
A Logical Analysis of Framing for
Specifications with Pure Method Calls

Anindya Banerjee ?1 and David A. Naumann ??2

1 IMDEA Software Institute, Madrid, Spain
2 Stevens Institute of Technology, Hoboken, USA

Abstract. For specifying and reasoning about object-based programs it is often
attractive for contracts to be expressed using calls to pure methods. It is useful
for pure methods to have contracts, including read effects to support local rea-
soning based on frame conditions. This leads to puzzles such as the use of a pure
method in its own contract. These ideas have been explored in connection with
verification tools based on axiomatic semantics, guided by the need to avoid log-
ical inconsistency, and focusing on encodings that cater for first order automated
provers. This paper adds pure methods and read effects to region logic, a first-
order program logic that features frame-based local reasoning and a proof rule
for linking of clients with modules to achieve end-to-end correctness by modular
reasoning. Soundness is proved with respect to a conventional operational seman-
tics and using the extensional (i.e., relational) interpretation of read effects.

1 Introduction

In reasoning about programs, a frame condition is the part of a method’s contract that
says what part of the state may be changed by an invocation of the method. Frame con-
ditions make it possible to retain a global picture while reasoning locally: If predicate
Q can be asserted at some point in a program where method m is called, Q still holds
after the call provided that the locations on which Q depends are disjoint from the loca-
tions that may be written according to m’s frame condition. This obvious and familiar
idea is remarkably hard to formalize in a way that is useful for sound reasoning about
programs acting on dynamically allocated mutable objects (even sequential programs,
to which we confine attention here). One challenge is to precisely describe the writable
state in case it involves heap allocated objects. Another challenge is to determine what
part of such state may be read by Q (its ‘footprint’). For reasons of abstraction, Q may
be expressed in terms of named functions. To hide information about data representa-
tion, the function definitions may not be visible in the client program where m is called.
This paper provides a foundational theory addressing these and related challenges.

Consider a class Cell with instances holding an integer value, used in the following
client code.

method get(): int
method set(v: int) ensures self.get() = v
var c, d: Cell; c:= new Cell; d:= new Cell; c.set(5); d.set(6); assert c.get() = 5;

? Currently on leave at the US National Science Foundation.
?? Partially supported by US NSF award CNS-1228930.

class Cell { private val: int; ghost footp: rgn;
pure method get(): int ensures self.get() = result

reads self.footp‘any
method set(v: int) ensures self.get() = v

writes self.footp‘any //(we elide read effects for impure methods)
ensures ∀o: Cell . o 6= self ⇒o.footp # self.footp }

Fig. 1. Example: Cell. Type rgn (for ‘region’) means sets of object references and footp‘any
denotes a set of locations, namely all fields of objects in footp.

The goal is to prove the assertion by reasoning that the state read by c.get() is disjoint
from the state written by d.set(6). Suppose the internal representation of Cell objects
consists of an integer field val. The specifications could say set writes self.val and get

reads self.val. Then the frame condition of d.set(6) would allow the postcondition of the
call c.set(5), i.e., the predicate c.get()= 5, to be framed over the call d.set(6), yielding
the assertion. But such specifications expose the internal representation. It would pre-
clude, for example, an alternative implementation that uses, instead of integer field val,
a pointer to a character string that represents the number using 0s and 1s.

Better specifications appear in Fig. 1, using ghost state to describe the ‘footprint’
of each cell, and postconditions from which the client can deduce disjointness of the
representations of c and d. Use of ghost state for footprints is a key part of the ‘dynamic
frames’ approach [8], and in addition to explicit disjointness conditions it supports sep-
aration reasoning based on freshness.

The example illustrates another challenging issue: one method (get) is used in the
specification of others (get,set). Here is an example of calling a pure method in a frame
condition: Instead of the ghost field footp one might choose to define a region-valued
method footpm. If footpm is only used in specifications, one may argue it should be
defined as part of the mathematical theory in which reasoning is carried out (though its
read effect would still be useful). But there are practical benefits to using programmed
methods in specifications, which can be justified provided that they are pure in the sense
of having no effects other than reading.

Use of pure methods, especially ones in the program rather than part of the ambient
mathematical theory, poses challenges. One is how to model such specifications without
inconsistency. For example, care must be taken for sound treatment of specifications like
method f(x: int): int ensures result = f(x)+1. Recursion aside, one may also wonder
about soundness of using a pure method in its own postcondition, e.g., get in Fig. 1,
or in its own frame condition: e.g., the read effect of footpm might be footpm()‘any
(making it ‘self-framing’). Another issue is that the specifications of get and set are
abstract, in the sense that they are consistent with many interpretations of the function
get (e.g., get could return self.val+7). Client code should respect the abstraction, i.e., be
correct with respect to any interpretation, whereas the expected implementations of get
and set are only correct with respect to the interpretation that returns self.val.

The issues discussed so far have been addressed in prior work, especially in the
context of verification-condition generation (VC-gen); see Sec. 7. However, most of the
VC-gen work takes axiomatic semantics for granted rather than defining and proving

soundness with respect to operationally grounded program semantics; the focus is on
methodological considerations and on encodings that work effectively with SMT-based
theorem provers. In these works, hypotheses are encoded as axioms, and linking of sep-
arately verified methods is implicit in the implementation of the VC-gen. The intricacies
of dealing with heap structure, framing, purity, and self-framing frame conditions have
led to soundness bugs in implemented verification systems (see [6]).

This paper provides a foundational account, by way of a conventional logic of pro-
grams that caters for SMT-provers by reasoning about framing using ghost state and
FOL, and that is proved sound with respect to a standard operational semantics. Our
account focuses on a proof rule for linking the implementation of an interface (i.e.,
collection of method specifications) with a client that relies on that interface.

The approach we take is motivated by two additional challenges. The first is infor-
mation hiding, in the sense that implementations rely on invariants on module-internal
data structures, but these invariants do not appear in the interface specification [7]. As
a contrived example, representing the integer cell using a string might have the invari-
ant that only 0 and 1 characters appear, without leading zeros. The invariant might be
exploited by a method getAsString, but it has no place in the interface specification of
method get which returns an integer. An alternative to hiding is to rely on abstraction: a
predicate whose definition is opaque in the interface can be defined internally to be the
invariant [15,11,9].

