
A Logical Account of Hoare’s Mismatch
Information Hiding via Second Order Framing in Region Logic

Anindya Banerjee
IMDEA Software, Madrid, Spain
anindya.banerjee@imdea.org

David A. Naumann
Stevens Institute of Technology, Hoboken NJ, USA

naumann@cs.stevens.edu

Abstract
We investigate information hiding in object-based programs and
the associated mismatch. While client reasoning is in terms of in-
terface specifications, the implementation of an interface is verified
against different specifications that involve invariants about inter-
nal data structures. Soundness of this mismatched reasoning de-
pends on encapsulation of internal data structures. The problem is
that encapsulation is notoriously difficult to achieve in contempo-
rary software in which shared mutable objects are ubiquitous. We
account for the mismatch via proof rules that phrase the mismatch
using explicit conditions that are imposed on client effects. Effects
are tracked using ghost state and separation assertions in a style that
has been used in a number of verification tools. Our approach per-
mits the formulation of encapsulation disciplines (such as owner-
ship, or package confinement) as part of the interface specification,
in the form of a dynamic boundary, rather than as a discipline di-
rectly baked into a verifier. One implication is that we can provide
a foundation for the axiomatic semantics of these verifiers. Our ap-
proach is flexible in that disciplines can be used on a per-module
basis and then combined to achieve end to end soundness.

1. Introduction
Many programs manipulate shared, mutable objects, be they mem-
ory segments in C code, heap records in ML code, or objects in the
sense of Java-like languages. Most software designs are based on
abstraction at many scales. For example: A Point offers operations
such as repositioning without revealing whether the internal repre-
sentation uses polar or cartesian coordinates. A Collection offers
addition and removal of elements without revealing whether the in-
ternal representation is a balanced binary tree or something else. An
application framework (e.g., the Google Web Toolkit) offers com-
plex concepts and facilities without revealing the still more com-
plex underlying infrastructure. Abstraction is achieved by hiding
irrelevant details, in particular internal data and invariants on which
the implementation relies. Hiding of internal invariants means that
they do not appear in specifications used by “clients” of the ab-
straction. This mismatch between what is verified about implemen-
tations and what is assumed by clients was articulated and justified
by Hoare: invariants should depend only on data that is encapsu-
lated to prevent clients from falsifying the invariants [17].

It is notoriously difficult to achieve encapsulation in the pres-
ence of shared, dynamically allocated mutable objects [20, 27].
Current tools for software verification either do not support hiding
of invariants (e.g., Jahob [35], jStar [12]), do not treat object invari-
ants soundly (e.g., ESC/Java [14], Eiffel) or at best offer soundness
for restricted situations where hierarchical structure can be imposed
on the heap (e.g. Spec# [4]) which is the best that is provided by
current theory.

Scoping does provide some encapsulation. Class Point declares
its fields as private, i.e., visible only to code within the class.
Classes pertinent to collections —Set , List , iterators, various data
structures— may be grouped together in a module. Scoping mecha-
nisms are essential but insufficient for reasoning about dynamically
allocated mutable objects.

Building on scope and type mechanisms it is possible to en-
force module level alias control (as in Confined Types [15]) to
justify hiding of invariants that depend on some or all instances
of some classes declared in the module. For encapsulation at the
granularity of instance-oriented “object invariants”, various owner-
ship disciplines have been introduced [9, 7, 11, 25, 23]. Some have
been deployed in verification systems, e.g., in JML tools [8] and
in Spec# [4]. For example, suppose for simplicity that an instance
of class Set is viewed as owning the nodes of a linked list and a
type system enforces that neither clients nor other instances of Set
can access these nodes. Code in Set relies on an invariant, such as
the absence of duplicate elements, that can be hidden from clients.
The inflexibility of various formalizations of ownership has led to
quite a few competing and incompatible variations, each described
in a way that requires its global imposition on all program compo-
nents (e.g., [9, 7, 11]). Another problem is that, although it is easy
to embody Hoare’s mismatch in the axiomatic semantics used by a
verifier, the details are not often justified rigorously.

Separation Logic [28] (SL) offers elegant means to reason about
the footprint of an invariant, i.e., the heap locations on which
it depends, and the footprint of a command, i.e., the locations
possibly written. On this basis, O’Hearn et al [27] give what we call
a second order frame rule (SOF) that directly embodies Hoare’s
mismatch. By contrast with ownership disciplines, the SOF rule
pertains directly to hiding on the granularity of a module (i.e., a
group of procedures sharing some encapsulated state). We show
that this flexibly encompasses invariants such as those that involve
cooperating clusters of objects such as a Subject and its Observers.
Soundness of the SOF rule has been shown directly in terms of
a standard, non-axiomatic program semantics [29]. The rule relies
on two critical features of SL. The separating conjunction P ∗ Q
expressess that formulas P and Q are both true, of disjoint parts
of the heap. The tight interpretation of a correctness judgement
{P}C{Q}[x] says that C is not only correct but neither reads nor
writes outside the footprint of P . The Hoare triple is augmented by
a modifies clause that lists the variables x that may be written.

Our contribution is a SOF rule for a classical first-order asser-
tion language that uses an ordinary interpretation of correctness
judgements (for fault-avoiding partial correctness). This is achieved
by making footprints explicit using regions (sets of references), in-
cluding expressions for the image of a region under a field name
and for disjointness of regions. State-dependent region expressions
are used in the modifies clause and in a subsidiary judgement about
footprints of formulas. Read and write footprints are expressed us-

1 2009/7/27

ing (mutable) ghost state which avoids the need to express foot-
prints using inductively defined predicates that traverse data struc-
tures.

Contributions

• We augment module interface specifications by including a
dynamic encapsulation boundary which must be respected by
clients. The dynamic boundary is described via read effects that
approximate, in a way suitable to appear in the interface, the
footprint of the hidden invariant.

• We extend region logic (RL) [3] to include procedures and cor-
rectness judgements with hypotheses (Sec. 3 and 4). We improve
the treatment of hiding sketched briefly in that paper. On this ba-
sis we give our SOF rule (Sec. 5). We prove its soundness in a
straightforward operational semantics, which validates standard
proof rules, such as Hoare’s rule of Conjunction, and can use a
deterministic or nondeterministic memory allocator.

• By contrast with SL, (a) our SOF rule allows the hidden invariant
to depend on state that is also read by client programs (e.g.,
global entities in an application framework); and (b) it allows
invariants that are not precise [27], i.e., they do not have a
unique minimal footprint. Precise predicates typically traverse a
data structure (e.g., “every reachable node is balanced”) whereas
imprecise ones involve existential quantification (e.g., “some
queue is nonempty”). In Sec. 7 we examine why our setting is not
susceptible to Reynolds’ conundrum [27] which shows that in SL
the SOF rule needs to be restricted to precise invariants or precise
specifications to be consistent with the rule of Conjunction.

• We show by examples (Sec. 2 and 6) that our SOF rule can hide
invariants that pertain to several objects with a single owner, as
well as design patterns in which several peers cooperate (which
are incompatible with ownership and remain as challenge prob-
lems in the current literature [20, 6, 19]). A program may link
together multiple modules, each with its own hidden invariant
and dynamic boundary. Our approach encompasses alias con-
finement disciplines that are enforceable by static analysis [11]
as well as less restrictive disciplines that impose proof obliga-
tions on clients as in ownership transfers that are “in the eye of
the asserter” [27].

Our explicit use of ghost state for frame specifications and sepa-
ration reasoning was directly inspired by the dynamic frames of
Kassios [18], whence our term “dynamic boundary”. Similar uses
of ghost state, including pure first order encodings of reachabil-
ity properties, have been found effective in verification tools based
on automated theorem provers [16, 10, 35]. One of our aims is to
justify the axiomatic semantics used in such tools, which often em-
body Hoare’s mismatch. We pay a price in verbosity compared with
SL, in that ghost fields and variables need to be declared, assigned,
and used in specifications. For example, the code of class Set in
Sec. 2 assigns newly allocated list nodes to a “rep” field, and the
code in our memory manager example (Sec. 6) updates a region
variable holding the objects currently “owned” by the manager.

For readability, the formalization (Sec. 3 and 4) is for bare-
bones programs with rudimentary procedures. Related work is dis-
cussed further in Sec. 7.

Our aim is not to advocate a particular proof system (and cer-
tainly not a module system) but rather to move beyond competing
attempts to provide the “right” specification notation and program-
ming discipline for hiding invariants on mutable state. We provide
a logical bridge between internal and external views of a module
interface, in which the encapsulation boundary is fully described
through dynamic framing (to augment the conventional syntactic
signature of the interface). On this basis we hope to shift attention
to creating a corpus of specification patterns, with a range of granu-
larity, generality, and balance of proof obligations between modules

class Node { val : int; nxt :Node; own : Object; }
globalvar pool : rgn;

class Set {
lst :Node; rep : rgn;

Set()
{ self.lst : = null; self.rep : = ∅; pool : = pool ∪ {self}; }
add(i : int)
{ if not(contains(i)) then

var n :Node : = new Node();
n.val : = i ; n.own : = self; n.nxt : = self.lst ;
self.lst : = n; self.rep : = self.rep ∪ {n}; }

contains(i : int) : boolean { “linear search for i” }
remove(i : int) { “remove first node containing i , if any” }}

Figure 1. Library code for Set example. Class Set and variable
pool comprise a module.

Method Post-condition
Set() elements = empty

∧ pool = old(pool)∪{self}
add(i : int) elements = old(elements)∪{i}
contains(i : int) result = (i ∈ elements)
remove(i : int) elements = old(elements)− {i}
Method Effects
Set() wr pool
add(i : int) wr {self}‘any, wr alloc
contains(i : int) (none)
remove(i : int) wr {self}‘any, wr pool‘rep‘any

Figure 2. Public specifications for class Set . Preconditions: true .

var s :Set : = new Set(); var n :Node : = new Node();
s.add(1); s.add(2); n.val : = 1; s.remove(1);
b : = s.contains(1);

Figure 3. Example client, in context of variable b : boolean.

and their clients. Modular verification tools will eventually be able
to support integrated use of complementary disciplines for a wide
range of program design patterns and application frameworks.

