A modal foundation for functional programming with effects

Aleksandar Nanevski
Computer Science Department, Carnegie Mellon University

IT University, Copenhagen
September 01, 2003
Functional programming

Defining characteristics:

- Program == mathematical function relating input and output
- Types == specification of domain and range (e.g., \(f: A \rightarrow B \))
- Support for code structuring and reuse:
 - function composition
 - higher-order functions (i.e., take other functions as input)
- Functions == basic building blocks for modular programming (in the small)
- Types == statically enforced interfaces
Impure functional programming

- Partially abandons mathematical nature of function
 - functions not only compute values, but also exact *effects* on the environment
- Justified by tremendous increase in expressiveness; in fact, absolutely essential for practical programming
- Example effects:
 - input/output
 - assignment to state
 - control flow changes:
 - exceptions, catch/throw, continuations
Pure functional programming

If we adhere to the mathematical ideal of function, then:

- Functions *only* compute values
- Prototypical example: λ-calculus
- Strong connection with logic

 programs \equiv proofs in logic of types

- Consequence:
 - types express properties of programs (type safety)
 - easy to reason about programs
 - ordering of program steps is irrelevant
 - flexible program transformation and optimization
Problems with effects

- Adding effects breaks connection with logic
 - types express less accurate program properties
 - reasoning about programs becomes hard
 - as does program transformation and optimization
- There’s more...
Problems with effects

- Nature of effects is not well understood, resulting in:
 - repeated or partial functionality of constructs
 - declaring new exceptions vs. allocating memory vs. declaring destination labels for jumps
 - allocations of only *initialized* memory
 - non-orthogonal and even inconsistent extensions
 - breaks program/type relationship
 - comparing effects very hard
 - how to combine exceptions with continuations?
 - how to relate destructive and non-destructive state update?
Integrating pure and impure

- We require a framework for representing effects, which is:
 - Uniform
 - common mechanisms for common effect features
 - Expressive
 - various aspects of various effects
 - Logical
 - types express effect properties of programs
- Many frameworks were proposed, with various degrees of simplicity, expressiveness and adherence to requirements
- Lot of space for improvements...
A framework for representing effects, with:

- **Uniformity**
 - exceptions, catch/throw, composable continuations, state

- **Expressiveness**
 - distinguish between global and handleable effects
 - dynamic generation of new effect instances

- **Logicality**
 - constructive modal logic $S4 + names$
Outline

- Introduction ✓
- Modal treatment of state
 - names as memory locations
 - modal types for state
- Modal treatment of control effects
- Categorical structure of modalities
- Related and future work
Names

- A.k.a. : labels, atoms, nonces, symbols, tags, indeterminates
- Names stand for particular locations
- Terms
 \[e ::= x \mid \lambda x. \ e \mid e_1 \ e_2 \mid X \mid \ldots \]
- Important:

 names are generated dynamically
- Type system enforces discipline in name generation and propagation
We associate expression \(e \) with its type \(A \)

\[\Sigma; \Delta \vdash e : A \]

- \(\Sigma \) : types for names
- \(\Delta \) : types for variables
Type system

- We associate expression e with its type A and support C

$$\Sigma; \Delta \vdash e : A[C']$$

- Σ : types for names
- Δ : types for variables
- Support == set of names/locations that e may read
- Pure expressions == empty support
Explicit substitutions

- Reading *uninitialized* location == extend support
- Writing into a location == shrink support
- Locations written using explicit substitutions

 Substitutions $\Theta ::= \cdot \mid (\Theta, X \rightarrow e)$

 Terms $e ::= \ldots \mid \langle \Theta \rangle e$

- Scope of a substitution is delimited

 $\langle X \rightarrow 1 \rangle(\langle X \rightarrow 2 \rangle X^2, X^2)$

- Substitutions model *non-destructive* update
Let $X, Y : int$ be uninitialized integer locations

<table>
<thead>
<tr>
<th>term</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^2 + Y^2$</td>
<td>X, Y</td>
</tr>
<tr>
<td>$(X \rightarrow 1)(X^2 + Y^2)$</td>
<td>Y</td>
</tr>
<tr>
<td>$(X \rightarrow 1, Y \rightarrow 2)(X^2 + Y^2)$</td>
<td>empty</td>
</tr>
<tr>
<td>$(X \rightarrow 1)((X \rightarrow 2)X^2, X^2)$</td>
<td>empty</td>
</tr>
</tbody>
</table>

