
IMLA 2005 Preliminary Version

A Modal Calculus for Exception Handling

Aleksandar Nanevski 1

Division of Engineering and Applied Science
Harvard University

Cambridge, Massachusetts

Abstract

The exception monad, while an adequate mechanism for providing the denotational
semantics of exceptions, is somewhat awkward to program with. Just as any other
monad, it forces a programming style in which exceptional computations are explic-
itly sequentialized in the program text. In addition, values of computation types
must usually be tested before use, in order to determine if they correspond to a
raised exception.

In this paper we propose a type system that rearranges the monadic formulation,
so that the above shortcomings are avoided. Instead of the exception monad, we
propose the operator � from the modal logic S4 to encode exceptional computation.
The way tracking of exceptions is organized in the modal system is exactly dual to
the monadic case, reflecting the well-known property that � is actually a comonad.

Key words: monads, exceptions, modal logic.

1 Introduction

Monads and the monadic λ-calculus [20,21,33,34,35] present a type theoretic
method for grafting effectful features onto a purely functional language. Mon-
ads are type constructors (satisfying certain categorical properties) that inter-
nalize the notion of effectful computation. The idea is to limit the appearance
of effects to terms of monadic type, thus separating the possibly impure sub-
terms from the pure ones, and ensuring a disciplined propagation of effects.
Furthermore, the monadic typing discipline forces monadic computations to
be serialized; the reduction order for any single monadic term is apparent from
the term itself, specifying in that way a total ordering on the effects that the
evaluation of the term may bring about.

For example, in the literature today, the customary way of formalizing
type-safe calculi of exceptions is via the exception monad [21,34]. This ap-

1 Email: aleks@eecs.harvard.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Nanevski

proach defines the monadic type ©A as ©A = A+E where E is the type of
the exception that can be raised. Then term constructors comp and let comp
are introduced, using the following definitions that assume the standard for-
mulation of disjoint sums.

comp e
def
= inl e

let comp x = e1 in e2
def
= case e1 of inl x⇒ e2 | inr y ⇒ inr y

The typing rules for these constructs are appropriately derived as:

∆ ` e : A

∆ ` comp e :©A
∆ ` e1 :©A ∆, x:A ` e2 :©B

∆ ` let comp x = e1 in e2 :©B

There are also additional term constructors used to raise and handle the
exception associated with the monad ©.

raise : E ⇒©A =

λe. inr e

handle : ©A⇒ (E ⇒ A)⇒ A =

λe. λh. case e of inl v ⇒ v | inr exn⇒ h (exn)

The constructor raise takes the expression e : E and coerces it into inr e.
This way, it implements exception raising, passing the value of e along. The
constructor handle takes the expression e :©A and a handler function h. If e
evaluates to a value v : A, the result of handling is v. If e raises the exception
with a value exn : E, then the result of handling is h (exn).

The operational semantics follows the standard operational semantics as-
sociated with disjoint sums. Assume for example that f : int ⇒ ©int. The
following program adds the results of f(1) and f(2); if the evaluation of any of
the two function applications raises an exception, the overall computed result
is zero.

handle (let comp x1 = f(1)

comp x2 = f(2)

in

comp (x1 + x2)

end) (λexn. 0)

There are several shortcomings with this approach, making it somewhat
unnatural to program with exceptional computations [26,22].

First, the program forces a choice between the evaluation order of f(1) and
f(2), even though the eventual effects of either computation do not influence

2

Nanevski

the other one. It would be very convenient to have a construct uncomp that
we could use to rewrite the above program into the following.

handle (uncomp f(1) + uncomp f(2)) (λexn. 0)

In this version of the program, the evaluation order of the two computations
f(1) and f(2) is left to the operational semantics of addition, rather than
being specified by the program itself. In fact, as far as the type preservation
is concerned, any evaluation order is sound.

The second problem with the monadic formulation of exceptions poten-
tially concerns efficiency. Evaluation of an expression e : ©A terminates
either with a value, or with raising an exception. The outcome of the evalu-
ation of e has to be tagged (with inl or inr) in order to distinguish between
the two cases, and this tag has to be checked at run time whenever e is used
(as apparent from the definition of let comp). Exceptions that have been
raised but not yet handled are first-class objects in the language, with the
same status as any other value.

However, the way exceptions are usually used in functional languages does
not require this generality. Once an exception is raised, it must be handled
(or the evaluation stops), and may not be passed as an argument to other
functions. If raised unhandled exceptions were not values, there would be no
need for tagging and, correspondingly, no need for tag checking.

The problem with excessive serialization of exceptional monadic programs
has been addressed previously by means of monadic reflection and reification
[8,9,10]. Reflection and reification are translations between an effectful source
language (which provides the syntax for programming) and a monadic lambda
calculus (which provides the semantics using the exception monad as defined
above). Unfortunately, as concluded in [8], reflection and reification still incur
the operational penalties of tagging and tag checking. More seriously, they
do not admit a well-behaved formulation in the style of natural deduction,
and are thus also not quite adequate to program with. Natural deduction
usually organizes a calculus into mutually independent groups of rules, split
according to the rule’s main type operator. Reflection and reification must
make it explicit that the exception monad is defined in terms of disjoint sums,
and are thus presented as a pair of rules about disjoint sums. Obviously, these
rules cannot be independent of the usual introduction and elimination rules
for disjoint sum, and thus violate the basic principles of natural deduction.

In this paper, we propose a formulation of exceptions that avoids the de-
scribed serialization and tagging. The approach respects natural deduction,
and does not use any indirect translations. It also directly corresponds to a
fragment of constructive modal logic S4 (CS4 in the future text).

Modal logic is a logic for reasoning about truth across various worlds. A
proposition may be true in some worlds, but not true in some others. In CS4
we also have the propositional operators � (also referred to as necessity), and
3 (possibility). � is a universal quantifier; �A is true iff A is true in all worlds.

3

Nanevski

3 is an existential quantifier; 3A is true iff A is true in some world.

As described in [7,2,1], the fragment of CS4 including 3 but not �, with
some mild additional conditions, obtains the logic (called lax logic) which
provides the foundation for monads and the monadic lambda calculus. A
generic monad can thus be viewed as an existential quantifier over possible
worlds, and the corresponding computational effect of the monad is a witness
to the existence of an appropriate possible world. Computationally, 3A shows
that there exists a world (the one obtained after performing the monadic
effect), in which A is true.

