
A Modal Calculus for Named Control Effects

Aleksandar Nanevski
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

aleks@cmu.edu

Abstract

The monadic formulation of exceptions forces a programming style
in which the program itself must specify a total ordering on the
evaluation of exceptional computations. Moreover, unless a call-
by-name strategy is used, values of monadic types must be tested
before they are used, in order to determine whether they correspond
to a raised exception or not.

In this paper we propose a type system that internalizes the notion
of exceptional computations, but avoids the above two properties.
In our calculus, exceptional computations need not be ordered ex-
plicitly by the program, unless one of them actually depends on the
other. Furthermore, the type system ensures that run-time tests are
not needed to determine if an exceptional computation evaluates to
a value or a raised exception.

To this end, we use the necessitation operator
�

from a version of
constructive modal logic. The idea is applicable to other control
effects as well, and we use it to develop novel calculi for catch-and-
throw and composable continuations.

1 Introduction

Monads and the monadic λ-calculus [19, 20, 29, 31, 32] present a
type theoretic method for grafting effectful features onto a purely
functional language. Monads are type constructors (satisfying cer-
tain categorical properties) which are used to internalize the notion
of effectful computation. The idea is to limit the appearance of ef-
fects to terms of monadic type. Therefore, monadic types separate
the possibly impure subterms from the pure ones, and ensure a dis-
ciplined propagation of effects. Furthermore, the monadic typing
discipline forces monadic computations to serialized; the reduction
order for any single monadic term is apparent from the term itself,
specifying in that way a total ordering on the effects that the term
may cause.

For example, in the literature today, the customary way of formal-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

izing type-safe calculi of exceptions is via the exception monad
[20, 31]. This approach defines the monadic type ©A as ©A =
A+E where E is the type of the exception that can be raised. Then
it introduces constructors comp and let comp using the following
definitions that assume the standard formulation of disjoint sums.

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x ⇒ e2 | inr y ⇒ inr y

The typing rules for these constructs are appropriately derived as:

∆ ` e : A

∆ ` comp e : ©A

∆ ` e1 : ©A ∆,x:A ` e2 : ©B

∆ ` let comp x = e1 in e2 : ©B

There are also additional term constructors used to raise and handle
the exception associated with the monad ©.

raise : E ⇒©A

raise e = inr e

handle : ©A ⇒ (E ⇒ A) ⇒ A

handle e h = case e of inl v ⇒ v | inr exn ⇒ h exn

The constructor raise takes an expression e : E and coerces it into
inr e. This way, it implements exception raising, passing the value
of e along. The constructor handle takes an expression e : ©A and
a handler function h. If e evaluates to a value v : A, the result of
handling is v. If e raises the exception with a value exn : E, then the
result of handling is h exn.

The operational semantics follows the standard operational seman-
tics associated with disjoint sums. For example, let us assume that
©A = A + E is an exception monad, and that f : int ⇒©int. The
following program adds the results of f 1 and f 2. If the evalua-
tion of any of the two function applications raises an exception, the
overall computed result is zero.

handle (let comp x1 = f 1
comp x2 = f 2

in
comp (x1 + x2)

end) (λexn. 0)

There are several problems with this approach, which complicate
the programming and efficiency of exceptional computations [24,
22].

First, the program forces a choice between the evaluation order of
f 1 and f 2, even though the eventual effects of either computation
do not influence the other one. It would be very convenient to have
a construct uncomp that we could use to rewrite the above program
into the following.

1

handle (uncomp (f 1) + uncomp (f 2)) (λexn. 0)

In this program, the evaluation order of the two computations f 1
and f 2 is left to the operational semantics of addition, rather than
being specified by the program itself. In fact, as far as the type
preservation is concerned, any evaluation order is sound.

The second problem with the monadic formulation of exceptions
potentially concerns efficiency. Evaluation of an expression e : ©A
terminates either with a value, or with raising an exception. The
outcome of the evaluation of e has to be tagged (with inl or inr)
in order to distinguish between the two cases, and this tag has to
be checked at run time whenever e is used. Raised-but-unhandled
exceptions are first-class objects in the language.

However, the way exceptions are usually used in functional lan-
guages does not require this generality. Once an exception is raised,
it must be handled (or the evaluation stops), and may not be passed
as argument to other functions. If raised unhandled exceptions were
not values, there would be no need for tagging and, correspond-
ingly, no need for tag checking.

The problem with excessive serialization of exceptional monadic
programs has been addressed previously by means of monadic re-
flection and reification [9, 10, 11]. Reflection and reification are
translations between an effectful source language (which provides
the syntax for programming) and a monadic meta language (which
provides the semantics). As concluded in [9], however, the transla-
tions still incur the operational penalties of tagging and tag check-
ing.

In this paper, we propose a novel formulation of exceptions which
avoids serialization and tagging. The approach uses only natural
deduction, without any indirect translations. The idea is inspired
by modal logic, which is a logic for reasoning about truth across
various worlds. In modal logic, a proposition A may be true in some
worlds, but not true in some others. Modal logic that we consider
features a propositional operator

�
(also referred to as necessity)

which represents universal quantification over worlds:
�

A is true if
A is true in all worlds.

For our computational application, propositions correspond to types
of values, and worlds from modal logic correspond to exception
handlers. Then consider a computation of type A whose execution
may raise the exceptions from the set C. This computation may
evaluate – without getting stuck – in the scope of all handlers ca-
pable of handling the exceptions from the set C. Thus, it should
be assigned a type

�
CA that corresponds to a universal quantifica-

tion over exception handlers, bounded by C. The term assignment
corresponding of a λ-calculus for modal logic will then give us a
language adequate for representing exceptions. Furthermore, other
control effects could be subjected to the same analysis and formu-
lation.

To substantiate this claim, we present novel calculi for exceptions,
catch-and-throw and composable continuations, which are based
on the above intuition. The presented calculi follow the introduc-
tion/elimination pattern of natural deduction; effects are introduced
by their introduction forms, and are eliminated by their handling
forms. All presented languages are extensions of the λ-calculus; if
the programmer is interested only in pure computations, the con-
structs related to modal logic need not be used.

The calculi from this paper are implemented, and the exam-
ples are tested. Sources for the interpreters are available at

http:/www.cs.cmu.edu/˜aleks/papers/effects/nubox.tar.gz An
extended version of the paper, with detailed proofs is available at
http://www.cs.cmu.edu/˜aleks/papers/effects/effects.ps

2 Modal λ
�

-calculus

The starting point for the development of our language for control
effects is the λ�-calculus of [25, 6]. The λ� is the proof-term sys-
tem for the necessitation fragment of Constructive S4 (CS4) modal
logic, and it was first considered in functional programming in the
context of specialization for purposes of run-time code generation
[6, 33, 34]. The syntax of λ� is summarized below, where we use
b to stand for a predetermined set of base types.

Types A ::= b | A1 → A2 | � A
Terms e ::= x | u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2
Value variable
contexts Γ ::= · | Γ,x:A

Expression variable
contexts ∆ ::= · | ∆,u:A

The most important feature of the calculus is the type constructor
�

which is referred to as modal necessity, as in the CS4 modal logic it
is a necessitation modifier on propositions [25]. For the purposes of
this paper, a useful operational intuition is to consider the type

�
A

as classifying pure computations of type A. In contrast, the non-
modal type A contains only values. In functional programming,
pure computations are usually identified with their values, but we
separate the two here, as this would lead to easier development of
the notion of effectful (or impure) computation in the subsequent
section.

The type system of λ� is presented below.

∆;(Γ,x:A) ` x : A (∆,u:A);Γ ` u : A

∆;(Γ,x:A) ` e : B

∆;Γ ` λx:A. e : A → B

∆;Γ ` e1 : A → B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

∆; · ` e : A

∆;Γ ` box e : � A

∆;Γ ` e1 : � A (∆,u:A);Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

It distinguishes between two variable contexts: Γ for variables
bound to values, and ∆ for variables bound to computations. The
introduction and elimination forms of the type constructor

�
are

the term constructors box and let box, respectively. Operationally,
the term constructor box suspends the evaluation of its argument
expression e, and wraps it into a thunk box e which can be then
be further manipulated by the rest of the program. The expression
box e is a value in this calculus. Note that the typing rule for box
prohibits e to refer to variables from Γ; it is not possible to coerce
values into computations. This is counter-intuitive to our interpre-
tation of the modal calculus and we will remedy it shortly. The
elimination form let box u = e1 in e2 takes the computation boxed
by e1 and binds the whole computation to the variable u to be used
in e2. In other words, the operational semantics for let box is given
by a reduction rule let box u = box e1 in e2 −→ [e1/u]e2

Example 1 The function exp2 below takes an integer argument n
and builds a computation for 2n.

