Meta-programming with Names and
Necessity

Aleksandar Nanevski

Carnegie Mellon University

ICFP, Pittsburgh, 05 October 2002

Meta-programming with Names and Necessity — p.1

Meta-programming

e Manipulation of (source) programs of an object language

Input Output
object Meta program object
program program

e Examples: compilers, partial evaluators, symbolic
computation systems, meta-logical frameworks . . .

Meta-programming with Names and Necessity — p.2

Typed meta-programming

e Typed meta- and object-language

e Well-typed meta-programs can construct only well-typed
source object-language programs

— Source object-language programs <—— “higher-order”
syntax trees

e Object-language types C Meta-language types
e Here, we name the inclusion as a modal type constructor

[1: object-language types — meta-language types

e Example: [JA «<— type of (source) object-language
programs of type A

Meta-programming with Names and Necessity — p.3

Representation of source programs

e Must handle programs with binding structure
— built-in notion of equivalence modulo a-renaming
variables

e Enable type-safe evaluation of closed object-language
programs.

e Admit programs with free variables (as already noticed by
MetaML community).

e Provide a way to destruct source object-language programs
and recurse over their structure! (and this is why we need
extra expressiveness over MetaML).

Meta-programming with Names and Necessity — p.4

Outline

e Introduction v/
e Background on S4-necessity
e Combining necessity with names

e Theorems
e Future work and conclusions

Meta-programming with Names and Necessity — p.5

A-calculus

e Proof-term calculus for necessity fragment of intuitionistic
modal S4 (Pfenning and Davies ’00)
e Types
A:=b| A — Ay |UA
e [1A «<—— values of this type encode closed source (i.e.
syntactic) expressions of type A
e Typing judgment
A:T'Fe: A
e Two kinds of variables:
— context I for ordinary variables (binding compiled code)

— context A for expression variables (binding source
expressions)

Meta-programming with Names and Necessity — p.6

AH-calculus (cont'd)

e Terms
ex=clz| x:A. e|e es | boxe|let boxu=e;iney

e box behaves like quote In Lisp
e Local reduction

let box u = box e in e; —— [e1/ules

Meta-programming with Names and Necessity — p.7

Example 1

e sum(n) produces source expression 1 +2+---+mn

-fun sum (n : int) : Oint =
if n = 1 then (box 1) else
let box u = sum (n — 1)
box m = li ft n in box (u 4+ m) end;

-val S = sum 5;
val S =box (1 +2+3+4+5) (* syntax *)

e S can be pattern-matched against and/or evaluated:

-letbox u =S in u;
val 1t =15

Meta-programming with Names and Necessity — p.8

Necessity limitations

e How to manipulate expressions with binding structure?

e Code analysis restricted
— subterms of a closed term are not necessarily closed

e Allowing only closed expressions —— output expressions
will contain unnecessary redexes

e Need a type of open syntactic expressions or code schemas

Meta-programming with Names and Necessity — p.9

Outline

e Introduction v/
e Background on S4-necessity v/
e Combining necessity with names

e Theorems
e Future work and conclusions

Meta-programming with Names and Necessity — p.10

Code schemas

Syntactic expressions with “indeterminates” (also called
“atoms”, “symbols” or “names”)

Treatment of indeterminates (names) inspired by Nominal
Logic and FreshML (Pitts and Gabbay ’01)

Names occurring in a boxed syntactic expression are listed
In Its type

D(A[X’ |) «<— closed syntactic expressions of type A
with indeterminates X

Example: assuming X, Y : int are names, then

box (X° 4+ 3X?Y +3XY? +Y?) : O(int[X,Y])

Meta-programming with Names and Necessity — p.11

Support of aterm

e Support of a term «<—— set of names which should be

defined before the term can be evaluated

e Example: assuming X,Y : int are names, then

term type support
X2 4Y? int (X,Y)
box (X2 + Y?) O(int [X,Y)))
(X2, box Y?) int x O(int[Y]) (X}