The second additional challenge arises from the practical need to use programmed
methods that are only observationally pure in the sense that they do have side effects
but these effects are benevolent [7] and not observable to clients. There are many exam-
ples, including memoization, lazy initialization, and path compression in Union-Find
structures. These may involve allocation of fresh objects and mutation of existing ones.

Strong encapsulation is critical both for hiding of invariants [7,14,1] and for obser-
vational purity [13]. Both involve linking a client with the implementation of a module,
where that implementation is verified against specifications different from those used
by clients of the module —hiding invariants and hiding effects. In prior work we de-
veloped region logic (RL), a Hoare logic for sequential object-based programs, using
standard FOL for assertions. By contrast with separation logic and permission-based
systems, in RL separation is expressed as disjointness of explicit footprints, following
the approach of dynamic frames. A benefit is that the verifier does not need to sup-
port separating conjunction; it comes at the cost of more verbose specifications. The
language features expressions that denote regions, i.e., sets of object references. The
logic provides a frame rule for local reasoning, based on frame conditions of methods
and a subsidiary judgment for framing of formulas (Fig. 10). In addition to ordinary
frame conditions, the logic formalizes encapsulation boundaries for modules, again in
the manner of dynamic frames. This supports a second-order frame rule for linking
method implementations to clients, hiding invariants [7,14].

In ongoing work, we have extended RL to a relational version, akin to [3,20,12] but
featuring a proof rule for representation independence. We plan to use this as basis for
a proof system that allows use of observationally pure methods in specifications, which
relies on relational consequences of encapsulation [7,13]. The problem is that general
relational reasoning depends on read effects in frame conditions, a non-trivial if not

earthshaking extension of RL. It deserves to be studied and presented in isolation from
the complications needed for encapsulation and information hiding.

This paper builds on RLI [2] and RLII [1], extending RL with pure method calls in
specifications and read effects in frame conditions. This involves adding read effects to
frame conditions for commands and for pure and impure methods.

Outline and contributions. Sec. 2 introduces the programming language and specifi-
cations, as well as the judgment of correctness under hypotheses. The latter is written
∆ ` C : P ; Q [ε]. It says that under precondition P command C does not fault; if
it terminates its final state satisfies Q and the computation’s effects are allowed by ε .
Moreover this conclusion is under hypothesis ∆ , a list of method specifications. What’s
new in this paper is read effects in ε and ∆ , and pure methods used in ∆ ,P ,C ,Q ,ε ,
specified in ∆ . Sec. 3 takes the first step towards defining semantics, sketching two
ways to interpret the hypotheses and pointing out a potential circularity. To dodge this
circularity, semantics of expressions and formulas is parameterized on the interpreta-
tion of pure methods. Sec. 4 formalizes an extensional semantics of read effects; this
is used to define correct interpretations of pure method specifications and to define the
denotation of impure method specifications. The latter is like a specification statement,
and is used in the operational semantics of programs; its first order semantics is justified
by a closure property that is our first technical result. Sec. 5 completes the semantics
of the correctness judgment, suitably instantiating the interpretation of pure methods
as motivated by the rule for linking. For C verified under hypothesis ∆ that specifies
pure method p called in C and/or used in the specification of C , linking discharges
the hypothesis. If the specification of p is unsatisfiable, it is not possible to instantiate
the interpretation as required by the linking rule. This shows that a separate satisfiabil-
ity check is not needed in a tool that correctly verifies the linked program, though the
check maybe be helpful to flag problems early.

Sec. 6 gives selected proof rules and states the main result, soundness of the rules.
Proofs and technical details that we gloss over can be found in the full version of the
paper. The proofs are intricate because we work directly with small-step operational
semantics, yet this is essential for the use of dynamic frames to provide flexible encap-
sulation of modules in RLII. But the proofs are elementary and do not involve fixpoints.

Sec. 7 briefly discusses related work. For future work, the next steps towards obser-
vational purity are (a) to extend the logic with second order framing, as in RLII but with
hiding of effects, and (b) to add weak purity which allows allocation though not other
effects (this is not hard but does add a few complications). Another step is to add read
effects and pure methods to our prototype SMT-based verifier for RL [16,17], which
already provides limited support for pure function definitions with framing, based on a
version of Leino’s Dafny. As a first step, we have successfully checked versions of the
Cell example by manual encoding in Why3, using SMT-provers only.

2 Programs, specifications, and correctness judgments

Fig. 2 illustrates features of our programming and specification notations, by way of the
Composite pattern, a well-known verification challenge problem [16,4]. A Comp is the
root of a tree, nodes of which are accessible to clients. Here is an example client:

class Comp {
private children: listOf(Comp);
specpublic parent: Comp; // (private but visible in specifications)
specpublic size: int := 1; // number of descendants
ghost desc: rgn; // set of descendants

method addChild(x: Comp)
requires x 6=null ∧x.parent = null ∧ ...
ensures // x is added as a child self

writes children, x.parent, ancestors(self)‘size, ancestors(self)‘desc
pure method getSize(): int
reads size ensures result = size

pure method ancestors(p: Comp): rgn

reads ancestors(p)‘desc, ancestors(p)‘parent
ensures result = { o ∈alloc | type(o,Comp) ∧p ∈o.desc } }

Fig. 2. Composite example, adapted from RLI. Ghost code maintains the invariant that desc is
the set of descendants.

var b, c, d: Comp; var i: int; ... i := d.getSize(); b.add(c); assert i = d.getSize();

To prove the assertion we want to frame the formula i = d.getSize() over the call b.add(c).
The frame condition of addChild says it is allowed to write self.children, x.parent, and
the size and desc fields of the ancestors of self. In method set (Fig. 1) we use ‘any to
abstract from field names, but here both size and desc are appropriate to make visible
in the interface. (See RLI for more discussion of this facet of information hiding.) The
frame condition would be less precise using ancestors(self)‘any.

In order to reason using the frame rule (Fig. 10), we establish a subsidiary judgment
written ` rd i ,d ,d .size frm i = d .getSize() which says the formula i = d .getSize()
depends only on the values of i , d , and d .size . The rules let us establish this judgment
based on the specification of getSize . The frame rule also requires us to establish va-
lidity of a so-called separator formula. This formula is determined from the frame of
the formula and from the write effect of addChild. The function ·/. generates the sep-
arator formula and is defined by recursion on syntax.3 In the example, we compute
ε ·/. (rd i ,d ,d .size), where ε is the write effect of addChild. The formula is the disjoint-
ness {d} # ancestors(b), which says the singleton region {d} is disjoint from the set of
ancestors. It needs to hold following the elided part of the example client. In general,
η ·/. ε is a formula which implies that the locations writable according to ε are disjoint
from the locations readable according to η .

