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Abstract

We propose a dependent type theory that integrates progragnm
specifications, and reasoning about higher-order conaupen-
grams with shared transactional memory. The design bupds u
our previous work on Hoare Type Theory (HTT), which we ex-
tend with types that correspond to Hoare-style specifinatior
transactions. The types track shared and local state ofrdtegs
separately, and enforce that shared state always satigfiesrain-
variant, except at specific critical sections which appeaxecute
atomically. Atomic sections may violate the invariant, buist re-
store it upon exit. HTT follows Separation Logic in providitight
specifications of space requirements.

As a logic, we argue that HTT is sound and compositional. As
a programming language, we define its operational semaatids
show adequacy with respect to specifications.

1. Introduction

Transactional memory is one of the most promising direstiion
the evolution of concurrent programming languages. Itaegs
locks, conditional variables, critical regions and othew-level
synchronization mechanism, with a higher-level lingaistion-
struct of transactions, and delegates to the run-time isyske
scheduling of concurrent processes. This frees the progeam
from the need to develop potentially complicated and fratye
non-modular synchronization protocols that arise in othpr
proaches to concurrency. Transactions make it simpler ftewr
efficient and correct concurrent programs that avoid datesrand
deadlock. Moreover, transactions are sufficiently wetideed and
compositional to fit naturally into a functional, higherder lan-
guage like Haskell [9].

In this paper we are interested not only in programming with
transactions, but in developing a formal logic for spectfara
and reasoning about concurrent programs with shared transa
tional memory. Most program logics for concurrency are oers
of Hoare Logic [24]. The recent work on concurrent Sepamatio
Logic [22, 3, 28, 6] has made significant inroads into speatifoa
and reasoning about shared memory with locking synchrtiaiza
The advances of Separation Logic mostly revolve arounddéa i
of spatial separation, whereby each process can be agzbueiah
a logical description of exclusive ownership over the stht it
requires. This facilitates local reasoning, as the chatiggsa pro-
cess makes to its local state do not influence others. Fuontirer
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Separation Logic connectives lead to particularly corsenide-
scriptions of transferring ownership of state between gsees.

When it comes to accessing shared resources, Separatian Log
can specify the resource invariants that processes muserpee
upon the exclusive use of the resource [22, 3]. Alternatj\@ép-
aration Logic can specify upper and lower bounds on how the
shared resource may change, in the style of rely-guaraetsen-
ing [28, 6].

While Separation Logic has significantly simplified the cor-
rectness proofs about shared state, it has mostly concéssdi
with imperativefirst-order languages antbw-level synchroniza-
tion primitivessuch as locks. However, irrespective of whether one
intends to prove his programs correct or not, programmintp wi
such low-level primitives remains difficult. In additionrst-order
languages, by definition, do not support advanced linguista-
tures such as higher-order functions, polymorphism, nesjdnd
abstract data types; all of these are indispensable foramuging
in the large as they facilitate code reuse, informationrgdand
modularity. The higher-order abstractions become all theenm-
portant if one wants to support specification and reasoriviag).
most program logics based on (sequential or concurrentjeHora
Separation Logic have little or no support for these impurtaod-
ularity features.

In this paper we take the step of combining programming,
specification, and reasoning in the style of Separationd.agbut
higher-orderprograms with transactional concurrency. We build on
our previous work on Hoare Type Theory (HTT) [20, 18], whish i
a dependent type theory with extensive support for progriaugm
and reasoning about side-effects related to state. Herextead
HTT with concurrency and transactional primitives.

The main feature of HTT is theloare type which takes the
form ST {P} z:A{Q} and captures partial correctness within the
type system. These types classify programs that can begsequ
tially) executed in a state satisfying the predic&and either di-
verge, or converge to a resultA and a state satisfyin@. In the
course of execution, such programs can perform memory reads
writes, allocations and deallocations. By capturing dpeations-
as-types, HTT makes it possible to abstract over and nespts-
fications, combine them with the programs and data that theg-s
ify, or even build them algorithmically. All of these feats signifi-
cantly improve over the information hiding and code reusdifees
of Hoare Logic.

From the semantic standpoint, the Hoare tgfe{ P} 2:A{Q}
is amonad[16]. Here we introduce yet another monadic family of
Hoare types, which serves to encapsulate concurrent lwehdiie
new Hoare types take the for@MD {I}{P} z:A{Q} and clas-
sify concurrent programs that execute isteared statesatisfying
the invariant/, andlocal statesatisfying the preconditio®. Upon
termination, the invariant on the shared state is presetugcthe
local state is modified according to the predic@teThe reader fa-
miliar with Haskell's implementation of transactional mem may
benefit from the (imprecise) analogy by which Haskell's STindl a
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10 monads correspond to o6 and CMD type families, respec-
tively. For example, as in HaskelLMD-computations can invoke
ST-computations, and fork ne@MD threads of computation, but
ST-computations are limited to state modifications, in ordefat
cilitate optimistic techniques for implementing transacs.

Similar to Haskell, HTT monads separate the purely funetion
from the effectful, impure fragment. The pure fragment ofTHli-
cludes the Extended Calculus of Constructions (ECC) [1h]clw
is a full dependent type theory with support for abstractoer
type universes and predicates in higher-order logic. lddee are
currently in the process of implementing HTT in Coq [13], akhi
itself extends ECC with inductive types and predicatestifeeiof
which conflicts with our stateful extensions). For the pwgm of
this paper, however, we restrict attention to a much sméidey-
ment which suffices to illustrate our concurrency extersion

The first technical contribution of this paper, when comgare
to the previous work, is the formulation of the logical coctiees
for describing the concurrent behavior. We argue that thgcl
is sound, and—particularly importantly—compositionalist] as
in any type theory, compositionality is expressed by stit#tin
principles, which guarantee that reasoning about HTT rogr
can be kept local in the sense that the typechecking andoattifin
of a larger program only requires typechecking and verificadf
its sub-programs, and not any whole-program reasoning.

Just as any type theory, HTT is not only a program logic, but
a programming language at the same finfes the second contri-
bution of the current paper, we endow the stateful and coeotr
terms of HTT with operational semantics, and prove thatdpir-
ational semantics is adequate for the intended interjataf the
Hoare types.

The rest of the paper is structured as follows. In Section 2 we
introduce the basic stateful and transactional constracis illus-
trate how programs can be specified using Hoare types. lio8&ct
we describe the formal syntax of the language, the conneutith
some well-known features from Hoare Logic, like ghost Jales,
and the definitions of the relational connectives that vélive to
capture the semantics of state and concurrency. Sectioasémts
the type system, and Section 5 describes the basic theotwous a
it. In Section 6 we introduce the operational semantics, taed
proof of its adequacy. Section 7 discusses the related andefu
work, and Section 8 concludes.

2. Overview of monadic state and transactional
memory

There are three conceptual levels in HTT: the purely fumetio
fragment, theST fragment, and th€ MD fragment. As the name
suggests, the pure fragment has no computational effeloesST
fragment includes sequential stateful commaaidtsc M (alloca-
tion), ! M (read),M;:=M, (write), anddealloc M (deallocation).
In addition, theST fragment contains conditionals, and allows
one to construct recursive (i.e., possibly diverging) catafions.
The CMD fragment includes commandsomic E (atomically run
the ST-computationF), andz1 < E1 ||x2<FE> (run the twoCMD
computationst; and E5 in parallel). TheCMD fragment also in-
cludes apublish primitive which will be explained below, as well
as constructors for conditionals and recursion.

