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Abstract—We present Relational Hoare Type Theory (RHTT),
a novel language and verification system capable of expressing
and verifying rich information flow and access control policies
via dependent types. We show that a number of security policies
which have been formalized separately in the literature can
all be expressed in RHTT using only standard type-theoretic
constructions such as monads, higher-order functions, abstract
types, abstract predicates, and modules. Example security policies
include conditional declassification, information erasure, and
state-dependent information flow and access control. RHTT can
reason about such policies in the presence of dynamic memory
allocation, deallocation, pointer aliasing and arithmetic. The
system, theorems and examples have all been formalized in Coq.
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I. INTRODUCTION

Several challenges persist in existing work on specification
and enforcement of confidentiality policies. First, many practi-
cal applications require a combination of a number of different
classes of policies: authentication, authorization, conditional
declassification, erasure, etc. Yet, most existing systems are
tailored for enforcing specific classes of policies in isolation.
Second, where policy combinations have been considered
(e.g. [4, 7, 12]), policy conformance is typically formalized
for simple languages without important programming features
such as dynamic allocation, mutable state and pointer aliasing,
or without modern modularity mechanisms that aid program-
ming in the large. There has been little work on confidentiality
policies pertaining to linked data structures (lists, trees, graphs,
etc.), and even less work exists for structures that are heteroge-
neous; that is, structures that contain mixed secret and public
data as well as mixed secret and public links. Third, despite
their efficiency, enforcement mechanisms are often imprecise
in their handling of implicit information flow (that arises due
to program control structures such as conditionals or procedure
calls) and reject perfectly secure programs.

In this paper we revisit the foundations of information
flow — its specification as well as its static enforcement
— and address the above challenges of policy specificity,
language expressiveness and precision, simultaneously. The
key insight of our work is that all the three problems can be
addressed using standard linguistic features from dependent
type theory [24]: (a) higher-order functions, abstract data
types and modules, that provide for software engineering
concepts such as abstraction and information hiding, and (b)

a logic for higher-order assertions, including quantification
over predicates, that serves as the foundation for a rich policy
specification language. We additionally consider an extension
of dependent types with (c) general recursion, mutable state,
dynamic allocation, and pointer aliasing. We use the dependent
types as a policy specification language, and typechecking
(i.e., program verification) to enforce conformance of pro-
grams to policy. As is standard in type theory, we assume
that programs are typechecked before they are executed.

As our first contribution, we show that a number of security
policies which have been previously considered in isolation,
such as declassification [14, 39], information erasure [15, 16],
state-dependent access control [11, 12] and state-dependent
information flow policies [7], can be combined in the same
system using the mentioned type-theoretic abstractions. We
explain this point further below, and illustrate it through
several verified examples in the paper.

As our second contribution, we show that these policies can
be enforced in the presence of dynamic allocation, dealloca-
tion, and pointer aliasing, and in particular, over programs
involving linked, heterogeneous data structures. To achieve
this, we employ a semantic definition of what constitutes
confidential (high) vs. public (low) data, in contrast to most
related work where variables are syntactically labeled with a
desired security level [28, 45]. The semantic characterization
allows the same variable or pointer to contain data of different
security levels at different points in program execution, which
gives us the needed flexibility of enforcement. The semantic
characterization also facilitates precise specification of pro-
grams with implicit information flow such as procedure calls
or (possibly nested) conditionals.

Our third and technically central contribution is a novel
verification system, Relational Hoare Type Theory (RHTT),
that integrates a programming language and a logic into a
common substrate underlying all of (a)–(c) above. In more
detail, RHTT provides (a) and (b) by including the type
theory of the Calculus of Inductive Constructions (CiC) [25,
Chapter 4], as implemented in the Coq proof assistant. To
provide for (c), RHTT introduces a new type constructor
STsec, which classifies side-effectful computations similar
to Haskell monads [34], except that the STsec monad is
indexed with a precondition and a postcondition, as in a Hoare
triple. STsec types separate the imperative from the purely
functional fragment of the type theory, ensuring soundness of



their combination.
RHTT’s preconditions specify constraints on the environ-

ment under which it is safe to run a program, and can
be used to enforce authentication and authorization policies,
even when they depend on state. RHTT’s postconditions are
relational assertions; they specify the behavior of two runs of a
program [1]. The relational formulation directly captures in the
types the notion of noninterference [18], a prominent semantic
characterization of confidentiality. Together with higher-order
type theory, this provides an architecture for uniform treatment
of all the policies mentioned above.

For example, we show that the fundamental linguistic ab-
stractions required to specify and implement declassification
are STsec types, modules and abstract predicates. A module
can be used to delimit the scope in which data is considered
public, by hiding the publicity of the data from module clients
via existential type abstraction [26]. Then declassification
amounts to breaking the abstraction barrier by an exported
interface method that reveals this in-module publicity. This is
orthogonal to revealing the data itself. The latter can always be
done even without declassification, but the clients will have to
use such data as if it were confidential. Declassification may
be unconditional or conditional [7], where the condition might
be stateful and involve, e.g., authentication.

In information erasure policies [15, 16] confidential data
may be released within a delimited scope, provided there is
a guarantee that such data will be erased upon exit from the
scope. We show that such policies can be specified using a
combination of higher-order functions with local state, mod-
ules and abstract predicates. The key facilitating component
here is that STsec types may appear in argument positions in
function types, which is similar to having Hoare logic where
one can reason about Hoare triples hypothetically wrt. the truth
of other Hoare triples. A similar combination of features can
be used to grant a method access to data only if the method
provably conforms with some desired confidentiality policy.

Finally, state-dependent information flow and access control
policies require abstract predicates combined with mutable
state. This allows expressing security policies that can change
with time due to state updates [43].

Our development of RHTT overcomes a number of techni-
cal challenges. First, for relational reasoning to be applicable
at all, the type system must give special status to instantiations
of a program e with high values. The special status is
needed so that the same postcondition of e can relate e’s
different instantiations. Our solution is to introduce new typing
and programming primitives for abstraction and instantiation
wrt. a number of variables, simultaneously (Section II). This
illustrates why our type system had to be developed hand-
in-hand with the associated relational verification logic, as
each must possess the requisite constructs to facilitate the
other. The second challenge concerns the semantic treatment
of allocation and deallocation, pertaining to dynamic data
structures. Existing techniques [1, 6] for modelling allocation
in the relational security setting cannot cope with deallocation;
hence the need for two different allocators — one for low and

another for high addresses (Section III).
In a companion technical report [29] (TR in the sequel)

we develop a logic for relational reasoning about RHTT pro-
grams, and a worked out verification of an example program.
Inference rules of the logic have been verified sound against
a semantic model, and are formally implemented as lemmas
in RHTT. The soundness of our program logic, the domain
theoretic implementation of our semantic model, as well as
all of our examples, have been fully and formally verified in
Coq. Additional technical difficulties arise in this process, but
we elide them here for readability. The interested reader is
invited to look at our Coq proofs, and the companion TR,
which are available at http://software.imdea.org/∼aleks/rhtt/.

II. RHTT BY EXAMPLES

Overview: As suggested by the introduction, this paper
assumes understanding of the following aspects of type theory:
(1) Dependent function types, used to specify how the body of
a function depends on the input arguments. To illustrate, con-
sider the type vector(n), of integer-storing arrays. This type
is dependent on the size parameter n . A function computing
the inner product of two vectors can be typed as

Πn:nat. vector(n)× vector(n)→ nat

capturing the invariant that that the argument vectors must be
of equal size. In RHTT, dependent function types naturally
arise when specifying any kind of program behavior. (2)
Module systems (including abstract types and predicates),
for information hiding, and as we show, declassification. (3)
Inductive types, for specifications of programs that manipulate
(possibly heterogeneous) data structures such as lists, trees,
etc.

To use RHTT in practice, it is further important to be
familiar with some implementation of type theory (our chosen
one is Coq [25], but others exist too), as one needs to
interact with the system to discharge verification conditions.
Our presentation in this paper does not include such interaction
aspects, and hence does not assume familiarity with Coq.

RHTT basics: types, specifications, opaque sealing: To
begin with, our types must be able to express at least noninter-
ference: that low outputs of a computation are independent of
high inputs. To illustrate, assume a function f :A2→A2, where
A2 =A×A. Also, let e.1 and e.2 denote resp. the first and the
second component of the ordered pair e . Then, mathematically,
f ’s first output is independent of f ’s second argument iff

∀x1 x2 y1 y2. x1 = x2 → f (x1, y1).1 = f (x2, y2).1

In other words, in two runs of f , equal x inputs, lead to equal
f (x , y).1 outputs. This relational statement of independence
can be viewed as a definition of noninterference in terms
of f alone [1, 9], without recourse to outside concepts such
as security lattices [8, 17]. Consequently, inputs and outputs
related by equality in the two runs of f are considered low
(x and f (x , y).1 above), and the unconstrained values (y and
f (x , y).2) are by default considered high. So defined, the
notions of low and high security are intrinsic to the considered
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specification, rather than to the code itself; one is free to
consider statements about f in which the inputs and outputs
take other security levels.

