
MFPS 2007

What you lose is what you leak:

Information leakage in declassification policies

Anindya Banerjeea,1 Roberto Giacobazzib,2 Isabella Mastroenib,2

a Kansas State University, Manhattan, KS 66506, USA

b Università di Verona, Verona, Italy

Abstract

This paper suggests the following approach for checking whether a program satisfies an information flow policy that may
declassify secret information: (a) Compute a finite abstract domain that over-approximates the information released by the
policy and (b) Check whether program execution may release more information than what is permitted by the policy by
completing the finite abstract domain wrt. weakest liberal preconditions. Moreover, techniques based on the Paige-Tarjan
algorithm for partition refinement can be used to generate counterexamples to a declassification policy: the counterexamples
demonstrate that more information is released by the program than what the policy permits. Subsequently the policy can be
refined so that the least amount of confidential information necessary for making the program secure is declassified.

Keywords: Abstract interpretation, completeness, declassification, information flow

1 Introduction

The secure information flow problem is concerned with protecting data confidentiality by

checking that secrets are not leaked during program execution. In the simplest setting,

program variables are first partitioned into high security (or private or classified) and low

security (or public or unclassified) variables, where high (H) and low (L) are levels in a

two point security lattice, L ≤ H; next, one checks that L output variables do not leak in-

formation about the initial values of H input variables. To perform the check, a variety of

information flow analyses for confidentiality policies have been developed using technolo-

gies like data flow analysis, security type systems, program logics, etc. (See the survey

by Sabelfeld and Myers [23] and references therein). The correctness of such analyses is

governed by noninterference (NI) [13]: for any two runs of a program, L indistinguishable

input states yield L indistinguishable output states, where two program states are said to be

L indistinguishable iff they agree on the values of the L variables.

Joshi and Leino [15] give a semantic definition of secure information flow (that has

been shown equivalent to NI [24]): a program P containing H and L variables (ranged over

1 Email: ab@cis.ksu.edu
2 Email: roberto.giacobazzi@univr.it,isabella.mastroeni@univr.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ab@cis.ksu.edu
mailto:roberto.giacobazzi@univr.it,isabella.mastroeni@univr.it

Banerjee, Giacobazzi and Mastroeni

by h and l respectively) is secure iff HH;P;HH = P;HH , where HH is an assignment of

an arbitrary value to h. “The postfix occurrences of HH on each side mean that we are only

interested in the final value of l and the prefix HH on the left-hand-side means that the two

programs are equal if the final value of l does not depend on the initial value of h” [24].

In practice, noninterference is too strong a property to be enforced and downgrading of

information, or declassification, is a necessity. For example, a password checker makes

public the (H) result of the comparison between the actual password and the password

entered at the login prompt.

This paper is based on the central observation that Joshi and Leino’s semantic definition

permits a view of noninterference as completeness of an abstract interpretation [10], and

the paper explores the consequences of this observation. An abstract interpretation is (back-

wards) complete for a function, f , if the result obtained when f is applied to any concrete

input, x, and the result obtained when f is applied to an abstraction of the concrete input, x,

both abstract to the same value. Thus, the essence of completeness is this: an observer who

can see only the final abstraction cannot distinguish whether the concrete input value was

x or any other concrete value x′ with the same abstract value as that of x. The completeness

connection is implicit in Joshi and Leino’s definition of secure information flow and the

implicit abstraction in their definition is: “each H value is associated with >, i.e., the set of

all possible H values”. (This is discussed in Sects. 2 and 3).

In this paper, we consider more flexible abstractions than the one considered by Joshi

and Leino and show that such abstractions naturally describe declassification policies

that are concerned with what information is declassified [25]. Our primary contribution

(Sects. 4,5.1) is to show that “declassified NI” (DNI), i.e, NI with a declassification pol-

icy, is also a completeness problem: the program points where completeness fails are the

ones where some private information is leaked, thus breaking the policy. Hence, we can

mechanically check if a program satisfies a declassification policy by checking whether its

semantics is complete wrt. the policy.

Moreover, we show that when a program does not satisfy a declassification policy (i.e,

when completeness fails), (a) counterexamples that expose the failure can be generated

(Sect. 5.2); (b) there is an algorithm that generates the best refinement of the given policy

such that the program respects the refined policy (Sect. 5.3). Finally, (c) we connect ab-

stract model checking with secure information flow by showing that the absence of spurious

counterexamples in the former can be understood as the absence of information leaks in the

latter (Sect. 6).

2 Overview

Notational summary. V
H,VL are the sets of possible H and L values. The set of program

states is Σ = V
H×V

L. Σ is implicitly indexed by the H variables followed by the L vari-

ables. For any X ⊆ Σ, XH (resp. XL) is the projection of the H (resp. L) variables. L

indistinguishability of states s1,s2 ∈ Σ, written s1 =L s2, denotes that s1,s2 agree when in-

dexed by L variables.

Semantic noninterference à la Joshi-Leino. We start with Joshi and Leino’s semantic def-

inition of security [15], HH;P;HH = P;HH , where HH assigns to h an arbitrary value.

Because of the arbitrary assignment, the semantics of HH can be modelled as an abstrac-

tion function, H , on sets of concrete program states, Σ; that is, H : ℘(Σ) →℘(Σ), where

2

Banerjee, Giacobazzi and Mastroeni

℘(Σ) is ordered by subset inclusion, v. For each possible value of an L variable, H asso-

ciates all possible values of the H variables in P. Thus H (X) = V
H×XL, where V

H = >,

the top element of ℘(VH). Now the Joshi-Leino definition can be rewritten [10] in the

following way, where JPK is the concrete, denotational semantics of P.

H ◦ JPK◦H = H ◦ JPK (1)

For example, let h1,h2 ∈ {0,1} and let l ∈ {0,1}. Then V
H = {0,1} × {0,1}, V

L =

{0,1}. Consider any X ⊆ Σ; for example, let X = {〈0,0,1〉}, i.e., X denotes the state

where h1 = 0, h2 = 0, l = 1. Then H (X) = V
H × {1}. Let P be l := h1, so that,

JPK(X) = {〈0,0,0〉} and H (JPK(X)) = V
H ×{0}. On the other hand, JPK(H (X)) =

{〈0,0,0〉,〈0,1,0〉,〈1,0,1〉,〈1,1,1〉} so that we have H (JPK(H (X))) = V
H×{0,1}; hence

H (JPK(H (X))) ⊇ H (JPK(X)). Because H (JPK(H (X))) contains triples 〈1,0,1〉 and

〈1,1,1〉 not present in H (JPK(X)), the dependence of l on h1 has been exposed. Thus P is

insecure: for any two distinct values, 0 and 1 of h1 in H (JPK(H (X))), two distinct values,

0 and 1, of l may be associated.

