
A Modal Foundation for Meta-Variables

(Extended Abstract)

Aleksandar Nanevski Brigitte Pientka Frank Pfenning

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{aleks,bp,fp}@cs.cmu.edu

Abstract

We report on work in progress regarding a foundation for the notion
of meta-variable in logical frameworks and type theories. Our pro-
posal is to treat meta-variables as modal variables in a modal type
theory, which is logically clean and justifies several low-level im-
plementation techniques for meta-variables. We also speculate on
other logical extensions of our modal type theory, at present without
clear applications.

Categories and Subject Descriptors

D.1.6 [Programming Techniques]: Logic Programming; D.3.1
[Programming Languages]: Formal Definitions and Theory

General Terms

Languages, Theory

Keywords

logical frameworks, pattern unification, modal type theory

1 Introduction

In recent years, higher-order reasoning systems and logical frame-
works have matured and been successful in large-scale applications
such as proof-carrying code. Nonetheless, there are still some foun-
dational and implementation issues which are poorly understood. In
this report on work in progress we investigate a logical foundation
for meta-variables in higher-order setting.

When a type theory or logic is defined it contains intrinsic notions
of variable and variable binding, such as λ-abstraction or various
forms of quantification, which are subject to α-conversion. This in-
ternal form of variable is generally insufficient for advanced proof
search procedures, such as those requiring unification. In this case

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MERλIN’03, August 26, 2003, Uppsala, Sweden
Copyright 2003 ACM 1-58113-800-8/03/0008 ...$5.00

we need meta-variables that stand for as yet undetermined terms
from the type theory or logic. Meta-variables also turn out to be use-
ful to describe structure editing, where they serve as placeholders
for information to be supplied by the programmer, and type recon-
struction, where they serve as placeholders for omitted information
to be determined from typing constraints.

Despite the practical importance of meta-variables, both their log-
ical foundation and their efficient implementation have not been
settled definitively. One of the principal difficulties in the higher-
order setting stems from the interplay of ordinary variables, includ-
ing those that are bound in a term, and meta-variables. As a result,
meta-variables are generally not “first-class”. For example, we can-
not quantify or abstract meta-variables in the same way we would
with ordinary variables.

In this preliminary paper we advance the view that meta-variables
may be best understood via a modal type theory. This has sev-
eral interesting and potentially important consequences. First, since
meta-variables have a completely logical explanation they become
first-class and we can safely quantify over them. Second, the modal
properties of meta-variables in our type theory immediately sug-
gest an efficient implementation strategy. This serves as a post hoc
justification for some of the implementation decisions taken in the
Twelf system and clarifies several somewhat mysterious invariants
maintained in our algorithms. Third, the general paradigm of modal
type theory yields new constructs as described in Section 5. At the
time of this progress report we do not yet have a definitive appli-
cation of this construct; we simply note that it exists and has some
pleasing internal properties.

The remainder of the paper is organized as follows. In Section 2
we discuss some prior work on meta-variables. This is a highly
selective overview and by no means exhaustive. In Section 3 we
provide some background material on modal logic which is suit-
able for generalization in a type theory presented in Section 4. In
Section 5 we introduce another extension to include further modal
type operators. We conclude with a few remarks on future work in
Section 6.

2 Meta-Variables

In the seminal work on higher-order unification by Huet [4], the
tension between ordinary variables and meta-variables is resolved
by ensuring that meta-variables may never contain free ordinary
variables. Intuitively, this means all meta-variables are existentially
quantified on the outside, followed by universal quantified ordinary
variables on the inside. During higher-order unification existential
variables are subject to substitution, while universal variables are

treated as constants except that they may not occur free in a substi-
tution for the existential variables.