In RHTT, program specifications are stated using a monadic
type STsecA (p, q), which classifies heap-manipulating, po-
tentially diverging computations e whose return value has type
A. e’s precondition p is a predicate over heaps, i.e., function
of type heap→prop. The reader can roughly think of prop as
type bool which in addition to the usual logical operations
supports quantifiers as well. The precondition selects a set of
heaps from which e’s execution will be memory-safe (e.g.,
there will be no dangling-pointer dereferences or run-time
type errors). This automatically provides a mechanism for
controlling access to heap locations, in a manner identical to
that of separation logic [35]: e may only access those locations
that are provably in all the heaps satisfying e’s precondition,
or that e allocated itself. We will illustrate access control via
preconditions in subsequent examples (see, e.g., Example 4).

The postcondition q relates the output values, input heaps
and output heaps of any two terminating executions of e . Thus
q has the type A2→heap2→heap2→prop. The postcondition
does not apply if one or both of the executions of e are
diverging. In that respect, our type system is termination
insensitive [38]. While p controls access to locations x , we
use q to implement information flow policies about x . This
is why q is a predicate over two runs. For example, q may
specify that x is low, so that e may freely propagate x ’s value.
Or x may be high, requiring that all x -dependent outputs of
e must be high too. Or x may be high but q may require all
of e’s final heap to be low, in which case e must deallocate
or rewrite any portion of its final heap that depends on x .

RHTT is implemented via shallow-embedding into Coq,
which it extends with STsec types. In the implementation
of STsec types in Coq, we rely on the ability of Coq
modules to perform opaque sealing [19, 22]; that is, hiding
the implementations of various values within a module, while
only exposing their types, thus forcing the clients of the
module to be generic with respect to implementations of the
module. Moreover, the actual implementations of opaquely-
sealed functions, types and propositions cannot be recovered
by clients, because RHTT does not contain constructs for
pattern-matching (i.e., making observations) on the structures
of such values.

We point out that our types can only describe the properties
of the input and output states of the program (via pre- and
postconditions), but not of intermediate states. Although this
is not a significant limitation for a sequential, non-reactive
language like RHTT, further work in this direction is left for
future work.

Syntax, heaps, implicit flow: Consider the following
program, P1, adapted from Terauchi and Aiken [44], and
presented here in a Haskell-like notation. We use side-effecting
primitives such as write x y , which stores the value y into
the location x ; read x , which returns the contents of x ; and
x ← e1; e2, which sequentially composes e1 and e2, binding
the return value of e1 to x . In future examples, we will also

use alloc x , which returns a fresh memory location initialized
with x ; and dealloc x , which deallocates the location x from
the heap. Additionally, we use do to delimit the scope of the
side-effectful computations. Our actual syntax implemented in
Coq differs somewhat from the one here in the treatment of
variable binding, an issue we ignore for the time being but to
which we return in Section III. Further, we freely use all the
constructors inherited from CiC and Coq, such as for example,
functions (fun), and dependent function type constructor (Π).

P1 =̂ fun x y z lo hi :ptr.
do (write z 1; b ← read hi ;

if b then write x 1 else (w ← read z ;write x w);
u ← read x ; v ← read y ;
write lo (u + (v mod 10)))

Pointers x , y , z , lo store integers, and hi stores a boolean. The
policy is: contents of lo and y are low at program input and
output, while contents of x , z , hi are high. P1 satisfies the
policy because: (1) the value of y is not modified, and (2) the
value of lo is modified to store the sum of the contents of x
and the contents of y modulo 10, but this sum is independent
of high data: at the time of writing lo, x has been rewritten
by 1 in both branches of the conditional. Thus, P1 can be
ascribed the following dependent type, U .

U =̂ Πx y z lo hi : ptr.STsec unit
(fun i .∃u v w c:nat. b:bool. j :heap.

i = x 7→ u • y 7→ v • z 7→w • hi 7→ b • lo 7→ c • j ,
fun rr ii mm.

(ii .1 lo = ii .2 lo)→ (ii .1 y = ii .2 y)→
(mm.1 lo = mm.2 lo ∧mm.1 y = mm.2 y))

The precondition states that P1 must start in an initial heap i
containing the five pointers x , y , z , lo, hi , with appropriately-
typed contents. The heap i may be larger still; this is stated
by existentially quantifying over the heap variable j . Heaps
are (finite) maps from pointers to values; x 7→ u is a singleton
heap containing only the location x storing value u; and • is
disjoint heap union. The precondition insists that i be a disjoint
union of smaller singleton heaps; hence there be no aliasing
between the five pointers. The postcondition binds over three
variables rr :unit2, ii ,mm:heap2 which are, respectively, the
pair of return values, the pair of initial heaps and the pair of
ending heaps for the two runs of P1. The postcondition states
that if the contents of lo and y in the two initial heaps are
equal (hence low), then they are low in the output heaps too.

Other types for P1 are possible too. For example, we may
specify that only the last digit of y is low, by replacing ii .1 y
with (ii .1 y) mod 10 in the postcondition, and similarly with
ii .2, mm.1 and mm.2. Or, the postcondition may state that
the contents of x and z are low at the end of P1, though
not at the beginning. RHTT (like [1]) can deem arbitrary
expressions as low, even though they may have high subparts.
The only requirement is that the values of the expressions
in two runs are the same. Because we are considering full
functional verification, which STsec type a program should
have is a matter of programmer’s choice. The system merely



issues a proof obligation that the desired type is indeed valid,
to be discharged interactively, using the logic we outline in the
TR (Section 4). This proof obligation may not only be about
security but also may concern full functional correctness.

Opaque sealing: The ascription of STsec types in RHTT
is opaque, as mentioned earlier in this section. Even if program
execution makes more values low, this knowledge cannot be
utilized by clients if it is not exposed in the postcondition. For
example, using P1’s type U , program

P2 =̂ fun x y z lo hi . do (P1 x y z lo hi ; t ← read x ; return t),

cannot be given a type in which t is low, because the
postcondition in U does not expose the property that x is
low at the end of P1.

Local contexts: While the STsec type of P1 classifies the
security of the contents of x , y , z , lo, hi , it cannot classify the
pointer addresses themselves, as the latter requires discerning
the address names in the two different runs (e.g., x .1 and
x .2). We therefore extend the STsec constructor with a local
context, which is a list of types of the variables we consider
local to the computation. For example, the type for P1 in which
the five pointer addresses are high, even though the contents
of lo and y are low, can be written as follows, using the list
[ptr, ptr, ptr, ptr, ptr] as the local context.

STsec [ptr, ptr, ptr, ptr, ptr] unit
(fun x y z lo hi :ptr. i :heap.
∃u v w c:nat. b:bool. j :heap.

i = x 7→ u • y 7→ v • z 7→w • hi 7→ b • lo 7→ c • j ,
fun xx yy zz llo hhi :ptr2. rr :unit2. ii mm:heap2.
ii .1 llo.1 = ii .2 llo.2→ ii .1 yy .1 = ii .2 yy .2→
mm.1 llo.1 = mm.2 llo.2 ∧mm.1 yy .1 = mm.2 yy .2)

The type of the precondition (and similarly for postconditions)
now changes to ptr5→heap→prop, so that we can bind
additional names for the pointers x , y , . . . in the precondition,
and pairs of pointers xx , yy , . . . in the postcondition. The
program syntax changes too, as the local variables now have to
be bound within the scope of do. In other words, our program
now looks like P3 b= do (fun x y z lo hi . write z 1; . . .).

Remark 1. Ordinary function arguments, corresponding to the
→ and Π-types, can be viewed as a special kind of STsec-local
arguments, where the security level is low by default. Indeed,
any function f :Πx :A.STsec Γ (p x , q x ) can be transformed
into

do (fun x γ1 . . . γn . f x γ1 . . . γn) :
STsec (A::Γ) B
(fun x γ1 . . . γn . p x γ1 . . . γn ,
fun xx γγ1 . . . γγn yy ii mm.

xx .1 = xx .2→ q xx γγ1 . . . yy ii mm)

Here, the variables γ1, . . . , γn are typed with types from the
local context Γ, and the postcondition explicitly declares x to
be low, by inserting the hypothesis xx .1 = xx .2. To summarize,
function arguments are always low, whereas variables in local
contexts may be low, high, or subject to a more precise security
specification, depending on the postcondition.

Example 1 (Nested conditionals). The following program is
adapted from Simonet [40]. It uses low arguments a, b, c, u, v ,
and a high argument x which is declared in the local context
but is unrestricted by the postcondition. It nests two condition-
als to compute the final result, but the result is independent
of x , and hence is low. Owing to the non-trivial implicit
control flow, however, most security type systems will not
be able to establish this independence and typecheck the
example accordingly. Simonet’s type system for sum types can
typecheck the example using types annotated with matrices
containing security levels. In contrast, in RHTT the type can
precisely describe the final result, y , as a function of the inputs:
y =̂ (a = c) || (b = c) || u || v . Clearly y does not depend on
x and we prove that y is low by proving that yy .1 = yy .2 in
the postcondition.