Type safety: only initialized locations are read from
• Let $X, Y : int$ == uninitialized integer locations

<table>
<thead>
<tr>
<th>term</th>
<th>support</th>
<th>evaluates to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^2 + Y^2$</td>
<td>X, Y</td>
<td>X, Y</td>
</tr>
<tr>
<td>$(X \rightarrow 1)(X^2 + Y^2)$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$(X \rightarrow 1, Y \rightarrow 2)(X^2 + Y^2)$</td>
<td>empty</td>
<td>5</td>
</tr>
<tr>
<td>$(X \rightarrow 1)(\langle X \rightarrow 2 \rangle X^2, X^2)$</td>
<td>empty</td>
<td>$(4,1)$</td>
</tr>
</tbody>
</table>

• Type safety: only initialized locations are read from
Dynamic name generation

- At run time we need to allocate new memory
- Two new constructs:

 Terms \(e ::= \ldots | \nu X:A. \ e | \text{choose } e \)

- `declare` fresh name \(X:A \) in \(e == \nu X:A. \ e \)
- `allocate` fresh name == `choose` \(e \)
- Example: generate new memory cell \(X \)

 \[
 \text{choose} (\nu X:\text{int.} \\
 \langle X \rightarrow 10 \rangle X)
 \]
Name declaration and allocation

- Important:
 - \texttt{choose (\nu X. e)} allocates \texttt{X} to be used \textit{exclusively} in \texttt{e}
 - type system must prevent \texttt{X} from escaping, otherwise type soundness fails
Name declaration and allocation

- Important:
 - `choose (\nu X. e)` allocates `X` to be used *exclusively* in `e`
 - type system must prevent `X` from escaping, otherwise type soundness fails

- Example: following term steps to `X` and then gets stuck

```plaintext
let val y = choose (\nu X:int. X) in y
```
Name declaration and allocation

- Important:
 - \texttt{choose (\nu X. \ e) allocates X to be used exclusively in e}
 - type system must prevent X from escaping, otherwise type soundness fails

- Example: following term steps to X and then gets stuck

\[
\text{let val } y = \text{choose (\nu X : \text{int. } X) in } y
\]

- Requirement: X is not in support of e
 - all instances of X in e must be initialized
Outline

- Introduction ✓
- Modal treatment of state
 - names as memory locations ✓
 - modal types for state
- Modal treatment of control effects
- Categorical structure of modalities
- Related and future work
How to treat effects inherited from function arguments?

Hint comes from logic:
– types should specify program behavior

Therefore:

effectful computations should be marked by the type system
Requirements of state operations

- Operations on state:
 - allocation of memory cells
 - reading from a location
 - writing into a location

Writes must be ordered, so that the final value stored into a memory location is well-defined. Reads between two consecutive writes can be executed out of order. If memory not initialized upon allocation:
- a read allowed only on initialized locations
Operations on state:
- allocation of memory cells
- reading from a location
- writing into a location

Writes must be ordered, so that the final value stored into a memory location is well-defined.

Reads between two consecutive writes can be executed out of order.

If memory not initialized upon allocation:
- a read allowed only on initialized locations
Separating the types

- Can we ascribe different types to different state operations?
- How should the types interact?
- Is there a logic behind such a system?
Logical analogy

- Assume
 - E_1 is a computation reading from location $X : A$ before returning a value of type B
 - E_2 is a computation writing into location $X : A$ before returning a value of type B
- E_1 is a function from store to values
- E_2 pairs up a store and a value
- Conclusion:
 - Reading $==$ universal quantification
 - Writing $==$ existential quantification
Modal logic

- Reasoning about properties of nodes in a directed graph
- Modal operators \square and \Diamond
- \square == modal *necessity*

 proposition $\square A$ is true at a node w iff
 A is true at *all* nodes accessible from w

- \Diamond == modal *possibility*

 proposition $\Diamond A$ is true at a node w iff
 A is true at *some* node accessible from w
• type $\ Diamond_c A$

 \equiv

 \textit{suspended} computation of type A possibly reading locations in C

• type $\Box_c A$

 \equiv

 \textit{suspended} computation of type A writing into locations listed in C
Typing necessity

