
From Dynamic Binding to State via Modal Possibility

Aleksandar Nanevski
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

aleks@cmu.edu

Abstract

In this paper we propose a typed, purely functional calculus for state
(with second-class locations) in which types reflect the dichotomy
between reading from and writing into the global store. This is in
contrast to the usual formulation of state via monads, where the
primitives for reading and writing introduce the same monadic type
constructor. We hope to argue that making this distinction is useful,
simple, and has strong logical foundations.

Our type system is based on the proof-term calculus for constructive
modal logic S4, which has two modal type operators:

�
for neces-

sity and 3 for possibility. We extend this calculus with the notion of
names (which stand for locations) and generalize to indexed fami-
lies of modal operators (indexed by sets of names). Then, the modal
type

�
CA classifies computations of type A which read from store

locations listed in the set C. The dual type 3CA classifies compu-
tations which first write into the locations from C and than use the
changed store to obtain a value of type A.

There are several benefits to this development. First, the necessita-
tion fragment of the language is interesting in its own: it formulates
a calculus of dynamic binding. Second, the possibility operator 3

is a monad, thus forcing the single-threading of memory writes, but
not of memory reads (as these are associated with

�
). Finally, the

different status of reads and writes gives rise to a natural way of
expressing the allocation of uninitialized memory while also pro-
viding guarantees that only initialized locations are dereferenced.

Categories and Subject Descriptors

D.3.1 [Software]: Programming Languages—Formal Definitions
and Theory

General Terms

Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’03, August 27-29, 2003, Uppsala, Sweden
Copyright 2003 ACM 1-58113-705-2/03/0008 ...$5.00

Keywords

modal lambda-calculus, effect systems, dynamic binding, state

1 Introduction

Dynamic binding in functional programming languages is a concept
by which the value of a certain variable is not fixed statically at the
time the variable is introduced, but is determined dynamically from
the current scope, each time the variable is used.

This characterization makes dynamically bound variables very sim-
ilar to memory locations in an appropriate definition of store. Just
like dynamic variables, the store locations can be changed arbitrary
number of times, and each dereferencing of a location will return
the most recent value.

There is, however, a difference between the two. When a store lo-
cation is changed, that change is supposed to have global scope; it
“holds” until the end of the program, or at least until something else
is written into the location. When a dynamic variable is changed,
that change has only local scope. Once this scope is exited, the old
value of the dynamic variable is restored. In this sense, a location
in the global store can be described as a dynamically bound vari-
able which is updated by assignments whose scope can never be
exited. Conversely, a dynamic variable is a memory location which
is updated in a non-destructive way.

Following this intuition, we present in this paper a typed calculus
capable of encoding both dynamic binding and global store at the
same time. It is based on the modal λ-calculus for a variant of
the intuitionistic S4 modal logic [23], which we extend with the
concept of names. Names are labels that can be dynamically in-
troduced into the computation and we will use them as a theoretic
abstraction of memory locations. In this paper, names are explicitly
second-class; they cannot be passed as function arguments, so all
the memory operations must be over explicitly given locations.

As we have already observed in another paper [21], the operator
�

of modal necessity, in combination with names, can be used to
model effects that have local scope and can be handled. When this
system is instantiated to treat names as memory locations, name
dereference becomes an effect which is handled by corresponding
name initializations. For example, similar to indexed monads in
[31], we will have a type

�
CA which classifies suspended com-

putations of type A which, in the course of eventual executions,
may read from the memory locations whose names are listed in
the set C. Assignment to memory locations is modeled by ex-
plicit substitutions, and a suspended computation reading from C

can be evaluated only in an environment in which all the names
from C have been initialized by some explicit substitution. Be-
cause explicit substitutions have a delimited scope, they can only
represent non-destructive update. Consequently, the obtained sys-
tem models dynamic binding. This fragment is very similar to our
meta-programming calculus from [20], with several important dif-
ferences concerning names and explicit substitutions that make the
distinction between meta-programming and dynamic binding; we
comment on these in Sections 2 and 3.

As already remarked, global store can be obtained from dynamic
binding if the assignments to dynamic variables are single-threaded,
and their scope is extended to the end of the program. A natural way
to achieve this in a modal calculus is to tie the explicit substitutions
to the type of modal possibility (which is a monad). Thus, dually to

�
CA, this will provide us with a type 3CA classifying suspended

computations that write into the memory locations represented by
the names in C.

The obtained nominal modal calculus will therefore be capable of
encoding the following important features related to state: (1) dy-
namic allocation of uninitialized locations which is modeled by the
constructors for introduction of names; (2) non-destructive update
which is modeled by the necessitation fragment of the calculus; (3)
destructive update which is modeled by the possibility fragment of
the calculus; (4) typing guarantees that non-initialized cells will not
be dereferenced.

We believe that this makes our system an interesting contribution to
the theory of monadic calculi for state, as to the best of our knowl-
edge, most monadic calculi for state usually only model destructive
update and allocation of initialized locations, and have not been
used to represent non-destructive update or allocation of uninitial-
ized memory [17, 18, 29, 30, 31, 11, 14].

2 Nominal necessity and dynamic binding

In this section, we briefly outline our calculus for dynamic binding.
It is a specific instantiation of the more general effect calculus from
[21].

The system is based on the proof-term calculus for the necessita-
tion fragment of a variant of modal logic S4 [23]. The idea is to
separate the notion of ordinary variables (which we also refer to as
expression variables) which are statically bound by λ-abstraction,
from the notion of dynamic variables whose values depend on the
context in which they are used. As we outlined in the introduction,
we represent dynamic variables via names. Names are labels which
can be dynamically introduced into the computation via a separate
binding mechanism. Upon the introduction, names are not initial-
ized, and the type system will track the propagation of names in
order to ensure that only initialized names are ever dereferenced.

For that purpose, the type system will feature a family
�

C of modal
necessity types, index by a set of names C. A useful operational
intuition about the terms of type

�
CA, is to see them as suspended

computations of type A which may dereference the dynamic vari-
ables listed in the set C. On the other hand, a non-modal type A
is populated with computations which are executable. Values are
assigned to dynamic variables by means of explicit substitutions.
A suspended computation of type

�
CA can be forced and executed

only in an environment in which all the dynamic variables in C are
defined. It is exactly because the explicit substitutions have delim-
ited scope, that our calculus in fact implements non-destructive up-

date of memory locations, i.e., dynamic binding. In Section 4, we
will extend the calculus with a mechanism to globalize the scope of
explicit substitutions and obtain a calculus for state with destructive
update.

The described indexing of the modal operator with names is simi-
lar to the one found in the monadic language from [31], where la-
bels are used to identify the effects that may occur under a monad.
In our setup, however, we will also allow dynamic introduction of
fresh names into the computation (which corresponds to allocation
of new dynamic variables), and establish a typing discipline for it.

We start by explaining the syntax and various syntactic conventions.

Names X ∈ N
Supports C,D ∈ Pfin(N)
Types A ::= b | A1 → A2 | A1 � A2 |

�
CA

Explicit
substitutions Θ ::= · | X → e,Θ

Terms e ::= u | X | 〈Θ〉e | λx:A. e | e1 e2 |
box e | let box u = e1 in e2 |
νX :A. e | choose e

Variable contexts ∆ ::= · | ∆,u:A[C]
Name contexts Σ ::= · | Σ,X :A

The finite set C of names that a suspended term of type
�

CA may
dereference, is referred to as support of such a term. All the names
in a support are drawn from a countably infinite universe of names
N . In order to track the use of names, the typing assignments in
the context ∆ of expression variables must account not only for the
typing, but also for the support of a variable. So, for example, the
typing u:A[C] declares a variable u which can be bound to an ex-
pression of type A and support C. When the support of a variable is
empty, we will abbreviate u:A[], simply as u:A. Similarly, we will
simply omit the index support set in the type constructor

�
C when

C is empty.