Support of a term can be arbitrarily extended

Meta-programming with Names and Necessity — p.12

Typing code schemas

o Types A=b| A; — Ay | O(A[X])
e Typing judgment

Z;A;Fl—e:A[)z]

e X isthe supportofe,and X C %

e Context I' for ordinary variables

e Context A for expression variables with their support
e Context > for names

Meta-programming with Names and Necessity — p.13

Typing code schemas (cont’d)

e [I-Introduction rule

A-Fe: A
A:T'+boxe: A

e [I-Elimination rule
A:T'Fe :OA (A,u:A);T'Feq: B
A;I'Fletboxu=¢e;iney: B

Meta-programming with Names and Necessity — p.14

Typing code schemas (cont’d)

e [I-Introduction rule

—

YA Fer ALX]
>:A:T'F boxe: D(A[)Z])

e [I-Elimination rule

—

AT e OAX]) Y] Y (A, wA[X]);T Fey: B[Y]

—

;AT Hlet boxu=e;iney : B[Y]

Meta-programming with Names and Necessity — p.14

Typing code schemas (cont’d)

e [I-Introduction rule

—

YA - Fer ALX] Y C
>:A;T +box e : OA[X]) [Y]

e [I-Elimination rule

—

S AT e OAX]) [Y] > (A, wA[X]);T F ey : B[Y]

—

X A;T'Fletboxu=e;iney : B|Y]|

Meta-programming with Names and Necessity — p.14

Typing code schemas (cont’d)

e Termse:=---| X |...
e Name rule

Y C dom(X)
(2, X:A);A;THX:A[X,Y]

Meta-programming with Names and Necessity — p.15

Explicit name substitution

e Termse:=... [{X =e1}e|...
e Example
-let box u = box (X? 4+ 2XY + Y?)
In

box ({Y = 2} u)

end

-val it = box (X? + 2X x 2 + 22) : O(int[X])

e Notice: the term constructor { X = ey} es does not bind X

Meta-programming with Names and Necessity — p.16

Example 2

e Given n, generate the function Az. g% ---xx x 1

VY o
n

-fun exp (n :int) : O(int| X)) =
if n = 0 then box 1 else
let box u = exp (n — 1) in box (X * u) end

-val poly = exp 2;
val poly = box (X * X * 1)

- let box u = poly in box (Ax. {X = x} u) end;
val it = box(Ax. x * x * 1)

Meta-programming with Names and Necessity — p.17

Name creation

e Dynamic introduction of names into computation (version of
gensym)
e Termse::=... | new X:Aine|...

e Type system ensures the value of e does not depend on X

e Typing rule

(2, X:A);A;TFe: B[Y] X ¢ B[Y]

—

X A;T'Fnew X:Aine: BlY]

Meta-programming with Names and Necessity — p.18

Name abstraction

e Used to express that a term depends on one name, no matter
which (inspired by FreshML and Nominal Logic of Pitts and

Gabbay)

e Termse:=---| X.e|... Types A ::=--- | A,

%
X:Aq
e X . epairsup X and the value of e into a closure
e Example: polynomial p with one indeterminate

-new X :ntin
let val p = box(X? 4 1) in
X.p
end

end

valit= X . box(X?% 4+ 1) : NG tD(z’nt[Y])

Meta-programming with Names and Necessity — p.19

Name concretion

e Provides a fresh name in place of the abstracted one
e Termse:=---|e@X | ...

e Elimination form for abstraction
e Example

-valp=X . box(X? + Z?) - n tD(z’nt[X, Z])
-valg=Y . box(Y? + Z?) : XI/I tD(int[X, Z])
-new W : intin
p@QW =q@QW
end,
val it = true

e EXpressions p@ Z and g @ Z are not be well-typed, as 7 is
not fresh for p and g.

