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Abstract

Continuations are programming abstractions that allow for manip-
ulating the “future” of a computation. Amongst their many ap-
plications, they enable implementing unstructured program flow
through higher-order control operators such as callcc. In this pa-
per we develop a Hoare-style logic for the verification of programs
with higher-order control, in the presence of dynamic state. This is
done by designing a dependent type theory with first class callcc
and abort operators, where pre- and postconditions of programs are
tracked through types. Our operators are algebraic in the sense of
Plotkin and Power, and Jaskelioff, to reduce the annotation burden
and enable verification by symbolic evaluation. We illustrate work-
ing with the logic by verifying a number of characteristic examples.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Control structures; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Logic of programs, Pre- and post-conditions; F.3.3
[Studies of Program Constructs]: [Control Primitives]

General Terms Languages, Verification

Keywords Continuations, Hoare Logic, Dependent Types, callcc

1. Introduction

Continuations are powerful abstractions that model the “future of
a computation” [36]. They have a ubiquitous presence in program-
ming languages: they allow for a family of program transformation
techniques in the style of many CPS transformations [11], they un-
derlie the denotational semantics of programs with jumps [16, 42],
they give computational content to classical proofs [20], they have
been used to structure computational effects [17, 21] and also to de-
sign compilation techniques. Moreover, certain programming lan-
guages provide first-class control operators which manipulate con-
tinuations, e.g. the variants of callcc in Scheme, ML and Haskell,
or the related C and F control operators [15, 14].

The ability to manipulate “the future” makes these operators
more powerful than plain goto-like instructions, but it also hinders
the formal reasoning about programs. Although the state of the
art concerning formal reasoning about continuations is vast, it has
focused predominantly (with notable exceptions discussed below)
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on the semantic modelling of higher-order control operators and
CPS transformations [15, 20, 11, 47], and verification of programs
directly in the semantic model [41, 13].

In contrast, in this paper we are interested in developing a
Hoare-style logic in which one can systematically specify and
verify full functional correctness of programs with higher-order
jumps, in the presence of dynamic mutable state and the ability to
capture continuations and return them as results of computations,
potentially encapsulated into closures.

The ability to capture and return continuations makes our task
more difficult when compared to the previous work on Hoare logics
for first-order jumps (i.e. goto’s) in high-level languages [9, 25, 2]
and low-level machine code [38, 46, 23]. In particular, the higher
order nature of callcc entails the need for a Hoare logic capable of
reasoning about (potentially higher-order) functions. It also makes
it somewhat more difficult to design the specification methodology,
i.e. decide on just what kind of information should the proof devel-
oper provide in the form of annotations when specifying a program
involving callcc, and how should that information relate the con-
text in which the continuation is captured to the context in which it
is invoked.

The presence of dynamic state significantly complicates mat-
ters, and differentiates our work from recent Hoare-style logics for
higher-order jumps [5, 10]. From the semantic point of view, sup-
porting dynamic state requires building a model in which executing
a continuation does not roll back the mutable state to the point at
which the continuation is captured. From the specification point of
view, it requires reconciling callcc with Separation logic [31, 37].
In this paper, we accomplish the task in a novel manner, combining
Separation assertion logic with large footprint semantics and large
footprint inference rules for verification in the style of symbolic
evaluation.

More concretely, our contribution in this paper is the devel-
opment of HTTcc, a framework for Hoare-style reasoning with
higher-order programs, control effects and mutable, dynamic state.
To the best of our knowledge, this is the first formal system for rea-
soning about such combination of features. We define a dependent
type-theory with first class continuations which uses monadic types
indexed by pre- and postconditions as our specifications in the style
of Separation logic. This has been done before for a language with
state, e.g. in Hoare Type Theory (HTT) [29, 30], but now we ex-
tend the approach to a language with continuations. In particular,
we rely on dependent records (i.e. iterated Σ-types) as an essential
tool for specification of programs which “capture the continuation”
in a closure that is later invoked.

In order to make specification and verification in HTTcc more
palatable, we focus on a specific choice of control operators which
are algebraic in the sense of Plotkin and Power [33, 34] and Jaske-
lioff [22]; that is, the control operators commute with sequential
composition. We argue that the algebraic control operators are less
burdensome for verification than the non-algebraic alternatives, be-



1. {x 7→ v}

2. c← callcc f.

ret (abort f (x := !x+ 1 ; ret (ret ( ))));

3. {x 7→ v f {x 7→ v + 1 } c {⊥} g

x 7→ v + 2 f {x 7→ v + 3 } c {x 7→ v + 3}}

4. x := !x+ 1 ;

5. {x 7→ v + 1 f {x 7→ v + 1 } c {⊥} g

x 7→ v + 3 f {x 7→ v + 3 } c {x 7→ v + 3}}

6. c

7. {x 7→ v + 3}

Figure 1. An idealised proof outline for inc3.

cause in practice they require less annotations to be manually pro-
vided by the user. In particular, the algebraic callcc typically re-
quires manual description of only the jumping behaviour of the
code, whereas, in our experience, the non-algebraic variants require
manual description of both the jumping and the normal termination
of the callcc block.

To test our design in practice, we have implemented HTTcc as
a shallow embedding in the Calculus of Inductive Constructions
(CIC), as realised in Coq [27, 6] and Ssreflect [19]. We have
mechanised its denotational semantics and soundness proofs and
used the framework to verify a survey of standard examples which
cover the usual continuation idioms. A subset of the examples is
presented in Section 6. All of our Coq code is available on-line [12].

2. Overview

The language of HTTcc uses monads, as in Haskell, to separate
the purely functional and the imperative fragment of the language.
In addition to capturing continuations via callcc and jumping
to them via abort, the imperative fragment supports recursion
(which we consider a side effect), and heap-mutating commands
such as allocation, deallocation, reading from and writing into heap
locations. We use ret v for a monadic command returning a value
v, and x← e1; e2 for monadic bind (i.e. a sequential composition),
which first executes e1, then binds the return result to x before
executing e2. We abbreviate with e1; e2 when x /∈ FV (e2). As
customary with monadic languages, we assume that a command is
evaluated only upon being bound in a sequential composition. Until
then, the command’s execution is suspended.

2.1 Algebraicity

As our callcc and abort are non-standard, we briefly illustrate
them by example. Figure 1 shows an informal proof outline—in
a style of partial correctness Hoare logic or Separation logic—
for a function inc3, which uses a backward jump to increment
the value of pointer x by 3. Our actual syntax for inc3, and the
manual assertions needed for its specification, will be introduced
in Section 2.3. We first discuss the behaviour of the function, and
then return to the proof outline.

In the first command (line 2), inc3 captures the continuation,
which, at that point, is λ c. x := !x+ 1; c, corresponding to
the code in lines 4 − 6, with the variable c abstracted. The con-
tinuation is encapsulated inside a continuation object f , which
may be viewed as a label for jumps. Next, the body of callcc is
executed, and the suspended command abort f (x := !x +

1; ret (ret ( ))) is bound to c.1 The program continues by incre-
menting x (line 4), after which c follows (line 6). Execution of c
causes a jump to the continuation encapsulated inside f . However,
before the control is passed to the continuation, the second argu-
ment of abort—x := !x+1; ret (ret ( ))— is executed. Thus,
x is incremented again, and ret ( ) is passed as the argument c to
the continuation encapsulated inside f . Passing the control to the
continuation corresponds to a backward jump to line 4. Thus, x is
incremented once again, followed by execution of c. Since the lat-
ter variable is now bound to ret ( ), its execution falls through and
inc3 returns ( ), after having incremented x three times.

The non-standard aspect of our control operators is that abort
allows executing arbitrary side-effectful command—in the above
case x := !x+ 1—as part of performing the jump. This is differ-
ent from the customary callcc and throw [28, 48, 49], as the lat-
ter only passes a value upon a jump. We refer to this side-effectful
command as finalisation code, as it is executed immediately be-
fore the jump, thus ending the normal control flow. Obviously,
throw can be mimicked by abort by using a trivial finalisation
code which immediately returns. Dually, abort f e can be imple-
mented by sequential composition which executes e, followed by
throwing the obtained value to f .

However, choosing abort as a primitive, awards special sta-
tus to the finalisation code, which makes the control operators al-
gebraic [22, 33, 34]. More concretely, callcc commutes with se-
quential composition, a property we use in Section 4 to formulate a
methodology for Hoare-style specification and verification by sym-
bolic evaluation. We illustrate how the commutation arises by the
following equations, which can be derived from Jaskelioff [22].

x← (callcc f. e1); e2 = callcc g.x←[(g⊲x. e2)/f ]e1; e2 (1)

abort (g ⊲ x. e2) e1 = abort g (x← e1; e2) (2)

where g ⊲ x. e2 ,λ t. g (x← t; e2)

Consider equation (1). The continuation captured inside f on the
left side of the equation includes e2. On the right side, callcc has
been commuted out of the scope of x, and thus e2 cannot be part of
the continuation captured inside g. To induce that the expressions
on the two sides of equality behave the same, jumps to g on the
right side must be preceded by an execution of e2. Because our
primitives provide for finalisation code, we could enforce such a
discipline by using e2 as finalisation code for every abort to g.
This is achieved by uniformly substituting f in e1 with a new
continuation object g ⊲ x.e2. The new object is engineered so that
aborting to it object behaves like aborting to g with the finalisation
code extended by e2, as captured in equation (2). Thus, execution
of e2 precedes the jumps to g, just as required.

