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1 INTRODUCTION

The main problem when formally reasoning about concurrent data structures is achieving compo-

sitionality of proofs: how to ensure that methods of a data structure, once verified, can be used
in a larger context without re-verification. There exist many solutions to the problem, roughly
divided into two kinds: linearizability [Herlihy and Wing 1990], or more generally contextual refine-
ment [Filipović et al. 2010a; Liang and Feng 2018; Liang et al. 2014], and Concurrent Separation Logic
(CSL) [Brookes 2007; O’Hearn 2007], and its many recent extensions to fine-grained (i.e., lock-free)
concurrency [da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2010; Jung et al. 2015; Nanevski et al.
2014; Svendsen and Birkedal 2014; Svendsen et al. 2013]. More recently, some approaches [Frumin
et al. 2018; Turon et al. 2013] employed variants of separation logic to establish linearizability and
contextual refinement themselves, suggesting separation logic as a general-purpose method for
reasoning about concurrent programs.

On the other hand, composition is also the cornerstone of type theory, where types serve as the
interface that abstracts the internal properties of programs and proofs. Because both are focused on
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composition, type theory and separation logic are closely related. For example, from the inception
of (sequential) separation logic, it has been understood [O’Hearn et al. 2001; Reynolds 2002] that its
reasoning power arises from the key property of fault avoidance, which implies the features usually
associated with separation logic, such as framing and small-footprint semantics. Fault avoidance
states that a program verified against some pre- and postcondition, doesn’t crash (say, by reading
from a deallocated pointer), if started in a state satisfying the precondition. This has inspired a
stateful type theory [Nanevski 2016; Nanevski et al. 2006], where the type ascription

e : {P}{Q}

signifies that the program e has a precondition P and a postcondition Q (both predicates over
program states), in the sense of partial correctness. The Hoare type {P}{Q} is a form of dependently-
typed state monad, indexed by P and Q , which encapsulates the effects of state and divergence,
similarly to monads in Haskell. In the typed setting, fault avoidance is forced onto the formalism
by the requirement that łwell-typed programs cannot go wrongž [Milner 1978]. Thus, Hoare types
give rise to not just a Hoare logic, but separation logic specifically. In other words, separation logic
is a type theory of state. Hoare types also enable a formulation and low-overhead implementa-
tion [Nanevski et al. 2008; Svendsen et al. 2011] of separation logic as an extension of, or a shallow
embedding into, a standard type theory (e.g. Coq).

Using the above connection as a guiding principle, this paper derives a type-based formulation
of separation logic for fine-grained concurrency. Immediately motivated by the form of typeful spec-
ification for fine-grained programs, our contributions are two novel and foundational abstractions
for compositional verificationÐthe morphisms and the simulations from the paper’s titleÐand a
way to incorporate them into Hoare-style reasoning by means of a single inference rule. The upshot
is conceptually simple foundations for separation logic for fine-grained concurrency.

1.1 Resources

As proposed by Dinsdale-Young et al. [2010], and utilized in different ways in many recent for-
malisms [da Rocha Pinto et al. 2014; Jung et al. 2015; Nanevski et al. 2014; Svendsen and Birkedal
2014; Svendsen et al. 2013], the key technical requirement that fine-grained concurrency imposes
on a Hoare-style logic is enriching the Hoare specifications with state transition systems (STS) of a
specific formÐtermed resources [Hoare 1972; O’Hearn 2007; Owicki and Gries 1976] in this paper.
For example, in our type-based setting, we extend the Hoare type with a resource V , as in

e : {P}{Q}@V

to signify that e has a precondition P and a postcondition Q , but also that the atomic state changes
that e may carry out are circumscribed by the transitions of V . We also say that e is typed by V ,
that e inhabits V , or that e is in V .

Two programs can be composed in parallel (or sequentially), only if they are typed by the same
resource. Thus, the resource in the type annotation bounds the interference that concurrent threads
can perform on each other’s execution, which is essential for reasoning about the composition.1

To quickly illustrate resources in our particular setting, consider a spin lock r (a shared Boolean
pointer) and a program that locks r by setting it to true, and loops if r is already set2:

lock =̂ do x ← CAS(r , false, true) while ¬x

1The idea of bounding the interference is the foundation behind the classic rely-guarantee method [Jones 1983] as well. In

fact, resources may be seen as structuring and compactly representingÐin the form of transitionsÐthe rely and guarantee

relations of the rely-guarantee method.
2The Compare-and-Set variant of CAS(r , a, b) [Herlihy and Shavit 2008] atomically sets the pointer r to b if r contains a,

otherwise leaves r unchanged. It moreover returns a Boolean value denoting the success or failure of the operation.
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Spin id_trunlock_tr

lock_tr

Fig. 1. Resource for spin locks. By convention, the idle transition id_tr will be elided in the future diagrams.

Figure 1 shows (an abstracted form of) the resource Spin, suitable to type lock.3 Every execution
of lock describes a path through Spin consisting of several idle transitions id_tr, corresponding to
unsuccessful CAS’s, followed by a locking transition lock_tr corresponding to a successful CAS.
Similarly, the Spin resource also types the unlock program

unlock =̂ r := false

which may be seen as taking the unlock_tr transition if r stores true, or staying idle if r stores false
to begin with. Because lock and unlock are typed by the same resource, they can be composed,
sequentially or in parallel. The typing guarantees that the concurrent environment of lock and
unlock is bound to only ever execute the transitions of Spin, and can’t cause łsurprisesž, such as
deallocating the pointer r while lock or unlock are executing.

1.2 Morphisms

This brings us to the first technical contribution of the paper. As soon as resources are introduced
into types, it becomes necessary to coerce a program from one type (i.e., resource) to another.
As one example of coercion, consider two procedures, inhabiting different resources, each

specifying its own concurrent data structure (say, a stack and a queue). If we want to use the stack
and the queue together in a program, we must coerce the procedures into a common resource that
includes the functionality of both structures, and describes how the two interact.

As another example, consider refining the behavior of already implemented resources. Suppose
we want to use the bare-bones spin locks described by Spin to develop more sophisticated locking
protocols: CSL-style mutually exclusive locks [O’Hearn 2007], or non-mutually-exclusive locks
such as readers-writers locks [Bornat et al. 2005; Courtois et al. 1971] where a reader acquires a lock
to allow access to multiple readers, but not writers. Both developments can be seen as extending
Spin with additional ghost state to represent the invariants of the refined locking protocol, and
then coercing the lock and unlock procedures to modify this additional ghost state at the precise
moment when lock transitions by lock_tr, and unlock transitions by unlock_tr. The developments
thus compositionally reuse the definitions and proofs of lock and unlock, each in its own way. We
carry out the first development in Section 4, and the second in the Coq code [Nanevski et al. 2019a].

To achieve coercionwe introducemorphisms between resources. A resourcemorphism f : V →W

is a structure-preserving mapping from resourceV to resourceW , which acts on a program e typed
by V , to derive a program typed byW , essentially by re-interpreting the V -transitions that e takes,
asW -transitions.
Morphisms arise naturally, because a structure in mathematics typically is associated with an

appropriate notion of a structure-preserving function. Examples abound: vector spaces and linear
maps, groups and their homomorphisms, complete partial orders and continuous functions, functors

3We’ll define the state space and the transitions of Spin in Section 2, and eventually tie them to the implementations of

lock and unlock. At this point, it suffices to know that a program in Spin may transition by lock_tr only if r is free (thereby

locking it), and by unlock_tr only if r is locked (thereby freeing it).
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s′v I s′w

sv I sw

fΣ

tv

fΣ

tw=f∆ sw tv

Fig. 2. Reinterpreting the transitions of a resource V into those ofW , by a morphism f : V →W and an
f -simulation I . In this diagram, and in the sequel, I s denotes łstate s such that the predicate I holdsž.

and natural transformations, etc. Morphisms endow the structure with dynamics and allow studying
it under change. This will be the case for us as well.
More specifically, and akin to how automata homomorphisms [Ginzburg 1968] are defined

componentwise, a resource morphism f : V → W consists of two partial functions fΣ and f∆,
acting respectively on states (Σ) and transitions (∆). fΣ takes a state inW and produces a state, if
defined, in V (note the contravariance); and f∆ takes a state inW and transition in V and produces
a transition, if defined, inW . Combined, fΣ and f∆ act on a program e inhabiting V to produce a
program inhabitingW , using the following process.

Referring to Figure 2, the morphed program inhabitsW , so we describe it starting with aW -state
sw in the lower-right corner of the diagram (the predicate I that is applied to sw in the diagram
will be explained promptly). To compute the next state of the morphed program, we first take
sv = fΣ sw which is a state in V (utilizing contravariance of fΣ). If e takes a transition tv to step
from sv to s ′v in V , the corresponding transition of the morphed program is tw = f∆ sw tv . If tw
steps from sw to s ′w , the process is repeated for s ′w and the next transition of e .

The morphing process determines a program inW that we denote morph f e . Here, morph is a
program constructor, and a form of function application of f to e . In the sequel, we introduce the
infrastructure to program (and prove!) with morphisms and morphed programs.

1.3 Simulations and Inference

To reason about morph f e , we introduce our second contribution: morphism-specific simulations.
An f -simulation (or simply, a simulation, when f is clear from the context) is a predicate I over
W -states that acts like a loop invariant for the iterative process of morphing by f . Specifically, an
f -simulation satisfies, among other conditions presented in Section 3, the key technical property
that the diagram in Figure 2 commutes. Given sw , sv , tv and s ′v that partially describe the diagram,
if I sw , then there exists a state s ′w that completes the diagram: tw = f∆ sw tv exists, tw sw s ′w , I s

′
w ,

and fΣ s
′
w = s

′
v . Because I s

′
w holds, simulation I is preserved by f .

Simulations provide a way to reason about morph f e compositionally, i.e., out of e’s type,
achieving our ultimate goal of program and proof re-usability. The specifics are prescribed by the
following single inference rule, which is our third contribution:

e : {P}{Q}@V

morph f e : {λsw . f ˆP sw ∧ I sw }{λsw . f ˆQ sw ∧ I sw }@W
Morph

where f ˆR sw =̂ ∃ sv . sv = fΣ sw ∧ R sv

The Morph rule translates the requirements for a morphism f : V → W , and a simulation I ,
expressed diagrammatically in Figure 2, from properties of states and transitions of the resourcesV
andW , into the specification of a program morph f e inW . The latter spec is structured, both in
its pre- and the postconditions, as a conjunction of (i) the transformation of e’s spec from V toW ,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 161. Publication date: October 2019.



Specifying Concurrent Programs in Separation Logic: Morphisms and Simulations 161:5

and (ii) a statement that the simulation I , being in fact an invariant of the resources’ transitions,
holds at the boundaries of the morphed execution of e . For the first part, we use the predicate f ˆ_,
to lift the pre- and postconditions of e from states in V to states ofW , which are related via fΣ.
This motivates the contravariance of fΣ: we have verified e in the context of the resourceV , but we
intend to morph e and execute it in a new resource context, where states are inhabitants ofW .
More concretely, the precondition of morph f e in Morph assumes I sw and the existence of

sv = fΣ sw such that P sv . By fault avoidance (i.e., type safety), a program (here e in the premise)
that is ascribed a Hoare type isn’t stuck. Hence, there exists a transition tv by which e steps from
sv into s ′v . Because I is an f -simulation, the commuting diagram implies the existence of s ′w such
that s ′v = fΣ s

′
w and I s ′w . The morphing process is then iterated for s ′w and the subsequent states.