The stateful sequential computations are classified bystgbe
the formST { P} 2:A{Q}, whereP andQ are pre- and postcon-
ditions on the state. To illustrate these types, and th&graction
with lambda abstraction and function types from the puregrfrant,
consider the functioimcBy, which takes a pointérto anat, a value
n:nat, and then increments the contentg b§ n. This function can

1Hence exhibiting a variation on the Curry-Howard isomosphi

be implemented as follows.

incBy : Ill:loc. IIn:nat.
[v:nat]. ST {l —nat v} z:1{l —>nat v + n}
= M. An.stdo (t <=!1;1 := t 4 n;return ())

The term syntax is chosen to closely resemble Haskelbs
notation, but also to support the meta-theoretic developrtiee.,
substitution principles). The keywostldo encapsulates in its scope
the stateful part of the code, separating it from the fumetio
abstraction. The stateful code first reads from the locatiand
binds the obtained value to the (immutable) temporary ézia
(t <= !1), then writes back the increased valde=£ ¢ + n), before
returning( ):1.

The type ofincBy is a bit more involved: It specifies thaicBy
takes two argumentsioc andn:nat, and returns a block of stateful
code with Hoare typé¢v:nat]. ST {l —nat v} z:1{l ——nat v + n}.
As expected, the preconditidn—,.: v requires that at the begin-
ning of the stateful block, the locatidrpoints tosome value:nat.
The postcondition ensures that at the épdints to an incremented
value. We note the use of the variabl®at, which is bound in the
Hoare type, with the scope extending through the precamdénd
the postcondition. The variableserves to relate the value stored
in the initial state of the monad, with the value at the enditage.

In accordance with the standard Hoare logic terminologycatkey
aghost variable

Concurrent computations are classified by types of the form
CMD {I}{P} z:A{Q}, whereP andQ) are pre- and post-conditions
on the local state of the computation, ahd an invariant on the
state that is shared with other processes. The key consiredi
ating access to shared state is sliemic primitive. It presents the
programmer with the abstraction that the enclosed blockod&c
executes sequentially, and in isolation from all the othemajtel
processes. Of course, implementations are not so naivexaredte
parallelism through advanced run-time techniques. Iniqdar,
atomic blocks are optimistically run in parallel with the hope that
the blocks will not perform conflicting changes to memoryhtm-
dle the case where there is a conflict, the runtime systenisaboe
of the conflicting blocks by rolling back its changes to trerstand
then re-starting the block.

Conceptually, thatomic primitive has the following type:

atomic : ST{I x P} z:A{I * Q} — CMD {I}{P} z:A{Q}

We can think of a thread running the commardmic M, as ac-
quiring a global lock on the shared state, executing theesgdal
codeM, and then releasing the lock. During thi®mic block, the
thread is allowed to access both global and local state. &pen
try to the block, the global state is described by the invaria
and the local state is described By Furthermore, we are guar-
anteed that the local and global state are disjoint throbghuse
of the separating conjunctiospecification/ « P. Throughout the
execution of theatomic block, the thread is allowed to read and
modify both the local and global state described by the §ipaei
tion. In particular, it can safely violate the invariant dretglobal
state since no other thread can see the changes during tise tra
action. Furthermore, the thread is able to freely transfeations
from the local state to the global state and vice versa. Upon t
mination of the block, the thread must re-establish thathtbap
can be split into a local portion, now described®yand a global
portion once again described by the invaridntesulting in a post-
condition of I x Q. In summary, a sequential command with type
ST{I « P} x:A{I = Q} can be lifted viaatomic to a concurrent
command with interfac€EMD {I}{P} z:A{Q}.
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As a simple example, consider the following definition:

transfer =\l1, 12, n.cmdo
(t <= atomic(
t1 <= ! l1;
if t1 < m then return ff
else (decBy 11 m; incBy l2 n; return tt));
return t)

The transfer command attempts to atomically transfer the value
n from location!; to locationli., using the auxiliary commands
incBy anddecBy (not shown here). If; holds a value less thamn,
then the transfer aborts and returns booléabut if the transfer is
successful, the command returns the boolkean

We can assigrtransfer a number of types, depending upon
what correctness properties we wish to enforce. For example
a banking application, we may wish to capture the consttait
the sum of the balances of the accounts must remain con$tzait.
is, money can only be transferred, but not created or desdrdp
such a setting, we can use the following type:

I1l1:loc. I1is:loc. IIn:nat.
CMD {I(l1,12)}{emp} z:bool{emp}

WhereI(lhlg) = Hwp:nat. Jua:nat. ((ll —nat Ul) * (l2 —nat
v2)) A (v1 + v2 = k). Here,emp denotes an empty store, and
l —, v denotes a store where locatidrpoints to a valuev of
typer. Thus, the specification efansfer captures the invariant that
the sum of the values ih andi»> must equal the constakt Note
that during the transfer, the invariant is violated, butvuergually
restored. Thus, irrespective of the number of transfersidre
between; andls, the sum of the values stored into these locations
always remaing. Note also thatransfer operates only on shared
state, and imposes no requirements on the local state. ticyar,
it can run even if the local state is empty, and any extensidns
the local state will not be touched. In HTT, like in Separatio
Logic, this property is specified by using the predicatep as a
precondition, to tightly describe the local space requéaets of the
function.

We can now execute a number of transfers betweemd i
concurrently; the system will take care to preserve theriana

transfer

transferp : Ill;:loc. ITiz:loc.
CMD {I(l1,12)}{emp} z:bool{emp}
= cmdo((t1 < transfer I1 I3 10 ||
to <= transfer I3 [1 20);
return(t; andtz))

The above function forks two processes to concurrently ueec
two transfers, one betweén andis and the other betwedn and

l1. The values obtained as a result of each process are cdllecte

into variables; andts, and the function returns if both transfers
succeed.

2.1 Guarded commands

As a more interesting example, we next develop a funcgtiosnd

which waits in a busy loop until a provided location contasnsne
required valug The guard definition will be a function of four
arguments, so thauard a [ n f reads the contents of locatidn
and loops until this contents equalsThen it will execute th&T

commandf atomically, and return the obtained value of typd-or

exampleguard 1 11 42 (decBy [,35) will wait until /; contains 42,
and then decrement its contents by 35.

guard : Va. Ill:loc. [In:nat.
ST{(l —nat n) x J x Pt z:a{(l —nat —) x J x Q(z)} —
CMD {(l > nat _) * J}{P} IEQ{Q(IZ')}

20f course, a real implementation will provide something Board as a
blocking primitive instead of encoding it via busy-waiting

The return type oguard is aCMD-monad in order to allow other
processes to concurrently set the valud,ofvhile guard is busy
waiting. Correspondingly, should be a shared location, requiring
the shared state invariant of ti®ID-type to specify that —n. —
Whatever the preconditioR and postconditio) on the local state
this return type has, tH&€T-computation that is executed atomically
should augment them with the knowledge thés allocated, and
that/ contains valuen at the beginning of the atomic execution.
We further allow that the shared state may include an adhditio
section described by the predicateThis section can be modified
by the ST-computation, as long as the validity dfis preserved.
Notice thatguard is implicitly polymorphic in the predicate$, P
andQ@. In this paper we do not discuss explicit polymorphism over
predicates, but notice that such a feature is available i€ Bad
Coq, and we have already shown in the previous work that HTT
can consistently (and usefully) be extended with it [18].