2. Synopsis
For a first example of second order framing, we consider the simple
program in Fig. 1.1 This section begins by introducing region logic
as used by the interface specifications in Fig 2. Then we consider
reasoning about the implementation (Fig. 1) using an invariant,
which serves to illustrate local reasoning via a first order “frame
rule” akin to Hoare’s rule of Invariance. Finally, we consider rea-
soning about a client program, using the interface specifications.
To justify hiding the invariant, the interface includes a dynamic
boundary for the invariant and the client code is obliged not to write
within that boundary. We conclude by sketching how soundness of
this reasoning is captured by the SOF rule.

Interface specifications —the client’s view. The interface spec-
ifications for methods of collection class Set do not expose the
internal representation but rather refer to the abstraction of interest.

1 The programming notation is similar to Java, in particular a value of a
class type like Node is either null or a reference to an allocated object with
the fields declared in the class. Methods have an implicit parameter, self.

2 2009/7/27

The specifications (Fig. 2) are expressed in terms of an integer set,
elements , that could be formalized as a “model field”.2 Abstrac-
tion of this sort is commonplace and important, but not the focus of
this paper so we don’t formalize elements .

What is important is that we shall add to the interface a dy-
namic boundary which abstracts from the state to be encapsulated
for a hidden invariant. To this end, the implementation in Fig. 1
is instrumented using ghost state of type rgn; a region is a set of
allocated references of any type, possibly also containing null. In-
clusion of null is one of several small deviations from our paper [3],
which remains useful for a more detailed introduction to the basic
logic.

The effects clause in Fig. 2 for the constructor, Set(), is a con-
ventional modifies specification that says variable pool is allowed
to be assigned. Our chosen notation and terminology reflects a fea-
ture that deals with framing issues beyond the scope of the paper,
namely, that both read and write effects may be ascribed to com-
mands and procedures.

For add , the write effect wr {self}‘any is also a conventional
one that says fields of self may be written (cf. self.state in a
JML or Spec# modifies clause). The expression {self} denotes a
singleton region containing the value of self (an object reference).
For any field name f and region expression G , the effect wr G‘f
allows update of the f fields of objects in G (and is read “write
G image f ”). The special name “any” abstracts from specific field
names to allow any field to be written; this can be refined to “data
groups” [24, 8] that abstract from specific field names that should
not be exposed to clients.

The primitive region expression “alloc” denotes the current do-
main of the heap, i.e., the set of allocated references. The effect of
add includes wr alloc which means new objects may be allocated.

For remove , the most interesting effect is wr pool‘rep‘any.
Here pool‘rep is a region expression; it denotes the union of the
rep fields of all objects in pool . The effect says fields of objects in
pool‘rep (in the initial state) may be written. For any s of type Set ,
field rep is intended to hold the (references to) the nodes reached
from s.lst , and pool‘rep is the union of those regions, i.e., all the
nodes used by Sets in pool . (To allow for alternate implementations
it might be wise for add to also have the effect wr pool‘rep‘any.)

The effect wr pool‘rep‘any is a “dynamic frame” because rep
is a mutable field and pool a mutable variable: the meaning of the
effect is state dependent.3

A module invariant. For efficiency, our implementation of remove
relies on the invariant that no integer value is duplicated in the list
rooted at lst . This invariant must be established by the constructor
and preserved by all methods of class Set . However, as per what
we call Hoare’s mismatch [17], the invariant does not appear in the
interface specifications as viewed by clients.

The invariant “no duplicates” pertains to a single instance s
of Set , together with its list. The ghost field s.rep is intended to
refer to the set of nodes reachable from field s.lst . To avoid the
need for reachability, which is costly for automated verification
and not available in all assertion languages, we approximate it

2 The term is from JML [8]. Various specification languages offer different
ways to express abstractions represented by concrete data. For example,
elements might be defined as a zeroary function that traverses the list and
accumulates the set of its elements.
3 Because regions are untyped, pool could potentially contain references
of many types; nonetheless, the region pool‘rep involves only to those
objects in pool that have field rep, which by uniqueness of field names
means objects of type Set . Also, we have extended the first version of the
logic [3]: if G is a region and f is a field of some reference type, G‘f is a
region of the f -images, but if f is of type rgn then G‘f is a region, formed
as the union of the f -images.

using the invariant that s.rep contains only nodes “owned” by s .
Consider the following condition. The first conjunct says there
are no duplicates. The next two say that s.rep is nxt-closed and
contains s.lst . The last says all nodes in s.rep are owned by s .

SetI (s :Set) : (∀n,m :Node ∈ s.rep | n = m ∨ n.val 6= m.val)
∧ s.lst ∈ s.rep ∧ s.rep‘nxt ⊆ s.rep
∧ s.rep‘own ⊆ {s}

Note that “n ∈ s.rep” is considered false in case s = null.
Were we to extend the example by adding iterators, we might

find that the natural granularity for an invariant would be a Set
together with its iterators as well as its list. To avoid commitment to
invariants of a specific granularity, we consider module invariants,
associated with the program syntax and unit of scope: a “module”,
consisting of one or more class declarations. For example, the
module invariant could say SetI holds for every instance of Set .
To illustrate flexibility in choosing encapsulation boundaries, we
choose instead to say SetI holds for only those instances that are
in pool (which, e.g., could be those returned by a factory method):

I : null /∈ pool ∧ ∀s :Set ∈ pool | SetI (s)

We shall find a “frame” or footprint for I , that can serve as a
dynamic boundary expressing the state-dependent aspect of the
encapsulation that will allow I to be hidden from clients. But first
we seek a frame for the object invariant SetI (s), which will be used
for “local reasoning” [28] at the granularity of a single instance of
Set . The frame is given by read effects that describe the part of the
state on which the value of SetI (s) may depend:

δ0 : rd s, rd {s}‘(rep, lst), rd s.rep‘(nxt , val , own)

Region logic provides rules for a judgement that says certain read
effects bound the footprint of a formula, in this case:

true ` δ0 frm SetI (s) (1)

The effect rd s says SetI (s) may depend on variable s , and
rd {s}‘(rep, lst) says it may depend on s.rep and s.lst . The dy-
namic part is rd s.rep‘(nxt , val , own) which says it depends on
the nxt , val , and own fields of some objects in s.rep. The judge-
ment (1) involves a formula, here true , because effects can in-
volve region expressions like s.rep that depend on mutable state,
so framing relationships may hold only under some conditions on
that state. For example, we can derive

s ∈ pool ` rd pool‘(rep, lst) frm s.lst ∈ s.rep (2)

Using judgements including (2) and (1) we can derive a frame
judgement true ` δI frm I for the module invariant, where

δI : rd pool , pool‘(rep, lst), pool‘rep‘(nxt , val , own)

An abstraction of δI will be used later, when we turn to verification
of the client.

Framing for local reasoning using the invariant. For the imple-
mentations in Fig. 1, we would like to reason “locally” in terms of
a single Set . The ownership conditions in SetI (s) yield an “island
confinement” property (where # denotes disjointness of sets):

I ⇒ (∀s, t :Set ∈ pool | s = t ∨ {s}‘rep # {t}‘rep) (3)

because if s 6= t , n 6= null, and n is in s.rep ∩ t .rep then
n.own = s and n.own = t , a contradiction. To verify that method
add preserves I , we exploit island confinement in order to focus on
the object invariant. Now, I is equivalent to SetI (self) ∧ Iexcept ,
where

Iexcept : null /∈ pool ∧ ∀s ∈ pool − {self} | SetI (s)

We can frame Iexcept by the effects

3 2009/7/27

δx : rd self, pool , (pool − {self})‘(rep, lst),
(pool − {self})‘rep‘(nxt , val , own)

The footprint of Iexcept is disjoint from the footprint of SetI (self).
More to the point, let Badd be the body of method add . By ordinary
means we can verify the following Hoare triple:

{SetI (self)}Badd{SetI (self)∧elements = old(elements)∪{i}}
Next, we exploit separation to conjoin Iexcept to the pre and post
conditions because the write effects of add (Fig. 2) are separate
from the read effect of Iexcept . To make this precise, we define an
operator: If δ is a set of read effects and ε is a set of write effects
then δ?ε is a conjunction of disjointness formulas, validity of which
ensures that writes allowed by ε cannot affect the value of a formula
with footprint δ. (The formula δ ? ε is defined by induction on the
syntax of the effects.) Here is our first order frame rule (from [3]):

FRAME
` {P } C {P ′ } [ε] P ` δ frm Q P ⇒ δ ? ε

` {P ∧Q } C {P ′ ∧Q } [ε]

It happens that δx ? (wr {self}‘any, wr alloc) is true , so we
can take Q to be Iexcept in rule FRAME to complete the proof
of {I }Badd{I ∧ elements = old(elements)∪{i}}.

Reasoning about a client while hiding the invariant. Besides
verification of the module’s method bodies with respect to specifi-
cations in which the invariant I is explicit, there is another obliga-
tion on the module. It must declare a dynamic boundary that frames
I . It would not be appropriate to use δI , which mentions field lst
that would be declared private. We choose to use

θI : rd pool , pool‘any, pool‘rep‘any

The obligation is I ` θI frm I , which is derivable from true `
θ1 frm I by a subsumption rule.

Something is needed to ensure that I is initially true. Typical
formalizations include an initializer command, so the client pro-
gram takes the form let m be B in (init ;C). With dynamic al-
location, it is constructors that do much of the work to establish
invariants. In the present example, let us define Init to be the con-
dition pool = ∅ which is suitable to be declared in the module
interface. Note that Init ⇒ I is valid.

Finally, we can turn to verifying the simple client command
in Fig. 3. We will verify that under precondition Init the client
establishes postcondition b = false . Here is a proof outline.

{Init}
s : = new Set();
{s.elements = ∅ ∧ pool = {s}} // by spec of Set
n : = new Node();
s.add(1); s.add(2);
{s.elements = {1, 2} ∧ pool = {s}} // by spec of add
n.val : = 1;
s.remove(1);
{s.elements = {2} ∧ pool = {s}} // by spec of remove
b : = s.contains(1);
{b = false} // by spec of contains

As it should, this reasoning uses the interface specifications (Fig. 2).
However, there is an additional proof obligation. For it to be sound
to hide I from the client, we need that the client’s write effects are
separate from the dynamic bound θI —not just pre/post effects but
also effects at intermediate steps, at which module methods like
add are called. We include the assignment n.val : = 1 as a simple
example of how encapsulation might be violated (but is not). If this
assignment was replaced by s.lst .val : = 1 then indeed it would
break the invariant and render the program incorrect.