Declassification. For l := h1, had the security policy allowed declassification of h1, the pro-

gram would be secure. Equation (1) must naturally be modified by “filtering” H through

a declassifier, φ : ℘(VH) →℘(VH), that provides an abstraction of the secret inputs. The

“filtered” H , written H φ , models the declassification policy. Thus we enforce the equality

H ◦ JPK◦H
φ = H ◦ JPK (2)

That is, JPK applied to a concrete input, x, and JPK applied to the abstraction of x where the

H component of x has been declassified by φ , both abstract to the same value.

As before, let P be l := h1 and X = {〈0,0,1〉}. We are interested in φ ’s behavior

on {〈0,0〉}, because {〈0,0〉} specifies the values of h1,h2 in X . We have, φ({〈0,0〉}) =

{〈0,0〉,〈0,1〉}: φ is the identity on what must be declassified – we are releasing the exact

value of h1 – but φ is > on what must be protected, which explains why both 〈0,0〉 and

〈0,1〉 appear. Now H φ (X) = φ{〈0,0〉}×XL = {〈0,0,1〉,〈0,1,1〉} so that JPK(H φ (X)) =

{〈0,0,0〉,〈0,1,0〉} and H (JPK(H φ (X))) = V
H×{0}. This is equal to H (JPK(X)). We

can show equation (2) for any X ⊆ Σ; hence l := h1 is secure. Note how φ partitions ℘(VH)

into blocks {〈0,0〉,〈0,1〉} (the range of 〈0,0〉 and 〈0,1〉) and {〈1,0〉,〈1,1〉} (the range of

〈1,0〉 and 〈1,1〉). Intuitively, φ permits exposing distinctions between blocks at the public

output, e.g., between 〈0,0〉 and 〈1,0〉; in standard NI, φ ’s range is > and no distinctions

should be exposed (as in the earlier example).

3 Review: Completeness of abstract interpretation

Abstract interpretation is typically formulated using Galois connections (GC) [5], but an

equivalent framework [6] which we use in this paper, uses upper closure operators 3 . For

example, in Sect. 2, H : ℘(Σ) →℘(Σ) defined as H (X) = V
H×XL, is an upper closure

operator on ℘(Σ), because H is monotone, idempotent and extensive. We often call a

closure operator an abstract domain. In particular, H is called the output (i.e., observed)

abstract domain, that ignores private information. Likewise, H φ in Sect. 2 is also an uco.

3 An upper closure operator (uco) ρ : C →C on a poset C is monotone, idempotent, and extensive, i.e., ∀x ∈C. x ≤C ρ(x).
The set of all upper closure operators on C is denoted by uco(C).

3

Banerjee, Giacobazzi and Mastroeni

Completeness of abstract interpretation based static analysis has its origins in Cousot’s

work, e.g., [5,6], and means that the analysis is as expressive as possible. The following ex-

ample is taken from Schmidt’s excellent survey [26] on completeness. To validate the Hoare

triple, {?} y := −y;x := y+1 {isPositive(x)}, a sound analysis may compute the precondi-

tion isNegative(y). But if able to express properties like isNonNegative and isNonPositive,

a complete analysis will calculate the weakest precondition property isNonPositive(y).

An abstract domain is complete for a concrete function, f , if the “abstract state tran-

sition function precisely mimics the concrete state-transition function modulo the GC be-

tween concrete and abstract domains” [26]. There exist two notions of completeness –

backward (B) and forward (F) – according as whether the concrete and the abstract com-

putations are compared in the abstract domain or in the concrete domain [11]. Formally,

let C be a complete lattice and f be the concrete state transition function, f : C → C. Ab-

stract domain ρ is a sound abstraction for f provided ρ ◦ f ◦ ρ w ρ ◦ f . For example, in

Sect. 2, H (JPK(H (X))) ⊇ H (JPK(X)), so H is a sound abstraction for JPK. Complete-

ness is obtained by demanding equality: ρ is a B (resp. F)-complete abstraction for f iff

ρ ◦ f = ρ ◦ f ◦ρ (resp. f ◦ρ = ρ ◦ f ◦ρ). Completeness can be generalized to pairs (ρ ,η) of

abstract domains: B-completeness holds for (ρ ,η) when ρ ◦ f ◦η = ρ ◦ f ; F -completeness

holds for (ρ ,η) when ρ ◦ f ◦ η = f ◦ η (see [12] for details). For example, in Sect. 2, the

declassification example asserts that equation (2) holds, i.e., (H ,H φ) is B-complete for

JPK. Algorithms for completing abstract domains exist – see [12,11] and Schmidt’s sur-

vey [26] for details. Basically, F -completeness is obtained by adding all the direct images

of f to the output abstract domain; B-completeness is obtained by adding all the maximal

of the inverse images of the function to the input domain (see Appendix A for details).

4 F -completeness and satisfaction of confidentiality policies

Equations (1) and (2) give us a way to dynamically check whether a program satisfies a

confidentiality policy: indeed, both equations use the denotational semantics of a program

in the process. But can we do this check statically?

We will see presently that static checking involves F -completeness, instead of B-

completeness, and the use of weakest liberal preconditions instead of the denotational se-

mantics. With weakest liberal preconditions, (written WlpP), equation (1) has the follow-

ing equivalent reformulation:

H ◦WlpP ◦H = WlpP ◦H (3)

Equation (3) says that H is F -complete for WlpP. In other words: consider the abstraction

of a concrete input state, X , via H ; this yields a set of states where the private information

is abstracted to “any possible value”. The equation asserts that WlpP(H (X)) is a fixpoint

of H , meaning that WlpP(H (X)) yields a set of states where each public input is asso-

ciated with any possible private input: a further abstraction of the fixpoint (c.f., the lhs of

equation (3)) yields nothing new. Because no distinctions among private inputs get exposed

to an observer, the public output is independent of the private input. Hence equation (3)

asserts standard NI.

The following theorem asserts that the two ways of describing noninterference by

means of B- and F -completeness are equivalent.

Theorem 4.1 H ◦ JPK ◦H = H ◦ JPK iff H ◦WlpP ◦H = WlpP ◦H .

4

Banerjee, Giacobazzi and Mastroeni

Proof. By [11,12] we know that, if f is additive, then for any ρ we have ρ ◦ f ◦ρ = ρ ◦ f

iff ρ ◦ f + ◦ρ = f + ◦ρ . By [4] we have that JPK+ = WlpP. Choosing H ,JPK as ρ , f resp.,

we are done. 2

Example 4.2 Consider the program P, let V
H = {0,1}×{0,1}, V

L = {0,1}.

P
def
=

 if h1 6= h2 then l := h1 + h2

else l := h1 −h2 + 1;

JPK : 〈h1,h2, l〉 7→ 〈h1,h2,1〉

WlpP :

〈h1,h2,1〉 7→ {〈h1,h2〉}×V
L

〈h1,h2, l〉 7→ ∅ l 6= 1

The public output l is always 1, hence P is secure, as the following calculation shows.