P4 : Πa b c u v :bool.STsec [bool] bool
(fun x i .True,
fun xx yy ii mm. yy .1 = yy .2 ∧mm = ii ∧

yy .1 = (a = c) || (b = c) || u || v) =̂
fun a b c u v .

do(fun x . t ← if u then
if x then return a else return b

else
if v then return a else return c;

return ((t = a) || (t = b)))

Example 2 (Access control through abstraction). What if we
want to allow read access, but not write access to some data
(or vice-versa), or that access should be made conditional
upon successful authentication? To enforce this kind of access
control, we employ the standard abstraction mechanisms of
type theory, such as abstract types, predicates and modules.
The data to be protected can be hidden behind module
boundaries, so that it can be accessed only via dedicated
methods that enforce access control. For example, let Alice be
a module storing some integer data, say salary, whose integrity
should be enforced: Alice allows the salary to be readable
globally, but only Alice herself can update it, to keep the
value coherent with promotions at work. Thus, she exports
unconstrained functions for creating new instances and for
reading the salary, but the function for writing requires a check
against a password that is also stored locally. The signature,
AliceSig in Figure 1, presents the specifications that Alice
wants to export, and a possible module implementing AliceSig
by keeping two local pointers – one for the salary, one for
the password – is given in Figure 2. Referring to Figure 2,
the method new takes a nat salary and a string password,
and generates a new instance of Alice, initialized with this
data; read salary takes a local-context argument representing
Alice, and returns her current salary; write salary takes a new
salary, a password, and an alice argument in the local context,
and updates the salary only if the supplied password matches
the password stored in the alice argument. Referring back to
Figure 1, AliceSig specifies an abstract type alice, abstract
predicates sshape and shape, a relation, srefl, between shape
and sshape, and the types of the methods. Although these



alice : Type
sshape : alice2 → nat2 → string2 → heap2 → prop
shape =̂ fun a s p h. sshape (a, a) (s, s) (p, p) (h, h)
srefl : ∀aa ss pp ii . sshape aa ss pp ii →

shape aa.1 ss.1 pp.1 ii .1 ∧ shape aa.2 ss.2 pp.2 ii .2
new : nat→ string→ STsec nil alice

(fun i .True,
fun aa ii mm.
∃ss pp hh.mm = ii •• hh ∧ sshape aa ss pp hh)

read salary : STsec [alice] nat
(fun a i .∃s p j h. i = j • h ∧ shape a s p j ,
fun aa yy ii mm.∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
mm = ii ∧ yy = ss)

write salary : nat→ string→ STsec [alice] unit
(fun a i .∃s p j h. i = j • h ∧ shape a s p j ,
fun aa qq yy ii mm.∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
∃jj ′ ss ′.mm = jj ′ •• hh ∧ sshape aa ss ′ pp jj ′)

Fig. 1. AliceSig: access control via abstract predicates.

type alice =̂ ptr × ptr
salary (a : alice) =̂ a.1
passwd (a : alice) =̂ a.2
sshape (aa : alice2) (ss : nat2) (pp : string2) (ii : heap2) =̂

ii .1 = salary aa.1 7→ ss.1 • passwd aa.1 7→ pp.1 ∧
ii .2 = salary aa.2 7→ ss.2 • passwd aa.2 7→ pp.2 ∧

ss.1 = ss.2 ∧ pp.1 = pp.2
new s p =̂ do (x ← alloc s; y ← alloc p; return (x , y))
read salary =̂ do (fun a. read (salary a))
write salary s p =̂

do (fun a. x ← read (passwd a);
if x = p then write (salary a) s else return ())

Fig. 2. Implementation of AliceSig.

figures may look complicated, the reader should bear in mind
that they are intended for full functional verification. Also, the
definitions of the various abstract predicates and types such as
sshape, shape and alice, will be hidden from the clients, and
do not contribute to the complexity.

The sshape predicate is a relational invariant of the module’s
local state (i.e., invariant over two runs). It is parametrized
over pairs of alices, nat salaries, string passwords, and heaps
that are current during execution. The parametrization by all
these values captures that different instances of Alice that
may be allocated at run time all have different local states,
which can potentially store different salaries and passwords.
If we were not interested in tracking the changes to salaries
and passwords, but only in restricting write access, then these
can be omitted from sshape, resulting in fewer quantifiers and
hence simpler STsec types for the methods.

For use in preconditions for access control, we employ the
non-relational variant shape which is a diagonal of sshape, as
constrained by srefl. Recall that a computation in RHTT can

access locations only in those heaps that provably satisfy its
precondition. Correspondingly, a method that wants to access
Alice’s local state, has to describe the desired parts of that state
in its own precondition. This is why AliceSig keeps sshape and
shape abstract. The abstraction hides the layout of Alice’s local
state from the clients, thus preventing them from describing
the layout in their preconditions and forcing them to access
Alice’s local state exclusively via the exported methods. Apart
from giving code for the methods, the implementation also
provides a proof of srefl (elided here, but present in the Coq
scripts).

The STsec types in Alice’s methods describe several ad-
ditional properties. For example, that the local state of each
instance of Alice is disjoint from that of another instance. For
new, this is achieved by stating that the pair of ending heaps
mm extends the initial ones ii by newly allocated sections hh
(mm = ii •• hh). Here •• generalizes the disjointness operator
• to pairs of heaps, that is, (i1, i2) •• (h1, h2) = (i1 • h1, i2 • h2).
For read salary, we allow that the state in which the function
executes be larger than the module’s local state by allowing
ii = jj •• hh where jj names the local state and hh is the
potential global part. For write salary we require that the
global part, hh , remain invariant, but the local part may be
changed by storing the new salary.

Finally, the specifications expose that read salary does not
change Alice’s local state (mm = ii in the postcondition). On
the other hand, write salary may change the salary field, but
not the password field, as the sshape predicate changes from
using the salary ss to using ss ′, but pp persists.

Notice that the salary and password arguments in new and
write salary are ordinary function arguments, whereas alice is
in the local context of STsec in read salary and write salary.
Thus, within the scope of Alice’s methods, the salary and the
password are low (c.f. Remark 1) whereas the alice argument
is high because it is unconstrained by the methods’ pre- and
postconditions. Of course, as far as clients of AliceSig are
concerned, all three of these are high: the abstraction over
sshape hides all relations between the stored values.

Example 3 (Declassification). One consequence of making
salary and password internally low is that whenever a new in-
stance of Alice is allocated, or a salary of an existing instance
is changed, the salary and password have to be computed
only out of low arguments – it is not possible for Alice
to store confidential data into her local fields. Additionally,
the specifications of new and write salary must hide that the
stored salary and password are equal to the supplied ones. The
latter are internally low, while the former are to be externally
high. The hiding is achieved by existential quantification over
ss and pp in the postcondition of new, and over ss ′ in the
postcondition of write salary.

Alice can use the internal knowledge that salary and pass-
word are low, to implement and export an additional function
which declassifies her salary – that is, reveals the internal
knowledge that the salary is low. This declassification can be
based on arbitrary conditions – say, it is only granted if a



rreadable : alice2 → heap2 → prop
readable =̂ fun a h. rreadable (a, a) (h, h)
rrefl : ∀aa ii . rreadable aa ii →

readable aa.1 ii .1 ∧ readable aa.2 ii .2
grant : STsec [alice] unit

(fun a i .∃s p j h. i = j • h ∧ shape a s p j ,
fun aa yy ii mm.∀ss pp jj hh.

ii = jj •• hh → sshape aa ss pp jj →
∃jj ′.mm = jj ′ •• hh ∧ sshape aa ss pp jj ′ ∧

rreadable aa jj ′)
revoke : STsec [alice] unit

(fun a i .∃s p j h.
i = j • h ∧ shape a s p j ∧ readable a j ,

fun aa yy ii mm.∀ss pp jj hh.
ii = jj •• hh → sshape aa ss pp jj →
∃jj ′.mm = jj ′ •• hh ∧ sshape aa ss pp jj ′)

read salary : STsec [alice] nat
(fun a i .∃s p j h.

i = j • h ∧ shape a s p j ∧ readable a j ,
fun aa yy ii mm.∀ss pp jj hh.
ii = jj •• hh → sshape aa ss pp jj →

mm = ii ∧ yy = ss)

Fig. 3. Extension of AliceSig with state-based read access.

correct password has been supplied.

declassify : Πp:string.STsec [alice] bool
(fun a i .∃s q j h. i = j • h ∧ shape a s q j ,
fun aa yy ii mm.∀ss qq jj hh.

ii = jj •• hh → sshape aa ss qq jj →
∃jj ′.mm = jj ′ •• hh ∧ sshape aa ss qq jj ′ ∧

yy .1 = yy .2 ∧ yy = (p = qq .1, p = qq .2) ∧
yy .1→ ss.1 = ss.2) =̂

fun p. do (fun a. x ← read (passwd a); return (p = x ))

The code of declassify checks if the supplied password
equals the stored one, and returns the corresponding boolean.
declassify does not return the value of the salary; for that,
one has to use read salary, but the specification of declassify
shows that the salary is low if declassify returned true
(yy .1→ ss.1 = ss.2). This is possible because the low-status
of the salary has been hardwired into the implementation of
sshape, and Alice can reveal it at will.

