Towards a Logical Account of Declassification

Anindya Banerjee

Kansas State University, Manhattan, KS, USA
abQ@cis.ksu.edu

Abstract

Declassification is a vital ingredient for practical use of secure
systems. Several recent efforts to formulate an end-to-end policy
for declassification seem inconclusive and have focused on appar-
ently different aspects. (e.g., what values are involved, where in
the code declassification occurs, when declassification happens and
who (which principal) releases information.) In this informal paper,
we argue that key security goals addressed by the proposed notions
can be expressed using assertions and auxiliary state (such as event
history), building on a recently developed logic for noninterference
that provides for local reasoning about the heap.

Categories and Subject Descriptors D.3.3 [Software]: Program-
ming Languages—Language Constructs and Features; F.3.1 [The-
ory of Computation]: Logics and Meanings of Programs—Specify-
ing and Verifying and Reasoning about Programs

General Terms Security, Languages, Verification.

Keywords aliasing, information flow, confidentiality.

1. Introduction

This paper argues for the use of relational program logic [6, 1] to
specifty information flow policies involving declassification as well
as to verify compliance. The focus is on sequential, deterministic
programs in a language like Java but it should be evident that the
ideas are pertinent to concurrent programs and other programming
languages.

Background. Confidentiality policy can be expressed by labeling
variables with security levels. A program is noninterferent (for the
policy) if every pair of computations, from a pair of initial states
differing only in secrets, leads to final states with identical non-
secrets. A number of works provide techniques for enforcement of
noninterference for imperative and object-oriented programs. One
approach treats security labels as non-standard types [23, 19]. By
typing variable h as secret and [as low security, an evident rule
disallows direct assignment of [:= h and additional constraints
prevent implicit flows as in if h then [:= true. The flow-
insensitivities and value-abstractions that make type-checking fast
also makes it reject many secure programs.

An alternative enforcement approach is to formulate security as
a verification problem and use program logic [11, 9, 10]. Noninter-
ference can be described by viewing one of the paired computations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’07 June 14, 2007, San Diego, California, USA.

Copyright (© 2007 ACM 978-1-59593-711-7/07/0006. . . $5.00.

David A. Naumann Stan Rosenberg

Stevens Institute of Tech., Hoboken, NJ, USA
[naumann|srosenbe]@cs.stevens.edu

as acting on a renamed copy, say h’, I, of the variables. For the two
variables h, I, the equation [= [’ can be used as precondition and
postcondition over state space h, h', [, I to express the noninterfer-
ence property of command S as atriple {{ = I'} S || S’ {I ="}

where S’ is a renamed copy and || means disjoint parallel execu-
tion.

Java-like languages lack the || operator, but the idea can be
realized in terms of a “relational Hoare logic” [6, 11."' In this
paper we build on the work of Amtoft et al. [1] which addresses
the key challenge for reasoning about object oriented programs—
mutable data structure in the heap. Their logic appears much like
conventional Hoare logic, but a triple {¢}S{¢} involves pre- and
post-conditions ¢, 1/ on pairs of program states and it is interpreted
with respect to two executions of S. No explicit renaming is used.
Instead, predicates can include what we now call agreements, of the
form I, which essentially means [= I’ (i.e., the two considered
states agree on the value of /). Agreements can also involve region
expressions which abstract the heap.

Leaving aside the heap, suppose S has low variables lp, . .., [,
and high variables ho, ..., hs, then for S to be noninterferent
with respect to this labeling is equivalent to validity of the triple
{#} S {¢} where ¢ is lox A ... A L,x. It is also equivalent to
validity of the triple {¢} S {¢'} where ¢’ is the conjunction of
agreements /;x for those /; that are modifiable by S. Judgements
in the logic actually take the form {¢} S {¢’} [X] where the mod-
ifies set X specifies modifiable locations (modifiable object/field
are described using region expressions). Compositional rules pro-
vide flow-sensitive reasoning and potentially incorporate reasoning
about data (e.g., using decision procedures) and the modifies set fa-
cilitates the usual rule disallowing low writes in branches of high
conditionals.