This view also logically explains the serialization property of the monadic
lambda calculus. Composing effectful computations corresponds to threading
of existentials, corresponds to stepping from one possible world to another.
These steps do not necessarily commute, because once a step has been per-
formed, all the further steps may depend on it. Thus, each step has global
scope; it cannot be backtracked, and must persist till the end of the computa-
tion. This makes monads particularly convenient for representing persistent
effects which engender a permanent change to the environment in which they
execute (e.g. destructive state update).

But, exceptions are not like that. In fact, one of the defining character-
istics of exceptions is the possibility of handling. A raised exception need
not persist until the end of the execution because its scope can be delimited
using an exception handler. For our computational application, we can view
exception handlers as possible worlds. Then a computation of type A whose
execution may raise the exceptions from the set C may evaluate in the scope
of all handlers capable of handling the exceptions from the set C. Thus, it
should be assigned a type �CA that corresponds to a universal quantification
over exception handlers, bounded by C. The corresponding λ-calculus for the
fragment of modal logic with the � quantifier will then give us a language
adequate for representing exceptions.

In the rest of the paper, we describe the necessitation fragment of CS4 and
its lambda calculus (Section 2), and then show how the indexed variant of the
� operator can be used for tracking effects (Sections 3 and 4). In Section 5
we specialize the development to exceptions, before discussing the related and
future work in Section 7.

We note that the ideas presented here may be generalized to other kinds of
named control effects, like catch-and-throw and composable continuations, as
shown in the longer version of this paper [24] and the author’s PhD dissertation
[25]. An interpreter implementing the described type systems is available at

http:/www.cs.cmu.edu/~aleks/papers/effects/nubox.tar.gz.

2 Modal λ�-calculus

The starting point for the development of our language for effects in general,
and exceptions in particular, is the λ�-calculus of [27,5]. The λ� is the proof-

4

Nanevski

term system for the necessitation fragment of the CS4 modal logic, and it
was first considered in functional programming in the context of specializa-
tion for purposes of run-time code generation [5,36,37]. The syntax of λ� is
summarized below, where we use b to stand for a predetermined set of base
types.

Types A ::= b | A1 → A2 | �A

Terms e ::= x | u | λx:A. e | e1 e2 | box e | let box u = e1 in e2

Contexts Γ,∆ ::= · | Γ, x:A

The most important feature of the calculus is the type constructor � which is
referred to as modal necessity, as in the CS4 modal logic it is a necessitation
modifier on propositions [27]. For the purposes of this paper, a useful opera-
tional intuition is to consider the type �A as classifying pure computations of
type A. In contrast, the non-modal type A contains only values. In functional
programming, pure computations are usually identified with their values, but
we separate the two here, as this would lead to easier development of the
notion of impure (or effectful) computation in the subsequent sections.

The type system of λ� is presented below.

∆; (Γ, x:A) ` x : A (∆, u:A); Γ ` u : A

∆; (Γ, x:A) ` e : B

∆; Γ ` λx:A. e : A→ B

∆; Γ ` e1 : A→ B ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : B

∆; · ` e : A

∆; Γ ` box e : �A

∆; Γ ` e1 : �A (∆, u:A); Γ ` e2 : B

∆; Γ ` let box u = e1 in e2 : B

It distinguishes between two variable contexts: Γ for variables bound to
values, and ∆ for variables bound to computations. The introduction and
elimination forms of the type constructor � are the term constructors box
and let box, respectively. Operationally, the term constructor box suspends
the evaluation of its argument expression e, and wraps it into a thunk box e
which can be then be further manipulated by the rest of the program. The
expression box e is a value in this calculus. Note that the typing rule for
box prohibits e to refer to variables from Γ; it is not possible to coerce values
into computations. This is counter-intuitive to our interpretation of the modal
calculus as a calculus of effects, and we will remedy it shortly. The elimination
form let box u = e1 in e2 takes the computation boxed by e1 and binds the
whole computation to the variable u to be used in e2. In other words, the

5

Nanevski

operational semantics for let box is given by a reduction rule

let box u = box e in e2 −→ [e/u]e2

Observe that this is different from the monadic let comp. The evaluation
rules for let comp x = e1 in e2 evaluates e1 to a value which is then bound
to x. In let box u = box e in e2, the computation e is not evaluated. The
variable u binds a whole computation, rather than just a value.

Example 2.1 The function exp2 below takes an integer argument n and
builds a computation for 2n.

fun exp2 (n : int) : �int =

if n = 0 then box 1

else

let box u = exp2 (n - 1)

in

box (2 * u)

end

- e5 = exp2 5;

val e5 = box (2 * (2 * (2 * (2 * (2 * 1))))) : �int

In the elimination form let box u = e1 in e2, the bound variable u belongs
to the context ∆ of expression variables, but it can be used in e2 in both
computation positions (i.e., under a box), and value positions. This way we
can compose computations, but also explicitly force their evaluation. In the
above example, we can force the evaluation of e5 in the following way.

- let box u = e5 in u;

val it = 32 : int

Example 2.2 The operator � satisfies the following characteristic axioms.

f1 : �A→ A =

λx. let box u = x in u

f2 : �A→ ��A =

λx. let box u = x in box (box u)

f3 : �(A→ B)→ �A→ �B =

λx. λy. let box u = x in let box v = y in box (u v)

As already mentioned, the typing rule for box prohibits e to refer to variables
from Γ; it is not possible to coerce values into computations. In order to
provide for this, we redefine the notion of λ-abstraction, so that function
arguments are kept in the context ∆ as pure computations, rather than in

6

Nanevski

the context Γ of values. The context Γ may therefore be subsumed by ∆, to
obtain the following system.

∆, x:A ` x : A

(∆, x:A) ` e : B

∆ ` λx:A. e : A→ B

∆ ` e1 : A→ B ∆ ` e2 : A

∆ ` e1 e2 : B

∆ ` e : A

∆ ` box e : �A

∆ ` e1 : �A (∆, u:A) ` e2 : B

∆ ` let box u = e1 in e2 : B

The above system annihilates the logical distinction between the propositions
�A and A, but we do retain their operational difference by which the type A
classifies values, and the type �A classifies pure computations. In the next
section, we will introduce a whole family �C of necessitation operators indexed
by a set of effect names, so that the type �CA will classify computations with
effects C. The propositions A and �CA will be logically equivalent in case C
is empty, but not otherwise.

3 Names as markers for effects

In this section, we extend the calculus presented above with the notion of
names. Names are labels that provide a formal abstraction for tracking effects.
Each effect will be assigned a name, and if an effect appears in a computation,
then the corresponding �-type will be indexed by that name. For example,
if we have an exception X, then a computation of type A that may raise this
exception, will be given a type �XA.