Example 4 (State-based policies). Alice can implement poli-
cies that change depending on her local state. For example,
she may control the granting of read access with functions
grant and revoke, as specified in Figure 3. These enable and
disable reading by, respectively, adding and removing a new
abstract predicate – rreadable – from the knowledge exposed
about Alice’s local state. Typically, such functions require
authentication, but for simplicity, we forgo that aspect. The
postcondition of grant exposes that the newly obtained state
jj ′ is readable, while revoke omits this property, thus revoking
the read access. To associate the predicate with reading, the
specification of read salary has to require a proof of readable.

The signature keeps rreadable abstract, so that the only

bbshape : bob2→G2→heap2→prop
bshape =̂ fun b k t . bbshape (b, b) (k , k) (t , t)
brefl : . . . (* similar to srefl *)

epre (a : alice) (b : bob) (j i : heap) =̂
∃s p k t h. i = j • t • h ∧ shape a s p j ∧ bshape b k t

epost aa bb jj yy ii mm =̂
∀ss pp kk tt hh. ii = jj •• tt •• hh →

sshape aa ss pp jj → bbshape bb kk tt →
∃jj ′ tt ′.mm = jj ′ •• tt ′ •• hh ∧ sshape aa ss pp jj ′ ∧

bbshape bb (bcmp kk .1, bcmp kk .2) tt ′ ∧
(tt .1 = tt .2→ tt ′.1 = tt ′.2)

Fig. 4. Some definitions for conditional access and erasure policies.

way readable can be derived is if rreadable has been placed
into the proof context by a previous call to grant, without
an intervening revoke. The signature can be implemented by
extending Alice’s state with an additional boolean pointer that
is set and reset by grant and revoke: rreadable is in force
once the boolean is set true. Our Coq scripts provide several
different implementations of this interface.

Example 5 (Conditional access and erasure policies). Suppose
Alice wants to download a program from Bob for computing
tax returns. Alice is willing to let Bob access her local state
and read her salary directly using read salary, but wants to
prevent Bob from stealing her secret by copying it into his
own local state. Alice may insist that Bob not keep any local
state, or that he deallocate all of it before termination. But this
is too restrictive, for Bob may want to keep in his local state
a count of how many times his program has executed. Such
local state should be allowed to escape the function call as it is
independent of Alice’s salary. In RHTT, Alice can formulate
such a permissive policy.

We start the description of Alice’s specification by as-
suming that bob is an abstract type representing Bob’s lo-
cal state (usually implemented as the set of root pointers
for Bob’s local state). G is another abstract type repre-
senting the values that Bob keeps in his local state. For
example, if Bob wants to count how many times his pro-
gram has been invoked, then G = nat. Further, we assume
bbshape:bob2→G2→heap2→prop is an abstract predicate
describing Bob’s local state, and bcmp:G→G describes how
Bob’s local state changes within one function call. In the
counting example, bcmp will be the program Bob needs to run
over both Alice’s and Bob’s local heap. The initial heaps i for
his program can therefore be split in three ways: j belonging
to Alice, t belonging to Bob, and the remainder h that is
untouched. Predicate epre in Figure 4 describes this situation.
On the other hand, epost states that Bob’s local state tt ′ at
the end stores the correct statistics (bcmp of kk .1 and kk .2),
and if Bob’s initial local state tt is assumed low, then tt ′ is
low as well. In other words, Bob did not copy into tt ′ any of
the high values that he may have read from Alice. A program
that requests read access to Alice’s local store, and respects



the described policy has the type

T =̂ STsec [alice, bob] nat
(fun a b i .∃j . readable a j ∧ epre a b j i ,
fun aa bb yy ii mm.∀jj .

rreadable aa jj → epost aa bb jj yy ii mm)

Alice now wants to ratify programs with type T by granting
them read access to her salary. She can do so by exporting
from her module a function ratify which removes readable
from T , much like the grant program would do. After that,
Bob’s program can execute without needing special reading
privileges. In this respect, ratify is a higher-order function
because in its type, STsec appears in a negative (argument)
position. ratify can be said to implement a conditional access
policy, because it grants access only after Bob supplies a proof
that his program satisfies the type T , i.e., the program does
not leak Alice’s salary.

ratify : T →
STsec [alice, bob] nat

(fun a b i .∃j . epre a b j i ,
fun aa bb yy ii mm.

∀jj . epost aa bb jj yy ii mm) =̂
fun e : T . do (fun a b. e a b)

This specification can be instantiated in several ways,
by choosing different values for bob, G , bbshape and
bcmp. For example, if bob =̂ ptr, G =̂ nat, bcmp =̂ succ and
bbshape bb kk tt =̂ (tt .1=bb.1 7→ kk .1∧ tt .2 = bb.2 7→ kk .2)
then Bob’s program keeps a single pointer whose content is
incremented by 1 after every execution.

Bob’s program which computes the tax of 24% of Al-
ice’s salary, while also keeping its invocation count, can be
implemented and then immediately ratified by the following
function call. Notice that by the type of ratify, the return
value of Bob’s program is high as there is no requirement
yy .1 = yy .2 in epost. Hence, the fact that this value is a
function of Alice’s salary, is not a security leak.

ratify (do (fun a:alice b:bob.
x ← read salary a; k ← read b;
write b (k + 1); return (x ∗ 24%)))

Suppose Bob keeps the count with two nat pointers, whose
contents p and q are both increased at every call, so that
the overall count is the difference between the two. This is
represented by taking bob =̂ ptr× ptr (one ptr for p and one
for q), G =̂ nat, bcmp =̂ succ and bbshape bb kk tt is

∃pp qq :nat2. tt .1 = fst (bb.1) 7→ pp.1 • snd (bb.1) 7→ qq .1 ∧
tt .2 = fst (bb.2) 7→ pp.2 • snd (bb.2) 7→ qq .2 ∧
kk = (pp.1− qq .1, pp.2− qq .2))

Bob’s program can read Alice’s salary, then increment p and
q by amount of the salary, and additionally, increment p by
1. In terms of required specifications for Bob’s local state,
the program still keeps the invocation count. However, the
program is actually stealing Alice’s salary, because the salary
can be inferred by deducting the old value of q from the new

one. Bob will fail to get such a program ratified by Alice, if
he calls ratify with the argument

do (fun a:alice b:bob. x ← read salary a;
p ← read (fst b); q ← read (snd b);
write (fst b) (p + x +1); write (snd b) (q + x );
return (x ∗ 24%))

ratify forces Bob to prove that his ending state is low
(tt ′.1 = tt ′.2) as defined in epost, but this is not provable if
tt ′ stores Alice’s salary x . Indeed, as x is high, Bob lacks
the information that x is equal in the two runs, so he cannot
prove that his pointers store equal values in two runs. For
ratification, Bob will have to erase Alice’s salary from his
state, perhaps by mutating his pointers to store p +1 and
q instead of p + x +1 and q + x . ratify may thus be said
to implement an erasure policy, similar to those of Chong
and Myers [15, 16]. Alternatively, Bob may try to declassify
Alice’s salary, using the function from Example 2, but then he
has to provide the correct

III. TYPING RULES

Each command of the stateful fragment of RHTT comes
with a dependent STsec type that captures the command’s
specification using pre- and post-conditions. We start our
description with the types of the basic commands; descriptions
of the other commands appear later in the section.

return : STsec [A] A
(fun x i .True,
fun xx yy ii mm.mm = ii ∧ yy = xx )

read : STsec [ptr] A
(fun ` i .∃h:heap v :A. i = ` 7→ v • h,
fun `` yy ii mm.mm = ii ∧
∀hh vv . ii = (``.1 7→ vv .1, ``.2 7→ vv .2) •• hh →

yy = vv)
write : STsec [ptr,A] unit

(fun ` v i .∃h B :typew :B . i = ` 7→w • h,
fun `` vv yy ii mm.
∀hh B1 B2 w1:B1 w2:B2.
ii = (``.1 7→w1, ``.2 7→w2) •• hh →
mm = (``.1 7→ vv .1, ``.2 7→ vv .2) •• hh)

dealloc : STsec [ptr] unit
(fun ` i .∃h B :typew :B . i = ` 7→w • h,
fun `` yy ii mm.
∀hh B1 B2 w1:B1 w2:B2.

ii = (``.1 7→w1, ``.2 7→w2) •• hh →
mm = hh)

return immediately terminates with the value that was sup-
plied as a local argument. Its STsec constructor records the
argument type in the local context, and the type of the
returned value (here, both types are A). The precondition
states that return can execute in any heap, as it performs
no heap operations. The postcondition states that return does
not change the input heaps (mm = ii) and passes the input
argument to the output (yy = xx ). The precondition of read
write and dealloc all require that the initial heaps contain at



least the pointer ` to be read from, written to or deallocated.
In the case of read, the contents of the pointer must have the
expected type A. For write and dealloc, this type is irrelevant
and is hence existentially quantified. The postconditions of all
three commands explicitly describe the layout of the new heap
and, in particular, state that parts of the input heaps that are
disjoint from ` (hh above) remain invariant.