The logic of Amtoft et al [1] is decidable, using strongest-
postcondition calculations, and is less conservative than type sys-
tems for Java-like languages [15, 4] owing to the use of regions.
Modular reasoning about regions depends on a frame rule inspired
by Separation Logic.

Declassification. A number of proposals have been made to ex-
tend enforcement techniques, especially type-based ones, to en-
compass declassification. Unfortunately, no compelling seman-
tic property has emerged to provide an end-to-end meaning for
policies with declassification. Extant proposals seem fragmented
and offer complicated analyses for limited and sometimes obscure
properties [21]. Several proposals which address the more difficult
forms of declassification boil down to a “resetting” semantics in
which an intransitive noninterference condition connects the ini-
tial state to the point where a declassification takes place, and then
again imposes noninterference between that point and the final

!'Or by embedding in standard program logic by composing the program
with a renamed copy of itself [5, 22], a technique developed for reasoning
about data abstraction in the 1970’s [18] and recently extended to heap
structure [16].

state (or next declassification). Some proposals offer policies that
say declassification happens only under certain conditions or under
the control of certain agents (but once it has happened, all bets are
off). For lack of cogent semantics of declassification, the very well
executed attempt by Sabelfeld and Sands [21] to make sense of the
literature is only partly able to ground its informal principles in
precise terms.

In this paper we borrow intuitions from existing proposals but
formalize them as pre-post specifications in a relational Hoare
logic. Without aiming to be exhaustive, we survey declassifica-
tion examples from the recent literature and argue for decompos-
ing the program, rather than the computations, and for specifying
the components using agreements together with state predicates.
The approach addresses several dimensions of declassification [21]
including what information is released, where in the code it can
occur, when it can occur and under whose authority.

Many of the recent proposals embed the security specification
as part of the program, e.g., via a special declassification construct.
In our approach, policy is expressed by pre-post specifications at-
tached to subprograms intended to perform declassification. Triples
in Hoare logic are intended to compose into proofs of complete
programs. By contrast, our specifications for policy indicate an ex-
emption from the baseline security policy and are not expected to
compose. (But their validity can be checked using proof outlines
and other means.) In Sect. 4 we consider detaching policy from
code.

Our approach encompasses a range of policies in straightfor-
ward way. A number of anomalies found in previous proposals [21]
are avoided. But a comprehensive assessment is left to future work.

QOutline. Section 2 considers a range of declassification scenarios
and introduces our approach in detail. Sect. 3 delves into richer
examples and Sect. 4 puts our work in perspective.

2. Introducing Flowspecs

This section discusses some examples, leading to our proposal.

Electronic wallet. 1In the following example, from Sabelfeld and
Myers [20], h is high and [, k are the low variables.

if h > kthen h:=h — k;l := | + k else skip;

Informally, the declassification policy allows for a partial release:
It is ok to reveal whether A > £k, but nothing more about & must be
revealed. Our specification is:

{(h > k)x ANx ANk} _{Ix Ak} N

As in the case of pure noninterference, the postcondition contains
agreements for all the low variables (or those in the modifies set,
if present). Let us review the interpretation: a command S satisfies
the specification provided that if it is run twice, from initial states
that agree on [, on k, and on the value of expression h > k —but
not necessarily on the value of h— the final states agree on [and
on k.

Sabelfeld and Myers [20] propose explicit declassify expres-
sions in code to serve as “escape hatches”, marking the expressions
whose (initial) values are to be released. For example, the guard
condition in the code above would be written as declassify(h >
k, low).

Examples of this kind have been classified as “what” policies
by Sabelfeld and Sands [21], who point out that their semantics is
essentially noninterference in a general form allowing variation in
the partial equivalence relations (PER) that describe distinctions
considered visible. Thus the logical formulation is no surprise.
It is more challenging to find satisfactory semantics for “when”
policies, to which we turn next.