The described indexing of the modal operator with names is similar to
the one found in the monadic lambda calculus given by Wadler [35], where
labels are used to identify the effects that may occur under a monad. In
our setup, however, we will also allow dynamic introduction of fresh names
into the computation (and hence, generation of new effects), and establish
a typing discipline for it. Having mentioned this idea to provide some intu-
ition toward our overall goal, we proceed to introduce our calculus in stages.
Rather than formally tying names to effects immediately, we now present a
limited fragment that is intended only to account for dynamic introduction of
names and for name propagation. The relationship between names and effects
(and exceptions in particular), and how effects are raised and handled will be
discussed in the subsequent sections.

We start by explaining the syntax and various syntactic conventions of our

7

Nanevski

language.

Names X ∈ N

Supports C,D ::= · | C,X

Types A ::= b | A1 → A2 | A1 9 A2 | �CA

Terms e ::= u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2 |

νX:A. e | choose e

Variable contexts ∆ ::= · | ∆, u:A[C]

Name contexts Σ ::= · | Σ, X:A

Just like λ�, our calculus makes a distinction between values and com-
putations. The two are separated by a modal type constructor �, except
that now we have a whole family of modal type constructors – one for each
finite sequence of names C, where the names are drawn from a countably
infinite universe of names N . As already hinted before, the type �CA clas-
sifies computations that may raise any of the effects whose names are in C.
The sequence C is referred to as a support of such expressions. We will also
consider a partial ordering v on supports. If a term has support C, than it
can safely appear in the scope of a handler capable of dealing with the names
in any D w C. If a term is pure (i.e., it has empty support), it need not be
restricted to any particular set of handlers. Therefore, we require that the
empty support is the smallest element of v.

Because now computations can contain effects, we extend the typing as-
signments in the context ∆ to keep track not only of the typing, but also of the
support of a variable. So, for example, the typing u:A[C] declares a variable
u which can be bound to an expression of type A and support C. We will
frequently abbreviate x:A[] as x:A.

A further change from λ� is an addition of the context Σ which declares
the names (and their types) that are currently active in the program. Because
the types of our calculus depend on names, we must impose some conditions
on well-formedness of contexts. A context Σ is well-formed if every type in
Σ uses only names declared to the left of it. The variable context ∆ is well-
formed with respect to Σ, if all the names that appear in the types of ∆ are
declared in Σ.

The types of the new calculus now include the family A9 B whose intro-
duction and elimination forms are νx:A. e and choose e. These constructs
are used to dynamically introduce fresh names into the calculus. For example,
the term νX:A. e binds a name X of type A that can subsequently be used in
e. Because names stand for effects, this construct really declares a new effect,
and enables e to raise it and handle it. Whatever e does with X, though, we

8

Nanevski

will ensure through the type system that the result of the evaluation of e does
not depend on X; we must prevent X to escape the scope of its introduction
form. The ν-abstraction will be a value in our calculus. In particular, it will
suspend the evaluation of e. If we want to evaluate it, we must choose it.
The term constructor choose allocates a fresh name of type A, substitutes
it for the name bound in the argument ν-abstraction of type A 9 B, and
proceeds to evaluate the body of the abstraction.

Finally, enlarging an appropriate context by a new variable or a name is
subject to the usual variable conventions: the new variables and names are
assumed distinct, or are renamed in order not to clash with already existing
ones. Terms that differ only in the syntactic representation of their bound
variables and names are considered equal. The binding forms in the language
are λx:A. e, let box u = e1 in e2 and νX:A. e. Capture-avoiding substitution
[e1/x]e2 of expression e1 for the variable x in the expression e2 is defined to
rename bound variables and names when descending into their scope. Given
a term e, we denote by fv(e) the set of free variables of e. The set of names
appearing in the type A is denoted by fn(A).

The typing judgment of the core fragment is

Σ; ∆ ` e : A [C]

The judgment works with two contexts: context of names Σ and context of
variables ∆. Given an expression e, the judgment checks whether e has type
A, and whether its effects are in the support C. The core fragment of the
typing rules is presented in Figure 1, and we explain it next.

A pervasive characteristic of the type system is the support weakening
principle; that is

if Σ; ∆ ` e : A [C] and C v D, then Σ; ∆ ` e : A [D]

Support of the expression e determines which effects e can raise, and therefore,
which handlers can restore its purity. Consequently, the support weakening
principle formally models a very intuitive property that if the effects of e can
be handled by some handler, then they can be handled by a stronger handler
as well. In particular, if e is effect-free, then it can be handled by any and all
handlers; the empty support is the smallest element of the partial ordering v.

A further property that we formally represent is that values of the lan-
guage are effect free. Indeed, values obviously cannot raise any effects, simply
because their evaluation is already finished. Therefore, the support of the
values of our system will be empty, and according to the support weakening
principle, it can then be weakened arbitrarily. This explains the explicit weak-
ening in the hypothesis rule and the arbitrary support in the conclusions of
the typing rules for λ- and ν-abstractions and for box.

λ-calculus fragment. The rule for λ-abstraction requires that the body e of the
abstraction be pure; that is e has to match the empty support. This is not to

9

Nanevski

C v D

Σ; (∆, u:A[C]) ` u : A [D]

Σ; (∆, x:A) ` e : B []

Σ; ∆ ` λx:A. e : A→ B [C]

Σ; ∆ ` e1 : A→ B [C] Σ; ∆ ` e2 : A [C]

Σ; ∆ ` e1 e2 : B [C]

Σ; ∆ ` e : A [D]

Σ; ∆ ` box e : �DA [C]

Σ; ∆ ` e1 : �DA [C] Σ; (∆, u:A[D]) ` e2 : B [C]

Σ; ∆ ` let box u = e1 in e2 : B [C]

(Σ, X:A); ∆ ` e : B [] X 6∈ fn(A,B,∆)

Σ; ∆ ` νX:A. e : A9 B [C]

Σ; ∆ ` e : A9 B [C]

Σ; ∆ ` choose e : B [C]

Fig. 1. Type system of the core fragment.

say that e cannot contain any effects; it can, but only if they are encapsulated
under a box (and correspondingly accounted for in the type of e). This
is similar to monadic type systems where function bodies must be pure, and
effects can be raised only under a monad. On the other hand, because λ-terms
are values, the support of the whole abstraction can be arbitrarily weakened,
as explained before.