Unfortunately, meta-variables must usually be created in a con-
text of ordinary variables Γ. This means that any instantiation
for the meta-variable is allowed to depend on the variables in Γ
but no others. In Huet’s approach this can be achieved via rais-
ing, which we sketch here in the slightly more general setting
of dependent types. If a meta-variable u:A can depend on or-
dinary variables x1:A1, . . . ,xn:An we instead introduce a variable
u′:Πx1:A1. . . .Πxn:An. A and replace u by u′ x1 . . .xn. Substitutions
for u′ must now be closed. Besides being potentially inefficient,
this also suffers from the problem that the notion of (dependent)
function type in underlying type theory may not match the intended
semantics. Moreover, it does not help in providing a logical reading
for meta-variables.

Miller [6] generalizes this idea by allowing a mixed prefix of uni-
versally and existentially quantified variables. Raising is then an
operation related to Skolemization, replacing ∀x:A. ∃y:B(x).C(x,y)
by ∃y:(Πx:A. B(x)). ∀x:A. C(x,y(x)), but higher-order unification
can also be described directly with respect to a mixed prefix.

Unfortunately, in many cases the natural pattern of permitted de-
pendencies cannot be sorted into a linear order. While raising can
overcome those difficulties, it reintroduces inefficiencies present in
Huet’s approach. A more expressive alternative investigated by
Dowek et al. [1, 2] is to allow each meta-variable to carry a sep-
arate context of precisely those variables it is allowed to depend
on. In combination with explicit substitutions and de Bruijn in-
dices, it is then possible to allow grafting, that is, instantiation of
meta-variables without regard to variable capture. This achieves in
essence a first-order equational implementation of higher-order uni-
fication, but the context-carrying meta-variables are justified purely
algorithmically, not logically. A similar remark applies to the op-
eration of pre-cooking which translates from higher-order to first-
order equational problems.

In this paper, we propose an abstract view of meta variables based
on modal logic. We use a modality to cleanly distinguish between
ordinary variables and meta-variables. Our approach does not re-
quire de Bruijn indices, which is seen as a separate implementation
issue, and therefore remains higher-order while retaining the advan-
tages of the approach by Dowek et al. In particular, substitution for
meta-variables can easily be seen to be implementable by grafting
and operations such a raising and its inverse, lowering, have logical
justifications inside the type theory. Moreover, we generalize the
representation by Dowek et al. from simple types to fully depen-
dent types.

As our view does not require de Bruijn indices, we believe it is
easier to understand and reason about and eliminates the need for
pre-cooking. Moreover, we do not require closures M[σ] as first-
class terms, as other general explicit substitution calculi would. It
also suggests a clean and efficient way to abstract directly over
meta-variables. In related work we have shown [10, 8] that the
presented framework provides insight into several important opti-
mizations and implementation techniques such as higher-order pat-
tern unification and higher-order term indexing. In this paper we
concentrate on the logical foundation and its properties.

3 Modal Logic

Our development of the dependently typed modal calculus fol-
lows the methodology of Pfenning and Davies [7] which in turn
is based on Martin-Löf’s distinction between judgments and propo-
sitions [5]. The key idea is to assign constructive meaning expla-
nations to modal operators by distinguishing between propositions
that are true, propositions that are valid, and propositions that are
possible. A proposition is valid if its truth does not depend on the
truth of any other proposition. A proposition is possible if it is true
or if its truth depends on other possible propositions. We defer the
discussion of possibility to Section 5, which leaves us with the basic
hypothetical judgment

A1 valid, . . .An valid;B1 true, . . . ,Bm true `C true

which is abbreviated as ∆;Γ `C true.

Under the multiple-world interpretation of constructive S4, C valid
corresponds to C true in all reachable worlds. This means C true
without any assumptions, except those that are assumed to be true
in all worlds. Conversely, if A valid then certainly A true, since
reachability is assumed to be reflexive. This yields the following
principles, the first of which has definitional character while the
second is a new hypothesis rule.

1. If ∆; · `C true then ∆;Γ `C valid

2. ∆,Avalid,∆′;Γ ` Atrue

We can generalize this idea to also capture truth relative to a set of
specified assumptions by writing C valid Ψ, where Ψ abbreviates
C1 true, . . . ,Cn true. In terms of the multiple world semantics, this
means that C is true in any world where C1 through Cn are all true
and we say C is valid relative to the assumptions in Ψ. Hypothe-
ses about relative validity are more complex now, so our general
judgment form is

A1 valid Ψ1, . . . ,An valid Ψn;B1 true, . . . ,Bm true `C true.