Given V
H×{l} ∈ H , we can prove that B-completeness for JPK holds:

H (JPK(VH×{l})) = H (VH×{1}) = V
H×{1} = H (〈h1,h2,1〉) = H (JPK(〈h1,h2, l〉))

F -completeness for WlpP holds also:

H (WlpP(VH×{1})) = H (VH×V
L) = V

H×V
L = WlpP(VH×{1})

H (WlpP(VH×{l 6= 1})) = H (∅) = ∅ = WlpP(VH×{l 6= 1})

5 Completeness and Declassified NI (DNI)

When does a program P satisfy noninterference declassified by φ? Consider any two runs

with states s1,s2 ∈ Σ. Suppose s1 =L s2. Let sH1 and sH2 denote the secret values in s1,s2

that are declassified by φ and suppose that the distinction between the declassified values

is not exposed in the two runs of P, i.e, φ(sH1) = φ(sH2). Then P satisfies noninterference

declassified by φ provided JPK(s1) =L JPK(s2). Formally:

s1 =L s2 ∧ φ(sH1) = φ(sH2) ⇒ JPK(s1) =L JPK(s2)

Note that ordinary noninterference is obtained by setting φ(sH1) = > = φ(sH2).

5.1 Modelling declassification

The discussion in the previous section has not motivated why we might want WlpP and this

is what we proceed to do in the context of declassification.

Consider secrets h1,h2 ∈ {0,1} and the declassification policy “at most one of the se-

crets h1,h2 is 1”. The policy releases a relation between h1 and h2 but not their exact values.

Does the program P
def
= l := h1 + h2 satisfy the policy?

Here V
H = {0,1}×{0,1} and the declassifier, φ , is defined as: φ(∅) = ∅; φ{〈0,0〉} =

φ{〈0,1〉}= φ{〈1,0〉}= {〈0,0〉,〈0,1〉,〈1,0〉} (i.e., we collect together all the elements with

the same declassified property) and φ{〈1,1〉}= V
H; φ(X)=

⋃
x∈X (φ({x})). A program that

respects the above policy should not expose the distinctions between inputs 〈0,0〉, 〈0,1〉

and 〈1,0〉 at the public output. But it is permissible to expose the distinction between 〈1,1〉

5

Banerjee, Giacobazzi and Mastroeni

and any pair from the partition block {〈0,0〉,〈0,1〉,〈1,0〉}, because this latter distinction is

supported by the policy. Does P expose distinctions it should not?

To answer, we consider WlpP(l = a), where a is some generic output value. Why

Wlp? Because then we can statically simulate the kind of analysis an attacker would do

for obtaining initial values of (or initial relations among) secret information. Why l = a?

Because this gives us the most general Wlp, parametric on the output value. Now, note

that WlpP(l = a) = (h1 + h2 = a); let Ha
def
= (h1 + h2 = a). Because a ∈ {0,1}, we have

H0
def
= (h1 +h2 = 0). This allows the attacker to solve for h1,h2: h1 = 0,h2 = 0. Thus when

l = 0, a distinction, {〈0,0〉}, in the partition block, {〈0,0〉,〈0,1〉,〈1,0〉} gets exposed.

Hence the program does not satisfy the policy.

So consider a declassified confidentiality policy, and model the declassified informa-

tion by means of the abstraction φ , of the private inputs, which collects together all the

elements with the same property, declassified by the policy. Let H φ :℘(Σ)→℘(Σ) be the

corresponding abstraction function. Accordingly, let X ∈℘(Σ) be a concrete set of states

and let XL be the L slice of X . Consider any l ∈ XL. Define set Hl
def
= {h ∈ V

H | 〈h, l〉 ∈ X};

i.e., given an l, Hl contains all the H values associated with l in X . Then the “declassified”

abstract domain, H φ (X), corresponding to X is defined as H φ (X) =
⋃

l∈XL φ(Hl)×{l}.

Note that the domain, H , for ordinary noninterference is the instantiation of H φ , where

φ maps any set to >. The analogue of equation (2)

H
φ
◦WlpP ◦H = WlpP ◦H (4)

asserts that (H φ ,H) is F -complete for WlpP. For example, F -completeness fails for the

program P. With X = 〈0,0,0〉, we have H (X) = V
H×{0} and WlpP(H (X)) = {〈0,0,0〉}.

But H φ (WlpP(H (X))) = {〈0,0,0〉,〈0,1,0〉,〈1,0,0〉} ⊃ WlpP(H (X)).

We are now in a position, via Theorem 5.1 below, to connect H φ to NI: the only caveat

is that φ must partition the input abstract domain, i.e., ∀x. φ(x) = {y | φ(x) = φ(y)}. The

intuition behind partitioning is that φ ’s image on singletons is all we need for deriving the

property of any possible set.

Theorem 5.1 Consider a partitioning φ . Then P satisfies noninterference declassified by

φ iff H ◦ JPK ◦H φ = H ◦ JPK.

Together with Theorem 4.1 we are led to

Corollary 5.2 Consider a partitioning φ . Then P satisfies noninterference declassified by

φ iff H φ ◦WlpP ◦H = WlpP ◦H , i.e., (H φ ,H) is F -complete for WlpP.

The equality in the corollary asserts that nothing more is released by the Wlp than what

is already released by φ . If F -completeness did not hold, but (H φ ,H) was merely sound,

then H φ ◦WlpP ◦H wWlpP ◦H . In this case Wlp (i.e., the rhs) releases more information

(technically: is more concrete) than that declassified (i.e., the lhs). Our goal is not only

to check whether a program satisfies a particular confidentiality policy, but also to find the

public observations that may breach the confidentiality policy and also the associated secret

that each offending observation reveals. Consider, for example, the following program [7]

where l,h ∈ Nats.

P
def
= while (h > 0) do (h := h−1; l := h) endw

6

Banerjee, Giacobazzi and Mastroeni

If we observe l = 0 at output, all we can say about input h is h ≥ 0. But with output

observation l 6= 0, we can deduce h = 0 in the input: the loop must not have been executed.

Because Wlp relates the observed (public) output to the private (secret) inputs, there-

fore, from the final observation we can derive the exact secret which is released by that

observation in the following manner: (a) Compute wlp wrt. each observation obtaining a

most general predicate on the input states. (b) Check whether the states described by the

wlp are “more abstract”, i.e., do not permit more distinctions of private input than those

permitted by the policy. If so, there is no breach.

Example 5.3 Consider the following code [22]

P
def
= h := h mod 2; if h = 0 then (h := 0; l := 0) else (h := 1; l := 1);

Let V
H = Nats = V

L. Suppose we wish to declassify the test, h = 0. Then φ({0}) = {0}

and φ({h}) = Natsr {0}. Thus {h | h 6= 0},{0} is the partition induced by φ on V
H and

we obtain H φ = {∅,>}∪{{h | h 6= 0}×V
L}∪{{0}×V

L}.

Let Ha
def
= V

H×{a}. Consider now the wlp of the program, WlpP(l = a), where a ∈ V
L.

