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Abstract

Meta-programming languages provide infrastructure to generate and execute object programs at run-
time. In a typed setting, they contain a modal type constructor which classifies object code. These
code types generally come in two flavors: closed and open. Closed code expressions can be invoked at
run-time, but the computations over them are more rigid, and typically produce less efficient residual
object programs. Open code provides better inlining and partial evaluation of object programs, but once
constructed, expressions of this type cannot be evaluated.

Recent work in this area has focused on combining the two notions into a sound system based on
the extensions of a temporal lambda calculus. The proposed solutions are rather complex and hard to
extend, and in particular, do not provide for the important operation of intensional code analysis, i.e.
ability of programs to inspect and destruct object code at run-time in a type-safe manner.

My thesis in this dissertation is that modal logic, specifically its necessitation fragment, together with
the nominal logic concept of names, is an appropriate foundation for the notion of open code and for
typed functional meta-programming with intensional code analysis. To substantiate the claim, I present
a first step towards a programming language that integrates the described properties.

1 Introduction

Meta-programming is a paradigm referring to the ability to algorithmically compose programs of a certain
object language, through a program written in a meta-language. A particularly intriguing instance of this
concept, and the one we are interested in in this work, is when the meta and the object language are: (1)
the same, or the object language is a subset of the meta language; and (2) typed functional languages. A
language satisfying (1) adds the possibility to also invoke the generated programs at run-time. We refer to
this setup as homogeneous meta-programming.

Among some of the advantages of meta-programming and of its homogeneous and typed variant we
distinguish the following (and see [She01] for a comprehensive analysis).

1. Efficiency. Rather than using one general procedure to solve many different instances of a problem,
a program can generate specialized (and hence more efficient) subroutines for each particular case. If
the language is capable of executing thus generated procedures, the program can choose dynamically,
depending on a run-time value of a certain variable or expression, which one is most suitable to invoke.
In particular, this is the idea behind the functional programming concept of staged computation, and
has been considered before in a typed setting [LL96, WLP98, WLPD98, DP96].

2. Maintainability. Instead of maintaining a number of specialized, but related, subprograms, it is easier
to maintain their generator. In a language capable of invoking the generated code, there is an added
bonus of being able to accentuate the relationship between the synthesized code and its producer; the
subroutines can be generated and bound to their respective identifiers in the initialization stage of
the program execution, rather then generated and saved into a separate file of the build tree for later
compilation and linking.
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Languages in which programs can not only be composed and executed but also have their structure
inspected add further advantages. Efficiency benefits from various optimizations that can be performed
knowing the structure of the code. For example, Griewank reports in [Gri89], on a way to reuse common
subexpressions of a numerical function in order to compute its value at a certain point and the value of its
n-dimensional gradient, but in such a way that the complexity of both evaluations performed together does
not grow with n. Maintainability (and in general the whole program development process) benefits from the
presence of types on both the level of synthesized code, and on the level of program generators. Finally, there
are applications from various domains, which seem to call for the capability to execute a certain function
as well as recurse over its structure: see [Roz93] for examples in computer graphics and numerical analysis,
and [RP02] for an example in machine learning and probabilistic modeling.

Recent developments in type systems for meta-programming have been centered around two particular
modal lambda calculi: λ� and λ©. The first is a language of proof terms for the modal logic S4, whose
necessity constructor � annotates valid propositions [DP96, PD01]. The second is the proof language for
discrete linear temporal logic, whose modal operator © annotates the time-level separation between propo-
sitions [Dav96]. Both calculi provide a distinction between levels of terms, and this explains their use in
meta-programming. The lowest, level 0, is the meta language, which is used to manipulate the terms on
level 1 (terms of type �A in λ� and ©A in λ©). This first level is the meta language for the level 2
containing another stratum of boxed and circled types, etc. Functional programming interpretation of these
two constructors assigns type �A to closed code i.e. to closed terms of type A, while ©A is the type of
postponed code, i.e., it classifies terms of type A which are associated with the subsequent time moment.
Postponed code in λ© may refer to outside context variables, as long as they are on the same temporal
level, and this has contributed to it frequently being associated with the notion of open code. For this exact
reason, the concept of code in λ© is obviously broader, allowing for more expressiveness and generation of
better and more optimized residual programs (as already observed in [Dav96]), but, unlike λ�, it has no
language support for mixing of the code levels, and in particular, no language support for execution of the
generated code.

There have been several proposed systems which incorporate the advantages from both languages, most
notable being MetaML [MTBS99, Tah99b, CMT00, CMS01]. MetaML starts with the postponed/open code
type of λ© and strengthens the notion to introduce closed code as its refinement – as postponed code which
happens to contain no variables declared outside of it. However, this system is rather complex and hard
to extend, and in particular, not obviously compatible (see [Tah99a]) with the notion of intensional code
analysis, i.e. ability of programs to inspect and destruct object code in run-time.

The approach in this work is the opposite. Rather than refining the notion of open code, we relax the
notion of closed code. We start with the system of λ�, but provide the additional expressiveness by allowing
the code to contain specified object variables as free (and rudiments of this idea have already been considered
in [Nie01]). Dependency of a given object code expression on a set of free variables will be reflected in its
type. We distinguish object variables from meta variables, as advocated by [Mil90]. In addition, we endow
the free object variables with an equality predicate, thus turning them into names (also called symbols, or
atoms; see [GP01, PG00, Pit01, Gab00] and [Ode94]). The claim is that this way, the necessitation fragment
of modal logic, extended with the intensional concept of names, becomes an appropriate foundation for typed
functional meta-programming with intensional code analysis.

The rest of the document is organized as follows: Section 2 is a brief exposition of the previous work
on λ�, λ©, MetaML, and FreshML. The proposed type system is described in Section 3, while Section 4
contains the preliminary theoretical development behind it. Section 5 presents the operational semantics
of the language and the proof the Type Preservation and Progress theorem. Intensional code analysis is
introduced in Section 6. Finally, the further work is outlined in Section 7.

2 Background

In this section we review the previous work on languages for meta-programming. The motivation is to quickly
present the intuition behind the various calculi, not to give a detailed or rigorous treatise. For this reason, we
limit ourselves to only operational exposition, because it demands the least amount of background theoretical
machinery. Furthermore, we describe only the core part of a language, but in the presented examples we
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often assume presence of certain types and term constructs, like integers, conditionals or recursion, which
are needed to illustrate the point. In any case, addition of these will never present any theoretical problems.

The example we will use throughout is the exponentiation function, presented below in a MinML-like
notation.

pow = fix pow:int->int->int.
λx:int. λn:int.
if n = 0 then 1 else x * pow x (n-1)

2.1 λ�

The functional programming motivation behind the λ� calculus is to ensure proper staging of programs. For
example, consider the following equivalent of our exponentiation function.

powbox1 = fix pow:int->int->int.
λn:int.

if n = 0 then λx:int.1
else

let val u = pow (n - 1)
in

λx:int. x * u(x)
end

One can argue that powbox1 is preferred to pow because it allows a partial evaluation of the function when
only n is known, but not x. Indeed, in such a situation, the expression powbox1 n produces a residual
function specialized to computing the n-th power of its argument x. In particular, this function will not
perform any operations or take decisions at run-time based on the value of n; in fact, it does not even depend
on n – all the computation steps dependent on n have been taken during the partial evaluation.

The type system of λ� allows the programmer to specify the intended staging of operations by annotating
subterms of the program which are to be closed, i.e. independent of the variables from the surrounding code.
Then the type system can check whether the written code conforms to the staging specification, making
staging errors into type errors.

Types A : : = 1 | A1 → A2 | �A
Terms e : : = x | ∗ | λx:A. e | e1 e2 | box e | let box u = e1 in e2

Contexts ∆,Γ : : = · | Γ, x:A
V alues v : : = ∗ | λx:A. e | box e

To declare that a subterm e of type A is closed, λ� provides the type constructor � and its introduction
term box, so that box e has type �A (consult the typing rules in Figure 1). It is in this sense that the type
constructor � is associated with closed code. In the spirit of this “run-time code generation” interpretation,
the operational semantics does not proscribe reductions under the box; boxed expressions are values.

The elimination form for � is let box u = e1 in e2. Operationally, it evaluates e1 to a boxed value, then
binds the unreduced expression under that box to u in e2. Notice that u is not an ordinary variable – it
stands for an unevaluated closed expression, rather than a value. This fact motivates having two variable
contexts in the typing judgment: Γ for ordinary value variables, and ∆ for closed expression variables. In
order to have proper staging, closed code expressions should not depend on value variables from Γ, but they
can depend on expression variables from ∆.

The staging of powbox1 can be made explicit in the following way.
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Typechecking

∆; Γ ` ∗ : 1

x:A ∈ Γ

∆; Γ ` x : A

u:A ∈ ∆

∆; Γ ` u : A

∆; Γ, x:A ` e : B

∆; Γ ` λx:A. e : A→ B

∆; Γ ` e1 : A→ B ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : B

∆; · ` e : A

∆; Γ ` box e : �A

∆; Γ ` e1 : �A ∆, u:A; Γ ` e2 : B

∆; Γ ` let box u = e1 in e2 : B

Operational semantics

∗ ↪→ ∗ λx:A. e ↪→ λx:A. e

e1 ↪→ λx:A. e e2 ↪→ v2 [v2/x]e ↪→ v

e1 e2 ↪→ v

box e ↪→ box e

e1 ↪→ box e [e/u]e2 ↪→ v

let box u = e1 in e2 ↪→ v

Figure 1: Typing and Evaluation rules for λ�.

powbox2 = fix pow:int -> �(int->int).
λn:int.
if n = 0 then box (λx:int. 1)
else

let box u = pow (n - 1)
in

box (λx:int. x * u(x))
end

Application of powbox2 at argument 2 produces a boxed function for squaring.

- sqbox = powbox2 2;
val sqbox = box (λx:int. x *

(λy:int. y *
(λz:int. 1) y ) x ) : �(int -> int)

It can then be evaluated in order to be applied itself.

- sq = (let box u = sqbox in u);
val sq = [fn] : int -> int
- sq 3;
val it = 9 : int

2.2 λ©

The λ� staging of powbox2 which was presented in the previous section, leaves a lot to be desired. In
particular, the residual programs that powbox2 produces, e.g. sqbox, contain variable-for-variable redices,
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and hence are not as efficient as one would want. The reason, of course, is that boxed/code expressions
are values; they completely suspend the evaluation of the enclosed term. As witnessed by the example of
sqbox, it may be advantageous to have a general programming mechanism1 whereby one could specify that
certain reductions2 in a code expression are to take place. Of course, λ� already contains mechanisms to
encode substitutions of closed code, but there is no way to perform substitutions of open code which is
required in the sqbox example. The solution should be to extend the notion of code to include not only
closed expressions, but also expressions which may contain free variables. The λ©-calculus [Dav96] provides
some of the required flexibility.

Types A : : = 1 | A1 → A2 | ©A
Terms e : : = x | ∗ | λx:A. e | e1 e2 | e | prev e
Contexts Γ : : = · | Γ, x:An

V alues v0 : : = ∗ | λx:A. e | v1

vn+1 : : = ∗ | x | λx:A. vn+1 | vn+1
1 vn+1

2 | vn+2 | prev vn (n > 0)

The motivation behind λ© is to ensure and maintain a temporal distinction between levels of computation,
for the purposes of partial evaluation. So, for example, the computation marked to be on level 0 should be
executed first in the scheme of partial evaluation; computation on level 1 is postponed and obtained as the
residual of the level 0 evaluation, etc. The type system of λ© allows the programmer to decorate terms with
temporal annotations. Then the typechecking ensures that the program conforms to the level specifications,
turning staging errors into type errors, just as in λ�.

To mark that a certain term of type A is postponed, i.e. on the subsequent temporal code level, λ©

provides the modal type constructor ©, with its corresponding introduction term next. In contrast to λ�,
however, postponed terms in λ© can contain free occurrences of variables from the the surrounding typing
context, so long as they are marked to be on the same code level (see Figure 2). It is this property of the
calculus that has associated the notion of open code with the type constructor ©, in contrast to the closed
code of � in λ�.

Operationally, a postponed expression (e) is not generally a value, as (box e) would be in λ�. The λ©

calculus has separate evaluation relations for each code level; reductions may happen under next in e, albeit
only at the subterms of e which are on lower code levels than e itself.

The elimination form for© is prev e, where e is of code type. Intuitively, prev is used to compose code
expressions, by splicing its argument into the surrounding term. More precisely, the operational behavior of
prev e starts by evaluating e on the previous time level. If the previous is level 0, the reduction is bound to
produce a postponed expression e′; then prev and next cancel each other, and e′ is returned to be spliced
into the surrounding term, which is itself of level 1. In cases of higher code levels, the evaluation of e may
produce more general expressions, so no cancellation is prescribed by the operational semantics.

The exponentiation function in λ© can be staged as the function powercirc2 below. We hoist the helper
function powcirc’ outside of the main code for better readability.

powcirc’ =
fix pow’:©int->int->©int.

λe:©int. λn:int.
if n = 0 then next 1
else

let val u = pow’ e (n - 1)
in

next (prev e * prev u)
end

1Thus we are interested in something more than just devising an operational semantics which scans boxed expressions and
actually reduces all variable-for-variable redices.

2And here, reductions are understood in the broader sense of λ-calculus, i.e. they can occur under a λ-abstraction.
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Γ `n ∗ : 1

x:An ∈ Γ

Γ `n x : A

Γ, x:An `n e : B

Γ `n λx:A. e : A→ B

Γ `n e1 : A→ B Γ `n e2 : A

Γ `n e1 e2 : B

Γ `n+1 e : A

Γ `n e :©A

Γ `n e :©A

Γ `n+1 prev e : A

Figure 2: Typing rules of λ©.

λx:A. e
0
↪→ λx:A. e

e1
0
↪→ λx:A. e e2

0
↪→ v2 [v2/x]e

0
↪→ v

e1 e2
0
↪→ v

∗ n
↪→ ∗ x

n+1
↪→ x

e
n+1
↪→ v

λx:A. e
n+1
↪→ λx:A. v

e1
n+1
↪→ v1 e2

n+1
↪→ v2

e1 e2
n+1
↪→ v1 v2

e
n+1
↪→ v

e
n
↪→ v

e
0
↪→ v

prev e
1
↪→ v

e
n+1
↪→ v

prev e
n+2
↪→ prev v

Figure 3: Operational Semantics of λ©.
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powcirc2 : int -> ©(int->int) =
λn:int.

next λx:int.
prev (powcirc’ (next x) n)

Observe how the type of powcirc2 indicates the staging of the function: partial application of powcirc2
to an integer n will produce a function for powering by n, of type int->int, but on the subsequent temporal
level.

The application

- sqcirc = powcirc2 2;

evaluates as follows: first it reduces to

next (λx:int. prev (powcirc’ (next x)) 2)

Then the reduction within the body of the lambda expression is performed: powcirc’ (next x) 2 reduces
to next(x * x * 1), and is then combined into the final answer

val sqcirc = next (λx:int. x * (x * 1)) : ©(int->int)

Notice that the expression sqcirc does not contain unnecessary redices as did sqbox. However, λ© does not
permit coercions of terms between different code levels, so it is not possible to demote the function sqcirc
to code level 0 in order to evaluate it (the type system does not allow prev to occur on code level 0). This is
only a sound behavior – operational semantics of level 0 proscribes a usual evaluation of the term, and this
evaluation is defined only if the term in question is closed. Code values in λ© may contain variables bound
outside of them, so the type system, conservatively, forbids their evaluation.

2.3 MetaML

MetaML combines the notions of code from the two previous systems, so that programs can be manipulated
in the style of λ©, but can also be made transcend their code levels (like code expressions of λ�) and in
particular be executed. To simplify the arguments here, we omit the MetaML features for coercing code
expressions into higher code levels, and present only the fragment relevant to their execution. We follow
[CMS01] in the exposition.

Types A : : = 1 | A1 → A2 | [A] | <A>
Closed types T : : = 1 | A→ T | [A]
Terms e : : = x | ∗ | λx:A. e | e1 e2 | <e> | ˜e | run e | letc u = e1 in e2

Contexts Γ : : = · | Γ, x:An

Closed contexts ∆ : : = · | ∆, u:Tn

V alues v0 : : = ∗ | λx:A. e | <v1>
vn+1 : : = ∗ | x | λx:A. vn+1 | vn+1

1 vn+1
2 | <vn+2> | ˜vn (n > 0) |

run vn+1 | letc u = vn+1
1 in vn+1

2

MetaML starts with the postponed/open code type of λ©, and introduces language constructs to refine
the typing of those code instances which happen to be closed. The typing and operational semantics of
MetaML are presented in Figures 4 and 5, respectively, and are similar to those of λ©, which they extend
with the new term and type constructors.

The modal type constructor of MetaML is <A> with introduction form <e> and elimination form ˜e,
corresponding to ©A, e and prev e in λ©. However, MetaML adds a type refinement [A] which classifies
terms of type A with no free value variables. Note that it does not have corresponding term constructors. The
typing judgment introduces implicit coercion from [A] into A. The opposite coercion is also possible if the
type A is “closed”. Closed types are essentially those types whose values cannot refer to outside variables
from higher code levels (e.g. base types, [ ]-annotated code types, or functions with closed codomains).
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∆; Γ `n ∗ : 1

x:An ∈ Γ

∆; Γ `n x : A

u:An ∈ ∆

∆; Γ `n u : A

∆; Γ, x:An `n e : B

∆; Γ `n λx:A. e : A→ B

∆; Γ `n e1 : A→ B ∆; Γ `n e2 : A

∆; Γ `n e1 e2 : B

∆; Γ `n+1 e : A

∆; Γ `n <e> : <A>

∆; Γ `n e : <A>

∆; Γ `n+1 ˜e : A

∆; Γ `n e : T

∆; Γ `n e : [T ]

∆≤n; · `n e : A

∆; Γ `n e : [A]

∆; Γ `n e : [A]

∆; Γ `n e : A

∆; Γ `n e1 : T ∆, u:Tn; Γ `n e2 : A

∆; Γ `n letc u = e1 in e2 : A

∆; Γ `n e : [<A>]

∆; Γ `n run e : [A]

Figure 4: Selected typing rules of MetaML.

Expressions that can be assigned a code type which is closed in this sense, can be evaluated using the
language constructor run.

Similarly to λ�, MetaML splits the typing context into two parts: Γ for ordinary value variables, and
∆ for variables of closed types. The ordinary value context is cleared when checking a term against a [ ]-
annotated type. A term constructor letc u = e1 in e2 serves to introduce variables into the closed type
context, so that they are not erased when typing closed code.

Our example with the exponentiation function can be coded in MetaML as shown below.

powmeta’ =
fix pow’:[<int> -> int -> <int>].

λe:<int>. λn:int.
if n = 0 then <1>
else

let val u = pow’ e (n - 1)
in

<~e * ~u>
end

powmeta2 : int -> [<int->int>] =
λn:int.

letc n = n
powmeta’ = powmeta’

in
<λx:int. ~(powmeta’ <x> n)>

end

Notice how the variables n and powmeta’ in the body of the function powmeta2 are transferred into the closed
type context by letc, so that they are not erased when the code expression <λx:int. ~(powmeta’ <x> n)>
is checked against the closed type [<int->int>].

Application of powmeta2 at argument 2 produces code containing a function for squaring.

