From Dynamic Binding to State via Modal Possibility

Aleksandar Nanevski
Computer Science Department, Carnegie Mellon University

PPDP 2003, Uppsala
August 27, 2003
Monadic treatment of state

- If \(S \) is the type of state, state monad \(T \) defined as

\[
TA = S \rightarrow (A \times S)
\]

- Term constructors corresponding to \(T \)
 - allocation of new memory
 - reads from memory locations
 - writes into memory locations

- Stateful operations confined to monadic types

- Monadic computation is *single-threaded*
 - total ordering between effects
Requirements of state operations

- Writes must be single-threaded, so that the final value of the written location is well-defined.
- Reads between any two consecutive writes may be performed out of order.
- If assume memory is not initialized upon allocation:
 - a read should be allowed only if a location has been written into.
Can we assign different types to different state operations?
How should the types interact?
Is there a logic behind such a system?
Can we assign different types to different state operations?
How should the types interact?
Is there a logic behind such a system?
In this presentation:

- Modal logic for a system with a type distinction between allocation, reads and writes
- allocation of uninitialized second-class locations
- dereferencing of only initialized locations
- location update can be:
 - destructive (i.e. with global scope)
 - non-destructive (i.e. with delimited scope)
- Introduction ✓
- Names as memory locations
- Modal logic for state
- Categorical structure of modalities
- Related and future work
Names

- A.k.a.: labels, atoms, nonces, symbols, tags, indeterminates
- Names stand for particular locations
- Terms
 \[e ::= x \mid \lambda x. e \mid e_1 e_2 \mid X \mid \ldots \]
- Important:
 names are generated dynamically
- Type system enforces discipline in name generation and propagation
We associate expression e with its type A:

$$\Sigma; \Delta \vdash e : A$$

- Σ : types for names
- Δ : types for variables
Type system

- We associate expression e with its type A and support C

 $$\Sigma; \Delta \vdash e : A[C']$$

- Σ: types for names
- Δ: types for variables
- Support == set of names/locations that e may read
- Pure expressions = empty support
- Type safety: well-typed pure expressions do not get stuck
Explicit substitutions

- Location read == extend support
- Location write == shrink support
- Locations written using explicit substitutions

\[
\text{Substitutions } \Theta ::= \cdot \mid (\Theta, X \rightarrow e) \\
\text{Terms } e ::= \ldots \mid \langle \Theta \rangle e
\]

- Scope of a substitution is delimited

\[
\langle X \rightarrow 1 \rangle (\langle X \rightarrow 2 \rangle X^2, X^2)
\]

- Substitutions model non-destructive update
Let $X, Y : \text{int} \iff$ uninitialized integer locations

<table>
<thead>
<tr>
<th>term</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^2 + Y^2$</td>
<td>X, Y</td>
</tr>
<tr>
<td>$\langle X \to 1 \rangle (X^2 + Y^2)$</td>
<td>Y</td>
</tr>
<tr>
<td>$\langle X \to 1, Y \to 2 \rangle (X^2 + Y^2)$</td>
<td>empty</td>
</tr>
<tr>
<td>$\langle X \to 1 \rangle (\langle X \to 2 \rangle X^2, X^2)$</td>
<td>empty</td>
</tr>
</tbody>
</table>

Type-safety: well-typed pure expressions do not get stuck
• Let $X, Y : \texttt{int} \equiv \text{unfinished integer locations}$

<table>
<thead>
<tr>
<th>term</th>
<th>support</th>
<th>evaluates to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X^2 + Y^2$</td>
<td>X, Y</td>
<td></td>
</tr>
<tr>
<td>$\langle X \rightarrow 1 \rangle (X^2 + Y^2)$</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>$\langle X \rightarrow 1, Y \rightarrow 2 \rangle (X^2 + Y^2)$</td>
<td>empty</td>
<td>5</td>
</tr>
<tr>
<td>$\langle X \rightarrow 1 \rangle (\langle X \rightarrow 2 \rangle X^2, X^2)$</td>
<td>empty</td>
<td>(4,1)</td>
</tr>
</tbody>
</table>