Sealed auctions. Consider two principals Alice and Bob taking
part in an auction. The protocol is as follows: Alice and Bob
place their bids; the system determines the higher bid and reveals
its value and the identity of its bidder. The first policy says that
neither bid influences the other. The second policy says that only
the higher bid and its bidder are made public —and this of course
only happens after bidding is concluded. The two policies address
two separate concerns: the first, absence of cheating, is up to the
point just before the outcome is determined. The second concern,
absence of laundering, applies from that point through the action of
publicizing the result.

The first concern can be addressed by standard type-checking.
Let A, B be incomparable levels assigned to variables aBid and
bBid respectively, where bBid and aBid are the bids placed by
Bob (resp. Alice). The other program variables are winBid for
the winning bid and boolean alice Wins to designate the winner;
both are low. Then the getBids phase should be noninterferent with
respect to this labeling. The logical formulation uses agreements to
express which variables and expressions are considered observable,
or not. Policies involving lattices other than low < high can be
expressed using multiple triples; in this case, the getBids code is
subject to the two specifications {bBidx } _ {bBidx } (guarding
Alice’s bid) and {aBidx } - {aBidx} (guarding Bob’s).

Regardless of how policy is expressed for getBids, this policy
cannot be imposed on the announce Winner code, which reveals
the winning bid and the winner. Here is a possible specification:

pre : (maz(aBid, bBid))x A (aBid > bBid)X
post : alice Winsx A winBidx 2)
mod : aliceWins, winBid

Of course winBid := maz(aBid, bBid); alice Wins := (aBid >
bBid) satisfies specification (2). The modifies clause prevents, e.g.,
aBid to be set to the winning bid.

In itself, the above specification expresses a “what” policy. But
the second policy concern has the flavor of “where” or “when”.
The partial release should happen affer bidding is concluded, and
it should only happen in the code that is intended to announce the
winner.

Our proposal is to express such policies by attaching one or
more specifications to the designated subprogram(s). In this case,
specification (2) should be attached to the code we have called
announce Winner and the noninterference specification should be
attached to getBids.

For practical purposes, we propose that a baseline policy
should be given by a conventional labeling. A “where” declassi-
fication policy can be specified by attaching one or more spec-
ifications to the designated subprograms. A specification used
in this way is called a flowspec. The example has the form
getBids; announce Winner and the flowspec would be attached
to announce Winner.

Policy should be enforced by type-checking as usual, but a
fragment with an attached flowspec is exempt from type-checking
—where the flowspec serves to designate a controlled violation
of the baseline policy. Instead, the corresponding triple must be
checked for each fragment and each of its attached flowspecs.

We would argue that absent a compelling end-to-end seman-
tics for declassification, one might choose to content oneself with
“pretty good security” achieved by these fragmentary checks. Even
so, some healthiness conditions are needed for policies to be sensi-
ble. For example, a flowspec in the scope of a high guard condition
would allow more leakage than it makes explicit. We disallow that.
Before addressing the other healthiness conditions, we proceed to
perhaps the most unique and powerful feature of flowspecs.

3. Connecting policies with requirements

The pure notion of “where” policy is that such policy designates
a particular part of the code that is permitted to declassify. In in-
transitive noninterference, information may flow from high to low
but only via a channel at a certain intermediate level. Such policies
are incomplete reflections of the security goals they aim to achieve.
For example, the intermediate level could be for certain principals
trusted to assess the current sensitivity of data. The intermediate
level could be assigned only to code in a certain component in-
tended to sanitize the data in some way —or a “where” policy could
directly designate that the component is allowed to declassify.

We would like to more fully express and enforce such require-
ments. This is where ordinary program specification and verifica-
tion can play a role. A sanitize routine could be proved to ensure
the absence of certain SQ)L injection attacks in a query string, or
more simply to erase certain sensitive fields of a medical patient
record. Such subprograms can be exempted from the baseline se-
curity policy and can also be specified to execute only on condition
that some prior event has occured, such as conclusion of the bid-
ding phase of an auction.