{(a = 0∧h mod 2 = 0) ∨ (a = 1∧h mod 2 = 1)}

h := h mod 2;

{(a = 0∧h = 0) ∨ (a = 1∧h = 1)}

if (h = 0) then (h := 0; l := 0) else (h := 1; l := 1)

{l = a}

Thus, Wlp maps output set of states H0 to the input states {〈h, l〉 | h mod 2 = 0, l ∈ V
L}.

But this state is not more abstract than the state, {h | h 6= 0}×V
L, specified by H φ : it

distinguishes, e.g., (8,1) from (7,1) - a distinction not permitted under the policy. Indeed,

consider two runs of P with initial values 8 and 7 of h and 1 for l; φ(8) = φ(7); yet we get

two distinct output values of l.

Example 5.4 Consider P
def
= if (h ≥ k) then (h := h− k; l := l + k) else skip [22], and its

Wlp semantics. Consider Ha,b
def
= {〈h, l,k〉 | h ∈ V

H, l = a, k = b}. Suppose the declassifi-

cation policy is >, i.e., nothing has to be released.

{(h ≥ b∧ l = a−b∧ k = b) ∨(h < b∧ l = a∧ k = b)}

if (h ≥ k) then (h := h− k; l := l + k) else skip

{l = a∧ k = b}

WlpP : Ha,b 7→ {〈h,a−b,b〉 | h ≥ b} ∪ {〈h,a,b〉 | h < b}

In this case, we can say that the program does not satisfy the security policy. In fact, in

presence of the same public inputs we can distinguish between values h greater than the

initial value of k, and lower than this value. Note that, in this case the way WlpP(Ha,b)

partitions the private value domain depends also on the public input. This is not a problem,

7

Banerjee, Giacobazzi and Mastroeni

since by completing the input domain with these elements we are able to induce a partition

of the private domain only. In this way, Ha,b
def
= {〈h, l,k〉 | h ∈ V

H, l = a, k = b} has to

be split in the elements H ′
a,b

def
= {〈h, l,k〉 | h ∈ V

H, l = a, h ≥ k = b} distinguishing h ≥ k,

and H ′′
a,b

def
= {〈h, l,k〉 | h ∈ V

H, l = a, h < k = b} distinguishing h < k, and hence the initial

policy > does not guarantee security.

Example 5.5 Consider the Oblivious Transfer Protocol [21], with principals Alice and

Bob. Alice has two messages. Bob knows the messages by name but not by content.

Bob asks for a message by name. But Alice does not know which message Bob asked for,

and Bob has not to find out the content of the other message.

P
def
=

r0,r1 :∈ M; d :∈ {0,1};

r := rd ;

e := c⊕d;

f0, f1 := m0 ⊕ re, m1 ⊕ r1⊕e;

m := fc ⊕ r;

Alice Bob

Hid: r;d;c ∈ {0,1};m m0;m1;r0;r1

Vis: m0;m1;r0;r1; f0; f1;e c;m; f0; f1;e;d;r

The protocol is implemented via a trusted third party, Ted, who sends the random messages

r0,r1 to Alice and the random bit d to Bob. In the implementation (due to C. Morgan) M

denotes the set of messages and ⊕ is xor; the table above shows what is Hid (“hidden” or

H) and Vis (“visible” or L) for Alice and Bob. Bob randomly chooses bit c and sends Alice

e = c⊕d. Alice sends Bob f0, f1 whence Bob can now obtain mc as fc ⊕ r.

If we compute the Wlp we derive that the relations disclosed are f0 = m0 ⊕ r0 and

f1 = m1 ⊕ r1 when c = d, and f0 = m0 ⊕ r1 and f1 = m1 ⊕ r0 when c 6= d. In both cases,

the message mc that Bob can read is combined with the random message Bob knows (since

r = rd and r public to Bob). We can summarize the Wlp in the following way: fc = mc⊕ rd

and f1⊕c = m1⊕c⊕ r1⊕d . Hence, f1⊕c tells almost nothing about the hidden message m1⊕c,

expressing only if it is equal or not with an unknown random message, r1⊕d
4 .

5.2 Deriving counterexamples

Can we mechanize the derivation of counterexamples? That is, can we derive exactly where

the policy fails by demonstrating two input states that break noninterference?

We have advanced the thesis that noninterference is a completeness problem in abstract

interpretation. Ranzato and Tapparo [20] studied completeness in abstract interpretation

from a more algorithmic point of view. They show a correspondence between completeness

and the Paige-Tarjan (PT) algorithm [19] for partition refinement, that derives the coarsest

bisimulation of a given partition. Hence, we have a correspondence between completeness

and absence of unstable elements of a closure wrt. a function f : Given a partition Π⊆℘(C)

and f :℘(C)−→℘(C), an element X ∈ Π is stable for f with respect to Y ∈ Π if X ⊆ f (Y)

or X ∩ f (Y) = ∅; otherwise X is unstable. The understanding of completeness in terms of

stability guarantees that if an abstract domain is not complete than there exist at least two of

its elements which are not stable. In our context, f , is Wlp; the element for which we want

4 We leave a probabilistic analysis of “almost nothing” as future work.

8

Banerjee, Giacobazzi and Mastroeni

to check stability is a set of private inputs in the partition of V
H induced by the declassifier,

φ ; and the element against which we check stability (Y in the definition) is the particular

output observation (e.g., l = a).

Proposition 5.6 Unstable elements of H φ provide counterexamples to φ .

Proof. Suppose that ∃l ∈ V
L such that (the input states described by) Wlp(Hl) /∈ H φ .

Then there exist x ∈ Wlp(Hl), and h ∈ φ(xH) such that 〈h,xL〉 /∈ Wlp(Hl). Note that

φ(xH) × {xL} ∩ Wlp(Hl) 6= ∅ since x is in both; and, φ(xH) × {xL} 6⊆ Wlp(Hl) since

〈h,xL〉 ∈ φ(xH)× {xL} and 〈h,xL〉 /∈ Wlp(Hl). Hence, the abstract domain H φ is not

stable. To find a counterexample consider h1 ∈ φ(xH) r {k | 〈k,xL〉 ∈ Wlp(Hl)} and

h2 ∈ {k | 〈k,xL〉 ∈ Wlp(Hl)}. The latter set is obtained by wlp for the output observa-

tion l, hence any of its elements, e.g., h2, leads to the observation l, while all the elements

outside the set, e.g., h1, cannot lead to l. 2

Example 5.7 Consider the following program with h’s parity declassified. We can

compute WlpP wrt. l = a ∈ Z, and Ha
def
= {〈h, l〉 | h ∈ V

H, l = a}.

{(h = 0∧ l = a) ∨ (h > 0∧a = 0)}

while (h > 0) do (h := h−1; l := h) endw

{l = a}

Wlp :

H0 7→ {〈h, l〉 | h > 0, l ∈ V
L}∪{〈0,0〉}

Ha 7→ {〈0,a〉} (a 6= 0)

Hence, Wlp(H0) = (VH×{0})∪{〈h, l〉 | h > 0, l 6= 0}. Thus, all the input states where

l = 0 are not counterexamples to the declassification policy. On the contrary, for any two

runs agreeing on input l 6= 0, whenever h1 = 0 and h2 ∈ Evens r{0}, we observe different

outputs. Hence, we can distinguish more than the declassified partition {Evens,Odds}.

