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Abstract. A properly encapsulated data representation can be revised without affecting the
correctness of client programs and extensions but encapsulation is difficult to achieve for
heap based structures and object-oriented (OO) programs with reentrant callbacks. Building
on a discipline that uses assertions and auxiliary fields to manage invariants and transferrable
ownership, we give a rule for modular reasoning based on simulations. This representation
independence result is proved for a sequential OO language with recursive, generic classes.

1 Introduction

You are responsible for a library consisting of many Java classes. A bug is found and you revise
the code (but not the syntactic interface) of a certain class, perhaps also taking the opportunity
to revise an internal data structure in order to improve its performance. You are in no position to
check, or even be aware of, the many applications that use the class via its instances or by sub-
classing it. In principle, the class could have a full functional specification. It would then suffice to
prove that the new version meets the specification. In practice, full specifications are rare. Nor is
there a well established logic and method for modular reasoning about the code of a class in terms
of the specifications of the classes it uses, without regard to their implementations or the users
of the class in question [25]. The problem is that encapsulation, crucial for modular reasoning
about invariants, is difficult to achieve in programs that involve shared mutable objects and reen-
trant callbacks which violate simple layering of abstractions. Yet complicated heap structure and
calling patterns are used, in well designed object-oriented (OO) programs, precisely for orderly
composition of abstractions in terms of other abstractions.

There is an alternative to verification with respect to a specification. One can attempt to prove
that the revised version is behaviorally equivalent to the original. Of course their behavior is not
identical, but at the level of abstraction of source code (e.g., modulo specific memory addresses)
and perhaps under a specified precondition, it may be possible to show equivalence of behavior.
The technique is standard [22, 33, 16, 42]: Define a coupling relation to connect the states of the
two versions and prove that it, or an extension of it to other types, has the simulation property,
? Supported in part by NSF grants CCR-0209205 and NSF Career Award CCR-0296182.

?? Supported in part by NSF grants CCR-0208984, CCF-0429894 and by New Jersey Commission on Sci-
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i.e., it holds initially and is preserved by paired invocation of the two versions of each method.
In most cases, one would want to define the relation for a single pair of instances of the class,
as methods act primarily on a target object (self). A language with good encapsulation should
enjoy a representation independence theorem that says a simulation for the revised class induces
a simulation for any program built using the class. Suitable couplings are the identity except in-
side the abstraction boundary and an identity extension lemma says simulation implies behavioral
equivalence of two programs that differ only by revision of a class. Again, such reasoning can be
invalidated by heap sharing, which violates encapsulation of data, and by callbacks, which violate
hierarchical control structure.

There is a close connection between the equivalence problem and verification: verification
of OO code involves object invariants that constrain the internal state of an instance. Encapsula-
tion involves defining the invariant in a way that protects it from outside interference so it holds
globally provided it is preserved by the methods of the class. Simulations are like invariants over
two copies of the state space, and again modular reasoning requires that the coupling for a class
be independent from outside interference. The main contribution of this paper is a representa-
tion independence theorem using a state-based discipline for heap encapsulation and control of
callbacks.

For simple imperative code and single-instance modules, O’Hearn et al. [38] prove a strong
rule for local reasoning about object invariants using separation logic [45] which transparently
expresses interdependence in the heap (and its absence). The authors give a representation inde-
pendence result for OO code[2], using static rules expressed in terms of ordinary program types
to achieve ownership confinement, the absence of boundary-crossing pointers through which in-
terference can occur. Other confinement disciplines based on static analysis have been given with
the objective of encapsulation for modular reasoning, though mostly without formal results on
modular reasoning [13, 9, 14]. Müller proves soundness for a discipline of invariants in OO code
based on an ownership type system [35]. Work using types makes confinement a program invari-
ant, i.e., a property required to hold in every reachable state. This makes it difficult to transfer
ownership, due to temporary sharing at intermediate states. Most disciplines preclude transfer;
where it is allowed, it is achieved using nonstandard constructs such as destructive reads and
restrictive linearity constraints.

As challenging as heap encapsulation is the problem of reentrant callbacks. Extant theories of
data abstraction [22, 32, 16, 47] assume, in one way or another, a hierarchy of abstractions such
that control does not reenter an encapsulation boundary while already executing inside it. In many
programming languages it is impossible to write code that fails to satisfy the assumption.1 But it is
commonplace in OO programs for a method acting on some object o to invoke a method on some
other object which in turn leads to invocation of another method on o. This makes it difficult to
reason about when an object’s invariant holds [46]. There is an analogous problem for reasoning
with simulations. Although the results in [2] are sound for programs with reentrant callbacks, no
help is given on how to show preservation by methods that make calls that can lead to reentrant
callbacks. The theorem allows the programmer to assume that all methods preserve the relation
when proving it for the method bodies —but this assumption is of no use if a call is made in an
uncoupled intermediate state.

1 This is trivial to prove for simple imperative programs etc and quite difficult to prove for Algol-like
languages [39].
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In a recent advance, [5, 30] reentrancy is managed using an explicit auxiliary field to desig-
nate states in which an object invariant is to hold. Ownership is also represented by an auxiliary
mutable field. Ownership is managed more flexibly than with type-based static analyses because
the ownership invariant need only hold in certain states. Heap encapsulation is achieved not by
disallowing boundary-crossing pointers but by limiting, in a state-dependent way, their use.

The focus of this paper is to adapt the discipline2 of [5, 30] to proving equivalence by simula-
tion. In large part the discipline is unchanged, as one would hope in keeping with the idea that a
coupling is just an invariant over two parallel states. But we have to adapt some features, in ways
that make sense in terms of informal considerations of information hiding. The discipline imposes
no control on field reads, only writes. For representation independence we need a stronger form
of encapsulation. The discipline also allows ownership transfer quite freely, though it is not triv-
ial to design code that correctly performs transfers. For representation independence, the transfer
of previously-encapsulated data to clients (an unusual form of controlled “rep exposure” [17]) is
allowed but must occur only in the code of the encapsulating class in order for its coupling to be
preserved; even then, it poses a difficult technical challenge. The significance of our adaptations
are discussed Section 2 and further in Section 8.

Our results are given for a language with generics. The type-based confinement regime in [2]
precludes use of type Object to encode type parameterization and thus is best used with generics,
but they are handled neither in [2] nor in other confinement work cited above. Given that much
beautiful theory on simulations is related to relational parametricity of generics [44], one might
expect difficulties in an OO language: generics fail to enjoy parametricity due to the presence
of type tests and casts (and effects due to dynamic dispatch). (Generics do not eliminate the
need for casts, as these languages lack disjoint sums, and libraries vary in coding style.) But we
are concerned with relations between two implementations of a class, not two types at which a
generic may be applied; it turns out that this form of representation independence does not need
relational parametricity for type variables. Moreover, generics have little impact on the invariant
discipline.

Contributions. We extend the invariant/ownership discipline [5] to generics and give a semantic
proof of soundness (Section 4). In passing, we get type soundness for generics using a denota-
tional model in which a generic denotes its ground instantiations (Section 3). The main contri-
butions (Sections 5 and 6) are (a) formulation of a suitable notion of instance-based coupling
analogous to invariants in the invariant/ownership discipline and manipulated according to the
same discipline; (b) proof of a representation independence result for a language with inheritance
and dynamic dispatch, recursive methods and callbacks; mutable objects, type casts, generics, and
recursive types; and (c) results on identity extension and program equivalence. These results let
the programmer concentrate on proving that methods of the specific class being revised preserve
the coupling. We have also proved rules for establishing the basic coupling invariant for those
methods and for maintaining the coupling in the presence of transfers of ownership across encap-
sulation boundaries, but they are omitted for lack of space. But the representation independence
result encompasses such transfers: from client to abstraction [17], between abstractions, and even
from abstraction to client [38, 4].

2 Sometimes called “Boogie”, which is the name of a current project at Microsoft Research which imple-
ments the discipline as part of a comprehensive verification system inspired by the ESC projects [18].
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class Task {
unit run(){...} }

class Qnode<X / Task> {
private X tsk;
private Qnode<X> nxt;
private int count, limit;
//invar: tsk 6= null ∧ 0≤count≤limit;
...
unit run() { tsk.run(); count := count+1; }
unit setTsk(X t, int lim) {

tsk := t; limit := lim; count := 0;
pack self as Qnode; } }

Fig. 1. Classes Task and Qnode.

Our results are based on a conventional program semantics. Predicates used in assertions re-
quired by the invariant/ownership discipline are treated as sets of states and our proofs identify
necessary properties of invariants and coupling relations. There is a broad range of possible appli-
cations, e.g., in proof carrying code [37], where limited properties are verified using higher order
logic, and in functional verification where specification languages restrict predicates to respect
program visibility rules and to enforce behavioral subclassing [31, 29]. Further related work is
mentioned in the discussion (Section 8).

2 Background and overview

The inv/own discipline. The challenge of reentrant callbacks is illustrated in the example code
in Figures 1 and 2. Class Task serves to define an interface consisting of a single method run. In
our illustrative language, all methods are dynamically dispatched and have public visibility; class
types are references. The return type unit (also known as “void”) indicates that the method is only
of use for its effect on the heap. Class Qnode is parameterized on a type X that must be a subtype
of Task [24, 21]. Field nxt is used to form singly linked lists of nodes. The special command pack
in setTsk is discussed later.

In Qnode, method run can falsify the invariant 0≤count≤limit mentioned in a comment.
Also, if the invariant tsk6=null is initially false, i.e., isn’t actually invariant, then the invocation
tsk.run() crashes. To reason about an invariant in a class, it is desirable to confine attention to
the code of the class. Moreover, the public interface should not expose internal design decisions
(which are subject to revision), as would happen, e.g., if we gave an explicit precondition tsk6=null
for public method Qnode.run.

Table 2 declares a class intended to maintain a linked list of Qnode rooted at its field tsks. The
invariant that all tasks have the same type is expressed using a type parameter. Another intended
invariant is that each count field is an accurate count of the number of times the task has been
run. Method Queue.runAll invokes run on each task for which the limit is not exceeded. Suppose
type X is instantiated as RTask declared as follows.

class RTask {
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class Queue<X / Task> {
private Qnode<X> tsks;
private int runs := 0;
. . .
int getRuns() { result := runs; }
unit runAll() {

unpack self from Queue;
Qnode<X> p := tsks;
while p 6= null do {

if (p.getCount() < p.getLimit()) then runs := runs+1; p.run(); endif;
p := p.getNxt(); }

pack self as Queue; }
unit add(X t, int lim){

unpack self from Queue;
Qnode<X> n := new Qnode<X>;
setowner n to (self,Queue);
n.setTsk(t,lim); n.setNxt(tsks); tsks := n;
pack self as Queue; }}

protected Qnode<X> getTsks() { //for subclass only
result := tsks;}

Enumeration<X> allTasks() {
result := ”an enum the contents of tsks” }}

Fig. 2. Class Queue.

Queue<RTask> q;
unit run(){q.runAll();} . . . }

Consider a state in which o points to an instance of Queue<RTask> and the first node in the list
has count=0 and lim=1. Moreover, suppose field q of that node’s task has value o. Invocation
of o.runAll diverges: before count is incremented to reflect the first invocation, the task makes a
reentrant call on o.runAll which again invokes run on the task.

The toy example illustrates a reentrant call to the same method, runAll, but it could as well
be a different method, e.g., getRuns. The issue is that an invocation commences while one is in
progress on the same object — the second invocation may find the object in an inconsistent state.
Here, one inconsistency is that count is not an accurate count of the number of runs.

One expects to temporarily suspend invariants during execution of a procedure and to assume
that an object’s invariant holds initially for every invocation. There are practical situations in
which it makes sense for a particular method not to assume the invariant as a precondition, e.g., a
method intended to be used in reentrant callbacks —for example, getRuns in our example could
be intended to give lower bound on the number of times runAll has run to completion, in which
case a reentrant call is fine because this behavior of runAll does not depend on the invariant.3 By

3 To prove that getRuns has this behavior, we would have to add to the invariant. But we are not concerned
with proving full specifications. The point here is just that there is some declared invariant that we want
to preserve, and that invariant is needed as a precondition for some but not all methods.
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far the most common case is where reentrant callbacks are neither intended nor foreseen. This
poses the question: when does an object invariant hold?

An often-proposed answer is to require an object to establish its own invariant before making
any method call, lest that call lead to a reentrant callback. Most calls do not, e.g., p.getNxt, so this
is draconian and impractical. For example, after n.setTsk and before n.setNxt in method add,
see Fig. 2.

Another non-solution is to abandon the idea that the object invariant is a precondition for any
method. A more practical solution is to write object invariants in the form o.inv ⇒ I(o) where
I is the invariant predicate of interest and inv is a field, publicly readable or at least visible in
specifications, that explicitly represents whether the invariant is in force. To disallow reentrant
callbacks, a method can have precondition inv = true and set inv false before invoking other
methods. The condition inv ⇒ I is maintained as a so-called program invariant, i.e., true in
every state. In virtue of precondition and program invariant, the implementer can exploit I in
the method body. It is the responsibility of a caller to establish the precondition. The code in
RTask.run has no way of establishing q.inv so it is not justified to invoke q.runAll.

This idea has been explained in greater depth in [5, 30], where it is made into a methodology
using special commands and rules to manipulate inv. In runAll, the command unpack self from
Queue has, to a first approximation, the effect of setting inv false to prevent reentrant callbacks. It
is set to true by the command pack self as Queue. To justify the assumption that inv ⇒ I holds
in every reachable state, the command pack is subject to the precondition that I holds. Further
preconditions are discussed below (see also Table 1).

A given object is an instance not only of its class but of all its superclasses, each of which
may have invariants. The discipline of [5, 30] takes this into account as follows. The value of inv
is not boolean but rather the name, C, of some superclass of the object’s dynamic type. Instead of
inv ⇒ I, the program invariant is that

o.inv ≤ C ⇒ IC(o) (1)

for all C and all allocated objects o. That is, if o is “packed” at least to class C then the invariant
IC for C holds.

For the example above, Queue.runAll would be specified to have precondition self.inv ≤
Queue and RTask.run would be specified to have precondition self.inv ≤ Rtask. In the absence
of formal specifications, the intended effect can be achieved by using an assert at the beginning of
the bodies of these methods. Thinking in terms of semantics —runtime checking if you will—, in
the situation where an RTask is in a Queue and has a link to that Queue, when runAll is invoked
the Queue gets unpacked and then the invokes run which in turn invokes runAll in a state where
the assertion will fail, aborting the computation. In terms of static checking, the call to runAll in
RTask.run cannot be verified because the precondition cannot be established.

Typically, unpacking and packing exhibits a lexical structure as in runAll, akin to operations
on existential types (from which the terminology is adopted). But this is not required. For new
objects inv is initialized to Object and setTsk exhibits the pattern often found in constructors
(which we omit for brevity).