We split the implementation qfuard into two parts. We first
assume a helper functionaitThen which carries out the busy
loop, but instead of immediately returning the result of abemic
execution, it stores this result into a temporary locatiotJsing
waitThen, guard is implemented as follows.

guard = Aa. \l. An. Ast.
cmdo (r < atomic(t < alloc 0; return t);
waitThen al n st r;
t < atomic(z <! r;dealloc 7; return z);
return t)

The code first allocates the temporary locatigrthen waits orl,
expecting the result of waiting to show up in Finally, it reads
the result fromr, and passes it out but only aftelis deallocated.
Notice that the accesses to store are always within an atologk.

waitThen = Aa. Al. An. Ast. Ar.
cmdo(t <= fix(Ac. cmdo
(ok < atomic(z < !1;
if (x = n) then
Yy < st;
=y
return ff
else return tt);
if ok then x <= ¢; return x
else return ()));
return t)

Under the fixpointwaitThen first atomically reads, and based on
the value, either executes (by the command; < st), storing
the resulty into r, or simply exits the atomic block. Either way,
it passes back via the flagk the information about which branch
was taken. If the contents éfwas not appropriate, it goes around
the loop again, by invoking the fixpoint computatianOtherwise,

r must contain the required value, so the function exits. Tpe t
of waitThen is

waitThen : Va. Ill:loc. ITn:nat. IIr:loc.
ST{(l —nat n) * J * P}z:a{(l —nat —) * J x Q(z)}
— CMD{(l —nat —) * JHP * (1 +—nat 0)} £:1
{Fz:0. Q(z) * (r —a )}

Notice that the returrCMD type requires the existence of the
location r in the local state, and guarantees thatontains the
result of the atomic execution at the end. The later is exsoyehe
spatial conjunction withQ(x) in the postcondition. Also, the first
two components of the return type represents the loop anaaf
the busy loop ofvaitThen. Essentially, throughout the iterations,
we know that(l —n.: —) * J holds for the shared store and
P « (r —nat 0) holds for the local store.
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2.2 Synchronizing variables

Types A,B,7 ::= a|bool | nat |1 |IIz:A. B | Va. A |
Usingguard, we can now implement synchronizing variables (also , ST{P}z:A{Q} | CMD{I}{P} z:A{Q}
know as “MVars” in Haskell). A synchronizing variable is o Predicates?, Q, R, I =:= ida(M, N) | seleq (H, M,N) | T |

LIPAQIPVQIPDQ|-P|
Va:A. P | Va. P | Vh:heap. P |
Jz:A. P | 3a. P | 3h:heap. P

tion in memory that either contains a value, or is empty, ith
operationsput andtake. The put operation will put a new value

into an empty variable, and block otherwise. Tfa&e operation Heaps H,G = h | empty | upd, (H, M, N)

will block until a variable becomes full, then read the valuen a Terms K,L,M,N ==z |t |[ff|a|M®N | ()| e. M | K M|

full variable, emptying it. Aa.M | K 7|stdo E |cmdo E | M : A
We implement each synchronizing variable using two loca- Computations E,F ::= return M |z < K;E |z < - M; E |

tions ! and v in the shared heag, for the empty/full flag, and M :=; N;E |z < alloc; M; E |

v for the value. The invariant for the shared heagds(l,v) = dealloc M; E | x <= atomica p g F1; E |

Fnenat. (I +nae n) A (n =0V n = 1)) * (v 4 —), requiring (z1:A1 = Ep:Py || w2:A2 <= E2:P2) E |

publish I} E | < fixa M; E |
x < ifg M then Eq else Eo; E
Contexts A= | AzA| Ao | A hcheap | A, P

that! points to anat (0 for empty, 1 for full), and thatv contains
a value of a fixed type. Botput andtake are CMD-computations
over a shared heap described Ry. Since these operations only
operate on the shared state, the pre- and postconditiome docal
state are triviallyemp. The implementations call theuard func-
tion, instantiated with/ = (v —4 —), andP = Q = emp.

put : Ill:loc. TTv:loc. A — CMD {I,(I,v)}{emp} z:1{emp} 3. Formal syntax and definitions

= Al. Av. Az.guard 110 stdo (I := 1;v := ;return ()) In this section we present the syntax of HTT (Figure 1), asdufis
the constructs in more detail.

Figure 1. Syntax of HTT.

take : IIl:loc. ITv:loc. CMD {Is, (1, v) }{emp} 2: A{emp}

= Al. \v.guard Al 1 stdo (I := 0;x <! v;return ) 3.1 Types
We can test for fullness/emptiness, without blocking, bingishe In addition to the already described Hoare types, HTT admits
function empty, similar to the one provided in Haskell standard the types of booleans and natural numbers, dependent dancti
libraries [9]. typesIlz:A. B, and polymorphic quantificatioda. A. The type

variablesa in polymorphic quantification ranges over monomor-
phic types only, as customary in, say, Standard ML (SML).sThu
HTT supports only predicative polymorphism, although astens
with impredicativity are currently being investigated bgtérsen et
2.3 Producer-consumer pattern al. [25]. As usual with dependent types, we write— B instead

. . o . of ITxz: A. B, when the typeB does not depend on In the current
HTT includes an additional concurrency primitiveblish .J, which paper, we ignore the other useful type constructors frore e

logically takes a part of the local state described by thelipate theories, likex-types and inductive types. These do not present any
J and moves it into the shared state. A computation may need {0 heqretical problems. For example, we have studied thenside
perform this operation if it wants to spawn some Ch”.d preess with 3-types in the previous work [18], and have also implemented
to execute concurrently on the given local state. We ilatstthe the stateful (but concurrency-free) part of HTT in Coq, vihsup-
primitive by building a producer-consumer pattern, whgreie ports inductive types and predicates. These extensiongves, do

allocate a new synchronizing variable, publish it as shatate, add bulk to the development, so we omit them here in orderdasfo
and launch two processes which communicate via the nowdhare 4, the main ideas related to concurrency.

variable. The shared variable becomes a primitive comnatioic
channel between the processes. 3.2 Terms

Suppose that we have a producer functipnand a consumer
function, c¢. Then, we can easily construct functions which read
from and write to a shared variable usip@ndc.

empty : Ill:loc. ITv:loc. CMD { Iy (I, v) }{emp} z:nat{emp}
= Al. Av.cmdo(t <= atomic(z <! [; return z);
return t)

The purely functional fragment consists of the usual termstraic-
tors: boolean values, numeraisand the basic arithmetic opera-
tions (collectively abbreviated a& @ N), the unit value( ):1,

produce = Al. Av.cmdo(t = fix Af. cmdo(x < p; put l v x; lambda abstraction and application, and type abstractiohag-
s < f;return s); plication. We do not annotate lambda abstractions with the d
q < t;return q) main types, but instead provide a construcldr A to ascribe a
i type A to the termM. This organization facilitates bidirectional
consume = Al. Av. cmdo(t = fix Af. cmdo(z <= take [ v; ¢ ; typechecking [29]. Thetdo andcmdo constructors are the intro-
5 < [iretum s); duction forms for the corresponding Hoare types, analogotise
q < t;return q) monadicdo in Haskell, except in HTT we have separate construc-

Here, p and ¢ both obtain aCMD-computations with a shared  tor for each monad, to avoid any confusion.
invariantZs., (I, v). In order to useroduce andconsume, we must .
first establish this invariant; this is whepeblish comes in. 3.3 Computations

The scope obtdo and cmdo is a computation, which is a semi-
colon separated list of commands, terminating with a retatoe.
We have already described the intuition behind most of the co
structors in Section 2. However, some of these require @kpln-
notations with types, pre/postconditions and invariantéch were

cmdo(l < atomic(¢ < alloc 0; return t);
v <= atomic(t <= alloc a;return t);
publish(Zs, (1, v));
x1 < producelv || z2 < consumel v;

return ()) omitted before, so we now revisit them with the additiondbds.
After allocating! andv, we publish them with the invariart.,. For example, HTT supports strong updates by which a location
After the publish,produce and consume can execute in parallel,  pointing to a value of type;, may be updated with a value of
and each has accessitandv as shared state. some other type,. Correspondingly, th8T primitives for reading,
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writing and allocation must be annotated with the type of the logic of the Hoare types. It holds iff the hedp containsN:7 at

manipulated value.