Conditional release. 1t is possible for partial release to be condi-
tional, using conditional expressions [20]. For example let £ stand
for (if pay > thresh then h else 0), then declassify(E, low)
releases h only if adequate payment is made. The corresponding
flowspec has precondition Ex and postcondition resultix. The
meaning of E'x is that for any two runs of a program the value
of the conditional is the same. Note that it is possible that different
branches of the conditional get executed in the two runs and yet
yield the same value (i.e., in case h = 0).

An alternative specification might use disjunction in the precon-
dition: pay < thresh V hix. A bit of care is needed when combin-
ing state predicates with agreements since the latter involve both
of the pair of states. For the moment we shall be explicit and write
both(P), where P is a state predicate, to say that both states satisfy
P. Thus we can distinguish between both(P) V ¢, which uses the
boolean operator V at the level of state-pairs, and both(P V Q).
Thus both(P) V both(Q) is strictly stronger than both(P V Q).
The example can be written both(pay < thresh) V hix, so it is
satisfied in a pair of initial states if either pay > thresh is false
in both or the value of A is the same in both. So the specification
differs in meaning from the one using the conditional expression
only when h = 0.

Sabelfeld and Myers suggest that conditional release can be
extended to disjunctive policies, e.g. either h; or hz but not both
can be released (these could be cards to be revealed in a round of a
game). They do not propose a syntax. Our conjecture is that this is
because their syntax is too closely tied to the program (the policy
is determined by the conjunction of all the declassify statements).
The policy is easily written as a specification:

{hix V hox} _ {resultx} .

Conjunctive preconditions. Static labeling is a strong and sim-
ple form of access control: an attacker is (assumed to be) unable to
read or write fields labeled at higher levels. There have been some
explorations of state-dependent labeling. In Flow Locks [7], a label
is conditioned on a boolean variable —a ghost variable, in the veri-
fication lingo, subject to updates in program annotations. Pistoia et
al [17] formulate indistinguishability in terms of the parts of state
that are protected by certain permission checks.

If the currently enabled permissions are given by a ghost vari-
able, say SecCtz, updated according to the semantics of Java stack
inspection, then we can specify the following policy: h may be re-
leased but only if permission ph is enabled. The relevant code is
subject to two flowspecs. One covers the situation where the per-

mission is enabled:
{both(ph € SecCtx) N hx} _ {ix} [I]

This imposes no constraint on program executions where ph is
initially not enabled, for which a second flowspec is used:

{both(ph ¢ SecCtz)} - {ix} [I]

The modifies set, [I], spares us from enumerating, in the postcondi-
tion, agreements for all low locations.

A feature of this example is that the preconditions can be ex-
pressed as conjunctions of the form both(P) A ¢ where ¢ consists
of agreements. For such a policy, it is straightforward to express
that it does not admit attacks through omission of possible execu-
tions: we insist that the ordinary state predicate, (), obtained as the
disjunction of the state predicates P in preconditions, be a valid
assertion at the beginning of the fragment to which the flowspec is
attached. That is, the flowspec should cover all cases — a healthi-
ness condition for the flowspec.

Release in multiple steps. Chong and Myers [8] use types to ex-
press policies that allow declassifications only after several condi-
tions have been true in succession. They do not give an example
with multiple steps so we describe our own. In fact, since in this
paper we use assertions rather than temporal logic, we cannot di-
rectly express sequences of events. We consider an example with
this flavor, and note that the event history is naturally encoded in
the program state, just as in the auction example the end of bidding
is a definite state in the program (indeed control point, in our toy
example).

Consider a record for information about a medical patient. A
bookkeeper needs to release the patient’s information to an insur-
ance representative. This is governed by the following policy:

e The patient’s diagnosis is released, but not the doctor’s notes
(both are normally secret).

e The version of the record to be released should be the most
recent one.