Modularity demands that I(o) depends only (or largely) on encapsulated state. For fields of
o, this can be achieved via private visibility —though note that class based visibility would allow
the code to read private fields of other instances. But I(o) may depend on other objects, e.g., if
Queue has an invariant that count<limit for each node in its list. The nodes can be encapsulated
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e 6= null ∧ e.inv = super C ∧ IC(e) ∧ ∀p | p.own = (e, C) ⇒ ¬p.com ∧ p.inv = name(type p)
pack e as C

e 6= null ∧ e.inv = C ∧ ¬e.com
unpack e from C

e1 6= null ∧ e1.inv > C where C is the class that declares f ; i.e., f ∈ dom(dfields C)
e1.f := e2

e1 6= null ∧ e1.inv = Object ∧ (e2 = null ∨ e2.inv > C)
setown e1 to (e2, C)

Table 1. Stipulated preconditions of field update and the special commands. (We include the conjuncts
e 6= null in order to avoid worry about null dereferences in the rest of the formula; in fact e 6= error is also
needed. But these details might be worked out differently depending on the verification system in which our
methodology is being used.)

using the notion that they are owned by o. Ownership is embodied in an auxiliary field own. The
idea is that if p.own = (o, C) then p is owned by o and moreover it is the invariants of o at types
≥ C that can depend on p. An object invariant is allowed to depend on transitively owned objects
as well —collectively called an island.

Following [5, 30], we formalize the discipline in terms of fields with public visibility, to illu-
minate the conditions necessary for sound reasoning about updates and invariants. In practice of
course, private and protected visibility are often used. In many cases, the conditions required by
the Boogie discipline are consequences of visibility restrictions.

An invariant IC(o) for object o is admissible if it can only be falsified by update of fields
of o and of objects owned by o. For example, the invariant for Qnode depends only on its own
fields and the count field in owned nodes. The discipline requires, for an update of the form
e1.f := e2, that any object o with an invariant IC(o) dependent on e1 is sufficiently unpacked,
i.e., o.inv > C. But the objects dependent on e1 are e1 itself and the objects that transitively
own e1. If e1 is unpacked, i.e., not in a consistent state, then its owners should not be considered
consistent, so it is enough to check e1.inv. This idea is made precise using the third and last of the
auxiliary fields, com, of boolean type. In addition to (1), two additional conditions are imposed
as program invariants, i.e., to hold in all reachable states of all objects. The first may be read “an
object is committed to its owner if its owner is packed”:

o.inv ≤ C ∧ p.own = (o, C) ⇒ p.com (2)

The second says that a committed object is fully packed:

o.com ⇒ o.inv = name(type(o)) (3)

Conditions (1–3) are program invariants provided that field updates and pack/unpack are subject
to preconditions as stipulated in Table 1.

The effect of pack is not only to set inv but also to commit all currently-owned objects. More
precisely, “pack e as C” sets e.inv:= C and sets p.com:= true for all p with p.own = (e, C). Its
precondition requires that p.inv equals the dynamic type, type p, for each owned p, whence by (1)
each is fully packed.
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The effect of unpack includes un-committing all owned objects, making them susceptible to
unpacking and also to ownership transfer. In detail, “unpack e from C” sets e.inv:= super C
(where super gives the direct superclass) and sets p.com:= false for all p with p.own = (e, C).
Both pack and unpack update unboundedly many objects, but all affected fields are auxiliaries
for reasoning, not part of the runtime state. The effect of “setown e1 to (e2, C)” is simply
e1.own:= (e2, C). The default value of com is false; of own is (null, Object); of inv is Object.

References [5, 30] contain more leisurely introductions and extensive examples. Although
it is not relevant in the sequel, let us mention one strength of the discipline: It facilitates the
interpretation of the “modifies clause” used to specify frame conditions —if a method explicitly
modifies o then it may also modify objects transitively owned by o and committed.

Another strength of the approach is that it is not tied to a particular logic for state predicates
and correctness assertions. In our formalization we adopt a semantic formulation using assert
statements which facilitates compositional formulation of the theory.

Generics. Among the various type-based approaches for ownership [15, 35, 2], none has been
integrated with generics (Potanin et al. [43] report preliminary findings on one aspect). Generics
have been treated in work on package confinement [51] but no reasoning principles have been de-
veloped exploiting package confinement, which is rather coarse grained. (We point out a potential
use in the sequel.) Variations on Ownership Types [13, 9, 8] have been extensively developed and
applied. The syntax resembles generic classes but the systems are closer to dependent types than
to generics, in that an instance of a class is parameterized on an owning instance, not on a type.
The inv/own discipline uses type names in auxiliary state: the value of inv is a class name and
own pairs a pointer (or null) with a class name. Previous work on representation independence
by the authors [2] uses class names to enforce a form of ownership confinement. Generics are not
only useful but, for the latter work, necessary in order for the results to be practical: the root type
Object allows values of all types so it is unusable for alias control, yet without generics its use is
ubiquitous (to encode generics).

We adapt the inv/own discipline to generics. We choose a C#-like language [26] in which
casts and type tests involve full types, not just class names as in GJ [10, 24]. Class names are
used in the inv/own discipline to track levels in the hierarchy of class declarations, so it turns out
that type arguments are not needed to make the discipline work with generics. Our semantics is
a straightforward denotational one in which type variables give rise to indexing over all ground
instances. This works smoothly even though the language is quite expressive owing to F-bounded
subclassing and methods with type parameters [27].

Representation independence. Consider the subclass of Queue declared in Figure 3. For any
subclass X of Task, AQueue<X> is a subclass of Queue<X>. It maintains an array, actsks, of
tasks which is used in an overriding declaration of runAll intended as an optimization. We’ve
dropped runs. Method add exhibits a typical pattern: unpack to establish the condition in which
a super call can be made (as the superclass unpacks from its own level); after that call, reestablish
the current class invariant. (This imposes proof obligations on inheritance, see [5].)

Consider this revision of AQueue: instead of using one array, with null replacing tasks past
their limit, use an array artsk of X together with a parallel array brtsk of booleans to indicate
whether a task is past its limit. Either way, the arrays can be suitably compressed at appropriate
times, and the choice of times is an internal design decision that may be made differently in the
two versions.
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class AQueue< X / Task> extends Queue<X>{
private Qnode<X>[ ] actsks;
private int alen;
. . .
unit add(X t, int lim) {

unpack self from AQueue;
super.add(t,lim);
actsks[alen] := self.getTsks(); alen := alen+1;
pack self as AQueue; }

unit runAll() {
unpack self from AQueue;
int i := alen-1;
while i ≥ 0 do {

X at := actsks[i];
if (at 6= null)
then if (at.getCount() < at.getLimit())

then at.run();
else actsks[i] := null;

i := i-1; }
pack self as AQueue;}}

Fig. 3. Class AQueue. An invariant: actsks[0..alen) contains any n in tsks with n.count < n.limit, in
reverse order. (There may also be nulls and some n with n.count = n.limit).

Clearly the fields of AQueue should be private if we are to revise its implementation but retain
compatibility of syntactic interfaces, i.e., if we wish to reason modularly about the class without
regard to all its actual uses. To justify that the new version behaves the same as the old one, we
argue as follows. Let filt1(o.actsks) be the sequence of non-null elements of o.actsks with
count < limit. Let filt2(ts, bs) take an array ts of tasks and a same-length array bs of booleans
and return the subsequence of n in ts where bs is true and n.count < n.limit. Consider the
following relation that connects a state for an instance o of the original implementation (Table 3)
with an instance o′ for the alternative:

filt1(o.actsks) = filt2(o′.artsk, o′.brtsk)

The idea is that methods of the new version behave the same as the old version, modulo this
change of representation. Formally, from a pair of states related this way, execution of the cor-
responding method bodies leads to a related pair. In fact this is not likely to be true unless we
also conjoin the invariants associated with the two versions, e.g., the second version requires
artsks.length=brtsks.length.

Some theories treat simulations as relations on the global state space, but this is impractical
for our situation: the programmer thinks in terms of a single instance and the objects on which it
depends —what we call its island. Below is a picture of an instance of some subclass of AQueue,
sliced into the fields of Queue, AQueue, and subclasses; on the right are objects encapsulated at
the two levels relevant to reasoning about AQueue.
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AQueue

subclasses...

Queue

A relation between two such islands, called a basic coupling, should determine a relation on
global states, just as (1) gives a global predicate based on predicates IC(o) that depend only on
fields of o and objects owned by it, at class C and superclasses.

(Aside: Note that the dotted pointer in the picture is allowed by the discipline but disallowed
by ownership confinement disciplines.)

Suppose we are convinced that the two versions are correct in the sense of preserving the
basic coupling (we explore this in detail later). We would like to conclude that, no matter how
many instantiations are made of AQueue, and no matter what subclasses are declared, no client
program can distinguish between one implementation and the other. Such a conclusion depends
on encapsulation, as otherwise leaked references to internals could be used to spoil the connection.
Moreover it is a nontrivial property of the language’s constructs. For example, we do not allow
pointer arithmetic, for if we did then clients could observe changes in memory layout (e.g., the
addition of a private field). Our main result is that preservation of a basic coupling by methods
of AQueue is indeed sufficient. The absence of pointer arithmetic is embodied in the theory by a
bijection on locations as part of the notion of coupling. This bijection is also used to help express
the encapsulation properties needed.

Adapting the discipline. As for proving correspondence between two versions of a method body,
it is possible to reason directly in terms of the semantics [16, 19] or a special logic of relation-
preservation [7, 49]. Another alternative is to rename things to create disjoint pieces that can be
combined and subject to ordinary program logic: This can be seen as two transformations, first
to introduce additional variables, then to revise some parts to use the new variables (treating the
coupling as an ordinary invariant), and finally eliminating the old variables which are now super-
fluous [40, 20, 34]. We are unaware of the transform approach having been worked out in detail
for the complications of OO languages. In any approach, we confront the problem of reentrant
callbacks. The theorem of [2] says that the proof obligation is to show the methods of AQueue
preserve the coupling under the assumption that any methods called do so. But in the middle of a
method body, the coupling may not hold, in which case the hypothesis about calls is inapplicable.

The inv/own discipline works beautifully here. Because inv is part of the behavior observable
at the level of reasoning, we can assume both versions follow the same pattern of packing (though
not necessarily of control structure). The basic coupling serves to describe a corresponding pair
of objects when they are in steady state. The induced coupling relation on global states requires
corresponding pairs o, o′ of objects to satisfy not only o.inv = o′.inv but also o.inv ≤ AQueue ⇒
BC (o, o′) where BC is the basic coupling (a relation on not only o, o′ but also their transitively
owned objects, i.e., their respective islands. ).

Several features of the discipline need to be adapted, in ways which also make sense in terms
of informal considerations of information hiding. The discipline does not constrain field access,
as reading cannot falsify an invariant predicate. But simulation breaks if a client can read fields
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of encapsulated objects, so we impose a precondition on field access: outside of the code of the
class Abs under revision, we do not allow access to fields of objects transitively owned by objects
of class Abs. Moreover, fields of Abs are private (though others are public in this paper). Because
this precondition is expressed in terms of transitive ownership, it is less amenable for direct veri-
fication than the conditions in Table 1, but a lightweight confinement discipline such as package
confinement [48] can be used to establish the ownership transfer preconditions automatically in
sensible code. Yet there remains the possibility to verify tricky code that is beyond the reach of
conservative automated analysis.

Another problematic feature is that “pack e as C” can occur in any class, so long as its pre-
conditions are established. But for “pack e as Abs”, to establish the precondition for a simulation
means establishing the basic coupling; such a command only makes sense in code of Abs.

Although the discipline supports hierarchical ownership, our technical treatment benefits from
heap partitioning ideas from separation logic (we highlight the connections where possible, e.g.,
in Proposition 2). For this reason, it is convenient to prevent an instance of Abs from transitively
owning another instance of Abs (lest their “islands” be nested). This can be achieved by a simple
syntactic restriction. It does not preclude that, say, class AQueue can be instantiated with the
element type X itself being (or containing) type AQueue, because an instance of AQueue owns
its representation objects (the Qnodes), not the tasks they contain.

The most challenging feature is ownership transfer. Transfer between instances of an abstrac-
tion occurs, for example, in load balancing for task queues [4, 28]. The hardest case is where a
hitherto-encapsulated object is released to a client, e.g., when a memory manager allocates nodes
from a free list [38, 4]. This can be seen as a deliberate exposure of representation and thus is
observable behavior that must be retained in a revised version. We have solved the technical
problems; as with pack, we use a precondition so that outward transfer of objects encapsulated
for Abs can occur only in code of Abs (but we lack other compelling examples).

3 Language

3.1 Syntax

This section formalizes the language, adapting notations and typing rules from Featherweight
Generic Java [24], adding imperative features and the special commands. Barred identifiers like
T̄ indicate finite lists, e.g., T̄ f̄ stands for a list f̄ of field names with corresponding types T̄ .

In most respects self and result are like any other variables but self cannot be the target of
assignment; the final value of result serves as the result returned by a method.

A class type has the form C<T̄> where T̄ is a list of types which may include variables. We
assume that class Object<> has no parameters but distinguish it from the bare class name Object.
A program consists of a class table CT that maps a class name C to a declaration CT (C) of the
form

class C<X̄ / N̄> / N { T̄ f̄ ; M̄ } (∗)
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The categories N, T, M are given by this grammar:

C, D ∈ ClassName X, Y ∈ TypeVar m ∈ MethName

f ∈ FieldName x, self, result ∈ VarName

T ::= bool | unit | X | C<T̄> types (also U, V )
N ::= C<T̄> nonvariable class type
M::= <X̄ / N̄> T m(T̄ x̄) {S} method declaration
S ::= x:= e | e.f := e assign to var., to field

| x:= new N object construction
| x:= e.m<T̄>(ē) method call
| T x:= e in S | S; S local variable, sequence
| if e then S else S fi conditional
| pack e as C set inv to C
| unpack e from C set inv to super C
| setown e to (e′, C) set e.own to (e′, C)
| assert P assert (see text for P)

e ::= x | null | true | false variable, constant
| e.f | e = e field access, ptr. equality
| e is N | (N) e type test, cast

A declaration of method named m with body S takes the form <X̄ / N̄> T m(T̄ x̄) {S} which
binds additional type parameters X̄ in the parameter types T̄ and return type T . In the formal
language, expressions do not have side effects. Method call is not an expression but rather a
command that assigns the result value to a variable. Object construction occurs only as a command
x:= new C. Fields are initialized to “0 equivalent” default values: false for bool, null for object
types, and the unique value it of type unit (called void in some languages; mathematically this
is odd though perhaps the word “unit” has to many meanings).