It is implicitly assumed that the argument type A is well-formed with re-
spect to the name context Σ before it is introduced into the variable context
∆. Note further that the bound variable x is introduced into ∆ with empty
support, according to our decision to allow coercion of values into pure com-
putations. Thus, x must always be bound to an effect-free expression. This
will force us to commit to call-by-value evaluation strategy for the calculus;
we must reduce function arguments to values (which are effect-free) before
passing them on.

Modal fragment. To type a computation box e, we must check if e is well-typed
and matching the support that is supplied as an index to the � constructor.
Boxed expressions are values of computation type, so their support can be
arbitrarily weakened to any well-formed support set C. The �-elimination
rule is a straightforward extension of the corresponding λ� rule. The only
difference is that the bound expression variable u from the context ∆ now has
to be stored with its support annotation.

It is interesting here to contrast the elimination construct let box with

10

Nanevski

the monadic elimination construct let comp, presented in the introduction.
The construct let comp x = e1 in e2 evaluates e1, to bind its value to x to be
used in e2. The type of e2 must be monadic. On the other hand, the construct
let box u = e1 in e2 evaluates e1 to an effectful computation which is then
bound to u to be used in e2 (possible more than once). The type of e2 need
not specify any effects.

Thus, in the typing rule for let comp, effects are indicated by insisting
on a monadic type of e2, which appears to the right of the turnstile. In the
typing rule for let box, effects are indicated by the support of the variable u,
which appears to the left of the turnstile.

In this particular sense, the formulation of effect calculi using � is dual
to the monadic one. It is not surprising then that the � operator of modal
logic is usually categorically modeled by a comonad. We do not explore this
distinction further in the paper, but refer the reader to the work of Kobayashi
[17], Alechina et al. [1] and Bierman and de Paiva [3], for a detailed discussion
of categorical models for 2.

Names fragment. The rule for νX:A. e must check e for well-typedness in
a context Σ extended with the new name X:A. Similar to the λ rule, we
require that e has empty support; all the eventual effects that e may raise
must be boxed. The characteristics of the ν constructor, however, is the
further requirement that X does not appear in the type B. This ensures that
X remains local to e; it can never escape the scope of its introducing ν in any
observable way. The effect corresponding to X will either never be raised in
the course of evaluation of e (i.e., it never appears in e or it appears in some
dead-code part of e), or all the occurrences of X are handled by some handler.

The term constructor choose is the elimination form for A9 B. It picks
a fresh name and substitutes it for the bound name in the ν-abstraction.

Example 3.1 If C,C1, C2 and D are well-formed supports such that C1 v C
and C2 v C, then the following terms are well-typed.

(i) ` λx. box x : A→ �DA

(ii) ` λx. let box u = x in u : �C1A→ A [C]

(iii) ` λx. let box u = x in box u : �C1A→ �CA

(iv) ` λx. let box u = x in box box u : �C1A→ �D�CA

(v) ` λx. λy. let box u = x in let box v = y in box u v :
�C1(A→ B)→ �C2A→ �CB

Example 3.2 To abbreviate notation and reduce clutter, we introduce into
the calculus the term constructor unbox e as a syntactic abbreviation for
let box u = e in u. The new term constructor has the following derived
typing rule

Σ; ∆ ` e : �CA [D] C v D

Σ; ∆ ` unbox e : A [D]

11

Nanevski

We also define let val x = e1 in e2 to stand for unbox ((λx. box e2) e1),
rather than the usual (λx. e2) e1. The additional complication arises because
we have to box e2 and make it pure before we can put it under a λ-abstraction.
The derived typing rule for let val is

Σ; ∆ ` e1 : A [C] Σ; (∆, x:A) ` e2 : B [C]

Σ; ∆ ` let val x = e1 in e2 : B [C]

Example 3.3 Anticipating Section 5, suppose that our language contains the
term constructor raise, such that raiseX e raises an exception X passing an
argument e along (assuming that both X and e have the same type). If X is
a name of type A, then the following term is well-typed.

λx. let box u = x in box (raiseX u) : �A→ �XA

Assume further that e1:B is a closed and exception-free term, and e2:A is a
closed term which may raise the exception X. Then the expression

choose (νY :A. (λx:�X,YA. e1) (box raiseY e2))

declares a new exception Y , which is then raised within the computation
box (raiseY e2) of type �X,YA. In fact, because neither x nor Y appear in
e1, the type of the application will not depend on Y either. Actually, even
more is true: the argument computation will never even be forced; it is dead
code. The ν-clause is well-typed, of type A9 B, and the whole expression is
of type B. In Section 5 where we introduce exception handling, we would be
able to present a more meaningful use of choose and ν.

4 Operational semantics

The operational semantics of this basic fragment of our calculus is defined
through the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The relation is
defined on expressions with no free variables. An expression e can contain
effects, whose names must be declared in Σ, but it must have empty support.
In other words, we only consider for evaluation those expressions whose effects
are either boxed, or appear in a dead-code part, or are handled. The reduct
e′ can introduce new names into the computation, which will be accounted in
the extended name context Σ′. However, the new names too, will mark effects
which are either boxed, never raised or otherwise handled. We define the
reduction judgment in the style of Wright and Felleisen [38]. The formalization
is for a call-by-value strategy, and it relies on the definitions of redex and

12

Nanevski

evaluation contexts below.

Values v ::= x | λx:A. e | box e | νX:A. e

Redexes r ::= v1 v2 | let box u = v in e | choose v

Evaluation contexts E ::= [] | E e1 | v1 E | let box u = E in e | choose E

Each expression e can be decomposed uniquely as e = E[r] where E is an eval-
uation context and r is a redex. To define a small-step operational semantics
of the calculus, it is enough to define primitive reduction relation for redexes
(which we denote by −→), and let the evaluation of expressions always first
reduce the redex identified by the unique decomposition.

Σ, (λx. e) v −→ Σ, [v/x]e

Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Σ, choose (νX:A. e) −→ (Σ, Y :A), [Y/X]e, Y 6∈ dom(Σ)

Σ, r −→ Σ′, e′

Σ, E[r] 7−→ Σ′, E[e′]

Example 4.1 As an illustration of the operational semantics of the calculus,
we present the first couple of steps from the evaluation of the term from
Example 3.3.

(X:A), choose (νY :A. (λx:�X,YA. e1) (box raiseY e2)) 7−→

(X:A,Z:A), (λx:�X,ZA. e1) (box raiseZ e2) 7−→

where Z is a fresh name

(X:A,Z:A), e1 7−→

· · ·

The rest of this section develops the basic properties of the calculus. We
present them here, because the future extensions will all rely on the basic
structure of these results.