CMD-computations are annotated as follows. ():4; <
E:P1 || z2:A2 < Eo:P») forks two parallel child processes
E; and E>. Upon their termination, the processes pieed that
is, their return results are bound 19 and z-, respectively, their
private space is returned to the parent process, and thetexec

proceeds to the subsequent command of the parent procesy. Th

command explicitly requires the return typds and A, and the

preconditionsP; and P, on the parallel processes. The precondi-

tions indicate which part of the local state of the parentcpss
is delegated to each. The split of the local state must beidis;j

If the two processes are supposed to share state, then dtat st

must be declared as shared. 2= atomica,p,qo E1 explicitly
requires the return type df; as well as the preconditio® and
postcondition@ on the local state thak’; manipulates. This lo-
cal state will be joined with the shared state of the pareotess,
before E; executes atomically. (3ublish I does not require ad-
ditional annotation beyond the predicateHowever, we mention
here thatl must beprecise in the sense that it uniquely defines the
heap fragment that should be published. For example, thtkgate
(z +—nat — * y —nar —) is precise, and would correspond to pub-
lishing the locationst andy. On the other hand, the predicate
is not precise, as it holds of every heap. Precision is custiym
required of shared state invariants in Separation Logi223,
Finally, the conditional and the fix constructs are presebbith
monads. The conditional is annotated with the expectedtygpits
branches. Fix is annotated with the tydeand computes the least
fixed point of the function\/: A— A. Here A must be a Hoare type,
in order to guarantee that all uses of recursion (and hetenpal
occasions for non-termination) appear under the guarddaf or

cmdo. Thus, non-termination in HTT is considered an effect, and

is encapsulated under the monad, in order to preserve tielog
properties of the underlying pure calculus. In particutlag encap-
sulation would prevent the recursion from unrolling in tlegluic-
tions performed by equational reasoning during typechmegki

3.4 Heaps

In HTT we model heap locations by natural numbers, althongh i
the examples we writéoc instead ofnat to emphasize when a
natural number is used as a pointer. Heaps are modeled d@®hmc
mapping a locationV to a pair(r, M) where M:7. In this case,
we say thatV points toM, or that M is the contentsof N. The

type 7 is required to be monomorphic, in order to preserve the

predicativity of the type theory. This is analogous to treatment
of state in, for example, SML. However, can be a dependent

function type, as well as a Hoare type. Thus, heaps in HTT are

higher-order albeit predicative.
Syntactically, we build heaps out of the following priméa

(1) empty stands for the empty heap, that is, a nowhere defined

function. (2)upd_(H, M, N) is a function which returnsv:r at

argumentM, but equalsH at other arguments. It models the heap

obtained fromH by writing V:7 into the addres3/.

3.5 Predicate logic and heap semantics

In this paper we consider a first-order, polymorphic, prattidogic
over heaps. We have shown in the previous work [18] that thie lo
can easily be scaled to higher-order, simply by introdueingew
type of propositions (as customary in ECC or Coq). The retsn
to first-order will suffice for the current paper.

Aside from the usual connectives of first-order logic, wevte
two primitives: (1)ida (M, N) is the equality at typed. We will
frequently abbreviate it a8/ =4 N or simply M = N. (2)

location M. The following axioms relateeleq andupdate.

—seleq, (empty, M, N)

My # Ms A seleq, (upd, (H, M1, N1), M2, N2) D
seleq..(H, M2, N2)

seleq, (H, M, N1) Aseleq.(H,M,N2) D N1 =, N2

The first axiom states that an empty heap does not contain
any assignments. The second and the third are the well-known
McCarthy axioms for functional arrays [15]. The fourth axio
asserts a version of heap functionality: a heap may assigrost
one value to a location, for each given type. The fourth axism
slightly weaker than expected, as we would like to statedhsap
assigns at most one type and value to a location. This isyeasil
expressible in the extension of HTT with higher-order 1qdi8].

3.6 Separation logic

Given the heaps as above, we can now define predicates drgress
heap equality, disjointness, and disjoint union of heap$. [2

PCcoOQ=PDOQNQDP
H, = Hy = Va.Vz:nat.Vv:a.seleq, (H1,z,v) CD
seleq,, (H2,z,v)
M € H = Ja.3v:a.seleq, (H, M, v)
MgH = —~(MecH)

share(H1, Ha, M) = Va.Vv:a. seleq, (H1, M,v) CD
seleq,, (H2, M, v)
splits(H, H1, H2) = Vx:nat. (x € Hi Ashare(H, Ha,x))V

(x & Ha Ashare(H, Hy,z))

In English, D is logical implication,CD is logical equivalence,
H, = H- is heap equalityM € H iff the heapH assigns to the
location M, share states thaf7; and H, agree on the locatiof/,
andsplits states thafd can be split into disjoint heapd; and Ho.

We next formally define the assertions familiar from Separnat
Logic [21]. All of these are relative to the free variabte which
denotes the current heap fragment of reference. We willpcet-
icates with one free heap variabteunary predicatesand use let-
tersP, R, S andI to range over them. Given a unary predic&e
we will customarily use the syntax for functional applicatj and
write P H as an abbreviation fd#/ /m] P.

emp = m = empty
M~ N = m=upd,_(empty, M, N))
M —. N = seleq.(m,M,N)
PxS = dhi:heap.3ha:heap.
spIits(m, hi, h2) AP hi NS ho
P—xS = Vhi:heap.Vha:heap.
Sp|itS(h2,h17 m) D Phy DShs
this H = m=H
precise P = Vhi,h, ha, hs:heap.

splits(m, h1, b)) D splits(m, ha, hy) D
Phi DPhsDhi=hs

We have already given the informal descriptionsmap, M —, N
andP xS in Section 2M —, N iff current heap containat least
the locationM pointing toN:7. P—« S holds iff any extension of
the current heap by a heap satisfyiRgproduces a heap satisfying
S. this (H) iff the current heap equalé/. Concerning the last
predicateprecise P holds iff for any given heam, there isat most
onesubheaph such thatP h.