While the context ∆ declares ordinary expression variables, which
can be bound to expressions of arbitrary support, the context Σ de-
clares the names (i.e., dynamic variables), and their types. For sim-
plicity purposes, names in Σ have only types, but not supports, as-
sociated with them. Because the types of the calculus depend on
names, we impose conditions on well-formedness of contexts: the
context Σ is well-formed if every type in Σ uses only names declared
to the left of it; the variable context ∆ is well-formed with respect
to Σ, if all the names that appear in the types of ∆ are declared in Σ.

The term constructors box and let box are the introduction and
elimination forms for the

�
modality. Operationally, the term

constructor box suspends the evaluation of its argument expres-
sion e, and wraps it into a thunk box e which can then be fur-
ther manipulated by the rest of the program. The elimination form
let box u = e1 in e2 takes the suspended expression boxed by e1
and binds it to the expression variable u to be used in e2.

Example 1 The function sum presented below takes an inte-
ger argument n and creates a suspension for computing the sum
1+ · · ·+n.

fun sum (n : int) :
�
int =

if n = 1 then box 1
else

let box u = sum (n - 1)
in

box (u + n)
end

- s5 = sum 5;
val s5 = box (1 + 2 + 3 + 4 + 5) :

�
int

The expression variable u may be used in e2 in both suspended po-
sitions (i.e., under a box), and in executable positions. For example,
if we would like to force the evaluation of the suspended computa-
tion s5 from the above example, we can do it with in the following
way.

let val u = s5 in u;
- val it = 15 : int

A dynamic variable X is dereferenced by simply using its name as
part of some term. Assignment to a dynamic variable is done by
an explicit substitution. We use the term constructor 〈Θ〉e to ap-
ply an explicit substitution Θ over an expression e. This is one of
the important distinctions of the calculus for dynamic binding from
our meta-programming calculus in [20]. For the purposes of meta-
programming we syntactically tied explicit substitutions to expres-
sion variables, rather than to arbitrary expressions. This enabled
us to substitute open terms for names within boxed expressions.
Such a behavior is not required of a calculus for dynamic binding
– here we substitute names at the time they are dereferenced (i.e.,
the surrounding term is unboxed), and we substitute them only with
expressions which are closed at run-time.

Explicit substitutions are syntactically defined as lists of assign-
ments of expressions to names. Furthermore, they are simultane-
ous; there is no ordering between the assignments. Also, no name
is assigned twice in the same substitution. In other words, an ex-
plicit substitution is a function from the set of names to the set of
terms

Θ : N → Terms

We treat the substitutions in our calculus as providing assignments
for all the names; some names are assigned specific terms, and some
names are simply unchanged by the substitution. For example, the
empty substitution 〈 〉 maps every name to itself. Given a substitu-
tion Θ, its domain dom(Θ) is the set of names that the substitution
does not fix. In other words

dom(Θ) = {X ∈ N | Θ (X) 6= X}

Range of a substitution Θ is the image of dom(Θ) under Θ:

range(Θ) = {Θ (X) | X ∈ dom(Θ)}

Here we only consider substitutions with finite domains. A substitu-
tion Θ with a finite domain has a finitary syntactical representation
as a set of ordered pairs X → e, relating a name X from dom(Θ),
with its substituting expression e. The opposite also holds – any
finite and functional set of ordered pairs of names and expressions
determines a unique substitution. We will frequently equate a sub-
stitution and the set that represents it, when it does not result in
ambiguities. Just as customary, we denote by fv(Θ) the set of free
variables in the terms from range(Θ).

Names are introduced into the computation by means of construc-
tors νX :A. e and choose e, which are the introduction and elimina-
tion forms for the type constructor A � B. As we already pointed

out, names stand for dynamic variables, and dynamic variables can
be viewed as memory locations. Thus, introduction of new names
into the computation intuitively corresponds to allocation of new
memory cells, where the exact size of the allocated segment would
depend on the type of the name. With this in mind, we can describe
the term constructor νX :A. e of type A � B as declaring (but not
allocating) a name X :A that may be used in e:B, and prescribing a
certain discipline in the use of X . The actual allocation is the duty
of choose. So, for example, the redex choose (νX :A. e) introduces
a new, uninitialized dynamic variable X :A, and then proceeds to
evaluate e.

The pattern of use of X in e is restricted in such a way that upon the
evaluation, the value of e will not contain any significant references
to X ; all the appearances of X will either be substituted away, or
otherwise appear in some dead-code part of e. This way, X is forced
to be local; it is prevented from escaping the scope of its introducing
ν, and making an observable effect.

The usual variable conventions on binding, α-renaming and
capture-avoiding substitution, apply here for both ordinary and dy-
namic variables. The binding forms in the language are λx:A. e,
let box u = e1 in e2 and νX :A. e. Given a term e, we denote by
fv(e) the set of free variables of e. The set of names appearing in
the type A is denoted by fn(A).

Example 2 The following code segment illustrates the interaction
between the several binding mechanisms of our language. First,
we introduce new dynamic variables X and Y of integer type, by
means of choose and ν. Then we build the polynomial X2 +Y 2 over
these dynamic variables, and bind it, via let box to an expression
variable u. Then we use u to create a function f which takes another
expression variable z and returns a suspended code for computing
X2 +Y 2 + z. Notice that f is bound using a let val form, which
has the usual operational behavior, and will be formally introduced
shortly. The function f is an ordinary λ-abstraction, and we apply it
to 1 to obtain the polynomial v = X2 +Y 2 +1. Finally, the program
instantiates X and Y to 1 and 2, respectively, before evaluating the
polynomial X2 +Y 2 +1+2XY at the point (X = 1,Y = 2).

- choose νX:int.
choose νY:int.

let box u = box (X2 +Y2)
val f = λz:int. box (u + z)
box v = f 1

in
<X->1, Y->2> (v + 2XY)

end;

val it = 10 : int

The type system of the calculus for dynamic binding consists of
two judgments: one for typing ordinary expressions, and another
for typing explicit substitutions. The expression judgment has the
form:

Σ;∆ ` e : A [C]

Given an expression e, the judgment checks whether e has type A,
and whether the names that are dereferenced in unsuspended po-
sitions in e are accounted for in the support C. The judgment for
explicit substitutions has the form:

Σ;∆ ` 〈Θ〉 : [C] ⇒ [D]

The substitution Θ will be given a type [C] ⇒ [D] if it provides
definitions for names in C, and those definitions are themselves

Nominal modal λ-calculus

C ⊆ D

Σ;(∆,u:A[C]) ` u : A [D]

Σ;(∆,x:A) ` e : B []

Σ;∆ ` λx:A. e : A → B [C]

Σ;∆ ` e1 : A → B [C] Σ;∆ ` e2 : A [C]

Σ;∆ ` e1 e2 : B [C]

Σ;∆ ` e : A [D]

Σ;∆ ` box e :
�

DA [C]

Σ;∆ ` e1 :
�

DA [C] Σ;(∆,u:A[D]) ` e2 : B [C]

Σ;∆ ` let box u = e1 in e2 : B [C]

(Σ,X :A);∆ ` e : B [] X 6∈ fn(B)

Σ;∆ ` νX :A. e : A � B [C]

Σ;∆ ` e : A � B [C]

Σ;∆ ` choose e : B [C]

Name dereference and explicit substitution

C ⊆ D

Σ;∆ ` 〈 〉 : [C] ⇒ [D]

Σ;∆ ` e : A [D] Σ;∆ ` 〈Θ〉 : [C \X] ⇒ [D] X :A ∈ Σ

Σ;∆ ` 〈X → e,Θ〉 : [C] ⇒ [D]

X ∈C X :A ∈ Σ

Σ;∆ ` X : A [C]

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

Σ;∆ ` 〈Θ〉e : A [D]

Figure 1. Typing rules for dynamic binding.

terms with support D. Therefore, one and the same substitution
can be given many different types, depending on the supports C
and D at which it is considered. For example, the substitution
Θ = (X → 1,Y → 2) can be given (among others) the typings:
[] ⇒ [], [X] ⇒ [], as well as [X ,Y,Z] ⇒ [Z]. And indeed, when
Θ acts on a term of support [], another term with support [] is pro-
duced; when Θ acts on a term of support [X], it substitutes X away,
and the obtained result is a term with empty support; when acting
on a term with support [X ,Y,Z], X and Y are substituted by con-
crete terms, and only the dynamic variable Z remains in the support
of the residual term. The rules of both judgments are presented in
Figure 1, and we explain them next.