A class declaration, see (∗) above, is parameterized by a list X̄ of type parameters; the bounds
N̄ are nonvariable types which may contain variables in X̄. Typing judgements carry a context ∆
which is a finite mapping of type names to nonvariable types. We write X / N for the mapping
X 7→ N .4 As is enforced in the typing rules, the parameters of a class are bound throughout the
class declaration.

The type of an actual object instance is variable-free, and the meaning of a parameterized
class is defined in terms of its ground instances. Our language follows C# in allowing runtime
cast and test for exact types rather than just the class name as in GJ. Useful discussion and results
on the interaction between type parameters and subtyping can be found in [24, 50, 27]

Definition 1 (subtyping). For any ∆, the subtyping relation ∆ ` − ≤ − on types is defined by

• ∆ ` X ≤ ∆ X for all X ∈ dom∆
• ∆ ` C<T̄> ≤ [T̄ /X̄]N for any T̄ and declaration class C<X̄ / N̄> / N { . . . }
• ∆ ` T ≤ T
• ∆ ` T ≤ V if ∆ ` T ≤ U and ∆ ` U ≤ V

Here [T̄ /X̄] denotes simultaneous substitution of T̄ for X̄. Note that C<T̄> ≤ [T̄ /X̄]N holds
regardless of whether T̄ satisfies the declared constraint X̄ / N̄ . Note that ∆ ` C<T> ≤ C<U>

4 The symbol ≤ makes more sense for a bound, as / is used in other contexts for direct extension rather
than subtype; but ≤ looks unpleasant written inside angle brackets.
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does not follow from T ≤ U . Sometimes we will be interested in the inheritance order on class-
names, for which we define C ≤ D iff ∆ ` C<T̄> ≤ D<Ū> for some ∆, T̄ , Ū . To facilitate
distinguishing between the two uses of “≤” we define name(C<T̄>) = C. A typing context Γ is
a finite mapping from variable and parameter names to types, such that self ∈ dom Γ .

Definition 2 (well formed types and contexts). The judgement ∆ ` −ok for well formed types
is defined inductively by the following rules. Lists on the right side of judgements abbreviate
multiple judgements: ∆ ` N̄ , N ok means ∆ ` N ok and ∆ ` U ok for all U in N̄ . In the
definition of ∆ ` C<T̄> ok , the conditions X̄ / N̄ ` N̄, N ok ensure that all variables in the
bounds N̄ and superclass N of a class type are bound by the parameters X̄ of the class.5

• ∆ ` Object<> ok

• if X ∈ dom ∆ then ∆ ` X ok

• if C is declared by class C<X̄ / N̄>/N { . . . } then ∆ ` C<T̄> ok provided that ∆ ` T̄ ok ,
∆ ` T̄ ≤ [T̄ /X̄]N̄ , and X̄ / N̄ ` N̄, N ok .

We say ∆ is well formed if ∆ ` (∆ X) ok for all X ∈ dom∆, and Γ is well formed in ∆ if
∆ ` (Γ x) ok for all x ∈ domΓ .

We define the ground class types by R ::= C<R̄> and also use identifiers P, Q for such types.
The base cases of this recursion are classes with an empty argument list, e.g., Object<>. For
ground types R and Q, ∆ ` R ≤ Q is independent from ∆ and we write R ≤ Q without context.
We can apply a substitution σ to context Γ by function composition: (σΓ ) x = σ(Γ x).

A ground instantiation of ∆ is a ground substitution σ with dom σ = dom ∆ and σX ≤
σ(∆X) for all X ∈ dom∆. We write grnd ∆ for the set of ground instantiations of ∆. We write
instantiation(D, C<R̄>) for the D<Q̄> given by (b) of the following.

Lemma 1. (a) If ∆ ` C<X̄> ≤ D<T̄> and ∆ ` C<X̄> ok then all variables in T̄ occur in X̄.
(b) If C ≤ D and ` C<R̄> ok then there is unique Q̄ such that ` D<Q̄> ok and C<R̄> ≤ D<Q̄>.

Lemma 2. Both the extension relation E and the subtyping relation ≤ has the tree property: if
∆ ` U ≤ T1 and ∆ ` U ≤ T2 then ∆ ` T1 ≤ T2 or ∆ ` T2 ≤ T1.

Well formed class tables are characterized using typing rules which are expressed using some
auxiliary functions that in turn depend on the class table, allowing classes to make mutually re-
cursive references to other classes, without restriction. In particular, this allows recursive methods
(so we omit loops). Table 2 defines some auxiliary functions. Note that for well formed ground
type C<R̄>, all types in fields(C<R̄>) are ground.

For use in the semantics, we extend fields(C<Ū>) to xfields(C<Ū>) that also assigns “types”
to the auxiliary fields: com : bool, own : owntyp, and inv : (invtyp C). Neither invtyp C nor
owntyp are types in the programming language but there are corresponding semantic domains
and the slight notational abuse is convenient.

Typing of commands for methods declared in class C<X̄> is expressed using judgements
∆; Γ ` S where Γ self = C<X̄>.

5 In FGJ, this is not explicitly imposed in the definition of ok , but it may as well be because it is imposed
in the typing rule for classes. It follows directly from our definition of ok that if ∆ ` T ok then every
variable in T has a bound in ∆. Different from FGJ, we use invariant subtyping for method overriding
and omit renaming of parameters.
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Given a class declaration, class C<X̄ / N̄> / N { T̄ f̄ ; M̄ }, define

dfields(C<Ū>) = (f̄ : [Ū/X̄ ]T̄ ) declared fields
fields(C<Ū>) = dfields(C<Ū>) ∪ fields([Ū/X̄ ]N) inherited and declared fields
super(C<Ū>) = [Ū/X̄]N superclass instance
super C = name N superclass name

In the context of the above class, define, for a method declaration <X̄1 / N̄1> T m(T̄1 x̄) {S}

mtype(m, C<Ū>) = [Ū/X̄](<X̄1 / N̄1>T̄1→T ) instantiated method type
pars(m,C) = x̄ parameter names
pars(m,C<Ū>) = x̄ parameter names

For m inherited in C, define mtype(m, C<Ū>) = mtype(m, [Ū/X̄]N) and pars(m, C) = pars(m,N).

Table 2. Auxiliary functions on syntax.

Definition 3 (well formed class table). Class table CT is well formed if each class declaration
CT (C) is well formed according to the following rule.

X̄ / N̄ ` N ok C<X̄ / N̄> / N ` M for each M ∈ M̄

` class C<X̄ / N̄> / N { T̄ f̄ ; M̄ }

The judgement for well formed M is expressed using the class header “C<X̄ /N̄>/N” as context
and the rule is as follows:

X̄ / N̄ , X̄1 / N̄1 ` T̄ , T, N̄ ok X̄ / N̄ , X̄1 / N̄1; x̄ : T̄ , self : C<X̄>, result : T ` S
mtype(m, N) is undefined or equals <X̄1 / N̄1>T̄→T

pars(m, N) is undefined or equals x̄

C<X̄ / N̄> / N ` <X̄1 / N̄1> T m(T̄ x̄){S}

Selected rules for expressions and commands are given in Table 3. These rules may be in-
stantiated only with well formed ∆; Γ and with types that are well formed in ∆. This stipulation
allows us to omit explicit ok -judgements in the rules for cast, test, local variable, method call, and
object construction where types occur in expressions or commands. The bound of a class type in
a context ∆ is defined by bound ∆ X = ∆ X and bound ∆ N = N . 6

In typing rules and elsewhere, we often write “=” between expressions involving partial func-
tions. It means strong equality: both sides are defined and equal.

Selected typing rules appear in Table 3.
To formalize assertions, we prefer to avoid both the commitment to a particular formula lan-

guage and the complication of an environment for declaring predicate names to be interpreted in
the semantics. So we indulge in a mild and commonplace abuse of notation: the syntax of assert

uses a semantic predicate, or rather a generic family thereof. We say ∆; Γ ` assert P is well
formed provided that P σ is a set of program states for each σ. (In terms of the semantics defined

6 Because identifiers T, U, V range over types including primitives, the rules for field access and method
call might appear to allow treatment of primitives as objects. But in fact these rules cannot be instantiated
at primitive types because for them the auxiliary functions (dfields, mtype) are not defined.
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∆; Γ ` x : Γx
∆; Γ ` e : U (f : T ) ∈ fields(bound ∆ U)

∆; Γ ` e.f : T

∆; Γ ` e : T ∆ ` N ≤ bound ∆ T

∆; Γ ` (N) e : N
∆; Γ ` null : N

∆; Γ ` e : T ∆ ` N ≤ bound ∆ T

∆; Γ ` e is N : bool
∆ ` N ≤ Γx x 6= self N 6= Object<>

∆; Γ ` x:= new N

∆; Γ ` e1 : V (f : T ) ∈ fields(bound ∆V ) ∆; Γ ` e2 : U ∆ ` U ≤ T

∆; Γ ` e1.f := e2

∆; Γ ` e : T mtype(m, (bound ∆T )) = <X̄ / N̄>T̄→U
x 6= self ∆; Γ ` ē : Ū ∆ ` Ū ≤ [V̄ /X̄ ]T̄ ∆ ` [V̄ /X̄ ]U ≤ Γ x ∆ ` V̄ ≤ [V̄ /X̄ ]N̄

∆; Γ ` x:= e.m<V̄ >(ē)

∆; Γ ` e : N name N ≤ C

∆; Γ ` pack e as C

∆; Γ ` e : N name N ≤ C

∆; Γ ` unpack e from C

∆; Γ ` e1 : N1 ∆; Γ ` e2 : N2 name N2 ≤ C

∆; Γ ` setown e1 to (e2, C)

Table 3. Typing rules for selected expressions and commands.

in the sequel, the precise statement is: P σ ⊆ [[heap ⊗ σΓ ]] for all σ ∈ grnd ∆.) This treatment
of assertions is also convenient for taking advantage of a theorem prover’s native logic [23, 25].

In the rest of the paper, we often assume types and contexts are well formed, and that typings
are derivable, without explicit mention. By referring to “instances of C<X̄>” we mean that X̄ are
the declared parameters of C and that well formed instances are considered.

3.2 Semantics

A global state consists of a heap h, i.e., a finite partial function from locations to object states,
and a store s, which assigns locations and primitive values to the local variables and parameters
given by a typing context Γ . An object state is a mapping from field names to values. A pre-heap
is like a heap except for possibly having dangling references. If h, h′ are pre-heaps with disjoint
domains then we write h ∗ h′ for their union; otherwise h ∗ h′ is undefined.

Function application associates to the left, so h o f is the value of field f of the object h o at
location o. We also write h o.f . Application binds more tightly than binary operator symbols and
“,”.

A command denotes a function mapping each initial state (h, s) either to a final state (h0, s0)
or to the distinguished value ⊥ which represents runtime errors, divergence, and assertion failure.

For locations, we assume that a countable set Loc is given, along with a distinguished value
nil not in Loc. Instances have ground type so we assume given a function type from Loc to
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[[R]] = {nil} ∪ {p ∈ Loc | type p ≤ R}

[[bool]] = {true , false}

[[unit]] = {it}

[[invtyp C]] = {B | C ≤ B}

[[owntyp]] = {(o, C) | o = nil ∨ name(type o) ≤ C}

[[state R]] = {s | dom s = dom(xfields R) ∧ ∀(f : R1) ∈ xfields R | s f ∈ [[R1]]}

[[pre-heap]] = {h | dom h ⊆fin Loc ∧ ∀o ∈ dom h | h o ∈ [[state (type o)]]}

[[heap]] = {h | h ∈ [[pre-heap]] ∧ ∀s ∈ rng h | rng s ∩ Loc ⊆ dom h}

[[Γ r]] = {s | dom s = domΓ r ∧ s self 6= nil ∧ ∀x ∈ doms | s x ∈ [[Γ r x]] }

[[heap ⊗ Γ r]] = {(h, s) | h ∈ [[heap]] ∧ s ∈ [[Γ r]] ∧ rng s ∩ Loc ⊆ dom h}

[[heap ⊗ T ]] = {(h, v) | h ∈ [[heap]] ∧ v ∈ [[T ]] ∧ (v ∈ Loc ⇒ v ∈ dom h)} for ground T

[[(Γ r ` command)]] = [[heap ⊗ Γ r]] → [[(heap ⊗ Γ r)⊥]]

[[(Γ r ` R)]] = {v | v ∈ ([[heap ⊗ Γ r]] → [[R]]⊥) ∧ ∀h, s | v(h, s) ∈ Loc ⇒ v(h, s) ∈ dom h}

[[(R, R̄→R1)]] = [[heap ⊗ (x̄ : R̄, self : R)]] → [[(heap ⊗ R1)⊥]] where x̄ = pars(m,R)

Table 4. Semantic domains. See Definition 4 for [[meth-env]]. For state R, the range of f : R1 includes
com : bool, inv : invtyp(name R1), and own : owntyp.

ground, non-primitive types distinct from Object<>, such that for each C<R̄> there are infinitely
many locations o with type o = C<R̄>. This is used in a way that is equivalent to tagging object
states with their type.

Some semantic domains correspond directly to (ground instantiations of) the syntax. For ex-
ample, each ground data type R denotes a set [[R]] of values. For lack of a symbol, we use dec-
orated Γ r for ground context, which denotes a set [[Γ r]] of stores. The semantics, and later the
coupling relation, is structured in terms of category names θ given as follows.7

θ ::= R | Γ r | θ⊥
| owntyp | invtyp C lift, own and inv val.
| stateR | pre-heap obj. state, heap frag.
| heap | heap ⊗ Γ r | heap ⊗ R closed heap, state
| (Γ r ` command) | (Γ r ` R) command, expr.
| (R, R̄→R1) | meth-env method, methods
The semantic domains are defined in Table 4. They embody important invariants: the value in

a field has its declared type and there are no dangling pointers.
Subtyping is embodied in a simple way: if ∆ ` T ≤ U and σ ∈ grnd ∆ then [[σ T ]] ⊆ [[σ U ]].
The meaning of a derivable command typing ∆; Γ ` S will be defined to be a (curried) func-

tion sending each σ ∈ grnd ∆ and method environment µ to an element of [[(σΓ ` command)]].
That is, [[∆; Γ ` S]]σµ is a state transformer [[heap ⊗ σΓ ]] → [[(heap ⊗ σΓ )⊥]]. Similarly, for
σ ∈ grnd ∆ the meaning [[∆; Γ ` e : T ]]σ is an element of [[heap ⊗ σΓ ]] → [[σT⊥]].