• Type-safety: well-typed pure expressions do not get stuck
At run time we need to allocate new memory

Two new constructs:

Terms \[e ::= \ldots | \nu X : A. \ e | \text{choose } e \]

- *declare* fresh name \(X : A \) in \(e \) \(\equiv \nu X : A . \ e \)
- *allocate* fresh name \(\equiv \text{choose } e \)

Example: allocate new memory cell \(X \)

\[
\text{choose } (\nu X : \text{int.} \langle X \to 10 \rangle X)
\]
Outline

- Introduction ✓
- Names as memory locations ✓
- Modal logic for state
- Categorical structure of modalities
- Related and future work
State and higher-order functions

- How to track supports inherited from function arguments?
- Hint comes from Curry-Howard isomorphism:
 - types should specify program behavior
- Therefore:

 stateful computations should be marked by the type system
Assume

- E_1 is a computation reading from location $X:A$ before returning a value of type B
- E_2 is a computation writing into location $X:A$ before returning a value of type B

E_1 is a function from store to values
E_2 pairs up a store and a value

Conclusion:
- Reading == universal quantification
- Writing == existential quantification
Modal logic

- Reasoning about properties of nodes in a directed graph
- Modal operators □ and ◇
 - □ = modal necessity
 - Proposition □A is true at a node w iff A is true at all nodes accessible from w
 - ◇ = modal possibility
 - Proposition ◇A is true at a node w iff A is true at some node accessible from w
Modal types for state

- type $\square_C A$

 \Rightarrow

 suspended computation of type A possibly reading locations in C

- type $\Diamond_C A$

 \Rightarrow

 suspended computation of type A writing into locations listed in C
• Terms $e ::= \ldots \mid \text{box } e \mid \text{let box } u = e_1 \text{ in } e_2$
• Boxed term is “packaged” to be “shipped” further
• \Box-introduction

\[
\Sigma; \Delta \vdash e : A [D] \\
\Sigma; \Delta \vdash \text{box } e : \Box D A [\]
\]

• Notice:
 – boxed expression itself is effect-free
• boxed expressions are not evaluated
Typing necessity

- Using a boxed computation: let-box construct
- let-box == unwrap the package, but do not peek into it
- Examples:

 \[
 \text{let box } u = \text{box } e_1 \text{ in } e_2 \mapsto [e_1/u]e_2 \\
 \text{let box } u = \text{box } (1 + 1) \text{ in } (\text{box } u) \mapsto \text{box } (1 + 1) \\
 \text{let box } u = \text{box } (1 + 1) \text{ in } u \mapsto 1 + 1 \mapsto 2
 \]

- Notice: binding to \(u \) is “by-name”
• □-elimination

\[
\Sigma; \Delta \vdash e_1 : \Box_D A \quad \Sigma; (\Delta, u:A[D]) \vdash e_2 : B \\
\Sigma; \Delta \vdash \text{let box } u = e_1 \text{ in } e_2 : B
\]

• Notice:
 – context \(\Delta \) types “unwrapped” expressions
 – \(\Delta \) stores the type and support of variables
Typing necessity

- □-elimination

\[
\Sigma; \Delta \vdash e_1 : \square_D A [C] \quad \Sigma; (\Delta, u : A[D]) \vdash e_2 : B [C] \\
\Sigma; \Delta \vdash \text{let box } u = e_1 \text{ in } e_2 : B [C]
\]

- Notice:
 - context \(\Delta \) types “unwrapped” expressions
 - \(\Delta \) stores the type and support of variables
 - Conclusion inherits support of the premises
Example

let fun f (y : int) : □_X int = box (X + y)
 box u = f(1)

in

 ⟨X → 0⟩
 ⟨⟨X → 1⟩u, u⟩

end

- range type of \(f \) marks the effect of reading \(X \)
- variable \(u \) “unpacked” under two different substitutions
- computation is effectful, but final result is pure
let fun f (y : int) : □X int = box (X + y)
 box u = f(1) == box (X + 1)
in
 ⟨X → 0⟩
 (⟨X → 1⟩ u, u)
end