Meta-programming with Names and Necessity — p.20

Example 3

e Given source for f:int — int, generate source for f2
e Use pattern-matching to check if f is a lambda

- fun square2 (F : O(int — int)) =
case I'' of
box (A\z. [F Qzx]) = (* E:XI/I. tD(int[X]) *)
new X :intin "
letbox u = F @ X inbox (Azx. {X =z} (uxu))
| box (F)) = box \z. (F x)*(FE x)

- square2 (box \z. x);
val it = box (Ay. y * y)

e Thanks to pattern-matching, no redexes in the result

Meta-programming with Names and Necessity — p.21

Outline

e Introduction v/
e Background on S4-necessity v/
e Combining necessity with names v/

e Theorems
e Future work and conclusions

Meta-programming with Names and Necessity — p.22

Substitution principles

1. Ordinary substitution principle
IFX; AT ey AlC]and X; As T x:A = ey - B|C], then
Y AT F ey /xles - BC

2. Modal substitution principle
IfX A -Fep: A|C]and X; A, w:A[C]; T = ey @ B[C], then
Y AT F leq/ules - BC

3. Name substitution principle
IfY, X:A;A;T' ey A|C] and
Y XA AT ey BIX,C, then
Yo XA AT EA{X/ertes : BC]

Meta-programming with Names and Necessity — p.23

Progress and preservation

If > - Fe: A[]then either
1. els avalue, or

2. there exists X' C 33, such that >, e —— Y, €’; furthermore,
e’ isunique, and X'; ;- F e : A|]

Meta-programming with Names and Necessity — p.24

Future work

Support polymorphism can be found in the paper

Names of general types (currently names are simply typed)
Type polymorphism and type-polymorphic recursion
Polymorphic patterns and intensional type analysis
Relation to MetaML and other meta-programming

languages
Extension to type theory with names

Meta-programming with Names and Necessity — p.25

Conclusions

Type of closed syntactic program representations
corresponds to O modality of intuitionistic S4.

Not expressive enough for intensional manipulation of
programs with binding structure

Type of open source programs can be obtained by adding
Indeterminates (names) to the language, thus creating
“polynomials” over source expressions

Names stand for free variables of source programs making it
possible to destruct and analyze the source programs

The distinction between compiled and source code achieved
through the O modality allows for typed names

Since names are typed, explicit substitution can be made
primitive

Meta-programming with Names and Necessity — p.26

Outline

e Introduction v/
e Background on S4-necessity v/
e Combining necessity with names v/

e Theorems v
e Future work and conclusions

Meta-programming with Names and Necessity — p.27

Related work

e Judgmental reconstruction of modal logic (Pfenning and
Davies ’00)

e Nominal logic and FreshML (Pitts and Gabbay ’01)
— Modeled in Fraenkel-Mostowsky set theory

— Uses name abstraction to represent a-equivalence classes
of terms

— Only “first-order” syntax

— Names limited to a type atm
. can be extended to a family of types...
- ...but still, names can be used only for bindings

— No distinction between variables and names of type atm
— Substitution must be hand-written

— Impossible to give substitution-style operational
semantics

Meta-programming with Names and Necessity — p.28

Related work (cont’d)

e Systems with type of open syntactic expressions

— Temporal \© calculus (Davies "96)
- 0object program = meta program at “later time”
- free object program variables = meta variables at “later
time”
- problems:
no evaluation of closed expressions
no attempt at code analysis

— MetaML (Calcagno, Moggi, Taha, Sheard '01)

- A0 + type refinement for closedness
. problems:
no code analysis
scope extrusion in presence of references

Meta-programming with Names and Necessity — p.29

Intensional code analysis

e Destructing syntactic expressions (with binding) by
pattern-matching

e Higher-order patterns

T = [ESEl"'ZCn]|£C|)\CE.7T|(7T1:A1—)A2) (7T2)|

e Pattern [E z ---x,| matches a syntactic expression with
free variables in the set {z, ... , z,}, and stores it into the
pattern variable £

Meta-programming with Names and Necessity — p.30

Intensional code analysis (cont’d)

e Pattern typing judgment
S Tlhha:AY] —s TV
e Lambda abstraction rule
([, z:A) ks Ay [Y] — T
ST IF Az 7 Ay = Ay [Y] — T

e Pattern-variable rule
xiA; €T Y dom(X)
S TIH[EZ]: A[Y]— E: 1 --- 1 O(A]Y,a)