2.2 Proof outline

As customary in Separation Logic, heaps are finite maps from the
type ptr of pointers (isomorphic to N) to values. The predicate
x 7→ v holds only of a singleton heap with a pointer x, storing the
value v. We use f , g , for point-wise conjunction and disjunction
of heap predicates, and ⊤ and ⊥ for the always true and always
false predicate, respectively. In subsequent examples, we will also
use separating conjunction P ∗ Q, which holds of a heap h if
h can be split into disjoint parts satisfying predicates P and Q,
respectively. We will also use the predicate this h, which holds only
of heaps equal to h. We write P h or alternatively, h ∈ P , when
the predicate P holds of the heap h. We retain ∧, ∨, True and False
for the customary propositional (i.e., non-separation) connectives.

Referring to Figure 1, the line 1 states that the program starts
with the initial heap containing a pointer x storing the integer v
(though we omit the type annotations). HTTcc uses large footprint

1 As usual with monads, the binding strips the outer ret.



annotations which describe the full heap in which the program runs,
rather than just a subheap that the program needs (in contrast to
the small footprint annotations from Separation logic). Thereby, the
proof outline in Figure 1 describes the behaviour of inc3 when the
heap contains exactly the pointer x storing v, but no other pointers.
For now, we restrict ourselves to this simple case in order to focus
on algebraicity, but we explain in Section 3 how to generalise the
annotations of inc3 to cover larger heaps.

Going back to Figure 1, at line 3, after the continuation is cap-
tured in line 2, the current heap is unchanged, but the program vari-
able c is bound to the command abort f (ret (ret ( ))), which
itself has to be specified. The Hoare triple {x 7→ v + 1} c {⊥}
indicates that c should be executed only after x is incremented
(precondition x 7→ v + 1), and that the execution of c causes a
jump (postcondition ⊥). This behaviour precisely corresponds to
the intended use for c in line 6. However, as c in line 6 executes
a backward jump, the assertion in line 3 has to describe the state
right after the jump, but before the program proceeds with exe-
cuting line 4 for the second time. This is the role of the second
disjunct in line 2. It shows that the program point is reached for
the second time with x incremented twice. As described in Sec-
tion 2.1, at that point c is bound to ret ( ), and can be specified by
{x 7→ v+3} c {x 7→ v+3} to indicate that this second instance of
c will be executed after x is incremented once more (precondition
x 7→ v + 3). The second execution of c does not jump, but falls
through with the heap unchanged (postcondition x 7→ v + 3).

After x is incremented in line 4, the assertion in line 5 accounts
for the change in the heap: compared to line 3, the value of x is
incremented in both disjuncts, while the specifications for c remain
unchanged. Now, command c is safe to execute in line 6, because
the heap in both disjuncts satisfies the respective preconditions for
c. The program terminates satisfying x 7→ v + 3 (line 7), which is
a disjunction of the postcondition of c from line 5.

2.3 Proof annotations as dependent types

The crucial point in the proof outline for inc3 is deciding on the
specifications for c in line 3, which indicate the intended use of c in
the rest of the program (i.e., c is executed when x stores v + 1
and v + 3, jumping in the first case, and falling through in the
second). Such specifications depend on the structure of the rest of
the program, and cannot be gleaned solely from the body of callcc
in line 2. In this paper, we adopt the approach that such information
is provided by the programmer in the form of annotations. This is
similar to the way loop invariants often have to be provided when
verifying structured programs. In HTTcc, we use type annotations
for this purpose. However, because the annotations clearly depend
on run-time values (e.g., the contents of the pointer x in Figure 1),
we have to use dependent types.

In particular, HTTcc features two type constructors which we
use to provide annotations for side-effectful programs and for con-
tinuation objects. Intuitively, the type SK∗ {P}A {Q} classifies
programs with precondition P , postcondition Q and return value
of type A. The type Kont∗ {R}{P}A {Q} classifies continuation
objects. R describes what holds when the continuation is captured
by callcc, and is refered to as the initial condition. Precondition
P describes what must hold of the heap when aborting to the
continuation object; thus immediately before the finalisation code
is executed. postcondition Q describes the heap and the value ob-
tained after the execution of the finalisation code, but before the
actual jump. In both types, the assertions R, P and Q may depend
on program values. Additionally, Q may depend on the dedicated
variable r:A, naming the return value.

We employ the notation [v1 :A1 , . . . , vn :An ]. SK
∗ {P}A {Q},

often omitting the types Ai, to specify that v1, . . . , vn are variables
that may scope through P and Q (and similarly for R, P and Q

inc3 (x:ptr) : [v ]. SK∗ {x 7→ v} ( ) {x 7→ v + 3} ,

do c← callccj

f : [v ].Kont∗ {j ∈ x 7→ v} {x 7→ v + 1} Σ•SK ( )
{r. x 7→ v + 2 f

spec r⊑ (x 7→ v + 3, x 7→ v + 3)∗}.

do (ret [abort f (x := !x+ 1 ; ret [ret ( )])])

: [v ]. SK∗ {x 7→ v f j ∈ x 7→ v}Σ•SK ( )
{r. x 7→ v f spec r⊑ (x 7→ v + 1,⊥)∗};

x := !x+ 1 ;

cmd c.

Figure 2. Specification of inc3 via type annotations.

in Kont∗ types). In Hoare logic terminology, such variables are
known as logical; they may appear in assertions, but not in the code.
In first-order Hoare logics, logical variables have global scope and
are used to relate the initial and ending states of a computation.
In our setting, the scope of logical variables is local to the type
in which they are bound. This is required in any Hoare logic for
a language with procedures and recursion [24] such as HTTcc,
where a logical variable used in the specification of a recursive
procedure, may have to be instantiated differently to satisfy the
preconditions of different recursive calls.

Additionally, we employ a dependent record type Σ•SKA,
which packages a precondition and a postcondition together with
a computation, and thus abstracts existentially over them. In other
words, a value of type Σ•SKA is a structure of the form [P,Q, e],
where e : SK∗ {P}A {Q}. As we show subsequently, values
of this type will be used whenever we “nest” the monadic types,
i.e. build computations that return other computations, which may
potentially capture continuations. Given c : Σ•SKA, we will use
spec c and cmd c to project the components when necessary:

spec : [P,Q, e] 7→ (P,Q)
cmd : [P,Q, e] 7→ e

We will abuse the notation and write [e] instead of [(P,Q), e], as
the Hoare triple type of e—and hence its P and Q components—
can usually be inferred, as we describe in Section 4. We will also
use the symbol ⊑ to denote the usual Hoare ordering (i.e., pre-
strengthening/post-weakening) on pairs (P,Q).

We now present in Figure 2 the fully annotated version of
inc3, as it is written in HTTcc. Apart from the obvious typing
annotations and the explicit use of the aforementioned constructors
and projections for Σ•SK ( ), there are additional syntactic elements
that did not appear in Figure 1. We use the expression do e :
SK∗ {P}A {Q} (potentially with logical variables) whenever we
want to explicitly ascribe the specification (P,Q) to e, rather than
use the tightest specification that the system infers for e. Such
ascription will entail a proof obligation that (P,Q) is valid for e,
as we explain in Section 4. When the type ascription is explicitly
bound to a variable x, we write x : SK∗ {P}A {Q},do e.

We also make explicit that callcc captures the current heap,
in addition to the current continuation, through the heap variable
j that is bound by callcc and which we declare as an index
(e.g., callccj). The variable j scopes over the whole callcc body,
including the type of the continuation object f . However, it is
introduced strictly for purposes of specification, and we shall use it
only in the annotations, but not in the executable code over which
it scopes. The role of j is to relate the values of the various logical
variables in its scope. In Figure 2, e.g., the assertion j ∈ x 7→ v
appears in the type of the continuation object f and in the type



of the body of callcc, thus implying that the (distinct) logical
variables named v in the two types, in fact denote the same value
– that stored in x at the entry to callcc. In Figure 1 we used a
single global logical variable v for this purpose, but, as explained,
global logical variables do not scale to Hoare-style reasoning about
procedural languages.