- sqmeta = powmeta2 2;
val sqmeta = <λx:int. x * (x * 1)> : [<int->int>]
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λx:A. e
0
↪→ λx:A. e

e1
0
↪→ λx:A. e e2

0
↪→ v2 [v2/x]e

0
↪→ v

e1 e2
0
↪→ v

∗ n
↪→ ∗ x

n+1
↪→ x

e
n+1
↪→ v

λx:A. e
n+1
↪→ λx:A. v

e1
n+1
↪→ v1 e2

n+1
↪→ v2

e1 e2
n+1
↪→ v1 v2

e
n+1
↪→ v

<e>
n
↪→ <v>

e
0
↪→ <v>

˜e
1
↪→ v

e
n+1
↪→ v

˜e
n+2
↪→ ˜v

e
0
↪→ <v1> v1 0

↪→ v0

run e
0
↪→ v0

e1
0
↪→ v1 [v1/u]e2

0
↪→ v

letc u = e1 in e2
0
↪→ v

e
n+1
↪→ v

run e
n+1
↪→ run v

e1
n+1
↪→ v1 e2

n+1
↪→ v2

letc u = e1 in e2
n+1
↪→ letc u = v1 in v2

Figure 5: Operational Semantics of (a selected fragment of) MetaML.

It can then be “run” and applied itself.

- sq = run sqmeta;
val sq = [fn] : [int -> int]
- sq 3;
val it = 9 : int

As this example illustrates, MetaML can construct object code and evaluate its closed instances. How-
ever, the shown technique alone is not sufficient for the operation of intensional code analysis. One can
imagine providing code analysis in MetaML by using object-level variables to instantiate object-level bind-
ing constructs when recursing over them. The introduction of the object-level variables, however, has to be
accounted for in the type of the recursive function, so the function’s type actually has to predict the number
of the binding construct in the recursing term. Needless to say, that makes for a rather impractical recursion
scheme. What is needed is a term constructor (without a corresponding type constructor), which would
introduce symbols (or names) into the computation.

2.4 FreshML

The FreshML language [PG00] has a slightly different flavor from the meta-languages presented before. It
is not intended to manipulate open and closed code. Rather, its defining feature is its unique handling
of representation and manipulation of abstract syntax trees of object languages with binding constructs.
The syntax of the object language is represented via a user-defined datatype, like in ML, but the binding
constructs of the object language are encoded modulo alpha-equivalence, using the concept of names and
name abstraction.3 Names (or symbols, atoms) are a separate semantic category which admits equality;
there is a countably infinite supply of names, so that we can always pick another, fresh one, to place in a
position of an object-level bound variable. Operation of name abstraction provides a mechanism to encode
all the α-variants of a term with respect to the abstracted name.

3The same can be done with DeBruijn indices, but they have their drawbacks.

9



In the following text, we present a selected fragment of FreshML. In the rules below, K is a finite set of
names.

Types A : : = atm | A1 → A2 | [atm]A
Terms e : : = x | a | λx:A. e | e1 e2 | let val x = e1 in e2 |

new a in e | a . e | e@ a
Contexts Γ : : = · | Γ, x:A#K
V alues v : : = a | abs(a, v) | fun(x, e, E)
V alue environments E : : = · | E[x 7→ v]

Operationally, names can be though of as locations. They have their separate type atm, and are intro-
duced into the computation through the combinator new; each introduced name is fresh/unique, i.e. different
from all the previously introduced ones, and is bound in new. One can think of the expression

new a in e

as operationally analogous to ML’s
let val a = ref () in e

except that the type system of FreshML imposes restrictions on the occurrences of a in e which are not
required of references. In particular, names are not allowed to freely leave the scope of the defining new. If
such a thing would happen, the escaped name will occur in the residual term, but the programmer will have
no handle on it, and thus no capability to manipulate it in any way. Consider for example the (ill-typed)
term

new a in 〈1 + 1, a〉
This term is supposed to introduce a new name a into the run-time environment, then evaluate 1 + 1 7−→ 2,
and return 〈2, a〉, which contains an occurrence of a about to escape the scope of its defining new. The way
FreshML deals with this problem is to require that the reduct 〈2, a〉, before returning, be coupled with a to
form a closure, or name abstraction. In other words, the name abstraction a . 〈2, a〉 encodes the whole α-
equivalence class of the term 〈2, a〉 with respect to the name a. The responsibility to create name abstractions
is on the programmer, but the type system will check whether all the terms are appropriately closed when
leaving a scope of new. Name abstraction construct of FreshML is a . e, and it has a corresponding type
constructor [atm](−). Thus, the term new a in 〈1 + 1, a〉 is not well-typed in FreshML, but the terms
new a in a . 〈1 + 1, a〉 and new a in 〈1 + 1, a . a〉 both are, with types int× [atm]atm and [atm](int× atm)
respectively. Note that name abstraction constructor, strictly speaking, is not a binder. For example, one
can write a term like

let val x = a in a . x

where obviously there are no occurences of a in the expression a . x which a could bind. However, if the term
v is a value (and hence closed as an expression), then a . v does behaves like a binder. It is in this sense
that we can consider name abstraction to be a binder where the binding occurs only after the body of the
abstraction has been evaluated.

The operation opposite from abstraction is concretion. Its syntax is e@ a and its operational semantics
is to separate the term in the closure e from its abstracted name by swapping that name with a throughout
the closure body (see the operational semantics in Figure 7). For example, if t denotes the term t =
(a . b . 〈1 + 1, a〉), then t@ b evaluates to a . 〈1 + 1,b〉. In a sense, the operation of name swapping is a
simplification of the concept of alpha-renaming. When the name b is substituted for a in t, then name
b in the second abstraction of t has to be renamed so as not to incur an accidental abstraction in the
subsequent subterm. Since abstraction is intended to hide the abstracted name, it does not matter exactly
which abstracting name is used (as long as it does not incur unintended abstractions), so FreshML might as
well use the already available a.

As illustrated above, the FreshML mechanism of names makes a distinction between the notions of name
introduction (construct new) and name abstraction (construct a . e), which is not the case in λ-calculi,
where lambda expressions serve the role of both. The name introduction is an effectfull operation; every
evaluation of a given term with name introduction results with a different name. But notice that due to the
restrictions placed on the occurrences of names, these effects cannot be observed in the language itself, thus
making FreshML purely functional.
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(x:A#M) ∈ Γ K ⊆M

Γ ` x:A # K

Γ, x:A#∅ ` e : B # ∅ Γ ` xi:Ai # K for all xi ∈ fv(e) \ {x}

Γ ` λx:A. e : A→ B # K

Γ ` e1 : A→ B # K Γ ` e2 : A # K

Γ ` e1 e2 : B # K

Γ ` e1 : A # M Γ, x:A#M ` e2 : B # K

Γ ` let val x = e1 in e2 : B # K

Γ#a, a:atm ` e : A # (K ∪ {a})

Γ ` new a in e : A # K

Γ ` e : A # K \ {a} Γ(a) = atm

Γ ` a . e : [atm]A # K

Γ ` e : [atm]A # (K ∪ {a}) Γ ` a : atm # K

Γ ` e@ a : A # K

Figure 6: Selected typing rules for for FreshML.

The relevant set of typechecking rules of FreshML is presented in Figure 6. The typechecking judgment
not only associates types to term, but it also keeps track of names occurring in the subterms and ensures that
none of them leaves the scope of its defining new unguarded by a name abstraction. To be more specific,
the name a is fresh for the term e if swapping a in e with another name does not change the meaning of e.
Then the typing judgment has the form Γ ` e : A # K and reads: in context Γ, the term e has type A,
and all the names from the set of names K is fresh for e. The context Γ contains not only typing, but also
freshness annotations. Figure 7 presents selected environment-style evaluation rules of FreshML. Notice that
the given operational semantics relies on a separate language of values and value environments. We denote
by fnE the set of free names of a value environment. The reader is referred to [PG00] for more details and
explanation.

As an illustration we present an example in FreshML with an object language of untyped lambda cal-
culus. The object language syntax is defined in ML-like datatype declaration, but it uses meta-level name
abstraction to represent object-level lambda construct. The function subst takes an abstracted lambda term
e, and another term t, and substitutes the term t in for the occurrences of the abstraction variable in e.

datatype lam = Var of atm
| Lam of [atm]lam
| App of lam * lam

fix subst: [atm]lam -> lam -> lam.
λe:[atm]lam. λt:lam.
new a in
case e@a of

Var a => t
| Var e’ => Var e’
| Lam u =>

new b in
Lam b.(subst (a.(u @ b)) t)

| App (e1, e2) =>
(subst e1 t, subst e2 t)

The approach of FreshML towards representing binding constructs of the object languages is similar in
design and goals to that of higher order abstract syntax, HOAS [PE88]. They both use a meta-level binding
construct (name abstraction in FreshML, and lambda abstraction in HOAS) to encode the α-equivalence
class of the object term. However, the notion of name abstraction in FreshML is weaker from HOAS in that
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E(x) = v

E ` x=⇒ v E ` λx:A. e=⇒ fun(x, e, E)

E ` e1 =⇒ v1 E[x 7→ v1] ` e2 =⇒ v

E ` let val x = e1 in e2 =⇒ v

E ` e1 =⇒ fun(x, e, E1) E ` e2 =⇒ v2 E1[x 7→ v2] ` e=⇒ v

E ` e1 e2 =⇒ v

E[a 7→ a] ` e=⇒ v a 6∈ fn(E)

E ` new a in e=⇒ v

E ` e=⇒ v E(a) = a

E ` a . e=⇒ abs(a, v)

E ` e=⇒ abs(a′, v′) E(a) = a

E ` e@ a =⇒(a′ a)v′

Figure 7: Operational Semantics of (a fragment of) FreshML. The operation (a a′)v′ swaps the names a and
a′ in v′.

it does not hardwire into the representation the capability to substitute for bound variables – substitution
in FreshML has to be programmed by recursion on the structure of the object language terms. That way
FreshML achieves the adequacy of representation, which can be lost in HOAS in the presence of additional
term and type constructors (specifically, constructors for disjoint sums, as observed in [DPS97]). But,
remark that even if the two approaches may differ in their abstraction mechanisms, they both will require
some notion of names in order to recurse over the structure of the encoded term.

3 Core Language

In this section we present the syntax and static semantics of our core language, deferring the exposition of
intensional code analysis for Section 6. Taken in itself, the core language contains constructs for unifying the
notions of closed and open code – a problem which motivated the earlier development behind the extension
of λ© into MetaML. However, our notion of code differs from that of the last two calculi. Both λ© and
MetaML allow code expressions to contain free variables, and in order to evaluate a code expression, MetaML
has to prove it closed. As already argued in Section 2.3, that is not sufficient for intensional code analysis;
in order to recurse over code syntax, we need a separate semantic category of symbols or names, together
with their own binding mechanism (see for example [Ode94]. Additionally, we opt to separate the operation
of name creation (hiding of a name), from the name abstraction (renameability), because that seems to
provide strictly more expressiveness in manipulation of code and names, than if the two are combined into
a single constructor. This is where we employ the mechanisms of Nominal Logic and FreshML, which were
designed with exactly that purpose in mind [Pit01, PG00]. Once the mechanism of names is adopted into
the language, it is natural to disassociate the notion of “variables bound in lambda abstractions”, from the
notion of “free variables of a code expression”, which are equated in λ© and MetaML. Indeed, we can now
use names to represent open code schemas in the following way: An open code schema with free variables
in the set C can be encoded as a boxed expression of λ� which (as usual) is not allowed to contain any free
variables, but is allowed to contain names from the set C. The set C will have to be made explicit in the
type of the boxed expression.

Correspondingly, the boxed types are now of the form �(A[C]) where C stands for a finite set of names
and name parameters (to be explained later) that the boxed term may depend on. We refer to C as a name
dependency. The syntax of our language is presented below.
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Simple types P : : = 1 | P1 → P2

Types A : : = 1 | A1 → A2 | �(A[C]) | N
a:P

A | ∀p#K. A
Terms e : : = x | a | ∗ | λx:A. e | e1 e2 | box e | let box u = e1 in e2 |

a . e | e@ a | new a:P in e | Λp#K. e | e [[C]] | {a .= e1} e2 |
fix x:A. e

V ariable contexts Γ : : = · | Γ, x:A | Γ, t::−A[C] | Γ, u::A[C]
Name contexts S : : = · | S, a:P
Dependency contexts ∆ : : = · | ∆, p#K

Before explaining the term constructors, let us first dispense with the conventions we will assume in
the rest of the text. Similarly to λ�, our language makes a distinction between ordinary (value) variables
and expression variables. We further distinguish between expression variables and expressions that have
empty name dependencies, and those that may depend on some name. The first kind can be evaluated (i.e.
there will be a hypothesis rule for it in the typechecking judgment), while the second cannot be evaluated
– it must always appear guarded by a box. In analogy with Kripke semantics for Modal Logic, we will
also call the first kind reflexive or reflectable, and the second kind nonreflexive or nonreflectable variables
and expressions. Thus, a variable context Γ may contain three forms of variable typings: x:A for value
variables, and u::A[C] and t::−A[C] for, respectively, reflexive and nonreflexive expression variables with name
dependency C. We call the type A with a dependency C an annotated type. Notice that in a seeming
contradiction to the definition of reflexive expression variables, we allow name dependency C to occur in
their typing. The reason for it is in the interaction of expression variables with the term constructor box
for expressions. Expression variables which are non-reflexive (and hence unreachable) outside a boxed term,
will be accessible in the inside of it. It is in this sense that non-reflexive expressions cannot be executed, but
only substituted into other non-reflexive expressions. This intuition will be formalized later in the typing
judgment where the rule for box introduction will change the status of non-reflexive variables into reflexive
ones.

In the rest of the text, we use A, B and variants to vary over arbitrary types, P to vary over simple
types, a, b, c and the variants to vary over names; x, y, z stand for ordinary variables and u, v and t for
expression variables. Further, we use p and q as dependency variables (i.e. unknown sets of names), K, M ,
L for finite sets of names, and C, D for name dependencies, i.e. for finite sets containing both names and
dependency variables. The dependency variable context ∆ associates dependency variables with disjointness
annotations. For example, p#K ∈ ∆ would mean that the dependency variable p stands for an unknown
dependency set C such that: (1) C contains no names from the set K, and (2) if q ∈ C is a dependency
variable, then q#K ∈ ∆, too.

Enlarging an appropriate context by a new variable, name or dependency variable, is subject to Baren-
dregt’s Variable Convention: the new variables are assumed distinct, or are renamed in order not to clash
with already existing ones. In particular, such a behavior is assumed of λ-abstraction and recursion con-
structs, which introduce new value variables, of let box which introduces an expression variable, of new
introducing a new name, and of Λ-abstraction which creates a new dependency variable. Terms which differ
only in names of their bound variables are considered equal. The type constructor N

a:P
A is also a binder,

abstracting a name a:P from the type A, but it does not introduce a new name into the name context of
the typing judgment, as will be explained later. As usual, capture avoiding substitution is defined to rename
variables and names when descending into their scope. Free dependency variables of a type A are denoted
by fdv(A), free variables of a term e are fv(e), and its free names are fn(e).

We are now ready to describe various new term and type constructors that our language introduces.
Similarly to FreshML, we have a term construct a . e for name abstraction and e@ a for name concretion.
However, the type of name abstraction in our case has to be more general than the [atm]A of FreshML.
Since names take part as dependency annotations in types, the name abstraction type has to be a binder

N
a:P

A, abstracting the occurrences of the name a in the type A. For example, assuming for a moment that

our language has a type constructor for pairs, the terms

new a:P in a . 〈1 + 1,box a〉 and new a:P in 〈1 + 1, a . box a〉
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would both be well-typed with types int× N
a:P
�(P [a]) and N

a:P
(int×�(P [a])), respectively. The quantifier

Nhas already been investigated in [Gab00] and [Pit01], but it has not been used explicitly in the definition
of FreshML.

Yet further difference between our names and FreshML is that we do not have a separate type of names,
but rather can assign them an arbitrary (simple) type P . As a consequence, names cannot be values in
the operational semantics we intended for the language, because it would not make sense to compute with
them. For example, if n is as a name of integer type, the operation n + 1 cannot be evaluated unless n is
provided with a definition. Thus, while FreshML names can be thought of as references, our names are null
references, i.e. references without an extension. We must impose that the they not occur without definition
on the level 0 – they find their use only when placed in a code expression (i.e. under a box) to stand for some
piece of code, or as placeholders for free variables, where they can be used for intensional code analysis.

The limitation to simple types may be somewhat arbitrary. We felt compelled to first understand the
language better before we extend it and generalize, and the simply-typed fragment is the most obvious choice
for a first attempt at intensional code analysis. The unfortunate consequence (at least for now) is that it
becomes impossible for code expressions to contain free names of code types, and thus our language, at
least when open code expressions are concerned, is a two-level, rather than multi-level language like λ© and
MetaML. However, even with this limitation the language has enough expressive power to encode many, if
not all, interesting examples from meta-programming practice.

Another feature we consider is explicit name polymorphism. A program may want to manipulate code
expressions no matter what their name dependencies are, or code expressions whose name dependencies are
unknown at compile time. A typical example would be any recursive function which scans over a boxed
term. When it encounters a lambda expression, it has to place a fresh name instead of the bound variable,
and recursively continue scanning the body of the lambda, which is itself a boxed expression, but depending
on this newly introduced name. For such uses, our language has a term construct Λp#K. e of type ∀p#K. A
which is a polymorphic abstraction of an unknown name dependency disjoint from a set of names K. Both
the constructs bind the dependency variable p, and two terms/types differing only by α-variation of the
bound dependency variable are considered equal. When K is empty, we abbreviate the constructs into Λp. e
and ∀p. A. The term e [[C]] is the polymorphic instantiation, substituting a name dependency set C for the
bound dependency variable in e.

Finally, we have a term construct for name substitution {a .= e1} e2. It substitutes the value of e1 for
name a in all the occurrences of a in e2 on the current code level. In particular, the substitution will not take
place under boxes. This is consistent with the notion of preservation of code levels; eventual free variables
from the environment of e1 should not be permitted to creep under other boxes. This construct also gives us
a way to provide extensions, i.e. definitions for names, while still using names for the intensional information
of their identity. Notice that the name substitution {a .= e1} e2 does not bind the name a in e2.

Example 1
To illustrate our language constructs and motivate the further development, we present a version of the
staged exponentiation function that we could write in our system. In this example we assume that the
language is extended with the base type of integers.

pow’ =
fix pow’:∀p. �(int[p])->int->�(int[p]).

Λp. λe:�(int[p]). λn:int.
if n = 0 then box 1
else
let box e1 = pow’ [[p]] e (n - 1)

box e2 = e
in

box (e1 * e2)
end
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pow : int -> �(int -> int) =
λn:int.

new a:int in
let box e = pow’ [[a]] (box a) n
in

box (λx:int. {a = x} e)
end

- sqcode = pow 2;
val sqcode =

box (λx:int. x * (x * 1)):�(int->int)

The function pow takes an integer n and generates an integer name a. Then it calls the helper function pow’
to build the expression e = a ∗ · · · ∗ a︸ ︷︷ ︸

n

∗1 of annotated type int[a]. Finally, it substitutes the name a in e

with a newly introduced bound variable x, before returning. The helper function pow’ is name-polymorphic;
its dependency variable p is instantiated with the relevant dependency set as part of the application.

