
State Based Ownership, Reentrance, and Encapsulation

Anindya Banerjee1,� and David A. Naumann2,��

1 Kansas State University, Manhattan KS 66506 USA
ab@cis.ksu.edu

2 Stevens Institute of Technology, Hoboken NJ 07030 USA
naumann@cs.stevens.edu

Abstract. A properly encapsulated data representation can be revised for refac-
toring or other purposes without affecting the correctness of client programs and
extensions of a class. But encapsulation is difficult to achieve in object-oriented
programs owing to heap based structures and reentrant callbacks. This paper
shows that it is achieved by a discipline using assertions and auxiliary fields to
manage invariants and transferrable ownership. The main result is representation
independence: a rule for modular proof of equivalence of class implementations.

1 Introduction

You are responsible for a library consisting of many Java classes. While fixing a bug
or refactoring some classes, you revise the implementation of a certain class in a way
that is intended not to change its observable behavior, e.g., an internal data structure is
changed for reasons of performance. You are in no position to check, or even be aware
of, the many applications that use the class via its instances or by subclassing it. In
principle, the class could have a full functional specification. It would then suffice to
prove that the new version meets the specification. In practice, full specifications are
rare. Nor is there a well established logic and method for modular reasoning about the
code of a class in terms of the specifications of the classes it uses, without regard to
their implementations or the users of the class in question [20] (though progress has
been made). One problem is that encapsulation, crucial for modular reasoning about
invariants, is difficult to achieve in programs that involve shared mutable objects and
reentrant callbacks which violate simple layering of abstractions. Yet complicated heap
structure and calling patterns are used, in well designed object-oriented programs, pre-
cisely for orderly composition of abstractions in terms of other abstractions.

There is an alternative to verification with respect to a specification. One can attempt
to prove that the revised version is behaviorally equivalent to the original. Of course
their behavior is not identical, but at the level of abstraction of source code (e.g., modulo
specific memory addresses), it may be possible to show equivalence of behavior. If any
specifications are available they can be taken into account using assert statements.

There is a standard technique for proving equivalence [18, 24]: Define a coupling
relation to connect the states of the two versions and prove that it has the simulation

� Supported in part by NSF grants CCR-0209205, ITR-0326577, and CCR-0296182.
�� Supported in part by NSF grants CCR-0208984, CCF-0429894, and by Microsoft Research.

A.P. Black (Ed.): ECOOP 2005, LNCS 3586, pp. 387–411, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

388 A. Banerjee and D.A. Naumann

property, i.e., it holds initially and is preserved by parallel execution of the two versions
of each method. In most cases, one would want to define a local coupling relation for
a single pair of instances of the class, as methods act primarily on a target object (self)
and the island of its representation objects; an induced coupling for complete states is
then obtained by a general construction. A language with good encapsulation should
enjoy an abstraction or representation independence theorem that says a simulation for
the revised class induces a simulation for any program built using the class. Suitable
couplings are the identity except inside the abstraction boundary and an identity exten-
sion lemma says simulation implies behavioral equivalence of two programs that differ
only by revision of a class. Again, such reasoning can be invalidated by heap shar-
ing, which violates encapsulation of data, and by callbacks, which violate hierarchical
control structure.

There is a close connection between the equivalence problem and verification: ver-
ification of object oriented code involves object invariants that constrain the internal
state of an instance. Encapsulation involves defining the invariant in a way that protects
it from outside interference so it holds globally provided it is preserved by the methods
of the class of interest. Simulations are like invariants over two copies of the state space,
and again modular reasoning requires that the coupling for a class be independent from
outside interference. The main contribution of this paper is a representation indepen-
dence theorem using a state-based discipline for heap encapsulation and control of
callbacks.

Extant theories of data abstraction assume, in one way or another, a hierarchy of
abstractions such that control does not reenter an encapsulation boundary while already
executing inside it. In many programming languages it is impossible to write code that
fails to satisfy the assumption. But it is commonplace in object oriented programs for
a method m acting on some object o to invoke a method on some other object which
in turn leads to invocation of some method on o —possibly m itself— while the initial
invocation of m is in progress. This makes it difficult to reason about when an object’s
invariant holds [20, 25]; we give an example later.

There is an analogous problem for reasoning with simulations. In previous work [2]
we formulated an abstraction theorem that deals with sharing and is sound for programs
with reentrant callbacks, but it is not easy to apply in cases where reentrant callbacks
are possible. The theorem allows the programmer to assume that all methods preserve
the coupling relation when proving simulation, i.e., when reasoning about parallel ex-
ecution of two versions of a method of the class of interest. This assumption is like
verifying a procedure implementation under the assumption that called procedures are
correct. But the assumption that called methods preserve the coupling is of no use if the
call is made in an uncoupled intermediate state. For the examples in [2], we resort to
ad hoc reasoning for examples involving callbacks.

In a recent advance, [6, 21] reentrancy is managed using an explicit auxiliary (or
ghost) field inv to designate states in which an object invariant is to hold. Encapsulation
is achieved using a notion of ownership represented by an auxiliary mutable field own.
This is more flexible than type-based static analyses because the ownership invariant
need only hold in certain flagged states. Heap encapsulation is achieved not by disal-
lowing boundary-crossing pointers but by limiting, in a state-dependent way, their use.

State Based Ownership, Reentrance, and Encapsulation 389

Reasoning hinges on a global program invariant that holds in all states, using inv fields
to track which object invariants are temporarily not in force because control is within
their encapsulation boundary. When inv holds, the object is said to be packed; a field
may only be updated when the object is unpacked.

In this paper we adapt the inv/own discipline [6, 21]1 to proving class equivalence
by simulation. The inv fields make it possible for an induced coupling relation to hold at
some pairs of intermediate states during parallel execution of two alternative implemen-
tations. This means that the relation-preservation hypothesis of the abstraction theorem
can be used at intermediate states even when the local coupling is not in force. So per-
method modular reasoning is fully achieved. In large part the discipline is unchanged,
as one would hope in keeping with the idea that a coupling is just an invariant over two
parallel states. But we have to adapt some features in ways that make sense in terms
of informal considerations of information hiding. The discipline imposes no control on
field reads, only writes, but for representation independence we need to control reads as
well. The discipline also allows ownership transfer quite freely, though it is not trivial
to design code that correctly performs transfers. For representation independence, the
transfer of previously-encapsulated data to clients (an unusual form of controlled “rep
exposure” [16]) is allowed but must occur only in the code of the encapsulating class;
even then, it poses a difficult technical challenge. The significance of our adaptations is
discussed in Section 7.

A key insight is that, although transferring ownership and packing/unpacking in-
volve only ghost fields that cannot affect program execution, it is useful to consider
them to be observable. It is difficult to reason about two versions of a class, in a modu-
lar way, if they differ in the way objects cross the encapsulation boundary or in which
methods assume the invariant is in force. The requisite similarity can be expressed us-
ing assert statements so we can develop a theory based on this insight without the need
to require that the class under revision has any specifications.

Contributions. The main contributions are (a) formulation of a notion of instance-based
coupling analogous to invariants in the inv/own discipline; (b) proof of a representation
independence theorem for a language with inheritance and dynamic dispatch, recursive
methods and callbacks; mutable objects, type casts, and recursive types; and (c) results
on identity extension and use of the theorem to prove program equivalence. Together
these constitute a rule by which the reasoner considers just the methods of the revised
class and concludes that the two versions yield equivalent behavior for any program
context.

The theorem allows ownership transfers that cross encapsulation boundaries: from
client to abstraction [16], between abstractions, and even from abstraction to client [29,
4]. The theorem supports the most important form of modularity: reasoning about one
method implementation (or rather, one corresponding pair) at a time —on the assump-
tion that all methods preserve the coupling (even the one in question, modulo termi-
nation). Our theorem also supports local reasoning in the sense that a single instance

1 Called the “Boogie methodology” in the context of the Spec# project [7] at Microsoft Re-
search, which implements the discipline as part of a comprehensive verification system in-
spired by the ESC projects.

390 A. Banerjee and D.A. Naumann

(or pair of instances) is considered, together with the island comprised of its currently
encapsulated representation objects.

The discipline can be used in any verification system that supports ghost variables
and assertions. So our formalism treats predicates in assertions semantically, avoiding
ties to any particular logic or specification formalism.

Related Work Besides the inv/own Discipline. Representation independence is needed
not only for modular proof of equivalence of class implementations but also for mod-
ular reasoning about improvements (called data refinement). Such reasoning is needed
for correctness preserving refactoring. The refactoring rules of Borba et al. [10] were
validated using the data refinement theory of Cavalcanti and Naumann [13] which does
not model sharing/aliasing. We plan to use the present result to overcome that limita-
tion. Representation independence has also been used to justify treating a method as
pure if none of its side effects are visible outside an encapsulation boundary [8, 26].