- Terms \(e ::= \ldots | \text{box } e | \text{let box } u = e_1 \text{ in } e_2 \)
- Boxed term is “packaged” to be “shipped” further
- Support lists dereferenced locations
- \(\Box \)-introduction

\[
\Sigma; \Delta \vdash e : A[D] \\
\Sigma; \Delta \vdash \text{box } e : \Box DA[\]
\]

- Notice:
 - boxed expression itself is effect-free
- boxed expressions are not evaluated
• Using a boxed computation: let-box construct
• let-box == unwrap the package, but do not peek into it
• Examples:

\[
\text{let box } u = \text{box } e_1 \text{ in } e_2 \quad \mapsto \quad [e_1/u]e_2
\]
\[
\text{let box } u = \text{box } (1 + 1) \text{ in } (\text{box } u) \quad \mapsto \quad \text{box } (1 + 1)
\]
\[
\text{let box } u = \text{box } (1 + 1) \text{ in } u \quad \mapsto \quad 1 + 1 \quad \mapsto \quad 2
\]

• Notice: binding to \(u \) is “by-name”
• □-elimination

\[
\Sigma; \Delta \vdash e_1 : \square_D A \quad \Sigma; (\Delta, u:A[D]) \vdash e_2 : B
\]

\[
\Sigma; \Delta \vdash \text{let box } u = e_1 \text{ in } e_2 : B
\]

• Notice:
 – context \(\Delta \) types “unwrapped” expressions
 – \(\Delta \) stores the type and support of variables
- □-elimination

\[
\Sigma; \Delta \vdash e_1 : \square_D A [C] \quad \Sigma; (\Delta, u : A[D]) \vdash e_2 : B [C] \\
\Sigma; \Delta \vdash \text{let box } u = e_1 \text{ in } e_2 : B [C]
\]

- Notice:
 - context \(\Delta \) types “unwrapped” expressions
 - \(\Delta \) stores the type and support of variables
 - Conclusion inherits support of the premises
Representation of store

- Recall: \square_C == universal quantification over store of signature C
- Explicit substitutions assign values to locations

$$\langle X_1 \to e_1, \ldots, X_n \to e_n \rangle$$

- Application of explicit substitution
 - specialization of a universal quantifier
 - non-destructive update
Example

let fun f (y : int) : □_X int = box (X + y)
 box u = f(1)
in
 ⟨X → 0⟩
 (⟨X → 1⟩ u, u)
end

- range type of f marks the effect of reading X
- variable u “unpacked” under two different substitutions
- computation is effectful, but final result is pure
let fun f (y : int) : □_X int = box (X + y)
 box u = f(1) == box (X + 1)
in
 ⟨X → 0⟩
 (⟨X → 1⟩ u, u)
end

- range type of f marks the effect of reading X
- variable u “unpacked” under two different substitutions
- computation is effectful, but final result is pure
let fun f (y : int) : □X int = box (X + y)
 box u = f(1) == box (X + 1)

end

- range type of \(f \) marks the effect of reading \(X \)
- variable \(u \) “unpacked” under two different substitutions
- computation is effectful, but final result is pure
let fun f (y : int) : \(X\) int = box (\(X + y\))
 box u = f(1) == box (\(X + 1\))
in
 \(\langle X \rightarrow 0 \rangle\)
 (\(\langle X \rightarrow 1 \rangle u, u\)) == (2, 1)
end

- range type of \(f\) marks the effect of reading \(X\)
- variable \(u\) “unpacked” under two different substitutions
- computation is effectful, but final result is pure
Summary of □-fragment

- □_C == computation reading from store C
 - universal quantification over substitutions for names in C
 - substitution application == specialization of universal quantifier
- Location update by explicit substitutions is non-destructive
- Only initialized locations can be dereferenced
- Type safety: pure terms do not get stuck
- Implements a type-safe calculus of dynamic binding
Typing possibility

- New judgment

\[\Sigma; \Delta \vdash f \div_D A \]

- Meaning of the judgment:
 1. \(f \) writes into locations \(D \), and
 2. returns an \(A \) value

- Terms \(e ::= \ldots \mid \text{dia} \, f \)

- Judgment is internalized using \(\diamond \)

\[
\begin{align*}
\Sigma; \Delta \vdash f \div_D A \\
\Sigma; \Delta \vdash \text{dia} \, f : \diamond_D A
\end{align*}
\]
Typing possibility