Notice that the generated residual code for sqcode does not contain any unnecessary redices, in contrast
to the λ� version of the program from Section 2.1.

�

3.1 Auxiliary judgments

In order to state the typechecking rules, we need a couple of auxiliary judgments. We start with the judgment
for disjointness (interchangeably referred to as freshness) of name dependencies. It has the form

∆ ` C # K

where ∆ is a context storing dependency variables with their freshness annotations, C is a name dependency
set, and K is a set of names. The judgment is satisfied if none of the names from K appears in C, and if all
the dependency variables from C are declared fresh for K in the context ∆.

∆ ` · # K

∆ ` C # K a 6∈ K

∆ ` a,C # K

∆ ` C # K p#M ∈ ∆ K ⊆M

∆ ` p, C # K

Figure 8: Disjointness judgment for name dependencies.

We extend the concept of disjointness for name dependencies to disjointness for types and annotated
types. We will use the same notation for all three of them, as the distinction will always be clear from the
context. The two new, mutually recursive judgments have the form

∆ ` A # a and ∆ ` A[C] # a

where ∆ is a context of dependency variables and their freshness annotations, A[C] is an annotated type,
and a is a name. The judgments are satisfied if a does not appear free in the type A, nor in the dependency
variables of type A, and the name dependency C is disjoint from the name set {a}, as determined by the
previously defined judgment for disjointness of dependencies. Observe that the rule for disjointness of name
abstraction types requires that the bound name c is different from the name we test against. That can
always be achieved by alpha-renaming the bound name c to some fresh name, as described by Barendregt’s
Variable Convention. The rule for universally quantified types inserts the dependency variable p into ∆, but
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Type disjointness

∆ ` 1 # a

∆ ` A # a ∆ ` B # a

∆ ` (A→ B) # a

∆ ` A[C] # a

∆ ` �(A[C]) # a

∆ ` A # a

∆ ` ( N
c:P

A) # a

∆, p#(K, a) ` A # a a 6∈ K

∆ ` (∀p#K. A) # a

Annotated Type disjointness

∆ ` A # a ∆ ` C # a

∆ ` A[C] # a

Figure 9: Disjointness judgments for types and annotated types.

with the freshness annotation (K, a), rather than just K. The idea is that a name a is disjoint/fresh from
a type A if it does not occur in A, and it is fresh for all the free dependency variables of A. To preserve
this interpretation, new dependency variables must be introduced into the context with extended freshness
annotation.

We also require a judgment to decide if a given type A is well-formed in the name context S and
dependency context ∆, i.e. whether all the free names and variables of A are declared in S or ∆, respectively.
The judgment reads

S; ∆ ` A wf

and its rules are defined below. Notice that only the names of particular symbols, and not their types of
freshness annotations are relevant for the judgment.

S; ∆ ` 1 wf

S; ∆ ` A wf S; ∆ ` B wf

S; ∆ ` A→ B wf

S, a:P ; ∆ ` A wf

S; ∆ ` ( N
a:P

A) wf

S; ∆ ` A wf C ⊆ dom(S) ∪ dom(∆)

S; ∆ ` �(A[C]) wf

K ⊆ dom(S) S; ∆, p#K ` A wf

S; ∆ ` ∀p#K. A wf

Figure 10: Well-formedness judgment for types.

We also need to define weakening on types: if a type contains a certain set of name dependencies, we can
always pass it as a type with a superset of dependencies instead. As in the previous judgments, here too it
may be needed to alpha-rename the bound names when comparing two N-types. It can always be done by
choosing a fresh name c.

Finally, two types A and B are equivalent if A 6: B and B 6: A. In the future text, we will implicitly
equate types which are equivalent. It is justified by the fact that two types are equivalent iff they differ only
in the ordering of names and variables in their name dependencies. But name dependencies are considered
sets, so this ordering should not matter.
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1 6: 1

B1 6: A1 A2 6: B2

A1 → A2 6: B1 → B2

A 6: B

N
c:P

A 6: N
c:P

B

A 6: B C ⊆ D

�(A[C]) 6: �(B[D])

A 6: B K ⊆M

∀p#K. A 6: ∀p#M. B

Figure 11: Subtyping judgment.

The following lemmas lead to establishment of parametricity properties of the typing judgment. This, in
turn, would be instrumental in proving the progress and type preservation for name-polymorphic instantia-
tion and name concretion constructs of our language.

Lemma 1
1. if ∆ ` C # M and K ⊆M , then ∆ ` C # K.

2. ∆ ` C1 # K and ∆ ` C2 # K if and only if ∆ ` (C1 ∪ C2) # K.

Proof: In each case, by a straightforward induction on the cardinality of the appropriate dependency set.
�

Lemma 2 (Substitution and auxiliary judgments)
1. if ∆, p#K ` C # M and ∆ ` D # K, then ∆ ` ([D/p]C) # M ,

2. if ∆, p#K ` A[C] # a and ∆ ` D # K, then ∆ ` ([D/p]A)[[D/p]C] # a,

3. if S; ∆, p#K ` A wf, and D ⊆ dom(S) ∪ dom(∆), and ∆ ` D # K, then S; ∆ ` ([D/p]A) wf,

4. if C1 ⊆ C2, then [D/p]C1 ⊆ [D/p]C2,

5. if A 6: B, then [D/p]A 6: [D/p]B.

Proof: Straightforward induction on the derivation of the appropriate relation, using Lemma 1. �

Lemma 3
If ∆, p#K ` fdv(A) # a and ∆ ` D # K, then ∆ ` fdv([D/p]A) # a.

Proof: We first show that fdv ([D/p]A) ⊆ [D/p] fdv(A). The case when p 6∈ fdv(A) is trivial, so we assume
that p ∈ fdv(A). Then fdv ([D/p]A) = (fdv (A) \ {p}) ∪ fdv (D) and [D/p] fdv (A) = (fdv (A) \ {p}) ∪D.
But, fdv(D) ⊆ D, and thus fdv ([D/p]A) ⊆ [D/p] fdv(A). Now, instantiating Lemma 2.1, with C = fdv (A)
and M = {a}, we obtain ∆ ` ([D/p] fdv (A)) # a. From here, using Lemma 1.2 and the just established
inequality, we obtain the required ∆ ` fdv ([D/p]A) # a. �

3.2 The Type System

The typing judgment of our language has the form

S; Γ `∆ e : A[C]

It reads: in the presence of name context S, variable context Γ and dependency context ∆, the term e
has type A with name dependency C. As customary, we presuppose that all involved contexts are well-
formed. In particular, all the variables and names are distinct, and all their types are well-formed. The
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Constants, variables and names

C ⊆ dom(S) ∪ dom(∆)

S; Γ `∆ ∗ : 1 [C]

x:A ∈ Γ C ⊆ dom(S) ∪ dom(∆)

S; Γ `∆ x : A [C]

u::A[C] ∈ Γ C ⊆ D D ⊆ dom(S) ∪ dom(∆)

S; Γ `∆ u : A [D]

a:P ∈ S C ⊆ dom(S) ∪ dom(∆)

S; Γ `∆ a : P [a,C]

λ-calculus and recursion

S; ∆ ` A wf S; Γ, x:A `∆ e : B [C] x 6∈ dom(Γ)

S; Γ `∆ λx:A. e : A→ B [C]

S; Γ `∆ e1 : A→ B [C] S; Γ `∆ e2 : A [C]

S; Γ `∆ e1 e2 : B [C]

S; ∆ ` A wf S; Γ, x:A `∆ e : A [C] x 6∈ dom(Γ)

S; Γ `∆ fix x:A. e : A [C]

Modality

S; ΓO `∆ e : A [C] D ⊆ dom(S) ∪ dom(∆)

S; Γ `∆ box e : �(A [C]) [D]

S; Γ `∆ e1 : �(A[ ]) [C] S; Γ, u::A[ ] `∆ e2 : B [C] u 6∈ dom(Γ)

S; Γ `∆ let box u = e1 in e2 : B [C]

S; Γ `∆ e1 : �(A[D]) [C] S; Γ, t::−A[D] `∆ e2 : B [C] t 6∈ dom(Γ) D 6= ∅

S; Γ `∆ let box t = e1 in e2 : B [C]

Figure 12: Typing rules of the core language (Part 1).

name dependency C deserves further explanation, because it goes to the hart of our treatment of names.
As already hinted, we do not operationally treat names as values. If an expression contains an occurrence
of a name, it cannot be evaluated. Rather, names are employed as placeholders for free variables in code
expressions (i.e., under a box), where there will be no attempts to evaluate them, since evaluation of boxed
expressions is postponed. In this sense, one may say that a dependency annotation of some term is any set
of names such that the term can be safely evaluated once all of the listed names are provided with extensions.
Thus, if C is a name dependency for a given term e in some context, any set D ⊇ C which is well-formed
with respect to the context, is a valid name dependency for e as well. We will build this idea into the type
system by allowing weakening (i.e. enlarging) of name dependencies at specific typing rules.

Before proceeding further, we define an operation ΓO on variable contexts. It erases the ordinary variables
from Γ and changes nonreflexive expression hypothesis t::−A into reflexive ones t::A. As already hinted before,
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Names

S, a:P ; Γ `∆ e : A [C] ∆ ` fdv(A) # a

S, a:P ; Γ `∆ a . e : ( N
a:P

A) [C]

S, a:P ; Γ `∆ e : ( N
a:P

A) [C] ∆ ` fdv(A) # a

S, a:P ; Γ `∆ e@ a : A [C]

S, a:P ; Γ `∆#a e : A [C] ∆#a ` A[C] # a a 6∈ dom(S)

S; Γ `∆ new a:P in e : A [C]

Name polymorphism

S; Γ `∆,p#K e : A [C] p 6∈ dom(∆)

S; Γ `∆ Λp#K. e : ∀p#K. A [C]

S; Γ `∆ e : ∀p#K. A [C] ∆ ` D # K D ⊆ dom(S) ∪ dom(∆)

S; Γ `∆ e [[D]] : ([D/p]A) [C]

Name substitutions

S, a:P ; Γ `∆ e1 : P [C] S, a:P ; Γ `∆ e2 : B [a,C]

S, a:P ; Γ `∆ {a
.= e1} e2 : B [C]

Subtyping

S; Γ `∆ e : A [C] A 6: B

S; Γ `∆ e : B [C]

Figure 13: Typing rules of the core language (Part 2).

it will be used in the box introduction rule to make the non-reflexive variables accessible under the box.

(·)O = ·
(Γ, x:A)O = ΓO

(Γ, t::−A[C])O = ΓO, t::A[C]
(Γ, u::A[C])O = ΓO, u::A[C]

The typing rules of our language are presented in Figures 12 and 13. In the following text, we try to explain
some of the intricacies, decisions and interdependencies behind the design of the type system.

Notice first that the hypothesis rules exist only for the ordinary value variables and for the reflexive expression
variables. The non-reflexive variables cannot be accessed until they are turned into the reflexive ones by
the rule for box introduction. In addition, all the hypothesis rules check if their name dependencies are
well-formed, i.e. if all the names and dependency variables are declared in the name context S and the
dependency variable context ∆.

Consider next the rule for λ-abstraction. Remark that it relies on one of the auxiliary judgments from the
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previous section to check whether the type A of the bound variable is well-formed. That is because types
can mention names and dependency variables, and it has to ensure that the ones actually occurring in A
have already been declared in the name context S and the dependency context ∆, before the hypothesis x:A
is placed into the variable context. The synthesized type B does not have to be checked for well-formedness,
because the typing rules guarantee it, provided all the contexts are well-formed themselves.

Next consider the rule for box. Similarly to λ�, it checks the boxed expression e against a variable context
ΓO from which the value variables have been erased. In addition ΓO changes the status of all the nonreflexive
expression variables into reflexive ones. This is because the free expression variables in e are already enclosed
by a box; their occurrences are not for purpose of evaluation/reflection, but rather for composing pieces
of code into a larger one. Since boxing suspends evaluation, the term can be assigned any well-formed
dependency set D.

Observe that we have two different typings for the let box expression: one handles reflexive expressions,
i.e. expressions with empty name dependencies, and the other is for the nonreflexive ones. Alternatively, we
could have introduced two syntactically different constructs.

The construct new generates a fresh name, and then checks, using the auxiliary disjointness judgment, if
the synthesized type and name dependency do not contain free occurrences of this new name. The operation
∆#a extends with a the freshness annotation of every dependency variable in ∆. This is only reasonable,
since a is a new name. It is necessary in order to type possible abstractions with name a in the body of
new. The operation is defined recursively as:

(·)#a = ·
(∆, p#K)#a = (∆#a), p#(K, a)

As explained before, the name abstraction construct a . e is a closure with a of the value of e, in the sense
that it pairs up the value of the term e with the name a. That way, it abstracts the eventual occurrences of
a in the term. Just as in FreshML, the names in our system must be first created before they are abstracted.
Thus, the name in question must be in the name context S in both the premises and the conclusions of
the typing rules for name abstraction, concretion and substitution. Notice, however, that the side condition
∆ ` fdv(A) # a in the typing rules for abstraction and concretion is crucial. It ensures that the free
dependency variable occurring in A could never be instantiated with a dependency set containing the name
a. If that were possible, the new occurrence of a would be abstracted on the level of terms, but there would
be no binding in the corresponding type, thus causing unsound behavior. The reason for that is that the
quantifier in N

a:p
A is itself a binder, and two name abstraction types which differ only in the names of bound

atoms, are considered equal.
For example, consider the following term, ill-typed in the presence of the side-condition on the typing

rule for name abstraction.

new a:int in
let val F = Λp. λx:�(int[p]). (a.x)
in

F [[a]] (box a)
end

The term assigned to F is typed as ∀p. �(int[p])→ N
a:int
�(int[p]), but because the quantifier Nis a binder,

this type is the same as �(int[p])→ N
c:int
�(int[p]), for some fresh name c 6= a. The two types, however, even

though supposedly equal, behave differently under name-polymorphic instantiation. In the first case, the
term F [[a]] receives the type �(int[a])→ N

a:int
�(int[a]), while in the second case, it is typed as �(int[a])→

N
c:int
�(int[a]). Resorting for a moment to the still undefined operational semantics of our language, the

whole term F [[a]] (box a) is supposed to evaluate to a . (box a), and hence only the first, but not the second
typing above will be sound.

The side-condition ∆ ` fdv(A) # a on the name abstraction and concretion rules is imposed exactly to
avoid this kind of problematic behavior. It prevents the dependency variable p in our previous example to
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be instantiated with the name set {a}, so that the name abstraction on the level of terms will be reflected
by a sound N-abstraction on the level of types. A correctly typed equivalent of the above code would then
be the following.

new a:int in
let val F = Λp#a. λx:�(int[p,a]). (a.x)
in

F [[ ]] (box a)
end

In this case the typing of the subterm a.x of F occurs in the context S = a:int, ∆ = p#a and Γ =
x:�(int[p, a]). In such a context, using the rule for name abstraction, we have the inference

a:int;x:�(int[p, a]) `p#a x : �(int[p, a]) p#a ` p#a

a:int;x:�(int[p, a]) `p#a a . x : N
a:int
�(int[p, a])

which is valid because the only free dependency variable of the type �(int[p, a]) is

fdv (�(int[p, a])) = p

Thus, F is typed as ∀p#a. �(int[p, a])→ N
a:int
�(int[p, a]). Subsequently, we use a polymorphic instantiation

with the empty name dependency F [[ ]] to obtain the result we sought to achieve with the instantiation F [[a]]
in the ill-typed case: a functional expression typed as �(int[a])→ N

a:int
�(int[a]).

As a yet another peculiarity of the typing rule for name abstraction, observe that that it does not change
the name dependency C of the involved term; in particular, it does not attempt to remove the abstracted
name from it. This is justified by the intended interpretation of name abstraction (a . e): it first evaluates its
body e before creating the closure with a. Thus, the set of names that need to be provided with definitions
in order to evaluate (a . e) is the same set required for the evaluation of e itself. In other words, the two
expressions have the same dependency set. Similar considerations motivate the typing rule for concretion as
well.

On a related note, the above example is also illustrative of some flexibilities of our language (compared
to FreshML) which result from having name dependencies be part of types. As explained in Section 2.4,
the type system of FreshML keeps track of freshness annotation of terms (roughly, the complement of name
dependency), but the freshness relation is not used in the types of the language; rather, it is only part of
the typing judgment. As a consequence, the FreshML function λx. (a . x) must be typed as dependent on
a (i.e. a is not fresh for it), even though a is always fresh for its body (a . x). In other words, as already
remarked in [PG00], freshness is not a logical relation, and that forces a somewhat weaker typing rule for
lambda abstractions (see Figure 6). Obviously, a system like ours, which incorporates name dependencies
into types, will remedy that, and will be able to give a more precise typing to λx. (a . x). For example
(as already shown) we can express that the result of applying this function will always be disjoint from a,
independently of the status with respect to a of the application argument.

It may also be of interest here to draw a parallel between name abstraction and a related phenomenon
which occurs in the extension of MetaML with references [CMS01]. A reference in MetaML must not be
assigned a postponed code value which contains variables bound on the outside of the code constructor.
Indeed, if such a thing occured, than the “free” variable may escape the scope of the outside λ-construct
which introduced it. For technical reasons, however, this actually cannot be prohibited, so the authors resort
to a hygienic handling of scope extrusion by introducing a new term constructor (x)e which declares that x
is a free variable (with some additional properties) of a code term e.

Returning to the typing rules of our core language, the last rule we consider is that for subtyping. Due to
the nature of name dependencies which can be arbitrarily weakened, we need an explicit subtyping rule to
coerce types into types of same structure but larger name dependencies on various code levels.
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4 Theory

This section explores the theoretical properties of our type system, which will be used to justify the opera-
tional semantics we ascribe to it, and ultimately prove the Progress and Type Preservation theorems of our
language. We begin with the basic:

Lemma 4 (Structural Properties of Contexts)
1. Exchange If S1, Γ1, ∆1, C1 are obtained by permuting the elements of S2, Γ2, ∆2, C2 respectively,

and S1; Γ1 `∆1 e : B [C1] then S2; Γ2 `∆2 e : B [C2].

2. Weakening If S1, Γ1, ∆1, C1 are subsets or equal to S2, Γ2, ∆2, C2 respectively, and S1; Γ1 `∆1 e :
B [C1] then S2; Γ2 `∆2 e : B [C2].

3. Variable Contraction Let ? stand for any of :, ::, or ::−variable typings. Then S; Γ, x?A[D], y?A[D] `∆

e : B [C] implies S; Γ, x ? A[D] `∆ [x/y]e : B [C].

4. Name for Variable Substitution If S; Γ, x:P `∆ e : A [C] and a 6∈ dom(S), then S, a:P ; Γ `∆

[a/x]e : A [C, a]

Proof: By straightforward induction on the structure of the typing derivation, using similarly formulated
exchange, weakening and contraction properties of the auxiliary judgments. �

Next step is to define two new operations on contexts, Γ	 and ΓM, which, together with the already
defined ΓO, will be important for stating the substitution principles for our language. Γ	 removes the
ordinary value variables from Γ, leaving only expression variables in it. ΓM changes the reflexive expression
variables with nonempty name dependencies into nonreflexive ones.