Allocation presents the following challenge. If under a high
guard, a pointer is allocated in one branch of a conditional,
but not in the other, this may constitute a leak of the high
guard, if the pointer itself is of low security. Such “unmatched”
allocations should therefore always produce high pointers.
This is why we provide two allocation primitives: lalloc for
allocating low pointer addresses, and alloc, for allocating high
ones.

lalloc : STsec [A] ptr
(fun v i .True, fun vv yy ii mm.

mm = (yy .1 7→ vv .1, yy .2 7→ vv .2) •• ii ∧
(ii .1 ∼= ii .2→ yy .1 = yy .2 ∧mm.1 ∼= mm.2))

alloc : STsec [A] ptr
(fun v i .True, fun vv yy ii mm.

mm = (yy .1 7→ vv .1, yy .2 7→ vv .2) •• ii ∧
even yy .1 ∧ even yy .2)

Both commands take a local argument v :A, and return a
fresh pointer initialized with v . The freshness is captured in
the postcondition by demanding that the initial heaps ii be
disjoint from the returned pointers yy in the equation for
the ending heaps mm . However, alloc chooses the returned
location non-deterministically, while lalloc is deterministic;
that is, it returns equal (and hence low) pointers, when invoked
under appropriate conditions. We make the two allocators
operate on disjoint pools of locations: alloc always returns
an even pointer (albeit, a randomly chosen one), while lalloc
returns the next unallocated odd pointer. Here we rely on the
property that type ptr is isomorphic to nat in our model.

Definition 1. Heaps h1 and h2 are low-equivalent, written
h1
∼= h2, iff their domains contain the same odd pointers. The

content of the pointers is irrelevant.

The postconditions of lalloc and alloc further capture the
behavior of the two commands with respect to the ∼= relation.
In the case of lalloc, we expose that if invoked in low-
equivalent input heaps (ii .1∼= ii .2), the command returns
equal pointers (yy .1 = yy .2), and low-equivalent output heaps
(mm.1∼=mm.2). In the case of alloc, we expose the evenness
of yy .1 and yy .2, and provide a number of lemmas, that can
be used to relate evenness with ∼=. For example, the lemma

∀x :ptr. even x → (x 7→ v • h1
∼= h2)↔ (h1

∼= h2)

when iterated, can show that low equivalence of h1 and h2

is preserved after arbitrary number of high allocations. Other
related lemmas are present in our Coq scripts.

Example 6 (The need for both allocators). The following
program can be given a type in which the returned pointer

y is low, no matter what the boolean h is.

do (fun h. if h then y ← lalloc 2; return y else
x ← alloc 1; y ← lalloc 2; dealloc x ; return y) :

STsec [bool] ptr
(fun h i .True,
fun hh yy ii mm.mm = ii •• (yy .1 7→ 2, yy .2 7→ 2) ∧

(ii .1 ∼= ii .2→ yy .1 = yy .2))

The program does not typecheck if the high allocation of
x is replaced by lalloc. In that case, it is possible that the
two executions of the program select different branches of
the conditional (depending on h). If we started with low-
equivalent heaps i1∼= i2, then at the point of allocation of y , the
heaps will not be low equivalent anymore, since one of them
has been extended with an odd location x , while the other has
not. Thus, we cannot conclude that the returned pointer is low
(yy .1 = yy .2).

Remark 2. Deterministic allocation forces STsec to use large-
footprint specifications, whereby specifications describe the
full heaps in which commands operate. This is in contrast to
separation logic, where specifications describe only those heap
parts that commands touch, and implicitly assume invariance
of the remaining heap. The latter style is more succinct,
but cannot support deterministic allocation [47]. With large
footprints, we can specify lalloc (specifically, the antecedent
ii .1∼= ii .2 in the postcondition), but the invariance of un-
touched parts of heaps has to be stated explicitly for every
program, as witnessed by the quantification over hh in the
postconditions of write and dealloc. Note that the concrete
layouts of untouched parts of heaps do not need to appear
in the specifications — thus alleviating concerns of scalability
of specifications. Moreover, the overhead between large and
small footprint specifications is constant, as we discuss in
Section 6 of the TR. The two styles also lead to similar proofs.
What matters in proofs is the ability to effectively reason about
heap disjointness, and we can do that equally well in both
styles by relying on the operator • [32].

Another way of treating allocation in the relational setting
is to model its non-determinism by means of partial bijections
between pointers [1]. Then one can avoid using two different
allocators, albeit at a price of increasing the complexity of rea-
soning. Such proposals, however, only work in the absence of
deallocation. For example, the definition of noninterference of
Amtoft et al. [1] allows that the input heaps to the computation
are related by some bijection between pointers, and requires
that the ending heaps are also related by a bijection. However,
the ending bijection has to be an extension of the initial one.
Obviously, such a definition cannot support deallocation, as
deallocation produces smaller, not larger heaps. Alternatively,
one can omit the extension requirement; but that leads to
counterexamples which satisfy the weakened requirement even
though they actually leak information.

We proceed to describe our constructor for sequential com-
position, but first we need some notational conventions. Let Γ
be a list of types. We denote by Γ the product of all the types



in Γ, e.g., nil = unit and [A,B ,C ] = A×B×C . We further
conflate the function types Γ→T and Γ1→Γ2→· · ·→T , and
their corresponding terms. For example, we freely interchange
fun γ:[A,B ,C ] . . ., or fun γ . . . if the types are clear from the
context, with fun x :A y :B z :C . . .. Similarly, we interchange
e (x , y , z ) with e x y z . We hope that no confusion arises
due to this abuse of notation; all of our exposition has been
checked in Coq, where the notation is formally resolved.

For sequential composition e1; e2, let e1 :STsec ΓA (p1, q1)
and e2 :STsec (A::Γ)B (p2, q2). Then e1; e2 first executes e1,
passing the returned value as the first local argument to e2.
Assuming γ:Γ and γγ:Γ

2
, the STsec type for e1; e2 is

STsec Γ B
(fun γ i . p1 γ i ∧

∀y m. q1 (γ, γ) (y , y) (i , i)(m,m)→ p2 (y , γ) m,
fun γγ yy ii mm.
∃vv :A2. hh:heap2. q1 γγ vv ii hh ∧

q2 ((vv .1, γγ.1), (vv .2, γγ.2)) yy hh mm)

In English, the precondition requires e1 to be safe in the initial
heap of the sequential composition, and that any value y and
heap m obtained as output of e1 – and which thus satisfy e1’s
“squared” postcondition – make e2 safe. The postcondition
states that intermediate values vv and heaps hh exist, obtained
after running e1 but before running e2.

As e1’s output is bound in the local context of e2, we cannot
treat this output as an ordinary functional variable, despite
our suggestive notation in Section II. Indeed, as discussed
previously in Section II, ordinary variables are always low,
whereas the ones in the local context may be high, depending
on the specification. Thus, we must rely on variable-free
representation via combinators, as described next.

Our first combinator is for changing the local context of an
STsec type. Given Γ1,Γ2, f :Γ1→Γ2, and e:STsec Γ2 A (p, q),
we can instantiate the local variables of e according to f , to
produce a computation with context Γ1.

e @ f : STsec Γ1 B
(fun γ. p (f γ), fun γγ. q (f γγ.1, f γγ.2))

We denote by e @0 γ the special instance of @, when Γ1 = nil
and hence, f is isomorphic to a tuple γ:Γ2. We refer to e in
e @ f or e @0 γ as the head of the instantiation, and to f as
the explicit substitution.

Example 7. In Example 2, we implemented declassify as
fun p. do (fun a. x← read (passwd a); return (p = x )).The ac-
tual implementation using combinators is

fun p:string. do (read @ (fun a. passwd a);
return @ (fun x a. (p = x )))

Programs thus become lists of commands instantiated with
explicit substitutions, where the domains of substitutions grow
with each command to provide names for the results of
previous commands. In the above example, the domain of the
substitution for read includes only the variable a:alice, but the
substitution for return also includes x :string, which names the

result of the previous read (Alice’s stored password). Similarly,
the functions new and read salary are reimplemented as

new s p =̂ do (alloc @0 s; alloc @ (fun x . p);
return @ (fun y x . (x , y)))

read salary =̂ do (read @ (fun a. salary a))

To set the stage for discussing the combinator cond for
conditionals we first consider the predicates safe and verify2.
The former says that an expression e :STSec nil (p, q) is safe
to execute in any heap i satisfying precondition p, and is
defined as safe e i =̂ p i . The latter formalizes when it is
that executions over two programs, e1, e2 result in heaps
and values that satisfy a postcondition q . Although we have
been concerned thus far with two runs of the same pro-
gram, the above escalation becomes necessary when treating
a conditional under a high guard because in two runs of the
conditional different branches may be executed. Assuming
e1 :STsec nilA (r1, t1) and e2 :STsec nilA (r2, t2), a pair of
input heaps ii , and a predicate q :A2→heap2→prop, we define

verify2 ii e1 e2 q =̂
∀yy :A2.mm:heap2.