2

fun exp2 (n : int) : �int =
if n = 0 then box 1
else
let box u = exp2 (n - 1)
in

box (2 * u)
end

- e5 = exp2 5;
val e5 = box (2 * (2 * (2 * (2 * (2 * 1))))) : �int

In the elimination form let box u = e1 in e2, the bound variable
u belongs to the context ∆ of expression variables, but it can be
used in e2 in both computation positions (i.e., under a box), and
value positions. This way we can compose computations, but also
explicitly force their evaluation. In the above example, we can force
the evaluation of e5 in the following way.

- let box u = e5 in u;
val it = 32 : int

Example 2 The operator
�

satisfies the following characteristic
axioms.

f1 : � A → A =

λx. let box u = x in u

f2 : � A → � � A =

λx. let box u = x in box (box u)

f3 : � (A → B) → � A → � B =

λx. λy. let box u = x in let box v = y in box (u v)

As already mentioned, the typing rule for box prohibits e to refer
to variables from Γ; it is not possible to coerce values into com-
putations. In order to provide for this, we redefine the notion of
λ-abstraction, so that function arguments are kept in the context ∆
as pure computations, rather than in the context Γ of values. The
context Γ may therefore be removed from the typing rules, to obtain
the following system.

∆,x:A ` x : A

(∆,x:A) ` e : B

∆ ` λx:A. e : A → B

∆ ` e1 : A → B ∆ ` e2 : A

∆ ` e1 e2 : B

∆ ` e : A

∆ ` box e : � A

∆ ` e1 : � A (∆,u:A) ` e2 : B

∆ ` let box u = e1 in e2 : B

The above system annihilates the logical distinction between the
propositions

�
A and A, but we do retain their operational differ-

ence by which the type A classifies values, and the type
�

A clas-
sifies pure computations. In the next section, we will introduce a
whole family

�
C of necessitation operators indexed by a set of ef-

fect names, so that the type
�

CA will classify computations with
effects C. The propositions A and

�
CA will be logically equivalent

in case C is empty, but not otherwise.

3 Names as markers for effects

In this section, we extend the calculus presented above with the no-
tion of names. Names are labels which provide a formal abstraction
for tracking effects. Each effect will be assigned a name, and if an
effect appears in a computation, then the corresponding

�
-type will

be indexed by that name. For example, if we have an exception X ,
then a computation of type A which may raise this exception, will
be given a type

�
X A.

The described indexing of the modal operator with names is similar
to the one found in the monadic language from [32], where labels
are used to identify the effects that may occur under a monad. In our
setup, however, we will also allow dynamic introduction of fresh
names into the computation (and hence, generation of new effects),
and establish a typing discipline for it. Having mentioned this idea
to provide some intuition toward our overall goal, we proceed to
introduce our calculus in stages. Rather than formally tying names
to effects immediately, we now present a limited fragment that is
intended only to account for dynamic introduction of names and
for name propagation. This fragment will be a common part of all
the effect calculi we develop next. The relationship between names
and effects, and how various effects are raised and handled will be
discussed in the subsequent sections.

We start by explaining the syntax and various syntactic conventions
of our language.

Names X ∈ N
Supports C,D ::= · |C,X
Types A ::= b | A1 → A2 | A1

� A2 | � CA
Terms e ::= u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2 |
νX :A. e | choose e

Variable contexts ∆ ::= · | ∆,u:A[C]
Name contexts Σ ::= · | Σ,X :A

Just like λ�, our calculus makes a distinction between values and
computations. The two are separated by a modal type constructor

�
, except that now we have a whole family of modal type construc-

tors – one for each finite sequence of names C, where the names are
drawn from a countably infinite universe of names N . As already
hinted before, the type

�
CA classifies computations that may raise

any of the effects whose names are in C. The sequence C is referred
to as a support of such expressions. We will also consider a partial
ordering v on supports. If a term has support C, than it can safely
appear in the scope of a handler capable of dealing with the names
in any D wC. If a term is pure (i.e., it has empty support), it need
not be restricted to any particular set of handlers. Therefore, we
require that the empty support is the smallest element of v.

Because now computations can contain effects, we extend the typ-
ing assignments in the context ∆ to keep track not only of the typ-
ing, but also of the support of a variable. So, for example, the typing
u:A[C] declares a variable u which can be bound to an expression of
type A and support C. We will frequently abbreviate x:A[] as x:A.

A further change from λ� is an addition of the context Σ which
declares the names (and their types) which are currently active in
the program. Because the types of our calculus depend on names,
we must impose some conditions on well-formedness of contexts.
A context Σ is well-formed if every type in Σ uses only names de-
clared to the left of it. The variable context ∆ is well-formed with
respect to Σ, if all the names that appear in the types of ∆ are de-
clared in Σ.

The types of the new calculus now include the family A � B whose
introduction and elimination forms are νx:A. e and choose e. These
constructs are used to dynamically introduce fresh names into the
calculus. For example, the term νX :A. e binds a name X of type
A that can subsequently be used in e. Because names stand for
effects, this construct really declares a new effect, and enables e
to raise it and handle it. Whatever e does with X , though, we will
ensure through the type system that the result of the evaluation of
e does not depend on X ; we must prevent X to escape the scope

3

of its introduction form. The ν-abstraction will be a value in our
calculus. In particular, it will suspend the evaluation of e. If we
want to evaluate it, we must choose it. The term constructor choose
allocates a fresh name of type A, substitutes it for the name bound in
the argument ν-abstraction of type A � B, and proceeds to evaluate
the body of the abstraction.

Finally, enlarging an appropriate context by a new variable or a
name is subject to the usual variable conventions: the new vari-
ables and names are assumed distinct, or are renamed in order
not to clash with already existing ones. Terms that differ only in
the syntactic representation of their bound variables and names are
considered equal. The binding forms in the language are λx:A. e,
let box u = e1 in e2 and νX :A. e. Capture-avoiding substitution
[e1/x]e2 of expression e1 for the variable x in the expression e2 is
defined to rename bound variables and names when descending into
their scope. Given a term e, we denote by fv(e) the set of free vari-
ables of e. The set of names appearing in the type A is denoted by
fn(A).

The typing judgment of the core fragment is

Σ;∆ ` e : A [C]

The judgment is hypothetical and works with two contexts: context
of names Σ and context of variables ∆. Given an expression e, the
judgment checks whether e has type A, and whether its effects are
in the support C. The core fragment of the typing rules is presented
in Figure 1, and we explain it next.

A pervasive characteristic of the type system is the support weak-
ening principle; that is

if Σ;∆ ` e : A [C] and C v D, then Σ;∆ ` e : A [D]

Support of the expression e determines which effects e can raise,
and therefore, which handlers can restore its purity. Consequently,
the support weakening principle formally models a very intuitive
property that if the effects of e can be handled by some handler, then
they can be handled by a stronger handler as well. In particular, if
e is effect-free, then it can be handled by any and all handlers; the
empty support is the smallest element of the partial ordering v.

A further property that we formally represent is that values of the
language are effect free. Indeed, values obviously cannot raise any
effects, simply because their evaluation is already finished. There-
fore, the support of the values of our system will be empty, and ac-
cording to the support weakening principle, it can then be weakened
arbitrarily. This explains the explicit weakening in the hypothesis
rule and the arbitrary support in the conclusions of the typing rules
for λ- and ν-abstractions and for box.

λ-calculus fragment. The rule for λ-abstraction requires that the
body e of the abstraction be pure; that is e has to match the empty
support. This is not to say that e cannot contain any effects; it can,
but only if they are encapsulated under a box (and correspondingly
accounted for in the type of e). This is similar to monadic type
systems where function bodies must be pure, and effects can be
raised only under a monad. On the other hand, because λ-terms
are values, the support of the whole abstraction can be arbitrarily
weakened, as explained before.