Fig. 3 gives the grammar of programs, revised from RLII to allow method calls in
expressions. We assume given a fixed collection of classes. A class has a name and
some typed fields. We do not formalize dynamic dispatch or even associate methods
with classes; so the term ‘method’ is just short for procedure. For expository clarity
methods have exactly one parameter (plus res for pure methods).

3 Please note that ·/. is not syntax in the logic; it’s a function in the metalanguage that is used to
obtain formulas from effects; see Sec. 6.

m,p ∈MethName x ,y ∈VarName f ,g ∈ FieldName K ∈DeclaredClassNames

(Types) T ::= int | rgn |Obj |K
(Program Expressions) E ::= x | c | null | E ⊕E | m(E)where c is in Z, ⊕ is in {=,+, . . .}
(Region Expressions) G ::= ∅ | x | {E} |G‘f |G⊗G | m(F) where ⊗ is in {∪,∩,\}
(Expressions) F ::= E |G
(Commands) C ::= skip | x := F | x := newK | x := x .f | x .f := F

| if E then C else C | while E do C | C ;C | var x :T in C

| m(x) | letm(x :T) = C in C | letm(x :T , res:U) = C in C

Fig. 3. Programming language, highlighting additions to RLII [1].

The linking construct let m(x :T , res:U) = C in C ′ designates that m is pure, with
return type U , as indicated by the distinguished variable name res. It binds x , res, and
m in C , and m in C ′. Calls of m are expressions and pass a single argument. The body
C is executed in a state with both x and res, the latter initialized to the default value for
type U . The final value of res is the value of the call expression. The linking construct
let m(x :T) = C in C ′ designates that m is impure; command m(y) depicts its call.

Typing contexts, ranged over by Γ , are finite maps, written in conventional form.
The judgment Γ `E : T means that E is well-formed and has type T . The typing rules
straightforward. A command C is well-formed in context Γ provided that it is typable,
i.e., Γ ` C , and in addition method call expressions m(F) occur only in assignments
x :=m(F) to a simple variable and with F free of method calls.

Values of type K are references to objects of class K (including the improper ref-
erence null). Value of type rgn are sets of references of any type. If Γ ` G : rgn then
Γ `G‘f : rgn for any field name f of region or reference type. In case f : K , the value
of G‘f is the set of f -values of objects in G . In case f : rgn, the value of G‘f is the
union of the f -values. Aside from allocation and dereference (in the command forms
x := y .f and y .f := F), the only operation on references is equality test.

The syntax of formulas is standard and unchanged from RLI (Sec. 4.2), except that
now the expressions include method calls, as in the points-to predicate x .f = E and
region containment G ⊆G ′.

P ::= E = E | x .f = E | G ⊆G | (∀x : K ∈G .P) | P ∧P | ¬P

The formula ∀x : K ∈G .P quantifies over all non-null references of type K in G . For
disjointness of regions it is convenient to write G #H for G ∩H ⊆ {null}.

Specifications. Effects are given by ε::= rdx | rdG‘f | wrx | wrG‘f | frG | ε,ε |
(empty). Effects must be syntactically well-formed (swf) for the context Γ in which
they occur: rdx and wrx are swf if x ∈ dom(Γ); rdG‘f , wrG‘f , and frG are swf if
G is swf in Γ . In particular, if G is a call m(F) to a pure method, then it must be that
Γ ` m(F) : rgn. The freshness effect frG says the value of G in the final state con-
tains only (but not necessarily all) references that were not allocated in the initial state.
Later we use the term ’well-formed’, without qualification, to mean in addition that the
expressions do not depend on pure methods invoked outside their preconditions.

Specifications for impure methods take the form (x :T)R ; S [η] and for pure
methods the form (x :T , res:U)R ; S [η]: x is the parameter (passed by value), R the

df(m(F),∆) = df(Px
F ,∆)∧df(F ,∆)∧Px

F where ∆(m) = (x : T , res : U)P ;Q [ε]
df(x .f = E ,∆) = x 6= null⇒ df(E ,∆)
df(G1 ⊆G2,∆) = df(G1,∆)∧df(G2,∆)
df(∀x : K ∈G .P ,∆) = df(G ,∆)∧∀x : K ∈G .df(P ,∆)
df(P1∧P2,∆) = df(P1,∆)∧ (P1⇒ df(P2,∆))

Fig. 4. Definedness formulas for expressions and formulas (selected), for swf method context ∆ .

precondition, S the postcondition, and η the effects. For these specifications to be swf
in context Γ , η must not include wrx . (This is standard in Hoare logic; postconditions
refer to initial parameter values.) Moreover, R must be typable in Γ ,x :T . Both S and
η must be typable in Γ ,x :T , for the impure form or Γ ,x :T , res:U , for the pure form.
Finally, for the pure method there can be no write effects in η . Although the body of a
pure method will write res, the semantics is a return value, not an observable mutation
of state. In this paper, there’s no need for impure methods to have read effects, but they
will be needed for reasoning about data abstraction and observational purity. In any
context Γ , there is a read effect that imposes no restriction: rdvars(Γ), rdalloc‘any.

A method context ∆ is a finite map from method names to specifications. We are
interested in specifications that may refer to global variables declared in some typing
context Γ . Moreover, specifications in ∆ are allowed to refer to any of the pure methods
in ∆ ; the specification of p may have calls to p in its post-condition and effect, or
p and m may refer mutually to each other —subject to the restriction that calls in
preconditions must exhibit acyclic dependency. To make this restriction precise, we
define a relation ≺∆ on method names: m ≺∆ m ′ iff m ′ occurs in the precondition of
∆(m). Now we can define what it means for a context ∆ to be swf in Γ . First, the
transitive closure, ≺+

∆
, is irreflexive. Second, the domains of Γ and ∆ are disjoint and

each specification is swf in the context vars(Γ),sigs(∆). Here sigs extracts the types
of methods. For example, let ∆0 be m : (x :T)R ; S [η], p : (y :V , res:U)P ; Q [ε].
Then sigs(∆0) is m : (x :T), p : (y :V , res:U). Also vars discards method declarations.

A correctness judgment takes the form ∆ `Γ C : P ; Q [ε]. It is swf iff ∆ is swf
in Γ and C ,P ,Q ,ε are all swf in vars(Γ),sigs(∆). We often elide Γ .