7 The notation Γ r ` R for the category of expressions uses ground class type R but we also use the Γ r ` T
with T a primitive type and likewise for method arguments/results R̄→R1. Rather than clutter notation,
we leave it to the reader to note situations where primitive types are included.
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[[∆; Γ ` x : T ]]σ(h, s) = s x

[[∆; Γ ` e.f : T ]]σ(h, s) = let o = [[∆; Γ ` e : U ]]σ(h, s) in if o = nil then ⊥ else h o.f

[[∆; Γ ` (N) e : N ]]σ(h, s) = let o = [[∆; Γ ` e : D]]σ(h, s) in
if o = nil ∨ type o ≤ σN then o else ⊥

[[Γ ` e is N : bool]]σ(h, s) = let o = [[Γ ` e : D]]σ(h, s) in
if o 6= nil ∧ type o ≤ σN then true else false

[[∆; Γ ` x:= e]]σµ(h, s) = let v = [[∆; Γ ` e : T ]]σ(h, s) in (h, [s | x 7→v])

[[∆; Γ ` e1.f := e2]]σµ(h, s) = let o = [[∆; Γ ` e1 : V ]]σ(h, s) in
if o = nil then ⊥ else
let v = [[∆; Γ ` e2 : U ]]σ(h, s) in ([h | o.f 7→v], s)

[[∆; Γ ` x:= new N ]]σµ(h, s) = let o = fresh(σN,h) in
let h0 = [h | o 7→ [xfields(σN) 7→ defaults(σN)]] in (h0, [s | x 7→o])

[[∆; Γ ` x:= e.m<V̄ >(ē)]]σµ(h, s) = let o = [[∆; Γ ` e : T ]]σ(h, s) in if o = nil then ⊥ else
let v̄ = [[∆; Γ ` ē : Ū ]](h, s) in
let x̄ = pars(m, T ) in let s1 = [x̄ 7→ v̄, self 7→ o] in
let (h1, v1) = µ(type o)m(σV̄ )(h, s1) in (h1, [s | x 7→v1])

[[∆; Γ ` assert P]]σµ(h, s) = if (h, s) ∈ P σ then (h, s) else ⊥

[[∆; Γ ` pack e as C]]σµ(h, s) =

let q = [[∆; Γ ` e : N ]]σ(h, s) in if q = nil then ⊥ else
let h1 = λp ∈ dom h | if h p.own = (q, C) then [h p | com 7→ true] else h p in ([h1 | q.inv 7→C], s)

[[∆; Γ ` unpack e from C]]σµ(h, s) =

let q = [[∆; Γ ` e : N ]]σ(h, s) in if q = nil then ⊥ else
let h1 = λp ∈ dom h | if h p.own = (q, C) then [h p | com 7→ false] else h p in ([h1 | q.inv 7→ super C], s)

[[∆; Γ ` setown e1 to (e2, C)]]σµ(h, s)= let q = [[∆; Γ ` e1 : N1]]σ(h, s) in if q = nil then ⊥ else
let p = [[∆; Γ ` e2 : N2]]σ(h, s) in ([h | q.own 7→ (p,C)], s)

Table 5. Semantics of selected expressions and commands. To streamline the treatment of ⊥, the metalan-
guage expression “let α = β in . . .” denotes ⊥ if β is ⊥.

Meanings for expressions and commands are defined, in Table 5, by recursion on typing
derivation. For expressions, the semantics is independent from the ground instantiation σ except
for casts and type tests. For commands, σ is used only for method invocation and object construc-
tion. The semantics is defined for an arbitrary allocator, i.e., location-valued function fresh such
that type(fresh(R, h)) = R and fresh(R, h) 6∈ dom h.

The method environment is used only to interpret the method call command. The semantics
for method meanings and method environments, is based on the following considerations. Like
any command, a method call ∆; Γ ` x:= e.m<V̄ >(ē), where ∆; Γ ` e : U , is interpreted with
respect to a substitution σ ∈ grnd ∆. By typing, the free variables in V̄ and in Γ are bound by
∆, so σ Γ and σ V̄ are ground. Consider execution of the call in initial state (h, s) and suppose
that R is the type of the target object. That is, R = type([[∆; Γ ` e : U ]]σ(h, s)) and thus by
type soundness R ≤ σU . Suppose mtype(m, R) = <Ȳ / N̄1>T̄→T . Let Q̄ = σ V̄ . Consider
the substitution [Q̄/Ȳ ]. By typing, both [Q̄/Ȳ ]T̄ and [Q̄/Ȳ ]T are ground. These give the ground



18

types at which the method body is interpreted. The meaning of the method body, used for the
semantics of the call, is found in the method environment µ as µ R m Q̄.

Definition 4 (method environment). We define the set [[meth-env]] to be the set of partial func-
tions µ such that µRmQ̄ is in [[R, [Q̄/Ȳ ](T̄→T )]] whenever mtype(m, R) = <Ȳ / N̄1>T̄→T
and Q̄ ≤ [Q̄/Ȳ ]N̄1.

Definition 5 (method declaration). Suppose M is a typable method declaration C<X̄/N̄>/N `
M where M = <Ȳ / N̄1> T m(T̄ x̄){S}. For any R̄ and Q̄ such that R̄ ≤ [R̄/X̄]N̄ and Q̄ ≤
[Q̄/Ȳ ]N̄1, define [[M ]](C<R̄>)Q̄ to be a total function [[meth-env]] → [[C<R̄>, [R̄, Q̄/X̄, Ȳ ](T̄→T )]]
as follows.

[[M ]](C<R̄>)Q̄µ(h, s) =
let ∆ = [X̄ / N̄, Ȳ / N̄1] in
let σ = [R̄/X̄, Q̄/Ȳ ] in
let Γ = [x̄ : σT̄ , self : C<R̄>, result : σT ] in
let s1 = [s | result 7→defaults(σT )] in
let (h0, s0) = [[∆; Γ ` S]]σµ(h, s1) in (h0, s0 result)

Definition 6 (semantics of class table). For well formed class table CT , the semantics [[CT ]] is
the least upper bound of the ascending chain µ ∈ N → [[meth-env]] of method environments
defined as follows.

µ0 (C<R̄>) mQ̄ = λ(h, s) | ⊥
µj+1 (C<R̄>) mQ̄ = [[M ]](C<R̄>)Q̄µj

if m is declared as M in C.
µj+1 (C<R̄>) mQ̄ = restr((µj+1 ([R̄/X̄]N) mQ̄), C<R̄>)

if m is inherited in C<X̄> from N .

Here restr restricts the function µj+1 ([R̄/X̄]N) m Q̄, which is defined on stores with self :
[R̄/X̄]N , to stores with self : C<R̄>. This works because R1 ≤ R2 implies [[R1]] ⊆ [[R2]] which
induces an inclusion for stores.

Proposition 1 (type soundness). The semantic clauses for expressions, commands, method bod-
ies, and method environment define elements of the designated semantic domains.

By contrast with [5, 30], we have taken care to separate the annotations required by the inv/own
discipline from the semantics of commands. The invariants encoded in the semantic domains de-
pend in no way on assertions, only typing. To prove type soundness, elements of the domains
(Γ r ` command) and (R, R̄→R1) are subject to an additional requirement we omit from Ta-
ble 4 for clarity: the domain of a result heap contains the domain of the initial heap. Type sound-
ness has been machine checked in PVS for the same language and semantics but without generics,
and we plan to extend that to generics.

3.3 Predicates

A predicate for some ground state type Γ r is just a subset P ⊆ [[heap ⊗ Γ r]]. For emphasis, |=
can be written instead of ∈. Note that ⊥ /∈ P . We frequently convert a predicate on the single
variable self into one independent of the heap: if P ⊆ [[heap ⊗ self : R]] and o is a location of
type ≤ R then we write P(o) for the set of h such that (h, [self 7→ o]) ∈ P . We give no formal
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syntax to denote predicates but rather use informal metalanguage for which the correspondence
should be clear. For example, self.f 6= null denotes the set of (h, s) with h(s self).f 6= nil .

N.B.: quantification over objects (e.g., in Table 1 and Definition 10) is interpreted to mean
quantification over allocated locations: (h, s) |= ∀o | P(o) iff for all o ∈ dom h, (h, s) |= P(o).

To formalize encapsulation we need precise semantic formulations concerning dependence.
In terms of formulas, a predicate depends on e.f if it can be falsified by some update of e.f . Some
predicates are falsifiable by creation of new objects; an example is the predicate

∀o | type o = C ⇒ o = self

Definition 7 (depends, new-closed). Predicate P depends on f iff it depends on some o.f in
some (h, s). Predicate P depends on o.f in (h, s) iff (h, s) ∈ P , o ∈ dom h, and ([h | o.f 7→
v], s) /∈ P for some v with [h | o.f 7→v] ∈ [[heap]].

P is new-closed iff (h, s) ∈ P implies ([h | o 7→defaults ], s) ∈ P for all o /∈ dom h.

As in the Boogie papers and elsewhere [11], we require object invariants to be new-closed.
This does not seem to be a restriction in practice, but see Pierik et al. [41] for arguments to the
contrary.

4 The inv/own discipline

Definition 8 (transitive C- and C↑-ownership). For any heap h, the relation o �h
C p on dom h,

read “o owns p at C in h”, holds iff either (o, C) = h p.own or there are q and D such that
(o, C) = h q.own and q �h

D p. The relation o �h
C↑ p holds iff there is some D with C ≤ D and

o �h
D p.

Definition 9 (admissible (generic) invariant). A predicate P ⊆ [[heap ⊗ (self : R)]] is admis-
sible as an invariant for R provided that it is new-closed and for every (h, s) and o, f such that P
depends on o.f in (h, s), field f is neither inv nor com, and one of the following conditions holds:
o = s(self) and f is in dom(xfields C) or s(self) �h

C↑ o where C = name R.
An admissible generic invariant for C<X̄> is a family, typically named IC , of predicates IC

R

indexed by ground instances R of C<X̄>, such that IC
R is an admissible invariant for R.

For dependence on fields of self, the typing condition prevents an invariant for C from depend-
ing on fields declared in a subclass of C (which could be expressed in a formula using a cast).
Similarly, an invariant can depend on any fields of objects owned at C or above.

We refrain from introducing syntax for declaring invariants.

Assumption 1 In the subsequent definitions, an admissible generic predicate IC is assumed
given for every class C. For Object, there is only one ground instance, Object<>; we assume
its invariant is everywhere true.

Definition 10 (disciplined, PI). A heap h is disciplined if h satisfies the program invariant PI
defined to be the conjunction of:

∀o, C | o.inv ≤ C ⇒ IC
instantiation (C,type o)(o) (4)

∀o, C, p | o.inv ≤ C ∧ p.own = (o, C) ⇒ p.com (5)
∀o | o.com ⇒ o.inv = name(type(o)) (6)
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A state (h, s) is disciplined if h is. Method environment µ is disciplined provided that it maintains
PI in the following sense: for any R, m, Q̄, h, s, if h ∈ PI and µ R m Q̄(h, s) = (h0, v) (and
thus µ R m Q̄(h, s) 6= ⊥) then h0 ∈ PI.

Lemma 3 (transitive ownership). Suppose h is disciplined and o �h
C p. Then (a) name(type o) ≤

C and (b) h o.inv ≤ C implies h p.com = true.

Corollary 1. If h is disciplined, o �h
C p, and h p.inv > name(type p) then h o.inv > C.

Proof. By PI(6), h p.inv > name(type p) implies h p.com = false . Then by part (b) of the
Lemma we have h o.inv � C. We have name(type o) ≤ C by part (a) and name(type o) ≤
h o.inv by type soundness so h o.inv > C follows by the tree property of ≤.

Given an object o ∈ dom h and class name A with name(type o) ≤ A we can partition h
into pre-heaps Ah (the A-object), Rh (the representation of class A), Sh (objects owned by o at
a superclass), and Fh (free from o) determined by the following conditions: Ah is the singleton
[o 7→ h o], Rh is h restricted to the set of p with o �h

A p, Sh is h restricted to the set of p with
o �h

C p for some C > A, and Fh is the rest of h. Note that if o �h
B p for some proper subclass

B < A then p ∈ domFh .
In these terms, dependency of admissible invariants can be described as follows.

Proposition 2 (island). Suppose IC is an admissible invariant for C and o ∈ dom h with
type o ≤ R and name R ≤ C. If h = Fh ∗ Ah ∗ Rh ∗ Sh is the partition defined above then
Fh0 ∗Ah ∗Rh ∗Sh |= IC

R (o) iff h |= IC
R (o), for all Fh0 such that Fh0 ∗Ah ∗Rh ∗Sh is a heap.

To impose the stipulated preconditions of Table 1 we consider programs with the requisite
syntactic structure (similar to formal proof outlines [1]).

Definition 11 (properly annotated). The annotated commands are the subset of the category of
commands defined by the following grammar:

S ::= assert P; pack e as C
| assert P; unpack e from C
| assert P; setown e to (e, C)
| assert P; e.f := e
| assert P
| x:= new N | x:= e.m<T̄>(ē)
| T x:= e in S | S; S | x:= e
| if e then S else S fi

A properly annotated command is an annotated command such that each designated assertion
implies (at each ground instance) the precondition stipulated in Table 1. A properly annotated
class table is one such that each method body is a properly annotated command.

The effect of asserting the stipulated precondition is that when proving something about the
associated command, we can confine attention to initial states (h, s) that satisfy that precondition.

For any class table and family of generic invariants there exists a proper annotation: just add
assert commands with the stipulated preconditions. For practical purposes, of course, one wants
assertions that can collectively be proved correct. For the abstraction theorem, IC

R may as well be
everywhere true for all C, R.
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Theorem 2. If CT is a properly annotated class table then [[CT ]] is disciplined.

The proof is similar to the one in [36], using the following.

Lemma 4 (disciplined commands). If µ is disciplined then any properly annotated command S
maintains PI in the sense that for all (h, s), if h |= PI and (h0, s0) = [[∆; Γ ` S]]σµ(h, s) then
h0 |= PI.

Proof. Case of new. Suppose h |= PI and (h0, s0) = [[∆; Γ ` x:= new C ]]σµ(h, s). Suppose
q is the fresh object, so that h0 = [h | q 7→ defaults ]. We consider each of the predicates in
PI in turn. For (4): h0 q.inv = Object by definition of the defaults. Because every admissible
IC

R is new-closed, adding q to the heap does not falsify (4) for existing objects. For (5) and (6)
the argument is similar, noting that the default values give h0 q.com = nil and h0 q.own =
(nil , Object).

Case of pack. Suppose that (h, s) is disciplined and (h0, s0) = [[∆; Γ ` pack e as C]]σµ(h, s).
Let q = [[∆; Γ ` e : N ]]σ(h, s) and R = instantiation(C, type q). (Note that the latter equation
is implicit in the stipulated precondition as given in Table 1.) Suppose moreover that (h, s) satis-
fies the stipulated preconditions, interpreted with respect to R, i.e., q 6= nil , h q.inv = super C,
h |= IC

R (q), h |= ∀p | p.own = q ⇒ ¬p.com ∧ p.inv = name(type p). The static typing gives
e : N with name N ≤ C.