One of the important characteristic of the type system is the support
weakening principle; that is

if Σ;∆ ` e : A [C] and C ⊆ D, then Σ;∆ ` e : A [D]

Support of the expression e determines which names should be in-
stantiated by means of an explicit substitution before e can be ex-
ecuted. The support weakening principle simply states that instan-
tiating more names than e actually requires, will not influence the
typing (and therefore, the evaluation) of e; e could still be safely
executed. We make the support weakening principle admissible by
explicitly instrumenting the typing rule for hypothesis; a variable
can be typed with a support which is larger from the one that the

variable is declared with. Furthermore, we allow the values of the
calculus, which are the λ- and ν-abstractions, and boxed expres-
sions, to be typed with arbitrary supports. The evaluation of val-
ues is already finished, so it does not depend on any particular set
of names being initialized; therefore, we can initialize any set we
want.

λ-calculus fragment. The most important characteristic of the rule
for λ-abstraction is that the body e is required to be pure; that is,
e has to match the empty support. Thus, all the dynamic variables
that e may dereference must be so dereferenced under a box (and
correspondingly accounted for in the type of e). This is very similar
with the monadic calculi, which require that their functions be pure,
and the effects must appear guarded by a monad. This is also one
of the points in which the calculus for dynamic binding differs from
our meta-programming language from [20]. In [20] we do not in-
sist that λ-abstractions be pure; impurity is handled by explicit sub-
stitutions, and explicit substitutions can descend under λ-binders.
However, in such a setup, names would be instantiated before they
are actually dereferenced – it is not how dynamic variables or state
locations should behave.

A further observation about this rule is that λ-terms are values, so
we can weaken their support arbitrarily, as explained before. Con-
cerning the rule for function application, it simply checks both the
function and the application argument against the same support.

Modal fragment. To type a suspended code box e, we must check if
e is well-typed and matching the support that is supplied as an index
to the

�
constructor. Boxed expressions are values, so their support

can be arbitrarily weakened to any well-formed support set C, just
like in the case of λ-abstractions. The let box construct is supposed
to first evaluate the branch e1 to a boxed expression, and then bind
the obtained expression to u before proceeding with e2. Therefore,
let box rule requires that both the branch e1 and the body e2 be ran
in the environment defining the same set of names C.

Names fragment. The rule for νX :A. e must check e for well-
typedness in a context Σ extended with the new dynamic variable
X :A. Similar to the λ rule, we require that e has empty support. The
ν constructor, however, further requires that X does not appear in
the type B. This ensures that X is used only locally in e; the process
of evaluation can never make X escape the scope of its introducing ν
in any observable way. Practically, this typing discipline translates
into a requirement that all the uses of X in e are either substituted
by an explicit substitution, or appear in some dead code part of e.

While ν-abstraction only declares a name X that can be used in e
and enforces the described typing discipline, it does not actually
allocate X . As we already pointed out, the allocation is the duty of
the term constructor choose, which is the elimination form for A �
B. Operationally, choose allocates a fresh name, and substitutes it
for the bound name in the ν-abstraction. Since this fresh name is
irrelevant for the typing purposes, we don’t place it into the context
Σ in the conclusion or the typing rule for choose, but it will appear
in the definition of the operational semantics.

Explicit substitutions The identity explicit substitution 〈 〉 does not
provide definitions for any names, or rather, as discussed before,
each name is simply substituted by itself (in this sense, the substi-
tutions 〈 〉 and 〈X → X〉 are really the same). Therefore, obviously,
if an identity substitution is applied to an expression of support C

it will produce an expression of support C. To preserve the sup-
port weakening principle, we allow the target support of the identity
substitution to be weakened to an arbitrary D ⊇C. Composite sub-
stitutions are typechecked by recursively typechecking all of their
assignments.

Last in this fragment are the rules for name dereferencing and sub-
stitution application. The rule for name dereferencing allows X to
be used only if it is present in the support set C. Substitutions ini-
tialize the names in the expression over which they are applied,
and so the rule for substitution application requires that the domain
support C of the substitution Θ matches the support of the argument
expression e.

Example 3 We can introduce let val x = e1 in e2 as a syntactic
sugar for let box u = (λx. box e2) e1 in u. The boxing of e2 is
required in order to ensure that the purity of the λ-abstraction (as
discussed before). The corresponding typing rule is

Σ;∆ ` e1 : A [C] Σ;(∆,x:A) ` e2 : B [C]

Σ;∆ ` let val x = e1 in e2 : B [C]

Similarly, we introduce the term constructor let name X :A in e as
an abbreviation for let box u = choose (νX :A. box e) in u, with the
derived typing rule

(Σ,X :A);∆ ` e : B [C] X 6∈ fn(B,C)

Σ;∆ ` let name X :A in e : B [C]

Example 4 Assume that C1, C2 and D are arbitrary support sets.
Then the following terms are well-typed of empty support.

f1 :
�

C1A →
�

C2A = (where C1 ⊆C2)

λx. let box u = x in box u

f2 :
�

A → A =

λx. let box u = x in u

f3 : A →
�

DA =

λx. box x

f4 :
�

C1A →
�

D
�

C2A = (where C1 ⊆C2)

λx. let box u = x in box (box u)

f5 :
�

C1(A → B) →
�

C2A →
�

DB = (where C1,C2 ⊆ D)

λx. λy. let box u = x in let box v = y in box (u v)

The function f1 simply eta-expands its argument. It shows that
support weakening in boxed types is derivable. The function f2
illustrates that we can “unbox” and evaluate suspended expressions
which do not read from dynamic variables; notice that the argument
type of f2 has empty index support. The function f3 shows that it
is possible to coerce values into suspended computation, by simply
boxing them. Because values are name-free, their support can be
weakened to an arbitrary support set D. The other two functions
generalize the characteristic axioms of S4 modal necessity without
names [7, 23].

3 Operational semantics for dynamic binding

The operational semantics of the calculus for dynamic binding is
defined through the judgment

Σ,e 7−→ Σ′,e′

In this judgment, Σ and Σ′ are run-time contexts of currently allo-
cated, but not necessarily initialized names. The judgment relates

the expression e with its one-step reduct e′, and is defined on ex-
pressions which do not contain free expression variables. Expres-
sion e can contain names (i.e., dynamic variables), but it must have
empty support. In other words, we only consider for evaluation
those expressions which do not dereference uninitialized names;
their names are either initialized by some explicit substitution, or
otherwise appear in suspended or dead-code subterms. The reduc-
tion can allocate new names, and that is why we must keep track in
the judgment of the run-time contexts of allocated names.

The judgment implements call-by-value operational semantics for
the calculus in the style of Wright and Felleisen [34]. The idea is
to decompose each expression e uniquely as e = E[r] where E is an
evaluation context and r is a redex. To define a small-step opera-
tional semantics, it is enough to define primitive reduction relation
for redexes (which we denote by −→), and let the evaluation of ex-
pressions (which we denote by 7−→) always first reduce the redex
identified by the unique decomposition.

The definition of the judgment relies on the notion of values, re-
dexes and evaluation contexts below.

Values v ::= x | λx:A. e | box e | νX :A. e
Value
substitutions σ ::= · | X → v,σ

Redexes r ::= v1 v2 | let box u = v in e |
choose v | 〈σ〉e

Evaluation E ::= [] | E e1 | v1 E | let box u = E in e |
contexts choose E | 〈σ,X → E,Θ〉e

Notice that the definition of evaluation contexts proscribes a left-
to-right evaluation strategy for function applications and for the as-
signment clauses in explicit substitutions. The primitive reduction
and the evaluation relation for the call-by-value version of our cal-
culus are defined below.