The effect of n.val : = 1 is wr {n}‘val and it must be shown to
be outside the boundary θI . After all, I reads field val as seen in

the more precise footprint, δI , subsumed by θI . By definition of ?,
we have that θI ? wr {n}‘val is {n} #pool ∧{n} #pool‘rep. We
must show it holds just before the assignment n.val : = 1.

The condition {n} # pool is equivalent to n /∈ pool which
clearly holds —none of the client code writes pool and the value
of n is fresh.4 There are several ways to show {n} # pool‘rep.
One way is to notice that a form of “package confinement” [15]
applies here: references to the instances of Node used by the Set
implementation are never made available to client code. (That is
stronger than the property required here, which is merely that such
references are not misused by clients.)

To be very explicit about the reasoning that could be embodied
by a static analysis for confinement, we shall exploit field own of
class Node . The analysis might ensure the all-states invariant that
any Node pointer p available to the client code has p.own = null
(the default from Node’s constructor). Moreover, nodes are not
“leaked” by the module code, which can be shown using

R : pool‘rep‘own ⊆ pool ∧ null /∈ pool

Unlike I , formula R is suitable to appear in the interface. A general
fact about region images is that G‘f ⊆ H and x .f /∈ H imply
x /∈ G (where G,H are any region expressions and f any field).
So using R we get n /∈ pool‘rep as required by the obligation to
respect the dynamic encapsulation boundary.

A dynamic boundary is expressed in terms of state potentially
mutated by the module implementation, e.g., the effect of add in
Fig. 1 allows writing state on which θI depends.5 So interface spec-
ifications need to provide clients with sufficient information to rea-
son about the boundary. In the example, R could be explicitly con-
joined with the interface’s method specifications, or declared as a
public invariant [21]. In our memory manager example (Sec 6), it is
not a fixed invariant but rather the individual method specifications
that allow clients to reason about the boundary.6

In summary, the verification of our client and its module are
justified by the following rule which embodies Hoare’s mismatch:

∆〈δ〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε]
∆〈δ〉 ; (Θ ? I)〈〉 ` {Q ∧ I } B {Q ′ ∧ I } [ε]

I ` θ frm I Init ⇒ I

∆〈δ〉 ` {P ∧ Init } let m be B in C {P ′ } [ε]

Here for simplicity Θ consists of a single method specification,
{Q}m{Q ′}[η]. The first antecedent expresses the proof obligation
on the client program C : in addition to the usual pre/post/modifies
specification, it must respect the dynamic boundary θ which (please
note!) is written together with the specification of m . In general,
a boundary is associated with each group of methods taken to
comprise the interface of a module, e.g., here we include a second
module interface ∆〈δ〉. To respect the boundary means that every
primitive action within C must stay outside θ and δ. It is not enough
that the end-to-end effect ε of C is outside θ, δ, as ε only describes
effects on objects that exist in the initial state. Moreover, ε includes

4 Had we chosen to use typed regions, or to maintain an invariant that every
element of pool is of type Set , then n /∈ pool would hold because the type
Node of n is not a subtype of Set .
5 Dynamic framing raises the issue of interference with effects, which is
handled in the rule for sequential composition in [3].
6 Nonetheless, we believe the present situation, where I ⇒ R, is typical. It
suggests that the module interface specification may include, in addition to
the dynamic bound, a public invariant that is framed by the bound and can
be seen as part of the encapsulation discipline. In this case clients are not
responsible for maintaining R because (from I ⇒ R) it is protected by the
bound they are already required to respect. Nor is there an additional proof
obligation on the module implementation.

4 2009/7/27

x , y, r ∈ VarName f , g ∈ FieldName K ∈ DeclaredClassNames
T ::= int | K | rgn
E ::= x | c | null | E ⊕ E c is in Z and ⊕ is in {=, +,−, ∗, >, . . .}
G ::= x | {E} | emp | alloc | G‘f | G ⊗G ⊗ is in {∪,∩,−}
F ::= E | G
C ::= x : = F | x : = new K | x : = x .f | x .f : = F | . . .

Figure 5. Programming language (excerpts). Category E is for
program expressions and G for region expressions.

effects from calls to methods of Θ and those effects are not required
to be outside the boundary θ.

The second antecedent is the proof obligation on the implemen-
tation, B , of m , in which the invariant I is explicit; the dynamic
boundary for Θ is empty, so θ is not imposed on B , but the bound
δ on the ambient library must be respected by B . Any recursive
calls to m in B are verified using the specifications Θ ? I which
means I is conjoined, here {Q ∧ I }m{Q ′ ∧ I }[η]. The side con-
ditions I ` θ frm I and Init ⇒ I are obligations on the module
implementation.

The rule above is a derived rule. Fig. 4 gives a generic deriva-
tion, using an ordinary rule that links a procedure to its implemen-
tation with no mismatch in specifications, together with the SOF
rule and a rule to forget the dynamic boundary once it has served
its purpose. The beauty of the SOF, the form of which is due to
O’Hearn et al [28], is that it distills the essence of Hoare’s mis-
match —which, with proper encapsulation, is an intricate match.

3. Background: Region logic without procedures
Programming language. Fig. 3 gives the programming language
syntax, except for procedures. The semantics is standard and de-
ferred to Sec. 4. A program consists of a command C in the context
of some class declarations. Commands are standard: assignment,
object allocation, field access, field update, conditionals, loops, and
local variable blocks.

A class declaration class K { T f } introduces a type name
K . The values of this type are null and all allocated references to
mutable objects of type K with fields f :T . Here and throughout,
identifiers with an overline range over lists. In addition to int and
reference types, there is type rgn with values ranging over finite
sets of references of any type.

Program expressions, E , do not depend on the heap: y .f is not
an expression but rather part of the primitive field access com-
mand, x : = y .f , for reading a field, as in SL. Region expres-
sions, G , cannot influence control flow or the value of non-region
fields/variables (as no integer expressions have subexpressions of
type rgn); their purpose is to serve as ghosts for reasoning.

Typing. There is an ambient class table comprising a well formed
collection of class declarations. We write fields(K) for the field
declarations f :T of class K . Judgement Γ ` F :T says that in
context Γ that assigns types to variable names, region or program
expression F has type T , and Γ ` C says C is a well formed
command in Γ. Type int is separated from reference types: there is
no pointer arithmetic. The typing rule for singleton region {E} en-
forces that E is of reference type. The rule for region dereference,
G‘f , checks that f is declared in some class K and either f is a
field of class type, K ′, or f is of type rgn. The primitive command
for field access, x : = y .f , is restricted to non-region fields. For
fields of type rgn, note that, e.g., x : = {y}‘f is permitted and is
an instance of ordinary assignment, x : = F . An implicit side con-
dition on all typing and also proof rules is that both the consequent
and the antecedents are well formed.

P ::= E = E | x .f = E | G ⊆ G | G # G | type(K ,G)
| (∀x : int | P) | (∀x :K ∈ G | P) | P ∧ P | ¬P

σ |= x .f = E iff σ(x) 6= null and σ(x .f) = [[E]]σ
σ |= G1 # G2 iff [[G1]]σ ∩ [[G2]]σ ⊆ {null}
σ |=Γ ∀x :K∈G | P iff extend(σ, x , o) |=Γ,x :K P for all

o ∈ [[G]]σ s.t. o 6= null and type(o, σ) = K

Figure 6. Formulas: grammar and semantics (excerpts).

Semantics. We assume given a set Ref of reference values in-
cluding a distinguished value, null . A Γ-state assigns values to the
variables in Γ and also has a heap. We abstract from the concrete
representation of states and merely assume the following operations
are available for a state σ: σ(x) is the value of x , alloc(σ) is the
set of all allocated references, type(o, σ) is the type of an allocated
reference o, update(σ, o.f , v) overrides σ to map field f of o to v
(for o ∈ alloc(σ)), extend(σ, x , v) extends σ to map x to value v
(for x 6∈ dom(σ)), new(σ, o,K , v) extends σ to map fresh o (i.e.,
assuming o /∈ alloc(σ)) to a K -record with field values v and type
K . States are assumed to be well typed and to have no dangling
references.

The semantics of program expressions E , written [[E]]σ, is
straightforward and omitted. Note that [[E]]σ is always a value
(of appropriate type), never fault ; moreover it only depends on the
store, not the heap. For region expressions, the meaning of single-
ton region {E} is {[[E]]σ}. The meaning of emp is the empty set
and that of alloc is alloc(σ), i.e., the set of all allocated references.
The meaning of G‘f , if f is a reference type, is the set containing
the f -images of all non-null references in G’s denotation; but if
f : rgn then G‘f denotes the union of the f -images.

Assertions and effects. The assertion language appears in Fig. 6.
Quantification is over int and reference types only (not over rgn).
For reference types, a bounding region is required (e.g., region
expression G in ∀x :K ∈ G | P) and the bound variable must not
appear in the bound of the quantification. This facilitates framing.
Fig. 6 also gives the semantics of a well formed formula, Γ ` P ,
as a satisfaction relation σ |=Γ P that is defined for all Γ-states σ.
A formula is valid iff it is true in all states.

Effects are given by the grammar

ε ::=rd x | rdG‘f | wr x | wr G‘f | rd alloc | wr alloc | fr G
Effect wr G‘f says f fields of any pre-existing object in G may
be written. Note that, e.g., in wr {x}‘f ‘g the first apostrophe is
forming a region expression {x}‘f and then the second is indicat-
ing what field (of objects in the region) is allowed to be written.
Effect wr alloc allows allocation and fr G says that all elements of
G in the final state are freshly allocated. Read effect rdG‘f says
f fields of any pre-existing object in G may be read and rd alloc
allows reading the set alloc. An effect set is a comma-separated list
of effects, ranged over by ε etc. Effects are well formed in Γ if their
constituent expressions are.

Freshness effects are needed to annihilate write effects of
freshly allocated objects in sequences. Consider, e.g., x : =
new K ; x .f : = 0; While the effect of the field update is wr {x}‘f ,
the pre-state of the entire sequence does not contain the freshly
allocated object. Indeed, in this case no pre-existing objects are up-
dated. See the sequence rule in [3].