For Definition 10(4): For any o, if o 6= q then I(o) by h |= PI, because pack only changes
inv and com on which admissible invariants do not depend. If o = q we have IB

R (q), for all
B > C, by precondition h q.inv = super C, as (4) holds in the initial heap h. And IC

R (q) holds
by precondition.

For (5): The only object for which the antecedent gets truthified in h0 is q. And com is set true
for the objects owned by q, by semantics of pack.

For (6): If h o.com = false but h0 o.com = true then h o.own = q by semantics of pack; and
h0 o.inv = name(type o) by precondition.

Case of setowner Let q = [[e1 : N1]]σ(h, s) and p = [[e2 : N2]]σ(h, s), so that

[[∆; Γ ` setown e1 to (e2, C)]]σµ(h, s) = ([h | q.own 7→(p, C)], s)

The stipulated preconditions give h q.inv = Object and either h p.inv > C or p = nil .
For (4): The update can only falsify (4) for some o, C ′ with h o.inv ≤ C ′ and IC′

dependent
on q.own in h. Then by admissibility of IC′

either o = q or o �h
R↑ q where R is the appropriate

instantiation for C ′. In the case o = q, h o.inv ≤ C ′ contradicts the precondition h q.inv =
Object. (Note that C ′ cannot be Object as it’s invariant is true.) If o �h

R↑ q and h o.inv ≤ C ′

then h q.com = true by transitive ownership, Lemma 3(b). But h q.com = false by precondition
h q.inv = Object and program invariant (6).

Note that this applies in particular for o the previous owner; no special precondition is needed
for it.

For (5), the instance to consider is p.inv ≤ C ∧ q.own = (p, C) ⇒ q.com but p.inv > C by
precondition.

For (6), this is independent from the own field.
Case of field update.
Let o = [[e1 : V ]]σ(h, s) and v = [[e2]]σ(h, s). So [[e1.f := e2]]σµ(h, s) = ([h | o.f 7→ v], s).

The preconditions are o 6= nil and h o.inv > name V ′ where V ′, with V ′ ≥ V , is the class that
declares f .
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Neither (5) nor (6) depends on declared fields so they are not falsified by field update.
For (4): consider any o′, C ′, R such that IC′

R (o′) depends on o.f in h, to show that h o′.inv >

C ′. By admissibility of IC′

, there are two cases.

– o = o′: We have precondition h o.inv > name V ′ so it suffices to show that name V ′ ≥ C ′.
Admissibility for IC′

R (o′) requires f ∈ dom(fields C ′) and thus C ′ ≤ nameV ′.
– o′ �h

B o for some B ≥ C ′. From precondition h o.inv > V ′, the semantic typing property
type o ≤ name V , and V ≤ V ′ we get h o.inv > name(type o). This implies, by transitive
ownership Corollary 1, h o′.inv > B whence h o′.inv > C ′.

5 The abstraction theorem

5.1 Comparing class tables.

We compare two implementations of a designated class Abs. They can have completely different
declarations, so long as methods of the same signatures are present —declared or inherited— in
both.

To simplify the precondition needed for reading fields, we consider programs desugared into
a form like that used in Separation Logic.

Definition 12 (properly annotated for Abs). The annotated commands for Abs are those of
Definition 11 with the additional restriction that no expression of the form e.f occurs except in
commands of the form

assert P ; x:= e.f

(in particular, no field access appears in this e).
The properly annotated commands for Abs are those such that fields of Abs have private

visibility (i.e., if f ∈ dfields Abs then accesses and updates of e.f only occur in code of class
Abs) and moreover the designated preconditions imply the preconditions stipulated in Table 1
and in addition

• if name(Γ self) 6= Abs then for ∆; Γ ` x:= e.f , the stipulated precondition is
¬(∃o | o �Abs e) (for code of Abs, the stipulated precondition is true)

• if name(Γ self) 6= Abs then ∆; Γ ` pack e as Abs is not allowed
• if name(Γ self) 6= Abs then ∆; Γ ` setown e1 to (e2, C) is subject to an additional precon-

dition:
(∃o | o �Abs e1) ⇒ C = Abs ∨ (∃o | o �Abs e2)

The effect of the last precondition is that if e is initially owned at Abs then after a transfer (that
occurs in code outside class Abs) it is still owned at Abs.

For convenience in working with singleton heaps, we define pickdom by pickdom h = o
where dom h = {o}; it is undefined if dom h is not a singleton.

Definition 13 (A-decomposition). For any class A and heap h, the A-decomposition of h is
the set Fh ,Ah1,Rh1,Sh1 . . . ,Ahk,Rhk,Shk (for some k ≥ 0) of pre-heaps, all subsets of h,
determined by the following conditions:

• each domAhi contains exactly one object o and name(type o) ≤ A
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• every o ∈ dom h with name(type o) ≤ A occurs in domAh i for some i;
• dom Rh i = {p | o �h

A p} where pickdomAh i = o;
• dom Sh i = {p | o �h

(superA)↑ p} with pickdomAhi = o;
• domFh = dom h − (∪i | dom(Ah i ∗ Rh i ∗ Shi))

Except for the Ahi, any of these named subheaps can be empty.

We say that no A-object owns an A-object in h provided for every o, p in dom h if type o ≤ A
and o �h

(type o)↑ p then type p � A. Definition 15 in the sequel imposes a syntactic restriction
to maintain this property as an invariant, where A is the class for which two representations are
compared. A consequence is that there is a unique decomposition of the heap into separate islands
of the form Ah ∗ Rh ∗ Sh. We use the term “partition” even though some blocks can be empty.

Lemma 5 (A-partition). Suppose no A-object owns an A-object in h. Then the A-decomposition
is a partition of h, i.e.,

h = Fh ∗ Ah1 ∗ Rh1 ∗ Sh1 ∗ . . . ∗ Ahk ∗ Rhk ∗ Shk (7)

A partition in this sense determines —and is determined by— a partition on dom h. Thus
it makes sense, given a heap h0 that is updated from h but has no new objects, to consider the
partition on h0 with the same structure as a given partition on h. In fact, the only primitive
commands that can change the structure are setown, new, and consequently method call. Whereas
new merely adds an object that owns nothing and is not owned, setown changes the ownership
structure. In particular, it can be used to transfer an object in or out of an island —and this
implicitly transfers the transitively owned objects.

To maintain the invariant that no Abs-object owns an Abs-object, we formulate a mild syn-
tactic restriction expressed using a static approximation of ownership.

Definition 14 (can own, �∃). Given well formed CT , define �∃ to be the least relation such that

• (name N2) �
∃ (name N1) for every occurrence of setown e1 to (e2, D) in a method of CT ,

with static types e1 : N1 and e2 : N2

• if C �∃ D, C ′ ≤ C and D′ ≤ D then C ′ �∃ D′

• it is transitively closed

Suppose Abs 6�∃ Abs. Then it is a program invariant that no Abs-object owns an Abs-object
(recall the definition preceding Lemma 5). This is a direct consequence of the following result.

Lemma 6. It is a program invariant that if o �h
C p then name(type o) �∃ name(type p).

Proof. We assume this is true initially. The only command that updates ownership is setown.
Consider setown e1 to (e2, C) with static types ei : Ni that occurs in CT . Suppose h0 =
[[setown e1 to (e2, C)]] and o �h0 p but not o �h p.

We argue by cases on the definition of o �h0 p (or the length of the transitive ownership
chain, if you like).

The base case is h0 p.own = (o, B). As this was not true in h, we have that o = [[e2]] and
p = [[e1]] and thus, by typing of the semantics, type o ≤ N2 and type p ≤ N1. Then by definition
of �∃ we have name(type o) �∃ name(type p).
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For the induction case, suppose there are o′, p′ such that o �h o′, p′ �h p, h p′.own 6= (o′,−)
but h0 p′.own = (o′,−). (Well, I omit the cases o = o′ and p′ = p but they work.) So o′ = [[e2]]
and p′ = [[e1]] and thus, by typing of the semantics, type o′ ≤ N2 and type p′ ≤ N1. Thus
name(type o′) �∃ name(type p′) by definition of �∃. By induction we have name(type o) �∃

name(type o′) and name(type p′) �∃ name(type p′) so name(type o) �∃ name(type p) by
transitivity.

Definition 15 (comparable class tables). Well formed class tables CT and CT ′ are comparable
with respect to class name Abs (6= Object) provided the following hold.

• CT (C) = CT ′(C) for all C 6= Abs.
• For Abs, CT and CT ′ agree on parameterization and superclass, so the declarations have the

form
CT (Abs) = class Abs<X̄ / N̄> / N { T̄ ḡ; M̄ }
CT ′(Abs) = class Abs<X̄ / N̄> / N { T̄ ′ ḡ′; M̄ ′ }

We write `,`′ for the typing relations determined by CT, CT ′ respectively, and similarly
for the auxiliary functions, such as mtype, mtype′. We also write [[−]], [[−]]′ for the respective
semantics, with fresh, fresh′ the allocators.

• For every method m declared in CT (Abs), m is declared in CT ′(Abs) and has the same
signature; mutatis mutandis for m declared in CT ′.

• CT and CT ′ are properly annotated (for Abs) with respect to their given families of invari-
ants. There is no requirement that IC has any relationship to I ′C for any C.

• Abs 6�∃ Abs in both CT and CT ′

The last condition ensures that the Abs-decomposition of any disciplined heap is a partition, by
Lemmas 5 and 6. Note that [[R]] = [[R]]′ for all R, and [[Γ r]] = [[Γ r]]′ for all Γ r.

5.2 Coupling relations and simulation

The definitions are organized as follows. A basic coupling BC is a suitable relation on islands.
This induces a family of coupling relations, Rβ θ for each category name θ and typed bijection
β. Each relation Rβ θ is from [[θ]] to [[θ]]′. Here β is a bijection on locations, used to connect a
heap in [[heap]] to one in [[heap]]′. The idea is that β relates all objects except those in the Rh i or
Rh ′

i blocks that have never been exposed. Finally, a simulation is a coupling that is preserved by
all methods of Abs and holds initially.

Definition 16. A typed bijection is a bijective relation, β, from Loc to Loc, such that β o o′ implies
type o = type o′ for all o, o′. A total bijection on h, h′ is a typed bijection with dom h = dom β
and dom h′ = rng β. Finally, β fully partitions h, h′ for Abs if, for all o ∈ dom h (resp. o ∈
dom h′) with name(type o) ≤ Abs, o is in dom β (resp. rng β).

Lemma 7 (typed bijection and Abs-partition). Suppose β is a typed bijection with β ⊆ dom h×
dom h′ and β fully partitions h, h′ for Abs. If h, h′ are disciplined and partition as h = Fh ∗
. . .Ahj ∗Rhj ∗ Shj and h′ = Fh ′ ∗ . . .Ah ′

k ∗ Rh ′
k ∗ Sh ′

k then j = k.

Definition 17 (equivalence modulo bijection). For any β and designated class name Abs, we
define a relation ∼β for data values, object states, heaps, and stores, as in Table 6.
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o ∼β o′ in [[R]] ⇔ β o o′ ∨ o = nil = o′

v ∼β v′ in [[T ]] ⇔ v = v′ for primitive types T

s ∼β s′ in [[state R]] ⇔ ∀(f : T ) ∈ xfields R | sf ∼β s′f ∨ (f : T ) ∈ dfields Abs

s ∼β s′ in [[Γ r]] ⇔ ∀x ∈ domΓ r | s x ∼β s′ x

h ∼β h′ in [[pre-heap]] ⇔ ∀o ∈ dom h, o′ ∈ domh′ | β o o′ ⇒ h o ∼β h′o′

(h, s)∼β (h′, s′) in [[heap ⊗ Γ r]] ⇔ h ∼β h′ ∧ s ∼β s′

v ∼β v′ in [[θ⊥]] ⇔ v = ⊥ = v′ ∨ (v 6= ⊥ 6= v′ ∧ v ∼β v′ in [[θ]])

(o, C) ∼β (o′, C′) in [[owntyp]] ⇔ (o = nil = o′) ∨ (β o o′ ∧ C = C′)

B ∼β B′ in [[invtyp C]] ⇔ B = B′

Table 6. Value equivalence for designated class Abs. The relation for heap is the same as for pre-heap. Note
that the relation on object states is independent from the declared fields of both CT (Abs) and CT ′(Abs).

Equivalence hides the private fields of Abs. In the identity extension lemma, it is used in
conjunction with the following which hides objects owned at Abs.

Definition 18 (encap). Suppose no A-object owns an A-object in h. Define encap A h to be the
pre-heap Fh ∗ Ah1 ∗ Sh1 ∗ . . . ∗ Ahk ∗ Shk where the A-partition of h is as in (7) above.

The most important definition is of basic coupling, which is analogous to an object invariant
but is a relation on pairs of pre-heaps. For such a relation to left-depend on some o.f in some
related pair h, h′ simply means that there is some v such that [h | o.f 7→ v] is not related to h′

(mutatis mutandis for right-depend). To depend on some f means there exist o, h, h′ as above.
(This can be formalized as in Definition 7.)

In Definition 9, we take an invariant IC
R to be a predicate (set of states) and the program

invariant PI is based on the intersection of these predicates for all objects and types —subject to
inv, see (4). By contrast, we define a basic coupling BC in terms of pre-heaps. We are concerned
with a single class name, Abs, rather than all names C, and instead of a family indexed on ground
instances of Abs<X̄> we use a single set of pre-heaps that include instance objects of all ground
R ≤ Abs<X̄>. We impose the same dependency condition as in Definition 9, but in terms of
pre-heaps of the form h = Ah ∗ Rh ∗ Sh. (Recall Proposition 2.)

Although the simulation on global states is analogous to the program invariant PI, we do not
use intersection over all instances of Abs. Instead, the definition has a form that, in separation
logic (over two states [49]), could appear as an iterated separating conjunction BC ∗BC ∗BC ∗
. . . ∗ true. Recall Lemma 5.) The “∗true” has an effect like enforcing new-closure by fiat, but a
monotonicity condition is also needed for β in the following.

Definition 19 (basic coupling). Given comparable class tables, a basic coupling is a function,
BC , that assigns to each typed bijection β a binary relation BC β on pre-heaps that satisfies the
following. First, BC β does not depend on inv or com. Second, β ⊆ β0 implies BC β ⊆ BC β0.
Third, for any β, h, h′, if BC β h h′ then there are locations o, o′ with β o o′ and name(type o) ≤
Abs such that the Abs partitions of h, h′ are h = Ah ∗ Rh ∗ Sh and h′ = Ah ′ ∗ Rh ′ ∗ Sh ′ with

• pickdomAh = o and pickdomAh ′ = o′

• o �h
Abs p for all p ∈ dom(Rh) and o′ �h′

Abs p′ for all p′ ∈ dom(Rh ′)
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• o �h
(super Abs)↑ p for all p ∈ dom(Sh) and o′ �h′

(superAbs)↑ p′ for all p′ ∈ dom(Sh ′)

• If BC β left-depends on o.f in h, h′, or right-depends on o′.f , then f is in xfields Abs

The first three conditions ensure that BC relates a single island, for an object with some
ground subtype of Abs<X̄>, to a single island for an object of the same type. Although BC is
unconstrained for the private fields of CT (Abs) and CT ′(Abs), it may also depend on fields
inherited from a superclass of Abs (but not on subclass fields).