- New judgment
 \[\Sigma; \Delta \vdash f \xrightarrow{D} A[C] \]

- Meaning of the judgment:
 1. \(f \) writes into locations \(D \), and
 2. returns an \(A \) value

- Terms \(e ::= \ldots \mid \text{dia } f \)

- Judgment is internalized using \(\Diamond \)
 \[\Sigma; \Delta \vdash f \xrightarrow{D} A[C] \]
 \[\Sigma; \Delta \vdash \text{dia } f : \Diamond_D A[C] \]
Typing possibility

- Recall: \Diamond is an existential quantifier over store (i.e. over explicit substitutions)
- Frames $f ::= [\Theta, e] \mid \text{let } \text{dia } x = e \text{ in } f$
- Canonical frame is a pair: [explicit substitution, term]

$$\Sigma; \Delta \vdash e_1 : A \quad \Sigma; \Delta \vdash e_2 : B[X] \quad X:A \in \Sigma$$

$$\Sigma; \Delta; \vdash [(X \rightarrow e_1), e_2] \div_X B$$

- Explicit substitution $\langle X \rightarrow e_1 \rangle ==$ to be written into the store
- Term $e_2 ==$ computation in the new store
Typing possibility

- Elimination form threads the existential

\[
\Sigma; \Delta \vdash e : \bigtriangleup_C A \quad \Sigma; (\Delta, x:A) \vdash f \div_D B [C]
\]

\[\Sigma; \Delta \vdash \text{let dia } x = e \text{ in } f \div_D B\]

- Pairs and let dia are the only proof-terms for the \(\div\) judgment

- Consequences:
 - Computations are explicitly single-threaded
 - Explicit substitution embedded in \(e\) has global scope; it can be implemented destructively
Typing possibility

- Elimination form threads the existential

\[
\Sigma; \Delta \vdash e : \Box_{C'} A [C'] \quad \Sigma; (\Delta, x:A) \vdash f \Downarrow_D B [C]\\
\Sigma; \Delta \vdash \text{let dia } x = e \text{ in } f \Downarrow_D B [C']
\]

- Pairs and let dia are the only proof-terms for the \(\Downarrow \) judgment

- Consequences:
 - Computations are explicitly single-threaded
 - Explicit substitution embedded in \(e \) has global scope; it can be implemented destructively
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y) box u = f(1) in \langle X \rightarrow 0 \rangle (\langle X \rightarrow 1 \rangle u, u) end</td>
<td>let fun f (y) = box (X + y) box u = f(1) in dia dummy = dia [\langle X \rightarrow 0 \rangle, ()] val z = u dia w = dia [\langle X \rightarrow 1 \rangle, u] in [(w, z)] end</td>
</tr>
</tbody>
</table>

- In ◊-fragment, references to u reordered to match their substitutions
Example revisited

In □-fragment, references to u reordered to match their substitutions
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y)</td>
<td>let fun f (y) = box (X + y)</td>
</tr>
<tr>
<td>box u = f(1)</td>
<td>box u = f(1) == box (X + 1)</td>
</tr>
<tr>
<td>in</td>
<td>dia dummy = dia [⟨X → 0⟩, ()]</td>
</tr>
<tr>
<td>⟨X → 0⟩</td>
<td>val z = u == X+1</td>
</tr>
<tr>
<td>(⟨X → 1⟩u, u)</td>
<td>dia w = dia [⟨X → 1⟩, u]</td>
</tr>
<tr>
<td>end</td>
<td>in</td>
</tr>
<tr>
<td></td>
<td>[(w, z)]</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

- In ◊-fragment, references to \(u \) reordered to match their substitutions
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y)</td>
<td>let fun f (y) = box (X + y)</td>
</tr>
<tr>
<td>box u = f(1)</td>
<td>box u = f(1)</td>
</tr>
<tr>
<td>in</td>
<td>== box (X + 1)</td>
</tr>
<tr>
<td>⟨X → 0⟩</td>
<td>dia dummy = dia [⟨X → 0⟩, ()]</td>
</tr>
<tr>
<td>(⟨X → 1⟩u, u)</td>
<td>val z = u == 1</td>
</tr>
<tr>
<td>end</td>
<td>dia w = dia [⟨X → 1⟩, u]</td>
</tr>
<tr>
<td></td>
<td>in</td>
</tr>
<tr>
<td></td>
<td>[(w, z)]</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