Representation independence is proved in [2] for a language with shared mutable
objects on the basis of ownership confinement imposed using restrictions expressed in
terms of ordinary types; but these restrictions disallow ownership transfer. The results
are extended to encompass ownership transfer in [4] but at the cost of substantial tech-
nical complications and the need for reachability analysis at transfer points, which are
designated by explicit annotations. Like the present paper, our previous results are based
on a semantics in which the semantics of primitive commands is given in straightfor-
ward operational terms. It is a denotational semantics in that a command denotes a state
transformer function, defined by induction on program structure. To handle recursion,
method calls are interpreted relative to a method environment that gives the semantics of
all methods. This is constructed as the limit of approximations, each exact up to a cer-
tain maximum calling depth. This model directly matches the recursion rule of Hoare
logic, of which the abstraction theorem is in some sense a generalization.

For simple imperative code and single-instance modules, O’Hearn et al. [29, 23]
have proved strong rules for local reasoning about object invariants and simulations
using separation logic which, being state based, admits a notion of ownership transfer.

Confinement disciplines based on static analysis have been given with the objective
of encapsulation for modular reasoning, though mostly without formal results on mod-
ular reasoning [14, 11]. Work using types makes confinement a program invariant, i.e.,
a property required to hold in every reachable state. This makes it difficult to transfer
ownership, due to temporary sharing at intermediate states. Most disciplines preclude
transfer (e.g., [15, 11]); where it is allowed, it is achieved using nonstandard constructs
such as destructive reads and restrictive linearity constraints (e.g., [12, 30]).

Outline. Sect. 2 sketches the inv/own discipline. It also sketches an example of the
use of simulation to prove equivalence of two versions of a class involving reentrant
callbacks, highlighting the problems and the connection between our solution and the
inv/own discipline. Sect. 3 formalizes the language for which our result is given and
Sect. 4 formalizes the discipline in our semantics. Sect. 5 gives the main definitions—
proper annotation, coupling, simulation—and the abstraction theorem. Sect. 6 connects
simulation with program equivalence. Sect. 7 discusses future work and assesses our
adaptation of the discipline. For lack of space, all proofs are omitted and can be found
in the companion technical report, which also treats generics [5].

State Based Ownership, Reentrance, and Encapsulation 391

2 Background and Overview

2.1 The inv/own Discipline

To illustrate the challenge of reentrant callbacks as well as the state based ownership
discipline, we consider a class Queue that maintains a queue of tasks. Each task has an
associated limit on the number of times it can be run. Method Queue.runAll runs each
task that has not exceeded its limit. For simplicity we refrain from using interfaces; class
Task in Fig. 1 serves as the interface for tasks. Class Qnode in the same Figure is used
by Queue which maintains a singly linked list of nodes that reference tasks. Field count
tracks the number of times the task has been run. For brevity we omit initialization and
constructors throughout the examples.

Fig. 2 gives class Queue. One intended invariant of Queue is that no task has been
run more times than its limit. This is expressed, in a decentralized way, by the invariant
declared in Qnode. Some notation: we write I Qnode(o) for the predicate o.tsk�=null
and o.count≤o.limit.

Another intended invariant of Queue is that runs is the sum of the count fields of the
nodes reached from tsks. This is the declared I Queue of Fig. 2. (The reader may think
of other useful invariants, e.g., that the list is null-terminated.) Note that at intermediate
points in the body of Queue.runAll, I Queue does not hold because runs is only updated
after the loop. In particular, I Queue does not hold at the point where p.run() is invoked.

class Task { void run(){ } }
class Qnode {

Task tsk; Qnode nxt; int count, limit;
invariant tsk �= null ∧ 0≤count≤limit;
... // constructor elided (in subsequent figures these ellipses are elided too)
void run() { tsk.run(); count := count+1; }
void setTsk(Task t, int lim) {

tsk := t; limit := lim; count := 0; pack self as Qnode; } }

Fig. 1. Classes Task and Qnode. The pack statement is discussed later

class Queue {
Qnode tsks; int runs := 0;
invariant runs = (Σ p ∈ tsks.nxt∗ | p.count);
int getRuns() { result := runs; }
void runAll() {

Qnode p := tsks; int i := 0;
while p �= null do {

if p.getCount() < p.getLimit() then p.run(); i := i+1; fi; p := p.getNxt(); }
runs := runs+i; }

void add(Task t, int lim){
Qnode n := new Qnode; n.setTsk(t,lim); n.setNxt(tsks); tsks := n; } }

Fig. 2. Class Queue

392 A. Banerjee and D.A. Naumann

For an example reentrant callback, consider tasks of the following type.

class RTask extends Task { Queue q; void run(){q.runAll(); } . . . }
Consider a state in which o points to an instance of Queue and the first node in the list,
o.tsks, has count=0 and limit=1. Moreover, suppose field q of the first node’s task has
value o. Invocation of o.runAll diverges: before count is incremented to reflect the first
invocation, the task makes a reentrant call on o.runAll —in a state where I Queue does
not hold. In fact runAll again invokes run on the first task and the program fails due to
unterminating recursion.

As another example, suppose RTask.run is instead void run(){q.getRuns();} .
This seems harmless, in that getRuns neither depends on I Queue nor invokes any meth-
ods —it is even useful, returning a lower bound on the actual sum of runs. It typifies
methods like state readers in the observer pattern, that are intended to be invoked as
reentrant callbacks.

The examples illustrate that it is sometimes but not always desirable to allow a
reentrant callback when an object’s invariant is violated temporarily by an “outer” in-
vocation. The ubiquity of method calls makes it impractical to require an object’s in-
variant to be reestablished before making any call —e.g., the point between n.setTsk
and n.setNxt of method add in Fig. 2 — although this is sound and has been proposed
in the literature on object oriented verification [17, 22].

A better solution is to prevent just the undesirable reentrant calls. One could make
the invariant an explicit precondition, e.g., for runAll but not getRuns. This puts re-
sponsibility on the caller, e.g., RTask.run cannot establish the precondition and is thus
prevented from invoking runAll. But an object invariant like I Queue involves encapsu-
lated state not suitable to be visible in a public specification.

The solution of the Boogie methodology [6, 21] is to introduce a public ghost field,
inv, that explicitly represents whether the invariant is in force. In the lingo, o.inv says
object o is packed. Special statements pack and unpack set and unset inv.

A given object is an instance not only of its class but of all its superclasses, each of
which may have invariants. The methodology takes this into account as follows. Instead
of inv being a boolean, as in the simplified explanation above, it ranges over class names
C such that C is a superclass of the object’s allocated type. That is, it is an invariant
(enforced by typing rules) that o.inv ≥ type(o) where type(o) is the dynamic type of o.
The discipline requires certain assertions preceding pack and unpack statements as well
as field updates, to ensure that the following is a program invariant (i.e., it holds in all
reachable states).

o.inv ≤C ⇒ I C(o) (1)

for all C and all allocated objects o. That is, if o is packed at least to class C then the
invariant I C for C holds. Perhaps the most important stipulated assertion is that I C(o)
is required as precondition for packing o to level C.

Fig. 3 shows how the discipline is used for class Queue. Assertions impose precon-
ditions on runAll and add which require that the target object is packed to Queue. In
runAll, the unpack statement sets inv to the superclass of Queue, putting the task in
a position where it cannot establish the precondition for a reentrant call to runAll, al-
though it can still call getRuns which imposes no precondition on inv. After the update

State Based Ownership, Reentrance, and Encapsulation 393

void runAll() { assert self.inv = Queue && ! self.com;
unpack self from Queue;
Qnode p := self.tsks; int i := 0;
while p �= null do {

if p.getCount() < p.getLimit() then p.run(); i := i+1; fi; p := p.getNxt(); }
self.runs := self.runs + i;
pack self as Queue; }

void add(Task t, int lim){ assert self.inv = Queue && ! self.com;
unpack self from Queue;
Qnode n := new Qnode; setown n to (self,Queue);
n.setNxt(tsks); n.setTsk(t,lim); self.tsks := n;
pack self as Queue; } }

Fig. 3. Methods of class Queue with selected annotations

Table 1. Stipulated preconditions of field update and of the special commands

assert e1.inv > C; /* where C is the class that declares f ; i.e., f ∈ dom(dfieldsC) */
e1. f := e2

assert e.inv = superC ∧ I C(e) ∧ ∀p | p.own = (e,C) ⇒ ¬p.com ∧ p.inv = type p;
pack e as C /* sets e.inv := C and p.com := true for all p with p.own = (e,C) */

assert e.inv = C ∧ ¬e.com;
unpack e from C /* sets e.inv := superC and p.com := f alse for all p with p.own = (e,C) */

assert e1.inv = Object ∧ (e2 = null∨ e2.inv > C);
setown e1 to (e2,C) /* sets e1.own := (e2,C) */

to runs, I Queue holds again as required by the precondition (not shown) of pack. The
ghost field com is discussed below.

In order to maintain (1) as a program invariant, it is necessary to control updates
to fields on which invariants depend. The idea is that, to update field f of some object
p, all objects o whose invariant depends on p. f must be unpacked. Put differently,
I (o) should depend only on state encapsulated for o. The discipline uses a form of
ownership for this purpose: I (o) may depend only on objects transitively owned by o.
For example, an instance of Queue owns the Qnodes reached from field tsks.