The induced coupling relation, defined below, imposes the additional constraint that fields of
proper sub- and super-classes of Abs are linked by equivalence modulo β.

Although superficially different, the notion of basic coupling is closely related to admissible
invariant, as indicated by the following.

Proposition 3. Let BC be a basic coupling, β a typed bijection, and h′ a pre-heap. Define the
set J = {h | BC β h h′} and define P = {h ∗ h0 | h ∈ J ∧ (h ∗ h0) ∈ [[heap]]}. Then P is an
admissible invariant for Abs.

Set J is the “h′-projection” and P could be written in separation logic as J ∗ true —it is new-
closed.

In applications, BC β h h′ is typically defined as something like this: h and h′ partition as
islands Ah∗Rh∗Sh and Ah ′∗Rh ′∗Sh ′ such that Ah∗Rh∗Sh |= IAbs and Ah ′∗Rh ′∗Sh ′ |= I ′Abs

and some condition linking the data structures Rh and Rh ′ [22].
A basic coupling BC induces a relation on arbitrary heaps by requiring that they partition

such that islands can be put in correspondence so that pairs are related by BC .

Definition 20 (coupling relation, R). Given basic coupling BC , we define for each θ and β a
relation R β θ ⊆ [[θ]] × [[θ]]′ as follows.

For heaps h, h′, we define R β heap h h′ iff h, h′ are disciplined, β ⊆ dom h × dom h′,
and β fully partitions h, h′ for Abs; moreover, if the Abs-partitions are h = Fh ∗ Ah1 ∗ Rh1 ∗
Sh1 . . .Ahk ∗ Rhk ∗ Shk and h′ = Fh ′ ∗ Ah ′

1 ∗ Rh ′
1 ∗ Sh ′

1 . . .Ah ′
k ∗ Rh ′

k ∗ Sh ′
k then (recall

Lemma 7) (a) β restricts to a total bijection between dom(Fh) and dom(Fh ′); (b) Fh ∼β Fh ′;
and (c) for all i, j, if β (pickdomAh i) (pickdomAh ′

j) then

• β restricts to a total bijection between dom(Sh i) and dom(Sh ′
j)

• (Ah i ∗ Shi) ∼β (Ah ′
j ∗ Sh ′

j)
• h(pickdomAhi).inv ≤ Abs
⇒ BC β (Ah i ∗ Rhi ∗ Shi) (Ah ′

j ∗Rh ′
j ∗ Sh ′

j)

For other categories θ we define R β θ in Table 7.

Under the antecedent in the definition, (Ah i∗Shi) ∼β (Ah ′
j∗Sh ′

j) is equivalent to the conjunction
of Ah i ∼β Ah ′

j and Shi ∼β Sh ′
j . And Ah i ∼β Ah ′

j means that the two objects o, o′ agree
on superclass and subclass fields; in particular, name(type o) = name(type o′) ≤ Abs and
Ahi o.inv = Ah ′

j o′.inv.
(Note: a better notation might be ∼Abs

β to remind what is excluded.)
The gist of the abstraction theorem is that if methods of Abs are related by R then all methods

are. In terms of the preceding definitions, we can express quite succinctly the conclusion that all
methods are related: R meth-env [[CT ]] [[CT ′]]′ . We want the antecedent of the theorem to be
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R β θ α α′ ⇔ α ∼β α′ for θ = bool, R, Γ r , and state R

R β (heap ⊗ Γ r) (h, s) (h′, s′) ⇔ R β heap h h′ ∧R β Γ r s s′ ∧ disciplined(h, s) ∧ disciplined(h′, s′)

R β (heap ⊗ T ) (h, v) (h′, v′) ⇔ R β heap h h′ ∧R β T v v′

R β (θ⊥) α α′ ⇔ (α = ⊥ = α′) ∨ (α 6= ⊥ 6= α′ ∧R β θ α α′)

R β (Γ r ` T ) v v′ ⇔ ∀h, s, h′, s′ | R β (heap ⊗ Γ r) (h, s) (h′, s′)

⇒R β T⊥ (v(h, s)) (v′(h′, s′))

R β (Γ r ` command) v v′ ⇔ ∀h, s, h′, s′ | R β (heap ⊗ Γ r) (h, s) (h′, s′)

⇒∃β0 ⊇ β | R β0 (heap ⊗ Γ r)⊥ (v(h, s)) (v′(h′, s′))

R β (R, R̄→R1) v v′ ⇔ ∀h, s, h′, s′ | R β (heap ⊗ Γ r) (h, s) (h′, s′)

⇒∃β0 ⊇ β | R β0 (heap ⊗ R1)⊥ (v(h, s)) (v′(h′, s′))

where x̄ = pars(m, R) and Γ r = [x̄ : R̄, self : R]

R meth-env µ µ′ ⇔ ∀C, m, β, R, Q̄ | R β (R, [Q̄/Ȳ ](T̄→T )) (µRmQ̄) (µ′RmQ̄)

where R instantiates C<X̄> and mtype(m, R) = <Ȳ / N̄>T̄→T
Table 7. The induced coupling relation for Definition 20.

that the meaning [[M ]] is related to [[M ′]]′, for any m with declaration M in CT (Abs) and M ′

in CT ′(Abs). But the relation is defined for ground instantiations. Moreover, [[M ]] depends on a
method environment. Thus the antecedent of the theorem is that [[M ]](Abs<R̄>)Q̄µ is related to
[[M ′]]′(Abs<R̄>)Q̄µ′ for all Q̄ and all related µ, µ′.

Definition 21 (simulation). A simulation is a coupling R such that the following hold.

• (BC is initialized) For any C ≤ Abs, any instance R of C<X̄>, and any o, o′ with β o o′ and
type o = R we have BC β h h′ where
h = [o 7→ [dom(xfields R) 7→ defaults R]]
h′ = [o′ 7→ [dom(xfields′ R) 7→ defaults ′ R]].

• (methods of Abs preserve R) For any disciplined µ, µ′ such that R meth-env µ µ′ we have
the following for every m declared in Abs. Let mtype(m, Abs<X̄>) = <Ȳ / N̄>Ū→U . For
every instance R̄ of X̄ , every instance Q̄ of Ȳ , and every β, let θ = (Abs<R̄>, [Q̄/Ȳ ](Ū→U))
in

R β θ ([[M ]](Abs<R̄>)Q̄µ) ([[M ′]]′(Abs<R̄>)Q̄µ′)

where M (resp. M ′) are as above.

5.3 Abstraction theorem

The main theorem is that if R is a simulation for comparable class tables CT, CT ′ then

R meth-env [[CT ]] [[CT ′]]′

It is proved using Preservation Lemmas 12, 10, 11. The most difficult case in the preservation
lemma for commands is that of setown, for which we need some technical results that are best
skipped on first reading.
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Technical results.

Lemma 8. Consider pre-heaps Ph and Ph′ such that Ph ∼β Ph′. If β o o′, β p p′, and o �Ph
C p

for some C then o′ �Ph′

C p′.

Note that there may be locations not in dom Ph or dom Ph′ that are related by β and thus enter
into whether Ph ∼β Ph′ holds. But o �Ph

C p implies that o and p are in dom Ph by definition
of �.

Proof. We show o′ �Ph′

C p′ by induction on �. For the base case, suppose o �Ph
C p because

Ph p.own = (o, C). From β p p′ and Ph ∼β Ph′ we obtain (Ph p.own) ∼β (Ph′ p′.own) and
hence Ph′ p′.own = (o′, C). So o′ �Ph′

C p′.
For the induction step, suppose o �Ph

C p because there are q and B with q ∈ dom Ph and
Ph p.own = (q, B) and o �Ph

C q. As in the base case, we obtain q′, B′ with q ∈ dom Ph,
Ph′ p′.own = (q′, B′), and β q q′. Now we get o′ �Ph′

C p′ by induction, using β o o′, β q q′, and
o �Ph

C q.

Corollary 2 (splitting). Let Ph, Ph′ be pre-heaps that are closed under transitive ownership
(i.e., if o ∈ dom Ph and o �Ph

(type o)↑ p then p ∈ dom Ph). Suppose β is a total bijection from
Ph to Ph′ and Ph ∼β Ph′. Suppose o ∈ dom Ph and β o o′. Define Ph+ by domain restriction
from Ph so that

dom Ph+ = {p | p = o ∨ o �Ph
(type o)↑ p}

and mutatis mutandis for Ph′+ with respect to o′. Define Ph− to be the remaining pre-heap so
that Ph = Ph+ ∗ Ph− and likewise Ph′ = Ph′+ ∗ Ph′−. Then β is a total bijection from Ph+

to Ph′+ and a total bijection from Ph− to Ph′−. Moreover Ph+ ∼β Ph′+ and Ph− ∼β Ph′−.

Proof. As a consequence of Lemma 8 we get that β is a total bijection from Ph+ to Ph′+. The
rest follows from the definitions.

Lemma 9 (partition and coupling). Suppose R β heap h h′ and R β R o o′. Let h =
Fh ∗ . . .Ahk ∗ Rhk ∗ Shk and h′ = Fh ′ ∗ . . .Ah ′

k ∗ Rh ′
k ∗ Sh ′

k be the Abs-partitions. Then

(a) o ∈ domFh implies o′ ∈ domFh ′

(b) o = pickdomAh i implies o′ = pickdomAh ′
j for some j

(c) o ∈ domSh i implies o′ ∈ domSh ′
j for some j (namely the j such that o′ is owned by

pickdomAh ′
j)

(d) o ∈ domRh i implies o′ ∈ domRh ′
j for some j (namely the j such that o′ is owned by

pickdomAh ′
j)

Proof. By definition of R we have β o o′. Now (a) holds by conditions (a) and (b) in Definition 20
of coupling for the heap.

For (b) the argument is straightforward, using the definitions of typed bijection and Abs-
partition.

For (c), let j index the island in h′ that corresponds to i, i.e., β(pickdom Ah i)(pickdom Ah ′
j).

By Definition 20 we have that β is a total bijection from domSh i to domSh ′
j , so β o o′ implies

o′ ∈ domShj .
For (d), let o ∈ domRhi. Using R β heap h h′ and Definition 20, o′ is not in any domAh ′

j

or domSh ′
j , nor is it in domFh ′, as these parts of h′ are connected to h bijectively. Thus by

partitioning o′ must be in some Rh ′
j .
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Note that the argument in case (d) does not say that o′ is in the island k with β(pickdom Ah i)(pickdom Ah ′
k).

Preservation results.

Lemma 10 (preservation by expressions). For all expressions ∆; Γ ` e : T that contain no
field access subexpressions, all σ ∈ grnd ∆, and all β

R β (Γ ` T ) ([[∆; Γ ` e : T ]]σ) ([[∆; Γ ` e : T ]]′σ)

Proof. Omitted.

Lemma 11 (preservation by guarded field access). Consider ∆; Γ ` e.f : T where e contains
no field access. Consider any σ ∈ grnd ∆, any β, and any h, s, h′, s′ such that R β (heap ⊗
σ Γ ) (h, s) (h′, s′). Let o = [[∆; Γ ` e.f : T ]]σ(h, s) and o′ = [[∆; Γ ` e.f : T ]]σ(h′, s′) with
o 6= ⊥ 6= o′. If ¬(∃p | p �h

Abs o) and ¬(∃p | p �h′

Abs o′) then R β T (h o.f) (h′ o′.f).

Proof. Omitted.

Lemma 12 (preservation by commands). Suppose that µ, µ′ are disciplined method environ-
ments and R meth-env µ µ′ . Suppose ∆; Γ ` S is a properly annotated command for Abs with
name(Γ self) 6= Abs. Then for all σ ∈ grnd ∆ and all β

R β (Γ ` command) ([[∆; Γ ` S]]σµ) ([[∆; Γ ` S]]′σµ′)

Proof. By definition of R for category Γ ` command we are to show that the meaning of
S preserves the relation at the level of states. So we argue in terms of arbitrary initial states
(h, s) and (h′, s′) that are related at β. Note in particular that by Definition 20 for heaps, β fully
partitions h, h′ for Abs.

Moreover, because S is a properly annotated command for Abs and name(Γ self) 6= Abs, all
occurrences of faccessef occurs in commands of the form x:= e.f . For such a command, the
precondition ¬(∃p | p �h

Abs o) holds, where o = [[e.f ]]. Thus for all expressions e, appearing as
constituents of S, we can apply Lemma 10 and Lemma 11 and conclude that

R β (Γ ` T ) ([[∆; Γ ` e : T ]]σ) ([[∆; Γ ` e : T ]]′σ)

Case of field update.
Let o = [[e1 : V ]]σ(h, s) and v = [[e2]]σ(h, s) (and o′, v′ for h′, s′ as per our convention). By

typing, f is declared in some V ′ ≥ V . The resulting heap h0 is [h | o.f 7→ v]. The preconditions
are o 6= nil and h o.inv > name(V ′).

Assume R β heap h h′ to show R β heap h0 h′
0. Let the Abs-partitions of h and h′ be

h = Fh ∗ . . . and h′ = Fh ′ ∗ . . .. The Abs-partitions of h0 and h′
0 have the same structure as those

of h and h′ respectively.
By Lemmas 10,11 on e1, o ∼β o′, i.e., either β o o′ or o = nil = o′. For the latter case, both

semantics are ⊥ and we are done. So we suppose β o o′. We have the following cases.

• o ∈ domFh . Because β is a typed bijection, o′ ∈ domFh ′. In the update heaps h0 and h′
0,

Fh ∼β Fh ′ holds because v ∼β v′ by Lemma 10 applied to e2.
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• o = pickdomAh i for some i. Then type o ≤ Abs and because β is a typed bijection,
type o′ ≤ Abs. Hence o′ = pickdomAh ′

j for some j. To show Ah i ∼β Ah ′
j in the updated

heaps note that v ∼β v′ by Lemmas 10, 11 on e2.
By type soundness for e1, name(type o) ≤ name(V ), hence name(type o) ≤ name(V ′). By
the tree property of ≤, we have two subcases. In both subcases, according to Def. 20, we must
show that BC is preserved if o (hence o′) is packed. (a) Abs < name(V ′): so h o.inv > Abs
from the precondition and there is nothing to prove about BC β. (b) name(V ′) < Abs: so f
is a declared field in a proper subclass of Abs. Here it is possible that h o.inv ≤ Abs, and we
must show that BC β is maintained. The only way BC β can be falsified is if it depended on
f ; but this is impossible as BC β is independent of fields in proper subclasses of Abs.