This iteration relies on f preserving I , much like a loop relies on the loop body preserving the loop
invariant. Once e terminates in a final state s ′′v , the postcondition in Morph must hold. First, Q s ′′v
must hold asQ is e’s postcondition. Second, I being an f -simulation yields the commuting diagram
which implies the existence of s ′′w such that s ′′v = fΣ s

′′
w (hence f ˆQ s ′′w ) and I s

′′
w .

The paper can thus be seen as introducing simulations into separation logic in a simple4, but
also constructive manner. Customarily, an STSW simulates another STS V if whenever V takes a
transition, there exists a transition forW to take [Lynch and Vaandrager 1995]. For us, a morphism
f computes the witness of this existential (via f∆), in the style of constructive logic and type theory.
Moreover, a simulation is usually defined as a relation between the states of V andW . For us, an
f -simulation is a predicate onW -states alone, as fΣ deterministically computes the unique V -state
that corresponds to aW -state in the simulation. Finally, simulations are also customarily required
to relate a distinguished set of initial states of the source and target STSs. Our resources and
f -simulations, on the contrary, don’t need to consider specific initial states of V andW , because
the initial states of any program are described by its precondition, and the Morph rule checks that
the simulation holds on the pre-state of every invocation of morph.
The paper can also be seen as introducing a form of refinement mappings [Abadi and Lamport

1991] into separation logic, since refinement mappings, like morphisms, are functions between
STSs. The two, however, have very different technical details, largely imposed by our connection to
separation logic. This includes the introduction of the morphism action on programs and theMorph

rule, but also the treatment of state ownership, ownership transfer, and framing (cf. Section 3),
none of which have been considered with refinement mappings.
Moreover, resource morphisms go beyond mere program specification and proof, as they also

support generic constructions over resources, such as łtensoringž two resources, adjoining an
invariant to a resource, or forgetting a ghost field from a resource (the last one with a mild
generalization to indexed morphism families). Morphisms relate a construction to its components,
much as arrows in category theory relate objects of universal constructions, and are thus essential
for the constructions to compose. This is why we see resource morphisms as a step towards a
general type-theoretic calculus of concurrent constructions.

We formalize the development in Coq, using Coq’s predicates over states as assertions5, building
on the code base of Fine-grained Concurrent Separation Logic (FCSL) [Nanevski et al. 2014]. The
sources are available online as an Artifact [Nanevski et al. 2019a], along with the extended version
of the paper [Nanevski et al. 2019b].6

4Our formalization exports nine rules for Hoare-style reasoning, each addressing an orthogonal linguistic feature.
5As apparent from theMorph rule, we explicitly bind the state sw , in contrast to the classic presentation of separation

logics where this state is implicit. This is merely a syntactic distinction.
6In addition to the examples from the paper, the sources include further benchmarks such as Treiber stack [Treiber 1986],

flat combiner [Hendler et al. 2010], a concurrent allocator, a concurrent graph spanning tree algorithm [Sergey et al. 2015a],

ticketed [Mellor-Crummey and Scott 1991] and readers-writers [Courtois et al. 1971] locks.
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Readmap. The rest of the paper is organized as follows. Section 2 introduces resources and
associated notions of ghost state and transitions, via the spin lock example. Section 3 develops the
theory formally, including our specific notion of framing. Section 4 illustrates how to morph spin
locks into exclusive locks. Section 5 introduces indexed morphism families and applies them to
łforgettingž the ghost state of a resource. This models what is often referred to as quiescence [Aspnes
et al. 1994; Derrick et al. 2011; Jagadeesan and Riely 2014; Nanevski et al. 2014; Sergey et al. 2016],
most commonly used when installing one concurrent structure into the private state of another.
Section 6 discusses related work and Section 7 concludes.

2 BACKGROUND AND OVERVIEW

We illustrate our specification idiom, resources, and resource morphisms, by fleshing out the
example of spin locks.

2.1 Histories

To specify the locking and unlocking methods over spin lock, we build on the idea of linearizabil-
ity [Herlihy and Wing 1990], and record the operations on r in the linear sequence in which they
occurred. We do so in Hoare triples, but in a thread-local way, i.e. from the point of view of the
specified thread, which we refer to as łusž [Ley-Wild and Nanevski 2013].
Specifically, a program state s contains a ghost component that we project as τs s , and which

keeps łourž history of lock operations. Dually, the projection τo s keeps the collective history of
all łotherž (i.e. environment) threads. Each thread has these two components in scope, but they
may have different values in different threads. We refer to τs and τo as self and other histories,
respectively [Nanevski et al. 2014; Sergey et al. 2015b].
A history is a timestamped log of the locking and unlocking operations. Mathematically, it’s a

finite map from timestamps (strictly positive nats) to the set {L,U}. For example, the self history τs s
defined as 2 Z⇒ U • 7 Z⇒ L • 9 Z⇒ L, signifies that łwež have unlocked at time 2, and locked at times
7 and 9. The timestamp gaps indicate the activity of the interfering threads, e.g., another thread
must have locked at time 1, otherwise we couldn’t have unlocked at time 2. Similarly, another
thread must have unlocked at time 8. The entries such as 2 Z⇒ U are singletonmaps, and • is disjoint
union, undefined if operand histories share a timestamp. We abbreviate by τ̂ s the history τs s • τo s ,
which is the combined history of all threads, and use Hist for the collection of all histories.

2.2 Resources

We next define the resource Spin from Section 1, that types spin lock methods. It is pictorially
shown in Figure 3 on the left.

The state space of Spin, denoted Σ (Spin), makes explicit the assumptions about the components:
that the histories are disjoint (denoted τs s ⊥ τo s), that the entries in τ̂ s alternate between L and U,
and that r isn’t the null pointer.

The erasure ⌜s⌝ shows how the state s maps to a heap once the ghost histories are removed. The
expression r Z⇒ ω (τ̂ s) denotes a heap with only the pointer r , storing the Boolean value ω (τ̂ s).
The latter computes the lock status out of the combined history τ̂ s; it equals true if the last log in
the combined history is a lock entry L, and false otherwise.

The set of transitions of Spin, denoted ∆ (Spin), contains lock_tr, unlock_tr, and the (elided) idle
transition. The transition lock_tr adds a fresh L entry to τs s if ¬ω (τ̂ s), i.e., if the lock is free in the
pre-state. Similarly, unlock_tr adds a fresh U entry if ω (τ̂ s), i.e., the lock is taken. The lock can by
taken by łusž or by łothersž, as ω is computed from the combined history τ̂ s . If the locking protocol
insists that the thread that unlocks is the same thread that last locked, then the precondition of
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Spin Counter

lock_tr

unlock_tr

incr_tr n

▷◁

State space Σ (Spin): s ∈ Σ (Spin) iff

s contains fields τs s , τo s ∈ Hist, and

τs s ⊥ τo s ∧ alternate (τ̂ s) ∧ r , null

Erasure: ⌜s⌝ =̂ r Z⇒ ω (τ̂ s)

Transitions ∆(Spin):

lock_tr s s ′ =̂ ¬ω (τ̂ s) ∧ τs s ′ = τs s • fresh (τ̂ s) Z⇒ L

unlock_tr s s ′ =̂ ω (τ̂ s) ∧ τs s
′
= τs s • fresh (τ̂ s) Z⇒ U

State space Σ (Counter): s ∈ Σ (Counter) iff

s contains fields κs s , κo s ∈ N

with no additional constraints

Erasure: ⌜s⌝ =̂ empty heap

Transitions ∆ (Counter):

incr_tr n s s ′ =̂ κs s
′
= κs s + n

Abbreviations: (in the abbreviations below, h is a bound variable ranging over histories)

domh =̂ {t | h (t ) defined}

last_stamph =̂ max ({0} ∪ domh)

freshh =̂ 1 + last_stamph

last_oph =̂

{
h (last_stamph), if last_stamph , 0

U, otherwise

ω h =̂ (last_oph = L)

alternateh =̂ (h = 1 Z⇒ L • 2 Z⇒ U • 3 Z⇒ L • · · · • last_stamph Z⇒ last_oph)

Fig. 3. Spin and Counter resources (with id_tr elided).

unlock_tr should be changed to ω (τs s). We don’t want to impose such behavior at this stage, but
show how to achieve it a posteriori, together with additional functionality, in Section 4.

2.3 Method Specifications

We now give the following pidgin code for lock and unlock, intended to further the intuition about
transitions. The actual implementation of the methods will be shown in Section 3, once we have
formally introduced our system.

lock =̂ do ⟨x ← CAS(r , false, true); if x then τs s := τs s • fresh (τ̂ s) Z⇒ L ⟩;while ¬x

unlock =̂ ⟨ x ← !r ; r := false; if x then τs s := τs s • fresh (τ̂ s) Z⇒ U ⟩

The brackets ⟨−⟩ denote atomic execution (i.e., uninterrupted by other threads) of real and ghost
code, the latter given in gray. Note how the bracketed code in lock implicitly describes a choice,
depending on the contents of r , between executing lock_tr or the idle transition in the resource.
The former, when considered on erased states, corresponds to CAS successfully setting r , the latter
to CAS failing. Similarly, unlock chooses between unlock_tr and the idle transition. Thus, we shall
abstractly view the atomic executions as a choice between transitions of the corresponding resource,
rather than as bracketing of ghost with real code.
We can now explain the history-based specs for lock and unlock.

lock : [h,k]. {λs . τs s = h ∧ k ≤ last_stamp (τ̂ s)}
{λs . ∃t . τs s = h • t Z⇒ L ∧ k < t}@Spin

unlock : [h,k]. {λs . τs s = h ∧ k ≤ last_stamp (τ̂ s)}
{λs . ∃t . τs s = h • t Z⇒ U ∧ k < t ∨ τs s = h ∧ τ̂ s t = U ∧ k ≤ t}@Spin

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 161. Publication date: October 2019.
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The precondition of lock starts with self history τs s equal to h7, which is increased in the
postcondition to log a locking event at time t . The conjunct k < t in the postcondition claims that
t is fresh, because it’s larger than any k generated prior to the call (as k ≤ last_stamp (τ̂ s) is a
conjunct in the precondition, and k is universally quantified outside of the pre- and postcondition).
The natural numbers ordering on timestamps gives the linear sequence in which the events logged
in τ̂ s occurred. Notice that the spec is stable, i.e., invariant under interference. Intuitively, other
threads can’t modify the τs s field, as it’s private to łusž. They can log new events into τo s , which
features in the comparison k ≤ last_stamp (τ̂ s), but this only increases the right-hand side of the
comparison and doesn’t invalidate it.
Similarly, unlock starts with history h, which is either increased to log a fresh unlocking event

at time t , or remains unchanged if the unlocking fails because unlock encounters r already freed at
time t (conjunct τ̂ s t = U). The conjunct k ≤ t captures that another thread may have freed r after
the invocation of unlock (k < t ), or that we invoked unlock with r already freed (k = t ).
Observe that the spec for unlock doesn’t require that the unlocking thread is the one that last

locked, or even that the lock is taken when unlocking is attempted. This is so because we intend
the specs to capture only the basic mechanics of spin locks, and leave it to the clients to supply
application-specific policies, via morphing, as we illustrate on exclusive locks in Section 4 (and on
readers-writers locks in [Nanevski et al. 2019a]).