Definition 1 (allows transition) Let effect set ε be well formed in
Γ and let σ, σ′ be Γ-states. We say ε allows transition from σ to σ′,
written σ σ′ |= ε, iff σ′ extends7 σ and the following all hold:

7 σ′ extends σ provided alloc(σ) ⊆ alloc(σ′) and type(o, σ) =
type(o, σ′) for all o ∈ alloc(σ).

5 2009/7/27

∆〈δ〉; (Θ ? I)〈〉 ` {Q ∧ I } B {Q ′ ∧ I } [η]

∆〈δ〉; Θ〈θ〉 ` {P } C {P ′ } [ε]

∆〈δ〉; (Θ ? I)〈θ〉 ` {P ∧ I } C {P ′ ∧ I } [ε]
SOF

∆〈δ〉; (Θ ? I)〈〉 ` {P ∧ I } C {P ′ ∧ I } [ε]
DYNBNDELIM

∆〈δ〉 ` {P ∧ I } let m be B in C {P ′ ∧ I } [ε]
LINK

∆〈δ〉 ` {P ∧ Init } let m be B in C {P ′ } [ε]
CONSEQ

Figure 4. Schematic derivation for second order framing, assuming that Θ is a single specification {Q}m(x :T){Q ′}[η]. For SOF the side
condition is I ` (θ, rd alloc) frm I and for CONSEQ it is validity of Init ⇒ I .

(a) for every y in dom(Γ), either σ(y) = σ′(y) or wr y is in ε
(b) for every o ∈ alloc(σ) and every f ∈ fields(o, σ), either

σ(o.f) = σ′(o.f) or there is wr G‘f in ε such that o ∈ [[G]]σ
(c) if alloc(σ′) 6= alloc(σ) then wr alloc is in ε.
(d) for each fr G in ε, we have [[G]]σ′ ⊆ alloc(σ′)− alloc(σ).

Read effects in ε are not significant in Def. 1. As per part (b), ex-
pressions in write effects are interpreted in the initial state whereas
(see (d)) the region in a freshness effect is interpreted in the final
state.

We formalize the separation of read effects from write effects
(as in rules FRAME and SOF) via conditions under which two
states σ, σ′ look the same when viewed through some read effects:
define Agree(σ, σ′, ε) to hold just if σ′ extends σ and moreover (a)
σ(x) = σ′(x) for all rd x in ε; (b) alloc(σ) = alloc(σ′) if rd alloc
in ε; (c) σ(o.f) = σ′(o.f) for all rdG‘f in ε and all o ∈ [[G]]σ
with f ∈ fields(o, σ).

Subeffects. A natural situation for effect subsumption is when
the effect is very detailed or refers to local variable(s) and is thus
unsuitable to be exposed for use in interfaces. Subeffecting allows
abstraction of such an effect. For example, effect wr pool‘rep‘any
of the remove method in Sec. 2 is obtained by subeffecting and it
abstracts from whatever particular object fields are written.

The judgement for subeffecting takes the form P ` ε1 ≤ ε2 and
express that the writes/reads in a bigger effect are more permissive
in P -states. There are axioms like G0 ⊆ G1 ` wr G0‘f ≤
wr G1‘f and rules like strengthening the antecedent.

Framing. Recall from Sec. 2 that rule FRAME has a side condi-
tion that the write effect of a command be separated from the read
footprint of the framed formula. The judgement, P ` ε frm Q
is intended to say the truth or falsity of predicate Q depends
only on the state read according to ε, i.e., ε covers the foot-
print of Q in P -states. We first provide a simple syntactic anal-
ysis for calculating read effects. For any expression F , define the
read footprint of F , written ftpt(F), as follows: If F is a pro-
gram expression, E , define ftpt(E) = {rd x | x ∈ Vars(E)}.
For a region expression G , define ftpt(G) by: ftpt(G‘f) =
{rdG‘f }∪ ftpt(G); ftpt(alloc) = {rd alloc}; ftpt(emp) = ∅.
Other expressions and primitive formulas are straightforward, e.g.,
ftpt(x .f = E) = {rd x , rd {x}‘f } ∪ ftpt(E). This is lifted to
judgements by the axiom true ` ftpt(P) frm P for primi-
tive formula P . Proof rules of non-primitive formulas are in-
ductively defined relative to validity of formulas (see [3]), e.g.,
ftpt(G) ⊆ ε P ∧ x ∈ G ` ε, rd x , rd {x}‘f frm P ′

P ` ε, rdG‘f frm ∀x :K ∈ G | P ′

Lemma 2 (agreement) For any states, σ, σ′, any expression F ,
any predicates P , P ′, and any set of effects ε: (a) Suppose
Agree(σ, σ′, ftpt(F)). Then [[F]]σ = [[F]]σ′. (b) Suppose P `
ε frm P ′ and σ |= P and Agree(σ, σ′, ε). Then σ |= P ′ iff
σ′ |= P ′.

` { x 6= null ∧ y = F } x .f : = F { x .f = y } [wr {x}‘f]

fields(K) = f :T Q ′ ≡ (type({x},K) ∧ x .f = default(T))

` { true } x : = new K {Q ′ } [wr x , wr alloc, fr {x}]

SUBEFF
` {P } C {P ′ } [ε] P ` ε ≤ ε′

` {P } C {P ′ } [ε′]

CONJ
` {P1 } C {P ′

1 } [ε] ` {P2 } C {P ′
2 } [ε]

` {P1 ∧ P2 } C {P ′
1 ∧ P ′

2 } [ε]

SUBST

` {P } C {P ′ } [ε] x is specification-only
(P/x→F) ⇒ ftpt(F) ? (ε/x→F)

` {P/x→F } C {P ′/x→F } [ε/x→F]

Figure 7. Selected correctness rules and axioms for commands.

Separators. Given effect sets δ and ε, the separator formula δ ? ε
is defined to be the conjunction of certain disjointness formulas. For
example, rdG1‘f ? wr G2‘g is defined to be G1 # G2 provided
f ≡ g ; otherwise, it is just true . 8 In a state where δ ? ε holds,
nothing that the read effects in δ allow to be read can be written
according to the write effects ε. The following result, together with
Lemma 2, proves soundness of FRAME.

Lemma 3 (separator agreement) Consider any effect sets δ and
ε. Suppose σ σ′ |= ε and σ |= δ ? ε. Then Agree(σ, σ′, δ).

Proof rules and correctness. A correctness judgement takes the
form `Γ {P } C {P ′ } [ε] and is well formed in Γ just if P ,P ′, ε
are well formed in Γ and also Γ ` C . Validity of the judgement
consists of a standard part —from any initial state that satisfies P ,
C does not fault (terminate with error), and if it terminates then the
final state satisfies P ′— and a non-standard one: any allocation and
update effects are allowed by ε (Def. 1).

Selected proof rules appear in Fig. 7. For field update we choose
a “small axiom”, inspired by [28], which snapshots F with an
auxiliary variable y in the precondition. The effect in the rule is a
write to the f field of the single object in region {x} that exists
in the pre-state. The other rules shown are structural rules. The
rule of substitution refers to specification-only variables that are
not allowed to appear in code.9

4. Region logic with procedures
In this section, procedures are added to the programming language.
Correctness judgements are extended with hypotheses, i.e., proce-

8 We do not need to recurse further with G1 and G2. The ftpt function at
the core of the frames judgement generates convex sets; if the set contains
rdG‘f then it also contains ftpt(G).
9 Note that [3] conjectures mistakenly that read effects of commands can be
used for the substitution rule; here we give a sound rule.

6 2009/7/27

dure specifications. The program semantics is given and used to
define the semantics of correctness judgements with hypotheses.

Program syntax and semantics. Command syntax has these ad-
ditional forms

C ::=m(z) | let m(x :T) be C in C | skip | end(x) | end(m)

where m ranges over procedure names. The form
“let m(x :T) be B in C ” binds m to B in C . Typing rules
enforce that procedure body B is typed in a context with its
parameter x and also m in scope —recursion is allowed. To
streamline notation we avoid generalizing to multiple parameters
and multiple, mutually recursive procedures, but there is no
difficulty in that. The command end is a technical device, not
allowed in source programs and used only in the semantics to
mark the end of the scope of a variable or method. The primitive
commands are method calls, skip, and assignments including field
update and new.

Let Γ range over contexts like y :T ,m : (x :U) that, in addition
to variable declarations, declare procedure parameters. Then the
typing rule for linking to procedures is standard.

Γ, x :T ,m : (x :T) ` B Γ,m : (x :T) ` C

Γ ` let m(x :T) be B in C

We refrain from giving other typing rules as they are quite standard.
We use a small-step operational semantics in which configura-

tions carry a procedure environment that binds procedure names
to their bodies. Configurations take the form 〈C , σ, µ〉 where C
is a command, σ is a state (as defined in Sec. 3), and procedure
environment µ is a partial function from procedure names to pa-
rameterized commands of the form (λx :T .C). We consider only
well formed programs and initial configurations, so reachable con-
figurations enjoy standard well-formedness properties that will not
be discussed in detail. Every reachable configuration has a succes-
sor unless the command is skip. A terminating computation ends in
a configuration of the form 〈skip, σ, µ〉 or else fault .

The only unusual feature of the semantics is that it depends
on assumed specifications of procedures that are not bound in
the procedure environment. The identifier ∆ will range over such
assumptions. The semantics is given as a transition relation ∆7−→ for
commands that may have free occurrences of procedures specified
in ∆. The procedures in ∆ are to be distinct from those in the
procedure environment. Semantics of a call m(z), for m in ∆,
depends on the specification; its definition is deferred (to Fig. 9)
and discussed later.

The transition semantics ∆7−→ for all other cases is independent
from ∆. It is defined in Fig. 8. For allocation, we assume fresh
is an arbitrary function such that fresh(σ) is a non-empty set of
non-null references that are not allocated in σ. Thus our results
encompass deterministic allocators as well as the maximally non-
deterministic one used in separation logic. We write ∆7−→∗ for the
reflexive, transitive closure of ∆7−→.

In addition to the well-formedness properties of reachable con-
figurations that were already mentioned, we note that the context
procedures specified in ∆ are always distinct from the linked pro-
cedures bound in the procedure environment. Furthermore, if C is
not an end then 〈C , σ, µ〉 ∆7−→∗〈skip, σ′, µ′〉 implies µ′ = µ.
There is no deallocation so the domain of the heap only grows, and
once allocated the type of a reference never changes.