(·)	 = ·
(Γ, x:A)	 = Γ	

(Γ, t::−A[C])	 = Γ	, t::−A[C]
(Γ, u::A[C])	 = Γ	, u::A[C]

(·)M = ·
(Γ, x:A)M = ΓM, x:A

(Γ, t::−A[C])M = ΓM, t::−A[C]
(Γ, u::A[∅])M = ΓM, u::A[∅]

(Γ, u::A[C])M = ΓM, u::−A[C] if C 6= ∅

Before we formulate and prove the substitution principles, we need a couple of intermediate steps. The
next lemma states that a context with nonreflexive variables is weaker than a corresponding context in which
these variables are given typing. Every term that can be typed in the first context can also be typed in the
second.

Lemma 5
If S; Γ	1 ,Γ2 `∆ e : A [C], then S; ΓO1 ,Γ2 `∆ e : A [C].

Proof: By induction on the typing derivation of e. We present only the case when e = box e′ and
A = �(A′[C ′]).

(1) By typing derivation, S; Γ	O1 ,ΓO2 `∆ e′ : A′ [C ′].

(2) Because Γ	O1 = ΓOO	1 , we have S; ΓOO	1 ,ΓO2 `∆ e′ : A′ [C ′].

(3) By induction hypothesis, S; ΓOO1 ,ΓO2 `∆ e′ : A′ [C ′].

(4) Now by typing rule for box, S; ΓO1 ,Γ2 `∆ box e′ : �(A′[C ′]) [C].

�

We also require another meta operation – that of name substitution {a/e}e′. It differs from the usual
variable substitution in the fact that it substitutes the name a by e only on the current code level in e′;
the occurrences of a on higher code levels (i.e., under boxes) will not be touched. This operation and its
corresponding substitution principles will be used to justify the operational semantics of the term construct
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for name substitution {a .= e} e′.4 The operation is capture avoiding – all the variables and atoms are
renamed when descending into the scope of the term construct which created them.

Definition 6 (Name Substitution)
Given terms e and e′ and a name a, the operation {e/a}e′ of substituting e for name a in e′ is defined
recursively over the structure of e′ as follows.

{e/a}∗ = ∗
{e/a}x = x

{e/a}u = u

{e/a}a = e

{e/a}b = b (a 6= b)
{e/a}(λx:A. e1) = λx:A. {e/a}e1

{e/a}(fix x:A. e1) = fix x:A. {e/a}e1

{e/a}(e1 e2) = ({e/a}e1 )({e/a}e2)
{e/a}(box e1) = box e1

{e/a}(let box u = e1 in e2) = let box u = {e/a}e1 in {e/a}e2

{e/a}(b . e1) = b . {e/a}e1 (a may be equal to b)

{e/a}(e1 @ b) = ({e/a}e1) @ b (a may be equal to b)

{e/a}(new b:Q in e1) = new b:Q in {e/a}e1 (a 6= b)
{e/a}(Λp#K. e1) = Λp#K. {e/a}e1

{e/a}(e1 [[D]]) = ({e/a}e1) [[D]]
{e/a}({a .= e1} e2) = {a .= {e/a}e1} e2

{e/a}({b .= e1} e2) = {b .= {e/a}e1} ({e/a}e2) (a 6= b)

In the similar spirit, we define the set fn0(e) of names occurring in the term e on the current code level.
This gives us a way to compute the minimal set of names which must appear as a name dependency when
typing the term e.

Definition 7
Given a term e, the set fn0(e) is defined recursively by the equations below. We refer to fn0(e) as the set of

4Notice the difference in the notation.
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free names of the term e.

fn0(a) = {a}
fn0(∗) = ∅
fn0(x) = ∅
fn0(u) = ∅

fn0(λx:A. e) = fn0(e)
fn0(fix x:A. e) = fn0(e)

fn0(e1 e2) = fn0(e1) ∪ fn0(e2)
fn0(box e) = ∅

fn0(let box u = e1 in e2) = fn0(e1) ∪ fn0(e2)
fn0(a . e) = fn0(e)

fn0(e@ a) = fn0(e)
fn0(new a:P in e) = fn0(e) \ {a}

fn0(Λp#K. e) = fn0(e)
fn0(e [[C]]) = fn0(e)

fn0({a .= e1} e2) = fn0(e1) ∪ (fn0(e2) \ {a})

Notice that the free names of a name abstraction a . e do not exclude a. The reason is closely related to the
already stated property that name abstraction abstracts only after the body of the abstraction e is evaluated.
Thus, if the name a occurs on the present code level in e, we need to provide an extension for a before e
is ran, and hence e depends on a. Similar comment applies to name concretion and to name-polymorphic
instantiation.

The following definition is adopted from Nominal Logic and FreshML [PG00].

Definition 8 (Name Transposition)
The operation of interchanging all the occurrences of names a and b in the argument name dependency/con-
text/type/expression, is called name transposition or name swapping, and is denoted by (a b)(−).

Name transposition is different from name substitution: the former swaps two names throughout the given
term or type, no matter the code level on which any of the names occur, while the later only works on the
current code level.

Lemma 9 (Strengthening)
1. if S; Γ, x:A `∆ e : B [C] and x 6∈ fv(e), then S; Γ `∆ e : B [C]

2. if S; Γ, u::A[D] `∆ e : B [C] and u 6∈ fv(e), then S; Γ `∆ e : B [C]

3. if S; Γ, t::−A[D] `∆ e : B [C] and t 6∈ fv(e), then S; Γ `∆ e : B [C]

4. if S; ΓM `∆ e : A [C, a] and a 6∈ fn0(e) then S; ΓM `∆ e : A [C]

5. if S; ΓM `∆ e : A [C, p] then S; ΓM `∆ e : A [C]

Proof: In each case, by a straightforward induction on the first typing derivation. �

Lemma 10 (Substitution Principles)
1. if S; Γ `∆ e1 : A [C] and S; Γ, x:A `∆ e2 : B [C], then S; Γ `∆ [e1/x]e2 : B [C].

2. if S; Γ	1 `∆ e1 : A [D] and S; Γ2, u::A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/u]e2 : B[C].

3. if S; ΓO1 `∆ e1 : A [D] and S; Γ2, t::−A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/t]e2 : B[C].
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4. if S, a:P ; Γ1 `∆ e1 : P [C] and S, a:P ; ΓM2 `∆ e2 : B[a,C], then S, a:P ; Γ1,ΓM2 `∆ {e1/a}e2 : B[C].

The premises in the formulation of the substitution principles deserve further elaboration. Principle 10.2
requires that the substituted term e1 is typable in a context Γ	1 , i.e. that it does not contain any free value
variables. The intuition behind this is that e1 substitutes an expression variable u. Expression variables may
occur on multiple code levels, so the substitution will copy e1 to multiple code levels too. But the ordinary
value variables are anchored by the type system to only the current code level, and thus e1 must contain
none of them.

Principle 10.3 requires that the substituting term e1 be typed in a context ΓO1 , which contains no value
variables, and in which all the nonreflexive expression variables are turned into reflexive ones. The reasons
for the first requirement is analogous to the one in the previous principle. The second requirement is actually
a weakening of the context, since turning a nonreflexive variable into a reflexive one allows more terms to
be typed (because now the variable can be used on the current code level as well). It is justified because
e1 substitutes a nonreflexive expression variable t. The variable t only occurs guarded by a box, i.e. on
code levels strictly higher than the current one. Thus any typing of e1 in the term [e1/t]e2 will happen in a
context in which the nonreflexive expression variables relevant for e1 have already been turned into reflexive
ones by the typing rule for box (see Figure 12).

Finally, Principle 10.4 requires that the context in both the second premise and in the conclusion be of
special form ΓM2 , i.e. that its reflexive variables only have empty name dependency. Note that the principle
describes a way to reduce the name dependency of a term e2 by substituting away the name a. But, the
way the operation of name substitution is defined, it may not necessarily change the expression e2 itself. For
example, consider the case when e2 = u in the context Γ = u::A[a]. The substitution {a/e1}u produces a
term u itself, but there is no typing S; Γ `∆ u : A [ ]. That is why we require that the involved reflexive
variables have no dependencies. In retrospect, the need to distinguish between expression variables with and
without dependencies, which arises from this principle, was the main reason why we introduced nonreflexive
variables into the design of the type system at all, instead of staying with only the reflexive variables of λ�.

Another observation of crucial importance is that the local variables of a boxed expression form a context
Γ, which is exactly of the form the name substitution principle 10.4 requires, i.e. Γ = ΓM. This can easily be
seen, as all the reflexive variables which will be put into the context have empty name dependencies (see the
typing rules for let box in Figure 12. This would allow us to use the meta operation of name substitution
{e1/a}e2 to define the operational semantics of the language construct for name substitution {e1

.= a} e2.
The idea is to use this construct to perform substitutions within box-annotated expression, and the principle
10.4 ensures that these substitutions can be carried out without the postponement of evaluation which is
the usual operational semantics associated with boxed expressions in λ�.

Proof: All the substitution principles are proved by induction on the typing derivation for e2. We present
below some of the more interesting cases. The complete proof can be found in the Appendix.

Principle 2. if S; Γ	1 `∆ e1 : A [D] and S; Γ2, u::A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/u]e2 : B[C].

case e2 = box e, where B = �(B′[C ′]).

1. By typing derivation, S; ΓO2 , u::A[D] `∆ e : B′ [C ′].

2. Because Γ	1 = Γ		1 , we have S; Γ		1 `∆ e1 : A [D].

3. From (1), (2) and the induction hypothesis, S; Γ	1 ,Γ
O
2 `∆ [e1/x]e : B′ [C ′].

4. By Lemma 5, S; ΓO1 ,Γ
O
2 `∆ [e1/x]e : B′ [C ′],

5. and finally, we can reassemble S; Γ1,Γ2 `∆ box ([e1/x]e) : �(B′[C ′]) [C],

Principle 3. if S; ΓO1 `∆ e1 : A [D] and S; Γ2, t::−A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/t]e2 : B[C].

case e2 = box e′, where B = �(B′[C ′]).

1. By typing derivation, S; ΓO2 , t::A[D] `∆ e′ : B′ [C ′].
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2. Because ΓO1 = ΓO	1 , by the previously proved substitution principle (Lemma 10.2), S; ΓO1 ,Γ
O
2 `∆

[e1/t]e′ : B′ [C ′].
3. Now assemble back into S; Γ1,Γ2 `∆ box ([e1/t]e′) : �(B′[C ′]) [C].

Principle 4. if S, a:P ; Γ1 `∆ e1 : P [C] and S, a:P ; ΓM2 `∆ e2 : B[a,C], then S, a:P ; Γ1,ΓM2 `∆ {e1/a}e2 : B[C].

case e2 = u.
By the definition of ΓM2 , it is only possible that the variable u ∈ dom(ΓM2 ) if its name annotation is
empty, i. e. if u::B[∅] ∈ ΓM2 . Thus, by name dependency weakening, S, a:P ; ΓM2 `∆ u : B [C]. Now, by
hypothesis weakening, and because u = {e1/a}u, we get the required S, a:P ; Γ1,ΓM2 `∆ {e1/a}u : B [C].

case e2 = box e′, and B = �(B′[C ′]).
In this case, the typing box e′ : B [a,C] is obtained by weakening inherent in the box rule. Thus, we
can also derive S, a:P ; ΓM2 `∆ box e′ : �(B′[C ′]) [C]. Considering that {e1/a}box e′ = box e′, weaken
the hypothesis context to get S, a:P ; Γ1,ΓM2 `∆ {e1/a}box e′ : �(B′[C ′]) [C].

�

Lemma 11 (Parametricity)
1. if S; Γ `∆,p#K e : A [C] and D is a well-formed dependency set, i.e. D ⊆ dom(S) ∪ dom(∆), and is

fresh for K, i.e. ∆ ` D # K, then

S; [D/p]Γ `∆ [D/p]e : ([D/p]A) [[D/p]C]

2. if S; Γ `∆ e : A [C], and a, b:P are names (not necessarily in S), then

(a b)S; (a b)Γ `(a b)∆ (a b)e : (a b)A [(a b)C]

Proof: First notice that the transposition property (property 2) is trivial to prove by induction on the
typing derivation for e. Namely, all the typing rules, as well as the rules for auxiliary judgments are are
obviously insensitive to swapping the names throughout, in all the contexts, types, terms and dependencies.
Thus the judgment itself must be insensitive to swapping names.

The proof of the first property is somewhat less trivial, but still rather straightforward by induction on
the typing derivation of e. We present here only the cases for name abstraction and name-polymorphic
instantiation, and leave the rest for the Appendix.

case e = a . e′, where A = N
a:P

A′ and a:P ∈ S.

Assume a 6∈ D to ensure capture avoiding. This can always be achieved by alpha-renaming a into some
other fresh name.

1. By typing derivation, S; Γ `∆,p#K e′ : A′ [C] and ∆, p#K ` fdv(A′) # a.
2. By induction hypothesis, S; [D/p]Γ `∆ ([D/p]A′) [[D/p]C].
3. By Lemma 3, ∆ ` fdv([D/p]A′) # a.
4. Assemble back into S; [D/p]Γ `∆ (a . [D/p]e′) : ( N

a:P
([D/p]A′)) [[D/p]C].

case e = e′ [[D′]].

1. By typing derivation, S; Γ `∆,p#K e′ : (∀q#M. A′) [C] where ∆, p#K ` D′ # M and D′ ⊆
dom(S) ∪ dom(∆, p#K), and A = [D′/q]A′.

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e′ : (∀q#M. [D/p]A′) [[D/p]C].
3. By Lemma 2.1, ∆ ` ([D/p]D′) # M .
4. Next, obviously, ([D/p]D′) ⊆ dom(S) ∪ dom(∆).
5. Thus conclude, S; [D/p]Γ `∆ ([D/p]e′) [[[D/p]D′]] : ([D/p]A) [[D/p]C].

�
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x
S−→ x u

S−→ u a
S−→ a ∗ S−→ ∗

e
S−→ w

λx. e
S−→ λx. w

e1
S−→ w1 e2

S−→ w2

e1 e2
S−→ w1 w2

e
S−→ w

fix x. e
S−→ fix x. w

box e
S−→ box e

e1
S−→ w1 e2

S−→ w2

let box u = e1 in e2
S−→ let box u = w1 in w2

e
S−→ w

a . e
S−→ a . w

e
S−→ w

e@ a
S−→ w@ a

e
S,a:P−−−→ w

new a:P in e
S−→ new a:P in w

e
S−→ w

Λp#K. e S−→ Λp#K. w

e
S−→ w

e [[C]] S−→ w [[C]]

e1
S−→ w1 e2

S−→ w2 a ∈ dom(S)

{a .= e1} e2
S−→ {a .= w1} w2

e1
S−→ w1 e2

S−→ w2 a 6∈ dom(S)

{a .= e1} e2
S−→ {w1/a}w2

Figure 14: Contraction rules for expressions.

5 Operational Semantics

In this section we define the structured operational semantics for our core language, and prove the appropriate
Progress and Type Preservation theorem. We start by introducing the notion of contraction, which will be
instrumental in defining the values of our language. The idea is that we do not consider, like in λ�, that
all boxed expressions are values. Rather, in order to be values, boxed expressions have to be “contracted”,
i.e. not reduced completely, but only freed of (some) name substitution they may contain. The name
substitutions that are carried out (i.e. contracted) under a box in a given expression satisfy two properties:
(1) They occur on the current code level. This is in accord with the previously made observation about the
substitution principle 10.4 that the variable context Γ of variables encountered when traversing the current
code level of a boxed term, and not descending into further and further boxes, is always of a form Γ = ΓM.
Thus, the said substitution principle is applicable, and the encountered name substitutions can actually be
carried out without postponing. (2) The substituted name should be created outside of the boxed term,
rather than being local to it. Otherwise, certain terms will not have intensional representations as boxed
expressions (e.g. new a:1 in {a/∗}a).

The judgment for contraction is defined in Figure 14. It has the form

e
S−→ w

and means: if the name substitutions in the expression e of names other than those in S are carried out, we
obtain w. The “protected” set S carries the locally defined names of e (see the contraction rule for new),
and is introduced in order to comply with the requirement (2) from above. An expression e is S-contracted
if e S−→ e. It is contracted if and only if it is ∅-contracted. We use the letter w to range over S-contracted
expressions.
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Lemma 12 (Contraction Termination and Type Preservation)
If S1, S2; ΓM `∆ e : A [C] then there exists unique term w, such that e

S2−→ w. Furthermore, w is S2-contracted
and S1, S2; ΓM `∆ w : A [C].

Proof: By induction on the derivation S1, S2; ΓM `∆ e : A [C]. The full proof is in the Appendix.

case e = let box u = e′ in e′′.

1. By typing derivation, S1, S2; ΓM ` e′ : �(A′[C ′]) [C], and,

2. either S1, S2; ΓM, u::A′ ` e′ : �(A′[C ′]) [C], or S1, S2; ΓM, u::−A′[C ′] ` e′ : �(A′[C ′]) [C], depending
whether C ′ = ∅ or C ′ 6= ∅.

3. Also notice that (ΓM, u::A′) = (Γ, u::A′)M, and if C ′ 6= ∅, then (ΓM, u::−A′[C ′]) = (Γ, u::−A′[C ′])M.

4. Then, by induction hypothesis, we have w′ and w′′ satisfying the prescribed properties. Combine
them into w = let box u = w′ in w′′.

case e = {a .= e′} e′′, where a:P ∈ S1, S2.

1. By typing derivation, S1, S2; ΓM `∆ e′ : P [C], and S1, S2; ΓM `∆ e′′ : A [a,C].

2. By induction hypothesis, there are unique w′ and w′′ such that e′ S2−→ w′ and e′′
S2−→ w′′, plus

they are contracted and preserve the types.

3. Now, distinguish two cases: (1) a ∈ dom(S2), and (2) a 6∈ dom(S2).

4. In the first case, pick w = {a .= w′} w′′. It is contracted and has the correct typing.

5. In the second case, pick w = {w′/a}w′′. By the contraction rules, e S2−→ w. By Lemma 13.1, it is
contracted. By substitution principle (Lemma 10.4), it also has the correct typing S1, S2; ΓM `∆

{w′/a}w′′ : A [C].

�

Lemma 13 (Substitution and Transposition of Contracted Expressions)
1. If w1 and w2 are S-contracted, then {w1/a}w2 is S-contracted.

2. If w is S-contracted and a, b 6∈ S, then (a b)w is S-contracted.

Proof:

1. By induction on the derivation w2
S−→ w2. Base cases are w2 = x, u, a, ∗,box e and they clearly satisfy

the requirements of the lemma. The rest of the induction cases are also easy. The most interesting is
when w2 = {a .= w′1} w′2. In that case, w′1 and w′2 are S-contracted and a ∈ dom(S). By induction
hypothesis, {w1/a}w′1 is also S-contracted, and so {w1/a}w2 = {a .= {w1/a}w′1} w′2 must be too.

2. By a straightforward induction on the derivation w
S−→ w. In case w = new c:P in w′ (we assume

by Barendregt’s Variable Convention that c 6= a, b), then w′ is (S, c:P )-contracted. By induction
hypothesis, so is (a b)w′, and the conclusion follows.