Figure 2 uses the constructor [ ] twice. Once around c1 =
abort f (x := !x + 1 ; ret [ret ( )]) and again around c2 =
ret ( ), which is embedded inside c1. As explained in Section 2.1
at different points of execution, both c1 and c2 are assigned to the
variable c, and thus, all three must have the same type. Because the
Hoare types of c1 and c2 actually differ in the pre- and postcon-
ditions, we employ [ ] to abstract over the whole specifications,
coercing c1 and c2 to Σ•SK( ). The individual specifications of c1
and c2 are then re-established using the spec r projection in other
program annotations.

For example, [c1] is the return value of callcc. The explicitly
ascribed SK∗ type states that spec r⊑ (x 7→ v + 1,⊥)∗, exposing
that c1 performs a jump and should be executed only when x is
incremented once.2 On the other hand, [c2] is the value of the
finalisation code of the abort to f in c1. Hence, the variable r
in the postcondition of f ’s type stands for [c2], and the formula
spec r ⊑ (x 7→ v + 3, x 7→ v + 3)∗ in f ’s postcondition exposes
that c2 does not change the state, but should be executed only
when x is incremented by 3. The types of f and the callcc body
in Figure 2 explicitly provide the required information about the
intended uses of the code bound to c at various execution points.
Indeed, the postconditions of these two types are essentially the two
disjuncts from line 3, Figure 1, with the formulas involving spec r
replacing the Hoare triples over c. In this sense, the spec projection
out of the record type Σ•SK represents Hoare triples when they are
nested, i.e. used within the assertions of other Hoare triples.

It is important, however, that the two disjuncts in line 3, Figure 1
are specified in two different places in inc3 from Figure 2. In
particular, the type of f provides the disjunct describing what
happens when f is jumped to, whereas the inner type ascription
provides the disjunct describing the normal return value of the
callcc block. This pattern whereby f specifies only the jumping
behaviour is characteristic of the algebraic callcc operator. On the
other hand, as we shall see in Section 6, the annotations describing
the non-jumping behaviour in the body of callcc can often be
inferred (though in the case of inc3 we had to explicitly ascribe
them because the return value nests a jump). In the non-algebraic
case, in our experience, f has to always be manually annotated with
the full disjunction of the jumping and non-jumping cases, resulting
in larger and more cumbersome annotations and proofs.

3. Notation, logical variables, large footprint

While logical variables are very useful in specifications, they are
somewhat inconvenient to work with in the meta theory. The main
hindrance is that premises of inference rules may contain Hoare
triples with differing contexts of logical variables, which have to
coalesce in some way into a logical context of the Hoare triple
in the conclusion. Typically, simple conjoining of contexts is not
what is wanted, as some sharing of variables is desired. But then, it
becomes problematic how to specify just exactly which variables
should be shared in the conclusion, and which should not. To
circumvent the issue, in this section we introduce SK and Kont
types which do not use logical variables at all, and show how SK∗

and Kont∗ types with logical variables from Section 2, become
merely notational abbreviations.

2 The reader can ignore the operation (−)∗ for now; it will be defined in
Section 3.

As a first step, we introduce the type SK A (P, Q) of effectful
computations where P is a precondition over heaps, as discussed
in the previous section, but Q is a binary postcondition, ranging
over the ending result of the program (of type A) and the initial and
ending heaps, much as in VDM-style specifications [7, 30]. We use
CIC-style notation to classify logical propositions by the type Prop,
and represent predicates as functions into Prop.

Definition 1 (A-specs). Given P : preT and Q : postTA an
A-specification, or A-spec, is a pair (P,Q) : specTA with:

preT , heap→ Prop

postTA , A→ heap→ heap→ Prop

specTA , preT × postTA

The notation [∆]. SK∗ {P}A {Q} from Section 2, with unary
{P} and {Q} is an abbreviation, as we illustrate next.

Example 2. The type [v ]. SK∗ {x 7→ v} ( ) {x 7→ v + 3} of inc3
from Figure 2, is an abbreviation of the specification:

SK ( ) (λ i. ∃ v. i ∈ x 7→ v,
λ r im. ∀ v. i ∈ x 7→ v → m ∈ x 7→ v + 3)

The SK type introduces an explicit quantification over v in the
precondition to guarantee that inc3 is safe to execute in the heap
containing (only) the pointer x. The universal quantification in the
postcondition expresses that upon termination, the value pointed to
by x is incremented by 3. To express this property, the precondition
x 7→ v has to be repeated as part of an implication in the binary
postcondition, which is obviously cumbersome, thus motivating the
following notation, generalising to a context ∆.3

Definition 3 (SK∗). Given a type A, P : preT, Q : postTA the
type notation [∆]. SK∗ {P}A {Q} is defined as:

[∆]. SK∗ {P}A {Q} , SK A (P,Q)∗∆

where (P,Q)∗∆ is the A-spec defined as follows:

(P,Q)∗∆,(λ i. ∃∆. i ∈ P, λ r im. ∀∆. i ∈ P → m ∈ Q)

The second step is to introduce the type KontARQ of continu-
ation objects. R:preT is the initial condition, describing the heap at
the point of a jump. Q:postTA is a binary postcondition relating
the initial heap with the ending heap and value of the finalisation
code. The Kont type will always be in scope of a variable j de-
noting the heap at the point of continuation capture (the index of
callcc in Figure 2); thus R and Q may depend on j as well.

We next show how the the type Kont∗ from Section 2, is a
notation over Kont, but first we need to generalise somewhat. As
the following example illustrates, the Kont∗ types actually require
two different kinds of logical variables.

Example 4. Consider a continuation object which is captured
when the heap j = x 7→ v, can be jumped to only when x is
incremented by some p, and whose finalisation code increments p
further by 1. The scenario uses the program variable x and two
logical variables, v and p. However, v and p clearly have different
nature; v is implicitly universally quantified, while quantification
over p is existential when describing the precondition for the jump,
and universal in the description of the finalisation code. Thus, we
put v and p into two different contexts, and describe the continua-
tion object by the type

[v ], 〈p〉.Kont∗ {j ∈ x 7→ v}{x 7→ v + p}A {x 7→ v + p+ 1}

We refer to the two kinds of variables and contexts as box and
diamond variables and contexts, respectively. In Figure 2 we only

3 The notation also explains the operator (−)∗ (with the empty context ∆),
that was used in Figure 2.



used the box contexts, and in general, when the diamond context
is empty, we simply omit it. However, diamond context is not
always empty, as we will illustrate in the ping–pong program
in Section 6.2.

Definition 5 (Kont∗). Let ∆ and Γ be contexts of logical vari-
ables, and j be a distinguished heap variable, possibly occurring
freely in R : preT, P : preT and Q : postTA. Then the no-
tation [∆], 〈Γ 〉. Kont∗ {R}{P}A {Q}, is an abbreviation for the
following Kont type without logical variable contexts.

[∆], 〈Γ 〉.Kont∗ {R}{P}A {Q} ,

KontA (λ i. ∀∆. R→ ∃Γ. i ∈ P )
(λ rm i. ∀∆. R→ ∀Γ. i ∈ P → m ∈ Q)

All the variables in ∆ are universally quantified in the notation,
whereas the variables in Γ are existentially quantified in the initial
condition, and universally in the postcondition.

We close the section by revisiting the issue of large footprint
annotations. In Section 2, inc3 could execute only in a heap with
exactly the pointer x, and no others. We now explain how to specify
inc3 to admit execution in the presence of additional pointers.
We will use a (box) logical variable of type heap, to describe the
sub-heaps that do not contain x. For example, the more general
annotation for inc3 is given below.

inc3 (x:ptr) : [v , h]. SK∗ {x 7→ v ∗ thish}( )
{x 7→ v + 3∗ thish} ,

do c← callccj

f : [v , h].Kont∗{j ∈ x 7→ v ∗ thish}
{x 7→ v + 1∗ thish}Σ•SK ( )
{r. x 7→ v + 2∗ thish
f spec r⊑ (x 7→ v + 3∗ thish,

x 7→ v + 3∗ thish)∗}.

do (ret [abort f (x := !x+ 1 ; ret [ret ( )])])

: [v , h]. SK∗ {x 7→ v ∗ thish f j ∈ x 7→ v ∗ thish}
Σ•SK ( )
{r. x 7→ v ∗ thish
f spec r⊑ (x 7→ v + 1∗ thish,⊥)∗};

x := !x+ 1 ;

cmd c.

The annotations introduce a logical variable h, the assertions thish,
and separating conjunction ∗, to name the part of the heap disjoint
from the pointer x. The occurrence of the same thish in both the
pre- and postcondition of inc3, specifies that inc3 keeps this part
of the heap invariant. Moreover, h is local to the Hoare triples in
which it appears (unlike in first-order Hoare or Separation logic,
where logical variables are global). Thus, a specification of inc3
can be extended to a larger heap merely by instantiating h, rather
than by means of a dedicated frame rule as in Separation logic.
Because of the repeated occurrences of thish in the assertions,
this style of annotation is a bit more verbose than in Separation
logic, where the invariance of residual heaps is implicit. However,
in practice, the extra logical variable did not affect our proofs. We
discuss in Section 7 the reasons for needing large footprints, and
some alternative designs.