- range type of f marks the effect of reading X
- variable u “unpacked” under two different substitutions
- computation is effectful, but final result is pure
let fun f (y : int) : □_X int = box (X + y)
 box u = f(1) == box (X + 1)
in
 ⟨X → 0⟩
 ⟨⟨X → 1⟩u, u⟩ == ⟨⟨X → 1⟩X+1, X+1⟩
end

- range type of f marks the effect of reading X
- variable u “unpacked” under two different substitutions
- computation is effectful, but final result is pure
let fun f (y : int) : □_X int = box (X + y)
 box u = f(1) == box (X + 1)
in
 ⟨X → 0⟩
 ⟨⟨X → 1⟩u, u⟩ == (2, 1)
end

- range type of \(f \) marks the effect of reading \(X \)
- variable \(u \) “unpacked” under two different substitutions
- computation is effectful, but final result is pure
Summary of the □-fragment

- □_C == computation reading from store C
 - universal quantification over substitutions for names in C
 - substitution application == specialization of universal quantifier

- Location update by explicit substitutions is non-destructive
- Only initialized locations can be dereferenced
- Type safety: pure terms do not get stuck
- Implements a type-safe calculus of dynamic binding
Typing possibility

- New judgment
 \[\Sigma; \Delta \vdash f \div_D A \]

- Meaning of the judgment:
 1. \(f \) writes into locations \(D \), and
 2. returns an \(A \) value

- Terms \(e ::= \ldots | \text{dia } f \)

- Judgment is internalized using \(\Diamond \)

\[
\Sigma; \Delta \vdash f \div_D A \\
\Sigma; \Delta \vdash \text{dia } f : \Diamond_D A
\]
• New judgment

\[\Sigma; \Delta \vdash f \div_D A[C] \]

• Meaning of the judgment:
 1. \(f \) writes into locations \(D \), and
 2. returns an \(A \) value

• Terms \(e ::= \ldots | \text{dia } f \)

• Judgment is internalized using \(\Diamond \)

\[
\begin{align*}
\Sigma; \Delta & \vdash f \div_D A[C] \\
\Sigma; \Delta & \vdash \text{dia } f : \Diamond_D A[C]
\end{align*}
\]
Typing possibility

- Recall: \Diamond is an existential quantifier over store (i.e. over explicit substitutions)
- Frames $f ::= [\Theta, e] \mid \textbf{let dia } x = e \textbf{ in } f$
- Canonical frame is a pair: [explicit substitution, term]
 \[
 \Sigma; \Delta \vdash e_1 : A \quad \Sigma; \Delta \vdash e_2 : B[X] \quad X:A \in \Sigma \\
 \Sigma; \Delta;\vdash [(X \to e_1), e_2] \div_X B
 \]
- Explicit substitution $\langle X \to e_1 \rangle ==$ to be written into the store
- Term $e_2 ==$ computation in the new store
Typing possibility

- Elimination form threads the existential

 \[\Sigma; \Delta \vdash e : \Diamond_C A \quad \Sigma; (\Delta, x:A) \vdash f \Downarrow_D B [C] \]

 \[\Sigma; \Delta \vdash \text{let dia } x = e \text{ in } f \Downarrow_D B \]

- Pairs and let dia are the only proof-terms for the \(\Downarrow \) judgment

- Consequences:
 - Computations are explicitly single-threaded
 - Explicit substitution embedded in \(e \) has global scope; it can be implemented destructively
• Elimination form threads the existential

\[
\Sigma; \Delta \vdash e : \Diamond_C A [C'] \\
\Sigma; (\Delta, x:A) \vdash f \Downarrow_D B [C]
\]

\[
\Sigma; \Delta \vdash \text{let} \ dia \ x = e \ \text{in} \ f \Downarrow_D B [C']
\]