- In ◊-fragment, references to \(u\) reordered to match their substitutions.
In \(\Box \)-fragment, references to \(u \) reordered to match their substitutions
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
</table>
| let fun f (y) = box (X + y)
box u = f(1)
in
⟨X → 0⟩
(⟨X → 1⟩u, u)
end | let fun f (y) = box (X + y)
box u = f(1)
== box (X + 1)
dia dummy = dia [⟨X → 0⟩, ()]
val z = u
== 1
dia w = dia [⟨X → 1⟩, u]
== [⟨X→1⟩,2]
in
[(w, z)]
end |

- In ◊-fragment, references to u reordered to match their substitutions
In \square-fragment, references to u reordered to match their substitutions

<table>
<thead>
<tr>
<th>\square-fragment</th>
<th>\Diamond-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y) box u = f(1) in \langle X \rightarrow 0 \rangle \langle X \rightarrow 1 \rangle u, u \rangle end</td>
<td>let fun f (y) = box (X + y) box u = f(1) == box (X + 1) dia dummy = dia [\langle X \rightarrow 0 \rangle, ()] val z = u == 1 dia w = dia [\langle X \rightarrow 1 \rangle, u] == [\langle X \rightarrow 1 \rangle, 2] in [(w, z)] == [(2, 1)] end</td>
</tr>
</tbody>
</table>
Summary of \Diamond -fragment

- $\Diamond_C ==$ computation writing into store C
 - existential quantification over substitutions
- Because of monadic character of \Diamond, the substitutions can be implemented destructively
- When combined with the \Box-fragment, destructive and non-destructive state update coexist
Introduction ✓

Modal treatment of state
- names as memory locations ✓
- modal types for state ✓

Modal treatment of control effects

Categorical structure of modalities

Related and future work
Control effects

- Perform jumps to predetermined points in the program
- Examples: exceptions, catch/throw, continuations
Control effects

- Perform jumps to predetermined points in the program
- Examples: exceptions, catch/throw, continuations
- Names can be used to label jump destinations
- Example with exceptions:

\[(1 + \text{raise}_x 2)\]

\[\text{handle } X x \rightarrow x + 2\]

\[\rightarrow 4\]
Type system for exceptions

- Associate expression e with its type A and support C

 $$\Sigma; \Delta \vdash e : A\ [C']$$

- Support == set of names/exceptions that e may raise
- Pure expressions == empty support
Exception handling

- Raising exceptions == extend support
- Handle exceptions == shrink support

\[
\begin{align*}
\text{Handlers} \quad \Theta & ::= \quad \cdot \mid (\Theta, Xx \to e) \\
\text{Terms} \quad e & ::= \quad \ldots \mid e \ \text{handle} \ \Theta
\end{align*}
\]

- Scope of a handler is delimited

\[
((\text{raise}_x 0) \ \text{handle} \ Xx \to (x + 2), \text{raise}_x 0) \\
\text{handle} \ Xx \to (x, x + 1)
\]
Example: exceptions

- Let $X, Y : int$ == names of integer exceptions

<table>
<thead>
<tr>
<th>term</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{raise}_X 1 + \text{raise}_Y 2$</td>
<td>X, Y</td>
</tr>
<tr>
<td>$(\text{raise}_X 1 + \text{raise}_Y 2)$</td>
<td>Y</td>
</tr>
<tr>
<td>handle $Xx \rightarrow x + 2$</td>
<td>empty</td>
</tr>
<tr>
<td>$(\text{raise}_X 1 + \text{raise}_Y 2)$</td>
<td></td>
</tr>
<tr>
<td>handle $Xx \rightarrow x + 2, Yy \rightarrow y + 3$</td>
<td>empty</td>
</tr>
<tr>
<td>$((\text{raise}_X 0) \text{ handle } Xx \rightarrow (x + 2),$</td>
<td>empty</td>
</tr>
<tr>
<td>$\text{raise}_X 0)$</td>
<td></td>
</tr>
<tr>
<td>handle $Xx \rightarrow (x, x + 1)$</td>
<td></td>
</tr>
</tbody>
</table>