Sound proof rules for correctness judgments prevent a pure method from being
applied outside its precondition, to avoid the need to reason about undefined or faulty
values. As is common in VC-generation, we use definedness formulas, see Fig. 4. The
idea is that in states where df(P ,∆) holds, evaluation of P does not depend on values of
pure methods outside their preconditions. Although the clause for df(m(F),∆) refers
to a method specification that may refer to another pure method in its precondition, df
is well-defined, owing to the requirement that ≺+

∆
is irreflexive (and dom ∆ is finite).

An expression or formula will be considered well-formed if its definedness formula
is valid, in addition to it being swf. To define validity, we proceed to semantics.

3 Semantics of expressions and formulas

There are two approaches to semantics of a judgment ∆ ` C : P ;Q [ε]. The first goes
by quantifying over all correct implementations of the procedures specified by ∆ . The
second goes by using nondeterminacy to represent a ‘worst implementation’ of each

procedure, akin to the ‘specification statement’ used in axiomatic semantics. The second
avoids a quantification and has been found to be quite effective [14,1]; we use it for
impure methods (and in so doing show how the specification statement can include read
effects). However, for pure method calls in formulas conventional semantics requires
determinate values, so we use the first approach for pure methods.4

The transition semantics uses an environment for let-bound methods. A call to such
m results in execution of the body found in the method environment. By contrast, if
m is declared in ∆ then its call is a single step in accord with its specification. If m
is impure, the step goes to any state allowed by the specification ∆(m); we describe
this by a relation [[∆(m)]] (Def. 2). If m is pure, we need a determinate result value
but no change of state. So we use a function θ(m) to provide this value. The semantics
of a correctness judgment (Def. 5) quantifies over all θ such that θ(m) conforms to
the specification ∆(m) for each m in dom ∆ (Def. 3). This is similar to an axiomatic
semantics where θ(m) is an uninterpreted function constrained by ∆(m).

To define what it means for θ(m) to conform, and to define [[∆(m)]], we need
semantics of expressions, formulas, and effects —and these depend on the meaning
of pure method calls. To break this circularity, we define in this section a notion of
candidate interpretation, and define the semantics of formulas and expressions with
respect to any candidate interpretation θ .

We assume given an infinite set Ref of reference values including a distinguished
‘improper reference’ null . A Γ -state is comprised of a global heap and a store. The
store is a type-respecting assignment of values to the variables in Γ and to the variable
alloc : rgn which is special. Updates of alloc are built into the program semantics so that
alloc holds the set of all allocated references. We write σ(x) for the value of variable x
in state σ , σ(o.f) to look up field f of object o in the heap, Dom(σ) for the variables
of σ , and [[Γ]] for the set of Γ -states. We write [[T]]σ for the set of values of type T in
state σ . Thus [[int]]σ = Z and [[K]]σ = {null}∪ {o|o ∈ σ(alloc)∧Type(o,σ) = K}.
Besides states, we use the faulting outcome for runtime errors (null-dereference), and
also to signal precondition violations as described later.

For a typing context Γ , a candidate Γ -interpretation θ is a mapping from the pure
method names in Γ such that if Γ (m) = (x : T , res : U) then θ(m) is a function such
that for any T -value t and state σ , θ(σ , t) is a U -value or . To be precise, θ(m) has
the dependent type (σ ∈ [[Γ]])× [[T]]σ→ ([[U]]σ ∪{ }). A candidate ∆ -interpretation
is just a candidate sigs(∆)-interpretation.

The denotation of an expression F in candidate Γ -interpretation θ and state σ is
written [[F]]θ σ and defined straightforwardly, see Fig. 5. The second line in the figure
is for application m(F) of a pure method: evaluate F to get a value v , then apply the
function θ(m) to the pair (σ ,v). Using the semantics for expressions we define the 3-
valued semantics of formulas in Fig 6. We also define σ |=Γ

θ
P iff [[P]]θ σ = true. Fig. 7

shows that when the definedness formulas hold, the usual 2-valued clauses hold.

4 This does not preclude nondeterminacy modulo an equivalence relation, which is especially
important for ‘weakly pure’ methods that return freshly allocated references [13]. For VCs this
is explored in [10].

[[E1 +E2]]θ σ = let v1 = [[E1]]θ σ in let v2 = [[E2]]θ σ in v1 +v2
[[m(F)]]θ σ = let v = [[F]]θ σ in θ(m)(σ ,v)

[[{E}]]θ σ = let v = [[E]]θ σ in {v}
[[G‘f]]θ σ = let X = [[G]]θ σ in {σ(o.f) | o ∈X ∧o 6= null ∧Type(o,σ) = DeclClass(f)}

if f : K for some K

= let X =[[G]]θ σ in
⋃
{σ(o.f) | o ∈X ∧o 6= null ∧Type(o,σ) = DeclClass(f)}

if f : rgn
Fig. 5. Semantics of selected program and region expressions, for state σ and candidate interpre-
tation θ . We use the -strict let-binder, i.e., ‘let v =X in Y ’ denotes if X denotes .

[[E1 = E2]]θ σ = let v1 = [[E1]]θ σ in let v2 = [[E2]]θ σ in if v1 = v2 then true else false
[[x .f = E]]θ σ = if σ(x) = null then false else let v = [[E]]θ σ in

if σ(x .f) = v then true else false
[[x .f = E]]θ σ = let v = [[E]]θ σ in if σ(x) 6= null and σ(x .f) = v then true else false
[[G1 ⊆G2]]θ σ = let X1 = [[G1]]θ σ in let X2 = [[G2]]θ σ in if X1 ⊆X2 then true else false
[[Γ ` ∀x : K∈G .P]]θ σ = if [[G]]θ σ = or [[Γ ,x : K ` P]]θ Extend(σ ,x ,o) =

for some o in ([[G]]θ σ)\{null} with Type(o,σ) =K
= true if [[Γ ,x : K ` P]]θ Extend(σ ,x ,o) = true

for all o in ([[G]]θ σ)\{null} with Type(o,σ) =K
= false otherwise

Fig. 6. Formulas: three-valued semantics, [[Γ ` P]]θ σ ∈ {true, false, }. Typing context is elided
in most cases.