�

We can now define our syntactic category of values.

v : : = ∗ | λx. e | a . v | Λp#K. e | box w (w contracted)

Lemma 14 (Name Transposition Preserves Values)
If an expression v is syntactically a value, as defined by the above grammar, in the name context S containing
names a, b:P ∈ S, then (a b)v is also a value.
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S, e1 7−→ S′, e′1

S, (e1 e2) 7−→ S′, (e′1 e2)

S, e2 7−→ S′, e′2

S, (v1 e2) 7−→ S′, (v1 e
′
2)

S, ((λx:A. e) v) 7−→ S, [v/x]e S,fix x:A. e 7−→ S, [fix x:A. e/x]e

e −→ w e not contracted

S,box e 7−→ S,box w

S, e1 7−→ S′, e′1

S, (let box u = e1 in e2) 7−→ S′, (let box u = e′1 in e2)

S, (let box u = box w in e2) 7−→ S, [w/u]e2 S, (new a:P in e) 7−→ (S, a), e

S, e 7−→ S′, e′

S, (a . e) 7−→ S′, (a . e′)

S, e 7−→ S′, e′

S, (e@ a) 7−→ S′, (e′@ a) S, (b . v) @ a 7−→ S, (a b)v

S, e 7−→ S′, e′

S, (e [[C]]) 7−→ S′, (e′ [[C]]) S, ((Λp#K. e′) [[C]]) 7−→ S, [C/p]e′

S, e1 7−→ S′, e′1

S, ({a .= e1} e2) 7−→ S′, ({a .= e′1} e2) S, ({a .= v} e2) 7−→ S, {v/a}e2

Figure 15: Structured operational semantics of the core language.
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Proof: By induction on the structure of v. The only interesting case is when v = box w. Then
(a b)v = box (a b)w. But, by Lemma 13.2, (a b)w is contracted, and hence box (a b)w is a value.

�

At last, we are in position to define a small-step operational semantics (see Figure 15), and prove the Type
Preservation and Progress theorem for the core part of the language. The operational semantics memorizes
the types of names in the store, as they are needed later in the evaluation of pattern-matching. Note that
the theorem requires empty variable and parameter contexts and name dependency.

Theorem 15 (Progress and Type Preservation)
If S; · ` e : A [ ], then either

1. e is a value, or

2. there exists S′ ⊇ S such that S, e 7−→ S′, e′; furthermore e′ is unique and S′; · ` e′ : A [ ].

Proof: By induction on the derivation S; · ` e : A [ ]. We present the more important cases below. The
rest can be found in the Appendix.

case e = let box u = e1 in e2.

Assume that e1 is a value (otherwise trivial). In that case e1 = box w1, where w1 is contracted, and
S, e 7−→ S, [w1/u]e2.

1. By typing derivation, S; · ` w1 : A′ [C ′], and,
2. either S;u::A′ ` e2 : A [ ], or S;u::−A′[C ′] ` e2 : A [ ], depending whether C ′ = ∅ or C ′ 6= ∅.
3. Conclude, using either Lemma 10.2, or Lemma 10.3, that S; · ` [w1/u]e2 : A [ ].

case e = e′@ a, where a:P ∈ S.

Assume that e′ is a value (otherwise, trivial).

1. By typing derivation, S; · ` e′ : ( N
a:P

A) [ ], and · ` fdv(A) # a (because fdv(A) = ∅).

2. Then e′ = b . v′, where b:P ∈ S, and S; · ` v′ : (a b)A [ ].
3. By reduction rules, S, e 7−→ S, (a b)v′.
4. By Lemma 11.2, (a b)S; · ` (a b)v′ : (a b)(a b)A [ ].
5. Now, both a, b ∈ dom(S), so (a b)S = S.
6. By idempotency of swapping, S; · ` (a b)v′ : A [ ], and the typing is preserved.

case e = e′ [[D]].

Assume e′ is a value (otherwise trivial).

1. By typing derivation, S; · ` e′ : ∀p#K. A′, where ` D # K, and A = [D/p]A′.
2. Since e′ is a value, it is of the form e′ = Λp#M. e′′, where M ⊆ K and thus ` D # M .
3. By typing rules, S; · `p#M e′′ : A′ [ ].
4. By Lemma 11.1, S; · ` [D/p]e′′ : ([D/p]A′) [ ],
5. Since S, e 7−→ S, [D/p]e′′, we have just shown that the typing is preserved.

case e = {a .= e1} e2, where a:P ∈ S.

Assume both e1 is a value (otherwise trivial).

1. By typing derivation, S; · ` e1 : P [ ], and S; · ` e2 : A [a].
2. By Lemma 10.4, S; · ` {e1/a}e2 : A [ ].
3. By reduction rules, S, e 7−→ S, {e1/a}e2, so the statement is proved.

�
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6 Intensional Code Analysis

This section presents the definition and theory of pattern-matching on code expressions, which is used to
inspect the structure of an object program and destruct it into its component parts. For the purposes of this
work, we limit ourselves to intensional analysis of only the simply typed λ-calculus fragment of our language.
Thus, admittedly, our current results are far from complete, but nevertheless, we present them here as a first
step towards a stronger and more robust system.

Patterns π : : = [E x1 · · ·xn] | x | a | ∗ | λx:P. π | (π1) (π2:P ) | fix x:P. π | π:P [C]

The pattern [E x1 · · ·xn] declares a pattern variable E which matches a code expression subject to condition
that the expression’s free variables are among x1, . . . , xn. We will denote pattern variables with capital E
and its variants. Patterns λx:P. π and fix x:P. π, match respectively a lambda expression and a fixpoint
expression of domain type P . They declare a variable x which is local to the pattern, and demand that
the body of the matched expression conforms to the pattern π. Bound variables, like x above, are to be
distinguished from pattern variables, like [E x1 · · ·xn]. The later provides a placeholder for the matching
process; upon execution of a successful matching, it will be bound to a certain expression. The former is just
a syntactic constant, which is introduced by a pattern for lambda expressions, and can match only itself.
Pattern a matches a name a from the global name context. Pattern (π1)(π2:P ) matches an application; in
order to avoid polymorphic types in patterns, we require that the this pattern proscribes the exact type of
the argument in the application. The pattern π:P [C] serves to specifically limit the allowed dependencies of
the matched expression to only C.

The judgment for typechecking patterns has the form

S; Γ ∆ π : P [C] =⇒Γ1

and reads: in the context of global names S, global dependency context ∆, and a context of locally declared
variables Γ, the pattern π has the type P , name dependency C and produces a residual context Γ1 of
pattern variables and their typings. This residual context is to be passed to subsequent computations. The
rules of this judgment are presented in Figure 16. Note that, because we are limited to only simply-typed
fragment, the local variables that the typing rules deposit in Γ will always be ordinary value variables, and
always simply typed. On the other hand, we do allow a bit more generality in the case of pattern variables
[E x1 · · ·xn]; they still can match only terms of simple types, but these terms can have subterms of more
general typing.

In order to incorporate pattern matching into the core language, we enlarge the syntax with a new term
constructor.

Terms e : : = . . . | case e0 of box π ⇒ e1 else e2

The intended operational interpretation of case is to evaluate the argument e0 to obtain a boxed expression
box w, then match w to the pattern π. If the matching is successful, it creates an environment with bindings
for the pattern variables, and then evaluates e1 in this environment. If the matching fails, the branch e2 is
taken. The typing rule for case is:

S; Γ `∆ e0 : �(P [D]) [C] S; · ∆ π : P [D] =⇒Γ1 S; Γ,Γ1 `∆ e1 : B [C] S; Γ `∆ e2 : B [C]

S; Γ `∆ case e0 of box π ⇒ e1 else e2 : B [C]

Observe that the second premise of case requires an empty variable context, so that patterns cannot contain
outside value or expression variables.

The meta operations of name substitution and name transposition, as well as the fn0 function on terms,
readily extend.

{e/a}(case e0 of box π ⇒ e1 else e2) = (case {e/a}e0 of box π ⇒ {e/a}e1 else {e/a}e2)
fn0(case e0 of box π ⇒ e1 else e2) = fn0(e0) ∪ fn0(e1) ∪ fn0(e2)
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xi:Pi ∈ Γ C ⊆ dom(S) ∪ dom(∆)

S; Γ ∆ [E x1 . . . xn] : P [C] =⇒E: N
a1:P1

. . . N
an:Pn

�(P [C, a1, . . . , an])

S; Γ ∆ π : P [D] =⇒Γ1 D ⊆ C

S; Γ ∆ (π:P [D]) : P [C] =⇒Γ1

C ⊆ dom(S) ∪ dom(∆)

S; Γ, x:P ∆ x : P [C] =⇒·

C ⊆ dom(S) ∪ dom(∆)

S, a:P ; Γ ∆ a : P [a,C] =⇒·

C ⊆ dom(S) ∪ dom(∆)

S; Γ ∆ ∗ : 1 [C] =⇒·

S; Γ, x:P1 ∆ π : P2 [C] =⇒Γ1

S; Γ ∆ λx:P1. π : P1 → P2 [C] =⇒Γ1

S; Γ, x:P ∆ π : P [C] =⇒Γ1

S; Γ ∆ fix x:P. π : P [C] =⇒Γ1

S; Γ ∆ π1 : P2 → P [C] =⇒Γ1 S; Γ ∆ π2 : P2 [C] =⇒Γ2

S; Γ ∆ (π1) (π2 : P2) : P [C] =⇒Γ1,Γ2

Figure 16: Typing rules for patterns.

Example 2
To illustrate intensional code analysis, the following examples presents a generalization of our old expo-
nentiation function. Instead of powering only integers, we can power functions too, i.e. have a functional
computing f 7→ λx. (fx)n. The functional is passed the code for f , and an integer n, and returns the code
for λx. (fx)n. The idea is to have this residual code be as optimized as possible, while still computing the
extensionally same result.

For comparison, we first present a λ� version of the function-powering functional.

fpowbox : �(int->int) -> int -> �(int->int) =
λf:�(int->int). λn:int.

let box F = f
box P = powbox2 n

in
box (λv:int. (P (F v)))

end

- fpowbox (box λw:int. w + 1) 2;
val it = box (λv:int. (λx.x*(λy.y*(λz.1)y)x) ((λw.w+1)v)) : �(int->int)

Observe that the residual program contains a lot of unnecessary redices. As could be expected, λ© (and for
that matter, MetaML as well), provides a better way to stage the code.

fpowcirc1 : ©(int->int) -> int -> ©(int->int) =
λf:©(int->int). λn:int.

let val P = powcirc2 n
in

next (λv:int. (prev P) ((prev f) v))
end

- fpowcirc1 (next λw:int. w + 1) 2;
val it = next (λv:int. (λx.x*(x*1)) ((λw.w+1) v)) : ©(int->int)

In fact, there is at least one other way to program this functional in λ©: we can eliminate the outer beta-redex
from the residual code, at the price of duplicating the inner one.
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fpowcirc2 : ©(int->int) -> int -> ©(int->int) =
λf:©(int->int). λn:int.

next (λv:int.
prev (let val b = next ((prev f) v)

in
powcirc’ b n

end))

- fpowcirc2 (next (λw:int. w + 1)) 2;
val it = next (λv:int. ((λw.w+1) v) * ((λw.w+1) v) * 1) : ©(int->int)

All three of the above programs can be encoded in the new language as well. The first program fpowbox is
simply copied line-for-line. The λ© version fpowcirc1 and fpowcirc2 will require translations fpow1 and
fpow2, which we show below.

fpow1 : �(int->int) -> int -> �(int->int) =
λf:�(int->int). λn:int.

let box p = pow n
box g = f

in
box (λv:int. p (g v))

end

-fpow1 (box λw:int. w + 1) 2;
val it = box (λv:int. (λx.x*(x*1)) ((λw.w+1) v)) : �(int->int)

fpow2 : �(int->int) -> int -> �(int->int) =
λf:�(int->int). λn:int.
new a:int in
let box f’ = f

box e = pow’ [[a]] (box (f’ a)) n
in

box (λv:int. {a = v} e)
end

- fpow2 (box (λw:int. w + 1)) 2;
val it = box (λv:int. ((λw.w+1) v) * ((λw.w+1) v) * 1) : �(int->int)

However, neither of the above implementations is quite satisfactory, since, evidently, the residual code in
all the cases contains unnecessary redices. The reason is that we do not utilize the intensional information
that the passed argument is actually a boxed lambda abstraction, rather than a more general expression of
a functional type. In a language with intensional code analysis, we can do a bit better. We can test the
argument at run-time and output a more optimized result if the argument is a lambda expression. This way
we can obtain the most simplified, if not the most efficient residual code.

fpow : �(int->int) -> int -> �(int->int) =
λf:�(int->int). λn:int.

case f of
box (λw:int. [E w]) =>

new a:int in
let box F = pow’ [[a]] (E @ a) n
in

box (λw:int. {a = w} F)
end

else fpow1 f n
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- fpow (box λw:int. w + 1) 2;
val it = box(λw:int.(w + 1) * (w + 1) * 1): �(int->int)

�

Lemma 16
If S; Γ ∆ π : P [C] =⇒Γ1, then Γ1 = ΓM1 .

Proof: Trivial. �

Lemma 17 (Parametricity of Pattern Matching)
1. if S; Γ ∆,p#K π : P [C] =⇒Γ1, and D is well-formed dependency set, i.e. D ⊆ dom(S) ∪ dom(∆),

and is fresh for K, i.e. ∆ ` D # K, then

S; [D/p]Γ ∆ ([D/p]π) : P [[D/p]C] =⇒[D/p]Γ1

2. if S; Γ ∆ π : P [C] =⇒Γ1 then

(a b)S; (a b)Γ (a b)∆ (a b)π : P [(a b)C] =⇒ (a b)Γ1

Proof: By a straightforward induction on the structure of π. �

Using the previous two lemmas, we can augment the theory of the core language with pattern matching
and the new construct case. In particular, the Substitution Principles (Lemma 10), and the Parametricity
Properties (Lemma 11), are easily extended with the additional inductive cases resulting from this addition.
We present the completed proofs of these lemmas in the Appendix.

The operational semantics for patterns is given through the new judgment

S; Γ;w � π=⇒S′,Θ

which reads: in a global store of names S, and context of local variables Γ, the matching of contracted
expression w to the pattern π extends the global store to S′ and generates a substitution Θ for the pattern-
variables of π. The rules for this judgment are given in Figure 17. Notice that, by the nature of pattern
matching, the substitution Θ is of a very simple structure. In particular, the terms from its range never
contain variables from its domain.

As already explained, the pattern variable [E x1 · · ·xn] should match an expression w provided that w
depends only on variables x1, . . . , xn. Thus, the rule for pattern variables explicitly provides the required
check. Similarly, the pattern π:P [C] has to ensure that all the free names of a matched expression w are in
the dependency set C, and the corresponding rule reflects that. That this checks are sound with respect to
the type system is the motivation for the following definition and lemma.

Definition 18 (Types for Substitutions)
The judgment S `∆ Θ : Γ denotes that Θ is a substitution for the variables in Γ, and that the substituting
terms allow occurrences of only the names in S. In other words S `∆ Θ : Γ if for every pattern-variable
E:A ∈ Γ we have S; · `∆ Θ(E) : A [ ].

Lemma 19 (Type Preservation for pattern-matching)
If S; ΓM1 ∆ π : P [C] =⇒Γ2 and S; ΓM1 `∆ w : P [C] and S; ΓM1 ;w � π=⇒S′,Θ, then S′ `∆ Θ : Γ2.

Proof: By induction on the structure of the pattern π. We present the interesting cases.

case π = [E x1 · · ·xn].
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fv(w) ⊆ {x1, . . . , xn} x1:P1, . . . xn:Pn ∈ Γ

S; Γ;w � [E x1 · · ·xn] =⇒(S, a1:P1, . . . , an:Pn), [E 7→ (a1 . . . an . box [a1, . . . , an/x1, . . . , xn]w)]

S; Γ;w � π=⇒S′,Θ fn0(w) ⊆ D

S; Γ;w � π:P [D] =⇒S′,Θ

S; Γ;x� x=⇒S, · S; Γ; a� a=⇒S, · S; Γ; ∗� ∗=⇒S, ·

S; Γ, x:P ;w � π=⇒S′,Θ

S; Γ;λx:P. w � λx:P. π=⇒S′,Θ

S; Γ, x:P ;w � π=⇒S′,Θ

S; Γ; fix x:P. w � fix x:P. π=⇒S′,Θ

S; Γ;w1 � π1 =⇒S1,Θ1 S; Γ ` w2 : P2 [S] S1; Γ;w2 � π2 =⇒S2,Θ2

S; Γ; (w1 w2) � (π1) (π2:P2) =⇒S2, (Θ1 ◦Θ2)

Figure 17: Operational semantics for pattern matching.

1. By assumption,
S; ΓM1 ∆ [E x1 · · ·xn] : P [C] =⇒E: N

ai:Pi
�(P [ai, C])

In other words, Γ2 = E: N
ai:Pi
�(P [ai, C]).

2. Also by assumption, S; ΓM1 `∆ w : P [C].

3. By (2) and name-for-variable substitution (Lemma 4.4),

S, ai:Pi; ΓM1 \ {xi:Pi} `∆ [ai/xi]w : P [ai, C]

4. By operational semantics of pattern-matching,

S; ΓM1 ;w � π=⇒(S, a1, . . . , an), [E 7→ (a1 . . . an . box [a1, . . . , an/x1, . . . , xn]w)]

In other words, the residual substitution Θ is in this case defined as

Θ = [E 7→ (a1 . . . an . box [a1, . . . , an/x1, . . . , xn]w)]

for some fresh names ai:Pi.

5. By the same rule for evaluation of patterns, fv(w) ⊆ {x1 . . . , xn}.
6. By (2) and (5) and context strengthening (Lemma 9.1), S, ai:Pi; · `∆ [ai/xi]w : P [ai, C],

7. Then (6) implies, by typing rules

S, ai:Pi; · `∆ (a1 . . . an . box [a1, . . . , an/x1, . . . , xn]w) : N
ai:Pi
�(P [ai, C])

8. Hence, taking S′ = S, ai:Pi satisfies S′ `∆ Θ : Γ2, which was required.

case π = (π′:P [D]) where D ⊆ C.

1. By assumption, S; ΓM1 `∆ w : P [C].

2. By operational semantics for patterns, fn0(w) ⊆ D.
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3. From (1) and (2), by strengthening (Lemmas 9.4 and 9.5), we know that

S; ΓM1 `∆ w : P [D]

4. The result follows from (3) by induction hypothesis.

�

The last piece to be added is the operational semantics for the case statement. First we extend the
judgment for contraction.

e0
S−→ w0 e1

S−→ w1 e2
S−→ w2

(case e0 of box π ⇒ e1 else e2) S−→ (case w0 of box π ⇒ w1 else w2)

The additional cases which arise in the lemmas 12, 13 and 14 are easy to prove. We also extend the small-
step semantics (see the rules below). Notice that the premise of last rule makes use of the fact that the
operational semantics for patterns is decidable, i.e. it is always possible to to find out, for given S, w and π
which unique S′ and Θ, if any, satisfy the relation S; ·;w � π=⇒S′,Θ.

S, e0 7−→ S′, e′0

S, (case e0 of box π ⇒ e1 else e2) 7−→ S′, (case e′0 of box π ⇒ e1 else e2)

S; ·;w � π=⇒S′,Θ

S, (case box w of box π ⇒ e1 else e2) 7−→ S′,Θ(e1)

@S′,Θ. S; ·;w � π=⇒S′,Θ

S, (case box w of box π ⇒ e1 else e2) 7−→ S, e2

Finally, using the lemmas established in this section, it is possible to augment the proof of the Progress
and Type Preservation theorem (Theorem 15) to handle the extended language. The complete proof is
presented in the Appendix.