• Pairs and let dia are the only proof-terms for the \Downarrow judgment

• Consequences:
 – Computations are explicitly single-threaded
 – Explicit substitution embedded in e has global scope; it can be implemented destructively
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y)</td>
<td>let fun f (y) = box (X + y)</td>
</tr>
<tr>
<td>box u = f(1)</td>
<td>box u = f(1)</td>
</tr>
<tr>
<td>in</td>
<td></td>
</tr>
<tr>
<td>⟨X → 0⟩</td>
<td>dia dummy = dia [⟨X → 0⟩, ()]</td>
</tr>
<tr>
<td>⟨⟨X → 1⟩u, u⟩</td>
<td>val z = u</td>
</tr>
<tr>
<td>end</td>
<td>dia w = dia [⟨X → 1⟩, u]</td>
</tr>
<tr>
<td></td>
<td>in</td>
</tr>
<tr>
<td></td>
<td>[(w, z)]</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

- In ◊-fragment, references to u reordered to match their substitutions
<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y)</td>
<td>let fun f (y) = box (X + y)</td>
</tr>
<tr>
<td>box u = f(1)</td>
<td>box u = f(1) == box (X + 1)</td>
</tr>
<tr>
<td>in</td>
<td></td>
</tr>
<tr>
<td>(\langle X \rightarrow 0\rangle)</td>
<td>dia dummy = dia [(\langle X \rightarrow 0\rangle, ())]</td>
</tr>
<tr>
<td>((\langle X \rightarrow 1\rangle u, u))</td>
<td>val z = u</td>
</tr>
<tr>
<td>end</td>
<td>dia w = dia [(\langle X \rightarrow 1\rangle, u)]</td>
</tr>
<tr>
<td></td>
<td>in [(w, z)]</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

- In ◊-fragment, references to \(u\) reordered to match their substitutions
Example revisited

- In \square-fragment, references to u reordered to match their substitutions.

<table>
<thead>
<tr>
<th>\square-fragment</th>
<th>\Diamond-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y)</td>
<td></td>
</tr>
<tr>
<td>box u = f(1)</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td></td>
</tr>
<tr>
<td>$\langle X \rightarrow 0 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$(\langle X \rightarrow 1 \rangle u, u)$</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>let fun f (y) = box (X + y)</td>
<td></td>
</tr>
<tr>
<td>box u = f(1) \Rightarrow box (X + 1)</td>
<td></td>
</tr>
<tr>
<td>dia dummy = dia [\langle X \rightarrow 0 \rangle, ()]</td>
<td></td>
</tr>
<tr>
<td>val z = u \Rightarrow X+1</td>
<td></td>
</tr>
<tr>
<td>dia w = dia [\langle X \rightarrow 1 \rangle, u]</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td></td>
</tr>
<tr>
<td>[(w, z)]</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Example revisited

-fragment | ◇-fragment

let fun f (y) = box (X + y)
 box u = f(1)
 in
 \langle X \to 0 \rangle
 (\langle X \to 1 \rangle u, u)
end

let fun f (y) = box (X + y)
 box u = f(1)
 == box (X + 1)
 dia dummy = dia [\langle X \to 0 \rangle, ()]
 val z = u
 == 1
 dia w = dia [\langle X \to 1 \rangle, u]
 in
 [(w, z)]
end

- In ◇-fragment, references to \(u \) reordered to match their substitutions
Example revisited

- In \Box-fragment, references to u reordered to match their substitutions.