4. Inference rules

We develop the semantics of HTTcc using the Calculus of Induc-
tive Constructions (CIC) as the meta logic. The choice provides us
directly with a method to prototype HTTcc as a shallow embed-
ding in Coq, thus inheriting a number of useful constructs, such as

ret : Πv:A. [h]. SK∗ {thish}A {r. thish f r = v}

alloc : Πv:A. [h]. SK∗ {thish} ptr {r. r 7→ v ∗ thish}

dealloc : Πx:ptr. [B , v :B , h]. SK∗{x 7→ v ∗ thish} ( ) {thish}

:= : Πx:ptr.Πv:A. [B ,w :B , h]. SK∗ {x 7→ w ∗ thish} ( )
{x 7→ v ∗ thish}

! : Πx:ptr. [v :A, h]. SK∗ {x 7→ v ∗ thish}A
{r. x 7→ v ∗ thish f r = v}

Figure 3. HTTcc typing assignment for primitive commands.

dependent Π and Σ types, which we have already used in Section 2.
For the sake of brevity, we omit the treatment of such standard con-
structs (it can be found in [27, 6]), and freely assume the standard
typing rules and the various syntactic categories of CIC, such as,
e.g., variable contexts. We only present our impure monadic exten-
sions: the typing rules for the SK and Kont types, and related terms.
In Section 5, we develop the semantic model for HTTcc, which we
mechanised in Coq, to show the soundness of the extension.

The specific rules of HTTcc are of two distinct kinds. The first
kind consists of typing rules, which serve to infer the default pro-
gram specifications (weakest precondition for memory safety, and
strongest postcondition wrt. that precondition). The inference is im-
portant in practice because it minimises the amount of annotations
that the user has to provide manually. The second kind consists
of structural lemmas that formalise the reasoning about Hoare-
ordering of specifications. As illustrated in Figure 2, such reason-
ing is needed in several situations: (1) We may explicitly need to
ascribe a custom specification to a program, and this requires a
proof that the default specification can be pre-weakened and post-
strengthened into a desired one, and (2) We may use the relation
⊑ , to explicitly declare that a [−]-abstracted command satisfies a
predetermined specification. The two kinds of rules are discussed
in Sections 4.1 and 4.2, respectively.

4.1 Typing rules

From here on, we use s and variants to range over specifications
(P,Q), with pre s and post s projecting out the components.

BIND rule in Figure 4 perhaps best exemplifies the inference na-
ture of our typing rules. Given programs e1 and e2 with specifica-
tion s1 and s2, respectively, the rule infers the tightest specifica-
tion for the sequential composition x← e1; e2 as follows. Because
the execution of the compositions starts with e1, the inferred pre-
condition must require that pre s1 holds of the initial heap i. After
e1 terminates with an intermediate value x and heap h satisfying
post s1 x i h, it must be that pre (s2 x)h so that e2 is safe to run.
The inferred postcondition declares the existence of an intermedi-
ate value x, and and a heap obtained after e1 but before e2, as per
relational composition post s1 x ◦ post (s2 x) r.

BIND, as well as the other rules in Figure 4, use SK and Kont
types without logical variable contexts, which is why we introduced
such types in Section 3 in the first place. Omitting logical variables
facilitates specification inference, as it circumvents the issue of
reconciling potentially different contexts of logical variables that
may appear in the type for e1 and the type for e2.

ABORT rule infers a precondition that has a dual role. The first con-
junct R i ensures that the continuation object f is aborted to only
in heaps i for which the initial condition R is satisfied. The sec-
ond conjunct s⊑ (R f this i, Q) ensures that e is an appropriate
finalisation code for f ; that is, the specification s of e can be weak-
ened into a precondition R and postcondition Q, as required by the
type of f . Additionally, this i allows the proof of the weakening to



Γ ⊢ e1 : SK A s1 Γ, x : A ⊢ e2 : SK B (s2 x)

Γ ⊢ x← e1; e2 : SK B (λ i. pre s1 i ∧ ∀xh. post s1 x i h→ pre (s2 x)h, λ r im. ∃x.(post s1 x ◦ post (s2 x) r) im)
BIND

Γ, j : heap, f : KontA (Rj) (Qj) ⊢ e : SK A (s j)

Γ ⊢ callccj f . e : SK A (λ i. pre (s i) i, λ r im. post (s i) r im ∨ (R ◦ Qi r) im)
CALLCC

Γ ⊢ f : KontARQ Γ ⊢ e : SK A s

Γ ⊢ abortB f e : SK B (λ i. R i ∧ s ⊑ (R f this i, Q), λ r im. False)
ABORT

Γ ⊢ e1 : SK A s1 s1 ⊑ s2

Γ ⊢ do e1 : SK A s2
DO

Γ ⊢ e : bool Γ ⊢ e1 : SK A s1 Γ ⊢ e2 : SK A s2

Γ ⊢ if e then e1 else e2 : SK A (if e then s1 else s2)
IF

Γ ⊢ f : ( Πx:A. SK (B x) (s x))→ Πx:A. SK (B x) (s x)

Γ ⊢ fix f : Πx:A. SK (B x) (s x)
FIX

Figure 4. HTTcc typing rules for specification inference.

exploit the knowledge that the heap in which the finalisation code
executes is exactly i. The exact definition of⊑will be given in Sec-
tion 4.2. Because abort does not return any values, its return type
B is arbitrary and can be supplied by the user. We omit annotating
this type in examples as it can be usually inferred from the context.

CALLCC rule in Figure 4, infers the specification for callcc f. e.
The premise of the rule introduces the heap variable j, which,
as illustrated in Section 2, provides a common point for f and e
to “synchronise” on, thereby fixing the values of various logical
variables in relation to j. In the conclusion of the rule, j will be
instantiated with the initial heap of callcc; that is, with the heap at
the point of continuation capture.

The specification of f allows aborting to f only in heaps satis-
fying R j. After f ’s finalisation code terminates, the resulting heap
and value satisfy Q j. If e has a specification s, then the tightest
specification of callcc f. e can be inferred as follows. Because the
execution of the whole command starts with e, the inferred pre-
condition has to be derived out of e’s precondition pre (s j). The
unknown j is instantiated with the actual initial heap, to obtain the
tightest precondition λ i. pre (s i) i. The postcondition is a disjunc-
tion expressing that e may produce two different outcomes: it ei-
ther aborts to f , or it does not. The left disjunct post (s i) r im de-
scribes the non-aborting case; it simply equals the postcondition of
e with j instantiated by i. In those cases when e actually aborts, the
disjunct will be False, as it embeds the postcondition of the ABORT

rule. The right disjunct is a relational composition (R ◦ Qi r) im
which describes the aborting case, as follows. In the aborting case,
there exists a heap—call it h—that is current at the point of abort.
Due to the specification of f , R must relate i and h. Additionally,
m and r are obtained after the finalisation code of f is executed at
h, and thus Qi r must relate h and m as well.

The annotations specifying the continuation object (R and Q)
appear in a negative position in the premise of CALLCC, and can-
not be inferred automatically. In contrast, the specification s for e
is generated by e’s typing derivation. The property that only the
aborting case has to be specified manually, differentiates the alge-
braic callcc from the standard, non-algebraic alternatives. A de-
tailed comparison is presented in Section 7.

Other rules The rule DO implements a type ascription, requiring
a proof that the specification s1 can be weakened into s2, as in the
usual Hoare logic rule of consequence. The IF rule uses the type-
level conditional, available in CIC, to compute the specification of
a program-level conditional out of the types of the components.
The FIX rule implements the usual typing for recursive procedures,

requiring that an SK type be established for the procedure body, un-
der a hypothesis that the recursive calls satisfy the same type. The
primitive stateful commands have standard Separation logic speci-
fications (Figure 3), except that they are extended to the large foot-
print idiom by naming the unused heap with the logical variable h.

Additional notation In the rest of the paper, we will use explicit
names for the derived specifications in Figure 4. For example, we
write callcc s R Q s for (λ i. pre (s i) i, λ r im. post (s i) r im∨
(R ◦ Qi r) im), abort s R Q s for (λ i. R i ∧ s ⊑ (R f this i,
Q), λ r im.False), and similarly for bind s, read s, etc.