Procedure specifications and hypothetical judgements. A hy-
pothesis ∆ is a comma-separated list of procedure specifications,
each of the form

{Q}m(x :T){Q ′}[ε] (4)

σ(x) = null

〈x .f : = F , σ, µ〉 7−→ fault

σ(x) = o o 6= null

〈x .f : = F , σ, µ〉 7−→ 〈skip, update(σ, o.f , [[F]]σ), µ〉

o ∈ fresh(σ) fields(K) = f :T default(T) = v

〈x : = new K , σ, µ〉 7−→ 〈skip, new(σ, o,K , v), µ〉

〈(skip;C), σ, µ〉 7−→ 〈C , σ, µ〉

〈C0, σ, µ〉 7−→ 〈C ′
0, σ′, µ′〉

〈(C0;C1), σ, µ〉 7−→ 〈(C ′
0;C1), σ′, µ′〉

〈let m(x :T) be B in C , σ, µ〉
7−→ 〈(C ; end(m)), σ, extend(µ,m, (λx :T .B)〉

µ(m) = λx :T .B x ′ /∈ dom(σ) B ′ = B/x→x ′

〈m(z), σ, µ〉 7−→ 〈(B ′; end(x ′)), extend(σ, x ′, σ(z)), µ〉

〈end(x), σ, µ〉 7−→ 〈skip, retract(σ, x), µ〉

〈end(m), σ, µ〉 7−→ 〈skip, σ, retract(µ,m)〉

Figure 8. Definition of transition relation ∆7−→. For calls of proce-
dures in ∆, for which see Fig. 9. Here ∆ is the same throughout
and omitted. Also retract(σ, x) removes x from the state. Rules for
ordinary assignment, if, and while are standard.

where m is a procedure name and x is the parameter name. For
(4) to be well formed, Q ,Q ′, ε should be wf in Γ, x :T . Less ob-
viously, ε must not contain wr x ; this enforces the usual constraint
on value-parameters: so that use of x in postconditions or in effects
like wr x‘f refers to its initial value).

Correctness judgements now take the form

∆ `Γ {P } C {P ′ } [ε] (5)

Judgement (5) is well formed just if P , P ′, ε, and all specifications
in ∆ are well formed in Γ. Moreover C is well formed with respect
to the procedure signatures in ∆, i.e., Γ; sigs(∆) ` C where
sigs extracts the procedure signatures from a set of procedure
specifications.

There are two plausible interpretations of a hypothetical correct-
ness judgement (5), both expressing that C is “modularly correct”
with respect to the specifications of procedures of its context ∆.
The first interpretation can be described as follows: Consider the
semantics of C started from a procedure environment that links
each procedure in ∆ to an arbitrary command that satisfies the pro-
cedure’s specification. That is, C is correct with respect to all cor-
rect implementations of ∆. The second interpretation avoids this
universal quantification by interpreting C with respect to a single
transition relation (not necessarily denotable by a command) that
models the least refined or “worst” meaning that satisfies the speci-
fication. This embodies all possible behaviors of correct implemen-
tations. The second interpretation is popular in work on program
refinement. It is used as well by O’Hearn et al [27, 29]. Although
typically the second interpretation is associated with a big step se-
mantics, we use it in mixed step form (as in, e.g., [31]).

Fig. 9 completes the definition of transition relation ∆7−→,
by giving the step from configuration 〈m(z), σ, µ〉 where m
is a context procedure rather than being in the environment µ.
To explain the definition, let us first consider a specification
{P}m(x :T){P ′}[ε]. There are two cases. If σ satisfies the pre-

7 2009/7/27

∆ contains {P}m(x :T){P ′}[ε] σ σ′ |= ε
extend(σ, x , σ(z)) |= P extend(σ′, x , σ(z)) |= P ′

〈m(z), σ, µ〉 ∆7−→ 〈skip, σ′, µ〉

∆ contains {P}m(x :T){P ′}[ε] extend(σ, x , σ(z)) 6|= P

〈m(z), σ, µ〉 ∆7−→ 〈skip, σ′, µ〉 and also 〈m(z), σ, µ〉 ∆7−→ fault

Figure 9. Definition of ∆7−→ for calls of context procedures, i.e.,
those in ∆.

CALL

∆ contains {P}m(x :T){P ′}[ε]
Q ≡ P/x→z Q ′ ≡ P ′/x→z ε′ ≡ ε/x→z

∆ ` {Q }m(z) {Q ′ } [ε′]

LINK
Θ is {Q}m(x :T){Q ′}[δ]

∆, Θ `Γ {P } C {P ′ } [ε] ∆, Θ `Γ,x :T {Q } B {Q ′ } [δ]

∆ `Γ {P } let m(x :T) be B in C {P ′ } [ε]

Figure 10. Proof Rules for hypothetical judgements.

condition, then the configuration can step to 〈skip, σ′, µ〉 for any
σ′ such that σ′ satisfies P ′ and moreover ε allows the transition
from σ to σ′. If σ does not satisfy the precondition, then the con-
figuration can step to any σ′ whatsoever, and may also step to fault .

A correctness judgement is valid, written ∆ |=Γ {P }C {P ′ }[ε],
iff the following holds. Let µ0 be an arbitrary procedure environ-
ment disjoint from the procedures bound in C or present in ∆. Let
C0 = C . Then for all Γ-states σ0 such that σ0 |= P we require
(i) It is not the case that 〈C0, σ0, µ0〉

∆7−→ ∗fault ; and (ii) For
all computations 〈C0, σ0, µ0〉

∆7−→ ∗〈skip, σn , µn〉 of n steps
(noting that n ≥ 0 and µn = µ0) we have both σn |= P ′ and
σ0 σn |= ε. The new proof rules are given in Fig. 10. The
proof rules of Sect. 3 are all adapted by adding hypotheses ∆ to all
correctness judgements.

Extension to a richer language. In examples we use an extended
programming language, where methods have an implicit parameter
named self and may have a return value, and there are constructor
methods. Formalization of the additional features complicates the
rules ALLOC, LINK, and CALL. Calls without return value take
the form y .m(z). The specification may mention both self and
parameter x , so y is substituted for self (and z for x as before).
With a return value, there is an additional substitution.

The LINK rule no longer has an exact match between the specifi-
cation used by the client and the specification with respect to which
a method implementation is verified. That is because a method call
involves first testing nullity of the receiver and only then dispatch-
ing the body of the method; so precondition self 6= null is added.
For the constructor of some class K , the proof obligation also re-
flects in its precondition that the fields are initialized to defaults
before the constructor runs; the effect specification reflects that self
is freshly allocated and thus writes to fields of self must not be
reported.

5. Module invariants and second order framing
This section augments hypotheses with dynamic boundaries. A dy-
namic boundary δ is associated with a group (list) ∆ of procedure
specifications using notation ∆〈δ〉. The general form for correct-
ness judgement would have a sequence ∆0〈δ0〉 ; . . . ; ∆n〈δn〉 of

hypotheses, and rules for permuting the groups. But for readabil-
ity it suffices to spell out the case of two groups. So a correctness
judgement has the form

∆〈δ〉 ; Θ〈θ〉 `Γ {P } C {P ′ } [ε] (6)

The judgement is wf if the conditions for (5) hold and the read
effects δ and θ are wf in Γ.10

The current command in a configuration can always be written
as a sequence of one or more commands that are not themselves
sequences; the first is the active command, the one that is rewritten
in the next step. Formally we define active(C1;C2) = active(C1)
and active(C) = C if there are no C1,C2 such that C is C1;C2.

Definition 4 A correctness judgement is valid, written

∆〈δ〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε]

iff the following holds. Let ∆′ be the union (∆, Θ), let C0 be C ,
and let µ0 be an arbitrary procedure environment disjoint from the
procedures linked within C or present in ∆, Θ. Then for all Γ-
states σ0 such that σ0 |= P

• It is not the case that 〈C0, σ0, µ0〉
∆′
7−→∗fault .

• For all computations 〈C0, σ0, µ0〉
∆′
7−→∗〈skip, σn , µn〉

(a) σn |= P ′ and σ0 σn |= ε
(b) for all 0 < i ≤ n , either active(Ci−1) is a call to some

procedure m in ∆ or else Agree(σi−1, σi , δ)

(c) like (b) but mutatis mutandis for Θ and θ.

Note that in the case δ and θ are empty, this coincides with the
definition of validity in Sec. 4.

The axioms for assignment forms are now given hypotheses
∆〈〉; Θ〈〉 with empty dynamic bounds. Proper rules are revised to
have ∆〈δ〉; Θ〈θ〉 in both antecedents and conclusions, except that
CALL and LINK are replaced by the ones in Fig. 11. Note that
LINK’ requires the procedure body to respect the other dynamic
bounds and linked procedures must have empty dynamic bound. In
addition, the Figure adds rules used to introduce and eliminate the
dynamic boundary.

Rule SOF uses an operation ?I that conjoins a formula I to
pre- and post-conditions of specifications. It is defined by

({Q}m(x :T){Q ′}[ε]) ? I = {Q ∧ I }m(x :T){Q ′ ∧ I }[ε]

Define ∆? I by distributing ?I over the specifications in ∆. Rule
SOF also imposes a mild admissibility condition on I . The prob-
lem is that some useful invariants include alloc in their effect, e.g.,
if in the example of Sec. 2 we drop variable pool and instead let I
quantify over all allocated Sets. Typical clients do allocation, and
thus write alloc, which would conflict with a dynamic boundary
containing rd alloc. The solutions are based on the limited way that
alloc gets written: only by the new command and only by adding
the newly allocated object.

Our first solution to the above problem is similar to one used in
some specific invariant disciplines [26, 32].

Definition 5 Formula Q is admissible with respect to the proce-
dure specifications ∆, written admiss(Q , ∆), iff it is not falsifiable
by allocation. That is, for any σ with σ |= Q , we also have σ′ |= Q
where σ′ is new(σ, o,K , default(T)) and T is the field types for
K and o is any fresh reference (not in alloc(σ)).

10 In a proof, the dynamic bounds will appear in many judgements, includ-
ing those for procedure implementations and in the scope of local variables.
Thus to be useful they must be well formed in a number of contexts —
typically, they involve only some global variables and public field names.