\[
\begin{align*}
\Box\text{-fragment} & \quad \Diamond\text{-fragment} \\
\text{let fun f (y) = box (X + y)} & \quad \text{let fun f (y) = box (X + y)} \\
\text{ box u = f(1)} & \quad \text{ box u = f(1) == box (X + 1)} \\
\text{in} & \quad \text{dia dummy = dia [⟨X → 0⟩, ()]} \\
\langle X → 0 \rangle & \quad \text{val z = u == 1} \\
\langle X → 1 \rangle u, u) & \quad \text{dia w = dia [⟨X → 1⟩, u] == [⟨X→1⟩,X+1]} \\
\text{end} & \quad \text{in} \\
\text{[(w, z)]} & \quad \text{end}
\end{align*}
\]
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
</table>
| let fun f (y) = box (X + y)
 box u = f(1)
 in
 \[\langle X \rightarrow 0 \rangle\]
 \(\langle X \rightarrow 1 \rangle u, u\)
 end | let fun f (y) = box (X + y)
 box u = f(1)
 \[\text{val } z = u \quad \text{== 1}\]
 \[\text{dia } w = \text{dia } [\langle X \rightarrow 1 \rangle, u] \quad \text{==[}\langle X\rightarrow1\rangle,2]\]
 \(\text{in}\)
 \([w, z]\)
 end |

- In ◊-fragment, references to \(u\) reordered to match their substitutions
Example revisited

<table>
<thead>
<tr>
<th>□-fragment</th>
<th>◊-fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>let fun f (y) = box (X + y) box u = f(1)</td>
<td>let fun f (y) = box (X + y) box u = f(1) == box (X + 1)</td>
</tr>
<tr>
<td>in</td>
<td></td>
</tr>
<tr>
<td>⟨X → 0⟩</td>
<td>dia dummy = dia [⟨X → 0⟩, ()]</td>
</tr>
<tr>
<td>⟨X → 1⟩ u, u</td>
<td>val z = u == 1</td>
</tr>
<tr>
<td>end</td>
<td>dia w = dia [⟨X → 1⟩, u] == [⟨X→1⟩,2]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[(w, z)] == [(2, 1)]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

- In ◊-fragment, references to u reordered to match their substitutions

From Dynamic Binding to State via Modal Possibility – p.24
Summary of \Diamond-fragment

- \Diamond_C == computation writing into store C
 - existential quantification over substitutions
- Because of monadic character of \Diamond, the substitutions can be implemented destructively
- When combined with the \Box-fragment, destructive and non-destructive state update coexist
Outline

- Introduction ✓
- Names as memory locations ✓
- Modal logic for state ✓
- Categorical structure of modalities
- Related and future work

From Dynamic Binding to State via Modal Possibility – p.26
Categorical structure of modalities

- □ is a comonad

\[f_1 : \square A \to A = \lambda x. \text{let box } u = x \text{ in } u \]

\[f_2 : \square A \to \square \square A = \lambda x. \text{let box } u = x \text{ in box (box } u) \]

\[f_3 : \square (A \to B) \to \square A \to \square B = \lambda x. \lambda y. \text{let box } u = x \text{ in let box } v = y \text{ in box } (u v) \]
Categorical structure of modalities

- □ is a comonad

 \[f_1 : \Box A \to A = \lambda x. \text{let } \text{box } u = x \text{ in } u \]

 \[f_2 : \Box_C A \to \Box_C \Box C A = \lambda x. \text{let } \text{box } u = x \text{ in } \text{box } (\text{box } u) \]

 \[f_3 : \Box_C (A \to B) \to \Box_D A \to \Box_{C,D} B = \lambda x. \lambda y. \text{let } \text{box } u = x \text{ in } \text{let } \text{box } v = y \text{ in } \text{box } (u v) \]

- \[\Box_C A \to \Box_D A \quad C \subseteq D \]

- and others...
Categorical structure of modalities

- Need $A \to \Box A$ to coerce values into computations

- Consider fragment where function arguments are boxed

 \[
 (A \to B)^+ = \Box A^+ \to B^+
 \]

 \[
 (\Box A)^+ = \Box A^+
 \]

 \[
 (\Diamond A)^+ = \Diamond \Box A^+
 \]