4.2 Structural lemmas and symbolic evaluation

The Hoare ordering on two specifications s1 and s2 is defined as:

s1 ⊑ s2 , ∀ i. pre s2 i→ verify i s1 (λ r:Am. post s2 y im)

where for any κ : A→heap→prop:

verify i s κ , pre s i ∧ ∀ rm. post s r im→ κ r m

The definition of s1 ⊑ s2 states that pre s1 weakens into pre s2
and post s2 strengthens into post s1, as in the Hoare logic rule
of consequence. It is split into two stages in order to exploit the
hypothetical reasoning of CIC and Coq. In practice, the hypothesis
pre s2 i will always move into the hypothesis context of Coq,
leaving verify to describe the remaining proof goal.

The HTTcc proof obligations arise directly from the side con-
dition about Hoare ordering in the rule DO in Figure 4, when the
user wants to ascribe a desired specification to a program. In the
practical work with HTTcc, the proof obligations are discharged
by applying a number of carefully crafted lemmas about verify that
implement verification by symbolic evaluation. We illustrate the
process here, and discuss the relationship to algebraicity of control
operators in Section 4.3.

For instance, let e1 and e2 be computations with specifications
s1 and s2 x, respectively. The inferred specification for x← e1; e2
is bind s s1 s2. An HTTcc proof obligation establishing that in
some heap i, the execution of the sequential composition produces
a heap and a value satisfying κ, will have the form:

verify i (bind s s1 s2)κ

The idea of symbolic evaluation is to discharge such a goal as
follows. It suffices to show that verifying a composite B-spec
(bind s s1 s2) can be reduced to verifying s1 against a κ′, where
κ′ itself involves verifying s2 against κ. The process is iterated as
long as s2 contains sequential compositions, and can be seen as a



sequence of applications of the following lemmas in HTTcc:

STEP : verify i s1(λ ym. verify m (s2 y) κ)→
verify i (bind s s1 s2)κ

VALDO : pre s i→ (∀x im. post s x im→ κxm)→
verify i s κ

The STEP lemma implements the iterative step, and VALDO lemma
applies in the end, when there are no outstanding sequential com-
positions to be stepped through.

The VALDO lemma may be specialised to streamline the sym-
bolic evaluation for specific commands. For example, let f :
KontARQ and e : SKAs. The inferred spec for abort f e
is abort sRQ s = (λ i. R i∧ s ⊑ (R,Q), λ r im.False). Taking
this spec for s in VALDO, after some simplification, we obtain:

VALABORT : R i→ verify i s (λr. λm.Q r im)→
verify i (abort s R Q s)κ

In other words, to verify abort to f , we need to show that R holds
of the current heap, and that the supplied finalisation code satisfies
Q after running in i.

In case e1 = callccj f. e, the inferred spec is callcc sRQ s =
(λ i. pre (s i) i, λ r im. post (s i) r im ∨ (R ◦ Qi r) im), for
some j and f : KontA (R j) (Q j) and e : SK A (s j). Tak-
ing this spec for s, and after some rearrangement of the disjunction
in the postcondition of callcc s, VALDO can be specialised into the
following lemma.

VALCC : verify i (s i)κ→
(∀ r:Am. (R ◦ (Qi r)) im→ κ rm)→
verify i (callcc s RQs)κ

The first hypothesis corresponds to the case when e does not abort.
In that case, the goal reduces to verifying (s i) against κ. The sec-
ond hypothesis corresponds to the aborting case. In that case e pro-
duces an ending heap m and value x satisfying (R ◦ (Q i))x im;
that is e first reaches an aborting heap out of i (predicate R), and
then executes the finalisation code (Q i). Then we just need to
prove that κ holds after the execution of the finalisation code.

Specialised symbolic execution lemmas can be proved for all
other primitive commands. Furthermore, because verify is an ordi-
nary logical definition, users can establish such lemmas for their
own programs as well, directly in the logic.

Example 6. We can implement the usual throw command, as
an abort with an immediately-returning finalisation code. Given
f : KontARQ and a value v:A, we define:

throw g v , abort f (ret v)

The inferred specification throw sRQ v = abort sRQ (ret s v)
can be proved to satisfy a streamlined version of VALABORT, which
exploits the trivial nature of the finalisation code to simplify one of
the hypotheses.

VALTHROW : R i→ Q v i i→ verify i (throw s R Q v)κ

4.3 Algebraicity at the level of specifications

In this section, we show that the algebraicity property of callcc can
be expressed as a lemma over specifications, similar to the sym-
bolic evaluation lemmas from the previous section. This lemma,
which we call ALGCC, expresses that we can commute the speci-
fication forms bind s and callcc s, thus lifting to the level of spec-
ifications the algebraicity equation (1) from Section 2. However,
stating the ALGCC lemma requires generalising somewhat the def-
inition of callcc s RQs1. We first introduce the generalised def-
inition, which we rename algcc s Rs0 s1, and then describe the
intuition behind it.

Consider a program of the form x← (callccj f. e1); e2, where
f : KontA (R j) (Q j), e1 : SK A (s1 j), and x:A ⊢ e2 :

SK B (s2x). Then, side-by-side, the two definitions look like:

callcc s RQs1 = (λ i. pre (s1 i) i
λ r im. post (s1 i) r im ∨ (R ◦ Qi r) im)

algcc s Rs0 s1 = (λ i. pre (s1 i) i ∧ ∀h.R i h→ pre (s0 i)h,
λ r im. post (s1 i) r im
∨(R ◦ post (s0 i) r) im)

The main difference is that where callcc s uses only the postcondi-
tion Q (abstracting over j) to specify the finalisation code, algcc s
takes a full specification s0 (also abstracting over j), which in-
cludes a precondition as well. In callcc s, the precondition for the
finalisation code is assumed to be the trivially true heap predicate,
and we can prove the equation

callcc s RQs1 = algcc s R (λ j. (⊤, Q j)) s1.

Intuitively, callcc s could use the trivial precondition for the
finalisation code, because R already describes what holds of the
heap at the point of abort, and this is the same heap in which the
finalisation code executes. However, the main property of algebraic
commutation is that it changes the finalisation code by extending
it with e2, though it does not change the point of aborting. The
new definition algcc s thus divorces R and pre s0, so that the
algebraicity lemma can express that R remains fixed, while pre s0
changes. The changes to pre s0 cannot be arbitrary, however, as
the finalisation code always executes in a heap in which abort is
called. Thus, the precondition of algcc s includes a conjunct that R
implies pre s0 for every initial heap i, and aborting heap h.

We can now state the algebraicity lemma for callcc, with the
omitted proof included in our Coq files.

ALGCC : verify i (bind s (algcc s Rs0 s1) s2) κ ←→
verify i (algcc s R (λ j. bind s (s0 j) s2)

(λ j. bind s (s1 j) s2)) κ

5. Denotational semantics

In this section we present the semantics of HTTcc as a shallow
embedding into CIC. That is, we provide a semantic interpretation
function J−K that maps HTTcc types SK and Kont into types
defined in CIC, but acts as identity on all the other types inherited
from CIC, such as nat or heap. Similarly, the interpretation of
terms maps the monadic constructs such as callcc, abort, etc.,
into CIC-terms, while acting as an identity on all the other terms
inherited from CIC. The interpretation extends homomorphically
to variable contexts as well.

5.1 Semantics of types

As customary in the case of control operators, our denotational
semantics is parameterised wrt. the type X of return results for
the continuations. We further require that X is a complete lattice,
thus providing us with means to model the fixed point combinator
in CIC, using the Knaster-Tarski theorem.

Definition 7. Given a type A, and predicates P : preT and Q :
postT A, the types SK A (P, Q) and KontAP Q are interpreted
as follows.

JSK A (P, Q) K ,
Πi:heap. JP K i→ (Πr:JAK.Πm:heap. JQK r im→X)→X

JKontAP QK , JSK A (P, Q)K→ Πj:heap. JP K j → X

A computation of SK type takes a heap i satisfying the pre-
condition P , and a continuation requiring the postcondition Q as
a precondition. Intuitively, the continuation applies to the ending
value and heap of the computation, to produce a result in X . As
the latter type is a complete lattice, the possible results include di-
vergence, denoted by the bottom element of the lattice. We don’t



model the faulting behaviour such as type or memory errors (e.g.,
de-referencing a dangling pointer), but instead rely on the proofs
of JP K i and JQK r im to statically ensure that a computation exe-
cutes only in heaps and continuations for which such errors do not
occur. In this sense, well-typed (i.e., well-specified) computations
in HTTcc do not fault, as usual for type systems and for fault-
avoiding Hoare logics such as Separation logic.

A further useful intuition about our model may be gained if one
erases the dependencies on P and Q in Definition 7. This results in
the following informal equations:

JSKAK = heap→ (JAK→ heap→ X)→ X
JKontAK = JSKAK→ heap→ X

The first equation shows that the SKA type is essentially the stan-
dard state-passing continuation monad. The second equation shows
that a continuation object semantically requires two arguments: an
explicit finalisation code (the SKA type), and a heap. Of course,
the finalisation code is explicitly provided by the program as an ar-
gument of abort. Importantly, the heap argument is implicitly sup-
plied by the denotation of abort as the heap current at the point of
aborting to f .