Ownership is embodied in an auxiliary field own, so that if p.own = (o,C) then o
directly owns p and an admissible invariant I D(o) may depend on p for types D with
type(o) ≤ D ≤C. The objects transitively owned by o are called its island. For modular
reasoning, it is not feasible to require as an explicit precondition for each field update
that all transitive owners are unpacked. A third ghost field, com, is used to enforce a
protocol whereby packing/unpacking is dynamically nested or bracketed (though this
need not be textually apparent).

In addition to (1), two additional conditions are imposed as program invariants,
i.e., to hold in all reachable states of all objects. The first may be read “an object is

394 A. Banerjee and D.A. Naumann

committed to its owner if its owner is packed”. The second says that a committed object
is fully packed. These make it possible for an assignment to p. f to be subject only to
the precondition p.inv > C where C is the class that declares f .

The invariants are formalized in Def. 3 in Sect. 4. The stipulated preconditions
appear in Table 1, which also describes the semantics of the pack and unpack state-
ments in detail.2 The diligent reader may enjoy completing the annotation of Fig. 3
according to the rules of Table 1. Consult [6, 21] for more leisurely introductions to the
discipline.

2.2 Representation Independence

Consider the subclass AQueue of Queue declared in Fig. 4. It maintains an array, actsks,
of tasks which is used in an overriding declaration of runAll intended as an optimization
for the situation where many tasks are inactive (have reached their limit). We’ve dropped
runs and getRuns for brevity. Method add exhibits a typical pattern: unpack to establish
the condition in which a super call can be made (since the superclass unpacks from its
own level); after that call, reestablish the current class invariant. (This imposes proof
obligations on inheritance, see [6].)

The implementation of Fig. 4 does not set actsks[i] to null immediately when the
task’s count reaches its limit; rather, that situation is detected on the subsequent invoca-
tion of runAll. An alternative implementation is given in Fig. 5; it uses a different data
structure and handles the limit being reached as soon as it happens. Both implementa-
tions maintain an array of Qnode, but in the alternative implementation, its array artsk
is accompanied by a boolean array brtsk. Instead of setting entry i null when the node’s
task has reached its limit, brtsk[i] is set false.

We claim that the two versions are equivalent, in the context of arbitrary client pro-
grams (and subclasses, though for lack of space we do not focus on subclasses in the
sequel). We would like to argue as follows. Let f ilt1(o.actsks) be the sequence of non-
null elements of o.actsks with count < limit. Let f ilt2(ts,bs) take an array ts of tasks
and a same-length array bs of booleans and return the subsequence of those tasks n in
ts where bs is true and n.count < n.limit. Consider the following relation that connects
a state for an instance o of the original implementation (Table 4) with an instance o′ for
the alternative: f ilt1(o.actsks) = f ilt2(o′.artsk,o′.brtsk). The idea is that methods of
the new version behave the same as the old version, modulo this change of representa-
tion. That is, for each method of AQueue, parallel execution of the two versions from a
related pair of states results in a related pair of outcomes. (For this to hold we need to
conjoin to the relation the invariants associated with the two versions, e.g., the second
version requires artsk.length=brtsk.length.)

The left side of the picture below is an instance of some subclass of AQueue, sliced
into the fields of Queue, AQueue, and subclasses; dashed lines show the objects en-
capsulated at the two levels relevant to reasoning about AQueue —namely the Qnodes
reached from tsks and the array actsks.

2 We omit the preconditions e �= null and “e not error” that are needed for the rest of the pre-
condition to be meaningful. Different verification systems make different choices in handling
errors in assertions. Our formulation follows [28] and differs superficially from [6, 21].

State Based Ownership, Reentrance, and Encapsulation 395

On the right is an instance for the alternate implementation of AQueue. It is the con-
nection between these two islands that is of interest to the programmer. The “a”. . . “d”
of the figure indicate that both versions reference the same sequence of tasks, although
those tasks are not part of the islands.

In general, a local coupling is a binary relation on islands. It relates the state of an
island for one implementation of the class of interest with an island for the alternative.

A local coupling gives rise to an induced coupling relation on the complete program
state: Two heaps are related by the induced coupling provided that (a) they can be
partitioned into islands and (b) the islands can be put into correspondence so that each
corresponding pair is related by the local coupling. Moreover, the remaining objects
(not in an island) are related by equality. (More precisely, equality modulo a bijection
on locations, to take into account differences in allocation between the two versions.)
The details are not obvious and are formalized later.

The point of the abstraction theorem is to justify that it is sufficient to check that
the induced coupling is preserved by methods of AQueue, assuming the changed data
structure is encapsulated and can neither affect nor be affected by client programs. At
first glance one might expect the proof obligation to be that each method of AQueue
preserves the local coupling, and indeed this will be the focus of reasoning in practice.
But in general a method may act on more than just the island for self, e.g., by invoking

class AQueue extends Queue {
private Qnode[] actsks; private int alen;
void add(Task t, int lim) { assert self.inv= AQueue && ! self.com;

unpack self from AQueue;
super.add(t,lim); actsks[alen] := self.tsks; self.alen := self.alen+1;
pack self as AQueue; }

void runAll() { assert self.inv= AQueue && ! self.com;
unpack self from AQueue;
int i := self.alen - 1;
while i ≥ 0 do {

Qnode qn := self.actsks[i];
if qn �= null then if qn.getCount() < qn.getLimit()

then qn.run(); else self.actsks[i] := null; fi; fi;
i := i - 1; }

pack self as AQueue; } }

Fig. 4. First version of Class AQueue. An invariant: actsks[0..alen-1] contains any n in tsks with
n.count < n.limit, in reverse order. (There may also be nulls and some n with n.count = n.limit).
The elided constructor allocates actsks and we ignore the issue of the array becoming full

396 A. Banerjee and D.A. Naumann

class AQueue extends Queue {
private Qnode[] artsk;
private boolean[] brtsk;
private int len;
void add(Task t, int lim) {

assert self.inv= AQueue && ! self.com;
unpack self from AQueue;
super.add(t,lim); self.artsk[alen] := self.tsks; self.brtsk[len] := true; self.len := len+1;
pack self as AQueue; }

void runAll() {
assert self.inv= AQueue && ! self.com;
unpack self from AQueue;
int i := self.len - 1;
while i ≥ 0 do {

if self.brtsk[i] then Qnode n := self.artsk[i]; int diff := n.limit - n.count;
if diff ≤ 1 then self.brtks[i] := false; fi;
if diff �= 0 then n.run(); fi; fi;

i := i - 1; }
pack self as AQueue; } }

Fig. 5. Alternative implementation of AQueue

methods on client objects or on other instances of AQueue. So the proof obligation is
formalized in terms of the induced coupling.

In fact the proof obligation is not simply that each corresponding pair of method
implementations preserves the coupling, but rather that they preserve the coupling un-
der the assumption that any method they invoke preserves the coupling.3 There is also
a proof obligation for initialization but it is straightforward so we do not discuss it in
connection with the examples.

For example, in the case of method runAll, one must prove that the implementations
given in Fig. 4 and in Fig. 5 preserve the coupling on the assumption that the invoked
methods getCount, getLimit, Qnode.run, etc. preserve the coupling. The assumption is
not so important for getCount or getLimit. For one thing, it is possible to fully describe
their simple behavior. For another, the alternative implementation of runAll does not
even invoke these methods but rather accesses the fields directly.

The assumption about Qnode.run is crucial, however. Because run invokes, in turn,
Task.run, essentially nothing is known about its behavior. For this reason both imple-
mentations of runAll invoke run on the same tasks in the same order; otherwise, it is
hard to imagine how equivalence of the implementations could be verified in a modu-
lar way, i.e., reasoning only about class AQueue. But here we encounter the problem
with simulation based reasoning that is analogous to the problem with invariants and
reentrant callbacks. There is no reason for the coupling to hold at intermediate points of
the methods of AQueue. If a method is invoked at such a point, the assumption that the

3 The reason this is sound is similar to the justification for proof rules for recursive procedures: it
is essentially the induction step for a proof by induction on the maximum depth of the method
call stack.

State Based Ownership, Reentrance, and Encapsulation 397

called method preserves the coupling is of no use —just as the assumption of invariant-
preservation is of no use if a method is invoked in a state where the invariant does not
hold.

The Boogie discipline solves the invariant problem for an object o by replacing the
declared invariant I (o) with an implication —see (1)— that is true in all states. As
with invariants, so too with couplings: It does not make sense to ask a coupling to hold
in every state, because two different implementations with nontrivial differences do not
have lockstep correspondence of states. (For example, imagine that in the alternative
version, the arrays are compressed every 100th invocation of runAll.) Our generalization
of the Boogie idea is that the local coupling relation for a particular (pair of) island(s) is
conditioned on an inv field so that the local coupling may hold in some pairs of states at
intermediate points —in particular, at method calls that can lead to reentrant callbacks.