- Type soundness: every raised exception is handled
Example: exceptions

- Let \(X, Y : int \) == names of integer exceptions

<table>
<thead>
<tr>
<th>term</th>
<th>support</th>
<th>evaluates to</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{raise}_X 1 + \text{raise}_Y 2)</td>
<td></td>
<td>(X, Y)</td>
</tr>
<tr>
<td>(\text{raise}_X 1 + \text{raise}_Y 2)</td>
<td></td>
<td>(Y)</td>
</tr>
<tr>
<td>handle (Xx \rightarrow x + 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{raise}_X 1 + \text{raise}_Y 2)</td>
<td></td>
<td>empty 3</td>
</tr>
<tr>
<td>handle (Xx \rightarrow x + 2,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Yy \rightarrow y + 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(((\text{raise}_X 0) \text{ handle } Xx \rightarrow (x + 2)))</td>
<td></td>
<td>empty (0, 1)</td>
</tr>
<tr>
<td>(\text{raise}_X 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>handle (Xx \rightarrow (x, x + 1))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Type soundness: every raised exception is handled
Exception declaration and allocation

- Same constructs as for state:
 - `declare` fresh exception $X:A$ in e == $\nu X:A.\ e$
 - `allocate` fresh exceptions == `choose` e
Exception declaration and allocation

- Same constructs as for state:
 - `declare` fresh exception $X : A$ in $e \equiv \nu X : A. \ e$
 - `allocate` fresh exceptions \equiv `choose` e

- Example: generate new exception DIVZERO

  ```
  choose (\nu\text{DIVZERO}:\text{unit}. \\
  \quad \text{if } y = 0 \text{ then } \text{raise}_{\text{DIVZERO}} () \text{ else } x/y \\
  \quad \text{handle } \text{DIVZERO} \rightarrow 0)
  ```
• Just like with state, we want to internalize exceptional computation
• But, should we use \Box or \Diamond?
Logical analogy

- Just like with state, we want to internalize exceptional computation
- But, should we use \square or \diamond?
- Reformulation:

 computation of type A raising exceptions from the set C

 $\square \Rightarrow$

 \textit{for every} handler for exceptions in C, return value of type A
Modal necessity for exceptions

\[\square_C A \]

\[== \]

computation of type \(A \) possibly raising exceptions in \(C \)

- Handling exceptions == specialization of universal quantifier
- Scope of a handler is delimited
Example

```
let fun f (y : int) : □_X int = box (raise X y)
   box u = f(1)
in
   (u handle X x → 0, u)
end
handle X x → (x + 1, x + 2)
```

- variable `u` “unpacked” in two different environments
- range type of `f` marks the effect of raising `X`
- computation is effectful, but final result is pure
Example

```
let fun f (y : int) : □_X int = box (raise X y)
    box u = f(1)    == box (raise X 1)
in
    (u handle X x → 0, u)
end
handle X x → (x + 1, x + 2)
```

- variable \(u\) “unpacked” in two different environments
- range type of \(f\) marks the effect of raising \(X\)
- computation is effectful, but final result is pure
let fun f (y : int) : □_X int = box (raise X y)
 box u = f(1) == box (raise X 1)
in
 (u handle X x → 0, u) == ((raise X 1) handle X x → 0, raise X 1)
end
handle X x → (x + 1, x + 2)

- variable u “unpacked” in two different environments
- range type of f marks the effect of raising X
- computation is effectful, but final result is pure
let fun f (y : int) : \(X\) int = box (raise X y)

box u = f(1) == box (raise X 1)

in

(u handle X x \(\rightarrow\) 0, u) == (0, raise X 1)

end

handle X x \(\rightarrow\) (x + 1, x + 2)

- variable \(u\) “unpacked” in two different environments
- range type of \(f\) marks the effect of raising \(X\)
- computation is effectful, but final result is pure
Example

let fun f (y : int) : □_X int = box (raise X y)
 box u = f(1) == box (raise X 1)
in
 (u handle X x → 0, u) == (0, raise X 1)
end
handle X x → (x + 1, x + 2) == (2, 3)

• variable u “unpacked” in two different environments
• range type of f marks the effect of raising X
• computation is effectful, but final result is pure
Summary of exceptions

- Exceptions can be modeled by names
- Exceptions are effects with delimited scope
- Handler restores a purity of an exceptional computation
- Consequence:
 - □-fragment of a modal calculus is sufficient for internalizing exceptional computation
- Similar development for catch/throw calculus and for composable continuations
Outline