With these definitions, it should now be apparent that the pre
conditions, postconditions and invariants in our Hoareegypre
predicates over heaps, and that they implicitly depend erhéap

seleq, (H, M, N) reflects the semantics of heaps into the assertion variable m. For example, the typ&T {emp} z:A{emp} really
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equalsST {m = empty} z:A{m = empty}, wherem in the pre-
condition denotes the initial heap, andin the postcondition de-
notes the ending heap of a stateful computation. Thus, thertw
variables are really different. If we wanted to make the scofm
explicit, we would write the typ8T { P} z: A{Q} explicitly as

ST{m.P}z:A{m.Q}

However, in order to reduce clutter, we leave the bindingsnof
implicit. We adopt a similar strategy faEMD {I}{P} 2:A{Q},
wherel also depends on an implicitly bound varialxe

3.7 Ghost variables and binary postconditions

The programs from Section 2 already exhibit that the use afrélo
types frequently requires a set of ghost variables thatescopr
the precondition and the postcondition in order to relatetto.
For example, the prograimcBy with the type

incBy : ITl:loc. ITn:nat. [v:nat]. ST {l +—nat v} z:1{l —nat v +n}

needs the ghost variableto name the value initially stored info
Unfortunately ghost variables are inconvenient for the @@em
tics of HTT, for several reasons. For one, a binding consirke
the [brackets] above complicates the definition of equélédiween
Hoare types: is the context with a ghost variablel x B equal to
the context with two ghost variables;: A, x2: B? Another prob-
lem arises if one wants to consider abstraction over presicas
is frequently necessary in practical applications in otdéride the
invariants of the local state of functions and modules [T8kn we
quickly face the need to quantify over contexts of ghostalass.

To avoid dealing with these issues, we need an alternative to

ghost variables, which would still et us relate the pred¢tons and
postconditions of Hoare types. One type-theoretic pdiyilis to
explicitly functionally abstract the ghost variables otkaHoare
type. For exampleincBy may be re-typed as:

I1l:loc. ITn:nat. ITv:nat.
ST{l —nat v} z:1{l —nat v +n}

This, however, is not a convenient solution either. Fumeticab-
straction will require every caller oficBy’ to instantiatev at run-
time. The ghost variable, which should serve only the purpose
of logically connecting the precondition and the postctiadiof
the Hoare type, suddenly acquires a computational signifisait
has to be explicitly supplied by the caller, and the valuegmvin-
stantiated, has to produce a precondition that is true agithen
program point. More concretely, in order to increment thetents
of [ by executingincBy’, the caller must already know what the
value stored irf is. This, of course, makes the usefulnesmoBy’
quite dubious. If the caller already knows the stored vaite; not
simply write its increment back intbdirectly?

A better alternative, and the one that we adopt here, is to al-
low that postconditions not only depend on the variablelenot-
ing the current heap at the end of the computation, but alsben
variablei that denotes the initial heap. That is, if we made the
scopes explicit, then the tyd&T {P} 2: A{Q} would be written
asST {m. P} z:A{i.m. Q}. The second heap variable in the post-
condition can be used to relate the values stored in thalihigap,
to the values stored in the ending heap. The typadBy may be
written as

incBy” : Ili:loc. TIn:nat. ST{3v. | +par v} 7 : 1
{Vv. (I —nat ©) i D (I —nat v) M}

Under this binding convention, the syntax of Hoare typeshwit
ghost variables becomes just a syntactic sugar. The Hoaee ty
[A].ST {P1} z:A{P>}, whereA is a variable context, ané,P;

are unary predicates over, can be desugared into

ST{3A.P,} 2:A{VA.P,i> P, m}

incBy’

Similarly, the Hoare typgA]. CMD {I}{ P, } z:A{P-} is desug-
ared intoCMD {I}{3A. P} z:A{VA. P, i D P, m}. In the rest
of the paper, we will use the described convention on ghast va
ables in order to abbreviate the Hoare types that appeariaxeu
amples. However, in the development of the meta theory of HTT
we will assume that postconditions in Hoare types dependvon t
heap variables: which denotes the initial heap, amd which de-
notes the ending heap of the computation.

We call predicates that depend on botiind m binary predi-
cates and use and T to range over them. We usE to range
over either unary or binary predicates. We will again usesgmgax
of functional application and writ€ H, H> as an abbreviation for

[I‘Il/i7 Hz/mAQ.
We next define several operators on hinary predicates thiat wi
have a prominent role in the semantics of HTT.
5P = PAi=m
VP = PAi=i
Op = PiAPm
XoQ = 3hheap.[h/mX AQhm
Q1% Q2 = Ji1,i2,m1, ma:heap.
splits(i, 21, 22) A splits(m, m1, ma) A
Q1 i1 m1 A Q22 ma
P—oQ Vio, h:heap. splits(i, ig, h) D P ig D

Imo. splits(m, mo, h) A Q ig mo
Vio, h:heap. splits(i, 20, h) D
Vi1, i2:heap. splits(io, i1,72) D
Piri1 D Paiz D
Imo, m1, ma.splits(m, mg, h) A
splits(mgo, m1,m2) A
Q1i1m1 A Qzizmo
M?Q1 Qo (M=ttD>Q1)A(M=ffDQ2)
In English,é P extends the unary predicafeto binary, diagonal
one.V P is also a binary predicate, albeit one that holdsafoy do-
main heap (it ignores the variable OO P requires that” holds for
both the domain and the range heaps, but urdljldoes not require
that the two heaps are actually equilo @ is a relational compo-
sition. The predicat€); * Q- is the generalization of separating
conjunction to the binary case. It holds if both domain amyea
heaps can be split in two, so th@y relates the first halfs an@-
relates the second half®. — @ is a binary predicate relating the
heapi with m only if m can be obtained by replacing any subheap
of i satisfying P with a subheap related &y. P; P> —0 Q1 Q2 IS
the generalization aP — Q. It pairwise replace$ according to
@1 and P, according toQ- to obtain the heapn starting fromi.
M 7 Q1 Q2 is the relational version of a conditional.

Py Py —0 Q1 Q2

Example. The binary relation(! +—nat v) — V(I +—nat v + 1)
holds between two heapsindm if and only if m can be obtained
from i by replacingall parts ofi satisfyingl +—n.: v (and there
can be at most one such part), with a part satisfyirgn.: v + 1.
Such a relation therefore directly captures the semanfies 6§ T
computation that increments the contents. of

4. Type system

The main focus of this section is to describe the techniquwesl u
in the definition of the semantics of Hoare types in HTT. The
foundations of HTT are in a type theory like the Extended Glale
of Constructions, or Coq, which are very well suited for measg
about typed functions, relations and sets. In HTT, in addijtive
want to support reasoning about effectful computations.

The easiest way to achieve this goal isttanslate effectful
computations into some entity that is already supportedhey t
underlying foundational type theory. In this paper, we hetvaesen
to translate effectful computations inbdnary relations on heaps
so that a computation may be viewed as relating its initiakto
ending heap. Choosing relations for the modeling of Hoapegy
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has the additional benefit that we can then also represetialpar
and non-deterministic computations; that is, computatiwith no
result, or computations with more than one result, respelgti

The translation of computations into relations is perfairbg
the typing rules. Having in mind that there is a strong cqroes
dence between relations and predicates (relations arestotes of
predicates), the reader familiar with Dijkstra’s predecaansform-
ers [5] will find the typechecking process completely analegto
computingstrongest postconditions

We will have four typing judgments for computations, two for
ST-computations and two foEMD-computations. Th&T judg-
ments are\; P - F = z:A.Q andA; P + E < z:A.Q. The
first judgment takes a unary predicd®eand a computatio’, and
generates the binary predicafethat most tightly captures the se-
mantics ofE (i.e.,Q is the strongest postcondition). In the process,
the rule also verifies that the return resulttohas typed, whereA
is supplied as input to the judgment. The second judgmertkshe
that @ is a postcondition, not necessarily the strongest ond-for
with respect taP.

The CMD judgments are, similarly\; I; P - E = z:A.Q
andA;I; P+ E < z:A.Q, except that heré and(Q are a pre-
and post-condition on the local statefofwhile the unary predicate
I keeps the invariant on the state tfiashares with other processes.
By formation,I is required to be precise.