2.4 Morphisms

Consider next how to express a client of lock that, simultaneously with a successful lock, adds
n to the ghost component κs s of resource Counter (right half of Figure 3). Intuitively, we desire
something like ⟨lock; κs s := κs s + n ⟩ but this isn’t quite right. Indeed, bracketing would prevent
other programs from running during the iterations of lock’s loop, thus changing the granularity
of the program. We want to model that addition occurs only upon the successful CAS of the last
iteration in lock. To do so, we use morphisms as follows.
First, we łtensorž the resources Spin and Counter, as graphically indicated8 in Figure 3; that is,

we create a new resource SC whose state is a pair of Spin and Counter states, and transitions are
lock_tr ▷◁ incr_tr n and unlock_tr ▷◁ id_tr. Operator ▷◁ (pronounced łcouplež) indicates that the
operand transitions are executed simultaneously on their respective state halves. It’s defined as
follows, where s\1 and s\2 project state s to its Spin and Counter components, respectively:

(t1 ▷◁ t2) s s
′
=̂ t1 (s\1) (s

′\1) ∧ t2 (s\2) (s
′\2)

Second, for each n ∈ N, we define the morphism fn : Spin→ SC as follows:

(fn)Σ s =̂ s\1

(fn)∆ s lock_tr =̂ lock_tr ▷◁ incr_tr n
(fn)∆ s unlock_tr =̂ unlock_tr ▷◁ id_tr

This definition captures: (1) starting from an SC state s , we can obtain a Spin state by taking the
first projection; (2) a Spin program can be lifted to SC by changing the transition lock_tr by (fn)∆
on the fly, to increment κs s simultaneously with the lock acquisition; and (3) unlock_tr is coupled
with the idle transition in Counter, thus κs s is unchanged by unlocking.

Now, our desired program is

morph fn lock

7As customary in Hoare logic, h and k are logical variables, used to relate the pre and post-state. They are universally

quantified, scoping over pre and post-condition, and the syntax [· · · ] makes the binding explicit.
8We elide the definition of tensoring, as it isn’t required to follow the presentation. It can be found in the online appen-

dices [Nanevski et al. 2019b, Appendix A].
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1. {κs s = n}

2. {κs s = n ∧ τs s = h}

3. morph f1 lock; // I1 s =̂ κs s = n + ♯L (τs s) − ♯L h

4. {κs s = n + ♯L (τs s) − ♯L h ∧ τs s = h • t Z⇒ L}
5. {κs s = n + 1 ∧ τs s = h

′}

6. morph f42 unlock; // I42 s =̂ κs s = n + 1
7. {κs s = n + 1 ∧ (τs s = h

′ ∨ τs s = h
′ • t ′ Z⇒ U)}

8. {κs s = n + 1 ∧ τs s = h
′′}

9. morph f2 lock // I2 s =̂ κs s = n + 1 + 2(♯L (τs s) − ♯L h
′′)

10. {κs s = n + 1 + 2(♯L (τs s) − ♯L h
′′) ∧ τs s = h

′′ • t ′′ Z⇒ L}
11. {κs s = n + 3}

Fig. 4. Using theMorph rule to show that κs s increments by 3. ♯L (−) is the number of L-entries in a history.

which is typed by SC, and executes lock_tr ▷◁ incr_tr n whenever lock executes lock_tr, thus
incrementing κs s precisely, and only, upon a successful CAS.

2.5 Inference

The Morph rule provides a way to reason about morphed programs. To illustrate the proofs, we
consider the following simple program

morph f1 lock;
morph f42 unlock;
morph f2 lock

which, in addition to locking and unlocking, incrementsκs s by 1 in the first line, and by 2 in the third
line.9 The second line morphs unlock vacuously, as unlocking leaves κs s unchanged. Nevertheless,
some morphing of unlock is necessary, to bring the commands under the same resource type.
The proof outline in Figure 4 shows that κs s increments by 3, and we discuss its main points

next. In the outline, ♯L is a function on history that computes the number of L entries in the history.
The outline starts with the precondition κs s = n, where n snapshots łourž current count. Line 2
uses h to snapshot łourž history. Line 3 applies morph to lock, and correspondingly, the Morph

rule in the proof. At this point, we choose the simulation I1 as indicated in line 3, to state that
the counter κs increments n by the number of fresh L-entries in the history. Intuitively, I1 is an
f1-simulation because it is preserved under incrementing κs s by 1 while simultaneously adding an
L-entry to τs s (Figure 5). It’s easy to see that I1 holds in line 2, thus by Morph, it holds in line 4 as
well. But, in line 4, by postcondition of lock, the history τs s has one more locking entry. Thus, κs s
is increased by 1 (line 5). The remainder of the outline proceeds similarly.

We close the discussion with the observation that the property of being a simulation (i.e., making
diagrams in Figures 2 and 5 commute) relies only on the resource in the program’s type, and the
morphism in question, not on the program’s code, as required for compositional reasoning. In this
respect, the simulations are different from loop invariants, which are properties of programs. The
Morph rule ties the simulations to the morphed program by conjoining them with the program’s
pre- and the postcondition. Specifically above, I1 enables computing the end-value of κs from the
end-value of τs , and τs is given by the spec of lock.

9Strictly speaking, we should write κs (s\2) (resp. τs (s\1)) to extract the self component of the Counter (resp. Spin)
žsub-resourcež of SC. However, the components have different names, so there’s no confusion which projection of s they

come from. We thus abbreviate κs (s\2) with κs s , τs (s\1) with τs s , and similarly for κo and τo .
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s ′\1 I1 s
′ κs s

′
= n + ♯L (τs s

′) − ♯L h

s\1 I1 s κs s = n + ♯L (τs s) − ♯L h

(f1)Σ

lock_tr

(f1)Σ

lock_tr
▷◁

incr_tr 1

τs s
′
= τs s • fresh (τ̂ s) Z⇒ L
κs s

′
= κs s + 1

Fig. 5. Diagram showing that I1 s =̂ κs s = n + ♯L (τs s) − ♯L h is an f1-simulation (case of lock_tr transition).
The diagram specializes Figure 2 to f1, I1 and lock_tr.

3 DEFINITIONS OF THE FORMAL STRUCTURES

To develop the notions of morphisms and simulations, we first require a number of auxiliary
definitions, such as states, transitions, and resources on which morphisms act. This section defines
all the concepts formally, culminating with the inference rules of our system.

3.1 States

3.1.1 Subjective Components. Different resources may contain different state components, e.g., τ
of Spin and κ of Counter. In general, a state is parametrized by two types:M classifies the self and
other components, and T classifies the joint (aka., shared) state. Thus, s = (as ,aj ,ao) is a state if
as ,ao ∈M , and aj ∈T . If we want to be explicit about the types, we say that s is an (M,T )-state.
We use as s , aj s and ao s as generic projections out of s , but rename them in specific cases, for
readability. For example, in the case of Spin:M is Hist, T is unit type, and τs/τo renames as/ao . In
the case of Counter:M is N, T is unit type, and κs/κo renames as/ao .
Because as and ao represent thread-specific views of the state, we refer to them as subjective

components, and to s as subjective state [Ley-Wild and Nanevski 2013].

3.1.2 Algebra of Subjectivity. The specs must often combine the subjective components, cf. how
histories were unioned by • to express timestamp freshness in the spec of lock. To make the
combination uniform,M is endowed with the structure of a partial commutative monoid (PCM).
A PCM is triple (M, •,1) where • (join) is a partial, commutative, associative, binary operation on
M , with 1 as the unit. As a generic notation, we write x ⊥ y to denote that x • y is defined.

Example PCMs areHistwith disjoint union and the empty history ∅, andNwith + and 0. Another
common PCM is the set of heaps (denotedHeap). Heaps map pointers to values, and are thus similar
to histories, which map timestamps to operations. We can therefore reuse the history notation, and
write, e.g.:

x Z⇒ 3 • y Z⇒ false

to describe the heap containing pointers x and y, storing 3 and false, respectively.10 Heap is a PCM
with disjoint union and the empty heap ∅, similar to Hist. Cartesian product of PCMs is a PCM,
so PCMs can be combined, cf. the PCM of SC is constructed out of those of Spin and Counter in
Section 2.

3.1.3 Subjectivity and Parallel Composition. The subjective components are local, in the sense that
they have different values in different threads. However, despite the locality, the components of
different threads aren’t independent, but are inter-related as shown in Figure 6.

Imagine three threads θ1, θ2 and θ3 running concurrently. Their respective states must have the
forms s1 = (a1,aj ,a2 • a3), s2 = (a2,aj ,a3 • a1) and s3 = (a3,aj ,a1 • a2). Indeed, any two of the
threads combined are the environment for the third thread. Thus, the PCM join of the self ’s of any

10We silently already used this notation to define the erasure function for Spin in Figure 3.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 161. Publication date: October 2019.



Specifying Concurrent Programs in Separation Logic: Morphisms and Simulations 161:11

a1

a2

a3

aj

s1:

as = a1

ao = a2 • a3

(1) left thread θ1

a1

a2

a3

aj

s2:

as = a2

ao = a3 • a1

(2) right thread θ2

a1

a2

a3

aj

s = s1 ∗ s2:

as = a1 • a2

ao = a3

(3) parent thread θ = θ1 ∥ θ2

Fig. 6. Values of self component as (light shade) and other component ao (dark shade) in the states of parallel
threads and their parent. The inner white circle represents the joint component, and is equal for all threads.

two threads must equal the other of the third thread. Figures 6(1) and 6(2) illustrate this property
for threads θ1 and θ2, with θ3 being their implicit environment.

If θ is the parent thread of θ1 and θ2, then its state is s = (a1 •a2,aj ,a3), since θ is the combination
of θ1 and θ2, and has θ3 as the environment. We abbreviate as s = s1 ∗ s2 the relationship between
the parent state s , and the children states s1 and s2, and illustrate it in Figure 6(3).

3.1.4 Globality. A property or a function is global if it remains invariant under moving PCM values
between subjective components. In light of Figure 6, such properties and functions obtain equal
valuations across all concurrent threads, thus justifying the name. We introduce several operations
for surgery on subjective states, and then use them to define globality and conditional globality,
where the invariance holds only under a (global) condition.

Definition 3.1. Let p ∈ M and s = (as ,aj ,ao) be an (M,T )-state. The self-framing of s with the
frame p is the state s ✁ p = (as • p,aj ,ao). Dually, the other-framing of s with p is the state
s ✄ p = (as ,aj ,p • ao).

Definition 3.2. A predicate P is global, if P (s ✄ p) ↔ P (s ✁ p) for every p and state s such that
as s ⊥ p ⊥ ao s . A (partial) function f on states is global, if f (s ✄ p) = f (s ✁ p) under the same
conditions.

Examples of global predicates from Section 2 are P s = τs s ⊥ τo s , and Q s = alternate (τ̂ s) used
in Figure 3 to characterize Spin histories. P and Q are both defined in terms of τ̂ s = τs s • τo s;
Q directly so, and P because τs s ⊥ τo s iff τs s • τo s is itself defined. In other words, both P and
Q express a property of the collective history of all threads operating over Spin, taken together.
Clearly, the value of this history is invariant across all the threads, and therefore, so are P and Q .
Specifically, they are invariant under shuffling timestamps between τs and τo , as this doesn’t alter
the total. In fact, τ̂ itself is a global function, so we proceed to refer to τ̂ as the global history.

Definition 3.3. LetX be a global predicate. A predicate P is global underX , if P (s✄p) ↔ P (s✁p)

for every p and state s such that as s ⊥ p ⊥ ao s and X (s ✁ p). Similarly for functions.