8 2009/7/27

SOF

∆〈δ〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε]

I ` (θ, rd alloc) frm I admiss(I , Θ)

∆〈δ〉 ; (Θ ? I)〈θ〉 ` {P ∧ I } C {P ′ ∧ I } [ε]

DYNBNDELIM
∆〈δ〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε]

∆〈δ〉 ; Θ〈〉 ` {P } C {P ′ } [ε]

DYNBNDINTRO
∆〈δ〉 ; Θ〈〉 ` {P } C {P ′ } [ε] C is primitive P ⇒ θ ? ε

∆〈δ〉 ; Θ〈θ〉 ` {P } C {P ′ } [ε]

DYNBNDINTROM
∆〈δ〉 ; Θ〈〉 ` {P }m(z) {P ′ } [ε] m is in Θ

∆〈δ〉 ; Θ〈θ〉 ` {P }m(z) {P ′ } [ε]

CALL’

∆ or Θ contains {P}m(x :T){P ′}[ε]
Q ≡ P/x→z Q ′ ≡ P ′/x→z ε′ ≡ ε/x→z

∆〈δ〉 ; Θ〈〉 ` {Q }m(z) {Q ′ } [ε′]

LINK’
Θ is {Q}m(x :T){Q ′}[η] ∆〈δ〉 ; Θ〈〉 `Γ {P } C {P ′ } [ε]

∆〈δ〉 ; Θ〈〉 `Γ,x :T {Q } B {Q ′ } [η]

∆〈δ〉 `Γ {P } let m(x :T) be B in C {P ′ } [ε]

Figure 11. Rules involving dynamic boundaries. Omitted is a rule
that swaps ∆〈δ〉 ; Θ〈θ〉 with Θ〈θ〉 ; ∆〈δ〉, unconditionally.

This is formulated as a semantic property of Q , unlike all the other
side conditions in the proof rules. We include ∆ in the notation,
even though it is not used in the definition, in order to highlight
the way admissibility should be treated in a richer language that
includes constructor methods. Before discussing that further, we
note the following which follows immediately using Lemma 2.

Lemma 6 Suppose P ` (δ, rd alloc) frm Q and admiss(Q , ∆).
Suppose σ |= P∧Q and let σ′ = new(σ, o,K , v). If Agree(σ, σ′, δ)
then σ′ |= Q .

The point is that by condition P ` (δ, rd alloc) frm Q , it appears
that Q depends on alloc, but by semantic condition admiss(Q , ∆)
it does not.

Suppose Q is of the form ∀x :K ∈ alloc | x .init ⇒ P(x)
with init a boolean field. Although the footprint of Q includes
alloc, it is not falsifiable by allocation (because the default value
for x .init is false). Such a formula would be suitable as an in-
variant in a program where x .init only gets truthified by proce-
dures that also establish P(x). In a richer language with construc-
tor methods, this pattern is in some sense part of the semantics and
we can define admiss(Q , ∆) by the following syntactic condition:
every occurrence of alloc in Q occurs in a subformula of the form
∀x :K ∈ alloc | . . . where the constructor for class K is among
the procedures of ∆.

A verification condition generator could impose the conditions
of rule DYNBNDINTRO on each primitive in a program. However,
for general purpose encapsulation disciplines based on type sys-
tems or other static analyses, a dynamic bound η could be intro-
duced by a rule of the form

∆〈δ〉 ; Θ〈θ〉 `Γ {P } C {P ′ } [ε] Ok(η,C , Γ, ∆〈δ〉, Θ〈θ〉,P)

∆〈δ〉 ; Θ〈θ, η〉 `Γ {P } C {P ′ } [ε]

It posits a condition Ok(η,C , Γ, ∆〈δ〉, Θ〈θ〉,P) which performs
some static analysis of C , taking into account that methods of Θ

are exempt from the effect bound θ. What is required of Ok is that
it makes this rule sound, i.e., it ensures that every step of C , other
than calls to methods in Θ, respects the bound η.

We leave this topic and turn to the main result of the paper.

Theorem 7 Any judgement ∆〈δ〉 ; Θ〈θ〉 `Γ {P } C {P ′ } [ε]
that is derivable is valid, i.e., ∆〈δ〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε].

Proof: By induction on the derivation and by cases on the last rule
used. Each case simply appeals to Lemma 9. 2

Proposition 8 For all C ,C ′, σ, σ′, µ, µ′, ∆, ∆′, such that ∆ and
∆′ declare the same methods and active(C) is not a call to a
method in ∆, we have: 〈C , σ, µ〉 ∆7−→ 〈C ′, σ′, µ′〉 if and only if

〈C , σ, µ〉 ∆′
7−→ 〈C ′, σ′, µ′〉.

Proof of the proposition is by induction on the structure of C ; under
the given conditions, only the transition rules in Fig. 8 are at play.

Lemma 9 (rule soundness) Every axiom is valid. For every proper
rule, derives valid conclusions from valid antecedents.

Proof: By cases on the axioms and rules. We give the main
case, SOF. Assume the antecedent is valid, ∆〈δ〉 ; Θ〈θ〉 |=Γ

{P } C {P ′ } [ε]. To prove validity of the conclusion, i.e.,

∆〈δ〉 ; (Θ ? I)〈θ〉 |= {P ∧ I } C {P ′ ∧ I } [ε] (7)

let ∆c be the hypotheses (∆, Θ?I), for the conclusion of the rule,
and let ∆a be the hypotheses (∆, Θ) for the antecedent. Consider
any σ0 with σ0 |= P∧I , let µ0 be any method environment disjoint
from ∆, Θ, and let C0 be C .

Claim A: Consider any computation from 〈C0, σ0, µ0〉 un-
der transition relation ∆c7−→. Then (a) that sequence of configu-
rations is also a computation of ∆a7−→ and (b) if σ0 |= I then
I holds in every configuration. Claim A implies (7) as follows.
It is not the case that 〈C0, σ0, µ0〉

∆c7−→ ∗fault , because that
would imply 〈C0, σ0, µ0〉

∆a7−→∗fault which contradicts validity of
the antecedent. Furthermore, by validity of the antecedent we get
σn |= P ′ and σ0 σn |= ε. We get σn |= I from the claim. What
remains is to show that for all 0 < i ≤ n , either active(Ci−1) is a
call to some method m in (Θ ? I) or else Agree(σi−1, σi , θ), and
mutatis mutandis for ∆ and δ. This follows immediately from the
corresponding condition in validity of the antecedent.

It remains to prove Claim A, which is by induction on the length
of the computation sequence for 〈C0, σ0, µ0〉

∆c7−→∗〈Cn , σn , µn〉.
The induction step uses Claim B: For any D ,D ′, σ, σ′, µ, µ′, sup-
pose that 〈D , σ, µ〉 is reachable under ∆a7−→ from an initial con-
figuration 〈C0, µ0, σ0〉. Suppose σ |= I and 〈D , σ, µ〉 ∆c7−→
〈D ′, σ′, µ′〉. Then 〈D , σ, µ〉 ∆a7−→ 〈D ′, σ′, µ′〉 and σ′ |= I .
To prove Claim B there are 3 cases: (a) If active(D) is not a call
to a context method (noting that ∆a and ∆c declare the same
methods) then by Proposition 8, 〈D , σ, µ〉 ∆a7−→ 〈D ′, σ′, µ′〉.
If σ′ 6= new(σ, o,K , v) then alloc(σ) = alloc(σ′) and from
Agree(σ, σ′, θ) (by valid antecedent) and σ |= I , we get σ′ |= I
by Lemma 2. In case σ′ = new(σ, o,K , v), from σ |= I and side
conditions I ` rd alloc, θ frm I and admiss(I , Θ) of SOF, we get
σ′ |= I by Lemma 6.

For the second and third cases, suppose that active(D) is a call
to a method m with specification {V }m(x :T){V ′}[η].

Case (b) m ∈ ∆: It must be that σ ∈ [[V]]. For, if not, then by
context call semantics (Fig. 9) we would have 〈D , σ, µ〉 ∆a7−→ fault

9 2009/7/27

which, because 〈D , σ, µ〉 is reachable, contradicts the antecedent
∆〈δ〉 ; Θ〈θ〉 |=Γ {P } C {P ′ } [ε]. So by the first rule in Fig. 9
for both ∆a and ∆c we get 〈D , σ, µ〉 ∆a7−→ 〈D ′, σ′, µ′〉. We show
that I is maintained, by cases on whether σ′ = new(σ, o,K , v).
If so, from σ |= I and side conditions I ` rd alloc, θ frm I
and admiss(I , Θ) we get σ′ |= I by Lemma 6. Otherwise, from
Agree(σ, σ′, θ) and σ |= I , we have σ′ |= I by Lemma 2.

Case (c) m ∈ Θ ? I . Then V is Q ? I and V ′ is Q ′ ? I
for some Q ,Q ′ such that {Q}m(x :T){Q ′}[η] is in Θ. It must be
that σ |= Q : for, if not, then by method call semantics (Fig. 9) we
would have 〈D , σ, µ〉 ∆a7−→ fault , contradicting ∆〈δ〉 ; Θ〈θ〉 |=Γ

{P }C {P ′ } [ε]. Because σ |= Q , by specification of m in Θ?I
we get σ′ |= Q ′ ∧ I .11 2

Case DynBndIntro. For DYNBNDINTRO, suppose C is a prim-
itive command and the side condition P ⇒ θ ? ε holds. Suppose
the antecedent is valid: ∆〈δ〉 ; Θ〈〉 |= {P } C {P ′ } [ε]. To show
validity of the conclusion, ∆〈δ〉 ; Θ〈θ〉 |= {P } C {P ′ } [ε], con-
sider any µ and any σ with σ |= P . If C is skip then there is
no transition and the only thing to prove is σ |= P ′ — which we
have by validity of the antecedent. If C is an assignment, field up-
date, or call of a method, the possible transitions have the form
〈C , σ, µ〉 7−→ 〈skip, σ′, µ′〉 (by the antecedent we do not have
to consider faults) and by the antecedent we have σ′ |= P ′. To
show Agree(σ, σ′, θ), we can use Lemma 3 owing to side condition
P ⇒ θ?ε. The fact that δ is respected follows from the antecedent.