It is implicitly assumed that the argument type A is well-formed
with respect to the name context Σ before it is introduced into the
variable context ∆. Note further that the bound variable x is intro-
duced into ∆ with empty support, according to our decision to allow

C v D

Σ;(∆,u:A[C]) ` u : A [D]

Σ;(∆,x:A) ` e : B []

Σ;∆ ` λx:A. e : A → B [C]

Σ;∆ ` e1 : A → B [C] Σ;∆ ` e2 : A [C]

Σ;∆ ` e1 e2 : B [C]

Σ;∆ ` e : A [D]

Σ;∆ ` box e : � DA [C]

Σ;∆ ` e1 : � DA [C] Σ;(∆,u:A[D]) ` e2 : B [C]

Σ;∆ ` let box u = e1 in e2 : B [C]

(Σ,X :A);∆ ` e : B [] X 6∈ fn(A,B,∆)

Σ;∆ ` νX :A. e : A � B [C]

Σ;∆ ` e : A � B [C]

Σ;∆ ` choose e : B [C]

Figure 1. Type system of the core fragment.

coercion of values into pure computations. Thus, x must always be
bound to an effect-free expression. This will force us to commit to
call-by-value evaluation strategy for the calculus; we must reduce
function arguments to values (which are effect-free) before passing
them on.

Modal fragment. To type a computation box e, we must check if e
is well-typed and matching the support that is supplied as an index
to the

�
constructor. Boxed expressions are values of computa-

tion type, so their support can be arbitrarily weakened to any well-
formed support set C. The

�
-elimination rule is a straightforward

extension of the corresponding λ� rule. The only difference is that
the bound expression variable u from the context ∆ now has to be
stored with its support annotation.

It is interesting here to contrast the elimination construct let box
with the monadic elimination construct let comp, presented in the
introduction. The construct let comp x = e1 in e2 evaluates e1, to
bind its value to x to be used in e2. The type of e2 must be monadic.
On the other hand, the construct let box u = e1 in e2 evaluates e1
to an effectful computation which is then bound to u to be used in
e2 (possible more than once). The type of e2 need not specify any
effects.

Thus, in the typing rule for let comp, effects are indicated by in-
sisting on a monadic type of e2, which appears to the right of the
turnstile. In the typing rule for let box, effects are indicated by the
support of the variable u, which appears to the left of the turnstile.

In this particular sense, the formulation of effect calculi using
�

is
dual to the monadic one. It is not surprising then that the

�
opera-

tor of modal logic is usually categorically modeled by a comonad.
We do not explore this distinction further in the paper, but refer
the reader to the work of Kobayashi [17], Alechina at al. [1] and
Bierman and de Paiva [2], for a detailed discussion.

Names fragment. The rule for νX :A. e must check e for well-
typedness in a context Σ extended with the new name X :A. Similar
to the λ rule, we require that e has empty support; all the even-
tual effects that e may raise must be boxed. The characteristics of
the ν constructor, however, is the further requirement that X does
not appear in the type B. This ensures that X remains local to e;

4

it can never escape the scope of its introducing ν in any observable
way. The effect corresponding to X will either never be raised in the
course of evaluation of e (i.e., it never appears in e or it appears in
some dead-code part of e), or all the occurrences of X are handled
by some handler.

The term constructor choose is the elimination form for A � B.
It picks a fresh name and substitutes it for the bound name in the
ν-abstraction.

Example 3 If C,C1,C2 and D are well-formed supports such that
C1 vC and C2 vC, then the following terms are well-typed.

1. ` λx. box x : A →
�

DA

2. ` λx. let box u = x in u :
�

C1A → A [C]

3. ` λx. let box u = x in box u :
�

C1A →
�

CA

4. ` λx. let box u = x in box box u :
�

C1A →
�

D
�

CA

5. ` λx. λy. let box u = x in let box v = y in box u v :
�

C1(A→B)→
�

C2A→
�

CB

Example 4 To abbreviate notation and reduce clutter, we introduce
into the calculus the term constructor unbox e as a syntactic abbre-
viation for let box u = e in u. The new term constructor has the
following derived typing rule

Σ;∆ ` e :
�

CA [D] C v D

Σ;∆ ` unbox e : A [D]

We also define let val x = e1 in e2 to stand for
unbox ((λx. box e2) e1), rather than the usual (λx. e2) e1.
The additional complication arises because we have to box e2
and make it pure before we can put it under a λ-abstraction. The
derived typing rule for let val is

Σ;∆ ` e1 : A [C] Σ;(∆,x:A) ` e2 : B [C]

Σ;∆ ` let val x = e1 in e2 : B [C]

Example 5 Anticipating Section 5, suppose that our language con-
tains the term constructor raise, such that raiseX e raises an excep-
tion X passing an argument e along (assuming that both X and e
have the same type). If X is a name of type A, then the following
term is well-typed.

λx. let box u = x in box (raiseX u) :
�

A →
�

X A

Assume further that e1:B is a closed and exception-free term, and
e2:A is a closed term which may raise the exception X . Then the
expression

choose (νY :A. (λx:
�

X ,Y A. e1) (box raiseY e2))

declares a new exception Y and then raises it within a computation
(box raiseY e2):

�
X ,Y A. In fact, because neither x nor Y appear in

e1, the type of the application will not depend on Y either. Actually,
even more is true: the argument computation will never even be
forced; it is dead code. The ν-clause is well-typed, of type A �

B, and the whole expression is of type B. In Section 5 where we
introduce exception handling, we would be able to present a more
meaningful use of choose and ν.

4 Operational semantics

The operational semantics of this basic fragment of our calculus is
defined through the judgment

Σ,e 7−→ Σ′,e′

which relates an expression e with its one-step reduct e′. The rela-
tion is defined on expressions with no free variables. An expression
e can contain effects, whose names must be declared in Σ, but it
must have empty support. In other words, we only consider for
evaluation those expressions whose effects are either boxed, or ap-
pear in a dead-code part, or are handled. The reduct e′ can intro-
duce new names into the computation, which will be accounted in
the extended name context Σ′. However, the new names too, will
mark effects which are either boxed, never raised or otherwise han-
dled. We define the reduction judgment in the style of Wright and
Felleisen [35]. The formalization is for a call-by-value strategy, and
it relies on the definitions of redex and evaluation contexts below.

Values v ::= x | λx:A. e | box e | νX :A. e
Redexes r ::= v1 v2 | let box u = v in e | choose v
Evaluation E ::= [] | E e1 | v1 E | let box u = E in e |
contexts choose E

Each expression e can be decomposed uniquely as e = E[r] where
E is an evaluation context and r is a redex. To define a small-step
operational semantics of the calculus, it is enough to define primi-
tive reduction relation for redexes (which we denote by −→), and
let the evaluation of expressions always first reduce the redex iden-
tified by the unique decomposition.

Σ,(λx. e) v −→ Σ, [v/x]e

Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Σ,choose (νX :A. e) −→ (Σ,Y :A), [Y/X]e, Y 6∈ dom(Σ)

Σ,r −→ Σ′,e′

Σ,E[r] 7−→ Σ′,E[e′]

Example 6 As an illustration of the operational semantics of the
calculus, we present the first couple of steps from the evaluation of
the term from Example 5.

(X :A),choose (νY :A. (λx:
�

X ,Y A. e1) (box raiseY e2)) 7−→
(X :A,Z:A),(λx:

�
X ,ZA. e1) (box raiseZ e2) 7−→

where Z is a fresh name
(X :A,Z:A),e1 7−→
·· ·

The rest of this section develops the basic properties of the calculus.
We present them here, because the future extensions will all rely on
the basic structure of these results.

PROPOSITION 1 (EXPRESSION SUBSTITUTION PRINCIPLE).
If Σ;∆ ` e1 : A [C] and Σ;(∆,u:A[C]) ` e2 : B [D], then
Σ;∆ ` [e1/u]e2 : B [D].