Now if we have an assumption A valid Ψ we can conclude Atrue
only if we can verify all assumptions in Ψ.

∆,A valid Ψ,∆′;Γ ` Ψ
∆,A valid Ψ,∆′;Γ ` A true

(∗)

Here, · · · ` Ψ means that all judgments Ci true in Ψ can be derived.
In other words, if we know Atrue in Ψ, and all elements in Ψ can
be verified from the assumptions in Γ, then we can conclude Atrue
in Γ. As we will see in the next section, this transition from one
context Ψ to another context Γ corresponds to a substitution from
Ψ to Γ.

In the next section we generalize the ideas sketched above from
propositional modal logic above to a fully dependent type theory,
drawing the connection to the problem of meta-variables that will
no doubt be unclear at this point.

4 Modal Type Theory

In our dependently typed modal λ-calculus, we distinguish between
modal variables u::(Ψ`A) for relative validity assumptions A valid
Ψ declared in a modal context, and ordinary variables x:A for truth
assumptions Atrue declared in an (ordinary) context. Besides the
constructs present in LF we also introduce substitutions σ, but only

∆;Γ,x:A,Γ′ ` x : A

∆,u::(Ψ`A),∆′;Γ ` σ : Ψ
∆,u::(Ψ`A),∆′;Γ ` u[σ] : [σ]A

(∗)

∆;Γ,x:A1 ` M : A2

∆;Γ ` λx:A1. M : Πx:A1. A2

∆;Γ ` M1 : Πx:A2. A1 ∆;Γ ` M2 : A2

∆;Γ ` M1 M2 : [idΓ,M2/x]A1

∆;Γ ` (·) : (·)

∆;Γ ` σ : Ψ ∆;Γ ` M : [σ]A

∆;Γ ` (σ,M/x) : (Ψ,x:A)

` (·) mctx

` ∆ mctx ∆ ` Ψ ctx ∆;Ψ ` A : type

` (∆,u::(Ψ`A)) mctx

∆ ` (·) ctx

∆ ` Ψ ctx ∆;Ψ ` A : type

∆ ` (Ψ,x:A) ctx

Figure 1. Dependently typed modal λ-calculus.

as part of the syntax for occurrences of modal variables. c and a are
constants, which are declared in a signature. This is a conservative
extension of the LF type theory [3] so we suppress some routine
details such as signatures.

Kinds K ::= type | Πx:A. K
Families A,B,C ::= a | AM | Πx:A1. A2
Objects M,N ::= c | x | u[σ] | λx:A. M

| M1 M2
Substitutions σ,τ ::= · | σ,M/x

Contexts Γ,Ψ ::= · | Γ,x:A
Modal Contexts ∆ ::= · | ∆,u::(Ψ`A)

The principal judgments are listed below. We omit similar judg-
ments on types and kinds and all judgments concerning definitional
equality which are carried over from LF.

∆;Γ ` M : A Object M has type A
∆;Γ ` σ : Ψ Substitution σ matches context Ψ
` ∆ mctx ∆ is a valid modal context
∆ ` Ψ ctx Ψ is a valid context

We will tacitly rename bound variables, and maintain that con-
texts and substitutions declare no variable more than once. Note
that substitutions σ are defined only on ordinary variables x and
not modal variables u. We write idΓ for the identity substitution
(x1/x1, . . . ,xn/xn) for a context Γ = (·,x1:A1, . . . ,xn:An). We also
streamline the calculus slightly by always substituting simultane-
ously for all ordinary variables. This is not essential, but saves some
tedium in relating simultaneous and iterated substitution. The typ-
ing rules are presented in Figure 1.