4 Semantics of effects and programs

Effects. A location is either a variable name x or a heap location comprised of a refer-
ence o and field name f . We write o.f for such pairs. Define rlocs(σ ,θ ,ε), the loca-
tions designated by read effects of ε , in σ , by rlocs(σ ,θ ,ε) = {x | ε contains rdx}∪
{o.f | ε contains rdG‘f with o ∈ [[G]]θ σ}. Define wlocs similarly, for write effects.

Write effects constrain what locations are allowed to change between one state and
another. We say ε allows change from σ to τ under θ , written σ→τ |=θ ε , provided
(a) if y changed value (i.e., τ(y) 6= σ(y)) then wry is in ε; (b) if o.f changed value
then there is wrG‘f in ε such that o ∈ [[G]]θ σ ; and (c) if frG is in ε then elements
of G in τ are fresh. Reads are ignored, so σ→τ |=θ ε iff σ→τ |=θ writes(ε). In (b),
region expressions G are interpreted in the initial state because frame conditions need
only report writes to fields of pre-existing objects and not freshly allocated objects.

Read effects constrain what locations an outcome can depend on. Dependency is
expressed by considering two initial states that agree on the locations deemed readable.
Agreement needs to take into account variation in allocation, as two states may have
isomorphic pointer structure but differently chosen references.

Let π range over partial bijections on Ref . We write π(p) = p ′ to express that π is
defined on p and has value p ′. A refperm from σ to σ ′ is partial bijection π such that

– dom(π)⊆ σ(alloc)∪{null} and rng (π)⊆ σ ′(alloc)∪{null}
– π(null) = null
– π(p) = p ′ implies Type(p,σ) = Type(p ′,σ ′) for all proper references p,p ′

σ |=θ E1 = E2 iff [[E1]]θ σ = [[E2]]θ σ

σ |=θ x .f = E iff σ(x) 6= null and σ(x .f) = [[E]]θ σ

σ |=θ G1 ⊆G2 iff [[G1]]θ σ ⊆ [[G2]]θ σ

σ |=Γ
θ
∀x : K∈G .P iff Extend(σ ,x ,o) |=Γ ,x :K

θ
P

for all o in ([[G]]θ σ)\{null} with Type(o,σ) =K

σ |=θ P1∧P2 iff σ |=θ P1 and σ |=θ P2
σ |=θ ¬P iff σ 6|=θ P

Fig. 7. Two-valued semantics.These clauses hold when σ |=θ df(P ,∆) (Lemma 6).

Define p
π∼ p ′ to mean π(p) = p ′. We extend π∼ to a relation on integers by i

π∼ j iff
i = j . For reference sets X ,Y we define X

π∼ Y iff π(X) ⊇ Y and X ⊆ π−1(Y)
(where π(X) is the direct image of X). That is, π forms a bijection between X and Y .

Define freshLocs(σ ,τ)= {p.f |p ∈ freshRefs(σ ,τ)∧f ∈Fields(Type(p,τ))}where
freshRefs(σ ,τ) = τ(alloc)\σ(alloc). For a set W of variables and heap locations, de-
fine Lagree(σ ,σ ′,W ,π) iff ∀x ∈W .σ(x)

π∼ σ ′(x) and ∀(o.f) ∈W . o ∈ dom(π)∧
σ(o.f)

π∼ σ ′(π(o).f).

Definition 1 (agreement on read effects) Let ε be an effect that is swf in Γ . Consider
states σ ,σ ′. Let π be a partial bijection. Let θ be a candidate interpretation (for some ∆

that is swf in Γ). Say that σ and σ ′ agree on ε modulo π , written Agree(σ ,σ ′,ε,π,θ),
iff Lagree(σ ,σ ′, rlocs(σ ,θ ,ε),π). Define Agree(σ ,σ ′,ε,θ) = Agree(σ ,σ ′,ε,π,θ)
where π is the identity on σ(alloc)∩σ ′(alloc).

Programs. In the following we consider a method context ∆ that is well-formed in some
typing context Γ (often elided). For substitution we use the notation Px

e . For clarity we
use substitution notation in satisfaction statements, even though strictly speaking the
syntax does not (and should not) include reference literals. If Γ ,x : T `P and σ ∈ [[Γ]]

and v ∈ [[T]]σ , we may write σ |=Γ
θ
Px
v to abbreviate Extend(σ ,x ,v) |=Γ ,x :T

θ
P .

The transition relation depends on a method context ∆ . Configurations take the form
〈C , σ , µ〉where µ is a method environment. The call of a let-bound method m executes
the body µ(m) with variables renamed to avoid clashes with the calling context. In case
of a pure method the call takes the form y :=m(F) and there is some extra bookkeeping
to assign the final value of res (or rather, a fresh instance thereof) to y .

The transition semantics for pure method call y :=m(F) takes a step that assigns to
y the value [[m(F)]]θ σ (defined in Fig. 5). The transition semantics of a call m(z), for
impure m in ∆ , takes a single step to a final state (or) that satisfies the specification
∆(m). Such states are described by the denotation [[∆(m)]] of the specification.

Definition 2 (Denotation of impure method spec) Let ∆ be swf and let (x :T)R ;

S [η] be in ∆ . Let θ be a candidate interpretation of ∆ and z a variable name. Then
[[(x :T)R ; S [η]]](θ ,z) is defined as follows, for any Γ1 ⊇ Γ and Γ1-states σ ,τ :

(i) [[(x :T)R ; S [η]]](θ ,z)σ iff σ 6|= Rx
z

(ii) [[(x :T)R ; S [η]]](θ ,z)στ iff
(a) σ |=Γ1

θ
Rx

z and τ |=Γ1
θ
S x
z and σ→τ |=θ ηx

z and

[[∆(m)]](θ ,z)σ τ

〈m(z), σ , µ〉 ∆ ,θ7−→ 〈skip, τ, µ〉

[[∆(m)]](θ ,z)σ

〈m(z), σ , µ〉 ∆ ,θ7−→

[[m(F)]]θ σ 6= τ = [σ |x : [[m(F)]]θ σ]

〈x :=m(F), σ , µ〉 ∆ ,θ7−→ 〈skip, τ, µ〉

[[m(F)]]θ σ =

〈x :=m(F), σ , µ〉 ∆ ,θ7−→

Fig. 8. Transition rules for calls of impure and pure procedures in context ∆ .