Case Link. Suppose Θ is {Q}m(x :T){Q ′}[η]. Suppose
both antecedents of the rule are valid, i.e., ∆〈δ〉 ; Θ〈〉 |=Γ

{P } C {P ′ } [ε] and ∆〈δ〉 ; Θ〈〉 |=Γ,x :T {Q } B {Q ′ } [η].
To show

∆〈δ〉 |=Γ {P } let m(x :T) be B in C {P ′ } [ε]

suppose σ0 |= P and µ0 be any environment. Let C0 be
let m(x :T) be B in C . We must show that (a) it is not the
case that 〈C0, σ0, µ0〉

∆7−→∗fault ; and (b) If 〈C0, σ0, µ0〉
∆7−→

∗〈skip, σn , µn〉 then σn |= P ′ and σ0 σn |= ε and
Agree(σi−1, σi , δ) for all steps σi 7−→ σi . Validity of the an-

tecedents tells us about ∆′
7−→, where ∆′ is ∆, Θ. We must therefore

relate ∆′
7−→ to ∆7−→. By semantics, the first step is 〈C0, σ0, µ0〉

∆7−→
〈C1, σ1, µ1〉 where C1 is C , σ1 = σ0, and µ1 extends µ0 to map
m to λx :T .B . It respects δ because the state is unchanged. Subse-

quent steps are matched exactly by steps via ∆′
7−→ —which respect

δ by validity of the antecedent for C— until we reach a configura-
tion 〈Ci , σi , µi〉 where the active command in Ci is a call of m ,

i.e., Ci is a sequence m(z);D , for some D . In this case, ∆′
7−→ does

not fault (as otherwise the antecedent for C would not be valid).
Thus by definition of ∆′

7−→ it must be that σ |= Q (as otherwise it
could fault). Instead, it goes in one step to 〈skip;D , σ′, µi〉 for all
σ′ such that σ′ |= Q ′ and σi σ′ |= η. The next step goes to
〈D , σ′, µi〉, which we will show is matched.

As for ∆7−→, it steps first to 〈(B ′; end(x ′);D), σ′′, µi〉 where
µi(m) = λx :T .B and B ′ has x renamed to fresh identifier x ′

that is initialized in σ′′ to σi(z). From there, by validity of the
antecedent for B and using σ |= P , there is no fault and if the
overall computation terminates then it first reaches the end of the

11 In part (c) of the proof of the Claim B, the argument would also apply to a
σ′ arising as a result of a call to a constructor method. The postcondition of
such a method must be of the form Q ′ ? I and thus I must be established
by σ′ (replacing the appeal to Lemma 6).

B ′-computation, i.e., a configuration 〈(skip; end(x ′);D), σ′, µ′〉,
and moreover here σ′ |= P ′ and σi σ′ |= η. Also, by hypothesis
for B , δ is respected at each step. After a couple more steps we
reach 〈D , σ′′, µ′〉 where σ′′ = retract(x ′, σ′). This is one of the

possible configurations 〈D , σ′, µi〉 reached by ∆′
7−→ so we are at a

matching point in the computations and can proceed by induction
on the rest of the computation of ∆7−→.

6. Examples
Toy memory manager. This example is adapted from the one of
O’Hearn et al [27] who use it to exemplify ownership transfer. It
also exemplifies situations where clients retain access to locations
on which which they are not currently allowed to act. Those refer-
ences must be known when reasoning about the client. This might
be done by tracking a “typestate” that distinguishes between, e.g.,
updatable and non-updatable phases of an object’s life [5]. We will
do it by tracking the set of objects that are currently in the “freed”
state. This is a “static” module, i.e., unlike our other examples it is
not individual instances of a class that represent an abstraction, but
rather some global variables.

global-vars result :Node; freed : rgn;
module-vars flist :Node; count : int;
alloc()
{ if count = 0 then result : = new Node();

else freed : = freed − {flist};
result : = flist ; flist : = flist .nxt ; count-=1; }

free(n :Node)
{ n.nxt : = flist ; flist : = n; count+=1; freed : = freed∪{n}; }

The interface specifications are in Fig. 12. The module invariant
is IM defined as FC (flist , freed , count). Here FC is defined by
induction on the size of its region parameter:

FC (f :Node, r : rgn, c : int) :
(f = null ⇒ r = ∅ ∧ c = 0)

∧ (f 6= null ⇒ f ∈ r ∧ c > 0 ∧ FC (f .nxt , r − {f }, c − 1))

So IM says freed is the nodes reached from flist and count is the
size. As dynamic boundary we choose

δM : rd freed , freed‘nxt

To be precise, the read footprint of IM includes also flist and
count , but we shall assume they are hidden from the client by
ordinary scoping.

The implementation of alloc relies on accuracy of count . In
particular, it relies on count 6= 0 ⇒ flist 6= null (as otherwise the
dereference f .nxt could fault), but for this to hold on subsequent
calls the stronger condition IM needs to be maintained as invariant.

Consider this strange client that both reads and writes data in
the free list —but not in a way that interferes with the module.

var x , y :Node; x : = new Node();
{x /∈ freed}
alloc(); y : = result ;
{x /∈ freed ∧ y /∈ freed} // by spec of alloc
free(x); free(y);
while y 6= null { y .val : = 7; y : = y .nxt ; }
{x ∈ freed ∧ y ∈ freed}

This is provable using the specifications (Fig. 12) and rules DYNBND-
INTRO and DYNBNDINTROM. The point is that although the loop
updates val , that effect is separate from the dynamic boundary, δM .

Combining modules. Consider a client program that uses both
the memory manager and the Set module of Sec. 2:

let alloc, free be . . . in let add , contains, remove be . . . in Cli

10 2009/7/27

Method Pre-condition Post-condition Effects

alloc() true result 6= null ∧ freed = old(freed)− result wr result , freed , alloc, freed‘nxt

free(n :Node) n 6= null ∧ n /∈ freed freed = old(freed)∪{n} wr freed , freed‘nxt

Figure 12. Interface specifications for memory manager. Dynamic boundary: rd freed , freed‘nxt

(eliding the parameter lists, implementations, and constructor to
save space). Let us write ∆ for the two specifications in Fig. 12
and Θ for the four in Fig. 2. The main program Cli is verified in
context ∆〈δM 〉; Θ〈θI 〉, i.e., it must respect the dynamic boundary
δM for the memory manager and θI for the Set module. The
implementations of add , contains , etc. are verified in context
∆〈δM 〉; Θ〈〉, i.e., they may use the memory manager but must
respect its dynamic boundary. Finally, alloc and free are verified
in context ∆〈〉.

Observer pattern. This example illustrates the verification of a
client of the Observer pattern (Figs. 13, 14). A subject has a list
of observers cognizant of its internal state (here represented as
an integer value held in field val of a subject). A new observer
registers itself with a subject (the observer’s sub field tracks its
subject) and is notified of its subject’s state which it caches in field
cacheVal . When a subject’s state is updated it notifies each of its
observers. Each observer then calls back into the subject interface
and gets the new value.

A subject and its observers together form a cooperating clus-
ter of objects that are not in an ownership relation. Accordingly
we can consider a module containing both classes Subject and
Observer whose interface exports the methods update , get and
the constructor for Observer 12. In Fig. 13, s.O is a region contain-
ing the observers of subject s . The subject employs a list data struc-
ture to manage its observers — this is hidden from clients as is the
list header, s.obs . Let SubH (s) be the predicate List(s.obs, s.O)
that says “for subject s , list beginning at s.obs lies in region
s.O”. The exact definition of List is immaterial here (but see
[3]); it suffices to know that the read effects of SubH (s) are
rd s, {s}‘(obs,O), {s}‘O‘nxt .

Hidden invariant, I , is defined as I (∅, ∅) where I (m,n) is

(∀s :Subject ∈ alloc−m | SubH (s)) ∧
(∀o :Observer ∈ alloc− n | o.sub 6= null ⇒ o ∈ o.sub‘O)

The second conjunct says that any observer, o, with non-null sub-
ject o.sub, is in the subject’s O region. The specifications use the
predicate Obs(b, s, v) : b.sub = s ∧ b.cacheVal = v . Its read
effect is rd b, s, v , {b}‘(sub, cacheVal).

Suppose there are two subjects s, t with s.val = 0 and t .val =
5. Here is a client, C :

o : = new Observer(s); p : = new Observer(t); s.update(2);

Then we can show, using only the specifications in Fig. 14 that
after the call to update, p.cacheVal = 5 while o.cacheVal = 2.
Let P : ∀b :Observer ∈ {s}‘O | Obs(b, s, 0)

P ′ : ∀b :Observer ∈ {s}‘O | Obs(b, s, 2)
Q : ∀b :Observer ∈ {t}‘O | Obs(b, t , 5)
W : P ∧Q ∧ s.val = 0 ∧ t .val = 5

in the proof outline

12 It also exports the constructor for Subject but we elide it. The other
procedures are module scoped.

class Subject{obs :Observer ; val : int;O : rgn;

Subject(){obs : = null; val : = 0;O : = emp; }
register(b :Observer){add(b); b.notify(); }
update(n : int){val : = n; b :Observer : = obs;

while b 6= null{b.notify(); b : = b.nxt ; }}
get() : int {return self.val ; }
add(b :Observer){O : = O∪{b}; b.nxt : = obs; obs : = b; }}

class Observer{sub :Subject ; cacheVal : int;nxt :Observer ;

Observer(u :Subject){sub : = u; u.register(self); }
notify(){cacheVal : = sub.get(); }}

Figure 13. Subject/Observer implementation.