Example 3
In this example we encode a function that beta-reduces the expressions passed to it as an argument. At
present, we do not have parametric type polymorphism in our language, so we restrict this function to only
expressions of type real, but we do allow arbitrary number of names in them.

fix breduce:∀p. �(real[p])->�(real[p]).
Λp. λe:�(real[p]).

case e of
box((λx. [E1 x]) [E2]:real) => (* E1: N

a:real
�(real[a]), E2:� real *)

new a:real in
let box e1 = breduce [[p, a]] (E1 @ a)

box e2 = breduce [[p, a]] (E2)
in

box ({a = e2} e1)
end

else e

�
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Example 4
This example is a (segment) of the meta function for symbolic differentiation. The function takes a name
abstraction as an argument: the body of the abstraction is a boxed term encoding the expression to be
differentiated; the abstracted name represents the variable with respect to which the differentiation takes
place. When the boxed expression is a sum of two subexpressions, the function just recurses over them.
When the boxed expression is a beta-redex (of a limited form), it first reduces it before recursing. Other
names and constants are matched in the default case, which thus returns the derivative 0.

Notice that the present lack of polymorphic patterns prevents us from recognizing, let alone reducing all
the beta redices that could possibly occur in the argument; although, admittedly, it is wrong, we currently
let them pass through the default case.

diff : ∀p. ( Na:real.�real[a, p]) -> ( Na:real.�real[a, p]) =
fix diff.

Λp. λe:( Na:real.�real[a, p]).
new a:real (* the differentiating name *)
in
case (e @ a) of
box a => a.(box 1)
| box ([E1] + [E2]) =>

let box e1 = (diff [[p]] (a.E1)) @ a
box e2 = (diff [[p]] (a.E2)) @ a

in
a.box (e1 + e2)

end
| box ((λx:real. [E1 x]) [E2]:real) =>

new b:real in
let box e1 = E1 @ b

box e2 = E2
in

diff [[p]] (a.box ({b = e2} e1))
end

else a.(box 0)

�

7 Further Work

In order to substantiate my thesis, I plan to extend the presented preliminary work into several more-or-less
independent directions. My hope is that the additions will be satisfactory from the elegance point of view
and that the conjectured orthogonality of the development will demonstrate that the necessitation fragment
of modal logic in combination with names, is indeed an appropriate foundation for typed meta-programming.
I list below a number of questions to explore and elaborate on their interdependence.

1. The logic of types of the language. Probably the most important question, I would like to
investigate if a Kripke style semantics for the core language is possible and what would it be. Interaction
between names and modal logic has been of interest to philosophical investigations for quite some time
(see [Kri80] and [FM99]), and I hope to draw on this work for the future developments.

2. General types of names. With the limitation that names can only be simply-typed, the presented
language can encode only object programs with simply-typed free variables. This makes it a two-level,
rather than a multi-level language like λ© and MetaML. It would be interesting to investigate how
generalizing the typing for names (if possible at all) will influence the rest of the language, in particular
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the operations of name abstraction and concretion. For example, the semantics of concretion will
probably have to be more involved. In a setup with higher-order names, concretion cannot just swap
an abstracted name from Nquantification, because the abstracted name might be originating from a a
higher type of some other name. Thus, one can imagine that the operation of transposition might have
to assume a more explicit role as a term constructor in the language. One can also imagine retaining the
simple typing for the bound name in the N-quantifier, for the predicative variant, or allowing arbitrary
names for impredicative N-quantification.

3. Modal type of names. In the present version of the system, names used in abstraction and concretion
must always be constants, in order to account for them in the dependency annotations. In other words,
we cannot compute with names; they can be passed around as part of boxed/code expressions, but once
unboxed, they cannot be used for abstraction and concretion. For this purpose, it may be beneficial
to add a separate type modality, say 4(A[C]), to classify a name of type A listed in the singleton (!)
dependency C. The new modal type should be a subtype of �(A[C]). However, this problem looks
slightly more involved and tangential to the other developments.

4. Type polymorphism and polymorphic recursion. In a meta-programming language, the typing
of object programs is made part of the typing of the meta programs. Consequently, such a language
has a lot of types to care of and thus needs strong notions of type polymorphism. This was already
evident from the example programs for beta reduction and symbolic differentiation in Section 6.

5. Existential name and type abstraction. The motivation for this comes from automatic code
generation. Say that we have a datatype absyn, representing the abstract syntax of the language,
and that we have synthesized an abstract syntax tree for a certain object program. We would like to
invoke that program in run-time, i.e. transform it into its boxed code representation and then evaluate
it. A program that performs this transformation is often referred to as a “visible compiler”. In a
meta-programming language we ought be able to implement a function vcomp representing a visible
compiler, but the question is what its type should be. Obviously, the types of boxed expressions
that vcomp is supposed to produce will depend on the abstract syntax tree supplied as an argu-
ment, and thus the range type of the function will have to be existentially quantified; something like
vcomp : absyn -> ∃p.∃A.�(A[p]). Intensional code analysis should incorporate a certain form of
intensional type analysis as well, and that would enable the object programs resulting from the visible
compiler to be used in non-trivial ways in the rest of the program.

6. Generalized forms of recursion. In all the meta-programming languages considered in this work,
fixpoint variables have been treated as ordinary value variables. In such a setup, a a function can make
a recursive call to itself only on the current code level; the call can never be “postponed”, i.e. be on a
higher code level (under a box or next). It would be interesting to investigate if it is possible to have
fixpoint expression variables.

7. References. As already mentioned before, adding references to MetaML was problematic because
object variables could escape their scope. That problem is accounted for in our language by the
mechanism of names, so it should be relatively easy to extend our language with references.

In the modal setup, it may even be possible to give references a much stronger role. For example, a
reference can be used as a name with a definition – carrying both the extensional information of its
referent, as well as the intensional information of its name. Much like names, it should be sound with
respect to intensional analysis to endow the references with cross-stage persistence, i.e. allow them to
cross the code-level boundaries.

8. Recursive references. Related to problem (6) above, we would also like to investigate recursive
references. These would be references whose extension can refer to the reference name itself, but
perhaps in postponed positions (i.e. under a box).

9. Enriching the language of patterns. Is it possible to extend the pattern-matching mechanism to
analyze and destruct expressions under more than one layer of boxes? This problem is dependent on
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the outcome of (2) above. In particular, pattern matching the let box construct and descending into
its body will require a higher-order name to stand for the bound variable.

Patterns will have to be extended with a type-matching mechanism as well, in order to accommodate
for polymorphic recursion over the structure of boxed terms, as described in problem (4). This will
provide a strong notion of intensional type analysis, as required by (5).

10. Names on the level of types. The developments outlined in this section on the level of terms
can perhaps be adapted to the level of types as well. A name may stand for an abstract type, while
a recursive write-once reference with an extension reminds of a datatype. That way we can have in
the system a way to reason both about extensional and intensional equality of types – a property
that may be desirable in explaining or reasoning about many phenomena about module systems and
object-oriented programming.

8 Conclusions

I am proposing the necessitation fragment of the modal logic S4, in combination with the concept of names,
as an appropriate foundation for the notion of open code and for typed functional meta-programming with
intensional code analysis. The motivation for combining the two comes from the long-recognized need of
meta-programming to handle code expressions containing free variables [Dav96, Tah99b, MTBS99]. In our
setup, the free variables of a code expression would be represented by names ([PG00, GP01, Pit01, Gab00]
and also [Ode94]). In this document I presented preliminary results involving the substitution principles
and progress and type preservation theorem for a language involving necessity, names, name polymorphism
and a weak version of intensional analysis. I believe that these preliminary results give confidence in the
prospect that the further work I proposed to do in order to substantiate the thesis claim can be brought to
a satisfactory conclusion.

References

[CMS01] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types for a safe imperative MetaML.
Journal of Functional Programming, 2001. to appear.

[CMT00] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed types as a simple approach to safe
imperative multi-stage programming. In Ugo Montanari, José D. P. Rolim, and Emo Welzl,
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order abstract syntax. In R. Hindley, editor, Proceedings of the Third International Conference
on Typed Lambda Calculus and Applications (TLCA’97), pages 147–163, Nancy, France, April
1997. Springer-Verlag LNCS. An extended version is available as Technical Report CMU-CS-96-
172, Carnegie Mellon University.

[FM99] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic. Kluwer Academic Pub-
lishers, 1999.

[Gab00] Murdoch J. Gabbay. A Theory of Inductive Definitions with α-Equivalence. PhD thesis, Cam-
bridge University, August 2000.

39



[GP01] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 2001. Special issue in honour of Rod Burstall. To appear.

[Gri89] Andreas Griewank. On Automatic Differentiation. In M. Iri and K. Tanabe, editors, Mathe-
matical Programming: Recent Developments and Applications, pages 83–108. Kluwer Academic
Publishers, 1989.

[Kri80] Saul A. Kripke. Naming and Necessity. Harvard University Press, 1980.

[LL96] Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 137–148, 1996.

[Mil90] Dale Miller. An extension to ML to handle bound variables in data structures. In Proceedings
of the Logical Frameworks BRA Workshop, May 1990.

[MTBS99] Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. An idealized MetaML:
Simpler, and more expressive. In European Symposium on Programming, pages 193–207, 1999.

[Nie01] Michael Florentin Nielsen. Combining close and open code. Unpublished, 2001.

[Ode94] Martin Odersky. A functional theory of local names. In Proceedings of 21st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL), pages 48–
59, New York, NY, USA, 1994. ACM Press.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540, 2001. Notes to an invited talk at the Workshop on
Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN ’88 Symposium on Language Design and Implementation, pages 199–208, Atlanta,
Georgia, June 1988.

[PG00] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with bound names
modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Con-
struction, MPC2000, Proceedings, Ponte de Lima, Portugal, July 2000, volume 1837 of Lecture
Notes in Computer Science, pages 230–255. Springer-Verlag, Heidelberg, 2000.

[Pit01] Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In Naoki Kobayashi
and Benjamin C. Pierce, editors, TACS, volume 2215 of Lecture Notes in Computer Science,
pages 219–242. Springer, 2001.

[Roz93] Guillermo J. Rozas. Translucent procedures, abstraction without opacity. Technical Report
AITR-1427, Massachusetts Institute of Technology Artificial Intelligence Laboratory, 1993.

[RP02] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability distri-
butions. In Conf. Record 29th ACM SIGPLAN/SIGACT Symp. on Principles of Programming
Languages, POPL’02, Portland, OR, USA, pages 154–165, New York, 2002. ACM Press.

[She01] Tim Sheard. Accomplishments and research challenges in meta-programming. In Walid Taha,
editor, SAIG, volume 2196 of Lecture Notes in Computer Science, pages 2–44. Springer, 2001.

[Tah99a] Walid Taha. A sound reduction semantics for untyped CBN multi-stage computation. or, the
theory of MetaML is non-trival. ACM SIGPLAN Notices, 34(11):34–43, 1999.

[Tah99b] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Grad-
uate Institute of Science and Technology, 1999.

[WLP98] Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code generation and Modal-ML. In
SIGPLAN Conference on Programming Language Design and Implementation, pages 224–235,
1998.

40



[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal types as staging specifi-
cations for run-time code generation. ACM Computing Surveys, 30(3es), 1998.

A Proofs

Lemma 10 (Substitution Principles)

1. if S; Γ `∆ e1 : A [C] and S; Γ, x:A `∆ e2 : B [C], then S; Γ `∆ [e1/x]e2 : B [C].

2. if S; Γ	1 `∆ e1 : A [D] and S; Γ2, u::A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/u]e2 : B[C].

3. if S; ΓO1 `∆ e1 : A [D] and S; Γ2, t::−A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/t]e2 : B[C].

4. if S, a:P ; Γ1 `∆ e1 : P [C] and S, a:P ; ΓM2 `∆ e2 : B[a,C], then S, a:P ; Γ1,ΓM2 `∆ {e1/a}e2 : B[C].

Proof: All the proofs are by induction on the structure of the typing derivation for e2.

Principle 1. if S; Γ `∆ e1 : A [C] and S; Γ, x:A `∆ e2 : B [C], then S; Γ `∆ [e1/x]e2 : B [C].

case e2 = ∗, e2 = y, e2 = u or e2 = a.

These are trivial, since the substitution is [e1/x]e2 is vacuous.

case e2 = x.

Reduces to one of the assumptions.

case e2 = λy:B1. e, and B = B1 → B2.

1. By typing derivation, S; Γ, x:A, y:B1 `∆ e : B2 [C].

2. By induction hypothesis, S; Γ, y:B1 `∆ [e1/x]e : B2 [C].

3. This leads to the required S; Γ `∆ λy:B1. [e1/x]e : B1 → B2 [C].

case e2 = e′ e′′.

From the typing derivations for e′ and e′′, by using the induction hypothesis, S; Γ `∆ [e1/x]e′ :
B′ → B [C] and S; Γ `∆ [e1/x]e′′ : B′ [C]. Thus follows the result.

case e2 = fix y:B. e.

1. By typing derivation, S; Γ, x:A, y:B `∆ e : B [C].

2. By induction hypothesis, S; Γ, y:B `∆ [e1/x]e : B [C].

3. This leads to the required S; Γ `∆ fix y:B. [e1/x]e : B [C].

case e2 = (box e).

Trivial because x does not occur in e, and so the substitution [e1/x]box e is vacuous.

case e2 = (let box u = e′ in e′′).

1. From typing derivation, by induction hypothesis, S; Γ `∆ [e1/x]e′ : �(B′[C ′]) [C].

2. Also notice that, S; Γ, u::B′ [∅] `∆ [e1/x]e′′ : B [C] or S; Γ, u::−B′ [C ′] `∆ [e1/x]e′′ : B [C], depend-
ing on whether C ′ = ∅ or not.

3. In either case, we have the required S; Γ `∆ (let box u = [e1/x]e′ in [e1/x]e′′) : B [C].

case e2 = a . e, where B = N
a:P

B′ and a:P ∈ S.

1. By typing derivation, S; Γ, x:A `∆ e : B′ [C] and ∆ ` fdv(B′) # a.

2. By induction hypothesis, S; Γ `∆ [e1/x]e : B′ [C],
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3. so we just reassemble S; Γ `∆ a . [e1/x]e : ( N
a:P

B′) [C].

case e2 = e@ a, where a:P ∈ S.

1. By typing derivation, S; Γ, x:A `∆ e : ( N
a:P

B) [C] and ∆ ` fdv(B) # a.

2. By induction hypothesis, S; Γ `∆ [e1/x]e : ( N
a:P

B) [C],

3. so just reassemble S; Γ `∆ ([e1/x]e) @ a : B [C].

case e2 = new a:P in e.

1. By typing derivation, S, a:P ; Γ, x:A `∆#a e : B [C] and ∆#a ` B[C] # a.

2. By induction hypothesis, S, a:P ; Γ `∆#a [e1/x]e : B [C],

3. so assemble back into S; Γ `∆ new a:P in [e1/x]e : B [C],

case e2 = Λp#K. e, where B = ∀p#K. B′.

1. By typing derivation, S; Γ, x:A `∆,p#K e : B′ [C].

2. By induction hypothesis, S; Γ `∆,p#K [e1/x]e : B′ [C],

3. so we derive the required S; Γ `∆ Λp#K. [e1/x]e : (∀p#K. B′) [C].

case e2 = e [[D]] where B = [D/p]B′.

1. By typing derivation, S; Γ, x:A `∆ e : (∀p#K. B′) [C], ∆ ` D # K, and D ⊆ dom(S)∪dom(∆).

2. By induction hypothesis, S; Γ `∆ [e1/x]e : (∀p#K. B′) [C],

3. and follows the required S; Γ `∆ [e1/x]e [[D]] : ([D/p]B′) [C].

case e2 = {a .= e′} e′′, where a:P ∈ S.

1. By typing derivation, S; Γ, x:A `∆ e′ : P [C] and S; Γ, x:A `∆ e′′ : B [a,C].

2. By induction hypothesis, S; Γ `∆ [e1/x]e′ : P [C] and S; Γ `∆ [e1/x]e′′ : B [a,C],

3. so follows the needed result S; Γ `∆ {a
.= ([e1/x]e′)} ([e1/x]e′′).

case subtyping from B′ 6: B.

1. By typing derivation, S; Γ, x:A `∆ e2 : B′ [C].

2. By induction hypothesis, S; Γ `∆ [e1/x]e2 : B′ [C].

3. Use subtyping to conclude, S; Γ `∆ [e1/x]e2 : B [C].

case e2 = (case e0 of box π ⇒ e′ else e′′).

1. By typing derivation, S; Γ `∆ e0 : �(P [D]) [C], and S; · ∆ π : P [D] =⇒Γ1 and S; Γ,Γ1 `∆ e′ :
B [C], and S; Γ `∆ e′′ : B [C].

2. By induction hypothesis, S; Γ `∆ [e1/x]e0 : �(P [D]) [C], and S; Γ,Γ1 `∆ [e1/x]e′ : B [C], and
S; Γ `∆ [e1/x]e′′ : B [C].

3. Now just assemble back into the required result, using the typing rule for case.

Principle 2. if S; Γ	1 `∆ e1 : A [D] and S; Γ2, u::A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/u]e2 : B[C].

case e2 = ∗, e2 = x, e2 = u′, or e2 = a.

Trivial, since the substitution [e1/u]e2 is vacuous.
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case e2 = u, where B = A and D ⊆ C.

1. By hypothesis weakening, S; Γ	1 `∆ e1 : A [D] implies S; Γ1 `∆ e1 : A [D]

2. and then S; Γ1,Γ2 `∆ e1 : A [C], using both hypothesis and dependency weakening.

case e2 = λy:B1. e, where B = B1 → B2.

1. By typing derivation, S; Γ2, u::A[D], y:B1 `∆ e : B2 [C].

2. By induction hypothesis, S; Γ1,Γ2, y:B1 `∆ [e1/u]e : B2 [C].

3. Now assemble back S; Γ1,Γ2 `∆ λy:B1. [e1/u]e : B1 → B2 [C].

case e2 = e′ e′′.

1. By typing derivation, S; Γ2, u::A[D] `∆ e′B′ → B [C] and S; Γ2, u::A[D] `∆ e′′B′ [C].

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e′ : B′ → B [C] and S; Γ1,Γ2 `∆ [e1/u]e′′ : B′ [C].

3. We now just assemble back S; Γ1,Γ2 `∆ [e1/u]e′ [e1/u]e′′ [B] [C].

case e2 = fix y:B. e.

1. By typing derivation, S; Γ2, u::A[D], y:B `∆ e : B [C].

2. By induction hypothesis, S; Γ1,Γ2, y:B `∆ [e1/u]e : B [C].

3. Now assemble back S; Γ1,Γ2 `∆ λy:B. [e1/u]e : B [C].

case e2 = box e, where B = �(B′[C ′]).

1. By typing derivation, S; ΓO2 , u::A[D] `∆ e : B′ [C ′].

2. Because Γ	1 = Γ		1 , we have S; Γ		1 `∆ e1 : A [D].

3. From (1), (2) and the induction hypothesis, S; Γ	1 ,Γ
O
2 `∆ [e1/x]e : B′ [C ′].

4. By Lemma 5, S; ΓO1 ,Γ
O
2 `∆ [e1/x]e : B′ [C ′],

5. and finally, we can reassemble S; Γ1,Γ2 `∆ box ([e1/x]e) : �(B′[C ′]) [C],

case e2 = let box v = e′ in e′′.