Consider corresponding instances o,o′ of the two versions of AQueue. The local
coupling serves to describe the corresponding pair of islands when o and o′ are packed.
So the induced coupling relation on program states requires corresponding pairs of
islands to satisfy the local coupling just when they are packed. Because inv is part of the
behavior observable at the level of reasoning, we can assume both versions follow the
same pattern of packing (though not necessarily of control structure) and thus include
o.inv = o′.inv as a conjunct of the induced coupling.

Consider the two implementations of runAll. To a first approximation, what matters
is that each updates some internal state and then both reach a point where run is invoked.
At that point, the local coupling does not hold —but the induced coupling relation can
and does hold, because the island is unpacked. This parallels the way I C(o) can be false
while o.inv ≤C ⇒ I C(o) remains true, recall (1). So we can use the assumption about
called methods to conclude that the coupling holds after the corresponding calls to run.

The hardest part of the proof for runAll is at the point where the two implementa-
tions pack self to AQueue. Just as both implementations invoke run (and on the same
queue nodes), both need to pack in order to preserve the coupling. And at this point
we have to argue that the local coupling is reestablished. To do so, we need to know
the state of the internal structures that have been modified. We would like to argue that
the only modifications are only those explicit in the code of runAll, but what about the
effect of run? Owing to the preconditions on add and runAll, the only possible reen-
trant callbacks are to getRuns and this does no updates. (In other examples, modifies
specifications would be needed at this point for modular reasoning.)

This concludes the sketch of how our abstraction theorem handles reentrant call-
backs and encapsulation using the inv/own discipline. Several features of the discipline
need to be adapted, in ways which also make sense in terms of informal considerations
of information hiding. The additional restrictions are formalized in Section 5 and their
significance discussed in Section 7. As a preview we make the following remarks, using
“Abs” as the generic name for a class for which two versions are considered.

The discipline does not constrain field access, as reading cannot falsify an invari-
ant predicate. Of course for reasons of information hiding one expects that visibility and
alias confinement are used to prevent most or all reads of encapsulated objects. Informa-
tion hiding is exactly what is formalized by representation independence and indeed the
abstraction theorem fails if a client can read fields of encapsulated objects. So every field

398 A. Banerjee and D.A. Naumann

access e. f is subject to a precondition: If e is transitively owned by some instance o of
the class, Abs, under revision, then either self is o or else self is transitively owned by o.

Another problematic feature is that “pack e asC” can occur in any class, so long as its
preconditions are established. This means that, unlike traditional theories, an invariant is
not simplyestablishedat initialization. Inour theory the localcouplingmustbeestablished
preceding each “pack e as Abs”. We aim for modular reasoning where only Abs needs
to be considered, so we insist that pack e as C with C = Abs occurs only in code of Abs.

Although the discipline supports hierarchical ownership, our technical treatment
benefits from heap partitioning ideas from separation logic (we highlight the connec-
tions where possible, e.g., in Proposition 1). For this reason and a more technical one, it
is convenient to prevent an instance of Abs from transitively owning another instance of
Abs (lest their islands be nested). This can be achieved by a simple syntactic restriction.
It does not preclude that, say, class AQueue can hold tasks that own AQueue objects,
because an instance of AQueue owns its representation objects (the Qnodes), not the
tasks they contain. Nor does it preclude hierarchical ownership, e.g., Abs could own a
hashtable that in turn owns some arrays.

Finally, consider ownership transfer across the encapsulation boundary. The hardest
case is where a hitherto-encapsulated object is released to a client, e.g., when a mem-
ory manager allocates nodes from a free list [29, 4]. This can be seen as a deliberate
exposure of representation and thus is observable behavior that must be retained in a
revised version of the abstraction. Yet encapsulated data of the two versions can be in
general quite different. To support modular reasoning about the two versions, it appears
essential to restrict outward transfer of objects encapsulated for Abs to occur only in
code of Abs, where the reasoner can show that the coupling is preserved.

3 An Illustrative Language

Following [6, 21], we formalize the inv/own discipline in terms of a language in which
fields have public visibility, to illuminate the conditions necessary for sound reason-
ing about invariants and simulations. In practice, private and protected visibility and
perhaps lightweight alias control would serve to automatically check most of the con-
ditions. This section formalizes the language, adapting notations and typing rules from
Featherweight Java [19] and imperative features and the special commands from our
previous papers [2, 28].

A complete program is given as a class table, CT , that maps class name C to a
declaration CT (C) of the form class C extends D { T̄ f̄ ; M̄ }. The categories T,M are
given by the grammar in Table 2. Barred identifiers like T̄ indicate finite lists, e.g., T̄ f̄
stands for a list f̄ of field names with corresponding types T̄ .

Well formed class tables are characterized using typing rules which are expressed
using some auxiliary functions that in turn depend on the class table, allowing classes
to make mutually recursive references to other classes, without restriction. In particular,
this allows recursive methods (so we omit loops). For a class C, fields(C) is defined as
the inherited and declared fields of C; dfields(C) is the fields declared in C; super(C)
is the direct superclass of C. For a method declaration, T m(T̄1 x̄) {S} in C, the method
type mtype(m,C) is T̄1 → T and parameter names, pars(m,C), is x̄. For m inherited

State Based Ownership, Reentrance, and Encapsulation 399

Table 2. Grammar

C ∈ ClassName m ∈ MethName f ∈ FieldName x,self, result ∈ VarName
T ::= bool | void |C data type
M ::= T m(T̄ x̄) {S} method declaration
S ::= x:= e | e. f := e assign to local var. or param., update field

| x:=new C | x:= e.m(ē) object creation, method call
| T x:= e in S | S; S | if e then S else S fi local variable, sequence, conditional
| pack e as C | unpack e from C set inv to C, set inv to superC
| setown e to (e′,C) set e.own to (e′,C)
| assert P assert (semantic predicate P)

e ::= x | null | true | false variable, constant
| e. f | e = e | e is C | (C) e field access, ptr. equality, type test, cast

Table 3. Typing rules for selected expressions and commands

Γ � e : C (f : T) ∈ fields(C)
Γ � e. f : T

Γ � e1 : D1 Γ � e2 : D2 D2 ≤C

Γ � setown e1 to (e2,C)

Γ � e : D D ≤C

Γ � pack e as C

Γ � e : D D ≤C

Γ � unpack e from C

Γ � e : D mtype(m,D) = T̄→U x �= self Γ � ē : Ū Ū ≤ T̄ U ≤ Γ x

Γ � x:= e.m(ē)

in C, mtype(m,C) = mtype(m,D) and pars(m,C) = pars(m,D) where D is the direct
superclass of C.

For use in the semantics, xfields(C) extends fields(C) by assigning “types” to the
auxiliary fields: com : bool, own : owntyp, and inv : (invtypC). (These are not included
in FieldName.) Neither invtypC nor owntyp are types in the programming language but
there are corresponding semantic domains and the slight notational abuse is convenient.

A typing context Γ is a finite function from variable names to types, such that self ∈
dom Γ . Selected typing rules for expressions and commands are given in Table 3. A
judgement of the form Γ � e : T says that expression e has type T in the context of a
method of class Γ self, with parameters and local variables declared by Γ . A judgement
Γ � S says that S is a command in the same context. A class table CT is well formed
if each method declaration M ∈ CT (C) is well formed in C; this is written C � M and
defined by the following rule:

x̄ : T̄ ,self : C, result : T � S
if mtype(m,superC) is defined then mtype(m,superC) = T̄→T and pars(m,superC) = x̄

C � T m(T̄ x̄){S}
To formalize assertions, we prefer to avoid both the commitment to a particular

formula language and the complication of an environment for declaring predicate names
to be interpreted in the semantics. So we indulge in a mild and commonplace abuse of
notation: the syntax of assert uses a semantic predicate. We say Γ � assert P is well

400 A. Banerjee and D.A. Naumann

Table 4. Semantic categories θ and domains [[θ]]. (Readers familiar with notation for dependent
function spaces might prefer to write [[pre-heap]] = (o : Loc � [[state(type o)]]) and similarly for
[[state C]] and [[Γ]].)

θ ::= T | Γ | θ⊥
| owntyp | invtypC | stateC own and inv val., object state
| pre-heap | heap | heap⊗Γ | heap⊗T heap fragment, closed heap, state, result
| (Γ � cmd) | (Γ � T) | (C, x̄, T̄→T1) | menv command, expr., method, method envir.