3.1.5 Subjectivity and Framing. Subjective state makes framing work somewhat differently than
in the customary, non-subjective, separation logics. The latter may be viewed as having the self
component, but lacking other. To illustrate the difference, we give lock (Section 2) the following
spec, which is small [O’Hearn et al. 2001] wrt. the history τs s ,

lock : [k]. {λs . τs s = ∅ ∧ k ≤ last_stamp (τo s)}
{λs . ∃t . τs s = t Z⇒ L ∧ k < t}@Spin

and then we frame the history h onto τs s to obtain the equivalent large spec we actually presented:

lock : [h,k]. {λs . τs s = h ∧ k ≤ last_stamp (τ̂ s)}
{λs . ∃t . τs s = h • t Z⇒ L ∧ k < t}@Spin
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As expected in separation logic, framing increased the starting τs s from ∅ to h, which is the key
distinction between small and large specs. But this isn’t all it did; it also deducted h from τo s . Indeed,
had τo s been unchanged (as might also be expected in separation logic), then both specs would
contain the same conjunct k ≤ last_stamp (τo s). But the large spec contains k ≤ last_stamp (τ̂ s) =
last_stamp (h • τo s), where h is joined to τo s to compensate for the deduction.

To explain the deduction, notice that in any separation logic, framing is a special case of parallel
composition. To add a frame h to the state of a program e , it suffices to compose e in parallel with
the idle thread having h as its self. The composition executes like e , but with self enlarged by h,
and h remains unchanged. In the subjective setting, parallel composition joins the self ’s of two
threads, but also decreases the other of the parent, as illustrated in Figure 6. It is this decrease that is
evidenced in the large spec.
Therefore, framing enlarges self by h, and simultaneously removes h from other, which must

already contain h. Framing shuffles existing state between components, but doesn’t introduce new
state, in contrast to the usual separation logic formulations. This preserves the values of global
functions, and facilitates their use in specs (e.g., the global history τ̂ in lock).

3.2 Resources

Resources consist of state spaces and transitions. The state spaces describe the properties that hold
for all threads of the resource, so we use global predicates and functions to represent them.

Definition 3.4. A state space is a pair Σ = (P, ⌜−⌝), where P is a global predicate and ⌜−⌝ is a
partial function into heaps, global under P , called erasure, such that for every state s , P s implies
as (s) ⊥ ao(s) and ⌜s⌝ is defined. We write s ∈ Σ to mean P s .

Transitions describe the allowed atomic modifications on state. We require the following proper-
ties of them, to facilitate separation-style reasoning.

Definition 3.5. A transition t over state space Σ is a binary relation on Σ states, such that:

(1) (partial function) if t s s ′1 and t s s
′
2 then s ′1 = s

′
2.

(2) (other-fixity) if t s s ′, then ao s = ao s
′

(3) (transition locality) if t (s ✄p) x , then there exists s ′ such that x = s ′✄p and t (s ✁p) (s ′✁p)

A state s is safe for t , if there exists s ′ such that t s s ′.

Property (2) captures that a transition can’t change the other-component, as it’s private to other
threads. However, a transition can read this component, cf. how lock_tr in Figure 3 uses τo s as part
of τ̂ s to compute a fresh timestamp.
Transition locality (3) essentially says that transitions can be framed. To see how, let θ1 be a

thread in the state s ✄ p, whose sibling θ2 has self -component p. Their parent θ is thus in the state
s ✁ p, by Figure 6. If θ1 performs a transition t (s ✄ p) x , then by (3), the move can be seen as a
transition of θ in the state s ✁ p. In other words, the transition of a child can be seen as a transition
of the parent, but with self enlarged by p, and other suitably reduced by p. This is precisely the
view of framing described in Section 3.1.5. Hence, transition locality is the base case of, and gives
rise to, framing on programs, as a program’s execution is a sequence of transitions.

Definition 3.6. A Σ-transition t is footprint preserving if t s s ′ implies that ⌜s⌝ and ⌜s ′⌝ contain
the same pointers.

Transitions that preserve footprints are important because they can be coupled with other such
transitions without imposing side conditions on the combination. For example, consider the incr_tr
transition of Counter in Figure 3, which is footprint preserving, as it doesn’t allocate or deallocate
any pointers. Were it also to allocate, we will have a problem when combining Spin and Counter, as
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we must impose that incr_tr won’t allocate the pointer r , already taken by Spin. For simplicity, we
here present the theory with only footprint-preserving transitions, but have added non-preserving
(aka. external) transitions as well [Nanevski et al. 2019a]. External transitions encode transfer of
data in and out of a resource [de Alfaro and Henzinger 2001], of which allocation and deallocation
are an instance. When a resource requires allocation or deallocation, it can be tensored with an
allocator resource to exchange pointers through ownership transfer [Filipović et al. 2010b; Nanevski
et al. 2014] via external transitions. We elide further discussion, but refer to the Coq files for the
implementation of an allocator resource and example programs that use it.

Definition 3.7. A resource is a tuple V = (M,T , Σ,∆), where Σ is a space of (M,T )-states, and ∆

a set of footprint preserving Σ transitions. We refer toV ’s components as projections, e.g. Σ (V ) for
the state space, ∆ (V ) for the transitions,M (V ) for the PCM, etc. A state s is V -state iff s ∈ Σ (V ).

We close the discussion on resources by defining actionsÐatomic operations on (combined real
and ghost) state, which are the basic building blocks of programs.

Definition 3.8. An action of type A in a resource V is a partial function a : Σ (V )⇀ ∆ (V ) ×A,
mapping input state to output transition and value, which is local, in the sense that it is invariant
under framing. Formally, if a (s ✄ p) = (t,v) then a (s ✁ p) = (t,v); that is, if a is performed by a
child thread, it behaves the same when viewed by the parent.

The effect of a is the partial function [a] : Σ (V )⇀ Σ (V ) ×Amapping input state to output state
and value, defined as [a] s = (s ′,v) iff ∃t . a s = (t,v) ∧ t s s ′. Note that [a] is a (partial) function
because a and t are.

For example, we model the bracketed code used in the lock loop in Section 2, as the following
action of type bool:

trylock_act s =̂

{
(lock_tr, true) if ¬ω (τ̂ s)

(id_tr, false) otherwise
(1)

The action is local, as it depends only on τ̂ s , which is invariant under framing.
We say that a erases to an atomic read-modify-write (RMW) command c [Herlihy and Shavit

2008], if [a] behaves like c when the states are erased to heaps. In other words, if [a] s = (s ′,v),
then c ⌜s⌝ = (⌜s ′⌝,v). One may check that trylock_act erases to CAS(r , false, true), as expected.11

Similarly,

unlock_act s =̂

{
(unlock_tr, ()) if ω (τ̂ s)

(id_tr, ()) otherwise
(2)

is an action of unit type, which erases to r := false.

3.3 Morphisms

Definition 3.9. A resource morphism f : V →W consists of two partial functions fΣ : Σ (W )⇀
Σ (V ) (note the contravariance), and f∆ : Σ (W )⇀ ∆ (V )⇀ ∆ (W ), such that:

(1) (locality of fΣ) there exists a function ϕ : M (W ) → M (V ) such that if fΣ (sw ✄ p) = sv , then
there exists s ′v such that sv = s

′
v ✄ ϕ (p), and fΣ (sw ✁ p) = s ′v ✁ ϕ (p).

(2) (locality of f∆) if f∆ (sw ✄ p)(tv ) = tw , then f∆ (sw ✁ p)(tv ) = tw .
(3) (other-fixity) if ao (sw ) = ao (s

′
w ) and fΣ (sw ), fΣ (s

′
w ) exist, then ao (fΣ (sw )) = ao (fΣ (s

′
w )).

11All the actions we use in this paper and in the Coq code erase to some RMW command. However, we proved this only by

hand, as our formalism and the Coq implementation don’t currently issue proof obligations to check this. In general, we

currently treat code and ghost code equally, and, as customary in type theory, equally to proofs. Differentiating between

these formally is an orthogonal issue that we plan to address in the future by making a type distinction between them, such

as in the work on proof irrelevance in type theory [Barras and Bernardo 2008; Gilbert et al. 2019; Pfenning 2001].
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A morphism f transforms a V -program e into aW -program, as follows. When morph f e is in a
W -state sw , it has to determine aW -transition to take. It does so by obtaining aV -state sv = fΣ (sw ).
Next, out of sv , e can determine the transition tv to take. The morphedW -program then takes the
W -transition f∆ (sw )(tv ).

The properties (1) and (2) of Definition 3.9 provide basic technical conditions for this process
to be invariant under framing. Property (1) is a form of łsimulation of framingž, i.e., a frame p in
W can be matched with a frame ϕ (p) in V . Thus, framing a morphed program can be viewed as
framing the original program. Property (2) says that framing doesn’t change the transition that f∆
produces; thus it doesn’t influence the behavior of morphed programs. The property (3) restricts
the choice of s ′v in (1) so that ao (s

′
v ) is uniquely determined by ao (sw ), much as how ϕ (p) in (1) is

uniquely determined by p. This is a technical condition which we required to prove the soundness
of the frame rule.
Example. Properties (1)-(3) are all satisfied by the morphisms fn : Spin → SC from Section 2.

Indeed, M (SC) = M (Spin) ×M (Counter) = Hist × N. Thus, a frame in SC is a pair of a history
and a nat; it is transformed into a frame in Spin just by taking the history component. We thus
instantiate ϕ in (1) with the first projection function, and it is easy to see that it satisfies the rest
of (1). Property (2) holds because (fn)∆ doesn’t depend on the state argument, hence framing this
state doesn’t change the output. Finally, in (3), the values ao (sw ) and ao (s

′
w ) are also pairs of a

history and a nat. If the pairs are equal, then their history components are equal too, deriving (3).
Finally, resources and their morphisms support a basic categorical structure, under the following

notions of morphism identity and composition. We have proved in the Coq files that morphism
composition is associative, with the identity morphism as the unit, where two morphisms are equal
if their Σ and ∆ components are equal as partial functions.

Definition 3.10. The identity morphism id : V → V is defined by idΣ s = s and id∆ s t = t . The
composition of morphisms f : U → V and д : V →W is the morphism д ◦ f : U →W defined by:

(д ◦ f )Σ sw =̂ fΣ (дΣ sw )

(д ◦ f )∆ sw tu =̂ д∆ sw (f∆ (дΣ sw ) tu )

3.4 Simulations

Because fΣ and f∆ are partial, a program lifted by a morphism isn’t immediately guaranteed to
be safe (i.e., doesn’t get stuck). For example, the state sv = fΣ sw , whose computation is the first
step of morphing, needn’t exist. Even if sv does exist, and the original program takes the transition
tv in sv , then tw = f∆ sw tv needn’t exist. Even if tw does exist, there is no guarantee that sw is
safe for tw . An f -simulation is a condition that guarantees the existence of these entities, and their
mutual agreement (e.g., that sw is safe for tw ), so that a morphed program that typechecks against
the Morph rule doesn’t get stuck.

Definition 3.11. Given a morphism f : V →W , an f -simulation is a predicate I onW -states
such that:

(1) if I sw , and sv = fΣ (sw ) exists, and tv sv s ′v , then there exist tw = f∆ sw tv and s ′w such that
I s ′w and s ′v = fΣ (s

′
w ), and tw sw s ′w .

(2) if I sw , and sv = fΣ (sw ) exists, and sw −→
∗

W
s ′w , then I s ′w , and s ′v = fΣ (s

′
w ) exists, and

sv −→
∗

V
s ′v . Here, the relation s −→

W
s ′ denotes that s other-steps byW to s ′, i.e., that there

exists a transition t ∈ ∆ (W ) such that t s⊤ s ′⊤. The transposition s⊤ = (ao s,aj s,as s) swaps
the subjective components of s , to obtain the view of other threads. The relation −→∗

W
is the

reflexive-transitive closure of −→
W

, allowing for an arbitrary number of steps.
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s ′v I s ′w

sv I sw

fΣ

tv

fΣ

f∆ sw tv

s ′v I s ′w

sv I sw

fΣ

∗

V

fΣ

∗

W

Fig. 7. Commutative diagrams for the properties (1) and (2) of Definition 3.11 for I to be an f -simulation.