The following example [16] shows that this approach provides a weakening of noninter-

ference which corresponds to relaxed noninterference. Both approaches provide a method

for characterizing the information that flows and that have to be declassified, indeed they

both give the same result since they are driven by (parametric on) the particular output ob-

servation. However, let us underline that the abstract interpretation-based approach allows

also to derive the maximal information disclosed independently from the observed public

output [17].

Example 5.8 Consider the program P [16] with sec,x,y : H, and in,out : L, where hash is a

function:

P
def
=

x := hash(sec);y := x mod 264;

if y = in then out := 1 else out := 0;

z := x mod 3;

9

Banerjee, Giacobazzi and Mastroeni

Consider its Wlp semantics where out, in and z are respectively a,b,c ∈ Z:

{(a = 1,out = a,hash(sec) mod 264 = b,hash(sec) mod 3 = c) ∨

(a = 0,out = a,hash(sec) mod 264 6= b,hash(sec) mod 3 = c)}

x := hash(sec);y := x mod 264;

{(a = 1,out = a,y = b,x mod 3 = c) ∨ (a = 0,out = a,y 6= b,x mod 3 = c)}

if y = in then out := 1 else out := 0;

{out = a, in = b,x mod 3 = c}

z := x mod 3;

{out = a, in = b,z = c}

Let us consider first P without the last assignment to z and consider the domain

formed by the sets Hin,1
def
= {〈sec, in,out,x,y〉 | in = hash(sec) mod 264,out = 1} and

Hin,0
def
= {〈sec, in,out,x,y〉 | in 6= hash(sec) mod 264,out = 0}. The set of all these domains

embodies the declassification policy since it collects together all the tuples such that sec

has the same value for hash(sec) mod 264. At this point note that the WlpP semantics does

the following associations: Wlp : Hin,a 7→ Hin,a and this clearly means that the domain is

complete, i.e., the declassification policy is sufficient to protect the program.

Let us consider now also the last assignment, then we have one more variable and we

redefine Hin,a as sets of tuples containing also z but without any condition on z since it is not

considered in the declassification policy. In this case, the Wlp semantics does the following

associations:

Wlp :

Hin,1 7→ Hin,1 ∩
{
〈sec, in,out,x,y,z〉

∣∣∣ hash(sec) mod 3 = z

}

Hin,0 7→ Hin,0 ∩
{
〈sec, in,out,x,y,z〉

∣∣∣ hash(sec) mod 3 = z

}

The new elements added to the domain have one more condition on the private variable sec,

which can distinguish further the private inputs by observing the public output. This makes

the initial declassification policy unsatisfied.

5.3 Refining confidentiality policies

The natural use of the method previously described is for a semantic driven refinement of

confidentiality policies. The idea is to start with a confidentiality policy stating what can

be released in terms of abstract domains (or equivalence relations). In the extreme case, the

policy could state that nothing about private information must be released.

A consequence of Corollary 5.2 is that whenever H φ is not forward complete for

WlpP, more information is released than what declassification φ permits. Thus the partition

induced on the private domain by φ must be refined by the completion process. To derive

the refined policy, φ ′, we perform the following steps: (a) Consider the domain, H φ ′
,

obtained by completion from H φ ; (b) for each Y ∈ H φ ′
compute sets, πl(Y), that are

parametric on a fixed public value l ∈ V
L, where: πl(Y)

def
= {h ∈ V

H | 〈h, l〉 ∈ Y}; (c) for

10

Banerjee, Giacobazzi and Mastroeni

each l, compute the partition, π l , induced on the private domain as π l
def
=

∧
X∈H φ ′ πl(X); (d)

let π
def
=

∧
l∈VL π l . The declassification policy, φ ′, can now be defined as a refinement, R(φ)

of φ , by computing the partitioning closure corresponding to π [14], i.e., the disjunctive

completion,
b

, of the sets forming the partition: φ ′ = R(φ)
def
=

b
(π).

For instance, in Example 5.4, each output observation k = b induces the partition πb =

{{h | h ≥ b},{h | h < b}}, which is the information released by the single observation. If

we consider the set of all the possible observations, then we derive π =
∧

b πb = id, namely

we have φ = id.

Proposition 5.9 Let φ model the information declassified. If H φ ◦WlpP ◦H A WlpP ◦H ,

then R(φ) @ φ , i.e., R(φ) is a refinement of φ , and it is the closest to φ 5

Example 5.10 Consider the program P [22] with V
H = V

L = Z and its Wlp semantics

P
def
= h1 := h1; h2 := h1; . . .hn := h1;avg := declassify((h1 + h2 + . . .+ hn)/n)

{h1 = a}

h1 := h1; h2 := h1; . . .hn := h1;

{(h1 + h2 + . . .+ hn)/n = a}

avg := (h1 + h2 + . . .+ hn)/n

{avg = a}

Wlp :

X 7→ ∅ if ∀a ∈ V
L.X 6= Ha

Ha 7→

 〈a,h2, . . . ,hn,a〉

∣∣∣∣∣∣
∀i.hi ∈ Z

avg = a

where Ha
def
= {〈h1, . . . ,hn,avg〉 | hi ∈ Z,(h1 + h2 + . . . + hn)/n = avg = a ∈ Z}. Sup-

pose the input declassification policy releases the average of the private values, i.e,

φ(〈h1, . . . ,hn〉)
def
= {〈h′1, . . . ,h

′
n〉 | (h′1 + . . . + h′n)/n = (h1 + . . . + hn)/n}; the policy col-

lects together all the possible private inputs with the same average value. Hence, the

average is the only property that this partition of states allows to observe. Clearly, the

program releases more. Consider n = 4, hi ∈ {1, ...,8}, and X = H4. The partition

induced by H φ (X) on the states with avg = 4 is {〈5,2,3,6,4〉,〈7,3,1,5,4〉, . . .}. But

WlpP(H4) = {〈4,3,7,2,4〉,〈4,8,3,1,4〉, . . . }. Thus, we need to refine the original policy,

completing H φ (X) wrt. WlpP: we add elements WlpP(Ha) for all a ∈ Z. In each such

element, h1 has the particular value a. Formally, the domain, H φ ′
(X), contains all the

sets {〈h1,h2, . . . ,hn,avg〉 | h1 = avg = a,∀i > 1. hi ∈ Z}; H φ ′
(X) distinguishes all tuples

that differ in the first private input, where φ ′ is obtained as disjunctive completion of the

computed partition and declassifies the value of h1. This is the closest domain to φ since,

if we add any other element in the resulting domain, we would distinguish more than what

is necessary, i.e., more than the distinction on the value of h1. Indeed, still abstracting the

average of the elements, we could add other sets of tuples with the same average value, but

the only ones that we can add (i.e, which are not yet in the domain) must add some new

distinctions. For example, if we add sets like {〈4,6,1,5,4〉,〈4,6,3,3,4〉, . . . }, where also

h2 is fixed, then we allow also to distinguish the value of h2, which is not released by the

program.