Proposition 4.2 (Expression substitution principle) If Σ; ∆ ` e1 : A [C]
and Σ; (∆, u:A[C]) ` e2 : B [D], then Σ; ∆ ` [e1/u]e2 : B [D].

Lemma 4.3 (Replacement) If Σ; ∆ ` E[e] : A [C], then there exist a type
B such that

(i) Σ; ∆ ` e : B [C], and

(ii) if Σ′,∆′ extend Σ,∆, and Σ′; ∆′ ` e′ : B [C], then Σ′; ∆′ ` E[e′] : A [C]

13

Nanevski

Lemma 4.4 (Canonical forms) Let v be a closed value such that Σ; · ` v :
A [C]. Then the following holds:

(i) if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A2 []

(ii) if A = �DB, then v = box e and Σ; · ` e : B [D]

(iii) if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 []

As a consequence, the support of v can be arbitrarily weakened, i.e. Σ; · ` v :
A [D], for any support D.

Lemma 4.5 (Subject reduction) If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′,
then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Theorem 4.6 (Preservation) If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′

extends Σ, and Σ′; · ` e′ : A [C].

Lemma 4.7 (Progress for −→) If Σ; · ` r : A [C], then there exists a term
e′ and a context Σ′, such that Σ, r −→ Σ′, e′.

Lemma 4.8 (Unique decomposition) For every expression e, either:

(i) e is a value, or

(ii) e = E[r] for a unique evaluation context E and a redex r.

Theorem 4.9 (Progress) If Σ; · ` e : A [], then either

(i) e is a value, or

(ii) there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proposition 4.10 (Determinacy) If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2,
then there exists a permutation of names π : N → N , fixing the domain of Σ,
such that Σ2 = π(Σ1) and e2 = π(e1).

5 Exceptions

The calculus presented thus far did not involve any concrete notions of effects.
It was only capable of dynamic introduction and of propagation of effects,
but not, in fact, of raising or handling them. In this section we extend our
code fragment into a calculus of exceptions. The idea is to assign a name to
each exception, which could then be propagated and tracked by means of the
core fragment. To be able to raise and handle exceptions, we need further
constructs specific only to exceptions. Thus, we extend the syntax of our
language in the following way.

Exception handlers Θ ::= · | Xz → e,Θ

Terms e ::= . . . | raiseX e | e handle 〈Θ〉

Informally, the role of raiseX e is to evaluate e and than raise an exception
X, passing the value of e along. On the other hand, e handle 〈Θ〉 evaluates

14

Nanevski

e (which may raise exceptions), and all the raised exceptions are handled by
the exception handler Θ.

An exception handler is defined as a finite set of exception patterns. A
pattern Xz → e associates the exception X with the expression e. Whenever
X is raised with some value v, it will be handled by evaluating the expression
[v/z]e. Given a handler Θ, its domain dom(Θ) is defined as the set

dom(Θ) = {X ∈ N | Xz → e ∈ Θ}

Every exception X ∈ dom(Θ) must be associated with a unique pattern of
Θ.

An exception handler Θ defines a unique map [[Θ]] : N → Values →
Expressions as follows.

[[Θ]](X)(v) =

 [v/z]e if Xz → e ∈ Θ

raiseX v otherwise

We will frequently identify the handler Θ with the function [[Θ]], and write
Θ(X)(v) instead of [[Θ]](X)(v). According to the above definition, if X is an
exception such that X 6∈ dom(Θ), then Θ handles X simply by propagating
it further.

Example 5.1 Assuming X and Y are integer names, the following are well-
formed expressions of the exception calculus.

(i) (1− raiseX raiseY 10) handle 〈Xx→ x+ 2, Y y → y + 3〉
(ii) (1− raiseX 0) handle 〈Xx→ (2− raiseY x)〉 handle 〈Y y → y〉

(iii) (1− raiseX 0) handle 〈Y y → (2− raiseX y)〉 handle 〈Xx→ x+ 1〉
The expression evaluate to 13, 0 and 1, respectively. Expression (i) raises the
exception Y , passing 10 along. This is handled by the pattern Y y → y + 3,
to produce 13. Expression (ii) raises X with value 0, but while handling
X it raises Y with value 0, which is finally handled by the outside handler
〈Y y → y〉, to produce 0. Expression (iii) raises X with 0, which is propagated
by the inside handler, and then handled by the outside handler 〈Xx→ x+ 1〉,
to return 1.

The type system of the calculus of exceptions consists of two judgments:
one for typing expressions, and another one for typing exception handlers.
The judgment for expressions has the form

Σ; ∆ ` e : A [C]

and it simply extends the judgment from the core fragment presented in Sec-
tion 3 with the new rules for raise and handle. The specific of the calculus is
that the support C represents sets, collecting the exceptions that e is allowed

15

Nanevski

C v D

Σ; ∆ ` 〈 〉 : [C]
A⇒ [D]

Σ; (∆, z:A) ` e : B [D] Σ; ∆ ` 〈Θ〉 : [C \X]
B⇒ [D] X:A ∈ Σ

Σ; ∆ ` 〈Xz → e,Θ〉 : [C]
B⇒ [D]

Σ; ∆ ` e : A [C] X ∈ C X:A ∈ Σ

Σ; ∆ ` raiseX e : B [C]

Σ; ∆ ` e : A [C] Σ; ∆ ` 〈Θ〉 : [C]
A⇒ [D]

Σ; ∆ ` e handle 〈Θ〉 : A [D]

Fig. 2. Typing rules for exceptions.

to raise. Thus, C v D is defined as C ⊆ D when C and D are viewed as sets
(i.e., when the ordering and repetition of elements are ignored). By support
weakening, e need not raise all the exceptions from its support C, but if an
exception can be raised, then it must be in C. The judgment for exception
handlers has the form

Σ; ∆ ` 〈Θ〉 : [C]
A⇒ [D]

and the handler Θ will be given the type [C]
A⇒ [D] if: (1) Θ can handle

exceptions from the support set C arising in a term of type A, and (2) during
the handling, Θ is allowed to itself raise exceptions only from the support set
D. The typing rules of both judgments are presented in Figure 2, and we
briefly comment on them below.