Property (1) says thatW simulates V on states satisfying I . Property (2) states the simulation in
the opposite direction, i.e., ofW by V , but allowing many other-steps to match many other-steps.
Notice that other-stepping transitions over transposed states; that is, it changes the other, but, by
Definition 3.5(2), preserves the self of the states. Intuitively, (2) ensures that interference inW may
be viewed as interference in V , so that stable Hoare triples in V can be transformed into stable
Hoare triples inW , which is required for the soundness of the Morph rule. Property (1) has already
been shown in Figure 2; we repeat it in Figure 7, together with a diagram for property (2).

3.5 Inference Rules

We present the system using the Calculus of Inductive Constructions (CiC) as an environment logic,
hence as a shallow embedding in Coq. We inherit from CiC the useful concepts of higher-order
functions and substitution principles, and only present the notions specific to Hoare logic12.

We differentiate between two different notions of program types: STV A and [Γ]. {P}A {Q}@V .
The first type circumscribes programs that respect the transitions of the resource V , and return
a value of type A if they terminate. The second, Hoare type, is a subset of STV A, selecting only
those programs that satisfy the precondition P and postcondition Q , under the context Γ of logical
variables. To accommodate for the return values, the postconditionQ is now a predicate over values
of type A and states (if A = unit, we elide it from the Hoare type, as we did in Section 2).

The key concept in the inference rules is the predicate transformer vrf e Q , which takes a program
e : STV A, and a postcondition Q , and returns the set of V -states from which e is safe to run13 and
produces a result v and ending state s ′ such that Q v s ′. Hoare types are then defined in terms of
vrf, as follows.

[Γ]. {P}A {Q}@V = {e : STV A | ∀Γ.∀s ∈ Σ (V ). P s → vrf e Q s} (3)

We formulate the system using both vrf and the Hoare types. The former is useful, as it leads to
compact presentation, avoiding a number of structural rules of Hoare logic. The latter is useful
because it lets us easily combine Hoare reasoning with higher-order concepts. For example, having
inherited higher-order functions from CiC, we can immediately give the following type to the
fixed-point combinator, where T is the dependent type T = Πx :A. [Γ]. {P} B {Q}@V :

fix : (T → T ) → T Fix

Here,T serves as a loop invariant; in fix (λf . e) we assume thatT holds of f , but then have to prove
that it holds of e as well, i.e., it is preserved upon the end of the iteration.

In reasoning about programs, we keep the transformer vrf abstract, and only rely on the following
minimal set of rules. These, together with the above definition of Hoare types and typing for fix,

12The extended version of the paper [Nanevski et al. 2019b, Appendix D] defines the denotational semantics, in CiC, for

these notions, and states a theorem, proved in Coq, that the inference rules are sound wrt. the denotational semantics.
13Thus ensuring fault avoidance.
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are the only Hoare-related rules of the system. In the rules we assume that e : STV A, ei : STV Ai ,
a is a V -action, f : V →W is a morphism, I is an f -simulation, s ∈ Σ (V ), and sw ∈ Σ (W ).

vrf_post : (∀v s . J s → Q1 v s → Q2 v s) → J s → vrf e Q1 s → vrf e Q2 s

vrf_ret : (Q v)• s → vrf (ret v) Q s

vrf_bnd : vrf e1 (λx . vrf (e2 x) Q) s → vrf (x ← e1; (e2 x)) Q s

vrf_par : ((vrf e1 Q1) ∗ (vrf e2 Q2)) s → vrf (e1 ∥ e2) (λv :A1×A2. (Q1v .1) ∗ (Q2v .2)) s
where (P ∗ Q) s =̂ ∃s1 s2. s = s1 ∗ s2 ∧ P s1 ∧Q s2

vrf_frame : ((vrf e Q1) ∗Q
•
2 ) s → vrf e (λv . (Q1 v) ∗Q2) s

vrf_act : (λs ′. ∃s ′′ v . [a] s ′ = (s ′′,v) ∧ (Q v)• s ′′)• s → vrf ⟨a⟩ Q s

vrf_morph : f ˆ(vrf e Q) sw → I sw → vrf (morph f e) (λv s ′w . f ˆ(Q v) s ′w ∧ I s
′
w ) sw

where f ˆR sw =̂ ∃sv . sv = fΣ sw ∧ R sv

In English:

• The vrf_post rule weakens the postcondition, similar to the well-known rule of Consequence
in Hoare logic. The rule allows assuming a property J when establishing a postcondition
Q2 out of Q1. Here J is an invariant, i.e., a property preserved by the transitions of V ; an
id-simulation. Thus, invariants can be elided from program specs, and invoked by vrf_post
when needed.
• The vrf_ret rule applies to an idle program returning v . When we want an idle program
that returns no value, we simply take v to be of unit type. The rule explicitly stabilizes

the postcondition Q to allow for the state s to be changed by interference of other threads
in between the invocation of the idle program and its termination. Here, stabilization of a
predicate Q is Q• (s) =̂ ∀s ′. s −→∗

V
s ′→ Q (s ′). The predicate Q is stable if Q = Q•, and it is

easy to see that Q• is stable for every Q .
• The vrf_bnd rule is a Dijkstra-style rule for sequential composition. In order to show that
the sequential composition x ← e1; (e2 x) has a postcondition Q , it suffices to show that e1
has a postcondition λx . vrf (e2 x) Q . In other words, e1 terminates with a value x and in a
state satisfying vrf (e2 x) Q , so that running e2 x in that state yields Q .
• The vrf_par and vrf_frame rules are predicate transformer variants of the rules for parallel
composition and framing from separation logic. The separating conjunction P ∗Q is defined
as customary in separation logic, except that we use the subjective splitting of state, as
explained in Section 3.1.3 and Figure 6. The vrf_frame rule can be seen as an instance of
vrf_par, where e2 is taken to be the idle programs returning no value. Thus, Q2 is explicitly
stabilized in vrf_frame, to match the precondition of the vrf_ret rule for idle programs.
• The vrf_act rule says that Q holds after executing action a in state s , if s steps to s ′ by
interfering threads, and then [a] s ′ returns the pair (s ′′,v) of output state and value. The
latter satisfy the stabilization of Q , to allow for interference on s ′′ after the termination of a.
• The vrf_morph rule is a straightforward casting of the Morph rule from Section 1 into a
predicate transformer style.

Finally, we also inherit all the CiC logical and programming constructs as well, which has
important consequences for Hoare-style reasoning. For example, in CiC one can form conditionals
over any type, including propositions and STV A types. Thus, given a Boolean b and e1, e2 : STV A,
the following rule, derivable by case analysis on b, allows us to write programs that use conditionals,
and verify them in the usual Hoare-logic style.

vrf_cond : (if b then vrf e1 Q s else vrf e2 Q s) → vrf (if b then e1 else e2) Q s

All the other customary rules of Hoare logic also become derivable. For example, if e : {P} {Q}
and ∀s ∈ Σ (V ). P ′ s → P s , then also e : {P ′} {Q}. Similarly, if e depends on a logical variable x : A
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tyLck =̂ [h,k]. {λs . τs s = h ∧ k ≤ last_stamp (τ̂ s)}{λs . ∃t . τs s = h • t Z⇒ L ∧ k < t}@Spin

1. fix (λloop : unit→tyLck. λ_ : unit.
2. {τs s = h ∧ k ≤ last_stamp (τ̂ s)}
3. {∃s ′b . [trylock_act] s = (s ′,b) ∧

if b then ∃t . τs s ′ = h • t Z⇒ L ∧ k < t else τs s ′ = h ∧ k ≤ last_stamp (τ̂ s ′)}
4. b ← ⟨trylock_act⟩;
5. {if b then ∃t . τs s = h • t Z⇒ L ∧ k < t else τs s = h ∧ k ≤ last_stamp (τ̂ s)}
6. if b then {∃t . τs s = h • t Z⇒ L ∧ k < t} ret () {∃t . τs s = h • t Z⇒ L ∧ k < t}

7. else {τs s = h ∧ k ≤ last_stamp (τ̂ s)} loop () {∃ t . τs s = h • t Z⇒ L ∧ k < t}

8. {∃ t . τs s = h • t Z⇒ L ∧ k < t}) ()

Fig. 8. Proof outline (and implementation) for lock. Here, tyLck binds the spec given to lock in Section 2.3.

(i.e., e : [x : A]. {P x} {Q x}), then x can be specialized by v : A, to derive e : {P v} {Q v}. The latter
follows because the logical variables are universally quantified in the definition of Hoare types
(context Γ in (3)), and can thus be specialized just like any other universally quantified variable.14

3.6 Revisiting Spinlocks

To illustrate the inference rules, the proof outline in Figure 8 shows the proper implementation of
lock and the proof that lock has the type from Section 2.3 (the type is named tyLck in the figure).
The program is a loop executing CAS until it succeeds to lock. This is as in Section 2.3, except there
we informally bracketed CAS with the ghost code for manipulating histories, whereas here we
explicitly invoke the trylock_act action, which erases to CAS. The outline uses stable assertions
only: for example, the precondition in tyLck is stable, as argued in Section 2.3. Thus, we dispense
with explicit stabilization of assertions, i.e., applying (−)•.

Given the Fix rule, in order to show that lock has the type tyLck, we must first prove that tyLck
is a loop invariant for fix, i.e., that it holds of the body of lock. Thus, the outline starts with the
precondition of tyLck in line 2, and derives the postcondition of tyLck in line 8. Line 3 derives
immediately from 2 and the definition of trylock_act in Section 3.2, equation (1), to expose that
trylock_act either succeeds to lock adding an L to the self history, of fails to lock keeping the
history unchanged.15 Notice that Line 3 has exactly the form required of a premise for the vrf_act
rule, with stabilization elided. Thus, the if−then−else conjunct in Line 3 is also a postcondition of
trylock_act, and therefore holds in line 5. Next we branch on b, which corresponds to applying the
rule vrf_cond. Line 6 considers the case b = true, and the postcondition immediately follows by the
rule vrf_ret (again, eliding stabilization). Line 7 considers the case b = false, and the postcondition
immediately follows as the recursive call to loop, by assumption, already has the desired type tyLck.
As both branches of the conditional have the same postcondition, the postcondition propagates to
line 8 to complete the proof.

4 EXCLUSIVE LOCKING VIA MORPHING AND THE NEED FOR PERMISSIONS

We next illustrate a more involved application of morphisms and simulation: how to derive a
resource and methods for exclusive locking, à la CSL [O’Hearn 2007], from the resource for spin

14We perform the described type changes silently in the paper. In Coq, they aren’t silent, but must be marked by a constructor.

Our implementation minimizes the number of such constructors, and makes them unobtrusive, but describing how is

beyond the scope of the paper.
15In the case of failure, we could also derive that the lock was taken at the moment trylock_act was attempted, i.e.