Σ,(λx. e) v −→ Σ, [v/x]e

Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Σ,choose (νX :A. e) −→ (Σ,Y :A), [Y/X]e

where Y 6∈ dom(Σ)

Σ,〈σ〉e −→ Σ,{σ}e

Σ,r −→ Σ′,e′

Σ,E[r] 7−→ Σ′,E[e′]

The operational semantics of the fragment corresponding to the
modal λ-calculus is fairly standard: function application and
let box reduce by performing a capture-avoiding substitution. The
more interesting are the reductions concerning name introduction
and explicit substitutions.

For example, the operational semantics for choose (νX :A. e) pre-
scribes that the run-time name context Σ be extended with a fresh
name before proceeding with the evaluation of e. As we pointed
out before, this provides our calculus with a formal way to model
memory allocation.

Further observe that the operational semantics does not allow eval-
uations under an explicit substitution, and thus uninitialized names
will never be encountered during the evaluation. Rather, the substi-
tution application 〈σ〉e is reduced by employing the meta-operation
{σ}e to carry out the substitution σ over e, before the evaluation of
e can proceed. We next define the meta-operation {σ}e.

DEFINITION 1 (SUBSTITUTION APPLICATION). Given a sub-
stitution Θ and a term e, the operation {Θ}e of applying Θ to e
is defined recursively on the structure of e as given below. Substitu-
tion application is capture-avoiding.

{Θ} X = Θ(X)
{Θ} u = 〈Θ〉u
{Θ} (〈Θ′〉e) = 〈Θ◦Θ′〉e
{Θ} (λx:A. e) = λx:A. e
{Θ} (e1 e2) = {Θ}e1 {Θ}e2
{Θ} (box e) = box e
{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2

u 6∈ fv(Θ)
{Θ} (νX :A. e) = νX :A. e
{Θ} (choose e) = choose {Θ}e

The most important aspect of the above definition is that substitu-
tion application does not descend under box. Names appearing in
a suspended code need not be initialized because suspended code
is not evaluated, and hence its names are not dereferenced. How-
ever, when a suspension is actually unboxed and executed, this has
to be done in a scope of a substitution that initializes the relevant
names, as illustrated in Example 2. On the other hand, the other
value forms are not of particular interest in this definition, because
values are name-free, so substitution application does not descend
into λ- and ν-abstractions. As we already commented before, this
is in sharp distinction from the meta-programming calculus in [20],
but it is the characteristics of dynamic binding, and it will allow us
to extend the calculus to model state in Section 4. Further, notice
that substitution application over a variable u is explicitly remem-
bered, resulting in a term 〈Θ〉u. When the variable u is substituted
by a certain expression, the names appearing in this expression will
be initialized by Θ.

The operation of substitution application depends upon the opera-
tion of substitution composition Θ1 ◦Θ2 , which we define next.

DEFINITION 2 (COMPOSITION OF SUBSTITUTIONS). Given
two substitutions Θ1 and Θ2 with finite domains, their composition
Θ1 ◦Θ2 is the substitution defined as

(Θ1 ◦Θ2)(X) = {Θ1}(Θ2(X))

This operation is obviously well-founded as both the substitutions
have finite domains, and substitution application of Θ1 to the terms
from the range of Θ2 proceeds recursively on terms of decreasing
size.

Example 5 Consider the ML-like program below.

let val x = ref 0
fun f (y) = !x + y
val z = f 1

in
((x:=1; f 1), z)

end

A similar program can be written in our calculus of dynamic bind-
ing as follows.

- choose (νX:int.
<X -> 0>
let fun f(y: int) :

�
Xint = box (X + y)

box u = f 1
val z = u

in
(<X -> 1>u, z)

end);

val it = (2, 1) : int * int

Note that in this code segment it is not necessary that the substi-
tution <X -> 0> immediately follows the introduction of the name
X . Indeed, we could have moved this substitution further down. It
is only important that some substitution is active when the variable
u is used in unsuspended positions. The variable u is bound to the
suspended expression (X + 1), so X must be initialized before u
is used. In this particular example, the first unsuspended reference
to u (and therefore to X as well) is in the scope of a substitution
<X -> 0> and the second one is in the scope of <X -> 1>.

4 Nominal possibility and state

In the previous sections, we have demonstrated how the modal op-
erator of necessity can be used to obtain a calculus for dynamic
binding. We represented dynamic variables by names, and con-
sidered a reference to a name to be an effect, while substituting a
name is the handler. This way, the calculus keeps track of names
which are used, and prevents references to uninitialized names. In
this section we build on this calculus to obtain a modal calculus for
state. We would like to treat names as locations; dereferencing a
name would correspond to a read, and substituting a name would
correspond to an update. But, as the following program formulated
in the type system from Section 2 illustrates, explicit substitutions
cannot perform the update destructively.

choose (νX:int.
<X -> 0>
let fun f(y: int) :

�
Xint = box (X + y)

box u = f 1
in

(<X -> 1>u, u + 1)
end)

Indeed, the subterm <X -> 1>u cannot possibly destructively up-
date X to 1 before evaluating u, simply because the old value of X
(in this case 0), has to be preserved for the evaluation of the sec-
ond element of the pair, u + 1. Explicit substitutions alone are too
weak.

A solution is to single-thread the explicit substitutions, so that once
a substitution is attempted, its scope extends to the rest of the pro-
gram; it is never required to revert back to some previous substitu-
tion. Thus, there would always be exactly one substitution “active”
at every single moment, and it would play the role of global store.

Single-threading and scope extension are exactly the duties of mon-
ads, and in modal logic we have the monad 3 of modal possibility.
Thus, if we want to use explicit substitutions to model destructive
state update, we need to tie explicit substitutions to 3. Intuitively
then, we should obtain a whole family 3C of possibility operators
indexed by support sets, where the type 3CA classifies an explicit
substitution for C paired up with a computation of type A – in other
words, a closure. More concretely, 3C types programs of type A

which first write into locations C and then compute a value of type
A in the changed context. This would pleasantly contrast the type

�
CA that we already used in Section 2 to type programs which read

from locations C before computing a value of type A.

We introduce the nominal possibility into the language by defin-
ing the following syntactic categories on top of the syntax of the
calculus of dynamic binding from Section 2.

Types A ::= . . . | 3CA
Closures f ::= [Θ,e] | let dia x = e in f | let box u = e in f
Terms e ::= . . . | dia f

As expected, the grammar of types is extended with the family
3CA, whose term constructor is dia f , encapsulating a closure f .
Closures are a new syntactic category intended to describe com-
putations which change the global store. The basic closure con-
structor is the form [Θ,e] which ties a substitution Θ and a term e
together; this is a computation which first writes into the locations
determined by Θ before evaluating e in the new store. When Θ is
the identity substitution, we will only write [e] instead of [〈 〉,e].
Closures are deconstructed by the form let dia x = e in f . It takes
a term e which encapsulates a closure, thus carrying a substitution
and a term. Intuitively, the term is then bound to x and the sub-
stitution carried out, before the evaluation of f is undertaken. The
closure form let box u = e in f takes a suspended expression en-
capsulated in the term e and binds it to u to be used in the closure
f .

Example 6 Assuming that X and Y are integer names and that no
other names are defined in the global store, the expression

let dia z = dia [<X->1, Y->2>, 2XY]
in

[<X->X, Y->Y>, X2 +Y2 +z]
end

writes 1 and 2 into the locations X and Y respectively, then binds
4 to the local variable z, before evaluating to the closure [<X->1,
Y->2>, X2 + Y2 + 4]. Observe that the substitution in [<X->X,
Y->Y>, X2 + Y2 + z] is the identity; we could have reduced the
verbosity by writing the closure simply as [X2 +Y2 +z].

The type system of the calculus for nominal possibility consists of
two mutually recursive judgments: one for typing expressions, and
another one for typing closures. The expression judgment extends
the system from Section 2, and has the form

Σ;∆ ` e : A [C]

establishing that e may possibly read from locations listed in the
support set C. The closure judgment has the form

Σ;∆ ` f ÷D A [C]

This judgment establishes that the closure f consists of a substitu-
tion of type [D] ⇒ [C], and a term of type A. The term may deref-
erence the names from the support D, because they are initialized
by the substitution. We present the type system in Figure 2, and
comment on the rules below.