We will make use of further several judgments: ()~ K =
A takes a pure terni and generates its type if it can; (& F
M < A checks that\f has typeA. These two judgments imple-
ment bidirectional typechecking for the pure fragment.A3)- P
checks that the predicafeis true. It is a completely standard natu-
ral deduction for polymorphic first-order logic with equgliexcept
that it also formalizes heaps, via the four axioms listeddnt®n 3.
(4) A+ A < typeandA F P < prop are type and predicate
formation judgments, and (%) + 7 < mono checks that is a
monomorphic type. The last three judgments are fairly alsjco
we omit them here.

4.1 TypecheckingST-computations

We start with a structural rule which relates the synthesid a
checking of postconditions: )’ is a strongest postcondition, and
from knowing @’ we can derive), then( is a postcondition.

A;PFE = x:A.Q A,z:A,i,m:heap, 6P o Q' FQ
A;PHE<x:A.Q

Rather than simply takin@’ as a hypothesis when trying to derive
Q, the rule takesy P o Q’. Unrolling the definitions o andd,
this basically injects the knowledge that the initial hedgoalso
satisfiesP, which should be expected @&3is a precondition that
the checking starts with. This rule essentially implemehéslaw
of consequence well-known in Hoare Logic.

The typing rule for monadic unit in a sense corresponds téea ru
for assignment to the variablefound in the classical formulations
of Hoare Logic:

AFM<«<=A
A; P return M = x:A.6(x = M)
The postconditiod(x = M) simply states that after executing

return M the return valuec = M and the initial and the ending
heap are equal since no state has been modified.

A 7 < mono A+ M <= nat A,m:heap, P+ M —, —
Ajxm;Pod(M —rz)F E=y:B.Q
A;PrRa <y MG E = y:B. (3. 6(M —- 2) 0 Q)

The rule for memory read must check thats a well-formed

by the entailment” - M <., —, which may be seen as\ar-
ification conditionthat needs to be discharged in order to guar-
antee the correctness of the program. The continudiiaa then
checked in a context extended with variable, and the precondi-
tion for checkingE must appropriately reflect the knowledge that
x binds the value read from/. This is achieved by composing
with §(M —, z). Alternatively, we could have used the equiv-
alentP A (M <, z), which is the standard postcondition for
memory lookup, but we choose the current formulation in ptde
emphasize the compositional nature of typechecking. Famgie,
after the relation)) corresponding taZ is obtained, we need to
lift it to include the semantics of the lookup, before we ratit as
a postcondition generated for the original computation.d&/eso
by composingd(M <. z) o Q. One can now see the important
intuition that, in general, the strongest postconditionegated for
some computatiolr always has a form of an ordered sequence of
compositions of smaller relations, each of which precisalytures
the primitive effectful commands df, in the order in which they
appear inE. This substantiates our claim that typechecking simply
translates thé’ into a relation (equivalently, predicate). In fact, the
translation is almost literal, as the structure of the atedipredi-
cate completely mirror&.

Memory writes follow a similar strategy.

AF M < nat
A 7 <= mono AFN<T A, m:heap, P+ M — —
AjPo(M+— — —oV(M~—; N)FE=xAQ
A;PEM:=r NyE=aoA(Me— ——oV(M—; N))oQ

To write into the locationM, we first ensure that it is allocated
(verification conditionP + M < —). Then the continuatioft is
checked with respect to a predicdteo (M — — — V(M -
N)). Intuitively, following the definition of the connectiveo, this
predicate “replaces” a portion of the heap satisfyldg— — by a
heap satisfying/ —, N, while preserving the rest of the structure
described byP. Thus, the predicate correctly models the semantics
of memory lookup.

The idea behind the typechecking of stateful commands dhoul
now be obvious, so we simply display the rules for allocatod
deallocation without further comment.

A F 7 <= mono AFM<<T
A,z:T;Po(emp —oV(zx —, M))FE = y:B.Q
A;PFx < allocr M E = y:B. (3x:7. (emp — V(z —+ M)) 0 Q)

AF M < nat A, m:heap, P+ M — —
A;Po(Mw— — —Vemp)F E = 2:A.Q

A; P+ dealloc M; E = z:A. (M — — — Vemp) o Q

4.2 TypecheckingCMD-computations

The CMD-judgments have similar rules for consequence and unit
as the one presented in th& case. We omit these here, and focus
instead on the primitives for concurrency.

A;m:heap, PF Py« Pox T
A;I;Pl = Ey :>x1:A1.Q1 A;I;PQFEQZ}(EQ:AQ.QQ
A x1:A1,22:A2;I; Po (P1 Po—0Q1Q2) F E = x:A.Q
A;I;P = (:Blel <= FE1:P || IEQ:AQ = EQ:PQ);E
= 1:A. (3(21:141, IEQ:AQ. (Pl Py —0 Q1 Qg) o Q)

The command| for fork-join parallelism checks the procesdés
and F» with respect to the ascribed preconditions on local skate
and P, to obtain strongest postconditiod andQ-. A verifica-
tion condition is issued to check th&t and P, indeed split the lo-
cal state of the parent process into disjoint sections (tt&lenent
P+ PyxP>xT). Then the common continuatidiis checked with
respect to a new description of the st@te> (P, P> —0 Q1 Q2),

monomorphic type, as only values of monomorphic types can be \which captures the semantics that the local heap descripétii®

stored into heaps. Further, the locatibh must be a natural num-
ber, andM must point to a value of type. The later is ensured

changed so that the; fragment are independently updated accord-
ing to ;. Thus, the predicate correctly captures the semantics of
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concurrent execution adf; and E-». SinceE; and E5 are checked The first is monadic bind, whose first-order analogue is the
using the same shared invaridnthey can modify the shared state, Hoare rule for sequential composition.
but only in ways which preserve the truth valuelof

y y P AF K = CMD {1 }{P1} 21:A1{Q1}

A,m:heap, PP+ T AjI* P Ey <= x1: A1 O Qq A,m:heap, [ F Iy % (I1—1) A, m:heap, P+ Py T
Ayz1:A1; [ Po(Pr — Q1) F E=x:A.Q A z1:A1;;Po (P — Q1) E=x:A.Q
A;I; P& xy <= atomicy, p,,0, E1; E AL PR < K E=x:A (3z1:Ar. (P1 — Q1) 0 Q)
= A (riAr (P — Q1) 0 Q) The difference is that monadic bind allows the first composed
Semantically, atomic first acquires exclusive access tcliaeed computation to be obtained bgvaluating K, whereas in Hoare

state, executes’; using both the shared and the designated chunk Logic, the composed processes must be supplied expliefiif,
of the local state. Thudy: must be checked against a precondition  as well as other monadic calculi, treats computations asdiss
I x P1, wherel is the descriptor of the shared state, dndis the values which can be supplied as function arguments, olttaise
descriptor of the designated chunk of the local state. Ini&ieed function results, and abstracted. These features are twntis
that P, describes local state by emitting a verification condition ingredients for our lifting of Hoare Logic to higher-order.