Note that the rule for modal variables is the rule (*) presented in
the previous section, annotated with proof terms and slightly gen-
eralized, because of the dependent type theory we are working in.
Note also that modal contexts ∆ can have internal dependencies: the
types of later modal variables can mention earlier modal variables.

Our convention is that substitutions as defined operations on ex-

pressions are written in prefix notation [σ]P for an object, family,
kind, or substitution P. These operations are capture-avoiding as
usual. Moreover, we always assume that all free variables in P are
declared in σ. Substitutions that are part of the syntax are written
in postfix notation, u[σ]. Note that such explicit substitutions occur
only for variables u labeling relative validity assumptions.

Substitutions are defined in a standard manner. We omit the details
at the level of types and kinds for the sake of brevity.

[σ]c = c
[σ1,M/x,σ2]x = M

[σ](u[τ]) = u[[σ]τ]
[σ](N1 N2) = ([σ]N1)([σ]N2)

[σ](λy:A. N) = λy:[σ]A. [σ,y/y]N y not in σ

[σ](·) = (·)
[σ](τ,N/y) = ([σ]τ, [σ]N/y) y not in σ

The side conditions can always be verified by (tacitly) renaming
bound variables. We do not need an operation of applying a sub-
stitution σ to a context. The last principle makes it clear that [σ]τ
corresponds to composition of substitutions, which is sometimes
written as τ◦σ.

The following substitution principles for substitutions σ hold. They
are suggested by the modal interpretation and proved by simple
structural inductions. We elide corresponding principles for fam-
ilies and kinds.

THEOREM 1 (EXPLICIT SUBSTITUTIONS).

1. If ∆;Γ ` σ : Ψ and ∆;Ψ ` N : C then ∆;Γ ` [σ]N : [σ]C.

2. If ∆;Γ ` σ : Ψ and ∆;Ψ ` τ : Ψ′ then ∆;Γ ` [σ]τ : Ψ′.

3. [σ]([τ]M) = [[σ]τ]M and [σ]([τ]τ′) = [[σ]τ]τ′

A new and interesting operation realizes the substitution principles
for relative validity in Theorem 2 below. The new operation is de-
noted as [[M/u]]. It substitutes an object M for a modal variable u,
and we define it below. The substitution is compositional, but two
interesting situations arise: when a variable u is encountered, and

when we substitute into a λ-abstraction. For sake of brevity, we
only give the substitution on objects.

[[M/u]]c = c
[[M/u]]x = x

[[M/u]](u[σ]) = [[[M/u]]σ]M
[[M/u]](v[σ]) = v[[[M/u]]σ] for u 6= v

[[M/u]](N1 N2) = ([[M/u]]N1)([[M/u]]N2)
[[M/u]](λy:A. N) = λy:[[M/u]]A. [[M/u]]N

We remark that the rule for substitution into a λ-abstraction does
not require a side condition. This is because the object M is de-
fined in a different context, which is accounted for by the explicit
substitutions stored at occurrences of u.

Finally, consider the case of substituting into a closure, which is the
critical case of this definition.

[[M/u]](u[σ]) = [[[M/u]]σ]M

This is clearly well-founded, because σ is a subexpression (so
[[M/u]]σ will terminate) and application of an ordinary substitution
has been defined previously without reference to the new form of
substitution.

Similar to the substitution properties for ordinary explicit substitu-
tions, we now can show that the new substitution operation for rela-
tive validity satisfies the substitution principles. This highlights the
interplay between ordinary and modal substitutions. Again, this is
motivated by the logical interpretation and follows by simple induc-
tions after straightforward generalization to encompass all syntactic
categories.

THEOREM 2 (MODAL SUBSTITUTIONS).