[[C]] = {nil}∪{o ∈ Loc | typeo ≤C} [[bool]] = {true, false} [[void]] = {it}
[[invtypC]] = {B |C ≤ B}
[[owntyp]] = {(o,C) | o = nil∨ typeo ≤C}
[[stateC]] = {s | doms = dom(xfieldsC) ∧ ∀(f : T) ∈ xfieldsC | s f ∈ [[T]]}
[[pre-heap]] = {h | dom h ⊆fin Loc ∧ ∀o ∈ dom h | h o ∈ [[state(type o)]]}
[[heap]] = {h | h ∈ [[pre-heap]] ∧ ∀s ∈ rng h | rng s∩Loc ⊆ dom h}
[[Γ]] = {s | doms = domΓ ∧ sself �= nil ∧ ∀x ∈ doms | sx ∈ [[Γ x]]}
[[heap⊗Γ]] = {(h,s) | h ∈ [[heap]] ∧ s ∈ [[Γ]] ∧ rng s∩Loc ⊆ dom h}
[[heap⊗T]] = {(h,v) | h ∈ [[heap]] ∧ v ∈ [[T]] ∧ (v ∈ Loc ⇒ v ∈ dom h)}
[[Γ � cmd]] = [[heap⊗Γ]] → [[(heap⊗Γ)⊥]]
[[Γ � T]] = {v | v ∈ ([[heap⊗Γ]] → [[T]]⊥) ∧ ∀h,s | v(h,s) ∈ Loc ⇒ v(h,s) ∈ domh}
[[(C, x̄, T̄→T1)]] = [[heap⊗ (x̄ : T̄ ,self : C)]] → [[(heap⊗T1)⊥]]
[[menv]] = {µ | ∀C,m | µCm is defined iff mtype(m,C) is defined,

and µCm ∈ [[C,pars(m,C),mtype(m,C)]] if µCm defined }

formed provided that P is a set of program states for context Γ . This treatment of
assertions is also convenient for taking advantage of a theorem prover’s native logic.

Semantics. Some semantic domains correspond directly to the syntax. For example,
each data type T denotes a set [[T]] of values. The meaning of context Γ is a set [[Γ]] of
stores; a store s ∈ [[Γ]] is a type-respecting assignment of locations and primitive values
to the local variables and parameters given by a typing context Γ . The semantics, and
later the coupling relation, is structured in terms of category names θ given in Table 4
which also defines the semantic domains.

A program state for context Γ is a pair (h,s) where s is in [[Γ]] and h is a heap, i.e., a
finite partial function from locations to object states. An object state is a type-respecting
mapping of field names to values. A command typable in Γ denotes a function mapping
each program state (h,s) either to a final state (h0,s0) or to the distinguished value ⊥
which represents runtime errors, divergence, and assertion failure. An object state is
a mapping from (extended) field names to values. A pre-heap is like a heap except for
possibly having dangling references. If h,h′ are pre-heaps with disjoint domains then we
write h∗h′ for their union; otherwise h∗h′ is undefined. Function application associates
to the left, so ho f is the value of field f of the object ho at location o. We also write
ho. f . Application binds more tightly than binary operator symbols and “,”.

We assume that a countable set Loc is given, along with a distinguished value nil
not in Loc. We assume given a function type from Loc to non-primitive types distinct
from Object, such that for each C there are infinitely many locations o with type o = C.
This is used in a way that is equivalent to tagging object states with their type.

State Based Ownership, Reentrance, and Encapsulation 401

Table 5. Semantics of selected expressions and commands. To streamline the treatment of ⊥,
the metalanguage expression “let α = β in . . .” denotes ⊥ if β is ⊥. We use function extension
notation [h | o �→st] for h extended or overridden at o with value st. For brevity the nested function
extension for field update is written [h | o. f �→v]

[[Γ � e. f : T]](h,s) = let o = [[Γ � e : C]](h,s) in if o = nil then ⊥ else ho. f

[[Γ � x:= e.m(ē)]]µ(h,s) = let o = [[Γ � e : T]](h,s) in if o = nil then ⊥ else

let v̄ = [[Γ � ē : Ū]](h,s) in let x̄ = pars(m,T) in

let s1 = [x̄ �→ v̄,self �→ o] in
let (h1,v1) = µ(typeo)m(h,s1) in (h1, [s | x �→v1])

[[Γ � assert P]]µ(h,s) = if (h,s) ∈ P then (h,s) else ⊥
[[Γ � pack e as C]]µ(h,s) =
let q=[[Γ � e : D]](h,s) in if q=nil then ⊥ else

let h1 =λ p ∈ dom h | if h p.own=(q,C) then [h p | com �→ true] else h p in ([h1 | q.inv �→C], s)
[[Γ � unpack e from C]]µ(h,s) =

let q = [[Γ � e : N]](h,s) in if q = nil then ⊥ else

let h1 = λ p ∈ dom h | if h p.own = (q,C) then [h p | com �→ false] else h p in

([h1 | q.inv �→superC], s)
[[Γ � setown e1 to (e2,C)]]µ(h,s) =

let q = [[Γ � e1 : N1]](h,s) in if q = nil then ⊥ else

let p = [[Γ � e2 : N2]](h,s) in ([h | q.own �→(p,C)], s)

The meaning of a derivable command typing Γ � S will be defined to be a function
sending each method environment µ to an element of [[Γ � cmd]]. (The keyword “cmd”
just provides notation for command meanings.) That is, [[Γ � S]]µ is a state transformer
[[heap⊗Γ]] → [[(heap⊗Γ)⊥]]. The method environment is used only to interpret the
method call command. Meanings for expressions and commands are defined, in Table 5,
by recursion on typing derivation. The semantics is defined for an arbitrary location-
valued function fresh such that type(fresh(C,h)) = C and fresh(C,h) �∈ domh.

The meaning of a well typed method declaration M, of the form M = T m(T̄ x̄){S},
is the total function in [[menv]] → [[(C, x̄, T̄→T)]] defined as follows: Given a method
environment µ , a heap h and a store s ∈ [[x̄ : T̄ , result : C]], first execute S to obtain
the updated heap h0 and the updated store s0; then return (h0,s0(result)). A method
environment µ maps each C,m to a meaning obtained in this way or by inheritance. For
well formed class table CT , the semantics [[CT]] is defined as the least upper bound of
an ascending chain of method environments—the approximation chain—with method
declarations interpreted as above and a suitable interpretation for inherited methods.
Details omitted.

A predicate for state type Γ is just a subset P ⊆ [[heap⊗Γ]]. For emphasis we can
write (h,s) |= P for (h,s) ∈ P . Note that ⊥ /∈ P . We give no formal syntax to denote
predicates but rather use informal metalanguage for which the correspondence should
be clear. For example, “self. f �= null” denotes the set of (h,s) with h(sself). f �= nil. and
“∀o | P(o)” denotes the set of (h,s) such that (h,s) |= P(o) for all o ∈ dom h. Note
that quantification over objects (e.g., in Table 1 and Def. 3) is interpreted to mean quan-

402 A. Banerjee and D.A. Naumann

tification over allocated locations; the range of quantification can include unreachable
objects but this causes no problems.

By contrast with [6, 21], we have taken care to separate the annotations required
by the inv/own discipline from the semantics of commands. The invariants encoded in
the semantic domains (e.g., the value in a field has its declared type and there are no
dangling pointers) depend in no way on assertions, only on typing. A similar semantic
model has been machine checked in PVS [27].

4 The inv/own Discipline

The discipline reviewed in Sect. 2.1 is designed to make (1) a program invariant for ev-
ery object. This is achieved using additional program invariants that govern ownership.
We formalize this as a global predicate, disciplined, defined in three steps.

Definition 1 (transitive C- and C↑-ownership). For any heap h, the relation o �h
C p

on dom h, read “o owns p at C in h”, holds iff either (o,C) = h p.own or there are q and
D such that (o,C) = hq.own and q �h

D p. The relation o �h
C↑ p holds iff there is some

D with C ≤ D and o �h
D p.

Definition 2 (admissible invariant). A predicate P ⊆ [[heap⊗ (self : C)]] is admissi-
ble as an invariant for C provided that it is not falsifiable by creation of new objects and
for every (h,s) and o, f such that P depends on o. f in (h,s), field f is neither inv nor
com, and one of the following conditions holds: o = s(self) and f is in dom(xfieldsC)
or s(self) �h

C↑ o.

For dependence on fields of self, the typing condition, f ∈ dom(xfieldsC), prevents
an invariant for C from depending on fields declared in a subclass of C (which could be
expressed in a formula using a cast). An invariant can depend on any fields of objects
owned at C or above. We refrain from introducing syntax for declaring invariants. In the
subsequent definitions, an admissible invariant I C is assumed given for every class C.
We assume I Ob ject = true.

Definition 3 (disciplined, J). A heap h is disciplined if h |= J where J is defined
to be the conjunction of the following: ∀o,C | o.inv ≤C ⇒ I C(o)

∀o,C, p | o.inv ≤C∧ p.own = (o,C) ⇒ p.com
∀o | o.com ⇒ o.inv = type(o)

A state (h,s) is disciplined if h is. Method environment µ is disciplined provided that
every method maintains J (i.e., for any C,m,h,s, if h ∈J and µ C m(h,s) = (h0,v)—
and thus µ C m(h,s) �= ⊥— then h0 ∈ J).

Lemma 1 (transitive ownership). Suppose h is disciplined and o�h
C p. Then (a) typeo

≤C and (b) ho.inv ≤C implies h p.com = true.

Corollary 1. If h is disciplined, o �h
C p, and h p.inv > type p then ho.inv > C.