(ii .1, yy .1,mm.1) ∈ runs of e1 →
(ii .2, yy .2,mm.2) ∈ runs of e2 → q yy mm

Here runs of (defined in the TR) coerces programs into
relations between input heaps, output values and output heaps.
It is a useful intuition to regard verify2 as a relational variant
of a Hoare style specification, with programs e1 and e2, and
postcondition q , except that the precondition has been replaced
with concrete heaps ii .1 and ii .2.

Given programs ei :STsec Γ A (pi , qi) for i=1, 2, corre-
sponding to branches of a conditional, and a boolean guard
b:Γ→bool (here parametrized over a context), which type
should we ascribe to the conditional? We would like to be
precise, and ascribe the weakest precondition sufficient for the
safety, and the strongest postcondition sound wrt. the expected
semantics. Unfortunately, computing that postcondition seems
impossible in the case when the boolean guard is high. Indeed,
we know that q1 (resp. q2) relates the output heaps if both
runs of the conditional chose the same branch e1 (resp. e2),
but nothing can be said if the branches chosen in the two
runs are different. Since the principal specification cannot be
computed, the best we can do is ask the programmer for the
desired precondition p and postcondition q , and emit proof
obligations for checking that (p, q) is valid for the conditional.

cond : Πb:Γ→bool.
Πe1:STsec Γ A (p1, q1).Πe2:STsec Γ A (p2, q2).
D1 (b, e1, e2)→ D2 (b, e1, e2)→ STsec Γ A (p, q).

Here D1 captures the safety of the conditional, and D2 the



Hoare-style correctness.

D1(b, e1, e2) =̂ ∀γ i . p γ i →
safe (if b γ then e1 @0γ else e2 @0γ) i

D2(b, e1, e2) =̂
∀γγ ii . p γγ.1 ii .1→ p γγ.2 ii .2→

verify2 ii (if b γγ.1 thene1 @0 γγ.1 else e2 @0 γγ.1)
(if b γγ.2 thene1 @0 γγ.2 else e2 @0 γγ.2)
(fun yy mm. q γγ yy ii mm)

The definitions of D1 and D2 make use of the purely-
functional conditional if to define when each of the branches is
taken. In this paper, we conflate cond and if and use if for both.
Note that, in contrast to other relational Hoare logics [9, 46],
we do not restrict the reasoning to only the situation where the
same branch of the conditional is taken in both runs; nor do
we need side conditions, as in Amtoft et al. [1], that prohibit
updates of low variables under a high guard (which would
prevent verification of P1 in Section II).

Example 8. The function write salary from Example 2 is im-
plemented with combinators (omitting annotations and proofs)
as follows. Notice that the guard of the conditional is a term
with a local context consisting of a:alice and x :string.

write salary s p =̂
do (read @ (fun a. passwd a);

if (fun x a. x = p) then
write @ (fun x a. (salary a, s))

else return @ (fun x a. ()))

A development similar to the one for cond can also be
carried out for the combinator do and appears in the TR.
We justify the soundness of our type system by building a
denotational model for STsec types. This development is fully
carried out as a shallow embedding in CiC, and we have
formalized it in Coq. The model, briefly described in our TR,
is based on predicate transformers. We also show in our Coq
scripts that STsec Γ A (p, q) is a complete partial order, thus,
supporting a combinator fix for least fixed points of continuous
functions between monadic types.

IV. LINKED DATA STRUCTURES

In this section we develop a small library for linked lists
to illustrate RHTT’s support for stateful abstract data types
(ADTs), and their interaction with information flow. Working
with ADTs essentially requires a number of higher-order
features. For example, to support linked lists in a reasonable
way, it has to be possible to: (1) describe the layout of the
lists in the heap (is the list singly-linked, doubly-linked, etc?).
This requires quantification in the assertion logic, definition of
predicates by recursion, and inductive definitions of types; (2)
abstract the definition of the heap layout from the specification
of the ADT, so that the ADT clients can freely interchange
implementations with different layouts (hence the need for
abstract predicates); (3) parametrize the ADT with respect to
the type of list elements (hence the need for type polymor-
phism in both programs and the assertion logic). All of these

linked list : type
shape : linked list→ list T → heap→ prop
sshape (pp : linked list2) (vvs : (list T )2) (ii : heap2) =̂

shape pp.1 vvs.1 ii .1 ∧ shape pp.2 vvs.2 ii .2
low links : linked list2 → heap2 → prop

new : STsec nil linked list
(fun i .True,
fun pp ii mm.∃jj .mm = jj •• ii ∧
sshape pp (nil, nil) jj ∧ (ii .1 ∼= ii .2→ low links pp jj ))

insert : STsec [linked list,T ] unit
(fun p v i .∃h j vs. i = j • h ∧ shape p vs j ,
fun pp vv yy ii mm.∀hh jj vvs.

ii = jj •• hh → sshape pp vvs jj →
∃jj ′.mm = jj ′ •• hh ∧

sshape pp (vv .1::vvs.1, vv .2::vvs.2) jj ′ ∧
(low links pp jj → hh.1 ∼= hh.2→ low links pp jj ′))

remove : STsec [linked list] (option T )
(fun p i .∃h j vs. i = j • h ∧ shape p vs j ,
fun pp yy ii mm.∀hh jj vvs.

ii = jj •• hh → sshape pp vvs jj →
∃jj ′.mm = jj ′ •• hh ∧

sshape pp (tail vvs.1, tail vvs.2) jj ′ ∧
yy = (if vvs.1 is v1:: then some v1 else none,

if vvs.2 is v2:: then some v2 else none) ∧
(low links pp jj → low links pp jj ′))

Fig. 5. ListSig: signature for linked lists (excerpts).

features are present in RHTT, and used in the Figures 5 and 6,
which show one possible interface, ListSig, and a module,
List, implementing ListSig. The interface exports methods that
create a new empty list, insert an element to the head of a list,
and remove the head element, should one exist.

Both ListSig and List are parametrized in the type of list
elements T . The interface declares the abstract predicate
shape p vs i , capturing that the heap i stores a valid singly-
linked list whose content is the mathematical (i.e., purely-
functional) sequence vs of type list T . The pointer p stores
the address of the list head, so that adding new elements at
the head can be done by updating p. The linkage between the
elements is described by the predicate lseq x vs which recurses
over the contents vs and states that each node, starting from
the head x , contains a single pointer z to the next node in the
linked list. The interface hides the details of shape, however,
and can thus be ascribed to other implementations of shape,
such as ones describing doubly-linked lists.

The interface in Figure 5 contains one more abstract pred-
icate low links pp ii , which we use in combination with
sshape pp vvs ii , to describe that the linkage of the list stored
in the heap ii is of low security, no matter the security levels
of the contents vvs . The latter may be heterogeneous; that is,
some elements of vvs may be of low security, while others
are high. Similar to lseq, low links recurses over the linked
lists, declaring that each node is stored at a low address; that



is, an address which is equal in the two heap instances, ii .1
and ii .2. (The formal definition of low links is elided here but
appears in file llist3.v of the Coq scripts.)

The types of the methods declare how the methods modify
the contents of the list as well as the linkage. For example,
the shape predicate in the preconditions of insert and remove
requires that the initial heaps of these methods store valid
linked lists. The sshape predicate in the postconditions guar-
antees that valid linked lists are produced at the end. The
postconditions additionally contain conjuncts describing that
the methods preserve the low security level of the linkage. For
example, new will allocate a fresh pointer p, and initialize it
with null. If the deterministic allocator is used to obtain p,
then p will be low only if the allocator is executed in low-
equivalent initial heaps. Thus, in order to get low links pp jj ,
we require an antecedent ii .1 ∼= ii .2. Similarly, insert specifies
that low links pp jj → hh.1 ∼= hh.2 → low links pp jj ′.
In other words, if the initial lists have low linkage, and the
remainders of the global heaps are low equivalent, then we
can allocate a list node with low linkage. This is so, because
the initial heaps must be low equivalent under the described
conditions.

The implementations of the methods are standard (Figure 6),
but due to the combinator syntax, we describe them in prose.
new returns a fresh pointer, initialized with null. This will be
the pointer p in the shape predicate. insert takes the pointer p
to the list, and a value v to insert. It reads the address of the
first element (bound to variable hd ), and allocates a node x
whose contents field is v and next pointer field is hd . Finally,
x is written to p. remove reads the address of the first element
of the list p into the variable hd . If hd is null, then the list
is empty, and the function terminates. Otherwise, it reads the
contents of the node at hd , binding it to the variable v . p is
made to point to next v , before v is deallocated.