1. If ∆;Ψ ` M : A and ∆,u::(Ψ`A),∆′;Γ ` N : C
then ∆, [[M/u]]∆′; [[M/u]]Γ ` [[M/u]]N : [[M/u]]C

2. If ∆;Ψ ` M : A and ∆,u::(Ψ`A),∆′;Γ ` τ : Ψ′

then ∆, [[M/u]]∆′; [[M/u]]Γ ` [[M/u]]τ : [[M/u]]Ψ′

3. [[M/u]]([σ]P) = [[[M/u]]σ]([[M/u]]P)

4. [[M/u]]([[N/v]]P) = [[[[M/u]]N/v]]([[M/u]]P) if u 6= v and v not
free in M

As mentioned several times above, in the implementation the modal
variables in ∆ are used to represent meta-variables (also known as
existential variables), while the variables in Γ are ordinary variables
(also known as universal variables or parameters). A modal variable
u::(Ψ`A) corresponds to a meta-variable whose whose substitution
term M may mention ordinary variables in Ψ and must have type A.

In the implementation, meta-variables are created in an ambient
context Ψ and then lowered as described below. We do not explic-
itly maintain a context ∆ of existential variables, but it is important
that a proper order for them exists. Dowek et al. do not need to
consider this issue due to the absence of dependent types.

As mentioned earlier, we often want to enforce that meta-variables
are of atomic type. This can be achieved by lowering and raising.
Lowering replaces a variable u::(Ψ`Πx:A1. A2) by a new variable
u′:(Ψ,x:A1`A2). This process is repeated until all existential vari-
ables have a type of the form Ψ ` bN1 . . .Nk. In our framework, it
is justified by the modal substitution principle.

LEMMA 3.

1. (Lowering) If ∆,u::(Ψ`Πx:A1. A2),∆′;Γ ` M : A
then ∆,u′::(Ψ,x:A1`A2),∆′−;Γ− ` M− : A−

where (P)− = [[(λx:A1. u′[idΨ,x/x])/u]]P.

2. (Raising) If ∆,u′::(Ψ,x:A1`A2),∆′;Γ ` M : A
then ∆,u::(Ψ`Πx:A1. A2),∆′+;Γ+ ` M+ : A+

where (P)+ = [[(u[idΨ] x)/u′]]P.

3. ()+ and ()− are inverse substitutions (modulo βη-
conversion).

PROOF. Direct, by weakening and the modal substitution prin-
ciple. For part (1) we observe that ∆,u′::(Ψ,x:A1`A2);Ψ `
λx:A1. u′[idΨ,x/x] : Πx:A1. A2. For part (2) we use instead that
∆,u::(Ψ`Πx:A1. A2);Ψ,x:A1 ` u[idΨ]x : A2. Part (3) is direct by
calculation.

In certain operations, and particularly after type reconstruction, we
need to abstract over the existential variables in a term. Since the
LF type theory provides no means to quantify over u::(Ψ`A) we
raise such variables until they have the form u′::(·`A′). It turns out
that in the context of type reconstruction we can now quantify over
them as ordinary variables x′:A′. However, this is not satisfactory
as it requires first raising the type of existential variables for ab-
straction, and later again lowering the type of existential variables
during unification to undo the effect of raising. To efficiently treat
existential variables, it seems important that we can directly quan-
tify over modal variables u. We believe it also may simplify the
abstraction process itself.

The judgmental reconstruction in terms of modal logic suggests two
simple and clean ways to incorporate such variables. One is via a
general modal operator 2Ψ, and the other is via a new quantifier
Π2u::(Ψ`A1). A2. We will briefly discuss these choices.

Categorical validity of propositional constructive S4 is usually for-
mulated by means of proof terms box and let box with the follow-
ing typing rules

∆; · ` M : A
∆;Γ ` box M :

�
A

∆;Γ ` M :
�

A ∆,u::A;Γ ` N : B

∆;Γ ` let box u = M in N : B

Naive extension to relative validity may be attempted by the follow-
ing reformulation

∆;Ψ ` M : A
∆;Γ ` box M :

�

ΨA

∆;Γ ` M :
�

ΨA ∆,u::(Ψ`A);Γ ` N : B

∆;Γ ` let box u = M in N : B

However, at the very least such an extension would violate the ex-
istence of canonical forms for LF due to the necessary commuting
conversion. Moreover, one would have to consider if B in the elimi-
nation rule should be allowed to depend on u in which case it would
have to be replaced in the conclusion.