∃t . τs s
′
= h ∧ τ̂ s′ t = L ∧ k ≤ t ≤ last_stamp (τ̂ s′). However, the rest of the proof doesn’t require the additional detail.
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Spin CSLX

lock_tr

unlock_tr

open_tr

close_tr

▷◁

▷◁

State space Σ (Spin): s ∈ Σ (Spin) iff
τs s, τo s ∈ Hist, and πs s, πo s ∈ N, and
τs s ⊥ τo s ∧ alternate (τ̂ s) ∧ r , null

Erasure: ⌜s⌝ =̂ r Z⇒ ω (τ̂ s)

Transitions ∆(Spin):
lock_tr s s ′ =̂ ¬ω (τ̂ s) ∧
τs s
′
= τs s • fresh (τ̂ s) Z⇒ L ∧ πs s ′ = πs s + 1

unlock_tr s s ′ =̂ ω (τ̂ s) ∧ πs s > 0 ∧
τs s
′
= τs s • fresh (τ̂ s) Z⇒ U ∧ πs s ′ = πs s − 1

State space Σ (CSLX): s ∈ Σ (CSLX) iff
αs s,αo s ∈ O, and σs s,σo s,σj s ∈ Heap, and
αs s ⊥ αo s ∧ σs s ⊥ σj s ⊥ σo s ∧

if α̂ s = own then σj s = ∅ else R (σj s)
Erasure: ⌜s⌝ =̂ σ̂ s • σj s

Transitions ∆ (CSLX):
open_tr s s ′ =̂ αs s = own ∧ αs s ′ = own ∧
σs s
′
= σs s • σj s ∧ σj s

′
= ∅

close_tr s s ′ =̂ αs s = own ∧ αs s ′ = own ∧
σs s = σs s

′ • σj s
′ ∧ R (σj s

′)

Fig. 9. Redefinition of Spin, and CSLX resource for heap transfer in exclusive locking (in our implementation,
Spin contains external transitions for receiving and giving away permissions to unlock, and CSLX contains
transitions for reading and writing pointers in σs ; we elide both for simplicity).

locks from Section 2. An exclusive lock protects a shared heap, satisfying a user-supplied predicate
R (aka. resource invariant). Upon successful locking, the shared heap is transferred to the private
ownership of the locking thread, where it can be modified at will, potentially violating R. Before
unlocking, the owning thread must re-establish R in its private heap, after which, the part of the
heap satisfying R is moved back to the shared status. The idea is captured by the following methods
and specs, which we name exlock and exunlock to differentiate from lock and unlock in Section 2.

exlock : {λs . µs s = own ∧ χs s = ∅} {λs . µs s = own ∧ R (χs s)}@CSL
exunlock : {λs . µs s = own ∧ R (χs s)} {λs . µs s = own ∧ χs s = ∅}@CSL

Here µs s is a ghost of typeO = {own, own}, signifying whether łwež own the lock or not, and χs s

is łourž private heap. O has PCM structure with the join defined by x • own = own • x = x , so
that own is the unit of the operation. We leave own • own undefined, to capture that the locking is
exclusive, i.e., the lock can’t be owned by a thread and its environment simultaneously. Our goal in
this section is to derive exlock and exunlock using morphing and simulations to łattachž to lock
and unlock the functionality of transferring the protected heap between shared and private state.

The idea for doing so is pictorially shown in Figure 9, where the CSLX resource contains the state
components and transitions describing the functionality needed for heap transfers. In particular,
αs s ∈ O keeps track of whether we own the lock or not, σs and σj are the private and shared heap
respectively, and the transitions open_tr and close_tr move the heap from shared to private and
back, respectively. We want to combine the Spin and CSLX resources as shown in the figure, by
combining their state spaces, and coupling open_tr with lock_tr, and close_tr with unlock_tr, so
that the transitions execute simultaneously. This will give us an intermediate resource CSL′, and a
morphism f : Spin→ CSL′ defined similarly to the morphisms in Section 2:

fΣ s =̂ s\1

f∆ s lock_tr =̂ lock_tr ▷◁ open_tr
f∆ s unlock_tr =̂ unlock_tr ▷◁ close_tr
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We will then restrict CSL′ into the CSL resource that we used in the specs for exlock and exunlock,
as we shall describe. The components µs and χs used in these specs will be functions out of the
state components of CSL.

However, if we try to carry out the above construction using the Spin resource from Section 2, we
run into the following problem. Recall that Spin can execute unlock_tr whenever the lock is taken,
irrespective of which thread took it. On the other hand, close_tr can execute only if łwež hold the
lock. But, f∆ s unlock_tr = unlock_tr ▷◁ close_tr, and therefore, in states where others hold the
lock, Spin may transition by unlock_tr, with CSL′ unable to follow by f∆. Moreover, it’s impossible
to avoid such situations by choosing a specific f -simulation I that will allow unlock_tr to execute
only if we hold the lock. Simply, there is no way to define such I because we can’t differentiate in
Spin between the notions of unlock_tr being łenabled for usž, vs. łenabled for others, but not for
usž, as unlock_tr is enabled whenever the lock is taken.

The analysis implies that we should have defined Spin in a more general way, as shown in Figure 9.
In particular, Spin should contain the integer components πs /πo which indicate if unlock_tr is
łenabled for usž (πs s > 0), or not (πs s = 0), and dually for others. These will give us the distinction
we seek, as we shall see. In line with related work, we call π permission to unlock.16,17

A thread may have more than one permission to unlock, which it can distribute among its
children upon forking, who can then race to unlock. The addition of the new fields leads to the
following minimal modification of the specs from Section 2, to indicate that lock enables unlock_tr,
and a successful unlock consumes one permission. Note that the specs don’t assume that having a
permission to unlock implies that it was łusž who last locked, or even that the lock is taken. We will
impose such locking-protocol specific properties on CSL, but there is no need for them in Spin.18

lock′ : [h,k]. {λs . τs s = h ∧ k ≤ last_stamp (τ̂ s) ∧ πs s = 0}
{λs . ∃t . τs s = h • t Z⇒ L ∧ k < t ∧ πs s = 1}@Spin

unlock′ : [h,k]. {λs . τs s = h ∧ k ≤ last_stamp (τ̂ s) ∧ πs s = 1}
{λs . ∃t . τs s = h • t Z⇒ U ∧ k < t ∧ πs s = 0 ∨

τs s = h ∧ τ̂ s t = U ∧ k ≤ t ∧ πs s = 1}@Spin

Let us now consider the combinationCSL′ of Spin andCSLX as defined in Figure 9. The combination
has a number of state components with overlapping roles. For example, α from CSLX keeps the
status of the lock, and is needed in CSLX in order to describe the heap-transfer functionality
independently of Spin. On the other hand, Spin keeps the locking histories in τ . Thus, once Spin
and CSLX are combined, the two components must satisfy

ω (τs s) = (αs s = own) (4)
ω (τo s) = (αo s = own)

as a basic coherence property. Furthermore, we want to encode exclusive locking, so we must

16In general, the design of resource’s permissions obviously and essentially influences how that resource composes with

others. Some systems, such as CAP [Dinsdale-Young et al. 2010] and iCAP [Svendsen and Birkedal 2014], although they

don’t consider morphisms and simulations, by default provide a permission for each transition of a resource. In our example,

that would correspond to also having a permission for lock_tr. Full generality also requires external transitions that move

permissions to and from an outside resource. In our Coq code, these are used in the readers-writers example, to support

non-exclusive locking. For simplicity, we elide such generality here, and consider only the permission to unlock, which

suffices to illustrate morphisms and simulations.
17Similar concepts arise in other concurrency models as well. For example, a transition in a Petri net fires only if there are

sufficient tokensÐakin to permissionsÐin its input places. The tokens are consumed upon firing.
18Following Section 3.1.5, we make the specs small wrt. πs s , for simplicity. By framing, lock′ can be invoked when πs s ≥ 0,

in which case it increments πs s by 1.
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require that only the thread that holds the lock has the permission to unlock:

πs s = (if αs s = own then 1 else 0) (5)
πo s = (if αo s = own then 1 else 0)

(thus, πs s, πo s ∈ {0, 1}, and at most one of them is 1).
Most importantly, the events recorded in the histories of Spin should correspond to exclusive

locking, and thus:

τs s ⊥ω τo s (6)

where h ⊥ω k is defined as

(ω h → last_stampk < last_stamph) ∧
(ω k → last_stamph < last_stampk) ∧ h ⊥ k

to say that if h (resp. k) indicates that a thread holds the lock, then another thread couldn’t have
proceeded to add logs to its own history k (resp. h), and unlock itself.19

It is now easy to see that Inv = (4) ∧ (5) ∧ (6) is an invariant of CSL′. The critical point is that
(6) is preserved by the transition t = unlock_tr ▷◁ close_tr. Indeed, if in state s ∈ Inv we transition
by t , it must be πs s > 0 by t ’s definition, and thus πs s = 1, and πo s = 0, by (5). Also, we add a
fresh U entry to the ending state s ′, thus making last_stamp (τs s ′) > last_stamp (τo s ′). For (6) to
be preserved, it must then be ω (τo s

′) = ω (τo s) = false, i.e., the lock wasn’t held by another thread.
But this is guaranteed by (4), (5) and πo s = 0. In other words, by using the permissions to unlock,
we have precisely achieved the distinction that our previous definition of Spin couldn’t make.

Because Inv is invariant, we can construct a resource CSL out of CSL′, where Inv is imposed as
an additional property of the underlying PCM and state space of CSL′. Indeed, our theory ensures
that the set Σ (CSL′)∩ Inv can be made a global predicate, and thus be used as a state space of a new
resource CSL. By Definition 3.2, globality depends on the underlying PCM, hence the construction
involves restricting the PCM of CSL′ by Inv . The mathematical underpinnings of such restrictions
involve developing the notions of sub-PCMs, PCM morphisms and compatibility relations, which we
carry out in [Nanevski et al. 2019b, Appendix B]. Here, it suffices to say that the construction leads
to the situation summarized by the following diagram:

Spin
f
−→ CSL′

ι
−→ CSL

where morphism ι is defined by ιΣ s = s and ι∆ s t = t . Intuitively, CSL states are a subset of CSL′

states satisfying Inv , and ιΣ is the injection from Σ (CSL) to Σ (CSL′).
This gives us the CSL resource, but we still need to transform lock′/unlock′ into exlock/exunlock,

respectively. We thus introduce the following property on CSL states:

Sim s =̂ if αs s = own then R (σs s) else σs s = ∅

which says that the self heap satisfies the resource invariant R iff the thread owns the lock. Sim,
unlike Inv , is not an invariant, because it is perfectly possible for a thread to own the lock, but for its
heap to not satisfy R, because the thread has modified the acquired heap after locking it. However,
Sim is an (ι ◦ f )-simulation, as it satisfies the commuting diagrams from Figure 7. For example,
when Spin executes lock_tr, then CSL sets αs s = own and acquires the shared heap, thus making
the self heap satisfy R. When Spin executes unlock_tr, then CSL returns the shared heap, making
the self heap empty. In other words, Sim describes the state of CSL immediately after locking, and
immediately before unlocking, which suffices for the morphing of lock′ and unlock′. We only show

19Requirement (6) restricts only the last timestamp in h and k , not all timestamps hereditarily. This suffices for our proof.
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the derivation for exunlock = morph (ι ◦ f ) unlock′, and refer to the Coq code [Nanevski et al.
2019a] for the derivation of exlock, which is similar.