- Introduction ✓
- Modal treatment of state
 - names as memory locations ✓
 - modal types for state ✓
- Modal treatment of control effects ✓
- Categorical structure of modalities
- Related and future work
Categorical structure of modalities

- \(\Box \) is a comonad

\[
\begin{align*}
 f_1 : & \Box A \rightarrow A = \\
 & \lambda x. \text{let } \text{box } u = x \text{ in } u \\
 f_2 : & \Box A \rightarrow \Box \Box A = \\
 & \lambda x. \text{let } \text{box } u = x \text{ in } \text{box } (\text{box } u) \\
 f_3 : & (A \rightarrow B) \rightarrow \Box A \rightarrow \Box B = \\
 & \lambda x. \lambda y. \text{let } \text{box } u = x \text{ in } \text{let } \text{box } v = y \text{ in } \text{box } (u \; v)
\end{align*}
\]
Categorical structure of modalities

- \Box is a comonad

\[
\begin{align*}
 f_1 : & \Box A \to A = \\
 & \lambda x. \text{let box } u = x \text{ in } u \\
 f_2 : & \Box C A \to \Box \Box C A = \\
 & \lambda x. \text{let box } u = x \text{ in box (box u)} \\
 f_3 : & \Box C (A \to B) \to \Box D A \to \Box C, D B = \\
 & \lambda x. \lambda y. \text{let box } u = x \text{ in let box } v = y \text{ in box (u v)}
\end{align*}
\]

- $\Box C A \to \Box D A \quad C \subseteq D$

- and others...
Categorical structure of modalities

- Need $A \rightarrow \Box A$ to coerce values into computations

- Consider fragment where function arguments are boxed

 $$ (A \rightarrow B)^+ = \Box A^+ \rightarrow B^+ $$

 $$ (\Box A)^+ = \Box A^+ $$

 $$ (\Diamond A)^+ = \Diamond \Box A^+ $$

- \Box still a comonad
Categorical structure of modalities

- ♦ is a monad

\[g_1 : A \to \Diamond A = \lambda x. \text{dia} \ [x] \]
\[g_2 : \Diamond \Diamond A \to \Diamond A = \lambda x. \text{dia} (\text{let dia } y = x \text{ in let dia } z = y \text{ in } [z]) \]
\[g_3 : (A \to B) \to \Diamond A \to \Diamond B = \lambda e_1. \lambda e_2. \text{dia} (\text{let val } u = e_1 \text{ in let dia } x = e_2 \text{ in } [u x]) \]
Categorical structure of modalities

- \Diamond is a monad

\[
g_1 : A \to \Diamond A = \\
\lambda x. \text{dia } [x]
\]

\[
g_2 : \Diamond C \Diamond_D A \to \Diamond_D A = \\
\lambda x. \text{dia (let dia } y = x \text{ in let dia } z = y \text{ in } [z])
\]

\[
g_3 : \Box_C (A \to B) \to \Diamond_D A \to \Diamond_D B = \quad \text{(where } C \subseteq D) \\
\lambda e_1. \lambda e_2. \text{dia (let box } u = e_1 \text{ in let dia } x = e_2 \text{ in } [u x])
\]

- $\Diamond_D A \to \Diamond_C A \quad C \subseteq D$

- and others...
Modal logic with names is a very good system for effects

- uniform
 - state, control effects
- expressive
 - effects with delimited scope == universal quantification == comonad □
 - effects with global scope == existential quantification == monad ◊
 - dynamic effect generation
- simple
 - names, □, ◊
Some related work

- Monads [Moggi ’91, Wadler ’95]
 - formulation of state with no type distinction between reads and writes
 - exceptional computations always tested before use
- Natural deduction for constructive S4 [Pfenning, Davies’99]
- Embedding of monads into modal logic [Kobayashi’97], [Pfenning, Davies’99]
- Categorical models for modal logic [Kobayashi’97], [Bierman, de Paiva’00], [Alechina, Mendler, de Paiva, Ritter’01]
- Nominal logic, FreshML [Pitts, Gabbay’00]
Future work

- Integrating modal types and names into a realistic language
 - I/O effects
 - type and support inference
 - universal and existential abstraction over supports
- First-class effects
- Equational theory
 - also for a call-by-name variant
- Combining effects
 - supports need not be simply sets (e.g. in case of composable continuations, supports are lists)
 - but the framework makes support and its ordering explicit
Modal logic with names is a very good system for effects