The record should be in “committed” state. The database con-
tains some versions that record saved test info; a committed
record reflects a doctor’s firm diagnosis.

Preceding release, an audit log entry is made, including the pa-
tient ID and record version, as well as the IDs of the bookkeeper
and insurance rep.

At the time of release, both bookkeeper and representative
should be users with valid credentials to act in their respec-
tive roles. (We want to enforce this policy in the code, but one
might also include in the log entry a timestamp, to facilitate
post hoc correlation with the authentication logs to check that
the bookkeeper and representative were indeed authorized.)

The example is illustrative, but not realistic. For example, we do not
mention integrity of the logs, nor do we consider a realistic system
of roles, or restrict to representatives of the patient’s insurance
company.

For purposes of the example, security level L is associated with
information for which at least the insurance company is permitted
access, and H is associated with private patient information and
clinic-internal information. The clinic’s database contains records
of this form:

class PatientRecord {
int id; boolean committed; int vsn;
String<H> diagnosis; String<H> notes; }

A similar record is provided to insurance representatives. Note that
L fields are unmarked.

class InsRecord {
int id; String diagnosis; }

Before formalizing the policy we give a conforming implementa-
tion.

Object release(Database db, int patID,
Bookkeeper b, InsRep r)
pre: sys.auth(b,"book") && sys.auth(r,"rep")
{
InsRecord ir = new InsRecord();
PatientRecord pr = db.lookup(patID);
if (pr != null &% pr.committed) {
log.append(b.id, r.id,
pr.id, pr.vsn, "release");
ir.id = pr.id;
ir.diagnosis = pr.diagnosis;
return ir;
} else { return new Msg("not available"); }

}

Note that the parameters and local variables are all low (unmarked).
The only high things are certain fields of patient records. With this
labeling, the program type-checks except for the assignment?

ir.diagnosis = pr.diagnosis;

Consider the following flowspec to be attached to this assignment.’
For clarity we omit “both” around the state predicates.

pre . pr.diagnosisX A pr.committed
Asys.auth (b, book’) A sys.auth(r, rep’)
Adb.recent(pr)
Nlog.contains(b.id, r.id, pr.id, pr.vsn, release’)
post : ir.diagnosisix
mod : ir.diagnosis

Predicate db.recent(pr) is assumed to express that pr is the most
recent patient record.

The precondition pr.diagnosisix allows partial release of the
patient record. The other preconditions express the conditions un-
der which this release is permitted.

This policy satisfies the healthiness conditions. The flowspec
is not inside a high conditional. Its postcondition covers the mod-
ified locations. The state predicate in its precondition covers the
possible states just before the assignment to ir.diagnosis, as
we now argue in detail. The conjunct pr.committed holds ow-
ing to the guard condition. The conjuncts sys.auth(b, book’) and
sys.auth(r, rep’) are preconditions to the method —its calls must
therefore be verified for these conditions. Recency should be a con-
sequence of the specification of lookup. (This would get more com-
plicated if we considered concurrent access to the database; the pol-
icy is perhaps too strong on this point.) Presence of the log entry is
ensured by the call to append.

It would be more difficult to express the policy as a flowspec
to be attached to the entire method body: First, the postcondition
would need agreements for all low writes; second, we would not
be able to refer to the log event as having occured, nor be sure the
latest record is committed.

One benefit of using specifications as opposed to using declas-
sify expressions in code is that the latter is limited to conditions that

2 Systems like Jif do some amount of inference for labels of internal vari-
ables etc. In that case, this example would be rejected but it might not be as
clear which sub-program is offensive.

3 We abuse the notation of our actual logic, which does not include agree-
ments for heap-dependent expressions like pr.diagnosis. Instead, the de-
sired condition would be written (pr).diagnosisX using a singleton re-
gion.

make sense in code whereas the former can refer to ghost state like
message histories. In our example, sys.auth could well refer to a
system data structure. But one can also imagine a scenario where
the code runs on a resource-limited device that does not use persis-
tent state to track the state of the authentication protocols; then sys
could be a ghost variable for reasoning about the protocol state.