1. {αs s = own ∧ R (σs s)}
2. {τs s = h ∧ πs s = 1 ∧ αs s = own ∧ R (σs s)}
3. {τs s = h ∧ k = last_stamp (τ̂ s) ∧ πs s = 1 ∧ Sim s}

4. morph (ι ◦ f ) unlock′ // using simulation Sim

5. {(τs s = h • t Z⇒ U ∧ k < t ∧ πs s = 0 ∨
τs s = h ∧ k ≤ t ∧ τ̂ s t = U ∧ πs s = 1) ∧ Sim s}

6. {τs s = h • t Z⇒ U ∧ k < t ∧ πs s = 0 ∧ Sim s}

7. {αs s = own ∧ σs s = ∅}

The key step is in line 6, where we must derive that the second disjunct in line 5 is false; that is, no
thread could have unlocked before us in line 4. We infer this by reasoning about the histories τs s
and τo s in line 5. From πs s = 1, it must be αs s = own, and then ω (τs s) = true, by the invariant
Inv which holds throughout, as s is a CSL state. By Inv again, τs s ⊥ω τo s , so last_stamp (τo s) <
last_stamp (τs s). Thus, it must be last_stamp (τs s) = last_stamp (τ̂ s) = k , because last_stamp (τ̂ s)
is the maximum of last_stamp (τs s) and last_stamp (τo s). But this contradicts that τ̂ s contains
entry U at t ≥ k . We can now derive line 7: αs s = own follows from πs s = 0 and Inv , and σs s = 0
follows by Sim. Finally, we obtain the desired spec of exunlock from the beginning of the section,
by letting µ be α and χ be σ .

5 QUIESCENCE AND INDEXED MORPHISM FAMILIES

The previous examples were about extending Spin the functionality of another resource, Counter
or CSLX. In this section, we apply resource morphism not to extend a resource, but to restrict it,
specifically by łforgettingž its ghost state. This is a feature commonly required when installing
one resource into a private state of another. We need a slight generalization, however, to indexed

morphism families (or just families, for short), as follows.

A family f : V
X
→W introduces a typeX of indices for f . The state component fΣ : X→ Σ (W )⇀

Σ (V ) and the transition component f∆ : X→ Σ (V )→∆ (V )⇀∆ (W ) now allow inputX , and satisfy
a number of properties, listed in [Nanevski et al. 2019b, Appendix C], that reduce to Definition 3.9
when X is the unit type. Similarly, f -simulations must be indexed too, to be predicates over X and
Σ (W ), satisfying a number of properties which reduce to Definition 3.11 when X = unit.
The morph constructor and its rule are generalized to receive the initial index x , and postulate

the existence of an ending index y in the postcondition, as follows:

e : {P} {Q}@V

morph f x e : {λsw . (f x)ˆP sw ∧ I x sw } {λsw . ∃y. (f y)ˆQ sw ∧ I y sw }@W
MorphX

where (f x)ˆR sw =̂ ∃ sv . sv = fΣ x sw ∧ R sv

To illustrate, consider the resource Stack (Figure 10) implementing concurrent stacks, and the
following spec for the stack’s push method, similar to that of lock from Section 2.

push(v) : [k]. {λs . σs s = ∅ ∧ τs s = ∅ ∧ k ≤ last_stamp (τo s)}
{λs . σs s = ∅ ∧ ∃t vs . τs s = t Z⇒ (vs,v ::vs) ∧ k < t}@Stack

Here τs , and τo are histories of stack’s operations, as in the case of Spin, and σs is the thread-
private heap. The spec says that push starts with τs s = ∅ (by framing, any history) and ends with
τs s = t Z⇒ (vs,v :: vs) to indicate that a push of v indeed occurred, and after all the timestamps
from the pre-state. The joint heap σj stores the stack’s physical layout, and α̂ s is the abstract
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τs τo

σs

σo

σj

Stack:

dom (τ̂ s) = {1, . . . , last_stamp (τ̂ s)}

layout (α̂ s) (σj s)

Fig. 10. Representation of the state components of the Stack resource. The self components (σs for the heap,
and τs for the history) are in light shade, the other components are in dark; the joint component (σj for
the heap storing the stack’s physical layout) is white. The abbreviation α̂ s is the abstract value of the stack
(computed out of τ̂ s).

contents of the stack as a mathematical sequence (computed out of τ̂ s). Intuitively, push first
allocates a new node in σs , then moves it to σj where it is enlinked to the top of the laid-out stack,
after which push updates τs and α̂ to reflect the addition of the node. We also elide the full definition
of Stack as it isn’t essential here; it suffices to know that predicate layout describes how α̂ is laid
out in σj (i.e., ∀s ∈ Σ (Stack). layout (α̂ s) (σj s)), and that the global history τ̂ s has no timestamp
gaps (i.e., ∀s ∈ Σ (Stack). dom (τ̂ s) = {1, . . . , last_stamp (τ̂ s)}).20

Consider now the program e = push(a) ∥ push(b) of the following type (also derived in Coq):

e : {λs . σs s = ∅ ∧ τs s = ∅}
{λs . σs s = ∅ ∧ ∃t1 vs1 t2 vs2. τs s = t1 Z⇒ (vs1,a ::vs1) • t2 Z⇒ (vs2,b ::vs2)}@Stack

The specification reflects that e pushes a and b, to change the stack contents from vs1 to a ::vs1
at time t1, and from vs2 to b ::vs2 at time t2. The order of pushes is unspecified, so we don’t know
if t1 < t2 or t2 < t1 (as • is commutative, the order of t1 and t2 in the binding to τs s in the post
doesn’t imply an ordering between t1 and t2). Moreover, we don’t know that t1 and t2 occurred
in immediate succession (i.e., t2 = t1 + 1 ∨ t1 = t2 + 1), as threads concurrent with e could have
executed between t1 and t2, changing the stack arbitrarily. Thus, we also can’t infer that the ending
state of t1 equals the beginning state of t2, or vice versa.

But what if we knew that e is invoked without interfering threads, i.e., quiescently [Aspnes et al.
1994; Derrick et al. 2011; Jagadeesan and Riely 2014; Nanevski et al. 2014; Sergey et al. 2016]? For
example, imagine a resource Privwith only heaps χs and χo , and no other components (Figure 11(1)),
and transitions that allow modifying the self heap by reading, writing, CAS-ing, or executing any
other read-modify-write command [Herlihy and Shavit 2008]. A program working over Priv can
install an empty stack in χs and then invoke e over it. Because the stack is installed privately, no
threads other than the two children of e can race on it. Could we exploit quiescence, and derive
just out of the specification of e that the stack at the end stores either the list [a,b], or [b,a]? This
fact can be stated even without histories, using solely heaps, as follows:

{λs . layout nil (σs s)}{λs . layout [a,b] (χs s) ∨ layout [b,a] (χs s)}@Priv (7)

The move from Stack to Priv thus essentially forgets the ghost state of histories, and the distinction
in Stack between shared and private heaps. These components and distinctions are visible when
in the scope of Stack, but hidden when in Priv. We would like to obtain the spec (7) by applying
the Morph rule to the Stack spec of e , with a morphism д : Stack→ Priv that forgets the histories.
Unfortunately, such a morphism can’t be constructed as-is. Were it to exist, then дΣ, being con-
travariant, should map a state sPriv, containing only heaps, to a state sStack, containing heaps and
histories; thus дΣ must łinventž the history component out of thin air.

20We mechanized this development in Coq for the Treiber variant of stacks, with some minor Treiber-specific modifications.
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χs

χo

Priv:

x ∅

σs

σo

σj

дΣ x sPriv:

(1) (2)

Fig. 11. The left figure shows the state components of Priv. The right figure shows how Stack from Figure 10
is related to Priv by дΣ. Striped and bricked regions show the Priv’s self heap χs = σs • σj and other heap
χo = σo , respectively. Solid regions show the Stack’s self history τs = x and other history τo = ∅.

This is where families come in. We make д : Stack
Hist
→ Priv a family over X = Hist, thereby

passing to дΣ the history x that should be added to sPriv to produce an sStack (Figure 11(2)).

дΣ x sPriv = sStack =̂ χs (sPriv) = σs (sStack) • σj (sStack) ∧

χo (sPriv) = σo (sStack) ∧

τs (sStack) = x ∧ τo (sStack) = ∅

The first conjunct directly states that Stack is installed in χs (sPriv) by making χs (sPriv) be the
join of the heaps σj (sStack) and σs (sStack).

21 The second conjunct says that the heap χo (sPriv) of
the interfering threads is propagated to σo (sStack). The third conjunct captures that the history
component of sStack is set to the index x , as discussed immediately above. In the last conjunct, the
τo (sStack) history is declared ∅, thus formalizing quiescence. We elide the definition of д∆; it suffices
to know that it maps a Stack transition (relation over heap and ghost state of Stack) to its łerasurež,
i.e. a relation over heaps of Priv representing a single-pointer operation such as read, write and
CAS, but ignoring the ghost histories.

We can now obtain the quiescent spec (7) by applying theMorphX rule to e , as shown below, with
x = ∅, and I x being the always-true predicate on Priv states (the outline expands the definition of
(д x)ˆ_, and elides the always-true I x ).

1. {layout nil (χs (sPriv))}
2. {∃sStack. sStack = дΣ ∅ sPriv ∧ σs (sStack) = ∅ ∧ τs (sStack) = ∅}

3. morph д ∅ e
4. {∃y sStack. sStack = дΣ y sPriv ∧ σs (sStack) = ∅ ∧

∃t1 vs1 t2 vs2. τs (sStack) = t1 Z⇒ (vs1,a ::vs1) • t2 Z⇒ (vs2,b ::vs2)}
5. {layout [a,b] (χs (sPriv)) ∨ layout [b,a] (χs (sPriv))}

Line 2 derives trivially from line 1, as the state sStack is uniquely determined; i.e., take σj (sStack) to be
the heap storing the empty stack, and all the other components of sStack to be empty. We next derive
the postcondition in line 5. From the properties of Σ (Stack), we know layout (α̂ (sStack)) (σj (sStack)).
From sStack = дΣ y sPriv and other conjuncts in line 4, we know χs (sPriv) = σj (sStack), andτs (sStack)=y,
and τo (sStack) = ∅. Thus, it is also τ̂ (sStack) = y = t1 Z⇒ (vs1,a ::vs1) • t2 Z⇒ (vs2,b ::vs2), and:

layout (α̂ (sStack)) (χs (sPriv)) (8)

From the properties of Σ (Stack), we also know that τ̂ (sStack) has no timestamp gaps; thus {t1, t2} =
dom (y) = {1, 2}, i.e., t1 and t2 are the only, and consecutive, events in y. But then α̂ (sStack) must be
either [a,b] or [b,a], which, with (8), derives the postcondition.

21As we want to build sStack out of sPriv, we have to identify the part of χs (sPriv) which we want to assign to σj (sStack).

This part has to be uniquely determined, else дΣ won’t be a function. We ensure uniqueness by insisting that the predicate

layout is precise ś a property commonly required in separation logics.
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6 RELATED WORK

Coalgebra morphisms and refinement mappings. Transition systems are mathematically repre-
sentable as coalgebras [Jacobs 2016; Rutten 2000]; thus, resource morphisms are closely related
to coalgebra morphisms, with differences arising from our application to concurrent separation
logic and types. For example, for us, given f : V →W , fΣ is contravariant, but in the coalgebraic
case, f is covariant on states [Hasuo et al. 2009; Rutten 2000]. A coalgebra morphism f doesn’t
have the f∆ component, but requires that f preserve and reflect the V -transitions (i.e., if x → y is
a V -transition, then f (x) → f (y) is aW -transition, and if f (x) → t is aW -transition, then there
exists y such that x → y is a V -transition, and f (y) = t ). These properties are similar in spirit to
the two clauses of our Definition 3.11 of f -simulations.
Similarly, refinement mappings [Abadi and Lamport 1991; Lynch and Vaandrager 1995], like

coalgebra morphisms, are covariant functions on STSs, and differ from resource morphisms in
the intended use. For example, with refinement mapping, the key question is how to extend the
source STS with ghost state. The extension may be necessary, as a refinement mapping need not
exist otherwise. In contrast, we seek to give a definitive resource type to a program, which suffices
for all reasoning. The program can be morphed, to change the type, but can’t be re-typed by an
extended resource, as that violates compositionality in our setting. Given a morphism f : V →W ,
the resourceW will most commonly generalize and includeV ’s functionality. Thus, fΣ can compute
sv ∈ Σ (V ) out of sw ∈ Σ (W ), without needing to extend V orW . When sw lacks information to
compute sv (cf. the quiescence example in Section 5), we don’t extend the resources, but pass the
missing information by an index in a morphism family. Morphisms also exhibit a form of (weak)
simulation ofW by V on the transposed states (Definition 3.11(2)).
We further establish the action of f on programs, and provide a Hoare logic rule to reason

about it, supporting the usual compositionality notions from separation logic, such as framing and
ownership transfer, which haven’t been considered in the context of coalgebra morphisms and
refinement mappings.