The closure introduction rule simply makes explicit the intuition
about closures: the names used in the closure body are initialized by
the closure substitution; the substitution closes the body up. Note
that this rule is almost identical to the rule for substitution appli-
cation from Section 2. This is only to be expected since, after all,
we introduced closures with the intention to single-thread substitu-
tion applications. The two constructs, however, will have different

Σ;∆ ` e : A [D] Σ;∆ ` 〈Θ〉 : [D] ⇒ [C]

Σ;∆ ` [Θ,e] ÷D A [C]

Σ;∆ ` e : 3D1 A [C] Σ;(∆,x:A) ` f ÷D2 B [D1]

Σ;∆ ` let dia x = e in f ÷D2 B [C]

Σ;∆ ` e :
�

D1A [C] Σ;(∆,u:A[D1]) ` f ÷D2 B [C]

Σ;∆ ` let box u = e in f ÷D2 B [C]

Σ;∆ ` f ÷D A [C]

Σ;∆ ` dia f : 3DA [C]

Figure 2. Typing rules for nominal possibility.

operational meaning. The explicit substitution 〈Θ〉e carries out the
substitution Θ over the expression e, while the closure [Θ,e] sus-
pends the substitution, until it is explicitly forced by the let dia rule,
as would be formalized in the operational semantics of the calcu-
lus. The first provides non-destructive location update, while the
second should be used when destructive update is desired. What is
interesting is that both capabilities harmoniously coexist within the
system.

The typing rule for dia is a judgmental coercion from closures to
terms. When coerced into the category of terms, a closure is given
the type of modal possibility 3C . The index support C of this type
records the names that the substitution in the closure defines.

The construct let dia is an elimination form for closures because
let dia e = x in f is intended to destruct the closure computed by
e, and use its parts in to compute f . To give a more specific de-
scription of the typing rule for let dia e = x in f , we start with
the observation that the term e is required to be of type 3DA. It is
supposed to encode a closure consisting of a substitution Θ of type
[D] ⇒ [C] and a term e′ : A [D]. The role of let dia is to institute the
substitution Θ as a new global store providing definitions for names
in the support D, then evaluate e′ to a value, bind it to x and proceed
with the evaluation of f . Following this semantics, we can allow f
to be supported by D, because the new global store in which f is
evaluated defines the names from D. We are also free to declare x
as being of empty support in the typing of f , because x will always
be bound to a value.

Example 7 We will use some further syntactic abbreviations as
well: let val x = e in f is short for

let dia y = (let val x = e in dia f) in [y]

and let name X :A in f is short for

let dia y = (let name X :A in dia f) in [y]

Operationally, the let box rule could also be seen as a similar ab-
breviation, but it is usually consider primitive because of proof-
theoretic reasons: it is required during proof search in order to pre-
serve the subformula property of the calculus. In contrast, let val

does not have any significance for proof search, and the same holds
for let name. The typing rules for the two are easily derived as

Σ;∆ ` e : A [C] Σ;(∆,x:A) ` f ÷D B [C]

Σ;∆ ` let val x = e in f ÷D B [C]

(Σ,X :A);∆ ` f ÷D B [C] X 6∈ fn(B,C,D)

Σ;∆ ` let name X :A in f ÷D B [C]

Example 8 Assume that C and D are support sets. Then the fol-
lowing terms are well-typed of empty support.

f1 : 3DA → 3CA = (where C ⊆ D)

λx. dia (let dia y = x in [y])

f2 : A → 3A =

λx. dia [x]

f3 : 3C3DA → 3DA =

λx. dia (let dia y = x in let dia z = y in [z])

f4 :
�

C(A → B) → 3DA → 3DB = (where C ⊆ D)

λe1. λe2. dia (let box u = e1 in let dia x = e2 in [u x])

The function f1 simply eta-expands its argument x. It illustrates
that strengthening at the index supports of 3 types is derivable.
This is not surprising, as it only involves forgetting some entries
from the substitution part of the closure x. The rest of the terms
generalize the characteristic axioms of a variant of S4 modal pos-
sibility introduced in [23], which can be recovered if the involved
supports are set to be empty. For example, the function f2 is a co-
ercion from terms into closures with empty substitution; notice that
the range type is 3A with empty index support. Coercions from A
to 3CA with non-empty C are not generally available as they re-
quire providing definitions for each name in C. The function f3
illustrates that it is only the last layer of 3’s that matter; all the ad-
ditional ones can be ignored. The function f4 takes a function e1
which needs names C in order to be generated, and a computation
e2 providing a term x and definitions for these names (and possibly
some more, since its index support is D ⊇C). Then the definitions
provided by e2 are plugged into e1 to obtain the function u which is
then applied to x to obtain the final result.

It is important to emphasize that the particular typing assigned to an
explicit substitution in a closure will have a significant impact on its
operational behavior. As explained in Section 2, explicit substitu-
tions have polymorphic typing. For example, the identity substitu-
tion <> can have (among others) all of the following types [] ⇒ [],
or [X]⇒ [X], or [X]⇒ [X ,Y]. But, when a substitution is viewed as
global store, the specific type assigned to it determines which loca-
tions will be used in the rest of the program, and which locations are
irrelevant and can therefore be deallocated and garbage-collected.
In that sense, the identity substitution with type [] ⇒ [] may be
seen an empty store, while the identity substitution with the type
[X]⇒ [X] describes a store with a live location X which is filled ac-
cording to the value of X from the previously active store. For sim-
plicity, we do not consider here a type system and an operational
semantics that would make use of this distinction, although it is an
interesting future work. Rather, we consider that all the operations
on substitutions never “forget” any assignments that the substitution
may implicitly contain, depending on the support at which it is con-
sidered. When substitutions are viewed as global store, this means
that our operational semantics does not prescribe deallocation and
garbage-collection of store locations. In a realistic implementation,

just as customary, these processes would be performed by a sepa-
rately specified run-time system.

Example 9 We can use the new type and term constructors for
nominal possibility to single-thread and sequence the example
given at the beginning of the section.

let name X:int
dia dummy = dia [<X->0>, ()]
fun f(y : int) :

�
Xint = box (X + y)

box u = f 1
val z = u + 1
let dia w = dia [<X->1>, u]
in

[(w, z)]
end

end

The resulting program is typed in the judgment for closures, and
evaluates to [(2, 2)]. The substitution associated with the re-
sult is suppressed as it is equal to the identity. But, even more is
true; this substitution can actually be typed as [] ⇒ []. Indeed, the
body (w, z) of the innermost let dia is name-free because it only
depends on variables w and z which themselves bind (name free)
values. The outcome of the program will, hence, be closed; we can
type it in empty global store. In particular, the newly introduced
location X could have been deallocated.

5 Operational semantics for state

In this section we develop a call-by-value operational semantics for
the modal calculus with possibility. We ignore the closure construc-
tors let box, let val and let name; for operational purposes, they
can be viewed as syntactic abbreviations and will not influence the
properties we explore here.

The first step is to extend the meta operation of substitution appli-
cation to account for the new constructs.

{Θ} dia f = dia {Θ} f
{Θ} [Θ′,e] = [Θ◦Θ′,e]
{Θ} let dia x = e in f = let dia x = {Θ}e in f

Note that the substitution application is carried out only over the
branch e, but not over the body f of a let dia construct. This is
justified because f is evaluated under a substitution determined by
e; any influence that Θ might have over f has to be via e.

The operational semantics is defined by means of two evaluation
judgments: one for expressions and one for closures. We adopt
a particular formulation of these judgments which emphasizes the
relationship between the nominal possibility and global state. The
expression evaluation judgment has the form

Σ,e
σ

7−→ Σ′,e′

and reads: in a context of declared locations Σ and a store σ as-
signing values to these locations (and some locations may remain
uninitialized), the term e steps into e′ and possibly introduces new
locations Σ′. The evaluation steps cannot change the store σ, as ex-
pressions can only read from the store but not write into it. This
judgment is a straightforward extension of the evaluation judgment
from Section 2.