An exception X can be raised only if it is accounted for in the support.
Thus the rule for raise requires X ∈ C. The term raiseX e changes the flow of
control, by passing e to the nearest handler. Because of that, the environment
in which this term is encountered does not matter; we can type raiseX e by
any arbitrary type B. In the rule for handle, the type and the support of the
expression e must match the type and the domain support of the handler Θ.
The exception handler 〈 〉 only propagates whichever exceptions it encounters.
Thus, if it is supplied an expression of support C it will produce an expression
of the same support. To maintain the support weakening property, we allow
the range support D of an empty handler to be a superset of C. Notice that
the empty support handler may be assigned an arbitrary type A. The rule
for nonempty exception handlers simply prescribes inductively checking each
of the exception patterns in the handler. The type of each pattern variable z
must match the type of the corresponding exception; this is the type of the
value that the exception will be raised with. The handling terms e must all
have the same type B, which would also be the type assigned to the handler

16

Nanevski

itself.

Example 5.2 The function tail below computes a tail of the argument in-
teger list, raising an exception EMPTY:unit if the argument list is empty. The
function length uses tail to compute the length of a list. Note that the
range type of tail is � EMPTYintlist. This is required because the body of
tail may raise an exception, and, as explained in the previous section, all the
effects in function bodies must be boxed.

- choose (νEMPTY: unit.

let fun tail (xs : intlist) : � EMPTYintlist =

(case xs

of nil => box (raise EMPTY ())

| x::xs => box xs)

fun length (xs : intlist) : int =

(1 + length (unbox (tail xs)))

handle <EMPTY z -> 0>

in

length [1,2,3,4]

end);

val it = 4;

Before we proceed to describe the operational semantics of the exception
calculus, let us outline some of its properties and how they relate to other
treatments of exceptions in functional languages.

First of all, exceptions in our calculus are second class. They are not
values and cannot be bound to variables. Correspondingly, exceptions must
be explicitly raised; raising a variable exception is not possible. Aside from
this fact, when local exceptions are concerned (i.e., exceptions which do not
originate from a function call, but are raised and handled in the body of the
one and the same function), our calculus very much resembles Standard ML
[19]. In particular, exceptions can be raised, and then handled, without forcing
any changes to the type of the function. It is only when we want the function
to propagate an exception so that it is handled by the caller, that we need to
specifically mark the range type of that function with a �-type.

It is also instructive to compare our calculus with the monadic formulation
of exceptions. To that end, we recall the monadic program presented in the
introduction section, where we assume that f : int⇒©int.

handle (let comp x1 = f(1)

comp x2 = f(2)

in

comp (x1 + x2)

end) (λv. v) (λexn. 0)

The program adds the results of f(1) and f(2). If the evaluation of any of the

17

Nanevski

two function applications raises an exception, the overall computed result is
zero.

In our calculus of exceptions, the equivalent of the above program may be
written in several ways, depending on the evaluation order that the program-
mer may wish to specify. For example, let us assume that X:E is an exception
name, and that f : int→ �Xint. Then the behavior of the previous monadic
program is exhibited by the following program in the calculus of exceptions.

(let val x1 = unbox f(1)

val x2 = unbox f(2)

in

x1 + x2

end) handle <X exn -> 0>

However, the computations obtained by f(1) and f(2) are independent
of each other, so there is no need to first evaluate and unbox f(1) and then
evaluate and unbox f(2). For example, we could write the following program
that computes the same results.

let box u1 = f 1

box u2 = f 2

in

(u1 + u2) handle <X exn -> 0>

end

The first two let box branches of this program evaluate the expressions f(1)
and f(2) in that order to obtain boxed computations box e1 and box e2, but
they do not evaluate e1 and e2. The computations e1 and e2 are substituted
for u1 and u2, and only then is the execution of (e1 + e2) attempted, in the
order specified by the operational semantics of addition. Following a similar
idea, an even more compact way to compute the sum of f(1) and f(2) is given
simply as

(unbox f(1) + unbox f(2)) handle <X exn -> 0>

As a conclusion, our calculus of exceptions allows programs that are un-
committed about the evaluation order of its expressions, when these expres-
sions do not depend on each other. The evaluation order is eventually deter-
mined by the operational semantics, but it is not necessary to make this order
explicit in the program.

Note that the modal formulation of exceptions may also benefit efficiency.
Because we only consider for evaluation those expressions with empty sup-
port, the exceptional computation boxed in the expression e : �XA will only
be evaluated within the scope of some handler for X. As a consequence of
the progress theorem (Theorem 4.9), this evaluation can only terminate with
a value, and cannot result with an unhandled exception. This contrasts the
monadic calculus of exceptions where unhandled exceptions are given the sta-
tus of values (as explained in the introduction), and this incurred the need for

18

Nanevski

tagging and tag checking. In the modal case, raised unhandled exceptions are
not values of the modal type, so there is no need for tagging.

The operational semantics of the exception calculus is a simple extension
of the semantics of the core fragment. The evaluation judgment has the same
form

Σ, e 7−→ Σ′, e′

We only need to extend the syntactic categories of evaluation contexts and
redexes, and define primitive reductions for the new redexes.

Evaluation contexts E ::= . . . | raiseX E | E handle 〈Θ〉

Pure contexts P ::= [] | P e | v P | let box u = P in e |

choose P | raiseX P

Redexes r ::= . . . | v handle 〈Θ〉 | P [raiseX v] handle 〈Θ〉

We have already explained that each exception handler can handle all excep-
tions. It is only that some exceptions are handled in a specified way, while
others are handled by simple propagation. This will simplify the operational
semantics somewhat, because in order to find the handler capable of han-
dling a particular raise we only need to find the nearest handler preceding
this raise. For that purpose, we select a special subclass of pure evaluation
contexts, which are pure in the sense that they do not contain any exception
handlers acting on the hole of the context. It can easily be shown that each
evaluation context E is either pure, or there exist unique evaluation context
E ′ and pure context P ′, such that E = E ′[P ′ handle 〈Θ〉].

The primitive reduction on the new redexes follows.

Σ, v handle 〈Θ〉 −→ Σ, v

Σ, P [raiseX v] handle 〈Θ〉 −→ Σ,Θ(X)(v)

The first reduction exploits the fact that values are exception free, and there-
fore simply fall through any handler. The second reduction chooses the closest
handler for any particular raise. It also requires that only values be passed
along with the exceptions; the operational semantics demands that before an
exception is raised, its argument must be evaluated. If it so happens that the
evaluation of the argument raises another exception, this later one will take
precedence and actually be raised. This is already illustrated in the first term
from Example 5.1, where it is the exception Y which is raised and eventually
handled.

The structural properties and the type soundness of the core fragment
readily extend to the exception calculus. Here we only list some specific ad-
ditional lemmas.