Meta-programming with Names and Necessity — p.31

Relationship with S4

e Syntactic expressions can be composed

apply =
Az. Ay. let box u = z in let box v = y in box (u v)
. 0(A— B)—»>0U0A—0UB

e Syntactic expressions are syntactic
lift = (Az. let box u = x in box box u) : A — A
e Syntactic expressions can be compiled and evaluated

eval = (Ax. let boxu=xinu) : A — A

Meta-programming with Names and Necessity — p.32

Typing abstraction and concretion

e U type constructor is a binder
e Name abstraction rule

—

(3, X:A); A;THe: BlY]

(5, X:A;ATEX e (U [X'/X]B) Y]

e Name concretion rule

—

(X, XA AT Fe (XI/’I.A B) Y]

(2, X:A);A;TFe@X : ([X/X'|B)[Y]

Meta-programming with Names and Necessity — p.33

Example 2

e How to generate syntactic expressions with binding
structure?

e Application exp(n) produces source for Ax:int. x™

-funexp (n :int) : d(int — int) =
if n = 0 then (box Ax. 1) else
let box u = exp (n — 1) in
box A\zx. = * u (x)
end

- exp 2;
val it =box Ax. z % (A\y. y* (A\z. 1) y) x

e Butwe want exp 2 — box(Az:int. x x x % 1)!

Meta-programming with Names and Necessity — p.34

Example 4

e Given code for f:int — int, generate code for f2
e Attempt with no code analysis

- fun square (F' : O(int — int)) =
let box f = Flin
box A\z. (f =) * (f x)

end

- square (box Ax. x);
val it = box (A\y. (Az. z) y * (Ax. =) y)

e Unnecessary redexes again!

Meta-programming with Names and Necessity — p.35

Possible applications

e Distinguishing between extensional and intensional nature
of programs

— algebraic simplifications in symbolic computation

— functions can exploit knowledge of intensional structure
of arguments (examples: integration, differentiation)

— Higher-order Abstract Syntax
e Programmer-specified (source level) optimizations in
run-time code generation

— mechanism for choosing between highly-optimized or
quickly produced target programs

— domain-specific optimizations

Meta-programming with Names and Necessity — p.36

AH-calculus (cont'd)

e Hypothesis rule
r:Ae AUl

AT x:A

e Local reduction
let box u = box e; in es —— |e;/ules
e Local expansion

e —> let box u = e 1n box u

Meta-programming with Names and Necessity — p.37

Explicit name substitution (cont’d)

e Substituted name must be In context Y-

e Typing rule

(35, Y:A); A;T F e :A[X:] (35, Y:A); AT F e :B[Y,X:]
(2, Y:A);A;TH{Y =e1} ey : B[X]

Meta-programming with Names and Necessity — p.38

Typing code schemas (cont’d)

e Termse:=---| X |...
e Name rule

Y C dom(X)
(2, X:A);A;THX:A[X,Y]

e Hypotheses rules

AT o:AFx: A AuwATl'Fu: A

Meta-programming with Names and Necessity — p.39

Typing code schemas (cont’d)

e Termse:=---| X |...
e Name rule

Y C dom(X)
(2, X:A);A;THX:A[X,Y]

e Hypotheses rules

X C dom(Y) XCYC dom(X)

—

YA (LA bz AIX] S(A,wAX]);THu: A[Y]

Meta-programming with Names and Necessity — p.39

	Meta-programming
	Typed meta-programming
	Representation of source programs
	Outline
	$�m {lambda ^Bbox }$-calculus
	$�m {lambda ^Bbox }$-calculus (cont'd)
	Example 1
	Necessity limitations
	Outline
	Code schemas
	Support of a term
	Typing code schemas
	Typing code schemas (cont'd)
	Typing code schemas (cont'd)
	Explicit name substitution
	Example 2
	Name creation
	Name abstraction
	Name concretion
	Example 3
	Outline
	Substitution principles
	Progress and preservation
	Future work
	Conclusions
	Outline
	Related work
	Related work (cont'd)
	Intensional code analysis
	Intensional code analysis (cont'd)
	Relationship with S4
	Typing abstraction and concretion
	Example 2
	Example 4
	Possible applications
	$�m {lambda ^Bbox }$-calculus (cont'd)
	Explicit name substitution (cont'd)
	Typing code schemas (cont'd)