Therefore, proof-theoretically it seems simpler to introduce a new
quantifier Π2u::(Ψ`A1). A2, with formation, introduction, and
elimination rules as shown below.

Families A,B,C ::= . . . | Π2u::(Ψ`A1). A2
Objects M,N ::= . . . | λ2u::(Ψ`A). M | M1 2 M2

∆ ` Ψ ctx ∆;Ψ ` A : type ∆,u::(Ψ`A);Γ ` B : type

∆;Γ ` Π2u::(Ψ`A). B : type

∆,u::(Ψ`A);Γ ` M : B

∆;Γ ` λ2u::(Ψ`A). M : Π2u::(Ψ`A). B

∆;Γ ` N : Π2u::(Ψ`A). B ∆;Ψ ` M : A

∆;Γ ` N 2 M : [[M/u]]B

The main complication of this extension is that variables u can
now be bound and modal substitution must be capture avoiding.
Moreover, in an implementation with explicitly named variables we
would have to account for the unexpectedly large scope of variables
in a declaration u::(Ψ`A) according to the elimination rule for Π2.
Since in the present implementation Π2 is not accessible to the user
and we employ de Bruijn indices, this issue has not arisen in Twelf
and we leave it to be considered in future work.

To extend the notion of substitution, we note that the context Ψ and
the type A in the type family Π2u::(Ψ`A) are separate from the
context Γ. In other words, elements in the context Ψ may depend
on each other, but they may not depend on Γ. Similarly, the type
family A, only depends on the context Ψ and not on the context Γ.
In accordance with this comment, explicit substitutions need only
descend into the body of the λ2. Similarly, in a box-application N 2

M we do not need to apply the substitution σ to M, since M is well-
typed in a different context. The operation of explicit substitution
is therefore extended with the new cases as follows.

[σ](N1 2 N2) = ([σ]N1) 2 N2

[σ](λ2u::(Ψ`A).N) = λ2u::(Ψ`A)[σ]N

Next, we extend the modal substitutions. This is straightforward,
but now requires a side condition.

[[M/u]](λ2v::(Ψ`A).N) = λ2v::([[M/u]]Ψ`[[M/u]]A).[[M/u]]N
for u 6= v, v not free in M

[[M/u]](N1 2 N2) = ([[M/u]]N1) 2 ([[M/u]]N2)

The proofs of the substitution principles stated in Theorem 1 and
Theorem 2 readily extend. The extension does not require any
changes to the statement of these theorems. However, at present
we have not investigated the full theory of LF extended with first-
class abstractions over meta-variables.

5 Simultaneous Possibility

In the previous sections we have presented a judgmental formula-
tion of validity relative to a context Ψ and its use to model exis-
tential variables. It is also possible to extend the modal possibility
to capture the notion of simultaneous possibility with respect to a
context Ψ. We do not have an an appealing application for simulta-
neous possibility yet, but we present it here as a dual development
to relative validity.

Under the multiple-world interpretation of constructive S4, C poss
corresponds to C true in some reachable world. This is given by the
following two principles (see [7]), the first of which must be a rule,
the second should be an admissible substitution principle.

1. If ∆;Γ `C true then ∆;Γ `C poss

2. If ∆;Γ ` A poss and ∆;A true `C poss then ∆;Γ `C poss

In this section, we generalize the judgment for possibility into a
judgment for simultaneous possibility, and develop a dependently
typed λ-calculus for it. To that end, we introduce the following
syntactic categories to the calculus from previous sections.

Families A,B,C ::= . . . | 3ΨA
Frames E,F ::= 〈σ,M〉 | let dia x = M in E
Objects M,N ::= . . . | dia E

If Ψ = x1:A1, . . . ,xn:An, we will write ∆;Γ ` E ÷ 〈Ψ〉A to establish
that in some reachable world, the types A1, . . . ,An,A can be realized
simultaneously, and that the frame E is a witness to that. Of course,
because the calculus is dependent, A is allowed to depend on the
context Ψ. However, we prohibit that Ψ and A depend on Γ; a
crucial invariant in the formulation of the calculus.