(b) for all σ ′,π , if Agree(σ ,σ ′,ηx
z ,π,θ) and σ ′ |=Γ1

θ
Rx

z then there are τ ′,ρ with
– τ ′ |=Γ1

θ
S x
z and σ ′→τ ′ |=θ ηx

z

– ρ ⊇ π and freshRefs(σ ′,τ ′)⊆ ρ(freshRefs(σ ,τ))
– Lagree(τ,τ ′,X ,ρ) where X = freshLocs(σ ,τ)∪wlocs(σ ,θ ,ηx

z)

It is item (ii)(b) that is new in this paper; the rest is from RLII. Note that X is defined
by interpreting η in the initial state.

A state σ may have no successor because the specification is unsatisfiable at σ . Un-
satisfiability may be due to the postcondition, but it can also happen that τ satisfies the
postcondition but not the read effect. The specification (x :Cell)true ; y = x .val [wry]
is unsatisfiable: y cannot be set to x .val without reading {x}‘val or having a stronger
precondition like y = x .val .

Although specifications include read effects —a relational property— the denota-
tion of a specification need not be defined as an extreme solution to constraints includ-
ing that relational property. The elementary definition above has the property that any
τ ′ that satisfies the conditions in (ii) is a possible successor of σ ′, i.e., the denotation
is closed in the sense that it includes the pair σ ′,τ ′. This is made precise in Thm. 9.
The condition freshRefs(σ ′,τ ′) ⊆ ρ(freshRefs(σ ,τ)) in (ii)(b) was not immediately
obvious but is crucial for Thm. 9.

With all the ingredients in hand, the transition semantics can be defined; see Fig. 8.

5 Semantics of correctness judgments

To link a client C with implementation B of a method m used by C we want C to
be correct for all interpretations of the method context. But reasoning about B can
use a particular interpretation for m . Such an interpretation might be provided di-
rectly, as a mathematical definition provided by the programmer, or it might be de-
rived from the code as it is in work on VC generation for pure methods [5]. Here
we treat such interpretations semantically. To that end, we generalize the correctness
judgment form to ∆ ;θ `Γ C : P ; Q [ε]. For this to be swf, θ should be a can-
didate interpretation of some subset of ∆ , and ∆ `Γ C : P ; Q [ε] should be swf
as defined in Sec. 2. The original form is essentially the special case where θ is the
empty function. The generalized correctness judgment is important for the linking rule,
which we introduce here in abridged form. We consider a single method specification
Θ ≡ m : (x :T , res:U)Q ; Q ′, we elide effects, and the partial interpretation of the

ambient library ∆ is empty.

∆ ,Θ ;∅ ` C : P ; P ′ ∆ ,Θ ;θ ` B : Q ;Q ′ dom θ = {m} θ |= ∆ ,Θ

∆ ;∅ ` letm(x :T , res:U) = B in C : P ; P ′
(1)

A client C is linked with the implementation B of a pure procedure m . The verification
condition for C is under the hypothesis of some specifications ∆ ,Θ which include the
specification Θ of m . The rule may only be instantiated with swf judgments, so ∆ is
swf (as it appears in the conclusion) and the larger method context ∆ ,Θ is also swf.

According to the semantics to follow, the judgment for C means that it is correct
with respect to any interpretation ϕ of all the pure procedures in ∆ ,Θ . The verification
condition for B also has hypothesis ∆ ,Θ for procedures that may be called in B or
used in its specification, and B must be correct with respect to any interpretation of the
pure procedures in ∆ , but fixed interpretation θ of m . The rule requires that in fact θ

is an interpretation of Θ , meaning that θ(m) satisfies the specification of m . Because
this specification may refer to pure methods in the ambient context ∆ , satisfaction is
expressed as θ |= ∆ ,Θ . This is defined in terms of the following.

Definition 3 (context interpretation) Let ∆ be swf in Γ and let θ be a candidate ∆ -
interpretation. (Note that dom θ = dom ∆ .) Say θ is a ∆ -interpretation iff the following
holds for each m : (x :T , res:U)P ;Q [ε] in ∆ . For any σ ∈ [[Γ]] and v ∈ [[T]]σ ,

(a) θ(m)(σ ,v) = iff σ 6|=θ Px
v

Furthermore, if σ |=θ Px
v then letting w = θ(m)(σ ,v) we have

(b) σ |=θ Qx ,res
v ,w

(c) for any σ ′ ∈ [[Γ]], v ′ ∈ [[T]]σ ′ with σ ′ |=θ Px
v ′ , and any refperm π from σ to σ ′,

if v π∼ v ′ and Agree(σ ,σ ′,ε,π,θ) then w
π∼ w ′ where w ′ = θ(m)(σ ′,v ′)

Definition 4 (partial context interpretation) Let ∆ be swf and ∆ ,Θ be swf. Let θ be
a candidate interpretation of Θ . We say θ is a partial interpretation of ∆ ,Θ , written
θ |= ∆ ,Θ , provided that for any ∆ -interpretation δ , the candidate δ ∪ θ is a (∆ ,Θ)-
interpretation.5

Definition 5 (valid judgment) A swf correctness judgment ∆ ;θ `Γ C : P ;Q [ε] is
valid iff the following conditions hold for all Γ -environments µ , all ∆ -interpretations

δ such that θ ⊆ δ , and all states σ such that σ |=Γ ,sigs(∆)

δ
P .

(Safety) It is not the case that 〈C , σ , µ〉 ∆ ,δ7−→∗ .

(Post) τ |=δ Q for every τ with 〈C , σ , µ〉 ∆ ,δ7−→∗ 〈skip, τ, µ〉
(Effect) σ→τ |=δ ε for every τ with 〈C , σ , µ〉 ∆ ,δ7−→∗ 〈skip, τ, µ〉

5 Under these conditions, if the specifications in Θ refer to methods in ∆ , Θ is not swf on its
own, and then it is not meaningful to call θ a Θ -interpretation.

(Read Effect) for any τ such that 〈C , σ , µ〉 ∆ ,δ7−→∗ 〈skip, τ, µ〉, and any σ ′,π,τ such
that Agree(σ ,σ ′,ε,π,δ) and σ ′ |=Γ

δ
P , there are τ ′,ρ such that

〈C , σ ′, µ〉 ∆ ,δ7−→∗ 〈skip, τ ′, µ〉 and ρ ⊇ π and freshLocs(σ ′,τ ′)⊆ ρ(freshLocs(σ ,τ))
and Lagree(τ,τ ′,X ,ρ) where X = freshLocs(σ ,τ)∪wlocs(σ ,δ ,ε).