LEMMA 2 (REPLACEMENT). If Σ;∆ `E[e] : A [C], then there ex-
ist a type B such that

1. Σ;∆ ` e : B [C], and
2. if Σ′,∆′ extend Σ,∆, and Σ′;∆′ ` e′ : B [C], then Σ′;∆′ ` E[e′] :

A [C]

LEMMA 3 (CANONICAL FORMS). Let v be a closed value such
that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A2 []

2. if A =
�

DB, then v = box e and Σ; · ` e : B [D]

5

3. if A = A1
� A2, then v = νX :A1. e and (Σ,X :A1); · ` e : A2 []

As a consequence, the support of v can be arbitrarily weakened, i.e.
Σ; · ` v : A [D], for any support D.

LEMMA 4 (SUBJECT REDUCTION). If Σ; · ` e : A [C] and
Σ,e −→ Σ′,e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

THEOREM 5 (PRESERVATION). If Σ; · ` e : A [C] and Σ,e 7−→
Σ′,e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

LEMMA 6 (PROGRESS FOR −→). If Σ; · ` r : A [C], then there
exists a term e′ and a context Σ′, such that Σ,r −→ Σ′,e′.

LEMMA 7 (UNIQUE DECOMPOSITION). For every expression e,
either:

1. e is a value, or
2. e = E[r] for a unique evaluation context E and a redex r.

THEOREM 8 (PROGRESS). If Σ; · ` e : A [], then either
1. e is a value, or
2. there exists a term e′ and a context Σ′, such that Σ,e 7−→ Σ′,e′.

PROPOSITION 9 (DETERMINACY). If Σ,e 7−→n Σ1,e1 and
Σ,e 7−→n Σ2,e2, then there exists a permutation of names
π : N → N , fixing the domain of Σ, such that Σ2 = π(Σ1) and
e2 = π(e1).

5 Exceptions

The calculus presented thus far did not involve any concrete notions
of effects. It was only capable of dynamic introduction and of prop-
agation of effects, but not, in fact, of raising or handling them. In
this section we extend our code fragment into a calculus of excep-
tions. The idea is to assign a name to each exception, which could
then be propagated and tracked by means of the core fragment. To
be able to raise and handle exceptions, we need further constructs
specific only to exceptions. Thus, we extend the syntax of our lan-
guage in the following way.

Exception handlers Θ ::= · | Xz → e,Θ
Terms e ::= . . . | raiseX e | e handle 〈Θ〉

Informally, the role of raiseX e is to evaluate e and than raise an
exception X , passing the value of e along. On the other hand,
e handle 〈Θ〉 evaluates e (which may raise exceptions), and all the
raised exceptions are handled by the exception handler Θ.

An exception handler is defined as a finite set of exception patterns.
A pattern Xz → e associates the exception X with the expression
e. Whenever X is raised with some value v, it will be handled by
evaluating the expression [v/z]e. Given a handler Θ, its domain
dom(Θ) is defined as the set

dom(Θ) = {X ∈ N | Xz → e ∈ Θ}

Every exception X ∈ dom(Θ) must be associated with a unique
pattern of Θ.

An exception handler Θ defines a unique map [[Θ]] : N → Values→
Expressions as follows.

[[Θ]](X)(v) =

{

[v/z]e if Xz → e ∈ Θ
raiseX v otherwise

We will frequently identify the handler Θ with the function [[Θ]],
and write Θ(X)(v) instead of [[Θ]](X)(v). According to the above

C v D

Σ;∆ ` 〈 〉 : [C]
A
⇒ [D]

Σ;(∆,z:A) ` e : B [D] Σ;∆ ` 〈Θ〉 : [C \X]
B
⇒ [D] X :A ∈ Σ

Σ;∆ ` 〈Xz → e,Θ〉 : [C]
B
⇒ [D]

Σ;∆ ` e : A [C] X ∈C X :A ∈ Σ

Σ;∆ ` raiseX e : B [C]

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]

Σ;∆ ` e handle 〈Θ〉 : A [D]

Figure 2. Typing rules for exceptions.

definition, if X is an exception such that X 6∈ dom(Θ), then Θ han-
dles X simply by propagating it further.

Example 7 Assuming X and Y are integer names, the following are
well-formed expressions of the exception calculus.

1. (1− raiseX raiseY 10) handle 〈Xx → x+2,Y y → y+3〉

2. (1− raiseX 0) handle 〈Xx → (2− raiseY x)〉 handle 〈Yy → y〉

3. (1− raiseX 0) handle 〈Yy → (2− raiseX y)〉 handle 〈Xx → x+1〉

The expression evaluate to 13, 0 and 1, respectively. Expression
(1) raises the exception Y , passing 10 along. This is handled by
the pattern Y y → y + 3, to produce 13. Expression (2) raises X
with value 0, but while handling X it raises Y with value 0, which
is finally handled by the outside handler 〈Y y → y〉, to produce 0.
Expression (3) raises X with 0, which is propagated by the inside
handler, and then handled by the outside handler 〈Xx → x +1〉, to
return 1.

The type system of the calculus of exceptions consists of two judg-
ments: one for typing expressions, and another one for typing ex-
ception handlers. The judgment for expressions has the form

Σ;∆ ` e : A [C]

and it simply extends the judgment from the core fragment pre-
sented in Section 3 with the new rules for raise and handle. The
specific of the calculus is that the support C represents sets, collect-
ing the exceptions that e is allowed to raise. Thus, C v D is defined
as C ⊆ D when C and D are viewed as sets (i.e., when the ordering
and repetition of elements are ignored). By support weakening, e
need not raise all the exceptions from its support C, but if an excep-
tion can be raised, then it must be in C. The judgment for exception
handlers has the form

Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]

and the handler Θ will be given the type [C]
A
⇒ [D] if: (1) Θ can

handle exceptions from the support set C arising in a term of type A,
and (2) during the handling, Θ is allowed to itself raise exceptions
only from the support set D. The typing rules of both judgments are
presented in Figure 2, and we briefly comment on them below.

An exception X can be raised only if it is accounted for in the sup-
port. Thus the rule for raise requires X ∈ C. The term raiseX e
changes the flow of control, by passing e to the nearest handler.
Because of that, the environment in which this term is encountered

6

does not matter; we can type raiseX e by any arbitrary type B. In
the rule for handle, the type and the support of the expression e
must match the type and the domain support of the handler Θ. The
exception handler 〈 〉 only propagates whichever exceptions it en-
counters. Thus, if it is supplied an expression of support C it will
produce an expression of the same support. To maintain the sup-
port weakening property, we allow the range support D of an empty
handler to be a superset of C. Notice that the empty support han-
dler may be assigned an arbitrary type A. The rule for nonempty
exception handlers simply prescribes inductively checking each of
the exception patterns in the handler. The type of each pattern vari-
able z must match the type of the corresponding exception; this is
the type of the value that the exception will be raised with. The
handling terms e must all have the same type B, which would also
be the type assigned to the handler itself.

Example 8 The function tail below computes a tail of the argu-
ment integer list, raising an exception EMPTY:unit if the argument
list is empty. The function length uses tail to compute the length
of a list. Note that the range type of tail is

�
EMPTYintlist. This

is required because the body of tail may raise an exception, and,
as explained in the previous section, all the effects in function bod-
ies must be boxed.

- choose (νEMPTY: unit.
let fun tail (xs : intlist) : � EMPTYintlist =

(case xs
of nil => box (raiseEMPTY ())
| x::xs => box xs)

fun length (xs : intlist) : int =
(1 + length (unbox (tail xs)))
handle <EMPTY z -> 0>

in
length [1,2,3,4]

end);
val it = 4;

Before we proceed to describe the operational semantics of the ex-
ception calculus, let us outline some of its properties and how they
relate to other treatments of exceptions in functional languages.

First of all, exceptions in our calculus are second class. They are
not values and cannot be bound to variables. Correspondingly, ex-
ceptions must be explicitly raised; raising a variable exception is
not possible. Aside from this fact, when local exceptions are con-
cerned (i.e., exceptions which do not originate from a function call,
but are raised and handled in the body of the one and the same
function), our calculus very much resembles Standard ML [18]. In
particular, exceptions can be raised, and then handled, without forc-
ing any changes to the type of the function. It is only when we want
the function to propagate an exception so that it is handled by the
caller, that we need to specifically mark the range type of that func-
tion with a

�
-type.