4. Discussion

Our approach is to begin by labeling the program’s interfaces using
lattice levels as usual. Many methods in a program are likely to
satisfy the baseline noninterference policy with respect to these
levels and even to be accepted by a security type checker. For
code subject to a declassification policy (and thus exempt from the
baseline policy), we attach flowspecs and, instead of type-checking
the code, prove the validity of the flowspecs in an underlying logic.

Flowspecs themselves must be subject to certain healthiness
conditions.

e A flowspec should not occur in the scope of a high guard
condition.

e The postcondition of a flowspec should consist of agreements
for all locations in the modifies clause. (A practical concrete
syntax would be streamlined accordingly.)

e The flowspecs attached to a particular declassification must be
exhaustive in that their preconditions should cover all possible
cases (which can depend on checking ordinary program asser-
tions as in the clinic example).

e The declassification code should satisfy the flowspec.

There are analyses that can check whether the program releases
more than the flowspec explicitly permits [3]; such situation is
subject to laundering attacks, so the code and/or policy need to be
refined.

In some sense, the proposal closest to ours is that of Chong and
Myers [8] who address “where” and “when” policies by labeling
variables with security types that refer to a sequence of conditions
and levels through which downgrading is allowed to pass.* They
propose to enforce their policies using a type system augmented
with some means to reason about “conditions”. The means most
well understood and supported by tools is assertion-based verifi-
cation. Typical conditions might refer to log entries or other data
already present in the program state. To refer to event occurrences,
ghost variables can be used. Use of such ghost variables/fields de-
pends on properly annotating the program with ghost updates of
course, e.g., to correctly track what events have occurred, but this
is standard verification methodology.

The “who” dimension of policies is also important, e.g., an offi-
cial may be authorized to release confidential records in a financial
database to law enforcement officials exhibiting a subpoena [13].
The fact that authentication checks have been made is likely to be
encoded in the program state and if necessary it too can be modeled
with ghost variables. As in many such examples, (e.g., the pass-
word example [8] where release depends on a condition that means
“only trusted code is running”) the idea is that certain programs
have been validated by various means, with respect to policies that
are not formalized as part of the declassification policy per se.

It is desirable to separate policy from implementation. Just
as the labeling of variables is somewhat separate from the code,
one could imagine partial release policies being expressed us-

4 As indicated earlier, it is not clear to the authors the extent to which
declassification levels per se are an artifice in treatments of declassification.
The real-world policies seem to involve declassification being controlled
by suitable authorities and via specific channels and operations, rather than
intrinsically meaningful intermediate security levels.

ing an augmented labeling that designates levels for certain “es-
cape hatch” expressions, overriding the level given by usual typ-
ing rules; e.g., h > k could be declared low despite the join
of its variable levels being high. This is explored by Hicks et
al [12]. Similarly, we believe that many richer policies can be ex-
pressed using schematic flowspecs. In our example, the assignment
ir.diagnosis := pr.diagnosis makes sense in any context where
i¢r and pr are declared. Moreover, the pre- and post-conditions refer
to fields of these objects and to global data structures (the log and
the authentication system). So it can be read as a schematic pol-
icy, applicable to any assignments from fields of PatientRecord
objects to InsRecord objects (in any context where the globals
are visible). Such a schema could be used to automatically ex-
empt matching subprograms from type-checking and at the same
time impose proof obligations on each match. As pointed out by
a reviewer, this idea needs to be developed in such a way that the
semantics of a policy does not change as the result of equivalence-
preserving transformations of the program.

Other related work. The Jif tool offers, for sequential Java,
rich information policies including declassification and much
more [15].

Mantel and Sands [13] give a bisimulation condition for intran-
sitive noninterference but it is unclear whether this condition is suit-
able for sequential code.