19

Nanevski

Lemma 5.3 (Handler substitution principle) If Σ; ∆ ` e1 : A [C] and

Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]
B⇒ [D], then Σ; ∆ ` 〈[e1/u]Θ〉 : [D′]

B⇒ [D]

Lemma 5.4 (Unique decomposition) For every expression e, either:

(i) e is a value, or

(ii) e = P [raiseX v], for a unique pure context P , or

(iii) e = E[r] for a unique evaluation context E and a redex r.

The calculus satisfies the same preservation and progress theorems of the
core fragment.

6 Conclusions, related and future work

In this paper, we have used the necessitation type operator � from the modal
logic CS4 to internalize exceptional computations. In modal logic, the opera-
tor � corresponds to universal quantification, so that �A is true if and only
if A is true at all possible worlds. The application to exceptions is based on
the following observation: a computation of type A that may raise exceptions
from the set C, can be viewed as executing – without getting stuck – under all
possible handlers for the effects in C. This statement specifies universal quan-
tification over handlers, bounded by the support C. We adopt that handlers
correspond to worlds in modal logic, and thus a described effectful computa-
tion can be typed with a bounded universal type �CA. We also point out
that � is usually categorically modeled by a comonad, rather than a monad,
as explored in [17,1,3].

Our formulation of exceptions have certain advantages over the monadic
representation of exceptions [21,34]. As a first distinction, the modal calculus
allow programs that are uncommitted about the evaluation order of their
subexpressions, when these subexpression do not really depend on each other.
The evaluation order is eventually determined by the operational semantics,
but it is not necessary to make this order explicit in the program. As a second
distinction, monadic representation of exceptions treats raised but not handled
exceptions as values, and thus forces tagging and run-time tag checking. This
is avoided in the modal setting, and may improve the efficiency of exceptional
computations.

There is also an extensive literature on the non-monadic treatment of ex-
ceptions and effects in general in the style of type-and-effect systems. We
just list some of the representative papers here [11,18,14,13,30,31,32]. The
approach usually taken by type-and-effect systems is to extend the language

with a type of effectful functions A
C→ B. Here, C is a set of effects that the

evaluation of the function body may cause. The characteristic typing rules

20

Nanevski

are usually a variation on the following.

Σ; (∆, x:A) ` e : B [C]
(∗)

Σ; ∆ ` λx:A. e : A
C→ B []

Σ; ∆ ` e1 : A
C→ B [D1] Σ; ∆ ` e2 : A [D2]

(∗∗)
Σ; ∆ ` e1 e2 : B [C,D1, D2]

It is interesting here to draw a parallel between the operational behavior
of the modal constructors in our language, and that of λ-abstraction in type-
and-effect systems. Both constructs suspend the evaluation of their bodies,
so one may view box e in the modal system as somehow corresponding to
λx:1. e (where x 6∈ fv(e)) in the type-and-effect systems. Does this similarity
indicate that modal constructs are perhaps superfluous and may be removed
in favor of functional abstraction?

The answer to the above question is negative, as the import of the modal
constructors in our language is not solely operational. Their main role is
not to suspend the evaluation of expressions, but to internalize the notion of
effectful computation. For example, note that the rules (*) and (**) are not
locally complete, and therefore are not logically justified. The local expansion

of e : A
C→ B [D] is given as

e : A
C→ B [D] =⇒E λx. e x : A

C,D→ B

and the expression e has a different type and support from its expansion. To
contrast this, local expansion in the modal calculus of exceptions preserves
types and supports, as can easily be checked from the equation below.

e : �CA [D] =⇒E let box u = e in box u

In fact, when effectful computations are internalized as a separate semantic
category which is different from functions, then functions and function types
are freed from the responsibility to track effects. Moreover, in such situations
functions are usually required to be pure. This is the case in our modal calculus
of exceptions, but is also true of the monadic λ-calculus [21,33]. In both calculi,
a function body may contain an effect only if the effect is encapsulated by a
computation-forming construct. And in both calculi, the range type of such a
function will be a computation type (monadic type in the monadic calculus,
and a modal type �CA in the modal calculus).

A treatment of exceptions in Haskell is considered by Peyton Jones et al.
in [26]. It is interesting that this paper does not use the exception monad in
order to extend the underlying language, but rather implements imprecise ex-
ceptions. With imprecise exceptions, the program is not guaranteed to always

21

Nanevski

report the same exception that would be encountered by a straightforward
sequential execution. In this calculus, an exceptional expression evaluates to
an exceptional value, which has a whole set of possible exceptions associated
with it. The associated exceptions are the ones that the expression may have
potentially raised. Informally, this associated exception set compares to our
notion of support.

At run time, of course, it is not a whole set of exceptions that an evaluation
of an expression returns. What is returned is the first expression out of this
set, that got raised. It is important that the returned exception may change
in different compilations and runs, because the optimizations performed at
different compilations may result with different order of evaluation. Obviously,
the semantics of the calculus cannot depend on optimizations, so it assumes
that the returned exception is chosen non-deterministically out of the possible
set. This also has a parallel in our modal calculus, which would have been non-
deterministic except for the operational semantics from Sections 4 and 5. Our
operational semantics only resolves the non-determinism in choosing which
exception from a set of possibilities (bounded by the support) should be raised,
and thus resolves which value is eventually returned by the computation. But,
the operational semantics is not needed for serializing a pair of exceptional
computations, because exceptional computations cannot interfere to change
each others results.

Another exception calculus is presented by de Groote in [6]. It is a call-
by-value calculus which uses separate binding mechanisms to introduce ex-
ceptions into the computation. However, because of the lack of modal or
monadic types, it cannot enforce that values of the language are effect-free.
In the specific cases when values turn out to be effect-free, the calculus im-
plements the Standard ML exception mechanism. This paper also discusses
the logical content of exceptions, and relationship with classical logic. The
exception mechanism of Java relates to our calculus as well, as Java methods
must be labeled by the exceptions they can raise [12]. We also refer to sev-
eral works on the catch-and-throw calculi, which can be viewed as a specific
simplification of exceptions [22,15]. These calculi also do not consider a type
constructor for exceptional computations, and thus must restrict the way ex-
ceptions are introduced, propagated and handled. In particular, the handler
for any particular exception must be determined statically; it is the nearest
handler whose scope encloses the point of raising at the time of the definition
of the program, rather than at run time.