5 In theory, this refinement can also be computed as the intersection between the policy φ and the refinement of the unde-
classified policy >. Efficiency comparison between these two approaches is left to the implementation phase of our work.

11

Banerjee, Giacobazzi and Mastroeni

5.4 Refining Abstract Noninterference policies

The method described for checking and refining a security policy is parametric on public

observations, but one could carry out the same process on properties. If some information

about the execution context of the program is present then we can restrict (abstract) the

possible observations. These restrictions can be modeled as abstract domains, and therefore

by means of abstract noninterference policies. In particular, it has been proved [10] that

the more we observe about public information, the less private information can be kept

secret. This means that a security policy, unsafe in a general context, can become safe if

we consider a weaker observation of the public output.

Consider, for example, the following program P with two private inputs x,y, and two

public outputs xL,yL. d,dx,dy are constant public inputs with dx > d and dy > d:

P
def
=

if(d ≤ x+ y ≤ d + dx + dy ∧ −dy ≤ x− y ≤ dx) then

if(x ≥ 0 ∧ x ≤ d) then xL := d;

if(x > d ∧ x ≤ dx) then xL := x;

if(x > dx ∧ x ≤ dx + d) then xL := dx;

if(y ≥ 0 ∧ y ≤ d) then yL := d;

if(y > d ∧ y ≤ dy) then yL := y;

if(y > dy ∧ y ≤ dy + d) then yL := dy;

� � � � � �

� � � � � �

� � � 	
 � �

� � � � �

�

Instead of concrete inputs and outputs, we might want to track properties, e.g., in what

interval a particular variable lies. The figure above represents the input and output of the

program in graphical form: the program transforms an input property, namely, an octagon

(in the private variables x,y, represented by sets of constraints of the form ±x ± y ≤ c) to

an output property, namely, a rectangle (in the variables xL,yL): Thus if we take WlpP wrt.

the property of intervals – this corresponds to rectangles in the 2-dimensional space – then

the WlpP semantics returns an octagon abstract domain [18], i.e., we derive an octagonal

relation between the two private inputs. Thus the security policy has to declassify at least

the octagon domain in order to make the program secure.

Moreover, abstract noninterference policies can be useful in order to make the algorithm

computable. In fact by abstracting the public domain we can make finite the amount

of possible observations of the attacker; in practice, this means that when we compute

Wlp(ρ(l) = A) we are guaranteed that there will be finitely many Wlp computations when-

ever the abstract domain is finite.

This example shows that we can combine (narrow) abstract non interference [9] with

declassification in the following completeness equation: Let Hρ
def
= λX .VH× ρ(XL) [10]

and H
φ

η
def
= λX .φ(Hη(l))×η(l), where Hη(l)

def
= {h | η(l′) = η(l),〈h, l′〉 ∈ X}

H
φ

η ◦WlpP ◦Hρ = WlpP ◦Hρ

12

Banerjee, Giacobazzi and Mastroeni

6 Abstract model checking and information flow

In the previous sections we have seen how we can verify and refine confidentiality poli-

cies that admit some leak of private information. The whole study is done by considering

I/O semantics (denotational and wlp) and modelling DNI as a completeness problem. On

the other hand, the strong relationship between completeness and stability (in the Paige-

Tarjan sense) existing in the framework of abstract model checking (AMC) has been stud-

ied [20,11]: the completeness in question is B-completeness for the post function induced

by an equivalence relation on the domain of states. Since the denotational semantics is the

post for a transition system where all traces are two-states long – because they are I/O states

– a straightforward generalization of our work and of the notion of noninterference can be

obtained via a generic post function. Hence, two traces are L indistinguishable, i.e, =L, if

they have the same public projection.

Theorem 6.1 Let 〈|P|〉 the standard trace semantics of P (deterministic program). The

noninterference on traces, i.e., ∀σ1,σ2 ∈ Σ. σ1 =L σ2 ⇒ 〈|P|〉(σ1) =L 〈|P|〉(σ2), holds iff

H ◦postP ◦H = H ◦postP, where postP is the post function associated with the transition

system modelling P.

This theorem implies that we can characterize the declassification property on the pri-

vate information of states also when we have to protect the whole trace semantics from

malicious observations. Moreover, the completeness equation, rewritten as H ◦ p̃re ◦H =

p̃re ◦ H (via Theorem 4.1), asserts (in the context of AMC) that there are no spurious

counterexamples. In the NI context, this means that there is no leakage of information.

In particular, for declassification, if H φ ◦ p̃reP ◦H = p̃reP ◦H holds, there is no need to

further declassify private information via refinement, even if we suppose that the attacker

can observe every intermediate step of computation.

In the following simple example we show how this approach works by also providing

its relationship with the equivalence relation transformer defined by Zdancewic and My-

ers [28] for characterizing leakages of private information. First, we rewrite their trans-

former as follows: Let ≈ be an equivalence relation, we define σ1 S(≈) σ2 if and only

if ∀i > 0. [posti([σ1]≈)]≈ = [posti([σ2]≈)]≈. (posti is the composition of post with itself i

times.) This new equivalence relation, if different from ≈, tells us that something is re-

leased. With our method, we can characterize exactly what is released. When we deal

with equivalence relations, the backward completeness equation for post can be rewritten

as [14]: [post[σ1]≈]≈ = post[σ1]≈; and so we are led to

Theorem 6.2 S(≈) =≈ iff ≈ is backward complete for post.

Example 6.3 Consider the following transition system [28] which uses a password system

to launder confidential information:

〈t,h, p,q,r〉 7→ 〈t,h, p,q,r〉

〈0,h, p, p,0〉 7→ 〈1,h, p, p,1〉

〈0,h, p, p,1〉 7→ 〈1,h, p, p,0〉

〈0,h, p,q,0〉 7→ 〈1,h, p,q,0〉 p 6= q

〈0,h, p,q,1〉 7→ 〈1,h, p,q,1〉 p 6= q

where t ∈ {0,1} is the time (1 indicates that the

program has been executed), r ∈ {0,1} denotes

the result of the test (it is left unchanged if the

test of equality between the password p and the

query q fails).

13

Banerjee, Giacobazzi and Mastroeni

The public variables are t,q,r, hence the partition induced by H is:

〈t,h, p,q,r〉 ≡ 〈t ′,h′, p′,q′,r′〉 iff t = t ′ ∧q = q′ ∧ r = r′

The above says we are considering two states that are L indistinguishable (as in ordinary

NI). By checking completeness we characterize the information that can be released. For

example, consider the set of possible input states which are in the same equivalence class

and for which the state 〈0,h, p,q,0〉 is a representative. Applying the transition rules, we

see (below, left) that this state reveals a different public output. Thus there is a leakage of

confidential information. In order to characterize what information is released we complete

the domain H by p̃reP (below, right):

〈0,h, p,q,0〉 7→

〈1,h, p, p,1〉

〈1,h, p,q,0〉
p̃reP :

〈1,h, p, p,1〉 7→ 〈0,h, p, p,0〉

〈1,h, p,q,0〉 7→ 〈0,h, p,q,0〉 p 6= q

Hence we have to refine the original partition by adding the new blocks 〈0,h, p, p,0〉 and

〈0,h, p,q,0〉 where p 6= q, i.e., we release the information whether p = q or p 6= q.