Of course, the parametrisation with finalisation code is what
makes our control operators algebraic, and is directly inspired by
Jaskelioff [22]. On the other hand, the further heap argument makes
the KontA type implement non-rollbacking continuations. In con-
trast, the algebraic callcc presented by Jaskelioff for a state and
continuations monad does roll-back the state to the one captured
together with the current continuation.

5.2 Semantics of computations

For the sake of brevity, we present only the denotational semantics
of the control operators callcc and abort. Moreover, we illustrate
only the simplified setting where the dependencies on P and Q are
erased from the types (as in the above informal equations), and the
dependencies on the proofs of JP K i and JQK r im are erased from
the terms. The full dependency-respecting denotations for all the
monadic commands from Figures 4 and 3 are implemented in the
companion Coq files.

Definition 8 (callcc f. e). Given f : JKontAK and e : JSKAK,

the denotation of callcc f. e of type JSKAK is defined as: 4

JcallccK : (JKontAK→ JSKAK)→ JSKAK
Jcallcc f. eK , λi : heap. λk : JAK→ heap→ X.

[λc : JSKAK. λh : heap. c h k/f ]JeK i k

Intuitively, executing callcc f. e corresponds to applying the
denotation to the initial (i.e., captured) heap i and continuation
k. The body e is executed using the same heap and continuation.
However, first the variable f : JKontAK is bound to a continuation
object that, when supplied the finalisation code c and a heap h that
is current at the point of aborting to f , executes c in h passing the
control (i.e., jumping) to k.

Definition 9 (abortB f e). Given f : JKontAK and e : JSKAK ,
the denotation of abortB f e of type JSKBK is given by:

JabortBK : JKontAK→ JSKAK→ JSKBK

JabortB f eK , λi : heap. λk : JBK→ heap→ X. JfK JeK i

Theorem 10 (Soundness). If Γ ⊢ e : A then JΓK ⊢CIC JeK : JAK.

Proof. The proof is by induction on the structure of e. The inter-
esting cases are when e is one of the monadic commands (corre-
spondingly, when A is an SK type), as in all other cases the seman-

4 Omitting the index j to callcc, which may only appear in the erased
dependencies.

1. rember-up-to-last (x : A) (xs : listA) :

[h]. SK∗ {thish} (listA) {r. thish f r = rember xxs [ ]} ,

2. do (callccj

exit : [h].Kont∗ {j ∈ thish}
{if x ∈ xs then thish else ⊥}
(listA)
{r. thish f r = rember xxs [ ]}.

3. fix (λ f : remberT. λ ys : listA.

4. if ys is y :: ys′ then

5. zs← f ys′;

6. if x == y then throw exit zs

7. else ret (y::zs)

8. else ret [ ]) xs)

where

remberT,Πys : listA.

SK
∗ {this j f ∃ps. xs = ps++ys} (listA)
{r. this j f r ∈ remberP x ys [ ]}

remberP x xs acc, if xs is y :: ys′ then
if x == y then ∅
else remberP x ys′ (acc++[y])

else {ps | ps = acc}

Figure 5. rember-up-to-last in HTTcc.

tic function is trivial. When e is a monadic command, the sound-
ness proof for the command is intertwined with the definition of
the denotation of e. For example, in the case of e = callccj f. e
the denotation will involve parametrization on the proofs of JP K i
and JQK r im, for the appropriate P and Q, that we have simpli-
fied away in our discussion. Such proof parameters are used in the
denotations to build larger proofs on-the-fly, as necessary to make
the various sub-terms of the denotation typecheck, until ultimately
the whole denotation term typechecks wrt. the specification given
in Figure 4. Similar considerations apply for other monadic terms
as well. One exception is the fixed point construct fix f , whose
soundness is proved by an appeal to Knaster-Tarski theorem over
the monotone completion of f . The Knaster-Tarski theorem applies
because JST A (P,Q)K is a complete lattice, being defined as a
function space into a complete lattice X . We have mechanised all
the steps of the proof in our Coq files.

6. A short verification survey

We present the verification of two examples exhibiting non-trivial
patterns for programming with continuations. The first example,
rember-up-to-last, illustrates downwards or exit continuations,
whereby a jump is used to escape early from a recursive call,
whilst discarding suspended computations. The second example,
ping–pong, illustrates upwards continuations or unstructured loop,
where the executions of a captured continuation are interleaved
with user code, thereby mimicking the cooperating behaviour of (a
simplified version of) coroutines. In the companion files [12], we
verify other examples as well, such as escaping from infinite loops
and using continuations to implement error handlers.



1. rember (x : A) (xs acc : listA) : listA ,

2. if xs is y::ys′ then

3. if x == y then rember x ys′ [ ]

4. else rember x ys′ (acc++[y])

5. else acc.

Figure 6. Purely functional rember.

6.1 rember-up-to-last

Let A be a type supporting decidable equality; i.e., there exists
a function == :A→A→bool. Given x :A and a list xs : listA,
rember-up-to-last xxs, returns the ending segment of xs after the
last occurrence of x; if x does not occur in xs, the whole xs is re-
turned [18, p. 55]. For example, if xs = [23, 16, 42, 4, 42, 8, 15, 16],
then rember-up-to-last 4 xs = [42, 8, 15, 16], rember-up-to-last
16 xs = [ ] and rember-up-to-last 42xs = [8, 15, 16]. However,
rember-up-to-last 7 xs = xs.

Figure 5 implements rember-up-to-last in HTTcc, following
the ML implementation by Thielecke [47]. For simplicity, we use
purely-functional lists instead of imperative, singly- or doubly-
linked lists. The implementation works as follows. In line 2, it cap-
tures the continuation with callcc. Then, it recurses over the input
list xs, searching for x (lines 3–5), rebuilding the input list on the
way back (line 7). If x is found (line 6), it jumps out of the loop, by
throwing to the captured continuation (Example 6). The returned
value zs is the list rebuilt so far, while the outstanding iterations of
the loop intended to further rebuild the list, are cancelled.

We also develop a purely-functional version rember (Figure 6)
by induction on xs. rember does not use callcc, but instead relies
on tail recursion and the accumulator acc to keep track of the
currently rebuilt list. Of course, the implementation with jumps is
preferable from the efficiency standpoint, but we require the pure
rember in order to specify rember-up-to-last.

We now analyse the type annotations in Figure 5. Those for
rember-up-to-last (line 1) are quite intuitive. The function can run
in an arbitrary heap h (thish in the precondition). It leaves the heap
unchanged (thish in the postcondition), and the return result r is
the same as running the tail-recursive rember with the empty initial
accumulator. The continuation object exit (line 2) is specified as
follows. The initial condition exposes that the captured heap j
equals h. A jump to exit may occur only when the precondition is
satisfied; in this case, only when x ∈ xs. The postcondition states
that the heap is unchanged, and the return value equals running
rember, as expected.

The most interesting annotations is the loop invariant remberT
provided as the type of the recursive function f . The precondition
states that f is only ever applied to the tail ys of xs; hence xs
can be partitioned as ps++ys. The partitioning is made explicit in
the precondition, as it will be required when proving that we are
throwing the correct ending segment in line 6. In the postcondition,
remberT has to state that f produces the correct result. Importantly,
however, it cannot use the helper function rember! rember requires
an accumulator argument, but as f itself is not tail recursive, it is
not clear which value to supply for the accumulator. Unlike in the
specifications of rember-up-to-last and exit, it’s incorrect to use
[ ], as that does not reflect the looping behaviour. It’s also incorrect
to existentially abstract over the accumulator, as that produces too
weak a property which then does not imply the postcondition of
rember-up-to-last, where the accumulator is [ ].

The workaround is to define a helper function remberP, which
is similar to rember, but records when the jumps in f appear, as

1. {∃h. thish}

2. do ( callccj exit .

3. {∃h. thish f j = h}

4. {this j f xs = [ ]++xs}

5. fix (λ f ys.

6. {∃ ps. this j f xs = ps++ys}

7. if ys is y :: ys′ then

8. {∃ ps. this j f xs = ps++(y:: ys′)}

9. zs← f ys′;

10. {∃ ps. this j f xs = ps++(y:: ys′) f zs ∈ remberPx ys′ [ ]}

11. if x == y then

12. {∃ ps. this j f xs = ps++(x::ys′) f zs ∈ remberPx ys′ [ ]}

13. {this j f x ∈ xs f zs = rember x xs [ ]}

14. throw exit zs

15. {⊥}

16. else ret (y::zs)

17. ∃ ps. this j f xs = ps++(y:: ys′)
f y::zs ∈ remberPx (y::ys′) [ ]}

18. else ret [ ]

19. {∃ ps. this j f xs = ps f [ ] ∈ remberPx [ ] [ ]}

20. ) xs)

21. {this j f r ∈ remberPxxs [ ]}

22. {∃h. thish f (r ∈ remberPxxs [ ] g
(x ∈ xs f r = rember xxs [ ]))}

23. {∃h. thish f r = rember xxs [ ]}

Figure 7. Proof outline for rember-up-to-last x xs.

follows. remberP returns either an empty set of values, to signalise
a jump, or a singleton set, with the correct value, in the non-
jumping case. More precisely, we have the following lemma:

rmb rmbP : r ∈ remberP x xs acc → r = rember x xs acc.