In case ∆(m) is unsatisfiable (except possibly by divergence), no ∆ -interpretation ex-
ists. Then the judgment holds but the hypotheses cannot be discharged by linking be-
cause there is no way to instantiate θ in rule (1).

The definitions up to this point apply even if pure methods are called outside their
precondition. For understandable proof rules, and to stay within FOL for assertions,
we will disallow such specifications and correctness judgments.

Lemma 6 (two-valued semantics of formulas) If θ is a ∆ -interpretation and σ |=θ

df(P ,∆) then [[P]]θ σ is not . And for any σ and any ∆ -interpretation θ , if σ |=θ

df(P ,∆) then σ |=θ P satisfies the usual defining clause, see Fig. 7.

Definition 7 Let Γ be a typing context and let ∆ be a specification context that is swf
in Γ . Let P be a formula that is swf in vars(Γ),sigs(∆). Then P is ∆ -valid, written
∆ |= P , if and only if σ |=θ P for all ∆ -interpretations θ and all states σ .

Definition 8 (healthy, well-formed) Let Γ and ∆ satisfy the conditions of Def. 7. A
formula P that is swf is healthy iff df(P ,∆) is valid. A swf specification P ; Q [η]
is healthy (with respect to Γ ,∆) iff the three formulas df(P ,∆), P ⇒ df(Q ,∆), and
P ⇒ df(η ,∆) are ∆ -valid. A swf correctness judgment ∆ ;θ `Γ C : P ; Q [η] is
healthy iff the three formulas df(P ,∆), P⇒ df(Q ,∆), and P⇒ df(η ,∆) are ∆ -valid.
The term well-formed means swf and healthy.

The definitions to this point are intricate but elementary; in particular, there are no
fixpoints. But by contrast with axiomatic semantics, correctness is directly grounded in
a conventional operational semantics. The one unconventional element is that transition
semantics depends on method context. The ultimate confirmation that we are reasoning
about program behavior is soundness of the linking rule, which can be used to discharge
all hypotheses.

6 Proof system

The framing judgment has the form P ;∆ ` η frm Q and is swf under evident con-
ditions. It means that in P -states, Q reads within the read effect η . The judgment is
healthy iff the formulas df(P ,∆), P ⇒ df(η ,∆), and P ⇒ df(Q ,∆) are all ∆ -valid.
The judgment is valid, written P ;∆ |=Γ η frmQ , iff for all Γ -states σ ,σ ′, refperms π ,
and ∆ -interpretations θ , if Agree(σ ,σ ′,η ,π,θ), and σ |=Γ

θ
P ∧Q , then σ ′ |=Γ

θ
Q .

A verifier can check framing judgments in terms of the validity property, but our
logic includes rules to derive framing judgments. A basic rule allows to infer, for atomic
formula P , the judgment true;∆ ` ftpt(P ,∆) frm P concerning a precise footprint
computed by function ftpt which is defined in Fig. 9. For non-atomic formulas there are

ftpt(x ,∆) = rdx ftpt(E = E ′,∆) = ftpt(E ,∆), ftpt(E ′,∆)

ftpt(G‘f ,∆) = rdG‘f , ftpt(G ,∆) ftpt(G1 ⊆G2,∆) = ftpt(G1,∆), ftpt(G2,∆)
ftpt(∅,∆) = ∅ ftpt(x .f = F ,∆) = rdx ,x .f , ftpt(F ,∆)
ftpt(m(F),∆) = reads(εxF), ftpt(F ,∆) for ∆(m) = (x : T , res : U)P ;Q [ε]

Fig. 9. Footprints of region expressions and atomic assertions well-formed in ∆ .

syntax-directed rules, e.g., the rule for conjunction allows to infer P ;∆ ` ε frmQ1∧Q2
from P ;∆ ` ε frm Q1 and P ∧Q1;∆ ` ε frm Q2. There are also subsidiary rules for
subsumption of effects and for logical manipulation of P . These rules are adapted in a
straightforward way from RLI (Sec. 6.1).

The point of establishing P ;∆ ` η frm Q is that code that writes outside η cannot
falsify Q . This is expressed in the frame rule by computing, from the frame η of Q and
the frame condition ε of the code, a separator formula which is a conjunction of region
disjointness formulas describing states in which writes allowed by ε cannot affect the
value of a formula with read effect η . We define the separator formula as η ·/. ε , using
function ·/. which recurses on syntax (see RLI Sec. 6.2). For example, rdG‘f ·/.wrH ‘g
is true , and rdG‘f ·/. wrH ‘f is the disjointness formula G #H . Also, rdx ·/. wry is
simply false , if x and y are the same variable, and true otherwise. Writes on the left
and reads on the right are ignored, so η ·/. ε is the same as reads(η) ·/.writes(ε).

The key property of a separator is to establish the agreement to which frame validity
refers. To be precise, suppose σ→τ |=θ ε and σ |=θ η ·/. ε . Then Agree(σ ,τ,η , id ,θ),
where id is the identity on σ(alloc).

An effect ε is called self-framing in method context ∆ provided that for every
rdG‘f or wrG‘f in ε , ftpt(G ,∆) is in ε . Such effects arise, for example, in case a
method refers to itself in its frame condition. So are effects obtained using the ftpt
function and most of the framing rules. For self-framing ε , if Agree(σ ,σ ′,ε,π,θ) then
[[G]]θ σ

π∼ [[G]]θ σ ′ for any rdG‘f or wrG‘f in ε .

Theorem 9 (denotation closure). Suppose η is self-framing and θ is a ∆ -interpretation.
If [[(x :T)R ; S [η]]](θ ,z)στ then [[(x :T)R ; S [η]]](θ ,z)σ ′τ ′, provided that σ ′,τ ′

satisfy the conditions in Def. 2(ii).

Proof rules for correctness judgments. Fig. 10 presents a few proof rules. They are to
be instantiated only with well-formed premises and conclusions (Def. 8). The first, for
field update, is a ‘local axiom’ that precisely describes the effect; it shows how read
effects can easily be incorporated into the rules from RLI (Sec. 7.1) and RII (Sec. 7.1).
Next is the frame rule, adapted from RLI/II by adding ∆ to the side conditions. Then
come rules for impure and pure method calls. For reasons of parsimony we make self-
framing an explicit premise where needed for soundness. It turns out that in non-trivial
provable judgements the frame conditions in the method context will be self-framing.