P P x T. We emphasize thak, is anST-computation, and Returning to the specifics of bind, we notice that the codagnc
thus it makes no semantic distinction between local andeshar sulated byK is executable in a local heap satisfyifgensured by
state. Upon exit[); releases what used to be shared state, so it the verification conditio? - P, « T), and a shared heap satisfying
must make sure that its invariant is preserved. THiisis checked I (ensured by the verification conditidhi- 7 * (I; — I)). The
against a postconditionl/ =+ @, which requires that’; changes later condition implies thaf; is arestriction of I to the subheap
the I portion of the its initial heap in such a way that the changed determined by, thus ensuring thak, by preserving the invariant
subheap satisfies again. This portion is what will be released as T, also preserves the larger invarightFinally, according to the
an updated version of the shared state. The rest of the hedyts Hoare type ofk, its execution changes thig chunk of the local
used to be the local state of the parent process, and is ahange heap as described by the postconditdn Thus, the continuation

according to some pre-specifigg. The continuationE is then E is appropriately checked against a precondition(P; — Q1).
simply checked against a local heap that updaté¢3 @art of P The second higher-order connective is the fixpoint. Due ¢o th
according to the binary relatio?. The update is expressed using presence of higher-order functions, HTT can replace thpitap
the relationP o (P1 — Q1). constructs by a general fixpoint combinator over a Hoare. tJpe

In order for the semantics to make sense, we must make surefixpoint computation is supposed to be immediately exeguted
that there is only one portion in the combined shared/loealph ~ the typing rule combines the usual typing of fixpoint combins
that satisfied, else £, may not know how much space must be With monadic bind.

returned to shared status. That is whys required to be precise, B=CMD {1 }{P1}z1:A:{Q1} A F B < type
enforcing that it always determines a unique subheap. $toecis A, m:heap, I+ Iy * (I1 — 1) A, m:heap, P+ Py T
a standard requirement on invariants of shared resour&syiara- A+f<B—>B A, x1:A L Po (P — Q1) - E=2:A.Q

tion Logic [3, 22, 28].
A+ precise J A,m:heap, PF Jx T
A;TxJ;Po(J —oVemp) FE = 2:A.Q The ST-judgment contains similar rules for monadic bind and
A;I; P+ publish J; E = 2:A. (J — Vemp) 0 Q fixpoint. They are strictly simpler than the above, as theyndb

. . have to account for the the shared state invardant
Publish .takgs a predicaté and promotes the chunk of thg local Finally, we integrate the monadic judgments into the puag-r
heap satisfying/ into shared status. Thug,must hold of a unique ment, using the twdo coercions.

part of the local heap. Existence of such a part is ensuredhéoy t
verification conditionP F J x T, and uniqueness is ensured by APFE<x:4.Q

the requirement thaff is precise. The published state is shared Ak stdo B <= ST {P}z:A{Q}
thro_ugr:out thetscgpg of the_coptinu?t:iﬁnvr\:hicr(;mumftt bf)chegked ALPFE < 2:A.Q
against an extended invariant on the shared state [) and a -
description of a shrunken local stafeo (J — Vemp). The later AFemdo B <= CMD{IH{ P} 2:A{Q}

AL PRy < fixpf; E= x:A. (3z1:A1. (P1 — Q1) 0 Q)

predicate simply states that the unigéi@art of P is replaced by Becausatdo andcmdo hygienically isolate the effectful compu-
an empty heap, thus subtractifigrom P. tations from the pure ones, the pure fragment may be forediat
a standard way, drawing on the formalism of ECC.
4.3 Typechecking generic computational primitives Az:AFM < B
The typing rule for conditional is unsurprising; it obtaithe post- Az AN Fr= A Ak Xz. M < 1lz:A. B
conditions for the branches, and then checks the contouatith
what amounts to a disjunction of these postconditions. Viéegnt A+ K = IIz:A. B AFM<A Ao M< A
only theCMD rule, as theST rule is analogous. At K M= [M:A/z]B AF Ao M <Va. A
AF A< type
AF M <bool A;I;Pod(M =tt)F Ey = x:A.Q1 AFK=Va.A AF 1< mono A+FK=B A=B
A;I; Pod(M =ff) - Ex = x:A.Q2 E =
Az AL Po(M?Q1Q2) F E = y:B.Q AbFKT=([r/a]A AFK <A
A;I; PF x < ifgy M then Ej else Eo; E AFM<=A
= y:B. (z:A. (M ?7Q1Q2) 0 Q) AFMA= A
The fragment of HTT described so far may easily be presented In HTT, we adopt a formulation with bidirectional typechéeul
in a more customary form with Hoare triples for partial catress, inspired by the work on Concurrent LF [29], where eliminatio
because the constructs have been essentially first-ordendv terms synthesize their types, and introduction terms mestup-
describe the two effectful constructs which are higheroiid an plied a type to check against. We can always check an elimmat
essential way. They have well-known first-order analogumes, term K by first synthesizing its type and confirming that it is equal
these are significantly less expressive. with the supplied type. We can always switch the directiannir

8 2008/10/7



waitThen = Aa. Al. An. Ast. Ar.
emdo(—— I1:{(l —nat —) * J}
—— P1:{P % r +—pat 0}
t < fix4 (Ac. cmdo
(— Ip{(l —nat =) * J}
—— Po:{P % r r—pat 0}
ok <= atomicpoo p s (1 1y 0),
t1. (tl ? (P * T nat 0)
(Fy:a. Qy) * 7 —a y))
(== P3:{l —nat — * J x P2}

x <:!natl;

— Py{l —nat xx J * Pa}

t1 < if (r = n)then
—— Ps:{l —nat n* J x Pa}
Yy < st;
- P65{l —nat — * J Q(y) * T Fnat 0}
T i=a Y;
— Pr{l—nat —*x J* Q(y) x7 —a y}
return ff

else return tt;
— Pg:{(t1 =ff D Jy:a. P7) A (t1 =tt D Py}
return t1);
—— Ig:{(l —nat =) x J}
—— Py:{ok? (P *r —nat 0)
(Fy:a. Qy) xr —a y)}
if ok then

—— TIo:{(l —nat —) * J}
—— P1o:{P # 7 +nat 0}
t3 <=c;
— In1:{(l —nat —) * J}
— P11:{3y:0. Qy) * 7 —a y}
return t3
else return ())));

— L2:{(l —nat —) * J}

— Pio:{3y:. Q(y) * 7 —a y}

return t)

Figure 2. Annotated example.

checking to synthesis by using the constructérA to supply the
type A to be synthesized.

4.4 Annotated example

The code in Figure 2 presents the typing derivation of thetion
waitThen from Section 2.1. We check the function against the type:

Va.Ill:loc. IIn:nat. IIr:loc.
ST{(l —nat n) * J *x P}z:a{(l —nat =) * J*Q(z)} — A

whereA = CMD{(l +snat —) * J}H{P * (7 —nat 0)}t:1{Fz:x. Q () *

(r =« 2)}. The code is annotated with predicates to illustrate the
properties of the state at the various program points. We dse
predicates about the shared state, &idr predicates about local
state. The typechecker will require that several veriftcatondi-
tions be proved, before the program is deemed correct. Tarese
(1) PoEPx*(r+—nt 0) % T, to enteratomic; (2) P31 <—nat —,

to read froml; (3) PsHl+—nnxJ*x Px T, to executest; (4)

Ps 1 — —, towrite intor; (5) Ps 012 s (t1 7 (P * 7 +nat 0)
(Fy:a. Q(y) *xr—ay)), to prove that the postcondition supplied
as an index toatomic is satisfied, and thustomic exits cor-
rectly; (6) IioF ((I+—nat —) % J) * (((I —nat —) * J) —k [10) and
PioF Px(r—ns 0) T, to execute the recursive call o and

(7) P2 3z:0. Q(x) x r —4 x, to prove that the postcondition of
waitThen holds. All of these conditions are fairly easy to discharge.