• o ∈ dom (Rhi ∗ Shi) for some i. By precondition, h o.inv > name(V ′). By type soundness
for e1, type o ≤ name(V ′); hence h o.inv > type o. If o ∈ domRh i, then pickdom Ahi �

h
Abs

o, so by Corollary 1, h(pickdomAh i).inv > Abs. If o ∈ domSh i, pickdomAhi �h
C o for

C > Abs, so h(pickdomAh i).inv > C > Abs, also by Corollary 1. Because inv is not
updated, (pickdom Ah i).inv > Abs holds in the updated heaps also. Thus the implication
Ahi.inv ≤ Abs ⇒ BC β . . . holds.
Finally, if o ∈ dom,Sh i, must show Sh i ∼β Sh ′

j holds in the updated heaps, which follows
by v ∼β v′, using Lemma 10 on e2.

Case of new. Let o = fresh(σ N, h) and let h0 = [h | o 7→ [xfields(σ N) 7→ defaults(σ N)]].
AssumeR β (heap⊗σΓ ) (h, s) (h′, s′) to show that there exists β0 ⊇ β such thatR β0 (heap⊗
σΓ ) (h0, s0) (h′

0, s
′
0), where s0 = [s | x 7→o] and s′0 = [s′ | x 7→o′].

Let the Abs-partition of h be Fh ∗ . . .. We choose β0 = β ∪ {(o, o′)}. Then R β0 (σΓ ) s0 s′0
follows. To show R β0 heap h0 h′

0, note first that β fully partitions h0, h
′
0 for Abs. For the

remaining conditions, we have the following cases:

• σ N ≤ Abs. The resulting heap has an island Ahnew ∗ Rhnew ∗ Shnew where Ahnew =
[o 7→ [xfields(σ N) 7→ defaults(σ N)]], and o = pickdom(Ahnew), o′ = pickdom(Ah ′

new)
and Rhnew = Shnew = ∅. All the other islands are the same as in h. Note that Ahnew ∼β

Ah ′
new. To show Ahnew(o).inv ≤ Abs ⇒ BC β0(Ahnew ∗Rhnew ∗Shnew)(Ah ′

new ∗Rh ′
new ∗

Sh ′
new), note that Ahnew(o).inv = Object = Ah ′

new(o).inv, because name N 6= Object.
Thus the antecedent of the implication is falsified. For all other islands, Ah i, if β q q′ where
q = pickdom Ahi and q′ = pickdomAh ′

j , then Ah i ∼β0
Ah ′

j follows by Ahi ∼β Ah ′
j and

monotonicity of ∼β . Finally, Ahi o.inv ≤ Abs ⇒ BC β0(Ahi ∗Rhi ∗Shi)(Ah ′
j ∗Rh ′

j ∗Sh ′
j)

follows because initially Ah i o.inv ≤ Abs ⇒ BC β(Ah i ∗Rhi ∗ Sh i)(Ah ′
j ∗Rh ′

j ∗ Sh ′
j) and

BC β ⊆ BC β0 by monotonicity in Def. 19.
Next, Sh i ∼β0

Sh ′
j follows by Sh i ∼β Sh ′

j and monotonicity of ∼β. Finally, because β
restricts to a total bijection between domFh and dom Fh′, so does β0.

• Otherwise, the resulting heap is Fh0 ∗ (Ah1 ∗ Rh1 ∗ Sh1) ∗ . . ., where Fh0 = Fh ∗ [o 7→
[xfields(σ N) 7→ defaults(σ N)]].
The condition on islands holds because BC β is monotonic. We have that β0 restricts to a total
bijection between domFh∪{o} and domFh ′∪{o′}; and Fh0 ∼β0

Fh ′
0 holds by monotonicity

of ∼β.

Case of method call, x:= e.m<V̄ >(ē). Let o = [[e : U ]]σ(h, s), v̄ = [[ē : Ū ]]σ(h, s), x̄ =
pars(m, σ U); let s1 = [x̄ 7→ v̄, self 7→ o], (h1, v1) = µ(type o)m(σ V̄ )(h, s1).
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The resulting heap h0 is h1 and the resulting store s0 is [s | x 7→v1]. Note that o′, v̄′ for h′, s′

are as per our convention.
Assume R β (heap ⊗ Γ r) (h, s) (h′, s′) to show R β0 (heap ⊗ Γ r) (h0, s0) (h′

0, s
′
0) for

some β0 ⊇ β.
Let R be the type of the target object, i.e., R = type o. Suppose mtype(m, R) = <Ȳ /

N̄>Ū→U . Let Q̄ = σV̄ . Because R meth-env µ µ′ , we have,

R β (R, x̄, [Q̄/Ȳ ](T̄ → T )) (µRmQ̄) (µ′RmQ̄)

Hence by assumptionR β (heap⊗Γ r) (h, s) (h′, s′), we have,R β0 (heap⊗[Q̄/Ȳ ]T ) (h1, v1) (h′
1, v

′
1),

for some β0. Hence v1 ∼β v′1. Hence R β0 (heap ⊗ Γ r)⊥ (h0, s0) (h′
0, s

′
0), for some β0.

Case of setowner.
Let q = [[e1 : N1]]σ(h, s) and p = [[e2 : N2]]σ(h, s) and h q.own = (r, B). The resulting

heap h0 is [h | q.own 7→(p, C)]. As usual, q′, p′, r′, B′, h′
0 are determined mutatis mutandis from

(h′, s′). Assume R β heap h h′ to show R β heap h0 h′
0. Let the Abs-partitions of h and h′ be

h = Fh ∗ . . . ∗ Ahn ∗ Rhn ∗ Shn and h′ = Fh ′ ∗ . . . ∗ Ah ′
n ∗ Rh ′

n ∗ Sh ′
n. Although ownership

structure is changed (except in the case (r, B) = (p, C)), what is relevant to R is changes in
Abs-partition. To reason carefully about these cases, we give notation for the Abs-partitions of
the updated heaps as well: h0 = F̂h ∗ . . .∗ ˆAhn∗ ˆRhn∗ ˆShn and h′

0 = F̂h
′
∗ . . .∗Âh

′

n∗R̂h
′

n∗ Ŝh
′

n.
Although case analysis is needed, we begin with general considerations.

By hypothesis of the Lemma, Γ self 6= Abs, so the expression lemma applies, yielding that
p, p′ and q, q′ are related values and thus q ∼β q′ and either p = nil = p′ or p ∼β p′.

By the stipulated precondition for setown we obtain

(a) q 6= nil 6= q′

(b) h q.inv = Object = h′ q′.inv
(c) p = nil = p′ or else h p.inv > C and h′ p′.inv > C

Recall that by typing we have name(type p) ≤ C.
Owing to Γ self 6= Abs we also have another precondition, by Definition 12:

(d) (∃o | o �Abs q) ⇒ C = Abs ∨ (∃o | o �Abs p)

From (b) and the transitive ownership corollary and R β heap h h′ it follows that

(e) r = nil = r′ or else h r.inv > B and h′ r′.inv > B′

We complete the proof by cases on whether q is in the domain of Fh or one of Ah i, Rhi, or
Shi for some i.

CASE q ∈ domFh . By R β heap h h′ and the definitions we have q′ ∈ domFh ′. [Now that
Lemma 9 is explicit, we should use it here too.] Moreover, either r = nil = r′ or r ∈ domFh

and also r′ ∈ domFh ′. There are the following subcases on p:

– If p ∈ domFh or p = nil = p′ then structure of the partition of h0, h
′
0 is unchanged. We get

R β heap h0 h′
0 because the only change is to set field inv of q, q′ to related values p, p′.

– If p = pickdom Ahi for some i then by Lemma 9 there is j with p′ = pickdomAh ′
j . By type

soundness, type p ≤ σN2 and name N2 ≤ C, and by definition of partition name(type p) ≤
Abs, so by the tree property of ≤ either C < Abs or Abs ≤ C.
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• If C < Abs then, in the partition of h0 we have q ∈ dom F̂h , i.e., the partition has the
same structure as initially and the same is true for q′, F̂h ′. Then we get R β heap h0 h′

0

because the only change is to set field inv of q, q′ to related values p, p′.
• If Abs = C then q and the objects it transitively owns are being transferred into Rh i. By

(c) we have h p.inv > Abs and h′ p′.inv > Abs, so BC is not in force and coupling holds
for the updated islands i, j.

• If Abs < C then q and the objects it transitively owns are transferred from Fh into Ŝhi

and q′ into Ŝh
′

i. Again, by (c) we have h p.inv > Abs and h′ p′.inv > Abs. To show
coupling for the updated islands i, j it remains to show Ŝhi ∼β Ŝh

′

j . This follows from
R β heap h h′ and q ∼β q′. [Note: this is similar to the case of transfer from Rh i to
Shk that I’ve spelled out in more detail later.]

– If p ∈ dom(Rhi ∗ Sh i) for some i then p′ must be in dom(Rh ′
j ∗ Sh ′

j) for some j, by
Lemma 9. So q (resp. q′) is transferred into island i (resp. j). Let o = pickdomAh i (resp.
o′ = pickdomAh ′

j) so that there is B ≥ Abs (resp. B′ ≥ Abs) such that o �h
B p

(resp. o′ �h′

B′ p′). By (c) and the transitive ownership Corollary we get h o.inv > B (resp.
h′ o′.inv > B′) and thus BC is not currently in force for these islands. It remains to show that
if q, q′ are being transferred into Sh i,Sh ′

j (because p ∈ domShi and thus p′ ∈ domShj)
then Shi ∼β Sh ′

j and this follows from R β heap h h′ because p, p′ are related.

CASE q = pickdom Ahi for some i. Then, by Lemma 9, q′ = pickdomAh ′
j for some

j. Because no Abs-object owns an Abs-object, we get r ∈ domFh (resp. r′ ∈ domFh ′) and
moreover p, p′ are also in domFh , domFh ′. So again the partition structure is unchanged [details
similar to preceding case].

CASE q ∈ domRh i for some i. Then pickdomAh i �h
Abs q by definition of Abs-partition.

Now either r = pickdom Ah i and B = Abs or pickdom Ah i �h
Abs r, by properties of owner-

ship. By Lemma 9(d) we have q′ ∈ domRh ′
j for some j (but not necessarily β(pickdom Ah i)(pickdomAh ′

j)).
By (d), either C = Abs or there is o such that o �h

Abs p. In the case C = Abs, we have
name(type p) ≤ Abs and thus p = pickdom Ahk and p′ = pickdom Ah ′

l for some k, l. In the
other case, because name(type o) ≤ Abs there is some k with o = pickdomAhk. Similarly,
there is some Abs-object o′ that owns p′ and some l with o′ = pickdomAh l. [There is nothing
to force that β o o′ i.e. that islands k and l correspond.] In the rest of the argument, the two cases
are treated together.

Informally, the sub-heap consisting of q and the objects it transitively owns are being trans-
ferred from island i to island k, and in particular into Rhk. In parallel, the sub-heap rooted at q′ is
being transferred from island j to island l. So couplings for i, j, k, l are all at risk and it need not
be the case that i corresponds to j or k to l. By (b) and transitive ownership Corollary we have
h(pickdomAh i).inv > Abs and thus basic coupling BC is not in force for i. Similarly, it is not in
force for j. By (c) and transitive ownership Corollary we have h o.inv > Abs (or h p.inv > Abs in
the case C = Abs) and thus BC is not in force for k. Similarly, it is not in force for l. Because the
transfer of q is into R̂hk and q′ into R̂hl, the “Sh part” of coupling is not at risk. This concludes
the proof for q ∈ domRh i.

CASE q ∈ domShi for some i. In regards to BC, this case is similar to the case for q ∈
domRhi. By Lemma 9(c) we have q′ ∈ domSh ′

j for some j, and unlike the case for Rh we
do have β(pickdom Ah i)(pickdomAh ′

j). [Well, that’s not how the Lemma is currently stated,
but it’s in the proof.] And these islands are unpacked, by (e), so BC is not in force. As q, q ′
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are in the “Sh part”, we also have to deal with the equivalence and bijection requirements. From
R β heap h h′ we have that β is a total bijection from Sh i to Sh ′

j and Sh i ∼β Sh ′
j . By definition

of Abs-partition, both Sh i and Sh ′
j are closed under transitive ownership. Let Sh+

i be the sub-heap
of Sh with domain consisting of q and objects transitively owned by q; mutatis mutandis for q ′

and Sh ′+
j . Let Sh−

i and Sh ′−

j be the remainders so that Sh i = Sh+
i ∗Sh−

i and Sh ′
j = Sh ′+

j ∗Sh ′−

j .
Then by Corollary 2 we have that β is a total bijection from domSh+

i to domSh ′+
j and from

domSh−
i to domSh ′−

j ; moreover Sh+
i ∼β Sh ′+

j and Sh−
i ∼β Sh ′−

j .
The updated islands i and j are unchanged except that ˆSh i = Sh−

i and ˆShj = Sh−
j . By the

above considerations, these satisfy the bijection and equivalence conditions.
What remains is to account for Sh+

i and Sh ′+
j which get transferred into islands k, l. We go

by cases on p.

– If p ∈ domFh then the partition for h0 has F̂h = Fh ∗ Sh+
i and similarly for h′

0. The
coupling conditions hold because Sh+

i ∼β Sh ′+
j .

– If p is in some domAhk (resp. domShk) we have p′ is the domAh ′
l (resp. p′ ∈ domSh l)

such that β(pickdom Ahk)(pickdom Ah ′
l). An argument like in the case for q ∈ domRh i

shows that BC is not in force. And if q is going into Shk (resp. q′ into Sh l) then the coupling
conditions for Ŝhk = Shk ∗ Sh+

i and Ŝh
′

l = Sh ′
l ∗ Sh ′+

i hold by the earlier considerations,
e.g., Sh+

i ∼β Sh ′+
j .

– If p is in some domRhk then the argument is similiar to the preceding case but simpler as
there is no bijection or equivalence condition with which to be concerned.

Main result.

Theorem 3 (abstraction).
If R is a simulation for comparable class tables CT, CT ′ then R meth-env [[CT ]] [[CT ′]]′ .

Proof. Assume that R is a simulation. We show that R holds for each step in the approximation
chain in the semantics of class tables. That is, we show by induction on i that

R meth-env µi µ′
i for every i ∈ N

The result R meth-env [[CT ]] [[CT ′]]′ follows as [[CT ]] and [[CT ′]]′ are the least upper bounds of
these ascending chains and the relation distributes over lubs of chains.