Linearizability. In a relational flavor of separation logics [Frumin et al. 2018; Liang et al. 2012;
Turon et al. 2013], and more generally, in the work on proving linearizability [Bouajjani et al. 2017;
Gu et al. 2015, 2018; Henzinger et al. 2013; Khyzha et al. 2017; Liang and Feng 2013; Schellhorn et al.
2012], the goal is to explicitly relate two programs, typically one concurrent, the other sequential.
The sequential program then serves as a spec for the concurrent one, and can replace it in any
larger context. Our goal in this paper is somewhat different; we seek to identify the concurrent
program’s type, which for us takes the form of a Hoare triple enriched with a resource. The type
serves as the program’s interface, and, as standard in type theory, any two programs with the
same type can be interchanged in clients’ code and proofs. As clients can already reason about the
program via this type, the program shouldn’t need a spec in the form of another program.
There are several advantages of our approach over linearizability. First, a spec in the form of a

Hoare triple with a resource is much simpler, and thus easier to establish than a spec in the form of
another program. Indeed, resources aren’t programs; they are STSs and don’t admit programming
constructs such as conditionals, loops, initial or local state, or function calls. A Hoare spec is also
immediately useful in proofs, whereas with linearizability, one also has to verify the sequential
program itself. Second, in linearizability it has traditionally been difficult to address ownership
transfer of heaps between data structures [Cerone et al. 2014; Gotsman and Yang 2012], whereas
for us (and other extensions of CSL [da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2010; Jung
et al. 2018, 2015; Liang and Feng 2013]), ownership transfer is directly inherited from separation
logic. We also inherit from separation logic a way to dynamically nest parallel compositions of

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 161. Publication date: October 2019.



Specifying Concurrent Programs in Separation Logic: Morphisms and Simulations 161:25

threads, whereas linearizability is typically considered on programs with a fixed, though arbitrary,
number of threads.
That said, we note that our specs of lock and unlock in Section 2 are actually very close to

what one gets from linearizability, as they essentially establish a linear order between locking
and unlocking events in the history PCM. In fact, our approach seems sufficiently powerful to
directly specify, in the state space of a resource, the general property of linearizability as a user-level
proposition over the resource’s subjective histories, which is the direction we intend to pursue
in the future. Such a development would generalize the current paper, in that the events tracked
by histories wouldn’t be instantaneous, as was the case in Section 2, but would have non-zero
duration. The histories would have to record the events’ beginning as well as ending times.
Morphisms and simulations will play a key role in such a setting. For example, two different

resources will have two different spaces of timestamps (i.e., two different clocks). Combining the
two into a larger resource, will require constructing a history for the combination, of which the
first step is reconciling the clocks of the two components into a common clock. Morphisms and
simulations will be a necessary abstraction to relate the common clock, timestamps, and history to
the clocks, timestamps, and histories of the components.
In future work, we thus expect to incorporate general linearizable programs and resources;

note, however, that the PCM and history-based approach is further general still, and capable of
compositionally specifying and verifying non-linearizable programs as well [Sergey et al. 2016].

State transition systems and abstract atomicity. Abstract atomicity refers to extending the
functionality of a concurrent program so that it operates over other STSs. One of the most powerful
approaches to abstract atomicity has been parametrization by auxiliary code. For example, in the
case of spin locks, a way to make lock operate over an extension of Spin with an unknown STS X ,
is to parametrize lock a priori with an unknown ghost function α over X , thus modifying it into:

lock α =̂ do ⟨x ← CAS(r , false, true); if x then α ⟩ while ¬x

This differs from our approach, where the modification to lock is done a posteriori, and is mediated
by the resource type of the program. Parametrization originated in Jacobs and Piessens [2011],
and was extended to impredicative higher-order ghost functions and state in HOCAP [Svendsen
et al. 2013], iCAP [Svendsen and Birkedal 2014] and Iris [Jung et al. 2018, 2015]). Parametrization
affords abstract specifications that are similar to specifications that one would ascribe to a data
structure in the sequential setting. It applies to the locking examples, as illustrated above, but also
to many of the examples that we included in the Coq code. Parametrization relies on higher-order
and impredicative ghost functions to specify a number of concurrency idioms, such as e.g., fork/join
concurrency, or storing of concurrent programs into the heap. In contrast, our present model
is predicative (see [Nanevski et al. 2019b, Appendix D]); hence we currently support the more
restrictive concurrency by parallel composition.

Thus our approach doesn’t presently extend the range of verifiable programs. Rather, it proposes
novel type-based foundations that underpin the verification, and that employ morphisms, histories,
and simulations. Histories and simulations are foundational abstractions in concurrency. Morphisms
are similarly so in mathematics, and in our case, relate to coalgebras and refinement mappings,
as discussed. It’s therefore of inherent interest to embed these abstractions into type theory and
obtain a minimalistic proof system for separation logic, as we have done.
By relying on these foundational abstractions, we achieve some uniformity and simplicity of

reasoning, which we expect to build on in the future. For example, one challenge to parametrization
arises when the point at which to execute the ghost function can be determined only after the
program has terminated. This is a common pattern when proving linearizability, as exhibited, say,
by the queue of Herlihy and Wing [1990], but has been difficult to address by parametrization,
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because it isn’t clear at which point in the code to invoke the parametrizing ghost function. In our
case, histories separate the termination of operations from their order in the linearization. The
order becomes just another ghost component that can be constructed at run time, with cooperation
of other threads [Delbianco et al. 2017]. A history-based spec can say that an operation finished
executing, but that its exact place in the linearization is to be fully determined only later, by the
action of other threads. We thus expect that history-based specs will support the described pattern
of linearizability proofs.

The TaDA logic of da Rocha Pinto et al. [2014] introduces another approach to abstract atomicity
that doesn’t rely on parametrization. TaDA defines a new judgment form, ⟨P⟩ e ⟨Q⟩, that captures
that e has a precondition P and postcondition Q , but is also abstractly atomic in the following
sense: e and its concurrent environment maintain the validity of P , until at one point e takes an
atomic step that makes Q hold. Afterwards, Q may be invalidated, either by future steps of e , or
by the environment. Once judged atomic, programs can be associated with ghost code of other
resources. In this sense, TaDA’s extension of code is a posteriori, similar to ours. In contrast to
TaDA, we specify programs using ordinary Hoare triples, but rely on the PCM of histories to
express atomicity: a program is atomic if it adds a single entry to the self history. In the Coq files,
we have also applied morphisms to algorithms with helping, such as the flat combiner [Hendler
et al. 2010], where one thread executes work on behalf of others; helping is an idiom that TaDA
currently can’t express.

Sergey et al. [2018] have designed a logicDisel for distributed systems, in which one can combine
distributed protocolsÐrepresented as STSsÐby means of hooks. A hook on a transition t prevents t
from execution, unless the condition P associated with the hook is satisfied. In this sense, hooks
implement an instance of our transition coupling, where one operand is fixed to the idle transition
with a condition P , i.e. id_tr P = λs s ′. P s ∧ s ′ = s . Disel doesn’t currently consider hooks where
both operands are non-idle, which we used in the lock examples, or notions of morphism and
simulation. On the other hand, we haven’t considered distribution so far.
Finally, while morphisms and simulations provide a solution to abstract atomicity, they also

go beyond it. For example, they apply to quiescence (Section 5), which, unlike abstract atomicity,
doesn’t extend functions to resource combinations, but forgets the histories of a resource. They
may also provide a foundation for answering more basic, categorical, questions about concurrent
structures, such as e.g., łwhen are two resources isomorphicž (answer: when there are cancelling
morphisms between them). We plan to explore such questions in the future.

Automated separation logics for concurrency. A number of recent automated tools such as
Verifast [Jacobs et al. 2011], VerCors [Amighi et al. 2018; Blom and Huisman 2014], and Viper [Müller
et al. 2016], address the reasoning about concurrent programs in various extensions of separation
logic. In general, the tools address fragments of Java or C, and completely or partially automate the
discharge of the proof obligations. Our paper is accompanied with an implementation in Coq as a
shallow embedding. Hence, Coq plays a dual role for us: it’s a framework for mechanizing proofs,
but also a concurrent programming language. The high-level difference from the automated tools
is, or course, that proofs are developed interactively. The scaling of the proving effort is achieved
by the reuse of programs and proofs, enabled by the compositional nature of the underlying type
theory. We haven’t explored automation yet, but the minimalistic nature of our setting suggests
that the underlying abstractions will be useful for both interactive and automated reasoning.

FCSL. The current paper adds to FCSL [Nanevski et al. 2014] the novel notions of resource
morphism, and significantly modifies the notion of resources. In FCSL, each concurrent resource is a
finite map from labels (natural numbers) to sub-components. For example, using the concepts from
Section 2, one could represent SC as a finite map l1 Z⇒ Spin ⊎ l2 Z⇒ Counter, where l1 and l2 are
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labels identifying Spin and Counter, respectively. This approach provides interesting equations on
resources; for example, one can freely rearrange the finite map components by using commutativity
and associativity of disjoint union ⊎. However, it also complicates mechanized proofs, because one
frequently, and tediously, needs to show that a label is in the domain of a map, before extracting
the labeled component. In the current work, states aren’t maps, but triples which are combined by
a form of pairing (e.g., the PCM of SC is a product of PCMs of Spin and Counter). Consequently, if
we changed the definition of SC in Section 2 into SC′ by commuting Spin and Counter throughout
the construction, then SC and SC′ wouldn’t be equal resources, but they will be isomorphic, in that
we could exhibit cancelling morphisms between the two. But this requires first having a notion of
morphism, which is one of the technical contributions of this paper. FCSL supported quiescence
by means of a dedicated and very complex inference rule, whereas Section 5 demonstrates that
quiescence is merely an application of morphism families.

7 CONCLUSIONS

This paper develops novel notions of resource morphisms and associated simulations, as key
mathematical concepts that underpin a separation logic for fine-grained concurrency. This is a
natural development, as structures in mathematics are always associated with an appropriate notion
of morphism, and simulations are the invariants that the morphisms preserve. Morphisms and
simulations act on programs, and are integrated into separation logic via a single inference rule
that propagates the simulation from the precondition to the postcondition of the morphed program.

Morphisms compose and can support different constructions and applications. One application
is abstract atomicity, whereby a general spec, such as the one for lock in Section 2, is specialized
to a specific ownership discipline, e.g., exclusive locking in Section 4. Other applications include
the managing of scope of ghost state in quiescent environments, as illustrated in Section 5, and
restricting the state space of a resource with additional state and PCM invariants, as used in
Section 4.
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