AMC techniques are usually applied to Kripke structures. A Kripke structure consists

of a set of states, a set of transitions between states, and a function that labels each state with

a set of properties that are true in the state. The Kripke model for a program corresponds to

the standard transition system associated with the program where states are labelled with

the values of the variables. The connection between declassification and AMC suggests

the use of existing algorithms for AMC in order to derive the information released by a

system, whenever the confidential information is fixed. Indeed, the existence of a spurious

counterexample in the AMC (abstraction corresponding to the declassification policy) cor-

responds to the existence of an insecure information flow in the concrete system. Suppose

we interpret the initial abstract domain of a system as a declassification policy (the distinc-

tion between all the states mapped to different properties is declassified). Then whenever an

AMC algorithm finds a spurious counterexample it means that there is a breach in the secu-

rity, and hence some more secrets, i.e., some more distinctions among states, are released.

For instance, in the example above, the given trace (from 〈0,h, p,q,0〉) would be identified

as a spurious counterexample, and the refinement for erasing it is exactly the refinement

we describe. When no more spurious counterexamples exist, then we have characterized,

in the resulting abstract domain, the secure declassification policy.

7 Discussion

In this paper we exploit completeness of abstract interpretation for modelling noninterfer-

ence for confidentiality policies based on declassification. Starting with Joshi and Leino’s

semantic formulation of NI [15], it is possible to characterize NI as a problem of B-

completeness for denotational semantics [10]. This paper provides an equivalent formu-

lation of NI as F -completeness for the wlp semantics, and extends the formulation to de-

classification. Semantically, we represent a declassification policy as an abstraction of the

H inputs that induces a partition on them. A program that satisfies the policy is guaranteed

not to expose distinctions within a partition block. F -completeness formalizes “not ex-

posing distinctions”. The advantage of our formalization, compared to other approaches, is

14

Banerjee, Giacobazzi and Mastroeni

that we can associate with each possible public observation the exact secret released. More-

over, the strong connection between completeness and declassification, together with the

connection between completeness and abstract model checking, allows the use of standard

techniques in abstract model checking for checking and refining declassification policies.

In particular, model checking can be applied to generic finite state systems, and abstractions

allow to consider even infinite state systems. As future work, we are studying the practical

use of these techniques applied to more complex systems.

The relation between the abstract interpretation approach to NI [9,10] and many extant

approaches for noninterference and declassification has been studied by means of exam-

ples [14,17]. Sabelfeld and Sands note that most extant proposals suffer from lack of a

compelling semantics for declassification. In earlier work they use the PER model [24]

for defining selective dependency [3] by means of equivalence relations instead of abstract

domains. They also show, via an example, that the PER model can be used to show that

nothing more is learnt by an attacker than what the policy itself releases [25]; in our model

we derive this formally (Corollary 5.2) and also show how, in the case where a policy is

not satisfied, counterexamples may be generated and the policy may be refined. Joshi and

Leino [15] introduce abstract variables in order to obtain a more general notion of secu-

rity. In this case they substitute the private variables with functions, i.e., properties, of them.

This corresponds to abstract noninterference where we fix what we want to protect instead

of what we admit to flow [9,17], hence it is not helpful for computing what information is

released. Dárvas et al. [7] use dynamic logic to dynamically analyze the declassification

property. The information flow property is modelled as a dynamic logic formula. Next,

they fix some declassifying preconditions and execute the analysis. If the analysis succeeds

then there is an upper bound on the information disclosed; otherwise the precondition must

be refined. Because of the connections of completeness to PT, our approach can provide a

more systematic method for designing and refining these preconditions. Our approach dif-

fers from quantitative characterizations [2,8] of the information released since we provide

a qualitative analysis of the leaked secrets.

In a recent paper, Unno et al. [27] have proposed a method for automatically finding

counterexamples of secure information flow, which combines security type-based analysis

for standard NI and model checking. Our context is more general, since standard NI is a

particular case of DNI. Nevertheless, as future work, we plan to investigate whether their

approach can be directly derived from ours.

Alur et al. [1] consider preservation of secrecy under refinement and present a

simulation-based technique to show when one system is a refinement of another wrt. se-

crecy. They contend that their approach is flexible because it can express arbitrary secrecy

requirements. In particular, if the specification does not maintain secrecy of a property then

the implementation does not need to either. Our notion of refinement is slightly different: if

a program leaks more information than the policy, we consider how the policy might have

to be refined to admit the program. It is possible that there might be strong connections to

their work and we plan to explore these connections.

In other future work, we plan to further exploit the strong relation of NI with AMC

and stability. One direction is to implement algorithms for deriving the maximal amount

of information disclosed and for refining declassification policies, by erasing counterex-

amples. Moreover, the example above shows that it is possible to combine both abstract

noninterference and declassification. So existing abstract model checking techniques can

15

Banerjee, Giacobazzi and Mastroeni

be used not only to derive the amount of information disclosed, but also to characterize

the strongest harmless attacker. Finally, we plan to extend the framework in this paper to

handle heap-manipulating programs.

Acknowledgements. Thanks to the anonymous referees for their suggestions. Banerjee

was supported in part by NSF grants CCR-0209205, CCR-0296182, ITR-0326577, CNS-

0627748 and by the AIDA Project (MIUR-COFIN 2005-2007). Mastroeni was supported

by NSF grant CCR-0209205 and Giacobazzi by the AIDA Project (MIUR-COFIN 2005-

2007).

References

[1] R. Alur, P. Cerny, and S. Zdancewic. Preserving secrecy under refinement. In M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, editors, Proc. of the 33rd Internat. Colloq. on Automata, Languages and Programming (ICALP ’06),
volume 4052 of Lecture Notes in Computer Science, pages 107–118, Berlin, 2006. Springer-Verlag.

[2] D. Clark, S. Hunt, and P. Malacaria. Quantified interference: Information theory and information flow (extended
abstract), 2004.

[3] E. S. Cohen. Information transmission in computational systems. ACM SIGOPS Operating System Review, 11(5):133–
139, 1977.

[4] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor.
Comput. Sci., 277(1-2):47–103, 2002.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages
(POPL ’77), pages 238–252, New York, 1977. ACM Press.

[6] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. of Conf. Record of the 6th ACM
Symp. on Principles of Programming Languages (POPL ’79), pages 269–282, New York, 1979. ACM Press.

[7] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure information flow. In D. Hutter
and M. Ullmann, editors, Security in Pervasive Computing: Second International Conference (SPC 2005), volume 3450,
pages 193–209, Berlin, 2005. Springer-Verlag.