The new typing rules are given below.

∆;Ψ ` A : type

∆;Γ ` 3ΨA : type

∆;Γ ` σ : Ψ ∆;Γ ` M : [σ]A

∆;Γ ` 〈σ,M〉 ÷ 〈Ψ〉A
(1)

∆;Γ ` E ÷ 〈Ψ〉A

∆;Γ ` dia E : 3ΨA
(2)

∆;Γ ` M : 3ΨA ∆;(Ψ,x:A) ` E ÷ 〈Ψ′〉B

∆;Γ ` let dia x = M in E ÷ 〈Ψ′〉B
(3)

Observe that rule (1) generalizes the definitional properties of pos-
sibility that we listed at the beginning of the section, and that (2)
and (3) are simply introduction and elimination rules for 3ΨA.

The rule (1) establishes that if Ψ and A are simultaneously true,
then they certainly are simultaneously possible. A witness for a
simultaneous possibility of Ψ and A is a pair consisting of a sub-
stitution σ witnessing the truth of Ψ and an object M witnessing
the truth of [σ]A. This justifies a comparison of simultaneous pos-
sibility with dependent sums; where dependent sums quantify over
a single variable, the simultaneous possibility quantifies over an ar-
bitrary context Ψ. Moreover, dependent sums are not subject to a
modal restriction. Rules (2) and (3) form a matched pair of intro-
duction and elimination rules, which is ultimately justified by the
frame substitution principle (Theorem 6).

According to the elimination rule (3), the scope of Ψ in 3ΨA, ex-
tends beyond the type A. This is analogous to the necessitation
fragment, where the scope of Ψ in a declaration u:(Ψ`A), extends
beyond the Π2 which binds the modal variable u. This scope will
have to be made more explicit if the modal operators are to be made
accessible to the user at the source level, and we plan to address this
issue in future work.

The definitions of explicit and modal substitutions readily extend to
frames, as do the corresponding substitution principles. The substi-
tution principles on objects are also easily updated to account for
the new object constructor dia.

[σ](3ΨA) = 3ΨA
[σ](dia E) = dia [σ]E
[σ]〈τ,M〉 = 〈[σ]τ, [σ]M〉

[σ](let dia x = M in E) = let dia x = [σ]M in E

Notice that in the last clause of the above definition, the substitution

σ is not applied to the body E of let dia. Indeed, E is defined in a
context provided by M, and hence does not share any variables with
σ. This property is also reflected in the following theorem which
formulates the explicit substitution principle for frames. Observe
that the types in the concluding judgment of the principle are not
modified by the substitution σ, which is in contrast to the corre-
sponding principles for objects.

THEOREM 4 (EXPLICIT SUBSTITUTIONS FOR FRAMES).

1. If ∆;Γ ` σ : Ψ, and ∆;Ψ ` E ÷ 〈Ψ′〉A, then ∆;Γ ` [σ]E ÷
〈Ψ′〉A.

2. [σ]([τ]E) = [[σ]τ]E

The operation of modal substitution commutes with all the new con-
structors.

[[M/u]](3ΨA) = 3([[M/u]]Ψ)[[M/u]]A
[[M/u]](dia E) = dia [[M/u]]E

[[M/u]]〈τ,N〉 = 〈[[M/u]]τ, [[M/u]]N〉
[[M/u]](let dia x = N in E) = let dia x = [[M/u]]N in [[M/u]]E

THEOREM 5 (MODAL SUBSTITUTIONS FOR FRAMES). If
∆;Ψ ` M : A and ∆,u::(Ψ`A),∆′;Γ ` E ÷ 〈Ψ′〉B, then
∆, [[M/u]]∆′; [[M/u]]Γ ` [[M/u]]E ÷ 〈[[M/u]]Ψ′〉[[M/u]]B.