- \Box still a comonad
Categorical structure of modalities

- \Diamond is a monad

\[
g_1 : A \to \Diamond A = \lambda x. \text{dia } [x]
g_2 : \Diamond \Diamond A \to \Diamond A = \lambda x. \text{dia } (\text{let } \text{dia } y = x \text{ in let } \text{dia } z = y \text{ in } [z])
g_3 : (A \to B) \to \Diamond A \to \Diamond B = \lambda e_1. \lambda e_2. \text{dia } (\text{let } \text{val } u = e_1 \text{ in let } \text{dia } x = e_2 \text{ in } [u \ x])
\]
Categorical structure of modalities

- ◊ is a monad

\[g_1 : A \rightarrow ◊A = \lambda x. \text{dia } [x] \]

\[g_2 : ◊C ◊D A \rightarrow ◊D A = \lambda x. \text{dia } (\text{let dia } y = x \text{ in let dia } z = y \text{ in } [z]) \]

\[g_3 : □C (A \rightarrow B) \rightarrow ◊D A \rightarrow ◊D B = (\text{where } C \subseteq D) \]

\[\lambda e_1. \lambda e_2. \text{dia } (\text{let } \text{box } u = e_1 \text{ in let dia } x = e_2 \text{ in } [u x]) \]

- ◊D A \rightarrow ◊C A \quad C \subseteq D

- and others...
Representation of state in constructive modal logic

Split the state monad $TA = C \rightarrow (A \times C)$ into

 - modality \Box_C for reading
 - modality \Diamond_C for writing

Names == dynamically allocated memory

Typing discipline: only initialized locations are read from

\Box-fragment == dynamic binding; locations updated non-destructively by explicit substitutions

\Diamond-fragment adds destructive update

\Diamond is a monad, and \Box is a comonad
Future work

- Integrating nominal modal types into a realistic language
 - other effects, like control effects and I/O
 - type and support inference
 - universal and existential abstraction over supports
- First-class locations
- Equational theory
 - also for a call-by-name variant
Some related work

- Monads [Moggi ’91, Wadler ’95]
- Natural deduction for constructive S4 [Pfenning, Davies’99]
- Embedding of monads into modal logic [Kobayashi’97], [Pfenning, Davies’99]
- Categorical models for modal logic [Kobayashi’97], [Bierman, de Paiva’00], [Alechina,Mendler,de Paiva,Ritter’01]
- Nominal logic, FreshML [Pitts,Gabbay’00]
Representation of state in constructive modal logic

- Split the state monad \(T \ A = C \rightarrow (A \times C) \) into
 - modality \(\boxdot_C \) for reading
 - modality \(\Diamond_C \) for writing

- Names == dynamically allocated memory
- Typing discipline: only initialized locations are read from
- \(\square \)-fragment == dynamic binding; locations updated non-destructively by explicit substitutions
- \(\Diamond \)-fragment adds destructive update
- \(\Diamond \) is a monad, and \(\square \) is a comonad
Categorical structure of modalities

- In constructive S4, □ is a monoidal comonad and ◊ is a □-strong monad

\[
\begin{align*}
\square A & \Rightarrow A \\
\square A & \Rightarrow \boxdot \square A \\
\square (A \Rightarrow B) & \Rightarrow \square A \Rightarrow \square B
\end{align*}
\]

\[
\begin{align*}
A & \Rightarrow ◊ A \\
◊◊ A & \Rightarrow ◊ A \\
\square (A \Rightarrow B) & \Rightarrow ◊ A \Rightarrow ◊ B
\end{align*}
\]

- There is no map \(A \Rightarrow □ A \) from values into comonadic computations
Categorical structure of modalities

- Typing judgment for constructive S4 has two variable contexts:
 \[\Delta; \Gamma \vdash e : A \]
- \(\Gamma \) variables introduced by \(\lambda \)
- \(\Delta \) variables introduced by let box
- Box-introduction rule erases \(\Gamma \) in the premise
 \[\Delta; \cdot \vdash e : A \]
 \[\Delta; \Gamma \vdash \text{box } e : \Box A \]
- Diamond-elimination rule erases \(\Gamma \) in the premise
 \[\Delta; \Gamma \vdash e : \Diamond A \]
 \[\Delta; x:A \vdash f \triangleright B \]
 \[\Delta; \Gamma \vdash \text{let dia } x = e \text{ in } f \triangleright B \]
Categorical structure of modalities