Base case, i = 0: We must show R β (R, mtype(m, R) (µ0 R m Q̄) (µ′
0 R m Q̄) for every

β, m, R, Q̄ where R instantiates C<X̄>. This holds by definition of µ0, µ
′
0, because λ(h, s) | ⊥

relates to itself.
Induction step: Suppose

R meth-env µi µ′
i (∗)

We must show R meth-env µi+1 µ′
i+1 , that is, for every β, every R instantiating C<X̄ / N̄>

and every m with mtype(m, R) defined and every Q̄:

R β (R, [Q̄/Ȳ ](T̄ → T )) (µi+1 R m Q̄) (µ′
i+1 R m Q̄) (†)
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where mtype(m, R) = <Ȳ / N̄1>T̄ → T .
For arbitrary m we show (†) for all R with mtype(m, R) defined as above, using a secondary

induction on inheritance chains.
The base case of the secondary induction is where R instantiates a class C<X̄ / N̄> that

declares m (so m is declared in both CT (C) and CT ′(C)). We go by cases on C. If C = Abs,
we get (†) from the assumption that R is a simulation. In detail: Using (∗) and Def. 21 we get

R β (R, [Q̄/Ȳ ](T̄ → T )) ([[M ]]RQ̄µi) ([[M ′]]′RQ̄µ′
i)

whence (†) by definition of µi+1 and µ′
i+1. The other case is C 6= Abs. Then by Def. 15 of

comparable class tables we have CT (C) = CT ′(C) and in particular both class tables have the
same declaration; since R is an instantiation of C<X̄>, R = C<R̄>, and both class tables have
the same declaration

<Ȳ / N̄1>T m(T̄ x̄) {S}

To show (†), suppose σ = [R̄/X̄, Q̄/Ȳ ]; suppose (h, s) and (h′, s′) are disciplined,R β heap h h′,
and R β Γ s s′, where Γ = (self : R, x̄ : σT̄ ). Let ∆ = [X̄/N̄ , Ȳ /N̄1]. Because the class tables
are properly annotated, we may appeal to Lemma 12, using R meth-env µi µ′

i , to get that the
results from S are related. That is, either [[∆; Γ ` S]]σµi(h, s) = ⊥ = [[∆; Γ `′ S]]′σµ′

i(h
′, s′) or

neither is ⊥. In the latter case, (h0, s0) is related to (h′
0, s

′
0) for some β0 ⊇ β, where (h0, s0) =

[[∆; Γ ` S]]σµi(h, s) and (h′
0, s

′
0) = [[∆; Γ `′ S]]′σµ′

i(h
′, s′). Then, by definition of Rβ Γ ,

R β Γ s0 s′0 implies R β T (s0 result) (s′0 result). Thus (†) holds by definition of µi+1

and µ′
i+1. This concludes the base case of the secondary induction.

The induction step is for m inherited in CT (C) and CT ′(C). By the secondary induction
hypothesis we have (†) for super R, from which the result follows by semantics of inherited
methods.

6 Using the theorem

The standard use of an abstraction theorem is to show equivalence between two versions of a
program, one using CT and the other CT ′. One proves simulation for Abs and then appeals to
the abstraction theorem to conclude that [[S]] is related to [[S]]′ for any client program S. Finally,
one appeals to an identity extension lemma that says the relation is the identity for programs where
the encapsulated representation is not visible.

For heap encapsulation, which does not have a simple correspondence to program structure,
it is not obvious how best to formulate identity extension. Moreover, in this paper we have not
formalized the notion of “main program” so in particular this means there is not a standard initial
state. (The obvious initial state is with a single object of type Main; it is disciplined and has no
reachable Abs.)

We have found straightforward but elegant formulations of program equivalence and identity
extension in terms of specifications, which can express encapsulation via partitioning. The identity
extension and program equivalence results are based on results expressed more directly in terms
of the semantics; in this report we include only the latter.

Lemma 13 (identity extension). If R β (heap ⊗ Γ ) (h, s) (h′, s′) then encap Abs (h, s) ∼β

encap Abs (h′, s′).
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A state (h, s) is Abs-free if no o ∈ dom h has type name ≤ Abs.

Lemma 14 (inverse identity extension). Suppose (h, s) and (h′, s′) are Abs-free. If (h, s) ∼β

(h′, s′) and β is total on h, h′ then R β (heap ⊗ Γ ) (h, s) (h′, s′).

Definition 22 (program equivalence). Suppose programs CT, (∆; Γ ` S) and CT ′, (∆; Γ `′

S′) are such that CT, CT ′ are comparable and properly annotated, and moreover S, S ′ are prop-
erly annotated. The programs are equivalent iff for all σ instantiating ∆, and for all disciplined,
Abs-free (h, s) and (h′, s′) in [[heap ⊗ σΓ ]] and all β with β total on h, h′ and (h, s) ∼β (h′, s′),
there is some β0 ⊇ β with

encap Abs ([[S]]σµ̂(h, s)) ∼β0
encap Abs ([[S′]]′σµ̂′(h′, s′))

where µ̂ = [[CT ]] and µ̂′ = [[CT ′]]′.

Proposition 4 (simulation and equivalence). Suppose programs CT, (∆; Γ ` S) and CT ′, (∆; Γ `′

S) are properly annotated and R is a simulation from CT to CT ′. If name(Γ self) 6= Abs then
the programs are equivalent.

7 Discussion

As compared with previous work on the Boogie discipline, we have imposed some additional
restrictions that merit consideration.

– An object of class Abs can only be packed in class Abs. Because the coupling relation im-
poses the user-defined basic coupling only when an Abs-object is packed, this restriction is
necessary for modular reasoning about class Abs.
The most common use of pack is to pack, in code of class C, self to class C. In examples
where some class C is used in the representation of a class Abs it makes sense for code of
Abs to pack an object to C —if the code is in procedural style, manipulating C objects as
records rather than invoking methods on them in OO style. Our restriction then precludes
instantiating our theory with Abs := C. But if C is being manipulated by code of other
classes then it is not surprising that a per-class theory of encapsulation is inapplicable.

– Similarly, for setown o to (p, C), care must be taken to prevent arbitrary code from moving
objects across the encapsulation boundary for Abs in ways that do not admit modular reason-
ing. One would expect that code outside Abs cannot move objects across the boundary at all.
But we have chosen the least restrictive condition for which the abstraction theorem holds: if
setown o to (p, C) occurs in code outside Abs, and o is initially inside the island for some
Abs-object, then it must end up in the island for some Abs-object.

– The restriction that an Abs object cannot own other Abs objects does not preclude containers
holding containers, because a container does not own its content. It does preclude certain
recursive situations. Consider a class Node used as nodes of a linked list storing values in
sorted order. The sorting invariant can be expressed by a decentralized invariant by using a
peer/friend discipline [30, 36] but this is not encompassed by our theory. Another alternative
considered in the Boogie papers is for each Node to own its successor, so its invariant can
mention the successor’s fields. Our theory does not preclude recursive ownership in general,
but cannot be instantiated with Abs := Node. This does not seem too onerous, because to
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reason about change of representation the typical situation is that Node is an internal data
structure and it is then a non-recursive container class C that is manipulated by clients. Our
theory admits the instantiation C := Abs even Nodes can own Nodes.
This technical restriction does not appear essential for soundness. As an alternative, invariants
could be required to satisfy a healthiness condition that amounts to saying that the condition
on an island inside an island is recursively structured. Technically this would look similar to
the healthiness condition used by Cavalcanti and Naumann [12, Def. 5] to deal with recur-
sive class types. In the present work we prefer to avoid nested islands, in part to highlight
connections with separation logic.

–

8 Related and future work

Soundness for the inv/own discipline without subclassing or generics is proved on a semantic
basis in [36] which includes a discipline for “friend” invariants. For subclasses but not generics,
soundness is argued in detail in [5] and also in [30] which deals with peers; but no semantic basis
is given nor is it entirely clear which language features are considered. In this paper we use a
denotational semantics to validate the discipline in the presence of generics and subclassing. It
turns out that there is little interaction with generics.

Representation independence is proved in [2] for a language with subclassing but not generics
on the basis of ownership confinement imposed using restrictions expressed in terms of ordinary
types; but these restrictions disallow ownership transfer. The results are extended to encompass
ownership transfer in [4] but at the cost of substantial technical complications and the need for
reachability analysis at transfer points, which are designated by explicit annotations. In this paper
we prove representation independence using the discipline to control ownership which may be
transferred flexibly.

The discipline may seem somewhat onerous, but the Boogie project is exploring the inference
of annotations. The advantage of this over types is that, while simple cases can be checked au-
tomatically, complicated cases can be checked rather than simply rejected (though that’s fodder
for further research papers). For representation independence it suffices to take each IC to be
everywhere true; the remaining conditions involve fields with finite domain types (inv and com,
though not own). This and the simple discipline for unpack/pack seems promising for automated
checking.

An invariant justifies or explains a program and is thus suitable for inclusion in the program
text. A coupling connects two programs, and is used only to justify a revision. Thus we only focus
on a single class to be revised and its basic coupling, whereas we expect an invariant IC to be
given for every class C. The generalization to a small group of related classes is important, as
revisions often involve several related classes; the “friend” and “peer” dependencies of [30, 6, 36]
may play a key role.

For proof of preservation by the methods of the revised class one can use ordinary program
reasoning together with special rules for how code with the same structure preserves relations [16,
20, 34, 7, 49]. In future work we give specific rules focusing on the particular challenges of our
discipline: re-establishing the basic coupling with pack and transferring ownership across ab-
straction boundaries.

The higher order frame rule of separation logic [38] also supports ownership transfer, though
for invariants rather than simulations and in a very simple language. It would be interesting to see
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how our semantic development could be realized in separation logic, in particular how the induced
coupling’s multiple islands could be expressed using iterated separation. Although our couplings
disallow “nested” islands, in general invariants and instantiable classes give rise to nesting of
sub-heaps and it is not obvious how this can be handled.

References

1. K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs. Springer, 2 edition,
1997.

2. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation independence for
object-oriented programs. Journal of the ACM, 2002. Accepted, subject to revision. Extended version
of [3].

3. A. Banerjee and D. A. Naumann. Representation independence, confinement and access control. In
ACM Symp. on Princ. of Program. Lang. (POPL), pages 166–177, 2002.

4. A. Banerjee and D. A. Naumann. Ownership transfer and abstraction. Technical Report TR 2004-1,
Computing and Information Sciences, Kansas State University, 2003.

5. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-oriented
programs with invariants. Journal of Object Technology, 3(6):27–56, 2004. Special issue: ECOOP 2003
workshop on Formal Techniques for Java-like Programs.

6. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared state. In
D. Kozen, editor, Mathematics of Program Construction, pages 54–84, 2004.

7. N. Benton. Simple relational correctness proofs for static analyses and program transformations. In
POPL, pages 14–25, 2004.

8. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races and
deadlocks. In OOPSLA, 2002.

9. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In ACM Symp. on
Princ. of Program. Lang. (POPL), pages 213–223, 2003.

10. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: Adding gener-
icity to the Java programming language. In C. Chambers, editor, OOPSLA ’98 Conference Proceedings,
volume 33(10) of SIGPLAN, pages 183–200. ACM, Oct. 1998.

11. C. Calcagno, P. O’Hearn, and R. Bornat. Program logic and equivalence in the presence of garbage
collection. Theoretical Comput. Sci., 298(3):557–581, 2003.

12. A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement of classes. In L. Eriks-
son and P. A. Lindsay, editors, Formal Methods Europe, volume 2391 of LNCS, pages 471–490, 2002.

13. D. Clarke. Object ownership and containment. Dissertation, Computer Science and Engineering, Uni-
versity of New South Wales, Australia, 2001.

14. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and effect. In
OOPSLA, pages 292–310, Nov. 2002.

15. D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object containment. In J. L.
Knudsen, editor, ECOOP 2001 - Object Oriented Programming, 2001.

16. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and their Com-
parison. Cambridge University Press, 1998.

17. D. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Technical Report 156,
COMPAQ Systems Research Center, July 1998.

18. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In PLDI, pages 234–245, 2002.

19. P. Gardiner and C. Morgan. Data refinement of predicate transformers. Theoretical Comput. Sci.,
87:143–162, 1991.



38

20. D. Gries. Data refinement and the tranform. In Program Design Calculi. Springer, 1993. International
Summer School at Marktoberdorf.

21. E. Gunnerson. A Programmer’s Introduction to C#. Apress, Berkeley, CA, 2000.
22. C. A. R. Hoare. Proofs of correctness of data representations. Acta Inf., 1:271–281, 1972.
23. M. Hofmann and F. Tang. Implementing a program logic of objects in a higher-order logic theorem

prover. In TPHOLs, pages 268–282, 2000.
24. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.

ACM Trans. Prog. Lang. Syst., 23(3):396–459, May 2001.
25. B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspective. Tech-

nical Report NIII-R0318, Computing Science Institute, University of Nijmegen, 2003. To appear in
International Symposium on Software Security, November 2003.

26. A. Kennedy and D. Syme. Design and implementation of generics for the .NET Common Language
Runtime. In PLDI, pages 1–12, 2001.

27. A. Kennedy and D. Syme. Transposing F to C#: Expressivity of polymorphism in an object-oriented
language. Concurrency and Computation: Practice and Experience, 16(7), 2004.

28. D. Lea. Concurrent Programming in Java. Addison-Wesley, second edition, 2000.
29. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools supporting

detailed design in Java. In OOPSLA 2000 Companion, Minneapolis, Minnesota, pages 105–106. ACM,
Oct. 2000.

30. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In European Conference on
Object-Oriented Programming (ECOOP), pages 491–516, 2004.

31. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM Trans. Prog. Lang. Syst.,
24(5):491–553, 2002.

32. B. Liskov and J. Guttag. Abstraction and Specification in Program Development. MIT Press, 1986.
33. R. Milner. An algebraic definition of simulation between programs. In Proceedings of Second Intl. Joint

Conf. on Artificial Intelligence, pages 481–489, 1971.
34. C. Morgan. Programming from Specifications, second edition. Prentice Hall, 1994.
35. P. Müller. Modular Specification and Verification of Object-Oriented Programs. Number 2262 in LNCS.

Springer, 2002.
36. D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about invariants and sharing

of mutable state (extended abstract). In IEEE Symp. on Logic in Computer Science (LICS), pages 313–
323, 2004.

37. G. C. Necula. Proof-carrying code. In POPL, 1997.
38. P. O’Hearn, H. Yang, and J. Reynolds. Separation and information hiding. In ACM Symp. on Princ. of

Program. Lang. (POPL), pages 268–280, 2004.
39. P. W. O’Hearn and R. D. Tennent. Algol-like Languages (Two volumes). Birkhäuser, Boston, 1997.
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