- uniform
 - state, control effects
- expressive
 - effects with delimited scope == universal quantification == comonad □
 - effects with global scope == existential quantification == monad ◇
 - dynamic effect generation
- simple
 - names, □, ◇
Categorical structure of modalities

- In constructive S4, □ is a \textit{monoidal comonad} and ◊ is a □-\textit{strong monad}

\[
\begin{align*}
\Diamond A & \Rightarrow A \\
\Box A & \Rightarrow \Box \Box A \\
\Box (A \Rightarrow B) & \Rightarrow \Box A \Rightarrow \Box B
\end{align*}
\]

\[
\begin{align*}
A & \Rightarrow \Diamond A \\
\Diamond \Diamond A & \Rightarrow \Diamond A \\
\Box (A \Rightarrow B) & \Rightarrow \Diamond A \Rightarrow \Diamond B
\end{align*}
\]

- There is no map \(A \Rightarrow \Box A \) from values into comonadic computations
Categorical structure of modalities

- Typing judgment for constructive S4 has two variable contexts:
 \[\Delta; \Gamma \vdash e : A \]

- \(\Gamma \) variables introduced by \(\lambda \)

- \(\Box \) variables introduced by let box

- \(\Box \)-introduction rule erases \(\Gamma \) in the premise
 \[\Delta; \cdot \vdash e : A \]
 \[\Delta; \Gamma \vdash \text{box } e : \Box A \]

- \(\Diamond \)-elimination rule erases \(\Gamma \) in the premise
 \[\Delta; \Gamma \vdash e : \Diamond A \quad \Delta; x : A \vdash f \div B \]
 \[\Delta; \Gamma \vdash \text{let dia } x = e \text{ in } f \div B \]
Categorical structure of modalities

- We used a fragment where function arguments are assumed boxed
- Interpretation \((A \rightarrow B)^+ = \Box A^+ \Rightarrow B^+
\)
 \[(\Box A)^+ = \Box A^+ \]
 \[(\Diamond A)^+ = \Diamond \Box A^+ \]
- Provides coercion \(A \rightarrow \Box A\) (i.e., \(\Box A^+ \Rightarrow \Box A^+\))
- \(\Box\) is equal to \(\Box\) (i.e., still a comonad); \(\Diamond\) is a strong monad
Categorical structure of modalities

- We used a fragment where function arguments are assumed boxed
- Interpretation
 \[(A \rightarrow B)^+ = \Box A^+ \Rightarrow B^+\]
 \[(\Box A)^+ = \Box A^+\]
 \[(\Diamond A)^+ = \Diamond \Box A^+\]
- Provides coercion \(A \rightarrow \Box A\) (i.e., \(\Box A^+ \Rightarrow \Box A^+\))
- \(\Box\) is equal to \(\Box\) (i.e., still a comonad); \(\Diamond\) is a strong monad
- Reinterpretation eliminates the need for \(\Gamma\)

\[
\Delta \vdash e : A \quad \Delta \vdash e : \Diamond A \quad \Delta, x : A \vdash f : B
\]

\[
\Delta \vdash \text{box } e : \Box A \quad \Delta \vdash \text{let } \text{dia } x = e \text{ in } f : B
\]
Typing for name generation

- **Irrelevant** implication $A \imp B$
- \imp introduction

\[
(\Sigma, X:A); \Delta \vdash e : B \ [C] \ \ X \notin \text{fn}(A, B, C, \Delta) \\
\Sigma; \Delta \vdash \nu X : A. \ e : A \imp B \ [C]
\]

- Side-condition ensures all uses of X in e are handled or dead code
- \imp elimination

\[
\Sigma; \Delta \vdash e : A \imp B \ [C] \\
\Sigma; \Delta \vdash \text{choose} \ e : B \ [C]
\]
Example

- Assume $X : int == \text{ uninitialized store location}$
- The program writes 0 into X, and then computes with it

  ```
  let dia x = dia [\langle X \rightarrow 0 \rangle, X + 1]
  in
  [x + X]
  end
  ```

 $$\text{val it = } [\langle X \rightarrow 0 \rangle, 1 + X] \div X \hspace{1em} \text{int}$$

- Notice: the result is a closure remembering used store
- Closures are typed with a new judgment