Partitioning the Heap. We partition the objects in the heap in order to formalize the
encapsulation boundary depicted in Sect. 2.2. Given an object o ∈ domh and class name

State Based Ownership, Reentrance, and Encapsulation 403

A with typeo ≤ A we can partition h into pre-heaps Ah (the A-object), Rh (the represen-
tation of o for class A), Sh (objects owned by o at a superclass), and Fh (free from o)
determined by the following conditions: Ah is the singleton [o �→ ho], Rh is h restricted
to the set of p with o �h

A p, Sh is h restricted to the set of p with o �h
C p for some

C > A, and Fh is the rest of h. Note that if o �h
B p for some proper subclass B < A then

p ∈ domFh. A pre-heap of the form Ah ∗Rh ∗ Sh is called an island. In these terms,
dependency of admissible invariants is described in the following Proposition. As an
illustration, here is the island for the left side of the situation depicted in Sect. 2.2:

Proposition 1 (island). Suppose I C is an admissible invariant for C and o ∈ domh
with typeo ≤ C. If h = Fh ∗Ah ∗Rh ∗ Sh is the partition defined above then Fh0 ∗Ah ∗
Rh∗Sh |= I C(o) iff h |= I C(o), for all Fh0 such that Fh0 ∗Ah∗Rh∗Sh is a heap.

The Discipline. To impose the stipulated preconditions of Table 1 we consider pro-
grams with the requisite syntactic structure (similar to formal proof outlines).

Definition 4 (properly annotated). The annotated commands are the subset of the
category of commands where each pack, unpack, setown, and field update is immedi-
ately preceded by an assert. A properly annotated command is an annotated command
such that each of these assertions is (or implies) the precondition stipulated in Table 1. A
properly annotated class table is one such that each method body is properly annotated.

For any class table and family of invariants there exists a proper annotation: just add
assert commands with the stipulated preconditions. For practical interest, of course,
one wants assertions that can collectively be proved correct. The abstraction theorem
depends on proper annotation but does not depend on the invariants themselves; one
may take I C = true for all C. What matters is ownership structure and the use of inv.
We use the following [6, 21, 28].

Proposition 2. If method environment µ is disciplined then any properly annotated
command S maintains J in the sense that for all (h,s), if h |= J and (h0,s0) =
[[Γ � S]]µ(h,s) then h0 |= J . If CT is a properly annotated class table then the method
environment [[CT]] is disciplined.

5 The Abstraction Theorem

5.1 Comparing Class Tables

We compare two implementations of a designated class Abs, in the context of a fixed
but arbitrary collection of other classes, such that both implementations give rise to a

404 A. Banerjee and D.A. Naumann

well formed class table. The two versions can have completely different declarations, so
long as methods of the same signatures are present — declared or inherited — in both.
To simplify the additional precondition needed for reading fields, we consider programs
desugared into a form like that used in Separation Logic.

Definition 5 (properly annotated for Abs). The annotated commands for Abs are
those of Def. 4 with the additional restriction that no expression of the form e. f occurs
except in commands of the form assert P;x:= e. f (in particular, no field access ap-
pears in this e). The properly annotated commands for Abs are those that are properly
annotated according to Def. 4 and moreover

– fields of Abs have private visibility (i.e., if f ∈ dfieldsAbs then accesses and updates
of f only occur in code of class Abs)

– If Γ self �= Abs then field access Γ � x:= e. f is subject to stipulated precondition
(∀o | o �Abs e ⇒ o �Abs self)

– if Γ self �= Abs then Γ � pack e as Abs is not allowed
– if Γ self �= Abs then Γ � setown e1 to (e2,C) is subject to an additional precondition:

(∃o | o �Abs e1) ⇒ C = Abs∨ (∃o | o �Abs e2)

The effect of the last precondition is that if e1 is initially owned at Abs then after a
transfer (that occurs in code outside class Abs) it is still owned at Abs.

In order to work with heap partitions, along the lines of Prop. 1, it is convenient
to have notation to extract the one object in a singleton heap. We define pickdom by
pickdom(h) = o where domh = {o}; it is undefined if domh is not a singleton.

Prop. 1 considers a single object together with its owned representation; now we
consider all objects of a given class.

Definition 6 (A-decomposition). For any class A and heap h, the A-decomposition of
h is the set Fh,Ah1,Rh1,Sh1 . . . ,Ahk,Rhk,Shk (for some k ≥ 0) of pre-heaps, all subsets
of h, determined by the following conditions:

– each domAhi contains exactly one object o and typeo ≤ A
– every o ∈ domh with typeo ≤ A occurs in domAhi for some i;
– dom Rhi = {p | o �h

A p} where pickdomAhi = o;
– dom Shi = {p | o �h

(super A)↑ p} with pickdomAhi = o;
– domFh = domh− (∪i | dom(Ahi ∗Rhi ∗Shi))

We say that no A-object owns an A-object in h provided for every o, p in domh if
typeo ≤ A and o �h

(typeo)↑ p then type p � A. Def. 8 in the sequel imposes a syntactic
restriction to maintain this property as an invariant, where A is the class for which two
representations are compared. A consequence is that there is a unique decomposition of
the heap into separate islands of the form Ah∗Rh∗Sh. We use the term “partition” even
though some blocks can be empty.

Lemma 2 (A-partition). Suppose no A-object owns an A-object in h. Then the A-
decomposition is a partition of h, that is, h = Fh∗Ah1 ∗Rh1 ∗Sh1 ∗ . . .∗Ahk ∗Rhk ∗Shk.

To maintain the invariant that no Abs-object owns an Abs-object, we formulate a
mild syntactic restriction expressed using a static approximation of ownership.

State Based Ownership, Reentrance, and Encapsulation 405

Definition 7 (may own, �∃). Given well formed CT , define �∃ to be the least transi-
tively closed relation such that

– D2 �∃ D1 for every occurrence of setown e1 to (e2,D) in a method of CT , with
static types e1 : D1 and e2 : D2

– if C �∃ D, C′ ≤C and D′ ≤ D then C′ �∃ D′

If Abs ��∃ Abs then it is a program invariant that no Abs-object owns an Abs-object
(recall the definition preceding Lemma 2). This is a direct consequence of the following.

Lemma 3. It is a program invariant that if o �h
C p then typeo �∃ type p.

Definition 8 (comparable class tables). Well formed class tables CT and CT ′ are com-
parable with respect to class name Abs (�= Object) provided the following hold.

– CT (C) = CT ′(C) for all C �= Abs.
– CT (Abs) and CT ′(Abs) declare the same methods with the same signatures and the

same direct superclass.
– For every method m declared in CT (Abs), m is declared in CT ′(Abs) and has the

same signature; mutatis mutandis for m declared in CT ′.
– CT and CT ′ are properly annotated for Abs.
– Abs ��∃ Abs in both CT and CT ′

The last condition ensures that the Abs-decomposition of any disciplined heap is
a partition, by Lemmas 2 and 3. We write �,�′ for the typing relation determined by
CT,CT ′ respectively; similarly we write [[−]], [[−]]′ for the respective semantics.

5.2 Coupling Relations

The definitions are organized as follows. A local coupling is a suitable relation on is-
lands. This induces a family of coupling relations, R β θ for each category name θ and
typed bijection β . Each relation R β θ is from [[θ]] to [[θ]]′. Here β is a bijection on
locations, used to connect a heap in [[heap]] to one in [[heap]]′. The idea is that β relates
all objects except those in the Rhi or Rh′i blocks that have never been exposed. Finally,
a simulation is a coupling that is preserved by all methods of Abs and holds initially.

Definition 9. A typed bijection is a bijective relation, β , from Loc to Loc, such that
β oo′ implies typeo = typeo′ for all o,o′. A total bijection on h,h′ is a typed bijection
with domh = domβ and domh′ = rngβ . Finally, β fully partitions h,h′ for Abs if, for
all o ∈ domh (resp. o ∈ domh′) with typeo ≤ Abs, o is in domβ (resp. rngβ).

Lemma 4 (typed bijection and Abs-partition). Suppose β is a typed bijection with
β ⊆ domh×domh′ and β fully partitions h,h′ for Abs. If h,h′ are disciplined and par-
tition as h = Fh∗ . . .Ah j ∗Rh j ∗Sh j and h′ = Fh′ ∗ . . .Ah′k ∗Rh′k ∗Sh′k then j = k.

Definition 10 (equivalence for Abs modulo bijection). For any β we define a relation
∼β for data values, object states, heaps, and stores, in Table 6.

406 A. Banerjee and D.A. Naumann

Table 6. Value equivalence for the designated class Abs. The relation for heap is the same as for
pre-heap. For object states, ∼ is independent from the declared fields of CT (Abs) and CT ′(Abs)

o ∼β o′ in [[C]] ⇔ β oo′ ∨o = nil = o′

v ∼β v′ in [[T]] ⇔ v = v′ for primitive types T
s ∼β s′ in [[stateC]] ⇔ ∀(f : T) ∈ xfieldsC | s f ∼β s′ f ∨ (f : T) ∈ dfieldsAbs
s ∼β s′ in [[Γ]] ⇔ ∀x ∈ domΓ | sx ∼β s′ x
h ∼β h′ in [[pre-heap]] ⇔ ∀o ∈ domh,o′ ∈ domh′ | β oo′ ⇒ ho ∼β h′o′

(h,s)∼β (h′,s′) in [[heap⊗Γ]] ⇔ h ∼β h′ ∧ s ∼β s′

v ∼β v′ in [[θ⊥]] ⇔ v = ⊥ = v′ ∨ (v �= ⊥ �= v′ ∧ v ∼β v′ in [[θ]])
(o,C) ∼β (o′,C′) in [[owntyp]] ⇔ (o = nil = o′)∨ (β oo′ ∧C = C′)
B ∼β B′ in [[invtypC]] ⇔ B = B′

Equivalence hides the private fields of Abs. In the identity extension lemma, it is
used in conjunction with the following which hides objects owned at Abs.