An important recent advance is the security condition called
gradual release [2]. In contrast with previous language-based no-
tions of intransitive noninterference, this avoids state-resetting and
associated anomalies, by using a formulation in terms of attacker
knowledge. Release events are marked in the code and computa-
tion steps are not allowed to increase attacker knowledge (narrow-
ing the range of possible values for the secret) except for release
steps. The paper also considers encryption and key release which
are not pertinent here.

Having compared their type system for gradual release with
what we propose, we conjecture that our regime enforces gradual
release (we do not expect major problems in adapting their defini-
tions to encompass our richer language). Although gradual release
is a “where” policy, Askarov and Sabelfeld suggest that it can be
combined with “what” by imposing a partial release condition on
the step taken by each release event. This seems plausible because
what is released can be overapproximated using the techniques of
Banerjee et al [3] and moreover we plan to push that further by in-
corporating state-based conditions on release steps, resulting in an
end-to-end semantics for flowspecs. It may also be fruitful to make
knowledge explicit using a modal operator in assertions [14]. Else-
where we will also formalize flowspecs in the setting of a relational
logic that extends that of Amtoft et al. [1] with a full assertion lan-

guage.

Acknowledgement. A number of people have given helpful feed-
back on the work, including Torbin Amtoft, Tamara Rezk, Ale-
jandro Russo, Andrei Sabelfeld, and Steve Zdancewic. The anony-
mous PLAS reviews were helpful and insightful.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information
flow in object-oriented programs. In POPL, 2006. Extended version
available as KSU CIS-TR-2005-1.

[2] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassifica-
tion, encryption and key release policies. In 2007 IEEE Symposium
on Security and Privacy. To appear.

[3] A. Banerjee, R. Giacobazzi, and I. Mastroeni. What you lose is what
you leak: Information leakage in declassification policies. In MFPS,
2007.

[4] A. Banerjee and D. A. Naumann. Stack-based access control for
secure information flow. Journal of Functional Programming,
15(2):131-177, 2005. Special issue on Language Based Security.

[5] G. Barthe, P. R. D’ Argenio, and T. Rezk. Secure information flow by
self-composition. In CSFW, 2004.

[6] N. Benton. Simple relational correctness proofs for static analyses
and program transformations. In POPL, 2004.

[7] N. Broberg and D. Sands. Flow locks. In ESOP, 2006.

[8] S. Chong and A. C. Myers. Security policies for downgrading. In
CCS, 2004.

[9] E. S. Cohen. Information transmission in sequential programs.
In A. K. J. Richard A. DeMillo, David P. Dobkin and R. J.
Lipton, editors, Foundations of Secure Computation, pages 297-335.
Academic Press, 1978.

[10] A. Darvas, R. Héhnle, and D. Sands. A theorem proving approach to
analysis of secure information flow. In SPC, 2005.

[11] D. E. Denning. Cryptography and Data Security. Addison-Wesley,
1982.

[12] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassi-
fication: high-level policy for a security-typed language. In PLAS,
2006.

[13] H. Mantel and D. Sands. Controlled declassification based on
intransitive noninterference. In APLAS, 2004.

[14] C. Morgan. The shadow knows: Refinement of ignorance in
sequential programs. In Mathematics of Program Construction,
volume 4014 of LNCS, 2006.

[15] A. C. Myers. JFlow: Practical mostly-static information flow control.
In POPL, 1999.

[16] D. A. Naumann. From coupling relations to mated invariants for
secure information flow and data abstraction. In ESORICS, 2006.

[17] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond stack
inspection: A unified access-control and information-flow security
model. In 2007 IEEE Symposium on Security and Privacy. To appear.

[18] J. C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.

[19] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1):5-19,
Jan. 2003.

[20] A. Sabelfeld and A. C. Myers. A model for delimited information
release. In ISSS, 2004.

[21] A. Sabelfeld and D. Sands. Dimensions and principles of declassifi-
cation. In CSFW, 2005. Full version to appear in Journal of Computer
Security, 2007.

[22] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In SAS, 2005.

[23] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. Journal of Computer Security, 4(3):167-187, 1996.