It is also instructive to compare our calculus with the monadic for-
mulation of exceptions. To that end, we recall the monadic pro-
gram presented in the introduction section, where we assume that
f : int ⇒©int.

handle (let comp x1 = f 1
comp x2 = f 2

in
comp (x1 + x2)

end) (λv. v) (λexn. 0)

The program adds the results of f 1 and f 2. If the evaluation of
any of the two function applications raises an exception, the overall

computed result is zero.

In our calculus of exceptions, the equivalent of the above program
may be written in several ways, depending on the evaluation or-
der that the programmer may wish to specify. For example, let us
assume that X :E is an exception name, and that f : int →

�
X int.

Then the behavior of the previous monadic program is exhibited by
the following program in the calculus of exceptions.

(let val x1 = unbox (f 1)
val x2 = unbox (f 2)

in
x1 + x2

end) handle <X exn -> 0>

However, because the computations obtained by f 1 and f 2 are
independent of each other. There is no need to first evaluate and
unbox f 1 and then evaluate and unbox f 2. For example, we could
write the following program that computes the same results.

let box u1 = f 1
box u2 = f 2

in
(u1 + u2) handle <X exn -> 0>

end

The first two let box branches of this program evaluate the expres-
sions f 1 and f 2 in that order to obtain boxed computations box e1
and box e2, but they do not evaluate e1 and e2. The computations
e1 and e2 are substituted for u1 and u2, and only then is the execu-
tion of (e1 +e2) attempted, in the order specified by the operational
semantics of addition. Following a similar idea, an even more com-
pact way to compute the sum of f 1 and f 2 is given simply as

(unbox (f 1) + unbox (f 2)) handle <X exn -> 0>

As a conclusion, our calculus of exceptions allows programs that
are uncommitted about the evaluation order of its expressions, when
these expressions do not depend on each other. The evaluation order
is eventually determined by the operational semantics, but it is not
necessary to make this order explicit in the program.

Note that the modal formulation of exceptions may also benefit ef-
ficiency. Because we only consider for evaluation those expres-
sions with empty support, the exceptional computation boxed in
the expression e :

�
XA will only be evaluated within the scope

of some handler for X . As a consequence of the progress theo-
rem (Theorem8), this evaluation can only terminate with a value,
and cannot result with an unhandled exception. This contrasts the
monadic calculus of exceptions where unhandled exceptions are
given the status of values (as explained in the introduction), and
this incurred the need for tagging and tag checking. In the modal
case, raised unhandled exceptions are not values of the modal type,
so there is no need for tagging.

The operational semantics of the exception calculus is a simple ex-
tension of the semantics of the core fragment. The evaluation judg-
ment has the same form

Σ,e 7−→ Σ′,e′

We only need to extend the syntactic categories of evaluation con-
texts and redexes, and define primitive reductions for the new re-
dexes.

Evaluation
contexts E ::= . . . | raiseX E | E handle 〈Θ〉

Pure P ::= [] | P e | v P | let box u = P in e |
contexts choose P | raiseX P
Redexes r ::= . . . | v handle 〈Θ〉 | P[raiseX v] handle 〈Θ〉

We have already explained that each exception handler can handle

7

all exceptions. It is only that some exceptions are handled in a spec-
ified way, while others are handled by simple propagation. This will
simplify the operational semantics somewhat, because in order to
find the handler capable of handling a particular raise we only need
to find the nearest handler preceding this raise. For that purpose,
we select a special subclass of pure evaluation contexts, which are
pure in the sense that they do not contain any exception handlers
acting on the hole of the context. It can easily be shown that each
evaluation context E is either pure, or there exist unique evaluation
context E ′ and pure context P′, such that E = E ′[P′ handle 〈Θ〉].

The primitive reduction on the new redexes follows.

Σ,v handle 〈Θ〉 −→ Σ,v

Σ,P[raiseX v] handle 〈Θ〉 −→ Σ,Θ(X)(v)

The first reduction exploits the fact that values are exception free,
and therefore simply fall through any handler. The second reduc-
tion chooses the closest handler for any particular raise. It also
requires that only values be passed along with the exceptions; the
operational semantics demands that before an exception is raised,
its argument must be evaluated. If it so happens that the evalua-
tion of the argument raises another exception, this later one will
take precedence and actually be raised. This is already illustrated
in the first term from Example 7, where it is the exception Y which
is raised and eventually handled.

The structural properties and the type soundness of the core frag-
ment readily extend to the exception calculus. Here we only list
some specific additional lemmas.

LEMMA 10 (HANDLER SUBSTITUTION PRINCIPLE). If Σ;∆ `

e1 : A [C] and Σ;(∆,u:A[C]) ` 〈Θ〉 : [D′]
B
⇒ [D], then Σ;∆ `

〈[e1/u]Θ〉 : [D′]
B
⇒ [D]

LEMMA 11 (UNIQUE DECOMPOSITION). For every expression
e, either:

1. e is a value, or
2. e = P[raiseX v], for a unique pure context P, or
3. e = E[r] for a unique evaluation context E and a redex r.

The calculus satisfies the same preservation and progress theorems
of the core fragment.

6 Catch-and-throw calculus

The catch-and-throw calculus is a simplification of the calculus of
exceptions. We consider it here in its own right in order to illustrate
a different notion of handling. It will also provide some intuition for
the calculus of composable continuation in Section 7. In the catch-
and-throw calculus, names are associated with labels to which the
program can jump. Informally, catch establishes a destination point
for a jump and assigns a name to it, and throw jumps to the estab-
lished point.

Terms e ::= . . . | throwX e | catchX e

The throw and catch can be viewed as restrictions of raise and
handle; catch handles a throw by immediately returning the value
associated with the throw.

The typing judgment Σ;∆ ` e : A [C] establishes that e has type A
and may throw to destination points whose names are listed in the
support C. The supports are sets, rather than sequences, just like
in the calculus of exceptions. The typing rules of the calculus are
presented in Figure 3. A throw to a destination point is allowed

Σ;∆ ` e : A [C] X ∈C X :A ∈ Σ

Σ;∆ ` throwX e : B [C]

Σ;∆ ` e : A [C,X] X :A ∈ Σ

Σ;∆ ` catchX e : A [C]

Figure 3. Typing rules for catch and throw.

only if the destination point is present in the support set. A catch
establishes a destination point by placing it in the support set against
which the argument expression is checked.

Example 9 The following terms (adapted from [14]) are well-typed
in our catch-and-throw calculus.

choose (νX:int.
(λf:int-> � Xint.

let box u = f 0
in

catchX (1 + u)
end) (λy:int. box (throwX y)))

choose (νX:int.
(λf:int-> � Xint.

let box u = f 0
in

1 + catchX u
end) (λy:int. box (throwX y)))

The first term evaluates to 0, because the addition with 1 is skipped
over by a throw. In the second term, the catch is pushed further
inside, to preserve this addition, and so the term evaluates to 1.

Example 10 The program segment below defines a recursive func-
tion for multiplying elements of an integer list. If an element is
found to be equal to 0, then the whole product will be 0, so rather
than uselessly performing the remaining computation, we terminate
by an explicit throw outside of the recursive function.

- choose (νEXIT:int.
let fun mult (xs : intlist) : � EXITint =

case xs
of nil => box 1

| x::xs =>
if x = 0 then box (throwEXIT 0)
else

let box u = mult xs in box(x * u)
in

catchEXIT (unbox (mult [2, 1, 0, 3]))
end);

val it = 0 : int

The evaluation judgment of the catch-and-throw calculus is again a
straightforward extension of the evaluation judgment Σ,e 7−→ Σ′,e′
of the core fragment from Section 3. We first need to define the new
redexes, corresponding to the new catch and throw constructs, and
extend the syntactic category of evaluation contexts.

Redexes r ::= . . . | catchX v | catchX E[throwX v]
Evaluation
contexts E ::= . . . | catchX E | throwX E

In the redex catchX E[throwX v] it is assumed that the context E
does not contain a catchX phrase acting on the hole of E. The
primitive reductions on the new redexes are defined as follows.

Σ,catchX v −→ Σ,v

Σ,(catchX E[throwX v]) −→ Σ,v

Similar to the exception calculus, values simply fall through the
catch, and every throw is caught by the closes surrounding catch

8

with the appropriate name. The operational semantics of catch-and-
throw requires that only values be passed along a throw. Thus, of
possibly nested throws, only the last one will actually be subject to
catching.