1. By typing derivation, S; Γ2, u::A[D] `∆ e′ : �(B′[C ′]) [C]

2. Also by typing derivation, either S; Γ2, u::A[D], v::B′ `∆ e′′ : B [C] or S; Γ2, u::A[D], v::−B′[C ′] `∆

e′′ : B [C], depending whether C = ∅ or C 6= ∅.
3. By (1) and induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e′ : �(B′ [C ′]) [C]

4. By (2) and induction hypothesis, S; Γ1,Γ2, v::B′ `∆ [e1/u]e′′ : B [C] or S; Γ1,Γ2, v::−B′[C ′] `∆

[e1/u]e′′ : B [C].

5. Either way, just assemble back S; Γ1,Γ2 `∆ let box v = [e1/u]e′ in [e1/u]e′′ : B [C].

case e2 = a . e′, where B = N
a:P

B′ and a:P ∈ S.

1. By typing derivation, S; Γ2, u::A[D] `∆ e′ : B′ [C] and ∆ ` fdv(B′) # a.

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e′ : B [C].

3. Thus, reassemble, S; Γ1,Γ2 `∆ a . ([e1/u]e′) : B [C].

case e2 = e′@ a, where a:P ∈ S.

1. By typing derivation, S; Γ2, u::A[D] `∆ e : ( N
a:P

B) [C], and ∆ ` fdv(B) # a.
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2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e : ( N
a:P

B) [C],

3. so follows the required S; Γ1,Γ2 `∆ ([e1/u]e) @ a : B [C].

case e2 = new a:P in e′.

1. By typing derivation, S, a:P ; Γ2, u::A[D] `∆#a e
′ : B [C], and ∆#a ` B[C] # a.

2. By induction hypothesis, S, a:P ; Γ1,Γ2 `∆#a [e1/u]e′ : B [C],

3. and then the required S; Γ1,Γ2 `∆ new a:P in [e1/u]e′ : B [C].

case e2 = Λp#K. e′, where B = ∀p#K. B′.

1. By typing derivation, S; Γ2, u::A[D] `∆,p#K e′ : B′ [C].

2. By induction hypothesis, S; Γ1,Γ2 `∆,p#K [e1/u]e′ : B′ [C],

3. and then the required, S; Γ1,Γ2 `∆ Λp#K. [e1/u]e′ : (∀p#K. B′) [C].

case e2 = e′ [[D′]], where B = [D′/p]B′.

1. By typing derivation, S; Γ2, u::A[D] `∆ e′ : (∀p#K. B′) [C], ∆ ` D′ # K and D′ ⊆ dom(S) ∪
dom(∆).

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e′ : (∀p#K. B′) [C],

3. so assemble back into S; Γ1,Γ2 `∆ [e1/u]e′ [[D′]] : ([D′/p]B′) [C].

case e2 = {a .= e′} e′′, where a:P ∈ S.

1. By typing derivation, S; Γ2, u::A[D] `∆ e′ : P [C] and S; Γ2, u::A[D] `∆ e′′ : B [a,C].

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e′ : P [C], and S; Γ1,Γ2 `∆ [e1/u]e′′ : B [a,C].

3. Assemble back into the required S; Γ1,Γ2 `∆ {a
.= [e1/u]e′} [e1/u]e′′ : B [C].

case subtyping from B′ 6: B.

1. By typing derivation, S; Γ2, u::A[D] `∆ e2 : B′ [C].

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/u]e2 : B′ [C].

3. Use subtyping to conclude, S; Γ1,Γ `∆ [e1/u]e2 : B [C].

case e2 = (case e0 of box π ⇒ e′ else e′′).

1. By derivation, S; Γ2, u::A[D] `∆ e0 : �(P [D′]) [C], and S; · ∆ π : P [D′] =⇒Γ′ and
S; Γ2, u::A[D],Γ′ `∆ e′ : B [C], and S; Γ2, u::A[D] `∆ e′′ : B [C].

2. By induction hypothesis, S; Γ	1 ,Γ2 `∆ [e1/u]e0 : �(P [D′]) [C], and S; Γ	1 ,Γ2,Γ′ `∆ [e1/u]e′ :
B [C], and S; Γ	1 ,Γ2 `∆ [e1/u]e′′ : B [C].

3. By typing rule for case, S; Γ	1 ,Γ2 `∆ [e1/u](case e0 of box π ⇒ e′ else e′′) : B [C].

Principle 3. if S; ΓO1 `∆ e1 : A [D] and S; Γ2, t::−A[D] `∆ e2 : B[C], then S; Γ1,Γ2 `∆ [e1/t]e2 : B[C].

case e2 = ∗, e2 = x, e2 = u or e2 = a.

Trivial since the substitution [e1/t]e2 is vacuous.

case e2 = λy:B1. e, where B = B1 → B2.

1. By typing derivation, S; Γ2, t::−A[D], y:B1 `∆ e : B2 [C].

2. By induction hypothesis, S; Γ1,Γ2, y:B1 `∆ [e1/t]e : B2 [C],
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3. and thus S; Γ1,Γ2 `∆ λy:B1. [e1/t]e : B1 → B2 [C].

case e2 = e′ e′′.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e′ : B′ → B [C] and S; Γ2, t::−A[D] `∆ e′′ : B′ [C].

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e′ : B′ → B [C] and S; Γ1,Γ2 `∆ [e1/t]e′′ : B′ [C].

3. Thus follows the result S; Γ1,Γ2 `∆ ([e1/t]e′) ([e1/t]e′′) : B [C].

case e2 = fix y:B. e.

1. By typing derivation, S; Γ2, t::−A[D], y:B `∆ e : B [C].

2. By induction hypothesis, S; Γ1,Γ2, y:B `∆ [e1/t]e : B [C],

3. and thus S; Γ1,Γ2 `∆ λy:B. [e1/t]e : B [C].

case e2 = box e′, where B = �(B′[C ′]).

1. By typing derivation, S; ΓO2 , t::A[D] `∆ e′ : B′ [C ′].

2. Because ΓO1 = ΓO	1 , by the previously proved substitution principle (Lemma 10.2), S; ΓO1 ,Γ
O
2 `∆

[e1/t]e′ : B′ [C ′].

3. Now assemble back into S; Γ1,Γ2 `∆ box ([e1/t]e′) : �(B′[C ′]) [C].

case e2 = let box v = e′ in e′′.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e′ : �(B′[C ′]) [C]

2. By typing derivation, either S; Γ2, t::−A[D], v::B′ `∆ e′′ : B [C] or S; Γ2, t::−A[D], v::−B′[C ′] `∆ e′′ :
B [C], depending whether C ′ = ∅ or C ′ 6= ∅,

3. By (1) and induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e′ : �(B′ [C ′]) [C]

4. By (2) and induction hypothesis, S; Γ1,Γ2, v::B′ `∆ [e1/t]e′′ : B [C] or S; Γ1,Γ2, v::−B′[C ′] `∆

[e1/t]e′′ : B [C].

5. In either case, we get the required S; Γ1,Γ2 ` let box v = [e1/t]e′ in [e1/t]e′′ : B [C].

case e2 = a . e′, where B = N
a:P

B′ and a:P ∈ S.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e′ : B′ [C] and ∆ ` fdv(B′) # a.

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e′ : B′ [C].

3. Reassemble into, S; Γ1,Γ2 `∆ a . [e1/t]e′ : ( N
a:P

B′) [C].

case e2 = e′@ a, where a:P ∈ S.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e′ : ( N
a:P

B) [C] and ∆ ` fdv(B) # a.

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e′ : ( N
a:P

B) [C]

3. and then S; Γ1,Γ2 `∆ ([e1/t]e′) @ a : B [C].

case e2 = new a:P in e′.

1. By typing derivation, S, a:P ; Γ2, t::−A[D] `∆#a e
′ : B [C] and ∆#a ` B[C] # a.

2. By induction hypothesis, S, a:P ; Γ1,Γ2 `∆#a [e1/t]e′ : B [C].

3. Conclude S; Γ1,Γ2 `∆ new a:P in [e1/t]e′ : B [C].

case e2 = Λp#K. e′, where B = ∀p#K. B′.
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1. By typing derivation, S; Γ2, t::−A[D] `∆,p#K e′ : B′ [C].

2. By induction hypothesis, S; Γ1,Γ2 `∆,p#K [e1/t]e′ : B′ [C].

3. Conclude S; Γ1,Γ2 `∆ Λp#K. [e1/t]e′ : (∀p#K. B′) [C].

case e2 = e′ [[D′]], where B = [D′/p]B′.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e′ : (∀p#K. B′) [C], ∆ ` D′ # K, and D′ ⊆ dom(S) ∪
dom(∆).

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e′ : (∀p#K. B′) [C].

3. From here, we can reassemble, S; Γ1,Γ2 `∆ ([e1/t]e′) [[D′]] : ([D′/p]B′) [C].

case e2 = {a .= e′} e′′, where a:P ∈ S.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e′ : P [C] and S; Γ2, t::−A[D] `∆ e′′ : B [a,C].

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e′ : P [C], and S; Γ1,Γ2 `∆ [e1/t]e′′ : B [a,C].

3. Assemble back into S; Γ1,Γ2 `∆ {a
.= ([e1/t]e′)} ([e1/t]e′′) : B [C]

case subtyping from B′ 6: B.

1. By typing derivation, S; Γ2, t::−A[D] `∆ e2 : B′ [C].

2. By induction hypothesis, S; Γ1,Γ2 `∆ [e1/t]e2 : B′ [C].

3. Use subtyping to conclude, S; Γ1,Γ2 `∆ [e1/t]e2 : B [C].

case e2 = (case e0 of box π ⇒ e′ else e′′).

1. By derivation, S; Γ2, t::−A[D] `∆ e0 : �(P [D′]) [C], and S; · ∆ π : P [D′] =⇒Γ′ and
S; Γ2, t::−A[D],Γ′ `∆ e′ : B [C], and S; Γ2, t::−A[D] `∆ e′′ : B [C].

2. By induction hypothesis, S; ΓO1 ,Γ2 `∆ [e1/t]e0 : �(P [D′]) [C], and S; ΓO1 ,Γ2,Γ′ `∆ [e1/t]e′ : B [C],
and S; ΓO1 ,Γ2 `∆ [e1/t]e′′ : B [C].

3. By the typing rule for case, S; ΓO1 ,Γ2 `∆ [e1/t](case e0 of box π ⇒ e′ else e′′) : B [C].

Principle 4. if S, a:P ; Γ1 `∆ e1 : P [C] and S, a:P ; ΓM2 `∆ e2 : B[a,C], then S, a:P ; Γ1,ΓM2 `∆ {e1/a}e2 :
B[C].

case e2 = ∗, e2 = x.

Trivial since the name substitution {e1/a}e2 is vacuous, and the typing e2 : B [a,C] must have been
derived by weakening from e2 : B [∅], and thus we can also weaken it into the typing e2 : B [C].

case e2 = a.

Trivially obtained by weakening the hypothesis with ΓM2 in the premise S, a:P ; Γ1 ` e1 : A [C].

case e2 = b.

Also trivial since the substitution is vacuous, b ∈ C and the typing B[a,C] must have been obtained
by weakening from b:B[b], and can thus be weakened into b:B[C] as well.

case e2 = u.

By the definition of ΓM2 , it is only possible that the variable u ∈ dom(ΓM2 ) if its name annotation is
empty, i. e. if u::B[∅] ∈ ΓM2 . Thus, by name dependency weakening, S, a:P ; ΓM2 `∆ u : B [C]. Now, by
hypothesis weakening, and because u = {e1/a}u, we get the required S, a:P ; Γ1,ΓM2 `∆ {e1/a}u : B [C].

case e2 = λy:B1. e
′, where B = B1 → B2.
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1. By typing derivation, S, a:P ; ΓM2 , y:B1 `∆ e′ : B2 [a,C].

2. By induction hypothesis, and because ΓM2 , y:B1 = (Γ2, y:B1)M, we have S, a:P ; Γ1,ΓM2 , y:B1 `∆

{e1/a}e′ : B2 [C],

3. and from here, the required, S, a:P ; Γ1,ΓM2 `∆ λy:B1. {e1/a}e′ : B1 → B2 : C.

case e2 = e′ e′′.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : B′ → B [a,C] and S, a:P ; ΓM2 `∆ e′′ : B′ [a,C].

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : B′ → B [C] and also S, a:P ; Γ1,ΓM2 `∆

{e1/a}e′′ : B′ [C].

3. Now just assemble back into S, a:P ; Γ1,ΓM2 `∆ ({e1/a}e′) ({e1/a}e′′) : B [C].

case e2 = fix y:B. e′.

1. By typing derivation, S, a:P ; ΓM2 , y:B `∆ e′ : B [a,C].

2. Because ΓM2 , y:B = (Γ2, y:B)M, by induction hypothesis, S, a:P ; Γ1,ΓM2 , y:B `∆ {e1/a}e′ : B [C],

3. and from here, the required, S, a:P ; Γ1,ΓM2 `∆ λy:B. {e1/a}e′ : B : C.

case e2 = box e′, and B = �(B′[C ′]).

In this case, the typing box e′ : B [a,C] is obtained by weakening inherent in the box rule. Thus, we
can also derive S, a:P ; ΓM2 `∆ box e′ : �(B′[C ′]) [C]. Considering that {e1/a}box e′ = box e′, weaken
the hypothesis context to get S, a:P ; Γ1,ΓM2 `∆ {e1/a}box e′ : �(B′[C ′]) [C].

case e2 = let box v = e′ in e′′.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : �(B′[C ′]) [a,C],

2. By typing derivation, either S, a:P ; ΓM2 , v::B′ `∆ e′′ : B [a,C] or S, a:P ; ΓM2 , v::−B′[C ′] `∆ e′′ :
B [a,C], depending whether C ′ = ∅ or C ′ 6= ∅.

3. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : �(B′[C ′]) [C].

4. Also notice that ΓM2 , v::B′ = (Γ2, v::B′)M, and if C ′ 6= ∅, ΓM2 , v::−B′[C ′] = (Γ2, v::−B′[C ′])M.

5. From these two equations and induction hypothesis, S, a:P ; Γ1,ΓM2 , v::B′ `∆ {e1/a}e′′ : B [C] or
S, a:P ; Γ1,ΓM2 , v::−B′[C ′] `∆ {e1/a}e′′ : B [C].

6. Now, just assemble back into the required S, a:P ; Γ1,ΓM2 `∆ let box v = {e1/a}e′ in {e1/a}e′′ :
B [C].

case e2 = b . e′, where b:Q ∈ S and B = N
b:Q

B′.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : B′ [a,C], and ∆ ` fdv(B′) # b.

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : B′ [C],

3. and thus S, a:P ; Γ1,ΓM2 `∆ b . ({e1/a}e′) : ( N
b:Q

B′) [C].

case e2 = e′@ b, where b:Q ∈ S.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : ( N
b:Q

B) [a,C] and ∆ ` fdv(B) # a.

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : ( N
b:Q

B) [C].

3. Conclude S, a:P ; Γ1,ΓM2 `∆ ({e1/a}e′) @ b : B [C].

case e2 = new b:Q in e′.
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1. By typing derivation, S, a:P, b:Q; ΓM2 `∆#b e
′ : B [a,C].

2. Also, ∆#b ` B[a,C] # b, and thus ∆#b ` B[C] # b.

3. By induction hypothesis, S, a:P, b:Q; Γ1,ΓM2 `∆#b {e1/a}e′ : B [C],

4. leading to the required S, a:P ; Γ1,ΓM2 `∆ new b:Q in {e1/a}e′ : B [C].

case e2 = Λp#K. e′, where B = ∀p#K. B′.

1. By typing derivation, S, a:P ; ΓM2 `∆,p#K e′ : B′ [a,C].

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆,p#K {e1/a}e′ : B′ [C].

3. Thus follows, S, a:P ; Γ1,ΓM2 `∆ Λp#K. {e1/a}e′ : (∀p#K. B′) [C].

case e2 = e′ [[D]], where B = [D/p]B′.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : (∀p#K. B′) [a,C], ∆ ` D # K, and D ⊆ dom(S) ∪
dom(∆).

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : (∀p#K. B′) [C].

3. Conclude, S, a:P ; Γ1,ΓM2 `∆ ({e1/a}e′) [[D]] : ([D/p]B′) [C].

case e2 = {a .= e′} e′′.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : P [a,C] and S, a:P ; ΓM2 `∆ e′′ : B [a, a, C].

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : P [C],

3. and so S, a:P ; Γ1,ΓM2 `∆ {a
.= {e1/a}e′} e′′ : B [C].

case e2 = {b .= e′} e′′, where b:Q ∈ S.

1. By typing derivation, S, a:P ; ΓM2 `∆ e′ : Q [a,C], and S, a:P ; ΓM2 `∆ e′′ : B [a, b, C].

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′ : Q [C], and S, a:P ; Γ1,ΓM2 `∆ {e1/a}e′′ :
B [b, C].

3. Assemble back into the required S, a:P ; Γ1,ΓM2 `∆ {b
.= {e1/a}e′} ({e1/a}e′′) : B [C].

case subtyping from B′ 6: B.

1. By typing derivation, S, a:P ; ΓM2 `∆ e2 : B′ [C].

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e2 : B′ [C].

3. Use subtyping to conclude, S, a:P ; Γ1,ΓM2 `∆ {e1/a}e2 : B [C].

case e2 = (case e0 of box π ⇒ e′ else e′′).

1. By derivation, S, a:P ; ΓM2 ` e0 : �(P [D]) [a,C], and S, a:P ; · ∆ π : P [D] =⇒Γ′ and
S, a:P ; ΓM2 ,Γ

′ `∆ e′ : B [a,C], and S, a:P ; ΓM2 `∆ e′′ : B [a,C].

2. By induction hypothesis, S, a:P ; Γ1,ΓM2 ` {e1/a}e0 : �(P [D]) [C], and
S, a:P ; Γ1,ΓM2 ` {e1/a}e′′ : B [C].

3. By Lemma 16, Γ′ = Γ
′M.

4. By (1) and (3), S, a:P ; (Γ2,Γ′)M `∆ e′ : B [a,C].

5. By (4) and induction hypothesis, and then (3) again, S, a:P ; Γ1,ΓM2 ,Γ
′ `∆ {e1/a}e′ : B [C].

6. Finally, by (2) and (5), and the typing rule for case,
S, a:P ; Γ1,ΓM2 `∆ {e1/a}(case e0 of box π ⇒ e′ else e′′) : B [C].
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Lemma 11 (Parametricity)

1. if S; Γ `∆,p#K e : A [C] and D is a well-formed dependency set, i.e. D ⊆ dom(S) ∪ dom(∆), and is
fresh for K, i.e. ∆ ` D # K, then

S; [D/p]Γ `∆ [D/p]e : ([D/p]A) [[D/p]C]

2. if S; Γ `∆ e : A [C], and a, b:P are names (not necessarily in S), then

(a b)S; (a b)Γ `(a b)∆ (a b)e : (a b)A [(a b)C]

Proof: First notice that the transposition (the second) property is trivial to prove by induction on the
typing derivation for e. Namely, all the typing rules, as well as the rules for auxiliary judgments are
obviously insensitive to swapping the names throughout, in all the contexts, types, terms and dependencies.
Thus the judgment itself must be insensitive to swapping names. This remains true even when the language
is extended with the construct case for pattern-matching, as shown in Lemma 17.2.