We give an illustrative rule for linking a client with a method implementation. The
general rule allows several pure and impure methods that may refer to each other in
their specifications and code (of course, subject to the proviso concerning ≺+

∆
in the

definition of swf method context in Sec. 2). Predicate terminates(Q ,B) says that from
any Q-state, B terminates (normally or abnormally). One premise is that partial (∆ ,Θ)-

∆ ;∅ ` x .f := F : x 6= null∧y = F ; x .f = y [wrx .f , rdx , ftpt(F ,∆)]

FRAME
∆ ;θ ` C : P ;Q [ε] P ;∆ ` η frmR ∆ ;θ |= P ∧R⇒ η ·/. ε

∆ ;θ ` C : P ∧R ;Q ∧R [ε]

∆ ;θ ` C : P ;Q [ε]

∆ ;θ ∪θ
′ ` C : P ;Q [ε]

ε is self-framing
m : (x :T)P ;Q [ε];∅ ` m(z) : Px

z ;Qx
z [εxz]

x 6∈Vars(H)∪FV (Q)

m : (y :T , res:U)P ;Q [ε];∅ ` x :=m(H) : Py
H ;Qy ,res

H ,x [wrx , ftpt(H ,∆),εyH]

Θ is m : (x :T , res:U)Q ;Q ′ [η] dom θ = dom Θ θ |= ∆ ,Θ

∆ ,Θ ;δ `Γ C : P ; P ′ [ε] ∆ ,Θ ;δ ∪θ `Γ ,x :T ,res:U B : Q ;Q ′ [wrres, rdx ,η]
η is wr -free and self-framing terminates(Q ,B)

∆ ;δ `Γ letm(x :T , res:U) = B in C : P ; P ′ [ε]

Fig. 10. Proof rules for field update, framing, interpreting, pure/impure calls, and linking.

interpetation θ is provided; it gives the chosen interpretation for m , to be used in ver-
ifying the body B . By contrast, the premise for C requires correctness with respect to
all interpretations of m .

Theorem 10. Any derivable correctness judgment is valid.

7 Related work

We take the Cell example from the most closely related work, [18], where read effects
of pure methods are specified using dynamic frames and methods may be self-framing.
They define (and implement) a VC-generator including VCs that encode the semantics
of read effects, albeit only for a pair of states in succession. (That avoids the need for
refperms, and suffices for framing but not relational reasoning for data abstraction and
encapsulation.) They give a detailed proof of soundness with respect to transition se-
mantics, by showing that the VCs ensure a small-step invariant that implies correctness
and fault-avoidance. Axioms are included (and proved sound) to exploit read effects for
framing. Different from our work, the body of a pure method is required to be a single
‘return E’ statement and E is visible to clients; and pure methods do not have postcon-
ditions. (Their implementation does include such postconditions.) Although VCs are
generated modularly, we do not discern an explicit account of linking, or an easy adap-
tation to cater for hiding a pure method body or invariants from clients. As usual in
practical systems, the syntax embeds specifications in programs, as opposed to judg-
ments that ascribe properties to programs.

A number of earlier works point out the importance of read effects for pure methods
and explore VC-generation, e.g. [5], explore weak purity which allows allocation, and
shows consistency of a system of VCs (but not operational soundness). The analog of
consistency, in our setting, is being able to discharge hypotheses in the linking rule.

Framing in separation logic encompasses read and write effects, implicitly in syntax
but explicitly in the semantics (safety monotonicity, frame property [14]). Whereas self-
framing is a property of effects, in our setting, it is a property of formulas in other
settings. In separation logic, all assertions are effectively self-framing. The abstract
predicates approach [15] to data abstraction has inspired several works that cater for
SMT provers by using ghost instrumentation to encode intensional semantics of effects
in terms of permissions. One provides a VC generator and sketches an argument for its
operational soundness [6]. Another gives a detailed semantics and soundness proof for
VCs that provide effective reasoning about recursively defined abstract predicates and
abstraction functions [19]. The latter works have extensive pointers to related work.

References

1. A. Banerjee and D. A. Naumann. Local reasoning for global invariants, part II: Dynamic
boundaries. Journal of the ACM, 60(3):19:1–19:73, 2013.

2. A. Banerjee, D. A. Naumann, and S. Rosenberg. Local reasoning for global invariants, part
I: Region logic. Journal of the ACM, 60(3):18:1–18:56, 2013.

3. N. Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In POPL, 2004.

4. F. Bobot and J.-C. Filliâtre. Separation predicates: A taste of separation logic in first-order
logic. In ICFEM, 2012.

5. A. Darvas and P. Müller. Reasoning about method calls in interface specifications. Journal
of Object Technology (JOT), June 2006.

6. S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification condition generation for
permission logics with abstract predicates and abstraction functions. In ECOOP, 2013.

7. C. A. R. Hoare. Proofs of correctness of data representations. Acta Inf., 1:271–281, 1972.
8. I. T. Kassios. The dynamic frames theory. Formal Aspects of Comp., 23(3):267–288, 2011.
9. N. R. Krishnaswami, J. Aldrich, and L. Birkedal. Verifying event-driven programs using

ramified frame properties. In TLDI, 2010.
10. K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In ESOP, 2008.
11. A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and mutable

ADTs in Hoare type theory. In ESOP, 2007.
12. A. Nanevski, A. Banerjee, and D. Garg. Dependent type theory for verification of informa-

tion flow and access control policies. ACM Trans. Program. Lang. Syst., 35(2):6, 2013.
13. D. A. Naumann. Observational purity and encapsulation. Theoretical Comput. Sci.,

376(3):205–224, 2007.
14. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. ACM Trans.

Prog. Lang. Syst., 31(3):1–50, 2009.
15. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL, 2005.
16. S. Rosenberg, A. Banerjee, and D. A. Naumann. Local reasoning and dynamic framing for

the composite pattern and its clients. In VSTTE, 2010.
17. S. Rosenberg, A. Banerjee, and D. A. Naumann. Decision procedures for region logic. In

VMCAI, 2012.
18. J. Smans, B. Jacobs, F. Piessens, and W. Schulte. Automatic verification of Java programs

with dynamic frames. Formal Aspects of Comp., 22(3-4):423–457, 2010.
19. A. J. Summers and S. Drossopoulou. A formal semantics for isorecursive and equirecursive

state abstractions. In ECOOP, 2013.
20. H. Yang. Relational separation logic. Theoretical Comput. Sci., 375(1-3):308–334, 2007.

	*-4ex A Logical Analysis of Framing forSpecifications with Pure Method Calls