Definition 11 (encap). Suppose no A-object owns an A-object in h. Define encapAh
to be the pre-heap Fh ∗Ah1 ∗ Sh1 ∗ . . . ∗Ahk ∗ Shk where the A-partition of h is as in
Lemma 2.

The most important definition is of local coupling, which is analogous to an object
invariant but is a relation on pairs of pre-heaps. In Def. 2, we take an invariant I C to be
a predicate (set of states) and the program invariant J is based on the conjunction of
these predicates for all objects and types —subject to inv, see Def. 3). By contrast, we
define a local coupling L in terms of pre-heaps. And we are concerned with a single
class, Abs, rather than all C. We impose the same dependency condition as in Def. 2,
but in terms of pre-heaps of the form h = Ah∗Rh∗Sh. (Recall Proposition 1.)

Definition 12 (local coupling, L). Given comparable class tables, a local coupling is
a function, L , that assigns to each typed bijection β a binary relation L β on pre-heaps
that satisfies the following. First, L β does not depend on inv or com. Second, β ⊆ β0

implies L β ⊆ L β0. Third, for any β ,h,h′, if L β hh′ then there are locations o,o′
with β oo′ and typeo ≤ Abs such that the Abs partitions of h,h′ are h = Ah∗Rh∗Sh and
h′ = Ah′ ∗Rh′ ∗Sh′ with

– pickdom Ah = o and pickdom Ah′ = o′
– o �h

Abs p for all p ∈ dom(Rh) and o′ �h′
Abs p′ for all p′ ∈ dom(Rh′)

– o �h
(super Abs)↑ p for all p ∈ dom(Sh) and o′ �h′

(super Abs)↑ p′ for all p′ ∈ dom(Sh′)
– If L β depends on f then f is in xfieldsAbs

The first three conditions ensure that L relates a single island, for an object of
some subtype of Abs, to a single island for an object of the same type. Although L is
unconstrained for the private fields of CT (Abs) and CT ′(Abs), it may also depend on
fields inherited from a superclass of Abs (but not on subclass fields). The induced cou-
pling relation, defined below, imposes the additional constraint that fields of proper sub-
and super-classes of Abs are linked by equivalence modulo β . Although superficially
different, the notion of local coupling is closely related to admissible invariant.

State Based Ownership, Reentrance, and Encapsulation 407

Table 7. The induced coupling relation for Def. 13

R β θ α α ′ ⇔ α ∼β α ′ if θ is bool, C, Γ , or stateC
R β (heap⊗Γ) (h,s) (h′,s′) ⇔ R β heaphh′∧R β Γ s s′∧disciplined(h,s)∧disciplined(h′,s′)
R β (heap⊗T) (h,v) (h′,v′) ⇔ R β heap h h′ ∧R β T v v′

R β (θ⊥) α α ′ ⇔ (α = ⊥ = α ′)∨ (α �= ⊥ �= α ′ ∧R β θ α α ′)
R β (Γ � T) v v′ ⇔ ∀h,s,h′,s′ | R β (heap⊗Γ) (h,s) (h′,s′)

⇒R β T⊥ (v(h,s)) (v′(h′,s′))
R β (C, x̄, T̄→T1) v v′ ⇔ ∀h,s,h′,s′ | R β (heap⊗Γ) (h,s) (h′,s′)

⇒∃β0 ⊇ β | R β0 (heap⊗T1)⊥ (v(h,s)) (v′(h′,s′))
where Γ = [x̄ : T̄ ,self : C]

R menv µ µ ′ ⇔ ∀C,m,β | R β (C, x̄, T̄→T) (µCm) (µ ′Cm)
where mtype(m,C) = T̄→T and pars(m,C) = x̄

In applications, L β hh′ would be defined as something like this: h and h′ partition
as islands Ah∗Rh∗Sh and Ah′ ∗Rh′ ∗Sh′ such that Ah∗Rh∗Sh |= I Abs and Ah′ ∗Rh′ ∗
Sh′ |= I ′Abs and some condition links the data structures [18]. The bijection β would
not be explicit but would be induced as a property of the formula language.

A local coupling L induces a relation on arbitrary heaps by requiring that they
partition such that islands can be put in correspondence so that pairs are related by L .

Definition 13 (coupling relation, R). Given local coupling L , we define for each θ
and β a relation R β θ ⊆ [[θ]]× [[θ]]′ as follows.

For heaps h,h′, we define R β heap h h′ iff h,h′ are disciplined, β ⊆ domh×domh′,
and β fully partitions h,h′ for Abs; moreover, if the Abs-partitions are h = Fh ∗Ah1 ∗
Rh1 ∗Sh1 . . .Ahk ∗Rhk ∗Shk and h′ = Fh′ ∗Ah′1 ∗Rh′1 ∗Sh′1 . . .Ah′k ∗Rh′k ∗Sh′k then (recall
Lemma 4) (a) β restricts to a total bijection between dom(Fh) and dom(Fh′); (b) Fh ∼β
Fh′; and (c) for all i, j, if β (pickdom Ahi)(pickdom Ah′j) then

– β restricts to a total bijection between dom(Shi) and dom(Sh′j)
– (Ahi ∗Shi) ∼β (Ah′j ∗Sh′j)
– h(pickdom Ahi).inv ≤ Abs ⇒L β (Ahi ∗Rhi ∗Shi) (Ah′j ∗Rh′j ∗Sh′j)

For other categories θ we define R β θ in Table 7.

The third item under (c) is the key connection with the inv/own discipline.
Under the antecedent in the definition, (Ahi ∗ Shi) ∼β (Ah′j ∗ Sh′j) is equivalent to

the conjunction of Ahi ∼β Ah′j and Shi ∼β Sh′j. And Ahi ∼β Ah′j means that the two
objects o,o′ agree on superclass and subclass fields (but not the declared fields of Abs);
in particular, typeo = typeo′ ≤ Abs and Ahi o.inv = Ah′j o′.inv.

The gist of the abstraction theorem is that if methods of Abs are related by R then all
methods are. In terms of the preceding definitions, we can express quite succinctly the
conclusion that all methods are related: R menv [[CT]] [[CT ′]]′ . We want the antecedent
of the theorem to be that the meaning [[M]] is related to [[M′]]′, for any m with declaration
M in CT (Abs) and M′ in CT ′(Abs). Moreover, [[M]] depends on a method environment.
Thus the antecedent of the theorem is that [[M]]µ is related to [[M′]]′µ ′ for all related
µ ,µ ′. (It suffices for µ ,µ ′ to be in the approximation chains defining [[CT]] and [[CT ′]]′).

408 A. Banerjee and D.A. Naumann

5.3 Simulation and the Abstraction Theorem

Definition 14 (simulation). A simulation is a coupling R such that the following hold.

– (L is initialized) For any C ≤ Abs, and any o,o′ with β oo′ and typeo = C we have
L β hh′ where h = [o �→ [dom(xfieldsC) �→ defaultsC]] and
h′ = [o′ �→ [dom(xfields′C) �→ defaults′C]].

– (methods of Abs preserve R) For any disciplined µ ,µ ′ such that R menv µ µ ′
we have the following for every m declared in Abs. Let Ū→U = mtype(m,Abs)
and x̄ = pars(m,Abs). For every β , we have R β θ ([[M]]µ) ([[M′]]′µ ′) where θ =
(Abs, x̄,Ū→U). where M (resp. M′) are as above. (We omit the similar condition
for inherited methods.)

Lemma 5 (preservation by expressions). For all expressions Γ � e : T that contain no
field access subexpressions, and all β , we have R β (Γ �T) ([[Γ �e : T]]) ([[Γ �e : T]]′).

Lemma 6 (preservation by commands). Let µ ,µ ′ be disciplined method environ-
ments with R menv µ µ ′ . If Γ � S is a properly annotated command for Abs, with
Γ self �= Abs, then for all β we have the following. If R β (heap⊗Γ) (h,s) (h′,s′)
and ¬(∃o | o �h

Abs s(self)) and ¬(∃o′ | o′ �h′
Abs s′(self)) then there is β0 ⊇ β such that

R β0 (heap⊗Γ)⊥ (v(h,s)) (v′(h′,s′)).

Our main result says that if methods of Abs preserve the coupling then all methods
do.

Theorem 1 (abstraction).
If R is a simulation for comparable class tables CT,CT ′ then R menv [[CT]] [[CT ′]]′ .