The proof of the first property is somewhat less trivial, but still rather straightforward by induction on
the typing derivation of e.

case e = ∗, e = x, e = u or e = a.

Substitution is vacuous on these terms, but it still may change the types. However, the given derivations
are obtained using a hypothesis or a constant rule, and the substitution will change the types in the
contexts as well as in the judgment.

case e = λx:A′. e′, where A = A′ → A′′.

1. By typing derivation, S; Γ, x:A′ `∆,p#K e′ : A′′ [C]. and S; ∆, p#K ` A′ wf.

2. By induction hypothesis, S; [D/p]Γ, x:[D/p]A′ `∆ [D/p]e′ : [D/p]A′′ [[D/p]C],

3. By Lemma 2.3, S; ∆ ` ([D/p]A′) wf.

4. Combining (2) and (3), S; [D/p]Γ `∆ (λx:([D/p]A′). [D/p]e′) : ([D/p]A′ → [D/p]A′′) [[D/p]C].

case e = e1 e2.

1. By typing derivation, S; Γ `∆,p#K e1 : A1 → A [C], and S; Γ `∆,p#K e2 : A1 [C].

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e1 : ([D/p]A1 → [D/p]A) [[D/p]C], and S; [D/p]Γ `∆

[D/p]e2 : ([D/p]A1) [[D/p]C].

3. Conclude, S; [D/p]Γ `∆ ([D/p]e1) ([D/p]e2) : ([D/p]A) [[D/p]C].

case e = fix x:A. e′.

1. By typing derivation, S; Γ, x:A `∆,p#K e′ : A [C]. and S; ∆, p#K ` A wf.

2. By induction hypothesis, S; [D/p]Γ, x:[D/p]A `∆ [D/p]e′ : ([D/p]A) [[D/p]C],

3. and by Lemma 2.3, S; ∆ ` ([D/p]A) wf.

4. Combining the two, conclude S; [D/p]Γ `∆ (fix x:([D/p]A). [D/p]e′) : ([D/p]A) [[D/p]C].

case e = box e′, where A = �(A′[C ′]).

1. By typing derivation, S; ΓO `∆,p#K e′ : A′ [C ′].

2. By induction hypothesis, S; [D/p](ΓO) `∆ [D/p]e′ : ([D/p]A′) [[D/p]C ′].

3. Since [D/p](ΓO) = ([D/p]Γ)O, we get S; [D/p]Γ `∆ box [D/p]e′ : �([D/p](A′[C ′])) [[D/p]C].
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case e = let box u = e1 in e2.

1. By typing derivation, S; Γ `∆,p#K e1 : �(A′[C ′]) [C], and,

2. either S; Γ, u::A′ `∆,p#K e2 : A [C], or S; Γ, u::−A′[C ′] `∆,p#K e2 : A [C], depending whether
C ′ = ∅ or C ′ 6= ∅.

3. By (1) and induction hypothesis, S; [D/p]Γ `∆ [D/p]e1 : [D/p]�(A′[C ′]) [[D/p]C]

4. By (2) and induction hypothesis, S; [D/p]Γ, u::[D/p]A′ `∆ [D/p]e2 : ([D/p]A) [[D/p]C], or
S; [D/p]Γ, u::−([D/p](A′[C ′])) `∆ [D/p]e2 : ([D/p]A) [[D/p]C].

5. Reassemble into S; [D/p]Γ `∆ let box u = [D/p]e1 in [D/p]e2 : ([D/p]A) [[D/p]C].

case e = a . e′, where A = N
a:P

A′ and a:P ∈ S.

Assume a 6∈ D to ensure capture avoiding. This can always be achieved by alpha-renaming a into some
other fresh name.

1. By typing derivation, S; Γ `∆,p#K e′ : A′ [C] and ∆, p#K ` fdv(A′) # a.

2. By induction hypothesis, S; [D/p]Γ `∆ ([D/p]A′) [[D/p]C].

3. By Lemma 3, ∆ ` fdv([D/p]A′) # a.

4. Assemble back into S; [D/p]Γ `∆ (a . [D/p]e′) : ( N
a:P

([D/p]A′)) [[D/p]C].

case e = e′@ a, where a:P ∈ S.

Assume, as before, that a 6∈ D, to ensure capture avoiding.

1. By typing derivation, S; Γ `∆,p#K e′ : ( N
a:P

A) [C]. and ∆, p#K ` fdv(A) # a.

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e′ : [D/p]( N
a:P

A) [[D/p]C].

3. By Lemma 3, ∆ ` fdv([D/p]A) # a.

4. Also, [D/p]( N
a:P

A) = N
a:P

([D/p]A),

5. and we can assemble back S; [D/p]Γ `∆ ([D/p]e′) @ a : ([D/p]A) [[D/p]C].

case e = new a:P in e′.

To avoid capture, assume that a is a fresh name, not occurring in any of the variable, name, or
dependency contexts.

1. By typing derivation, S, a:P ; Γ `∆,p#K e′ : A [C], and ∆#a, p#(K, a) ` (A[C]) # a.

2. By induction hypothesis, S, a:P ; [D/p]Γ `∆ [D/p]e′ : ([D/p]A) [[D/p]C].

3. From assumption ∆ ` D # K and the fact that a is fresh, we get ∆#a ` D # (K, a).

4. By Lemma 2.2, ∆#a ` ([D/p](A[C])) # a, so follows the required

5. S; [D/p]Γ `∆ new a:P in [D/p]e′ : ([D/p]A) [[D/p]C].

case e = Λq#K ′. e′, where A = ∀q#K ′. A′.
To avoid capture, assume q is fresh.

1. By typing derivation, S; Γ `∆,p#K,q#K′ e
′ : A′ [C].

2. By induction hypothesis, S; [D/p]Γ `∆,q#K′ [D/p]e′ : ([D/p]A′) [[D/p]C].

3. Thus, S; [D/p]Γ `∆ Λq#K ′. [D/p]e′ : (∀q#K ′. [D/p]A′) [[D/p]C].

case e = e′ [[D′]], where A = [D′/q]A′ (q will be introduced later).
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1. By typing derivation, S; Γ `∆,p#K e′ : (∀q#M. A′) [C] where ∆, p#K ` D′ # M and D′ ⊆
dom(S) ∪ dom(∆, p#K).

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e′ : (∀q#M. [D/p]A′) [[D/p]C].

3. By Lemma 2.1, ∆ ` ([D/p]D′) # M .

4. Next, obviously, ([D/p]D′) ⊆ dom(S) ∪ dom(∆).

5. Thus conclude, S; [D/p]Γ `∆ ([D/p]e′) [[[D/p]D′]] : ([D/p]A) [[D/p]C].

case e = {a .= e1} e2, where a:P ∈ S.

1. By typing derivation, S; Γ `∆,p#K e1 : P [C], and S; Γ `∆,p#K e2 : A [a,C].

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e1 : ([D/p]P ) [[D/p]C], and S; [D/p]Γ `∆ [D/p]e2 :
([D/p]A) [a, [D/p]C].

3. Since P = [D/p]P , reassemble into S; [D/p]Γ `∆ {a
.= [D/p]e1} ([D/p]e2) : ([D/p]A) [[D/p]C].

case subtyping from A′ 6: A.

1. By typing derivation, S; Γ `∆,p#K e : A′ [C].

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e : ([D/p]A′) [[D/p]C].

3. By Lemma 2.5, [D/p]A′ 6: [D/p]A,

4. so by subtyping, S; [D/p]Γ `∆ [D/p]e : ([D/p]A) [[D/p]C].

case e = (case e0 of box π ⇒ e′ else e′′).

1. By derivation, S; Γ `∆,p#K e0 : �(P [D′]) [C], and S; · ∆,p#K π : P [D′] =⇒Γ1 and
S; Γ,Γ1 `∆,p#K e′ : B [C], and S; Γ `∆,p#K e′′ : B [C].

2. By induction hypothesis, S; [D/p]Γ `∆ [D/p]e0 : �(P [[D/p]D′]) [[D/p]C], and S; [D/p](Γ,Γ1) `∆

[D/p]e′ : ([D/p]B) [[D/p]C], and S; [D/p]Γ `∆ [D/p]e′′ : ([D/p]B) [[D/p]C].

3. By Lemma 17, S; · ∆ π : P [[D/p]D′] =⇒ [D/p]Γ1.

4. By typing rule for case, just assemble back into the required
S; [D/p]Γ `∆ case ([D/p]e0) of box π ⇒ ([D/p]e′) else ([D/p]e′′) : ([D/p]B) [[D/p]C].

�

Lemma 12 (Contraction Termination and Type Preservation)

If S1, S2; ΓM `∆ e : A [C] then there exists unique term w, such that e S2−→ w. Furthermore, w is S2-contracted
and S1, S2; ΓM `∆ w : A [C].
Proof: By induction on the derivation S1, S2; ΓM ` e : A [C].

case e = ∗, e = x, e = u or e = a.

For each of these cases e S2−→ e, and they are all already contracted. So we have existence, uniqueness,
contractedness, and the types are preserved.

case e = λx:A′. e′, and A = A′ → A′′.

1. By typing derivation, S1, S2; ΓM, x:A′ `∆ e′ : A′′ [C].

2. Since ΓM, x:A′ = (Γ, x:A′)M, by induction hypothesis there exists unique w′ such that e′ S2−→ w′,
and this w′ is contracted and S1, S2; (Γ, x:A′)M `∆ w′ : A′′ [C].

3. Then the term w = λx:A′. w′ satisfies all the requirements of the lemma.
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case e = e′ e′′.

1. By typing derivation, S1, S2; ΓM `∆ e′ : A′ → A [C], and S1, S2; ΓM `∆ e′′ : A′ [C].

2. By induction hypothesis, there are w′ and w′′ with the requested properties, and the term w is
w = w′ w′′.

case e = fix x:A. e′.

1. By typing derivation, S1, S2; ΓM, x:A `∆ e′ : A [C].

2. Since ΓM, x:A = (Γ, x:A)M, by induction hypothesis there exists unique w′ such that e′ S2−→ w′,
and this w′ is contracted and S1, S2; (Γ, x:A)M `∆ w′ : A [C].

3. Then the term w = fix x:A. w′ satisfies all the requirements of the lemma.

case e = box e′, where A = �(A′[C ′]).

This is actually one of the base cases (together with hypotheses and constants) – boxed expressions
contract to themselves.

case e = let box u = e′ in e′′.

1. By typing derivation, S1, S2; ΓM ` e′ : �(A′[C ′]) [C], and,

2. either S1, S2; ΓM, u::A′ ` e′ : �(A′[C ′]) [C], or S1, S2; ΓM, u::−A′[C ′] ` e′ : �(A′[C ′]) [C], depending
whether C ′ = ∅ or C ′ 6= ∅.

3. Also notice that (ΓM, u::A′) = (Γ, u::A′)M, and if C ′ 6= ∅, then (ΓM, u::−A′[C ′]) = (Γ, u::−A′[C ′])M.

4. Then, by induction hypothesis, we have w′ and w′′ satisfying the prescribed properties. Combine
them into w = let box u = w′ in w′′.

case e = a . e′, where A = N
a:P

A′, and a:P ∈ S1, S2.

1. By typing derivation, S1, S2; ΓM `∆ e′ : A′ [C], and ∆ ` fdv(A′) # a.

2. By induction hypothesis, there is unique w′ such that e′ S2−→ w′ and w′ is contracted and of the
same type A′.

3. Now, pick w = a . w′.

case e = e′@ a, where a:P ∈ S1, S2.

1. By typing derivation, S1, S2; ΓM `∆ e′ : ( N
a:P

A′) [C], and ∆ ` fdv(A) # a.

2. By induction hypothesis, there is unique w′ such that e′ S2−→ w′ and w′ is contracted and of the
same type ( N

a:P
A′).

3. Now, pick w = w′@ a.

case e = new a:P in e′.

1. By typing derivation, S1, (S2, a:P ); Γ∆ ` e′ : A [C], and ∆#a ` A[C] # a.

2. By induction hypothesis, there is unique w′ such that e′
S2,a:P−−−−→ w′. This w′ is also contracted

and of type A.

3. Pick w = new a:P in w′, and it has the required properties.

case e = Λp#K. e and e = e′ [[D]].

Just as the previous cases, these two also go easily.

52



case e = {a .= e′} e′′, where a:P ∈ S1, S2.

1. By typing derivation, S1, S2; ΓM `∆ e′ : P [C], and S1, S2; ΓM `∆ e′′ : A [a,C].

2. By induction hypothesis, there are unique w′ and w′′ such that e′ S2−→ w′ and e′′
S2−→ w′′, plus

they are contracted and preserve the types.

3. Now, distinguish two cases: (1) a ∈ dom(S2), and (2) a 6∈ dom(S2).

4. In the first case, pick w = {a .= w′} w′′. It is contracted and has the correct typing.

5. In the second case, pick w = {w′/a}w′′. By the contraction rules, e S2−→ w. By Lemma 13.1, it is
contracted. By substitution principle (Lemma 10.4), it also has the correct typing S1, S2; ΓM `∆

{w′/a}w′′ : A [C].

case subtyping from A′ 6: A.

1. By typing derivation, S1, S2; ΓM `∆ e : A′ [C].

2. By induction hypothesis, there exists w with the required properties. In particular, w′ has the
same type, i. e. S1, S2; ΓM `∆ w : A′ [C],

3. so use subtyping to conclude, S1, S2; ΓM `∆ w : A [C].

�

Theorem 15 (Progress and Type Preservation)
If S; · ` e : A [ ], then either

1. e is a value, or

2. there exists S′ ⊇ S such that S, e 7−→ S′, e′; furthermore e′ is unique and S′; · ` e′ : A [ ].

Proof: By induction on the typing derivation S; · ` e : A [ ].

case e = x, e = u or e = a.

These are not applicable, because both the hypothesis context and the name annotations in the above
typing derivation are empty.

case e = ∗ or e = λx. e′.

Both terms are already values.

case e = e1 e2.

Assume both e1 and e2 are values (otherwise trivial).

1. By typing derivation, S; · ` e1 : A′ → A [ ], and S; · ` e2 : A′ [ ].

2. Then e1 = λx. e′, and S, e 7−→ S, [e2/x]e′.

3. By substitution principle 10.1, the reduct has the same typing.

case e = fix x:A. e′.

1. By typing derivation, S;x:A ` e′ : A [ ],

2. and so, by substitution principle 10.1, S;` [e/x]e′ : A [ ].

3. Thus, S′ = S satisfies the requirements of the theorem.

case e = box e′, where A = �(A′[C ′]).

Assume that e′ is not contracted (otherwise e is a value).
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1. By typing derivation, S; · ` e′ : A′ [C ′].

2. By Lemma 12, there exists unique w′ such that e′ −→ w′, which in addition has the typing
S; · ` w′ : A′ [C ′].

3. By reduction rules, box e′ reduces exactly to box w′, and so the typing is preserved.

case e = let box u = e1 in e2.

Assume that e1 is a value (otherwise trivial). In that case e1 = box w1, where w1 is contracted, and
S, e 7−→ S, [w1/u]e2.

1. By typing derivation, S; · ` w1 : A′ [C ′], and,

2. either S;u::A′ ` e2 : A [ ], or S;u::−A′[C ′] ` e2 : A [ ], depending whether C ′ = ∅ or C ′ 6= ∅.
3. Conclude, using either Lemma 10.2, or Lemma 10.3, that S; · ` [w1/u]e2 : A [ ].

case e = a . e′, where A = ( N
a:P

A′) and a:P ∈ S.

Assume that e′ is not a value (otherwise e is a value itself).

1. By typing derivation, S; · ` e′ : A′ [ ], and · ` fdv(A′) # a (because fdv(A′) = ∅).
2. By induction hypothesis, there exists S′ ⊇ S such that S, e′ 7−→ S′, e′′ and S′; · ` e′′ : A′ [ ].

3. By reduction rules, S, a . e′ 7−→ S′, a . e′′, and

4. since S′; · ` a . e′′ : N
a:P

A′ [ ], the typing is preserved.

case e = e′@ a, where a:P ∈ S.

Assume that e′ is a value (otherwise, trivial).

1. By typing derivation, S; · ` e′ : ( N
a:P

A) [ ], and · ` fdv(A) # a (because fdv(A) = ∅).

2. Then e′ = b . v′, where b:P ∈ S, and S; · ` v′ : (a b)A [ ].

3. By reduction rules, S, e 7−→ S, (a b)v′.

4. By Lemma 11.2, (a b)S; · ` (a b)v′ : (a b)(a b)A [ ].

5. Now, both a, b ∈ dom(S), so (a b)S = S.

6. By idempotency of swapping, S; · ` (a b)v′ : A [ ], and the typing is preserved.

case e = new a:P in e′, where a:P 6∈ S.

1. By typing derivation, S, a:P ; · ` e′ : A [ ].

2. By reduction rules, S, e 7−→ (S, a), e′, so indeed, S′ = (S, a:P ) satisfies the requirements.

case e = Λp#K. e′.

Trivial; e is already a value.

case e = e′ [[D]].

Assume e′ is a value (otherwise trivial).

1. By typing derivation, S; · ` e′ : ∀p#K. A′, where ` D # K, and A = [D/p]A′.

2. Since e′ is a value, it is of the form e′ = Λp#M. e′′, where M ⊆ K and thus ` D # M .

3. By typing rules, S; · `p#M e′′ : A′ [ ].

4. By Lemma 11.1, S; · ` [D/p]e′′ : ([D/p]A′) [ ],

5. Since S, e 7−→ S, [D/p]e′′, we have just shown that the typing is preserved.

case e = {a .= e1} e2, where a:P ∈ S.

Assume both e1 is a value (otherwise trivial).
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1. By typing derivation, S; · ` e1 : P [ ], and S; · ` e2 : A [a].

2. By Lemma 10.4, S; · ` {e1/a}e2 : A [ ].

3. By reduction rules, S, e 7−→ S, {e1/a}e2, so the statement is proved.

case subtyping from A′ 6: A.

1. By induction hypothesis, there exists S′ ⊇ S such that S, e 7−→ S′, e′ and S′; · ` e′ : A′ [ ].

2. By subsumption, we also have S′; · ` e′ : A [ ], i. e. the types are preserved.

case e = (case e0 of box π ⇒ e1 else e2).

If e0 is not a value, the case is trivial. So assume that e0 is a value, i.e. is of the form e0 = box w for
some reduced w.

1. By typing derivation, S; ·  π=⇒Γ1, and S; Γ1 ` e1 : A [ ] and S; · ` e2 : A [ ].

2. If there exists S′ and Θ such that S,w � π=⇒S′,Θ, then e′ = Θ(e1).

3. In such a case, by type preservation for pattern-matching (Lemma19), S′ `∆ Θ : Γ1.

4. From (1) and (3), by substitution principle for value variables (Lemma 10.1), S′; · `∆ Θ(e1) : A [ ].
Here the substitution principle is applied once for every variable in the domain of Θ.

5. If no S′ and Θ exist, then e′ = e2.

6. From (1) by name-context weakening, S′; · `∆ e2 : A [ ].

7. In any case, from (4) and (6), we have S; · `∆ e′ : A [ ].

�
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