The judgment for evaluating closures is the default judgment of the
operational semantics, because it prescribes evaluation of stateful
constructs. It has the form

(Σ,σ), f 7−→ (Σ′,σ′), f ′

where f steps into f ′, changing in the process the set of allocated
locations from Σ into Σ′ and the global store from σ into σ′. The
evaluation strategy that we consider will evaluate under the con-
structor dia only if it is found in a let-branch of a let dia. This
way, the changes to the global store prescribed under dia will take
place only when they are single-threaded by a let dia. Note that
this is not the only possible evaluation strategy, but it is the one that
relates nominal possibility to global state and destructive update.
Following this idea, we extend the categories of values, evaluation
contexts and redexes from Section 2 as summarized below.

Values v ::= . . . | dia f
Redexes r ::= . . . | X
Closure F ::= [] | let dia x = dia F in f |
contexts let dia x = E in f | let dia x = dia [E] in f |

let dia x = dia [〈σ,X → E,Θ〉,e] in f
Closure
redexes c ::= let dia x = [σ,e] in f | let dia x = [v] in f

The two evaluation judgments require two primitive reduction re-
lations. Primitive reductions for expressions are duplicates of the
reductions from Section 3, except that now the reductions are con-
sidered in the context of a distinguished substitution σ serving as a
global store. We also add a new rule for reducing names.

Σ,(λx. e) v
σ

−→ Σ, [v/x]e

Σ, let box u = box e1 in e2
σ

−→ Σ, [e1/u]e2

Σ,choose (νX :A. e)
σ

−→ (Σ,X :A),e

Σ,〈σ′〉e
σ

−→ Σ,{σ′}e

Σ,X
σ

−→ Σ,σ(X)

The primitive reductions for closures are defined as follows.

(Σ,σ), let dia x = dia [v] in f −→ (Σ,σ), [v/x] f

(Σ,σ), let dia x = dia [σ′,e] in f −→

(Σ,σ◦σ′), let dia x = dia [e] in f

if σ′ 6= (·)

The first rule simply binds v to x if the substitution in the closure of
v is the identity, and therefore does not prescribe any changes to the
global store. The second rule is more complicated. Its meaning is
to change the global store according to the closure substitution and
continue evaluating in the new store. Thus, the substitution σ′ is
moved out of the closure and composed with σ which is the current
global store. As discussed before, the composition is performed
so that no assignments in the result are omitted. The composition
with σ′ will change some assignments in the global store, but no
assignments will be lost.

The evaluation of expressions and closures are now defined as fol-
lows.

Σ,r
σ

−→ Σ′,e′

Σ,E[r]
σ

7−→ Σ′,E[e′]

Σ,r
σ

−→ Σ′,e′

(Σ,σ),F[r] 7−→ (Σ′,σ),F[e′]

(Σ,σ),c −→ (Σ′,σ′), f ′

(Σ,σ),F [c] 7−→ (Σ′,σ′),F[f ′]

6 Structural properties and type soundness

In this section we establish the basic properties of our type system.
We start with the admissibility of support weakening, as discussed
in Section 2.

LEMMA 3 (SUPPORT WEAKENING). 1. if Σ;∆ ` e : A [C] and
C ⊆ D, then Σ;∆ ` e : A [D]

2. if Σ;∆ ` 〈Θ〉 : [C1] ⇒ [C] and C ⊆ D, then Σ;∆ ` 〈Θ〉 : [C1] ⇒
[D]

3. if Σ;∆ ` f ÷C1 A [C] and C ⊆ D, then Σ;∆ ` f ÷C1 A [D]

PROOF. By simultaneous induction on the three derivations.

LEMMA 4 (EXPRESSION SUBSTITUTION PRINCIPLE). Let
Σ;∆ ` e1 : A [C]. Then the following holds:

1. if Σ;(∆,u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]

2. if Σ;(∆,u:A[C]) ` 〈Θ〉 : [D′] ⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 :
[D′] ⇒ [D]

3. if Σ;(∆,u:A[C]) ` f ÷C1 B [D], then Σ;∆ ` [e1/u] f ÷C1 B [D]

PROOF. By simultaneous induction on the three derivations.

LEMMA 5 (EXPLICIT SUBSTITUTION PRINCIPLE). Let Σ;∆ `
〈Θ〉 : [C] ⇒ [D]. Then the following holds:

1. if Σ;∆ ` e : A [C] then Σ;∆ ` {Θ}e : A [D]

2. if Σ;∆ ` 〈Θ′〉 : [C1] ⇒ [C], then Σ;∆ ` 〈Θ◦Θ′〉 : [C1] ⇒ [D]

3. if Σ;∆ ` f ÷C1 A [C], then Σ;∆ ` {Θ} f ÷C1 A [D]

PROOF. By simultaneous induction on the structure of the deriva-
tions. The proof of the second statement is the most interesting, and
we present it here. Given the substitutions Θ and Θ′, we can always
split the representation of Θ◦Θ′ into two disjoint sets:

Θ′
1 = {X → Θ(X) | X ∈ dom(Θ)\dom(Θ′)}

Θ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

Regarding these sets, we could obtain the final result, if we show
that

(a) Σ;∆ ` 〈Θ′
1〉 : [C1 \dom(Θ′)] ⇒ [D], and

(b) Σ;∆ ` 〈Θ′
2〉 : [C1 ∩dom(Θ′)] ⇒ [D].

Indeed, it is easy to establish by induction that the union of these
sets, when viewed as a substitution, has the required typing. To
establish (a), observe that from the typing of Θ it is clear that Θ′

1 :
[C \dom(Θ′)] ⇒ [D]. Then, by definition of dom(Θ′), if X ∈C1 \
dom(Θ′), then X is fixed by Θ′. Thus, either X does not appear in
the syntactic representation of Θ′, or the syntactic representation of
Θ′ contains a sequence of mappings X →X1, X1 →X2, . . . , Xn →X .
In the second case, X is the substituting term for Xn, and thus X ∈C.
In the first case, X ∈C by inductively appealing to the typing rules
for substitutions until the empty substitution is reached. Either way,
C1 \dom(Θ′) ⊆C, and furthermore C1 \dom(Θ′) ⊆C \dom(Θ′).
Now, appealing inductively to the typing rules for substitutions, we
easily obtain that Σ;∆ ` 〈Θ′

1〉 : [C1 \dom(Θ′)] ⇒ [D].

To establish (b) observe that if X ∈ dom(Θ′), and X :A ∈ Σ, then
Σ;∆ ` Θ′(X) : A [C]. By the first induction hypothesis, Σ;∆ `
{Θ}(Θ′(X)) : A [D]. The typing (b) is now obtained by induc-
tively applying the typing rules for substitutions for each X ∈
(C1 ∩dom(Θ′)).

LEMMA 6 (CANONICAL FORMS). Let v be a closed value such
that Σ; ·;` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 []

2. if A =
�

DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 � A2, then v = νX :A1. e and (Σ,X :A1); · ` e : A2 []

4. if A = 3DB, then v = dia f and Σ; · ` f ÷D B [C]

As a consequence, the support of v can be arbitrarily weakened, i.e.
Σ; · ` v : A [D], for any support D.

PROOF. By case analysis on the structure of closed values.

LEMMA 7 (REPLACEMENT). 1. If Σ;∆ ` E[e] : A [C], then
there exists a type B such that

(a) Σ;∆ ` e : B [C], and
(b) if Σ′,∆′ extend Σ,∆, and Σ′;∆′ ` e′ : B [C], then Σ′;∆′ `

E[e′] : A [C]
2. If Σ;∆ ` F[e] ÷C A [D], then there exists a type B such that

(a) Σ;∆ ` e : B [D], and
(b) if Σ′,∆′ extend Σ,∆ and Σ′;∆′ ` e′ : B [D], then Σ′;∆′ `

F[e′] ÷C A [D]
3. If Σ;∆ ` F[f]÷C A [D], then there exists a type B and support

C1 such that
(a) Σ;∆ ` f ÷C1 B [D], and
(b) if Σ′,∆′ extend Σ,∆ and D1 is a support set such that

Σ′;∆′ ` f ′ ÷C1 B [D1], then Σ′;∆′ ` F[f ′] ÷C A [D1]

PROOF. By simultaneous induction on the three derivations, using
support weakening.