We represent exceptions in the calculus by names. Names are labels that
can be dynamically introduced into the calculus, and are subject to a typing
discipline which ensures that no name escapes the scope of its introducing
binder. That modal necessity can be very naturally extended with the notion
of names was argued in [23]. The calculus from that paper is a direct precursor
to the effect system we presented here. It is motivated by the work of Pitts
and Gabbay on Nominal Logic and FreshML [29,28] which introduce names

22

Nanevski

as urelements of Fraenkel-Mostowski set theory.

Comonads have also been considered previously for purposes of modeling
intensional computations [4], and for representing effectful computations that
may depend on the run-time environment, but do not change it [16]. The cited
papers, however, do not make the connection with modal logic and exception
handling.

Finally, practical programming with our system may be hampered by the
verbosity of support annotations on types and the fact that the effect instances
are second-class object in the calculus. Therefore, we will need to investigate
the questions of type and support inference and develop new abstraction mech-
anism which can hide the unwanted support and result in a more practical
language (perhaps using support polymorphism [23]). The system presented
here is logically motivated and fully explicit about the support of terms, and
is therefore a solid theoretical basis for such investigations.

Acknowledgments The author would like to thank Frank Pfenning for the
many advices regarding the research presented here, and Bob Harper for the
numerous discussions about effects.

References

[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke
semantics for Constructive S4 modal logic. In L. Fribourg, editor, International
Workshop on Computer Science Logic, CSL’01, volume 2142 of Lecture Notes
in Computer Science, pages 292–307, Paris, 2001. Springer.

[2] P. N. Benton, G. M. Bierman, and V. de Paiva. Computational types from a
logical perspective. Journal of Functional Programming, 8(2):177–193, March
1998.

[3] G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic. Studia
Logica, 65(3):383–416, 2000.

[4] S. Brookes and S. Geva. Computational comonads and intensional semantics.
In M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors, Application of
Categories in Computer Science, volume 177 of London Mathematical Society
Lecture Notes, pages 1–44. Cambridge University Press, Cambridge, 1992.

[5] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal
of the ACM, 48(3):555–604, 2001.

[6] P. de Groote. A simple calculus of exception handling. In M. Dezani-Ciancaglini
and G. Plotkin, editors, Typed Lambda Calculi and Applications, volume 902 of
Lecture Notes in Computer Science, pages 201–215. Springer, 1995.

[7] M. Fairtlough and M. Mendler. Propositional lax logic. Information and
Computation, 137(1):1–33, 1997.

[8] A. Filinski. Representing monads. In Symposium on Principles of Programming
Languages, POPL’94, pages 446–457, Portland, Oregon, 1994.

23

Nanevski

[9] A. Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University, 1996.

[10] A. Filinski. Representing layered monads. In Symposium on Principles of
Programming Languages, POPL’99, pages 175–188, San Antonio, Texas, 1999.

[11] D. K. Gifford and J. M. Lucassen. Integrating functional and imperative
programming. In Conference on LISP and Functional Programming, pages
28–38, Cambridge, Massachusetts, 1986.

[12] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1997.

[13] P. Jouvelot and D. Gifford. Algebraic reconstruction of types and effects. In
Symposium on Principles of Programming Languages, POPL’91, pages 303–
310, Orlando, Florida, 1991.

[14] P. Jouvelot and D. K. Gifford. Reasoning about continuations with control
effects. In Conference on Programming Language Design and Implementation,
PLDI’89, pages 218–226, Portland, Oregon, 1989.

[15] Y. Kameyama and M. Sato. Strong normalizability of the non-deterministic
catch/throw calculi. Theoretical Computer Science, 272(1–2):223–245, 2002.

[16] R. B. Kieburtz. Codata and comonads in Haskell. Unpublished. Available from
http://www.cse.ogi.edu/~dick, 1999.

[17] S. Kobayashi. Monad as modality. Theoretical Computer Science, 175(1):29–74,
1997.

[18] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Symposium
on Principles of Programming Languages, POPL’88, pages 47–57, San Diego,
California, 1988.

[19] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[20] E. Moggi. Computational lambda-calculus and monads. In Symposium on
Logic in Computer Science, LICS’89, pages 14–23, Asilomar, California, 1989.

[21] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[22] H. Nakano. A constructive formalization of the catch and throw mechanism. In
Symposium on Logic in Computer Science, LICS’92, pages 82–89, Santa Cruz,
California, 1992.

[23] A. Nanevski. Meta-programming with names and necessity. In International
Conference on Functional Programming, ICFP’02, pages 206–217, Pittsburgh,
Pennsylvania, 2002. A significant revision is available as a technical report
CMU-CS-02-123R, Computer Science Department, Carnegie Mellon University.

[24] A. Nanevski. A modal calculus for effect handling. Technical Report CMU-
CS-03-149, Computer Science Department, Carnegie Mellon University, June
2003.

24

Nanevski

[25] A. Nanevski. Functional Programming with Names and Necessity. PhD thesis,
Computer Science Department, Carnegie Mellon University, Aug. 2004.

[26] S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics
for imprecise exceptions. In Conference on Programming Language Design and
Implementation, PLDI’99, pages 25–36, Atlanta, Georgia, 1999.

[27] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001.

[28] A. M. Pitts. Nominal logic: A first order theory of names and binding.
In N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer
Software, volume 2215 of Lecture Notes in Computer Science, pages 219–242.
Springer, 2001.

[29] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction, volume 1837 of Lecture Notes in
Computer Science, pages 230–255. Springer, 2000.

[30] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference.
Journal of Functional Programming, 2(3):245–271, 1992.

[31] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and
Computation, 111(2):245–296, 1994.

[32] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[33] P. Wadler. The essence of functional programming. In Symposium on Principles
of Programming Languages, POPL’92, pages 1–14, Albequerque, New Mexico,
1992.

[34] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, volume 925 of Lecture Notes in
Computer Science, pages 24–52. Springer, 1995.

[35] P. Wadler. The marriage of effects and monads. In International Conference on
Functional Programming, ICFP’98, pages 63–74, Baltimore, Maryland, 1998.

[36] P. Wickline, P. Lee, and F. Pfenning. Run-time code generation and Modal-
ML. In Conference on Programming Language Design and Implementation,
PLDI’98, pages 224–235, Montreal, Canada, 1998.

[37] P. Wickline, P. Lee, F. Pfenning, and R. Davies. Modal types as staging
specifications for run-time code generation. ACM Computing Surveys, 30(3es),
1998.

[38] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

25

	Introduction
	Modal -calculus
	Names as markers for effects
	Operational semantics
	Exceptions
	Conclusions, related and future work
	References