The structural properties lemmas of the core fragment only require
a minor modification for Unique decomposition.

LEMMA 12 (UNIQUE DECOMPOSITION). For every expression
e, either:

1. e is a value, or
2. e = E[throwX v], for a unique context E which does not catch

X, or
3. e = E[r] for a unique evaluation context E and a redex r.

The calculus satisfies the same preservation and progress theorems
(Theorems 5 and 8).

7 Composable continuations

Similar to the catch-and-throw calculus, composable continuations
use names to label destination points to which a program can jump.
A destination point for a jump is established with the construct
mark which also assigns a name to it; thus, it is similar to catch
from the previous section. The jump itself is performed by recall,
which corresponds to throw from the catch-and-throw calculus.
The exact syntax of the calculus is defined as follows.

Terms e ::= . . . | recallX k. e | markX e

The differences from the catch-and-throw calculus, however, arise
from the following property, which is characteristic for continuation
calculi: unlike throw, when the construct recallX k. e is evaluated,
it captures into the variable k the part of the surrounding term be-
tween this recall and corresponding mark which precedes it; k may
then be used to compute the value of e that is passed along with the
jump. It is important that the evaluation of e is undertaken in the
changed environment from which the part captured in k has been re-
moved. More specifically, e itself will not be able to recall to mark
points which were defined in the captured and removed part.

The above operational intuition is formalized by the following def-
initions of evaluation contexts, redexes and primitive reductions.

Evaluation
contexts E ::= . . . | markX E

Pure
contexts P ::= [] | P e1 | v1 P | let box u = P in e | choose P

Redexes r ::= . . . | markX v | markX P[recallY k. e]

Σ,markX v −→ Σ,v

Σ,(markX P[recallX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P[u]

Example 11 The following expressions (adapted from [3, 30]), are
well-formed examples in our calculus of composable continuations.

e1 = 1 + markX (10 + recallX f: � Xint-> � Xint.
let box u = f (f (box 100))
in

markX u
end)

e2 = 1 + markX (10 + recallX f. 100)

e3 = 1 + markX (10 + recallX f.
let box u1 = f (box 100)

box u2 = f (box 1000)
in

markX (u1 + u2)
end)

The expressions evaluate to 121, 101 and 1121, respectively. In
each of these examples, the continuation variable f :

�
X int →

�
X int is bound to λx. let box v = x in box (10 + v). It captures

and internalizes the evaluation environment (10 +−), which is en-
closed between mark and recall. Notice that upon capturing of
the environment into f , the delimiting mark is removed from the
reduct.

It is the expressions bound to k that is actually referred to as a
composable continuation (and other names in use are: partial con-
tinuation, delimited continuation and subcontinuation). Ordinary
calculus of continuations can be viewed as a calculus of compos-
able continuations in which all the jumps have a unique destination
point, predefined to be at the beginning of the program. In both cal-
culi, continuations are functions whose range type is equal to the
type of the destination point. But, in the special case of ordinary
continuations, this type is necessarily ⊥, and that is why ordinary
continuations cannot be composed in any non-trivial way.

The typing judgment of the calculus for composable continuations
is again Σ;∆ ` e : A [C]. It establishes that the expression e has type
A and may recall the destination points whose names are listed in
the support C. The typing rules for composable continuations are
presented in Figure 4.

In the case of composable continuations, it is a recall to a name that
is the notion of effect, and mark-ing a name as a destination point is
the notion of handling. Therefore, the type system should enable a
recall to X only if X appears at the support C, placed there by a cor-
responding mark. The situation, however, is a bit more involved.
As already mentioned, recallX k. e evaluates e in a changed envi-
ronment from which the part enclosed between markX and recallX
has been removed. Correspondingly, e has to be checked against a
support from which X has been removed.

The above argument indicates that in the calculus of composable
continuations, the ordering of names in the support of a term is im-
portant. Unlike in the previous calculi where supports were simply
sets, here we actually must endow supports with a list-like structure.
For example, we allow a recall to a certain name only if that name
is at the end of the support. This is illustrated in the typing rule for
recallX k. e, where we demand that X is the rightmost name in the
support (C,X). If a recall is required to a name which is deeper to
the left in C, it can still be done by performing a sequence of nested
recalls in a last-in-first-out manner to all the names in between. In
this sense, the supports of the calculus of composable continuations
may be seen as stacks, where the top of the stack is at the rightmost
end of the support.

There are yet further important aspects of the typing rule for recall
that need to be explained. The expression e computes the value to
be passed along with the jump, so it must have the same type as the
destination point X . Because the jump changes the flow of control,
the immediate environment of the recall does not matter; we can
type recall by an arbitrary type B. The domain and the range of the
continuation k must match the source and the destination points of
the jump, which in this rule have types B and A, respectively. The
recall appears in the context of a support (C,X) and that is why the

9

Σ;(∆,k: � C,X B → � C,X A) ` e : A [C] X :A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Σ;∆ ` e : A [C,X] C v D X :A ∈ Σ

Σ;∆ ` markX e : A [D]

Figure 4. Typing rules for composable continuations.

domain type of k is
�

C,XB. The range type of k is
�

C,XA, meaning
that the environment captured in k will not include the delimiting
markX .

The typing rule for mark is much simpler. The construct markX e
establishes a destination point X and allows the expression e to re-
call to X by placing X in the support. If e is a value, it immediately
falls through to the destination point X , and thus e and X must have
same types. We further allow an arbitrary weakening of supports in
the conclusion of this rule, in order to satisfy the support weakening
principle.

The partial ordering imposed on the family of supports is the trivial
partial ordering with the empty stack as the smallest element: CvD
holds iff C = (·) or C = D as sequences.

Example 12 The program below is a particularly convoluted way
of reversing a list, adopted from [3].

fun reverse (l : intlist) : intlist =
choose (νX: intlist.
let fun rev’ (l : intlist) : � Xintlist =

case l
of nil => box nil

| (x::xs) =>
let val y = rev’ xs
in

box (recallX c: � Xintlint -> � Xintlist.
markX x :: unbox (c y))

end
box v = rev’ l

in
markX v

end)

To understand reverse, it is instructive to view a particular evalu-
ation of the helper function rev’. For example, rev’ [2, 1, 0]
produces

box (recallX c3.
markX 2 :: unbox c3 (box recallX c2.

markX 1 :: unbox c2 (box recallX c1.
markX 0 :: unbox c1 (box nil))))

When prepended by a markX , unboxed and evaluated, this code uses
the continuations ci to accumulate the reversed prefix of the list. For
example, c3 is bound to λx. let box u = x in box u corresponding to
the initial empty prefix; c2 is bound to λx. let box u = x in box (2 ::
u); c1 is bound to λx. let box u = x in box (1 :: 2 :: u), until finally
the reversed list [0,1,2] is produced.

There is actually a bit of a leeway in defining the static and dy-
namic semantics for composable continuations, which has to do
with whether the continuation captured by recall should include
the delimiting mark and/or remove it from the environment. The

reduction rule we have used in our formulation is

Σ,(markX P[recallX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P[u]

As can be seen, this reduction removes mark both from the cap-
tured continuation K, and from the evaluation context of the re-
duced term. But either of the following rules is a possible choice,
and we discuss them below.

Σ,(markX P[recallX k. e]) −→ Σ, [K/k]e, (1)

where K = λx. let box u = x in box (markX P[u])

Σ,(markX P[recallX k. e]) −→ Σ,markX [K/k]e, (2)

where K = λx. let box u = x in box P[u]

Σ,(markX P[recallX k. e]) −→ Σ,markX [K/k]e, (3)

where K = λx. let box u = x in box (markX P[u])

The rule (1) captures markX into K, but removes it from the eval-
uation environment of e. The typing rule matching this operational
semantics is

Σ;(∆,k: � C,X B → � CA) ` e : A [C] X :A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Because the mark X is removed from the environment, it becomes
impossible for e to recall to X . This is why X does not appear in
the support of the premise of this typing rule. Because the mark X
is captured into the continuation, the result of applying the contin-
uation does not require a mark for X in its evaluation environment,
and so X is also dropped from the range type of k.