6 Using the Theorem

A complete program is a command S in the context of a class table. To show equiva-
lence between CT,S and CT ′,S, one proves simulation for Abs and then appeals to the
abstraction theorem to conclude that [[S]] is related to [[S]]′. Finally, one appeals to an
identity extension lemma that says the relation is the identity for programs where the
encapsulated representation is not visible. We choose simple formulations that can also
serve to justify more specification-oriented formulations. We say that a state (h,s) is
Abs-free if typeo � Abs for all o ∈ domh.

Lemma 7 (identity extension). If R β (heap⊗Γ) (h,s) (h′,s′)
then encapAbs(h,s) ∼β encapAbs(h′,s′).

Lemma 8 (inverse identity extension). Suppose (h,s) and (h′,s′) are Abs-free. If
(h,s) ∼β (h′,s′) and β is total on h,h′ then R β (heap⊗Γ) (h,s) (h′,s′).

State Based Ownership, Reentrance, and Encapsulation 409

Definition 15 (program equivalence). Suppose programs CT,(Γ � S) and CT ′,(Γ �′
S′) are such that CT,CT ′ are comparable and properly annotated, and moreover S,S′ are
properly annotated. The programs are equivalent iff for all disciplined, Abs-free (h,s)
and (h′,s′) in [[heap⊗Γ]] and all β with β total on h,h′ and (h,s) ∼β (h′,s′), there
is some β0 ⊇ β with encapAbs([[Γ � S]]µ(h,s)) ∼β0

encapAbs([[Γ �′ S′]]′µ ′(h′,s′))
where µ = [[CT]] and µ ′ = [[CT ′]]′.

Proposition 3 (simulation and equivalence). Suppose programs CT,(Γ � S) and
CT ′,(Γ �′ S) are properly annotated and R is a simulation from CT to CT ′. If Γ self �=
Abs then the programs are equivalent.

7 Discussion

Adaptations of the inv/own Discipline. As compared with previous work on the disci-
pline, we have imposed some additional restrictions to achieve sufficient information
hiding to justify a modular rule for equivalence of class implementations. We argue
that the restrictions are not onerous for practical application, though further practical
experience is needed with the discipline and with our rule.

The first restriction is on field reads. Code in a client class cannot be allowed to
read a field of an encapsulated representation object, although the discipline allows the
existence of the reference; otherwise the client code could be representation dependent.
On the other hand, a class such as Hashtable might be used both by clients and in the
internal representation of the class Abs under revision; certainly the code of Hashtable
needs to read its own fields. A distinction can be made on the basis of whether the
current target object, i.e., self, is owned by an instance o of Abs. If it is, then we do
not need the method invocation to preserve the coupling and we can allow reading of
objects owned by o. If the target object is not owned by an instance of Abs then it should
have no need to access objects owned by Abs. This distinction appears in the statement
of Lemma 6 and it is used to stipulate a precondition for field access (see Def. 5).4

Because the coupling relation imposes the user-defined local coupling only when
an Abs-object is packed, it appears necessary to restrict pack e as Abs to occur only in
code of Abs in order for simulation to be checked only for that code. In the majority of
known examples, packing to a class C is only done in code of C, and this is required in
Leino and Müller’s extension of the discipline to handle static fields.

Similar considerations apply to setown o to (p,C): care must be taken to prevent
arbitrary code from moving objects across the encapsulation boundary for Abs in ways
that do not admit modular reasoning. One would expect that code outside Abs cannot
move objects across the Abs-boundary at all, but it turns out that the only problematic
case is transfer out from an Abs island. In the unusual case that setown o to (p,C) oc-
curs in code outside Abs but o is initially inside the island for some Abs-object, then

4 This is unattractive in that the other stipulated preconditions mention only direct ownership
whereas this one uses transitive ownership. But in practical examples, code outside Abs rarely
has references to encapsulated objects. We believe such references can be adequately restricted
using visibility control and/or lightweight confinement analyses, e.g., [31, 2].

410 A. Banerjee and D.A. Naumann

o must end up in the island for some Abs-object. Our stipulated precondition says just
this. In practice it seems that the obligation can be discharged by simple syntactic con-
siderations of visibility and/or lightweight alias control.

The last restriction is that an Abs object cannot own other Abs objects. This does not
preclude containers holding containers, because a container does not own its content
(e.g., AQueue owns the Qnodes but not the tasks). It does preclude certain recursive
situations. For example, we could allow Qnode instances to own their successors but
then we could not instantiate the theory with Abs:=Qnode. This does not seem too
important since it is Queue that is appropriate to view as an abstraction coupled by
a simulation. The restriction is not needed for soundness of simulation. But absent the
restriction, nested islands would require a healthiness condition on couplings (similar to
the healthiness condition used by Cavalcanti and Naumann [13–Def. 5]); e.g., coupling
for an instance of Qnode would need to recursively impose the same predicate on the
nxt node. We disallow nested islands in the present work for simplicity and to highlight
connections with separation logic.

Future Work. The discipline may seem somewhat onerous in that it uses verification
conditions rather than lighter weight static analysis for control of the use of aliases. (We
have to say “use of”, because whereas confinement disallows certain aliases, the invari-
ant discipline merely prevents faulty exploitation of aliases.) The Spec# project [7] is
exploring the inference of annotations. For many situations, simple confinement rules
and other checks are sufficient to discharge the proof obligations and this needs to be
investigated for the additional obligations we have introduced. The advantage of a ver-
ification discipline over types is that, while simple cases can be checked automatically,
complicated cases can be checked with additional annotations rather than simply re-
jected.

The generalization to a small group of related classes is important, as revisions often
involve several related classes. One sort of example would be a revision of our Queue
example that involves revising Qnode as well. If nodes are used only by Queue then this
is subsumed by our theory, as we can consider a renamed version of Qnode that coexists
with it. The more interesting situations arise in refactoring and in design patterns with
tightly related configurations of multiple objects. The friend and peer dependencies
of [21, 9, 28], and the flexible ownership system of Aldrich and Chambers [1] could be
the basis for a generalization of our results.

References

1. J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from mecha-
nism. In ECOOP, 2004.

2. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation indepen-
dence for object-oriented programs. Journal of the ACM, 2002. Accepted, revision pending.
Extended version of [3].

3. A. Banerjee and D. A. Naumann. Representation independence, confinement and access
control. In POPL, 2002.

4. A. Banerjee and D. A. Naumann. Ownership transfer and abstraction. Technical Report TR
2004-1, Computing and Information Sciences, Kansas State University, 2003.

State Based Ownership, Reentrance, and Encapsulation 411

5. A. Banerjee and D. A. Naumann. State based encapsulation and generics. Technical Report
CS Report 2004-11, Stevens Institute of Technology, 2004.

6. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology, 3, 2004.

7. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS post-proceedings, 2004.

8. M. Barnett, D. A. Naumann, W. Schulte, and Qi Sun. 99.44% pure: useful abstractions in
specifications. In ECOOP workshop on Formal Techniques for Java-like Programs, 2004.

9. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared
state. In Mathematics of Program Construction, 2004.

10. P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A refinement algebra for object-
oriented programming. In ECOOP, 2003.

11. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In POPL,
2003.

12. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A generalisation of uniqueness
and read-only. In ECOOP, 2001.

13. A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement of classes.
In Formal Methods Europe, 2002.

14. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In OOPSLA, 2002.

15. D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA, 1998.

16. D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Research 156,
DEC Systems Research Center, 1998.

17. J. V. Guttag and J. J. Horning, editors. Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

18. C. A. R. Hoare. Proofs of correctness of data representations. Acta Inf., 1, 1972.
19. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java

and GJ. ACM Trans. Prog. Lang. Syst., 23, 2001.
20. B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspective.

In International Symposium on Software Security, 2003.
21. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In ECOOP, 2004.
22. B. Meyer. Object-oriented Software Construction. Second edition, 1997.
23. I. Mijajlovic, N. Torp-Smith, and P. O’Hearn. Refinement and separation contexts. In Foun-

dations of Software Technology and Theoretical Computer Science (FST&TCS), 2004.
24. J. C. Mitchell. Representation independence and data abstraction. In POPL, 1986.
25. P. Müller, A. Poetzsch-Heffter, and G. Leavens. Modular invariants for object structures.

Technical Report 424, ETH Zürich, Oct. 2003.
26. D. A. Naumann. Observational purity and encapsulation. In FASE, 2005.
27. D. A. Naumann. Verifying a secure information flow analyzer. To appear in TPHOLS, 2005.
28. D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about invariants

and sharing of mutable state (extended abstract). In LICS, 2004.
29. P. O’Hearn, H. Yang, and J. Reynolds. Separation and information hiding. In POPL, 2004.
30. F. Smith, D. Walker, and G. Morrisett. Alias types. In ESOP, 2000.
31. J. Vitek and B. Bokowski. Confined types in Java. Software Practice and Experience, 31,

2001.

	Introduction
	Background and Overview
	The inv/own Discipline
	Representation Independence

	An Illustrative Language
	The inv/own Discipline
	The Abstraction Theorem
	Comparing Class Tables
	Coupling Relations
	Simulation and the Abstraction Theorem

	Using the Theorem
	Discussion