To establish that the implementation satisfies the signature,
we need a number of helper lemmas about lseq and linked list,
which are kept local to the module. For example, for lseq, we
need properties that describe the behavior of lseq x vs i , in
case x is null (then the whole list is empty), and non-null (then
x points to the head). For low links, we show that if two heaps
store lists with low linkage and equal contents, then the heaps
themselves are equal.

Example 9. The program P5 in Figure 7 illustrates heteroge-
neous lists, i.e., lists that contain both high and low values. It
takes a high boolean argument b, creates a new linked list, and
inserts 0 (a constant, hence low) at the head. Then, depending
on b, it inserts either 1 or 2, resulting in a heterogeneous
list with a high first element and low second element. This is
described in the postcondition by conditionals over the values
of b in the two different runs (bb.1 and bb.2). Irrespective of
the contents, the ending linkage is low, assuming we started
with low-equivalent input heaps.

Example 10. The program P6 in Figure 7 is similar to P5, but
branches on b to decide whether to remove the head element.
Therefore, the length of the resulting list may differ in the

linked list =̂ ptr
node : type =̂ node of (T × ptr)
elem (e : node) =̂ e.1
next (e : node) =̂ e.2

lseq (x : ptr) (vs : list T ) : heap→ prop =̂
if vs is v ::vt then

fun i .∃z :ptr j :heap.
i = x 7→ node v z • j ∧ lseq z vt j

else fun i . x = null ∧ i = empty heap

shape (p : linked list) (vs : list T ) (i : heap) =̂
∃x :ptr. j :heap. i = p 7→ x • j ∧ lseq x vs j

new =̂ do (lalloc @0 null)
insert =̂

do (read @ (fun p v . p);
lalloc @ (fun hd p v . node v hd);
write @ (fun x hd p v . (p, x )))

remove =̂
do (read @ (fun p. p);

if (fun hd p. hd = null) then
return @ (fun hd p. none)

else
read @ (fun hd p. hd);
write @ (fun v hd p. (p, next v));
dealloc @ (fun v hd p. hd);
return @ (fun v hd p. some (elem v)))

Fig. 6. Module List: implementation of singly-linked lists (excerpts).

P5 : STsec [bool] linked list
(fun b i .True,
fun bb yy ii mm.∃jj .mm = jj •• ii ∧

sshape yy ([if bb.1 then 1 else 2, 0],
[if bb.2 then 1 else 2, 0]) jj ∧

(ii .1 ∼= ii .2→ low links yy jj )) =̂
do (new @ (fun b. ());

insert @ (fun p b. (p, 0));
if (fun p b. b) then insert @ (fun p b. (p, 1))
else insert @ (fun p b. (p, 2)) fi;
return @ (fun p b. p))

P6 : STsec [bool] linked list
(fun b i .True,
fun bb yy ii mm.∃jj .mm = ii •• jj ∧

sshape yy (if bb.1 then [0] else [1, 0],
if bb.2 then [0] else [1, 0]) jj ) =̂

do (new @ (fun b. ());
insert @ (fun p b. (p, 0));
insert @ (fun p b. (p, 1));
if (fun p b. b) then

remove @ (fun p b. p);
return @ (fun p b. p)

else return @ (fun p b. p))

Fig. 7. Programs with heterogeneous lists.



two runs, depending on b. We can specify it with the type
shown in the Figure. Notice however that we cannot prove
that low links yy jj holds at the end of P6. The length of
the produced list is dependent on b, which implies that the
resulting linkage may differ in two runs of P6, and hence
cannot be low itself.

Our Coq scripts implement other interfaces for linked list,
where the sshape predicates are parametrized by the linkage as
well. This exposes more implementation details (e.g., that the
list is singly-linked), but allows more precise reasoning about
linkage. For example, we may prove that executing one more
conditional over b, with a call to remove in the else branch,
will restore the low linkage.

We are not aware of any other system in literature that
can reason statically about heterogeneous structures. In the
dynamic setting, a recent example is the work of Russo et
al. [37], which tracks information-flow through DOM trees,
with the goal of preventing information leakage via node
deletion or navigation. The system works by assigning to each
node two security labels: one for the contents, and another
for the existence of the node. These annotations are very
specific to DOM trees, however, and it seems that the label
assignment would have to be designed differently for different
data structures and enforced properties. Thus, if one wants to
work with a number of structures simultaneously, one must
employ a very rich specification logic, just as we do.

We close with an example which combines linked lists with
the Alice module from Section II.

Example 11. In Example 5, Alice ratifies Bob’s tax function,
which may keep local state, as long as Bob can prove that his
final state does not steal Alice’s salary. Here we instantiate
Bob’s local state to a linked list, which dynamically grows
as various instances of Alice execute Bob’s program, but
the values stored in the linked list are always independent
of any instance’s salary and the list’s linkage is always low.
Observe from the specifications of new and insert that Bob’s
newly allocated nodes will be low only if he can generate
them in low-equivalent heaps. To express this low equivalence
the specification of epost used in ratify’s specification must
change as emphasized below.

epost aa bb jj yy ii mm =̂
∀ss pp kk tt hh.

ii = jj •• tt •• hh → sshape aa ss pp jj →
bbshape bb kk tt →

∃jj ′ tt ′.mm = jj ′ •• tt ′ •• hh ∧ sshape aa ss pp jj ′ ∧
bbshape bb (bcmp kk .1, bcmp kk .2) tt ′ ∧
jj .1 • hh.1 ∼= jj .2 • hh.2 →
tt .1 = tt .2→ tt ′.1 = tt ′.2)

Bob can now be granted access to Alice’s salary and can keep
the count in a linked list. For example, the implementation
below defines Bob’s local state as a linked list which counts
the number of times Bob’s program has been called by
linking in new nodes into Bob’s list. The nodes are filled
with 1 for simplicity, but arbitrary values would do, including

dynamically computed ones, as long as they are independent
of Alice’s salary.

bob =̂ linked list
G =̂ list nat
bbshape (bb : bob2) (kk : G2) (ii : heap2) =̂

List.sshape bb kk ii ∧ bb.1 = bb.2
bcmp : G → G =̂ fun k . 1 :: k

Bob’s program, which reads Alice’s salary, allocates a new
node in his list, and then returns the computed tax for the
salary, can then be created and ratified as follows.

linked client =̂
ratify (do (read salary @ (fun a b. a);

insert @ (fun x a b. (b, 1));
return @ (fun x a b. x ∗ 24%)))

V. DISCUSSION

Completeness: We have informally justified the com-
pleteness of our system through several examples, covering
a wide range of security relevant policies including access
control, information flow, declassification, erasure, and their
combinations. Unfortunately we are not aware of a clear
and exhaustive formal definition of what constitutes, say, an
erasure, or access-control policy, or a combination thereof.
Therefore, we do not know how to state a formal completeness
result.

If we focus on Cook completeness for RHTT, then, as we
have argued in Section III, our specifications for all of the
primitive effectful combinators compute weakest preconditions
and strongest postconditions using the specifications of the
components. The exception are the conditionals, for which this
cannot be done when the boolean guard is high. However,
RHTT is still capable of checking high conditionals against
programmer-supplied postconditions. The lack of Cook com-
pleteness therefore results in an increase in code annotations
that the programmer has to supply, but does not decrease the
reasoning power of the logic.

Noninterference for finite security lattices: The standard
notion of noninterference when locations are classified into
elements of a security lattice is compatible with RHTT and
can be expressed in postconditions of RHTT programs. If
each variable of a program is classified at some level of a
finite lattice L, then the program is noninterfering if for each
` ∈ L, the following holds: (xx1.1 = xx1.2 ∧ . . . ∧ xxn .1 =
xxn .2) → (yy1.1 = yy1.2 ∧ . . . ∧ yym .1 = yym .2) where
xx1, . . . , xxn are pairs of values of variables at or below
security level ` in the two initial heaps and yy1, . . . , yyn are
pairs of values of variables at security level ` in the two
final heaps. If the lattice L is finite, then the noninterference
property can be represented in the postcondition of a program
as the conjunction of such requirements for each level ` ∈ L.

This representation can be combinatorially explosive, if one
uses one conjunct for each variable. But, in our higher-order
assertion logic we can introduce predicates that abstract over
a number of such conjuncts at once, and hence avoid the



explosion. For example, if the variables in question all stand
for the contents of some linked list, we can define a predicate
that conjoins equations of the above form for each value
reachable from the head of the list. Note that reachability can
be expressed in higher-order but not in first-order logic. We
leave a more detailed exploration of the above representation
to future work.

On proof sizes: We have found that the size of interactive
proofs is not too overwhelming in general. However, the
amount of interaction varies with programs. Programs with
complex loop invariants usually require large proofs, whereas
simpler programs can be verified in just a number of lines
proportional to the size of the program.