The rule (2) omits the mark from the continuation K, but leaves it
in the evaluation environment of e. The corresponding typing rule
leaves X in the support of the premise and in the range type of k.

Σ;(∆,k: � C,X B → � C,X A) ` e : A [C,X] X :A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Because the mark is left in the evaluation environment, it becomes
impossible to jump in sequence to names that are further down in
the support stack. In this setting, it becomes necessary to consider
semantics that allow jumps arbitrarily deep into the support stack.
This is very related to the behavior of Felleisen’s F operator [8]. If
we label by D the top of the support stack, up to but not including
the target mark, then a recall which would jump over the names in
D will be typed as follows.

Σ;(∆,k: � C,X ,DB → � C,X A) ` e : A [C,X] X :A ∈ Σ X 6∈ D

Σ;∆ ` recallX k. e : B [C,X ,D]

Indeed, because the names from D are captured into the continua-
tion, they must be removed from the range type of k. Support D is
also removed from the evaluation environment, and hence must be
omitted from the support of the premise.

The rule (3) leaves the mark into both the continuation K and the
evaluation environment of e, and the typing rule for it is thus

Σ;(∆,k: � C,X B → � CA) ` e : A [C,X] X :A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

This choice of semantics corresponds to Danvy and Filinski’s shift
operator [3, 4, 5]. If only jumps to the last established mark are
allowed (as is the case in [3, 4]), then it may be possible to simplify

10

4

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

1234

123121

1211

1

Figure 5. Partition tree for n = 4.

the typing rules so that the modal types only record the top-most
name in the support.

Our choice of operational semantics for composable continuations
is similar to the one for the set/cupto operators of Gunter, Rémy
and Riecke [12]. We have decided on this choice of operational se-
mantics for composable continuations because all the other choices
can be encoded within it. Obviously, if the mark is discarded during
reduction, it can always be placed back; if it is retained, it can never
be eliminated. We do not know if the other operational semantics
can match this expressiveness.

Example 13 Composable continuations have been used to conve-
niently express “nondeterministic computation”; that is, computa-
tion which can return many results [3, 4]. The following example
is a program for finding all the partitions of a natural number n, i.e.
all the lists of natural numbers that add up to n. The main function
partition is very effectively phrased in terms of a primitive func-
tion choice. The idea is to use choice to non-deterministically
pick a number between 1 and n, and not worry about backtracking
and exploring other options. Backtracking is automatically handled
by choice.

fun partition n =
if n = 0 then box (nil)
else

box (let val i = unbox (choice n)
box l = partition (n - i)

in
(i::l)

end)

The important point is that choice itself can be implemented using
composable continuations. The way choice is implemented will
determine the ordering in which partition considers the candidate
lists for partitioning n.

The process of generating partitions for n may be seen as a traversal
of a tree with labeled nodes and edges – a partition tree. Paths in
the partition tree emanating from a node labeled by n represent the
partitions of n. An inductive definition of the partition tree for n is
given as follows:

(i) if n = 0, then the tree consists of a single node labeled 0.

(ii) if n > 0, then the root of the tree is labeled with n, and edges
labeled with n,n− 1, . . . ,1 connect the root to partition trees
for 0,1, . . . ,n−1, respectively.

An example partition tree for n = 4 is presented in Figure 13. Of
course, just as with any tree, various traversal strategies may be

employed to generate the partitions for n. For example, a depth-
first strategy may employ a stack k to store the nodes that remain
to be traversed. After putting the root node on the stack, the depth-
first strategy repeats the following algorithm: remove the top node
t from k, and expand it, i.e. determine all the children of t (if any),
and put them onto the top of k; if k is empty, then exit.

On the other hand, a breadth-first strategy may employ a queue k to
store the nodes that remain to be traversed. After putting the root
node on the queue, the breadth-first strategy repeats the following:
remove the top node t from k, and expand it, i.e. determine all the
children of t (if any), and put them at the bottom of k; if k is empty,
then exit.

In our implementation of the partition algorithm, the partition tree
for n is never explicitly built, but is implicitly described by the exe-
cution of the partition function. For example, we present below
a version of choice which facilitates a depth-first traversal of the
tree. It assumes a name X of unit type.

(* choice : int -> � Xint *)
fun choice n =

box (recallX t : � Xint -> � Xunit.
let fun loop (s:int):unit =

if s = 0 then ()
else

let box u = t (box s)
in

(markX u); loop (s - 1)
end

in
loop (n)

end)

The program works by viewing the current global program contin-
uation as an implicit stack k of nodes to be expanded in order. Each
node has its own composable continuation, all of which compose to
create k. The function choice simply captures into t the compos-
able continuation for the first node in the sequence. The captured
node is removed, and t is applied to generate all of its children –
one child for each possible value of the variable s. The children
nodes are added in place of the parent node at the top of the global
program continuation k. Because the new nodes are added to the
beginning, they will be the the first to expand in the subsequent
execution. As a consequence, this implementation of choice uses
depth-first traversal strategy.

With this version of choice, partition has the type
int ->

�
Xintlist. To compute the partitions for 4, we

run markX print (unbox partition 4). The result consists of
the lists [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1,
1, 1]. Because depth-first traversal is employed, the lists are sorted
in lexicographical order.

In our calculus, it is also possible to implement choice so that it
facilitates breadth-first strategy. When generating the children of
some node, we only need to attach them at the end, rather than
at the beginning of the queue k that the global continuation repre-
sents. One possible breadth-first implementation of choice is given
below.

11

(* choice : int -> � Y,Xint *)
fun choice n =

box (recallX t : � Y,Xint -> � Y,Xunit.
recallY k : � Yunit -> � Yunit.

markY
let fun loop (s : int) : � Yunit =

if s = 0 then box ()
else

let box u = t(box s)
box u’ = loop(s-1)

in
box (markX u; u’)

end
box v = k (box markX())
box v’ = loop n

in
v; v’

end)

How does this function work? First, we must assume that the queue is
marked by a new name Y of unit type, so that it can be captured into a
continuation itself. The function choice captures the topmost node into
t, and then captures the rest of the queue into k. It is important that the
continuation k will not contain the delimiting markY . Then choice expands
the topmost node t, adds the obtained children nodes to the bottom of k, and
puts markY back, so that its scope includes the children nodes. Again, it
is crucial for this application that the captured continuations omit the target
mark (unlike, for example, in the calculi from [3, 4]), as this mark will get
in the way of adding new nodes at the bottom of k.

With this implementation of choice, the appropriate type for the function
partition is int-> � Y,Xintlist. To compute the partitions for 4, we run
markY markX print (unbox partition 4) to obtain the lists [4], [3, 1],
[2, 2], [1, 3], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]. Because we used
breadth-first traversal strategy, we first explored all the partitions of size 1,
then all the partitions of size 2, etc. Thus, the lists will be sorted first by
size, rather than lexicographically, as was the case with depth-first traversal.

The structural properties from the core fragment readily extend with
the new cases characteristic to the calculus of composable continu-
ations.

LEMMA 13 (UNIQUE DECOMPOSITION). For every expression
e, either:

1. e is a value, or
2. e = P[recallX k. e′], for a unique pure context P, or
3. e = E[r] for a unique evaluation context E and a redex r.

The calculus satisfies the same preservation and progress theorems
as before.

8 Conclusions, related and future work

In this paper, we have used the necessitation type operator
�

from
the modal logic CS4 to internalize computations with control-flow
effects like exceptions, catch-and-throw and composable continua-
tions. In modal logic, the operator

�
corresponds to universal quan-

tification, so that
�

A is true if and only if A is true at all possible
worlds.

The approach of our calculi is based on the following observation.
A computations of type A that may cause control effects from the
list C, may be viewed as executing – without getting stuck – un-
der all possible handlers for the effects in C. This statement speci-
fies universal quantification over handlers, bounded by the support
C. In our application, we adopt that handlers correspond to worlds
in modal logic, and thus, a described effectful computation can be
typed with a bounded universal type

�
CA.