The most interesting development, however, is the formulation of
the new operation of frame substitution. It is the dependent ver-
sion of substitution principle (2) from the beginning of this sec-
tion. Frame substitution is therefore an operation transforming the
frame F ÷ 〈Ψ〉A and the frame E such that Ψ,x:A ` E ÷ 〈Ψ′〉B
into a frame 〈〈F/x〉〉E which witnesses the simultaneous possibil-
ity 〈Ψ′〉B. Curiously, the operation is defined by induction on the
structure of F rather than E:

〈〈〈σ,M〉/x〉〉E = [σ,M/x]E
〈〈let dia y = M in F/x〉〉E = let dia y = M in 〈〈F/x〉〉E

Lastly, we need a theorem to establish the soundness of the opera-
tion, that is, the fact that the frame 〈〈F/x〉〉E indeed is a witness for
the required simultaneous possibility.

THEOREM 6 (FRAME SUBSTITUTION PRINCIPLE). If ∆;Γ `
F ÷ 〈Ψ〉A, and ∆;(Ψ,x:A) ` E ÷ 〈Ψ′〉B, then ∆;Γ ` 〈〈F/x〉〉E ÷
〈Ψ′〉B.

6 Conclusion

We have presented an abstract view of meta-variables based on a
fragment of the constructive modal logic of necessity and possibil-
ity. The judgmental formulation of this logic distinguishes between
modal and ordinary variable contexts, and we used the modal vari-
ables to model the meta-variables in logical frameworks. We ex-
tended the conventional validity concept to relative validity which
allowed us to explain several efficient implementation techniques
for unification and related operations in the higher-order setting.
We also developed a calculus involving simultaneous possibility,
which is logically dual to relative validity, although currently with-
out clear application.

The core dependent calculus with modal variables admits well-
behaved notions of equality and canonical forms and type-checking
remains decidable [9]. We conjecture that these results can be ex-
tended to encompass Π2 and 3.

7 References

[1] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-
order unification via explicit substitutions. In D. Kozen, ed-
itor, Proceedings of the Tenth Annual Symposium on Logic
in Computer Science, pages 366–374, San Diego, California,
June 1995. IEEE Computer Society Press.

[2] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank
Pfenning. Unification via explicit substitutions: The case of
higher-order patterns. In M. Maher, editor, Proceedings of the
Joint International Conference and Symposium on Logic Pro-
gramming, pages 259–273, Bonn, Germany, September 1996.
MIT Press.

[3] Robert Harper, Furio Honsell, and Gordon Plotkin. A frame-
work for defining logics. Journal of the Association for Com-
puting Machinery, 40(1):143–184, January 1993.

[4] Gérard Huet. A unification algorithm for typed λ-calculus.
Theoretical Computer Science, 1:27–57, 1975.

[5] Per Martin-Löf. On the meanings of the logical constants and
the justifications of the logical laws. Nordic Journal of Philo-
sophical Logic, 1(1):11–60, 1996.

[6] Dale Miller. Unification under a mixed prefix. Journal of
Symbolic Computation, 14:321–358, 1992.

[7] Frank Pfenning and Rowan Davies. A judgmental reconstruc-
tion of modal logic. Mathematical Structures in Computer
Science, 11(4):511–540, 2001.

[8] Brigitte Pientka. Higher-order substitution tree indexing.
In C. Palamidessi, editor, 19th International Conference on
Logic Programming, Mumbai, India, Lecture Notes in Com-
puter Science (LNCS), to appear. Springer-Verlag, 2003.

[9] Brigitte Pientka. Tabled higher-order logic programming.
PhD thesis, Department of Computer Sciences, Carnegie Mel-
lon University, 2003. forthcoming.

[10] Brigitte Pientka and Frank Pfennning. Optimizing higher-
order pattern unification. In F. Baader, editor, 19th Inter-
national Conference on Automated Deduction, Miami, USA,
Lecture Notes in Computer Science (LNAI 2741), pages 473–
487. Springer, 2003.