- We used a fragment where function arguments are assumed boxed.
- Interpretation \((A \rightarrow B)^+ = \Box A^+ \Rightarrow B^+\)
 \[(\Box A)^+ = \Box A^+ \]
 \[(\Diamond A)^+ = \Diamond \Box A^+ \]
- Provides coercion \(A \rightarrow \Box A\) (i.e., \(\Box A^+ \Rightarrow \Box A^+\))
- \(\Box\) is equal to \(\Box\) (i.e., still a comonad); \(\Diamond\) is a strong monad
Categorical structure of modalities

- We used a fragment where function arguments are assumed boxed.
- Interpretation:

 \[(A \to B)^+ = \Box A^+ \Rightarrow B^+

 (\Box A)^+ = \Box A^n

 (\Diamond A)^+ = \Diamond \Box A^+

- Provides coercion \(A \to \Box A \) (i.e., \(\Box A^+ \Rightarrow \Box A^+ \))
- \(\Box \) is equal to \(\Box \) (i.e., still a comonad); \(\Diamond \) is a strong monad.
- Reinterpretation eliminates the need for \(\Gamma \)

\[
\Delta \vdash e : A \\
\Delta \vdash \text{box } e : \Box A
\]

\[
\Delta \vdash e : \Diamond A \\
\Delta, x : A \vdash f : B
\]

\[
\Delta \vdash \text{let } \text{dia } x = e \text{ in } f : B
\]
Dynamic name generation

- At run time we need to allocate new memory
- Two new constructs:

 Terms \(e ::= \ldots \mid \nu X : A. \ e \mid \text{choose } e \)

- \textit{declare} fresh name \(X : A \) in \(e \Rightarrow \nu X : A. \ e \)
- \textit{allocate} fresh name \(\Rightarrow \text{choose } e \)
- Example: allocate new memory cell \(X \)

 \[
 \text{choose } (\nu X : \text{int.} \langle X \rightarrow 10 \rangle X)
 \]
Name declaration and allocation

- Important:
 - `choose (νX. e)` allocates `X` to be used *exclusively* in `e`
 - type system must prevent `X` from escaping, otherwise type soundness fails
Important:
- `choose (\nu X. e)` allocates `X` to be used *exclusively* in `e`
- type system must prevent `X` from escaping, otherwise type soundness fails

Example: the following steps to `X` and then gets stuck

```plaintext
let val y = choose (\nu X : int. X) in y
```
Name declaration and allocation

- Important:
 - \texttt{choose } (\nu X. \ e) \texttt{ allocates } X \texttt{ to be used } exclusively \texttt{ in } e
 - type system must prevent \(X \) from escaping, otherwise type soundness fails

- Example: the following steps to \(X \) and then gets stuck
 \[
 \texttt{let val } y = \texttt{choose } (\nu X:\text{int. } X) \texttt{ in } y
 \]

- Requirement: \(X \) is not in support of \(e \)
 - all instances of \(X \) in \(e \) must be substituted away
Typing for name generation

- **Irrelevant** implication $A \rightsquigarrow B$
- \rightsquigarrow introduction

\[
\begin{align*}
(\Sigma, X:A); \Delta \vdash e : B [C] & \quad X \not\in \text{fn}(A, B, C, \Delta) \\
\Sigma; \Delta \vdash \nu X:A. e : A \rightsquigarrow B [C]
\end{align*}
\]

- Side-condition ensures all uses of X in e are handled or dead code
- \rightsquigarrow elimination

\[
\begin{align*}
\Sigma; \Delta \vdash e : A \rightsquigarrow B [C] \\
\Sigma; \Delta \vdash \text{choose } e : B [C]
\end{align*}
\]