Our calculus of exceptions have certain advantages over the
monadic representation of exceptions [20, 31] (and similar state-
ments may be formulated about our catch-and-throw calculus). As
a first distinction, modal calculi allow programs that are uncommit-
ted about the evaluation order of their subexpressions, when these
subexpression do not really depend on each other. The evaluation
order is eventually determined by the operational semantics, but it
is not necessary to make this order explicit in the program. As a sec-
ond distinction, monadic representation of exceptions treats raised
but not handled exceptions as values, and thus forces tagging and
run-time tag checking. This is avoided in the modal setting, and
may improve the efficiency of exceptional computations.

Similar consideration lead to our modal formulation of the calculus
for composable continuations. It is particularly interesting that the
calculi we presented here share one and the same core fragment,
and only differ in the notion of support. Supports in the case of
exceptions and catch-and-throw are simply sets of names, while in
the case of composable continuations supports are stacks of names.
It remains future work to determine how to combine effects which
are heterogeneous in their notion of support.

There is extensive literature on the non-monadic treatment of ex-
ceptions [7, 12, 24, 16, 22]. In general, however, the considered
calculi typically do not internalize the notion of exceptional com-
putation. As a consequence, they usually weaken the type safety,
either by imposing restrictions on the scope of exceptions and/or
on the form of values, or by allowing well-typed terms to get stuck
because of unhandled effects.

In Section 7 we already informally compared our calculus of com-
posable continuation with the proposals of Felleisen, and Danvy
and Filinski. There are also further proposals, like [13, 14, 15, 28],
and especially [12] by Gunther, Rémi and Riecke to which our cal-
culus is very similar. Again, as in the case of exceptions, these
systems typically do not internalize effectful computations, and
hence have to impose restrictions on expressiveness and type safety.
A monadic approach to composable continuations have been at-
tempted by Murthy in [21], but this calculus restricts the destination
marks to only implication-free types in order to preserve soundness.
Wadler in [30] further analyses and compares the above type sys-
tems using indexed monads.

In our paper, the various notions of control effects are uniformly
represented by names. Names are labels which can be dynami-
cally introduced into the calculus, and are subject to a typing dis-
cipline which ensures that no name escapes the scope of its intro-
ducing binder. That modal necessity can be very naturally extended
with the notion of names was argued in [23]. The calculus from
that paper is a direct precursor to the effect systems we presented
here. It is motivated by the work of Pitts and Gabbay on Nominal
Logic and FreshML [27, 26] which introduce names as urelements
of Fraenkel-Mostowski set theory.

Finally, practical programming with our system may be hampered
by the verbosity of support annotations on types and the fact that
the effect instances are second-class object in the calculus. There-
fore, we will need to investigate the questions of type and support
inference and develop new abstraction mechanism which can hide
the unwanted support and result in a more practical language (per-
haps using support polymorphism [23]). The system presented here
is logically motivated and fully explicit about the support of terms,
and is therefore a solid theoretical basis for such investigations.

12

9 References

[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke
semantics for Constructive S4 modal logic. In L. Fribourg, editor, International
Workshop on Computer Science Logic, CSL’01, volume 2142 of Lecture Notes
in Computer Science, pages 292–307, Paris, 2001. Springer.

[2] G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic. Studia
Logica, 65(3):383–416, 2000.

[3] O. Danvy and A. Filinski. A functional abstraction of typed contexts. Techni-
cal Report 89/12, DIKU - Computer Science Department, University of Copen-
hagen, 1989.

[4] O. Danvy and A. Filinski. Abstracting control. In Conference on LISP and
Functional Programming, pages 151–160, Nice, France, 1990.

[5] O. Danvy and A. Filinski. Representing Control: a Study of the CPS Transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[6] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of
the ACM, 48(3):555–604, 2001.

[7] P. de Groote. A simple calculus of exception handling. In M. Dezani-Ciancaglini
and G. Plotkin, editors, Typed Lambda Calculi and Applications, volume 902 of
Lecture Notes in Computer Science, pages 201–215. Springer, 1995.

[8] M. Felleisen. The theory and practice of first-class prompts. In Symposium on
Principles of Programming Languages, POPL’88, pages 180–190, San Diego,
California, 1988.

[9] A. Filinski. Representing monads. In Symposium on Principles of Programming
Languages, POPL’94, pages 446–457, Portland, Oregon, 1994.

[10] A. Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University, 1996.

[11] A. Filinski. Representing layered monads. In Symposium on Principles of Pro-
gramming Languages, POPL’99, pages 175–188, San Antonio, Texas, 1999.

[12] C. A. Gunter, D. R émy, and J. G. Riecke. A generalization of exceptions and
control in ML-like languages. In International Conference on Functional Pro-
gramming Languages and Computer Architecture, FPCA’95, pages 12–23, La
Jolla, California, 1995.

[13] R. Hieb, K. Dybvig, and C. W. Anderson, III. Subcontinuations. Lisp and Sym-
bolic Computation, 7(1):83–110, 1994.

[14] Y. Kameyama. Towards logical understanding of delimited continuations. In
A. Sabry, editor, Proceedings of the Third ACM SIGPLAN Workshop on Con-
tinuations, CW’01, pages 27–33, 2000. Technical Report No. 545, Computer
Science Department, Indiana University.

[15] Y. Kameyama. A type-theoretic study on partial continuations. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, Theoretical
Computer Science: Exploring New Frontiers of Theoretical Informatics, volume
1872 of Lecture Notes in Computer Science, pages 489–504. Springer, 2000.

[16] Y. Kameyama and M. Sato. Strong normalizability of the non-deterministic
catch/throw calculi. Theoretical Computer Science, 272(1–2):223–245, 2002.

[17] S. Kobayashi. Monad as modality. Theoretical Computer Science, 175(1):29–74,
1997.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[19] E. Moggi. Computational lambda-calculus and monads. In Symposium on Logic
in Computer Science, LICS’89, pages 14–23, Asilomar, California, 1989.

[20] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[21] C. R. Murthy. Control operators, hierarchies, and pseudo-classical type systems:
A-translation at work. In O. Danvy and C. Talcott, editors, Proceedings of the
ACM SIGPLAN Workshop on Continuations, CW’92, pages 49–71, 1992. Tech-
nical Report STAN-CS-92-1426, Stanford University.

[22] H. Nakano. A constructive formalization of the catch and throw mechanism. In
Symposium on Logic in Computer Science, LICS’92, pages 82–89, Santa Cruz,
California, 1992.

[23] A. Nanevski. Meta-programming with names and necessity. In International
Conference on Functional Programming, ICFP’02, pages 206–217, Pittsburgh,
Pennsylvania, 2002. A significant revision is available as a technical report
CMU-CS-02-123R, Computer Science Department, Carnegie Mellon University.

[24] S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics
for imprecise exceptions. In Conference on Programming Language Design and
Implementation, PLDI’99, pages 25–36, Atlanta, Georgia, 1999.

[25] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathe-

matical Structures in Computer Science, 11(4):511–540, 2001.

[26] A. M. Pitts. Nominal logic: A first order theory of names and binding. In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Soft-
ware, volume 2215 of Lecture Notes in Computer Science, pages 219–242.
Springer, 2001.

[27] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound
names modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Math-
ematics of Program Construction, volume 1837 of Lecture Notes in Computer
Science, pages 230–255. Springer, 2000.

[28] D. Sitaram. Handling control. In Conference on Programming Language Design
and Implementation, PLDI’93, pages 147–155, 1993.

[29] P. Wadler. The essence of functional programming. In Symposium on Principles
of Programming Languages, POPL’92, pages 1–14, Albequerque, New Mexico,
1992.

[30] P. Wadler. Monads and composable continuations. Lisp and Symbolic Computa-
tion, 7(1):39–56, 1994.

[31] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, volume 925 of Lecture Notes in
Computer Science, pages 24–52. Springer, 1995.

[32] P. Wadler. The marriage of effects and monads. In International Conference on
Functional Programming, ICFP’98, pages 63–74, Baltimore, Maryland, 1998.

[33] P. Wickline, P. Lee, and F. Pfenning. Run-time code generation and Modal-
ML. In Conference on Programming Language Design and Implementation,
PLDI’98, pages 224–235, Montreal, Canada, 1998.

[34] P. Wickline, P. Lee, F. Pfenning, and R. Davies. Modal types as staging specifi-
cations for run-time code generation. ACM Computing Surveys, 30(3es), 1998.

[35] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38–94, 1994.

13