LEMMA 8 (SUBJECT REDUCTION). Let Σ; · ` 〈σ〉 : [C] ⇒ [].
Then the following holds:

1. if Σ; · ` e : A [C] and Σ,e
σ

−→Σ′,e′, then Σ′ extends Σ and Σ′; · `
e′ : A [C]

2. if Σ; · ` f ÷D A [C] and (Σ,σ), f −→ (Σ′,σ′), f ′, then Σ′ ex-
tends Σ and Σ′; · ` 〈σ′〉 : [C′] ⇒ [] and Σ′; · ` f ′ ÷D A [C′] for
some support set C′ ⊆ dom(Σ′)

PROOF. By case analysis using canonical forms lemma, support
weakening and the substitution principles.

The following theorem establishes that the evaluation relation is
sound with respect to typing.

THEOREM 9 (PRESERVATION). Let Σ; ·;` 〈σ〉 : [C] ⇒ []. Then
the following holds:

1. if Σ; · ` e : A [C] and Σ,e
σ

7−→Σ′,e′, then Σ′ extends Σ and Σ′; · `
e′ : A [C]

2. if Σ; · ` f ÷D A [C] and (Σ,σ), f 7−→ (Σ′,σ′), f ′, then Σ′ ex-
tends Σ and Σ′; · ` 〈σ′〉 : [C′] ⇒ [] and Σ′; · ` f ′ ÷D A [C′] for
some support set C′ ⊆ dom(Σ′)

PROOF. By evaluation rules, the term is decomposed into a con-
text and a redex. Then use the replacement and subject reduction
lemmas.

LEMMA 10 (PROGRESS FOR −→). Let σ be an arbitrary value
substitution. Then the following holds:

1. if Σ; · ` r : A [C], then there exists a term e′ and a context Σ′,

such that Σ,r
σ

−→ Σ′,e′.
2. if Σ; · ` c÷D A [C], then there exist a closure f ′, a value substi-

tution σ′ and a context Σ′, such that (Σ,σ),c −→ (Σ′,σ′), f ′.

PROOF. By case analysis on the structure of redexes, using canon-
ical forms lemma.

LEMMA 11 (UNIQUE DECOMPOSITION). 1. For every ex-
pression e, either:

(a) e is a value, or
(b) e = E[r] for a unique evaluation context E and a redex

r.
2. For every closure f , either:

(a) f = [Θ,e] for some substitution Θ and expression e, or
(b) f = F[r] for a unique closure context F and term redex

r, or
(c) f = F[c] for a unique closure context F and closure

redex c.

PROOF. By simultaneous induction on the structure of e and f .

The next theorem proves that a well-typed term can always be re-
duced at least once. In combination with the preservation theorem,
it establishes that well-typed terms do not get stuck.

THEOREM 12 (PROGRESS). Let Σ; · ` 〈σ〉 : [C] ⇒ []. Then the
following holds:

1. if Σ; · ` e : A [C], then either
(a) e is a value, or

(b) there exists a term e′ and a context Σ′, such that Σ,e
σ

7−→
Σ′,e′.

2. if Σ; · ` f ÷D A [C], then either
(a) f = [Θ,e] for some substitution Θ and an expression e,

or
(b) there exists a closure f ′, a context Σ′, and a value sub-

stitution σ′, such that (Σ,σ), f 7−→ (Σ′,σ′), f ′

PROOF. By unique decomposition lemma, the term can be decom-
posed into an evaluation context and a redex. Then appeal to the
replacement lemma and progress for primitive reduction.

The reduct e′ and the context Σ′ are not necessarily unique for each
given e and Σ. Because fresh names may be introduced during the
course of the computation, two different evaluations of one and the
same term may choose the fresh names differently, resulting in dif-
ferent e′ and Σ′. The determinacy lemma below shows that the dif-
ferences between two reducts of one and the same term arise only
from this arbitrary choice of fresh names. As customary, we denote
by 7−→n the n-step reduction relation.

LEMMA 13 (DETERMINACY). 1. If e, e1, e2 are terms such

that Σ,e
σ

−→
n

Σ1,e1 and Σ,e
σ

−→
n

Σ2,e2, then there exists a
permutation of names π : N → N , fixing the domain of Σ,
such that Σ2 = π(Σ1) and e2 = π(e1).

2. If f , f1, f2 are closures such that (Σ,σ), f 7−→n (Σ1,σ1), f1
and (Σ,σ), f 7−→n (Σ2,σ2), f2, then there exists a permutation
of names π : N → N , fixing the domain of Σ, such that Σ2 =
π(Σ1) and σ2 = π(σ1), and f2 = π(f1).

PROOF. The most important case is when n = 1, the rest follows

by induction on n, by using the property that if Σ,e
σ

−→
n

Σ′,e′, then

π(Σ),π(e)
σ

−→
n

π(Σ′),π(e′) (for expressions), and if (Σ,σ), f 7−→n

(Σ′,σ′), f ′, then (π(Σ),π(σ)),π(f) 7−→n (π(Σ′),π(σ′)),π(f ′) (for
closures).

We present the proof for the first statement; the second one is
trivial, as there are no primitive closure constructors that intro-
duced fresh names. The proof proceeds by decomposing the term
e into a context E and a redex r. The only important case is when

r = choose νX :A. e. Then it must be e′1 = [X1/X]e, e′2 = [X2/X]e,
and Σ1 = (Σ,X1:A), Σ2 = (Σ,X2:A), where X1 and X2 are fresh
names. Obviously, the involution (X1 X2) which swaps these two
names has the required properties.

7 Related work

Dynamic binding has been inadvertently introduced in the first ver-
sions of LISP, but then became a feature, rather than a bug, in the
subsequent implementations and dialects. For example, a formal-
ized proposal for dynamic binding in the untyped setting of LISP,
can be found in [13]. For semantic treatment of dynamic binding
we refer to [19]. Dynamic binding has been considered in typed cal-
culi as well. An example is a calculus λN, developed in [4, 5], for
the purposes of explaining certain features of object-oriented pro-
gramming. The λN-calculus is related to our system in that both use
names, but in a slightly different way. The dynamic variables of λN
are introduced as ordinary λ-bound variables, but are then indexed
by names to distinguish the various values that can be assigned to
them. This type system, however, does not prevent reading from
uninitialized dynamic variables. Implicit parameters as introduced
in [16] are similar to dynamic variables, with the restriction to be
used only in a first-order way. Implicit parameters has been pro-
posed in [10] as a convenient mechanism for representing global
variables in a monadic language.

The dynamic allocation of memory cells and the typing annota-
tions that we use in the presented calculus somewhat resemble
the constructs in calculi with region-based memory management
[27, 3, 28, 2]. The exact correspondence between the two remains
future work.

Monadic type systems have been used to represent effects related
to state, almost since the inception of monads for denotational se-
mantics by Moggi [17, 18]. For example, Wadler in [29, 30, 31],
describes how monads can be used to model various effects, among
which is state with destructive update. A thorough description of
state and it’s practical implementation in a monadic language, can
be found in Launchbury and Peyton Jones’ [14].

The calculus of dynamic binding that we presented in this paper
is a specific instantiation of a more general system of effects that
we described in [21]. Both calculi use the natural deduction and
proof-assignment for a variant of S4 modal logic, that are devel-
oped by Pfenning and Davies in [23], and extend them with the
notion of names. Pfenning and Davies in [23] and Kobayashi in
[12] present a decomposition of a monad in terms of modalities

�

and 3. Kobayashi further uses 3 to model global state, but the pos-
sibility of using

�
for marking state-related effects is not explored.

