fields, private and protected methods, interface types, para-
metric polymorphism and modules. We also plan to treat more sophisticated
notions of confinement, and to make a connection with capabilities or privileges
as in [BNR01,CNP01]. The results in [BN02] already encompass the privilege-
based access control system of Java.
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