Then, the loop invariant remberT can assert that the return value
r is always in the set defined by remberP. In the case of a jump,
this property is evidently false, since the set is empty. But, in such a
case, the program behaviour is described by the annotation on exit
anyway, and the loop invariant need not bother describing it again.

Figure 7 presents a proof outline for rember-up-to-last x xs.
The trivially true assertion ∃h. thish in line 1 corresponds to un-
folding the notation for the type SK∗ with a precondition thish,
and a logical variable h. In line 3, the current heap h is captured
into the variable j, corresponding to substituting h for j in the rule
BNDCC, Section 4. In the proof outline, we cannot represent the
substitution because j appears in the rest of the code, so instead we
equate j with h in the assertion. Line 6 starts the verification of the
loop; it shows that the precondition of the loop invariant remberT
holds; the heap is unchanged wrt. the captured heap, and there ex-
ists a partition xs = ps++ys. One critical point in the proof is
Line 13, where we need to establish zs = rember x xs [ ], which
is the precondition for throw. This property can be proved out of
the partitioning xs = ps++(x :: ys′) and zs ∈ remberP x ys′ [ ]
available in Line 12, by using rmb rmbP and additional two helper



lemmas (though we elide the derivation here):

rmb cat :

rember x (ps++ ys) acc = rember ys (rember x acc ps)

rmb in : rember x xs acc = if x ∈ xs then rember x xs [ ]
else (acc ++ xs)

Another critical point is line 17, where we need to prove y :: zs ∈
remberP x (y :: ys′) [ ], required to establish the postcondition
of the loop. The property is proved out of zs ∈ remberP x ys′ [ ]
available in line 10, after unfolding the definition of remberP once,
and using the following lemma about remberP:

zs ∈ remberPx ys acc→ y::zs ∈ remberP x ys (y::acc).

Line 19 describes what holds in the else branch of the main con-
ditional in the loop, and line 21 establishes that the loop invari-
ant holds at the end of the loop. Line 21 is a common weakening
of lines 15, 17 and 19. Line 22 includes a disjunction, showing
that the line can be reached by a normal termination of the loop
(line 21), or by a jump to exit. Line 23 is obtained out of line 22 by
applying rmb rmbP, and establishes the specified postcondition of
rember-up-to-last.

6.2 Ping-Pong cooperation

In Section 2 we presented inc3, which used a closure to capture a
continuation and execute it twice. Here, we generalise the idea to
n calls to abort, thus iterating n times the captured continuation.
The result is an interleaving between the captured continuation and
the finalisation code in the closure, which creates a cooperation
pattern resembling that of coroutines [47] – albeit one without
the full power of coroutine fork or yield operations, which further
require storing continuations into the heap [40, 35]. Unlike inc3,
where both the captured continuation and the finalisation code
executed the same code, we will have different computations for
the captured continuation, ping, and for the finalisation code in the
closure, pong, and use the pre- and postconditions to show that
these are interleaved in the evaluation of ping–pong. Since our
motivation is to verify the cooperation pattern, rather than ping
and pong per se, we give a trivial implementation for the latter
functions: ping, incr x and pong, incr y, where:

incr z : [v h]. SK∗ {z 7→ v ∗ thish} ( ) {z 7→ v + 1∗ thish}

,do (v ← !x; x := v + 1 )

Figure 8 presents ping–pong, whose structure is close to that of
inc3. In line 2, callcc captures the continuation corresponding to
the rest of the program λc. ping; cmd c and binds it to the con-
tinuation object k. The body of callcc returns a function f defined
recursively on n. If n is non-zero (line 5), f returns a closure which
aborts to the captured continuation with the finalisation code con-
sisting of pong followed by the recursive call to f . In the zero case,
f returns the computation pong. The result of this recursive func-
tion is bound to c in the sequel. When n > 0, c will be bound to a
closure with n calls to abort nested in the finalisation code:

[abort k (pong; ret [abort k (· · · abort k
︸ ︷︷ ︸

n calls to abort k

(ret [pong]))])]

After callcc, ping is evaluated to increment x, and then c is
evaluated. If n = 0, and thus c is bound to [pong], the value at y
is incremented an the function terminates. If n > 0, the outermost
abort in the closure above is executed, thus running pong as the
finalisation code and passing the rest of the nested computations in
the closure, bound to c, to the captured continuation. This results in
a backward jump to line 7. The loop continues until the closure is
consumed in full and the function terminates. As a result ping and
pong are interleaved n+ 1 times.

1. ping–pong (n : nat) :

[v w h]. SK∗{x 7→ v ∗ y 7→ w ∗ thish}( )
{x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish} ,

2. do (c← callccj

k : [v w h]〈p〉.

Kont
∗ {j ∈ x 7→ v ∗ y 7→ w ∗ thish}
{if n 6= 0 then

x 7→ v + p+ 1∗ y 7→ w + p∗ thish
else ⊥} Σ•SK ( )
{r. x 7→ v + p+ 1

∗ y 7→ w + p+ 1∗ thish
f spec r⊑ (x 7→ v + p+ 2∗

y 7→ w + p+ 1∗ thish,
if p+ 1 = n then
x 7→ v + n+ 1 ∗

y 7→ w + n+ 1∗ thish
else ⊥)∗}.

3. fix (λ f : pingpongT. λ z : nat.

4. if z is Suc z′ then

5. ret [abort k (pong; (f z′))]

6. else ret [pong]) n;

7. ping;

8. cmd c).

where

pingpongT,Πz : nat.

[v w p h]. SK∗ {x 7→ v + p ∗ y 7→ w + p∗ thish
f j ∈ x 7→ v ∗ thish∗ y 7→ w f z ≤ n
f p+ z = n} Σ•SK ( )
{r. x 7→ v + p ∗ y 7→ v + p∗ thish

f spec r⊑ (x 7→ v + p+ 1∗ y 7→ v + p
∗ thish,
if p = n then
x 7→ v + n+ 1∗
y 7→ w + n+ 1∗ thish

else ⊥)∗}

Figure 8. ping–pong cooperation.

This behaviour is reflected in the type of ping–pong: when the
function is executed in a heap containing at least the pointers x and
y storing some natural number, the result after n+ 1 executions of
ping and pong is a heap with the same shape, where the values of
x and y are both incremented n+ 1 times.

The type invariant pingpongT describes the specification of the
loop that defines the closure f described above: on each iteration of
the recursive call, we insert calls to pong deeper into the closure,
which will execute after the corresponding ping. Then, we make
explicit that on each recursive call, the values stored in the heap
have been incremented appropriately. We introduce a (box) logical
variable p to account for this fact: when the recursive call to f
occurs, p calls to ping and p calls to pong have occurred. The
recursive call produces a closure whose spec we define using ⊑.
The closure should be run in a heap after the (p + 1)-execution of
ping. As for the postcondition, If p 6= n, then the closure’s head is a
call to abort, line 5, and the postcondition is ⊥. If p = n, i.e. this
is the last iteration of f , then the closure corresponds to the one in
line 6, entailing that this is the last execution of the loop, if n > 0



or that there was no loop at all otherwise. Hence, the final heap of
the closure results x 7→ v + n+ 1∗ y 7→ w + n+ 1∗ thish.

Unlike the case of inc3, the continuation object k here is
aborted to more than once. As a result, the precondition in Kont∗

has to accommodate for the changes in the state in each of the dif-
ferent jumping points. This is solved by using a (diamond) logical
variable p, which allows us to discriminate the changes of each par-
ticular jumping point wrt. the captured heap j. The precondition in
k states that the calls to abort occur when n > 0. Then, the heap
at each jumping point should reflect the effect of p + 1 executions
of ping and p executions of pong. The postcondition states that
the finalisation code performs p+ 1 execution of pong, and that it
returns a closure which, again, is meant to run after the next ping.
The postcondition in the closure is similar to the one in pingpongT,
albeit the current iteration being p + 1 rather than p, as one ping
has already executed.

In an online Appendix [12], we present a detailed proof outline
for ping–pong. The Coq script can be found in the source files.