Programs that branch on high boolean guards invariably
have larger proofs than programs that branch only on low:
the latter always choose the same branches of conditionals
in two runs, so the verification of the two runs proceeds
in lockstep. High-branching programs can choose branches
asymmetrically, thus doubling the number of proof obligations.
In addition, when branches are chosen asymmetrically, the
proofs usually require some mathematical insight from the pro-
grammer (for example, algebraic simplification of expressions)
in order to argue that the high secret has not been leaked. The
latter, however, seems unavoidable, and inherent to the nature
of programs branching on high guards.

To substantiate, consider the programs from Examples 2
and 3, our first examples that do not branch on high. We
have the following statistics given as the pair (code+spec
size, proof size). For new, we have (7, 5); for read salary
(7, 4); for write salary (18, 15) and for declassify (11, 5). The
above proofs share common definitions and lemmas which are
altogether 10 lines long.

The program P2 in Example 1, which contains nested
conditionals and branching on high, is implemented using
36 lines of code, most of which are inlined user-supplied
annotations. The corresponding proof is 44 lines long.

We have also implemented examples that iterate over linked
data structures (not presented in the paper, but available in
the accompanying Coq scripts). In a program for in-place list
reversal, in which the linkage of the list is high, the code and
annotations together take 43 lines. The proof is 94 lines long,
because there is a high conditional branching on a null-pointer
check.

VI. RELATED WORK

Banerjee et al. [7] specify expressive declassification poli-
cies using Hoare style specifications (termed flowspecs); pre-
conditions thereof are conjunctions of ordinary state conditions
based on first-order logic (for specifying conditions when
declassification can happen) as well as relational predicates
(that specify what is being declassified) [39]. We extend the
ideas in [7] and consider a higher-order imperative language
and also a policy specification language based on higher-order
logic, where Hoare-style specifications may appear in negative
(i.e., argument) positions, which is required for conditional
access and erasure policies.

A recent line of work [23, 36] uses type-theoretic technol-
ogy, namely Haskell, to specify and enforce information-flow
properties in a non-dependently-typed setting. While Haskell
already provides the important higher-order constructs for
abstraction and modularity, non-dependent types by definition
cannot specify behaviors that are dependent on some condition
such as authorization, conformance to a policy, or local state.
Thus, we do not think they can be used directly to enforce
involved security policies such as the ones considered in this
paper.

Some other recent languages, with somewhat similar high-
level goals to ours, and which use some form of dependent
types are Fine [41], Fable [42], FX [10], Aglet [27], F7 [11]
and Aura [20]. They all support some, but not all features that
we provide in RHTT.

In Swamy et al.’s purely functional programming language
Fine [41], access and information flow policies can mention
attributes like high and low, that statically label data. The type
system enforces these policies by tracking flows of attributes.
Unlike RHTT, Fine’s type system does not track changes to
the state (heap), so the effect of state in policies must be
simulated through ghost variables, whose (static) updates are
governed by specifications of primitive functions. A token
passing mechanism based on affine kinds ensures that at
most one static state is valid at each program point, but it
makes programming in Fine inconvenient. Fine includes a
simple module system which allows a programmer to hide
type definitions, but does not allow abstraction over predicates
as RHTT does. In an earlier language, Fable [42], data can be
statically labelled with attributes that can be used to enforce
both access control and information flow policies. However,
Fable’s type system lacks the affine kinds of Fine as well
as Fine’s logic-based sublanguage for policies and, therefore,
cannot be used to reason about state-dependent policies.

The language FX [10] succeeds Fine with the purpose
of verifying stateful programs that permit object allocation,
mutation and deallocation. The type system of FX admits
computation (Hoare) types and caters to the verification of
safety properties of FX programs by translating into Fine
programs and typechecking the latter. The translation is a
simulation under strong bisimilarity, rather than the stronger
property that well-typed FX programs are translated into well-
typed Fine programs. The verification of security policies,
particularly, of non-safety properties such as noninterference,
is not the overarching goal of FX’s type system, although a
lattice of labels can be encoded and used to prove, e.g., an
integrity property that untrusted data does not get consumed at
trusted sinks. A proof of noninterference is not supplied; as in
most label-based security type systems, such a proof cannot be
carried out in FX’s (or Fine’s) type system directly (in contrast
to our work) but rather must be established as a metatheorem
of the type system by reasoning about two runs of programs.
As regards reasoning about stateful higher-order programs, the
formalization is left for future work and we expect that it
will elucidate how the type system reasons about (security
properties of) unbounded dynamic data structures e.g., linked



lists, trees with back pointers etc., that contain significant use
of aliased mutable objects. In particular, because FX proposes
to reason about aliasing using a library of permissions the
above formalization might be delicate.

Morgenstern and Licata have recently proposed a type
system called Aglet [27], for enforcement of state-dependent
access control policies. Aglet is an extension of Agda [33] with
a computation monad similar to our STsec types. However,
Aglet’s computation monad lacks semantics and, consequently,
the soundness of its inference rules has to be taken on faith (in
contrast, the RHTT model is formalized in Coq). Moreover,
the pre- and post-conditions of Aglet’s computation monad
can only mention a restricted form of state, namely, a mutable
list of authorization-relevant credentials, which can be used to
discharge authorization obligations at various program points.
Due to this restriction, Aglet cannot be used to reason about
data structures written in Agda. Also, Aglet’s postconditions
do not consider simultaneous runs of programs. As a result of
these limitations, Aglet cannot be used to represent many of
our examples. On the other hand, we believe that examples
from the paper on Aglet can be expressed in RHTT easily.

Borgström et al. [11] reason about access control behavior
of programs in an extension of F7 that has a state monad
with pre- and post-conditions. Although the state monads in
their work and ours are technically similar, that work differs
from ours in two significant ways. First, the goals are dif-
ferent: whereas we consider enforcement of information flow
properties and declassification in addition to access control
properties, Borgström et al. consider access control and show
how the state monad can be used to enforce different flavors
of it, viz. role-based, stack-based, and history-based. Second,
in common with other work based in F7, a priori evidence for
discharging verification conditions in Borgström et al’s work
is programmer specified assumptions that are not necessarily
semantically grounded, and verification is correct only to the
extent that these assumptions are correct. In contrast to their
axiomatic approach, we verify the soundness of our type
theory on a semantic model. Nonetheless, due to the common
state-monad based approach, and RHTT’s more general type
system, we believe that Borgström et al’s work can be encoded
in RHTT without much change. As a first step in this direction,
our Coq scripts contain an example that shows how RHTT
supports reasoning about principals and roles.

The languages Aura [20], PCML5 [5], and PCAL [13],
based on the proof-as-authorization paradigm [2], enforce
logic-represented access policies by statically ensuring that
each call to a protected interface is accompanied by proper
authorization. Although work in the context of Aura shows
that noninterference can be encoded [21], Aura currently does
not handle state in the form that we consider in this paper.
However, it is conceivable that mutable state can be added to
Aura along the lines of the STsec monad.

The Paralocks language [12] also allows logic-based access
control policies that are enforced statically in the type system.
Information flow policies can be encoded as a specific mode
of access control as, for instance, is demonstrated through an

encoding of Myers’ and Liskov’s Decentralized Label Model.
Like Fine, Paralocks includes two kinds of state, of which, one,
called locks, is tracked through the type system, while the other
is not. Locks are boolean variables that can be used to encode
a wide range of policies. The semantics of Paralocks is trace-
based and, like gradual release [3], uses a knowledge-based
definition of information leaks. A meta-theorem guarantees
that access policies of a well-typed program are respected at
all program points during the program’s execution.

Finally, RHTT extends the work on Hoare Type Theory
(HTT) [31] and Ynot [30] with the ability to reason relationally
about security. HTT and Ynot implement via dependent types
a higher-order variant of Hoare logic for single program runs.
Thus, they cannot enforce relational properties such as the
various information flow policies, which are specified via two
program runs. A more technical discussion of the differences
between these systems and RHTT appears in the TR.

VII. CONCLUSION

We have presented RHTT, a system implemented in Coq
that is targeted for full interactive verification of state-based
access control and information flow policies via dependent
types. Examples of such security policies include declassi-
fication, information erasure and state-based access control
and information flow. We have presented typing rules for the
stateful fragment of RHTT and implemented a semantic model
that provides a denotation to every well-typed RHTT program.
We have also developed a logic for discharging verification
conditions that arise in the verification process.

Currently, RHTT does not support reasoning about trace-
based, temporal properties. For example, while it is intu-
itively clear that our specification of functions grant, revoke,
read salary (Example 4) indeed encodes a temporal discipline
on the usage of read salary (e.g., “no reads occur unless a
grant has occurred and no revoke has occurred after the grant”)
this cannot be formally proved in our logic itself. We note
that very little is known on how enforcement of trace-based
properties, in security or other areas such as concurrency,
interacts with type theoretic constructions such as higher-order
functions, abstract types or modules. We intend to investigate
this in the future, in the context of reactive, non-deterministic
and concurrent higher-order languages.
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