{W }
{P ∧Q ∧ s 6= t . . .} // by CONSEQ

o : = new Observer(s);
{P ∧Q ∧ o ∈ {s}‘O} // by s 6= t , spec of Observer , FRAME

p : = new Observer(t);
{P ∧Q ∧ o ∈ {s}‘O ∧ p ∈ {t}‘O . . .} // ditto

s.update(2);
{P ′ ∧Q ∧ o ∈ {s}‘O ∧ p ∈ {t}‘O . . .} // s 6= t , update , FRAME
{o.cacheVal = 2 ∧ p.cacheVal = 5 . . .} // by CONSEQ

Verification of Cli : let get() be . . .
update(n : int) be . . .
Observer(u :Subject) be . . . in C

requires showing (by LINK’) ` {W ∧ I } Cli {W ′ ∧ I } [ε]
where W ′ is s.val = 2 ∧ t .val = 5 and ε is wr o, p, alloc,
wr {s}‘(O , val , dg), s.O‘(nxt , cacheVal), {t}‘(O , dg), t .O‘nxt .
Dynamic boundary θ is rd alloc‘(O , dg), alloc‘O‘nxt . It is easy
to see I ` (θ, rd alloc) frm I . Read effect alloc‘sub‘O of I is
subsumed by alloc‘O because alloc‘sub ⊆ alloc. We first need

Θ〈θ〉 ` {W } C {W ′ } [ε] (8)

where Θ is a list containing the specifications in Fig. 14. But using
the proof outline above established Θ〈〉 ` {W } C {W ′ } [ε]
from which (8) follows by a few applications of DYNBNDINTROM
and sequencing. Therefore, first by SOF, we can conjoin I and then
by DYNBNDELIM drop θ to obtain

(Θ ? I)〈〉 ` {W ∧ I } C {W ′ ∧ I } [ε]

Now for each {Q}m{Q ′}[η] in Θ we must show

(Θ ? I)〈〉 ` {Q ∧ I } Bm {Q ′ ∧ I } [η]

where Q and Q ′ are the pre- and post-conditions and η are the
effects according to Fig. 14 and Bm is the implementation of m .
For example, to verify Observer ’s body, Bo , we factor I into
J ∧ I ({u}, {self}) and establish ` {Q ∧ J } Bo {Q ′ ∧ J } [εo].
where J is SubH (u)∧ sub 6= null ⇒ self ∈ sub‘O . Now FRAME
yields ` {Q ∧ I } Bo {Q ′ ∧ I } [εo].

7. Related work
The influence of SL on our work is clear. We follow the direction
of several recent works [10, 16] that have exploited ghost state

11 2009/7/27

Method Pre-condition Post-condition Effects

update(n) ∀b :Observer ∈ {self}‘O | Obs(b, self, self.val) ∀b :Observer ∈ {self}‘O | Obs(b, self,n) wr {self}‘val , self.O‘cacheVal
get true res = val

Observer(u) ∀b :Observer ∈ {u}‘O | Obs(b, u, u.val) ∀b :Observer ∈ {u}‘O | Obs(b, u, u.val) wr {u}‘O‘nxt , {u}‘(O , dg)

∧self ∈ {u}‘O
Figure 14. Specifications for Subject/Observer example. Observer ’s effects publishes data group dg that abstracts from obs .

to abstract away low-level reasoning (e.g. maintain reachability
information as needed while not saying so explicitly in specs.) The
price is that programs need to be instrumented with ghost updates
and our specifications are less compact in contrast to [27].

Both our Frame rule and our SOF rule use ordinary conjunction
to introduce an invariant, together with side conditions that des-
ignate a footprint with respect to which the invariant is separated
from the write effect of a command. By contrast, in SL these rules
use the separating conjunction ∗ which expresses the existence of
such a footprint. Reynolds gave a derivation using the rule of con-
junction that shows the SOF is not sound in SL (the “conundrum”)
without restriction to predicates that are “precise” in the sense of
determining a unique footprint [27]. A predicate I is precise iff
(I ∗) distributes over ∧, i.e., I ∗ (Q ∧ R) ⇔ (I ∗Q) ∧ (I ∗ R).
In an unpublished proof of admissibility of SOF in region logic,
Naumann proved the case of the conjunction rule using that (I ∧)
distributes over ∧. The admissibility proof essentially says that a
use of SOF can be replaced by explicitly conjoining the invariant
throughout the proof, justified by many uses of ordinary FRAME to
introduce not only the invariant but also a chosen footprint.

In earlier work [1] we automatically verified the Observer pat-
tern in Boogie, with the invariant hidden — by postulate. Our cur-
rent work validates the postulate by way of the SOF. Through Peter
Müller (personal communication) we have learnt that our Boogie
encodings of regions have been adapted to successfully verify the
priority inheritance protocol in real time OS code.

Drossopoulou et al. [13] introduce a general framework to de-
scribe verification techniques for invariants based on visible state
semantics which requires all invariants to hold on all method
call/return boundaries. The framework handles subtyping as well.
A general result shows that certain constraints on the framework
parameters are sufficient for soundness. A number of ownership
type disciplines from the literature are studied as instances of the
framework, which promises great improvement in comparing and
assessing disciplines. In its present form, the framework does not
encompass disciplines like Boogie [4] that rely on state-based en-
capsulation rather than types or disciplines that deal with design
patterns. However, the framework does handle callbacks.

One reaction to the difficulty of hiding invariants is to abandon
hiding entirely, in favor of abstraction as advocated by Bierman
and Parkinson [6]. They use second order separation logic: method
specifications refer to “abstract predicates” that are existentially
quantified over the specification. This has been implemented in the
jStar prototype [12] based on symbolic execution of SL assertions.
Parkinson has reacted to the challenge of invariants over object
clusters by advocating explicit but abstract invariants in method
specifications [30]. We think more experience with realistic clients
is needed to evaluate the practicality of explicitly carrying around
a conjunct for the invariant of each abstraction in use.

Smans et al. [34] build a prototype verifier to explore ways to do
dynamic framing in the setting of ordinary assertion languages (and
also SL), gaining precision through use of location sets and abstrac-
tion via pure method calls in assertions. Invariants are addressed
via abstraction (model fields and pure methods) also in their recent
work [33]. Leino’s Dafny language features dynamic frames of the

form G‘any as well as pure functions that can compute recursive
predicates like our FC and List examples [22].

8. Conclusion
We presented an imperative notion of module interface, which com-
plements static scoping constructs with state dependent expression
of the dynamic part of the encapsulation boundary. Each primitive
action of the client must respect this boundary —it is not enough
that the end to end effect of the client respects it. This entails a small
step interpretation of specifications. (It is achieved in SL using a
big step interpretation but a stronger separation property.) What is
achieved is sound and flexible modular reasoning that encompasses
various design patterns. We conclude that Hoare’s “mis”match is
rather an intricate match between modules and their clients and we
show how to get it right.

Apart from the specifications for interface methods, a specifier
needs to make explicit the dynamic encapsulation boundary. Then
the verifier can fulfill its usual obligations, namely, generate veri-
fication conditions (a) for the client by using the interface method
specifications and (b) for the bodies of interface methods taking the
module invariant into account. But the verifier also needs to verify
that each primitive action of the client respects the boundary.

In future work we plan to extend our results to subclassing and
inheritance as well as state based representation independence [2].
A particularly exciting challenge is callbacks. Our rendition of the
Observer pattern (following Parkinson [30]) has callbacks within
the module. It appears that the small-step correctness property
enables a SOF rule that supports callbacks back and forth across
dynamic encapsulation boundaries.

References
[1] A. Banerjee, M. Barnett, and D. A. Naumann. Boogie meets regions:

A verification experience report. In VSTTE, pages 177–191, 2008.

[2] A. Banerjee and D. A. Naumann. State based ownership, reentrance,
and encapsulation. In ECOOP, pages 387–411, 2005.

[3] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for
local reasoning about global invariants. In ECOOP, 2008.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In CASSIS, volume 3362 of LNCS, pages
49–69, 2005.

[5] N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage
of atomic blocks and typestate. In OOPSLA, pages 227–244, 2008.

[6] G. Bierman and M. Parkinson. Separation logic and abstraction. In
POPL, pages 247–258, 2005.

[7] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object
encapsulation. In POPL, pages 213–223, 2003.

[8] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. Rustan M. Leino, and E. Poll. An overview of JML tools
and applications. STTT, 7(3):212–232, 2005.

[9] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In OOPSLA, pages 292–310, 2002.

[10] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte.
VCC: Contract-based modular verification of concurrent C. In ICSE-
Companion, pages 429–430, 2009.

12 2009/7/27

[11] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology, 4:5–32, 2005.

[12] D. Distefano and M. J. Parkinson. jstar: Towards practical verification
for java. In OOPSLA, pages 213–226, 2008.

[13] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A
unified framework for verification techniques for object invariants. In
ECOOP, pages 412–437, 2008.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. In PLDI, 2002.

[15] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with
confined types. ACM TOPLAS, 29(6), 2006.

[16] C. Hawblitzel and E. Petrank. Automated verification of practical
garbage collectors. In POPL, pages 441–453, 2009.

[17] C. A. R. Hoare. Proofs of correctness of data representations. Acta
Inf., 1:271–281, 1972.

[18] I. T. Kassios. Dynamic framing: Support for framing, dependencies
and sharing without restriction. In Formal Methods, 2006.

[19] N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and
A. Buisse. Design patterns in separation logic. In TLDI, 2009.

[20] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and
verification challenges for sequential object-oriented programs.
Formal Aspects of Computing, 19(2):159–189, 2007.

[21] G. T. Leavens and P. Müller. Information hiding and visibility in
interface specifications. In ICSE, pages 385–395, 2007.

[22] K. R. M. Leino. Specification and verification in object-oriented
software. Marktoberdorf lecture notes, 2008.

[23] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts.
In ECOOP, pages 491–516, 2004.

[24] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups
to specify and check side effects. In PLDI, pages 246–257, 2002.

[25] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
for layered object structures. Sci. Comput. Programming, 62(3):253–
286, 2006.

[26] D. A. Naumann and M. Barnett. Towards imperative modules:
Reasoning about invariants and sharing of mutable state (extended
abstract). In LICS, pages 313–323, 2004.

[27] P. O’Hearn, H. Yang, and J. Reynolds. Separation and information
hiding. In POPL, pages 268–280, 2004.

[28] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL, pages 1–19, 2001.

[29] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. ACM TOPLAS, 31(3):1–50, 2009.

[30] M. Parkinson. Class invariants: The end of the road? In IWACO,
2007.

[31] C. Pierik. Validation techniques for object-oriented proof outlines.
Dissertation, Universiteit Utrecht, 2006.

[32] C. Pierik, D. Clarke, and F. S. de Boer. Controlling object allocation
using creation guards. In Formal Methods, pages 59–74, 2005.

[33] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. In ECOOP, 2009.

[34] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic
verifier for Java-like programs based on dynamic frames. In FASE,
pages 261–275, 2008.

[35] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of
linked data structures. In PLDI, pages 349–361, 2008.

13 2009/7/27