7. Discussion and related work

Reasoning with non-algebraic callcc To understand the differ-
ence in specification and reasoning between algebraic and non-
algebraic control operators, we have repeated our formal devel-
opment for a non-algebraic set of operators, which we also make
available online [12]. As a basis, we gave control operators a more
familiar type for non-parameterised continuation monads [49]:

callcc : ((A→ SKB)→ SKA)→ SKA
throw : (A→ SKB)→ A→ SKB

Continuation objects are ordinary side-effectful functions of type
A → SKB, which do not make provisions for finalisation code,
and are thus not algebraic [22]. The same remark applies to the
type given to the C-operator in [48], which is a different, but closely
related control operator [15, 14].

We managed to soundly parameterise the monad with Hoare-
style assertions using the following typing rules.

j, f : Πx:A. SK B (S x j, λ r im. False) ⊢ e : SK A (P j,Q j)
∀j. (P j,Q j) ⊑ (λ i.j = i ∧R i, S)

⊢ callccj f. e : SK A (R, S)

⊢ f : Πx:A. SK B (R, λ rim. False) ⊢ e : A

⊢ throw f e : SK B (R, λ r im.False)

The intuition for the callcc rule is that the user must provide the
ending specification pair (R,S). The (binary) postcondition S for
the whole command is used as a precondition for the continuation
object f , after S is first instantiated with the value x that is passed to
f , and the captured heap j. The rule has a side condition requiring
that the specification (P j,Q j) inferred for the body e, can be
weakened into the desired (R,S), under the knowledge that the
captured heap j equals the initial heap i.

The requirement that the specification (R,S) has to be provided
by hand, practically differentiates the algebraic and non-algebraic
operators. In the non-algebraic callcc, the specification is mono-
lithic, and the postcondition S is usually a disjunction whose cases
specify both the jumping and the non-jumping behaviour of the
code. The algebraic callcc separates the two cases; the jump-
ing is manually specified in the type of f , but the non-jumping
specification can often be inferred by the typing rules from the
structure of e, say, if e is straight line code, or by using the in-
variants provided with the loops in e, otherwise. Our examples
rember-up-to-last and ping–pong illustrate the point, whereby e’s
specification directly corresponds to the supplied loop invariants.
In the non-algebraic case, specifying these two examples incurs an

overhead that the same annotation has to be provided twice; once as
the loop invariant, and again as part of the specification of callcc.

Small vs. large footprints The need for large footprints and ex-
plicit naming of residual heaps arises in HTTcc due to the control
operators. The HTTcc typing rule for ABORT, requires first dis-
charging a precondition that the heap i at the point of the jump is
related by the initial condition R to the heap j at the point of con-
tinuation capture. R is an ordinary predicate on heaps, rather than
a Hoare triple. Thus, the usual idea of Separation logic, whereby
a Hoare triple leaves the unused parts of a program implicitly un-
changed, does not directly apply, and we have to name the unused
parts in i and j in order to explicitly state their equality.

We have considered an alternative whereby the denotational se-
mantics of control operators may automatically determine the un-
used part of the heap, by subtracting out of the current heap the por-
tion described by the assertions. However, for this to work, the as-
sertions would have to be precise, i.e., uniquely determine the por-
tion to be subtracted. But then, the precision of each used assertion
has to be formally proved. Thus, we opted for slightly increasing
the specification burden by introducing explicit thish predicates,
as a trade-off for not having to prove precision of assertions.

Despite the slight overhead of large footprints, we have not
found them too problematic in practice. The naming of the resid-
ual heaps is intuitive and can be done systematically. Moreover,
the logical variables used in the naming are local to the Hoare
triple. This makes a big difference from ordinary first-order Hoare
or Separation logic, where the global nature of logical variables
makes such a naming scheme—and correspondingly, the use of
large footprints—a complete non-starter. But mostly, it is the pres-
ence of separating conjunction ∗, which makes HTTcc capable of
reasoning about heap disjointness with the same ease inherent in
Separation logic, irrespective of whether the annotations describe
full or partial heaps.

Specification-only variables and implicit constructions Our
callcc primitive is indexed by a specification-only variable j,
which binds the heap at the point of continuation capture. j should
be used only in the assertions and proofs, but not in the executable
parts of the callcc block. Unfortunately, Coq (and consequently
HTTcc) does not currently provide any means for enforcing this
syntactic distinction. Declaring variables such as j as specification-
only is natively supported by Coq∗, an extension of Coq based on
the Implicit Calculus of Constructions [3]. In the future, we plan to
explore embedding HTTcc into Coq∗, to make use of this feature.

Higher-order heaps and semantic models for callcc Dreyer et
al. [13] and Støvring and Lassen [41] develop semantics models
and methods for equational reasoning in such models, for pro-
grams with continuations and mutable store. A specific focus in
both works is on higher-order heaps [26, 50, 39]; that is, the ability
to store computations (and continuations as a special case) into the
heap. HTTcc’s model is much simpler in this particular respect.
While it allows programs that return continuations, and closures
encapsulating continuations, it does not allow programs that store
side-effectful computations into the heap. The reason is that we de-
fined SK and Kont types in terms of heap, rather than mutually
recursively with heap, as required for stored computations. In the
future, we will develop a model for HTTcc with stored compu-
tations. We plan to build on the model for HTT by Svendsen et
al. [43], which includes higher-order heaps, but no control opera-
tors. Our ultimate aim is to implement proper coroutines, following
Reppy [35, cp. 10], and use them to verify concurrency primitives.
Moreover, our inference of weakest pre- and strongest postcondi-
tions by the rules presented in Figure 4 is also in the spirit of char-
acteristic formulae [32, 1, 8].



Hoare logics for higher-order control Crolard and Polonowski [10]
have recently developed a Hoare logic for control operators, in
which specifications are carried out in types. While in this re-
spect, the approach is similar to HTTcc from the high-level point
of view, there is a number of differences. For example, Crolard
and Polonowski only consider mutable stack variables with block
scope, but no pointers or aliasing. Procedures are not allowed to
contain free variables, and type dependencies contain first-order
data only, such as natural numbers. In contrast, in HTTcc, we al-
low the full expressiveness of CIC, including Σ-types over specifi-
cations, which, as we illustrated, is required for specifying closures
that return captured continuations. Berger [5] presents a first-order
Hoare logic for callcc in an otherwise purely functional language.
One of the main features of the logic is the polarity distinction be-
tween the types of programs that perform jumps (’jumping-to’) and
the types of labels for jumps (’being-jumped-to’). From the point
of view of reasoning, the logic allows nesting Hoare triples inside
the assertions. This is necessary for specifying closures with cap-
tured continuations, and achieves the same effect as Σ-types over
specifications in our dependently-typed setting.

Hoare reasoning through dependent types Related systems that
employ Hoare-style specification via types are HTT [30] and
F ∗ [44]. HTT is a direct precursor of HTTcc, but does not include
the control operators. It uses an embedding of (small footprint)
Separation logic via monads into Coq to formulate annotations and
discharge verification conditions. A similar idea of Hoare mon-
ads in Coq, without control operators, has also been considered
by Swierstra [45]. F ∗ specifies computations using a somewhat
different monad from the above work. Instead of postconditions
ranging over the input and output heaps, F ∗ considers predicate
transformers ranging over sets of input and output heaps. F ∗ does
not include a separate form of preconditions to specify safety; thus,
its Hoare logic is not fault-avoiding as is HTTcc, or other systems
based on Separation logic. F ∗ relies on Z3 for automatic discharge
of verification conditions. In order to facilitate automation, its as-
sertion logic is a first-order fragment supported by Z3. F ∗ does
not consider callcc, or other abstractions required by it, such as
Σ-types over specifications.

CPS translation CPS translation in the case of dependent types
has been studied by Barthe and Uustalu [4] who show the impos-
sibility of CPS-translating dependent inductive and Σ-types. As
HTTcc essentially relies on Σ-types to encode nested Hoare triples
– as inhabitants of the Σ•SK type – it seems impossible to present
HTTcc as a CPS translation into a callcc-free fragment of HTTcc.

8. Conclusions

In this paper, we have presented HTTcc, a higher-order type theory
for verification of programs with callcc control operators. HTTcc

supports mutable state in the style of Separation logic, and, to the
best of our knowledge, is the first Hoare logic or type theory to sup-
port the combination of higher-order functions, mutable state and
control operators. The support for mutable state comes with a twist,
however. While our assertion logic embeds separating conjunction
∗, we used large footprint specification style, which we found nec-
essary to relate heaps captured with the continuation to heaps at the
point of a jump. We use algebraic control operators, initially intro-
duced by Jaskelioff [22], which we here adapt to non-rollbackable
state. We argue that in practice, the algebraic operators require less
manual program annotations, than the non-algebraic variants. We
have implemented HTTcc as an embedding in Coq, and verified a
number of characteristic example programs that use callcc [12].
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