We have previously considered names in the necessitation frag-
ment of S4 (but not in the possibility fragment), for purposes of
meta-programming and higher-order syntax in [20]. The system
described in that work is very similar to our calculus for dynamic
binding from Section 2, with some important differences: (1) Dy-
namic binding allows a map with a type A →

�
DA as shown in

Example 4, which gives a coercion from values into computations;
these are prohibited in meta-programming, (2) Dynamic binding
only substitutes closed terms for names upon name-dereference,
while meta-programming substitutes open terms for names in boxed
expressions, (3) Functions and ν-abstractions in dynamic bind-
ing may only dereference names in suspended positions. In [20],
we did not consider nominal possibility for purposes of meta-
programming, but it should be possible to do so. We should also

note that the developments in the current paper, as well as in
[20], were directly motivated by the work on Nominal Logic and
FreshML by Pitts and Gabbay [9, 25, 24, 8] which introduces names
as urelements of Fraenkel-Mostowski set theory. The necessitation
fragment of S4, and the corresponding λ

�

-calculus, but without
names, have also been considered for purposes of staged computa-
tion [6, 33], and run-time code-generation [15, 32].

8 Conclusions and future work

In this paper, we introduce a λ-calculus capable of modeling mem-
ory allocation, initialization, destructive and non-destructive up-
date. It is based on the modal λ-calculus corresponding to the vari-
ant of intuitionistic modal logic S4, as developed by Pfenning and
Davies in [23]. We extend this calculus with names, which are la-
bels that can be dynamically introduced into the computation, and
serve as theoretical abstraction for store locations. Store locations
in this setup should be understood as chunks of memory of size that
is appropriately determined by the type of the location.

In our calculus, the allocation of uninitialized memory is modeled
by dynamic introduction of names. Non-destructive update is ob-
tained using the necessitation fragment of the calculus, and destruc-
tive update is obtained with the possibility fragment.

Each term is associated by the type system with its support set; that
is, the set of names that the term may dereference. The type system
features two families of nominal modal types:

�
CA, which classify

suspended computation of type A which may dereference names
from the set C, and 3CA which classify suspended computations of
type A which assign values to the names in C.

Computations of type
�

CA may only be executed in an environment
in which the names from C are provided with definitions by means
of some explicit substitution. Because substitutions have delimited
scope, this fragment of the calculus implements non-destructive up-
date, i.e. dynamic binding. When the substitutions are associated
with the 3CA modal types, then their scope is not delimited, but
extends till the end of the program. That way, substitutions model
global store.

We should mention, however, that our calculus for state is probably
not very practical, because the support annotations in types may be
too verbose. Therefore, a significant future work will be to investi-
gate type and support inference in the system (which may be similar
to region and effect inference algorithms of [26, 2]). In a previous
work [20], we have considered explicit support polymorphism as a
way to make functions applicable to arguments with various sup-
port annotations. This line of work may continue with developing,
for example, existential quantification over support sets, or even
monadic abstraction in the style of [22, 1]. It would be interesting
to see if these abstractions can be used to embed into our calculus
the standard monad of state [30, 31, 14] where the typings of al-
locations, reads and writes are not indexed by names. We should
also consider derived language constructs which could capture the
patterns of use of the calculus, to provide appropriate levels of ab-
stractions, relevant to the considered applications. All these men-
tioned research questions are also applicable to the general case of
arbitrary effects, and not only to effects related to state.

9 Acknowledgments

The author would like to thank Frank Pfenning for the numerous
discussions and his suggestions regarding the topic of this paper.

10 References

[1] S. Awodey and A. Bauer. Propositions as [Types]. Technical Re-
port IML-R–34-00/01–SE, Institut Mittag-Leffler, The Royal Swedish
Academy of Sciences, 2001.

[2] L. Birkedal and M. Tofte. A constraint-based region inference algo-
rithm. Theoretical Computer Science, 258:299–392, 2001.

[3] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Symposium
on Principles of Programming Languages, POPL’96, pages 171–183,
St. Petersburg Beach, Florida, 1996.

[4] L. Dami. Functional programming with dynamic binding. In
D. Tsichritzis, editor, Object Applications, pages 155–172. Technical
Report, University of Geneva, 1996.

[5] L. Dami. A lambda-calculus for dynamic binding. Theoretical Com-
puter Science, 192(2):201–231, 1998.

[6] R. Davies and F. Pfenning. A modal analysis of staged computation.
In Symposium on Principles of Programming Languages, POPL’96,
pages 258–270, St. Petersburg Beach, Florida, 1996.

[7] R. Davies and F. Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, 2001.

[8] M. J. Gabbay. A Theory of Inductive Definitions with α-Equivalence.
PhD thesis, Cambridge University, August 2000.

[9] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002.

[10] J. Hughes. Global variables in Haskell. To appear in the Journal of
Functional Programming.

[11] R. B. Kieburtz. Taming effects with monadic typing. In International
Conference on Functional Programming, ICFP’98, pages 51–62, Bal-
timore, Maryland, 1998.

[12] S. Kobayashi. Monad as modality. Theoretical Computer Science,
175(1):29–74, 1997.

[13] J. Lamping. A unified system of parameterization for programming
languages. In Conference on LISP and Functional Programming,
pages 316–326, Snowbird, Utah, 1988.

[14] J. Launchbury and S. L. P. Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293–341, 1995.

[15] P. Lee and M. Leone. Optimizing ML with run-time code generation.
In Conference on Programming Language Design and Implementa-
tion, PLDI’96, pages 137–148, 1996.

[16] J. R. Lewis, M. B. Shields, E. Meijer, and J. Launchbury. Implicit pa-
rameters: Dynamic scoping with static types. In Symposium on Princi-
ples of Programming Languages, POPL’00, pages 108–118, Boston,
Massachusetts, 2000.

[17] E. Moggi. Computational lambda-calculus and monads. In Sympo-
sium on Logic in Computer Science, LICS’89, pages 14–23, Asilomar,
California, 1989.

[18] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[19] L. Moreau. A syntactic theory of dynamic binding. In M. Bidoit and
M. Dauchet, editors, TAPSOFT’97: Theory and Practice of Software
Development, volume 1214 of Lecture Notes in Computer Science,
pages 727–741. Springer, 1997.

[20] A. Nanevski. Meta-programming with names and necessity. In In-
ternational Conference on Functional Programming, ICFP’02, pages
206–217, Pittsburgh, Pennsylvania, 2002. A significant revision is
available as a technical report CMU-CS-02-123R, Computer Science
Department, Carnegie Mellon University.

[21] A. Nanevski. A modal calculus for effect handling. Technical Report
CMU-CS-03-149, Computer Science Department, Carnegie Mellon
University, June 2003.

[22] F. Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In Symposium on Logic in Computer Science,
LICS’01, pages 221–230, Boston, Massachusetts, 2001.

[23] F. Pfenning and R. Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511–540,
2001.

[24] A. M. Pitts. Nominal logic: A first order theory of names and bind-
ing. In N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects
of Computer Software, volume 2215 of Lecture Notes in Computer
Science, pages 219–242. Springer, 2001.

[25] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira,
editors, Mathematics of Program Construction, volume 1837 of Lec-
ture Notes in Computer Science, pages 230–255. Springer, 2000.

[26] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect in-
ference. Journal of Functional Programming, 2(3):245–271, 1992.

[27] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Symposium on Princi-
ples of Programming Languages, POPL’94, pages 188–201, Portland,
Oregon, 1994.

[28] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

[29] P. Wadler. The essence of functional programming. In Symposium on
Principles of Programming Languages, POPL’92, pages 1–14, Albe-
querque, New Mexico, 1992.

[30] P. Wadler. Monads for functional programming. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, volume 925
of Lecture Notes in Computer Science, pages 24–52. Springer, 1995.

[31] P. Wadler. The marriage of effects and monads. In International Con-
ference on Functional Programming, ICFP’98, pages 63–74, Balti-
more, Maryland, 1998.

[32] P. Wickline, P. Lee, and F. Pfenning. Run-time code generation and
Modal-ML. In Conference on Programming Language Design and
Implementation, PLDI’98, pages 224–235, Montreal, Canada, 1998.

[33] P. Wickline, P. Lee, F. Pfenning, and R. Davies. Modal types as staging
specifications for run-time code generation. ACM Computing Surveys,
30(3es), 1998.

[34] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