[8] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In Proc. of the IEEE Computer Security
Foundations Workshop, pages 1–17, Los Alamitos, Calif., 2002. IEEE Comp. Soc. Press.

[9] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-interference by abstract interpretation.
In Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL ’04),
pages 186–197, New York, 2004. ACM-Press.

[10] R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by abstract interpretation. In S. Sagiv,
editor, Proc. of the European Symp. on Programming (ESOP ’05), volume 3444 of Lecture Notes in Computer Science,
pages 295–310, Berlin, 2005. Springer-Verlag.

[11] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements in abstract model-checking. In
P. Cousot, editor, Proc. of The 8th Internat. Static Analysis Symp. (SAS’01), volume 2126 of Lecture Notes in Computer
Science, pages 356–373, Berlin, 2001. Springer-Verlag.

[12] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J. of the ACM., 47(2):361–416,
2000.

[13] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE Symp. on Security and Privacy, pages
75–86, Los Alamitos, Calif., 1984. IEEE Comp. Soc. Press.

[14] S. Hunt and I. Mastroeni. The PER model of abstract non-interference. In C. Hankin and I. Siveroni, editors, Proc. of
The 12th Internat. Static Analysis Symp. (SAS ’05), volume 3672 of Lecture Notes in Computer Science, pages 171–185,
Berlin, 2005. Springer-Verlag.

[15] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of Computer Programming,
37:113–138, 2000.

[16] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc. of the 32st Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL ’05), pages 158–170, New York, 2005.
ACM-Press.

[17] I. Mastroeni. On the rle of abstract non-interference in language-based security. In K. Yi, editor, Third Asian Symp.
on Programming Languages and Systems (APLAS ’05), volume 3780 of Lecture Notes in Computer Science, pages
418–433, Berlin, 2005. Springer-Verlag.

[18] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19:31–100, 2006.

16

Banerjee, Giacobazzi and Mastroeni

[19] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16(6):977–982, 1987.

[20] F. Ranzato and F. Tapparo. An abstract interpretation-based refinement algorithm for strong preservation. In
N. Halbwachs and L. Zuck, editors, Proc. of TACAS: Tools and Algorithms for the Construction and Analysis of Systems,
volume 3440 of Lecture Notes in Computer Science, pages 140–156, Berlin, 2005. Springer-Verlag.

[21] Ronald Rivest. Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted
initializer. Unpublished note, 1999.

[22] A. Sabelfeld and A. C. Myers. A model for delimited information release. In N. Yonezaki K. Futatsugi, F. Mizoguchi,
editor, Proc. of the International Symp. on Software Security (ISSS’03), volume 3233 of Lecture Notes in Computer
Science, pages 174–191, Berlin, 2004. Springer-Verlag.

[23] A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J. on Selected Areas in
Communications, 21(1):5–19, 2003.

[24] A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential programs. Higher-Order and
Symbolic Computation, 14(1):59–91, 2001.

[25] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc. of the IEEE Computer Security
Foundations Workshop (CSFW-18), pages 255–269, Los Alamitos, Calif., 2005. IEEE Comp. Soc. Press.

[26] D. A. Schmidt. Comparing completeness properties of static analyses and their logics. In N. Kobayashi, editor, Proc.
2006 Asian Programming Languages and Systems Symposium (APLAS’06), volume 4279 of Lecture Notes in Computer
Science, pages 183–199, Berlin, 2006. Springer-Verlag.

[27] H. Unno, N. Kobayashi, and A. Yonezawa. Combining type-based analysis and model checking for finding
counterexamples against non-interference. In Proc. of the 2006 Workshop on Programming Languages and Analyses
for Security (PLAS’06), pages 17–26, New York, NY, USA, 2006. ACM Press.

[28] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. of the IEEE Computer Security Foundations
Workshop, pages 15–23, Los Alamitos, Calif., 2001. IEEE Comp. Soc. Press.

A Relevant background

Making abstract domain complete

The problem of making abstract domains B-complete and F -complete has been solved

[12,11]. The key point in these constructions is that both F and B completeness are

properties of the underlying abstract domain A relative to the concrete function f . To make

a domain F -complete, one adds all the direct images of f to the output abstract domain;

to make a domain B-complete, and one adds all the maximal of the inverse images of the

function to the input domain. (see Fig. A.1). In a more general setting let f : C1 → C2 be

a function on complete lattices C1 and C2, and ρ ∈ uco(C2) and η ∈ uco(C1) be abstract

domains 〈ρ ,η〉 is a pair of B(F)-complete abstractions for f if ρ ◦ f = ρ ◦ f ◦η (f ◦η =

ρ ◦ f ◦η). In any case the idea of making a domain complete is to add all the direct images

of the concrete function to the output abstract domain for F -completeness, and to add all

the maximal of the inverse images of the function to the input domain for B-completeness

(see Fig. A.1). Formally, we refine the corresponding domains wrt., a generic function

C2

x

ρ1

ρ2

C1

C2

f

x

ρ1

ρ2

f

C1

Fig. A.1. Making F and B complete.

f : C1 −→C2 by using the following operations:

17

Banerjee, Giacobazzi and Mastroeni

RF
f

def
= λX .M (f (X)) RB

f

def
= λX .M (

⋃
y∈X max(f−1(↓y)))

Let ` ∈ {F ,B}. In [12] the authors proved that the most abstract β v η such that

〈ρ ,β 〉 is `-complete, i.e., given ρ ∈ uco(C2) the `-complete shell of η ∈ uco(C1), is

R
`,ρ
f (η)

def
= η uR`

f (ρ).

The Paige-Tarjan algorithm

The Paige Tarjan algorithm is a well known algorithm for computing the coarsest bisim-

ulation of a given partition. Consider a relation R such that f = pre(R). The algorithm is

provided below, where P is a partition, PTSplitR(S,P) partitions each unstable block in P

wrt. R with B∩ f (S) and B r f (S), while PTRefinersR(P) is the set of all the blocks in P,

or obtained as union of blocks in P, which make other blocks unstable.

P : Partition

PTSplitR(S,P) :

Partition obtained from P by replacing

each block B ∈ P with B∩ f (S) and B r f (S)

PTRefinersR(P)
def
=

{
B

∣∣∣ P 6= PTSplitR(S,P) ∧ ∃{Bi}i ⊆ P.S =
⋃

i B)i
}

PT-AlgorithmR :

while (P is not R-stable) do

choose S ∈ PTRefinersR(P);

P := PTSplitR(S,P);

endwhile

Fig. A.2. A generalized version of the PT algorithm.

This algorithm has been shown to be a forward completeness problem for the function

f [20].

18

	Introduction
	Overview
	Review: Completeness of abstract interpretation
	F-completeness and satisfaction of confidentiality policies
	Completeness and Declassified NI (DNI)
	Modelling declassification
	Deriving counterexamples
	Refining confidentiality policies
	Refining Abstract Noninterference policies

	Abstract model checking and information flow
	Discussion
	References
	Relevant background