5. Properties
5.1 Equational reasoning and logical soundness

Like every other type theory, HTT has to define a judgmént B
for checking if two typesA and B are equal. This judgment was

used, for example, in the typing rule of the pure fragmentr&he
the bidirectional typechecker switches from synthesishiecking
mode. Because types are dependent, and thus may contas) term
the judgment is non-trivial, as it has to account for termadigy

as well. In addition, it is a desirable property that the digua
judgment be decidable.

Thus, the equality judgment of HTT, as of other (intensipnal
type theories, like ECC or Coq, is quite restricted and ideionly
equations that lead to decidable theories. In Coq, for ei@ntime
equality judgment only admits beta reduction. Other eguatiof
interest may, of course, be added as axioms. Propertiesethain
such axioms cannot be proved automatically by the typedreck
but must be discharged by the user via explicit proofs.

The development of the monadic fragment of HTT does not de-
pend on the organization and the equations of the pure fragme
So for example, if we chose Coq as an environment type thefory o
HTT, we could freely use beta reduction in the equationataaa
ing.

In the previous work [20], we have allowed equational reason
ing that relies on beta and eta equalitiesliietypes, and the generic
monadic laws (unit and associativity [16]) for Hoare typ&e. have
shown that such an equational theory is decidable, usintetie
nically involved, but conceptually quite simple and elegdea of
hereditary substitution§29]. The current paper uses literally the
same pure fragment, so the same proof of decidability amplie

THEOREM1 (Relative decidability of typecheckinglziven an or-
acle for deciding the verification conditions (that is, déog the

judgmentA + P, whereP is a proposition), all the typing judg-
ments of HTT are decidable.

In the actual implementation of HTT, the oracle from the abov
theorem can be replaced by explicit proofs, to be obtained by
some form of automatic or interactive theorem proving. Taterl

has been the approach that we adopted in the implementdtion o
HTT in Coq, where a modicum of automation can be recovered
by employing Coq tactics and tacticals. Theorem 1 can then be
viewed as a guarantee that verification condition generaditd
typechecking are terminating processes. This would notdastac-
ularly deep property in any first-order language, but beeadiET

is higher-order, deciding equality requinesrmalization This is a
non-trivial algorithm, but, by Theorem 1, it terminates.

THEOREM2 (Soundness of the HTT logicl-he judgmentA +
P cannot derive falsehood, and hence is sound.

Theorem 2 is established by exhibiting a model of HTT. In [208
have described a set-theoretic model which takes place@width
infinite inaccessible cardinalso, <1 . ... All the types are given
their obvious set-theoretic interpretation, the universo is the
set of all sets of cardinality smaller tham, heaps are interpreted
as finite functions fromat to ~a:mono. «, and predicates on a
type are interpreted as subsets of the type. Crucially, ¢élbges
areinterpreted as singleton setnd therefore all the computations
in HTT are given the same logical interpretation. This idisight
to argue logical soundness, because HTT currently contains
axioms declaring equations or other kinds of relations decéfil
computations (except the monadic laws, which are very satigl
and are handled by the typechecker). Not surprisingly, Hres
model suffices to argue the logical soundness of the extefrgim
the current paper.

The above theorems concerns HTT when viewed as a logic.
But HTT is at the same time a programming language, and we
need to also prove that it is sound when viewed as a progragimin
language. In particular, we need to show thatjiP - E <«
x:A. Q, then indeed, ifF is executed in a shared heap satisfying
invariant I and the local heap satisfying the predic&#teand £
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terminates, then the ending heap satisfies the pred@at€his
theorem would justify our typing rules and show thewequate
with respect to the intuitive operational interpretatidnfo

We will prove thisadequacy theorerfor the current extension
of HTT in Section 6, after we have formally defined the opersi
semantics.

5.2 Framing and compositionality
HTT computations satisfy the following standard propettie
LEMMA 3. Suppose thal\; I; P+ E < x:A. Q. Then:

1. Weakening consequent. X, z: A, i:heap, m:heap, @ + Q’,
thenA;I; P E < 2:A.Q'.

2. Strengthening precedent Af, m:heap, P’ + P,thenA; I; P’ -
E < x2:A. 0P 0 Q.

3. Local frameA;I;Px T+ E < x:A. P — Q.

4. Shared frame. I is precise, theml\; I x J; P+ FE < z:A. Q.

Similar properties hold foS T-computations as well.

The proofs of these properties are somewhat involved, aad th
interested reader is referred to the associated techiipaft[19].
However, we do comment here on the Local frame property, twhic

of the connection between monadic bind and sequential csimpo
tion that we mentioned in Section 4. The proofs of these lesnma
can be found in the associated technical report [19].

6. Operational semantics

In this section we focus on the operational semantics of the
monadic fragment of HTT, and prove theorems ab®ut and
CMD-computations. The purely functional fragment is quitesta
dard. Since the functional fragment is a sub-language of ,B@C
know that it isstrongly normalizing Therefore, we can give the
functional fragment a number of reduction strategies, uidiclg
call-by-name and call-by-value. Alternatively, we caarmalize
all of the pure subterms before applying the evaluatiorsridethe
monadic terms. Thus, we omit the treatment of the pure fragme
and refer the interested reader to [20].

The operational semantics of monadic computations regjuire
the following syntactic categories.

! | XU —=r M

G E) | (x, By | 2:A. E)

(z1:A1 < E1:Py || z1:A2 <= E:P); E3 |
(x1:A1 <= E:P || x2:A2 <= E2:P2); E3

Run-time heaps x ::=
Abstract machinesy ::=
Stacks k[P, E] =

may be seen as somewhat unusual, compared to the other worksRun-time heaps are finite maps from locations to terms. Taese

on Separation Logic. A more recognizable form of the locairfe
property may be

A;I;PxREE < x2:A.Q+0R

which directly states thall may be executed in an initial heap
extended with an arbitrary subheap satisfyiRgas long as the
ending heap is extended with the same subheap, also sadigtyi
Intuitively, this property holds since the initial typing & prevents

it from touching any disjoint state, and thiissmust be preserved
across the execution.

We note that the later form of the frame principle is easily

derivable from Lemma 3. IndeedX; I; P+ T+ E < ©:A. P —
Q, then by strengthening precedent we firstfyetf; P« R+ E <
2:A.0(P % R) o (P — @) and then becaus§P * R) o (P —o
Q) F Q = §R we can weaken the consequent il¥o/; P x R
E<xA.Q*JR.

We further show that HTT is compositional in the sense that
typechecking of a program (which amounts to verificatiogurees
only that the individual sub-programs are typechecked ragplg.
There is no need for whole-program reasoning, as the types ar
strong enough to isolate the program components and setireias
interfaces.

As in any other type theory, HTT's compositionality theorem
takes the form of a substitution principle, and we presenteso
selected statements. Here we assume the operdiigfr: A) E» on
computations®; andE- thatprependsE; onto E>. More formally,
if E1 = (C;return M), whereC is a list of commands, then
(E1/x:A)Es is defined to be”; [M: A /z] Es.

LEMMA 4 (Substitution principle)Suppose that - M < A,
and abbreviate[M:A/z]T with T, for arbitrary 7. Then the
following holds:

1. IfA,2:A, A1 F N < BthenA, Al - N’ < B

2. Az A A ;P - E < y:B.Q andy ¢ FV(M), then
AAGT P -E < y:B.Q .

B A LPFEL < xAQandA x:A;I;PoQ F Er <
y:B.T,andz ¢ FV(B) thenA;I; P + (Ei/x:A)Ey <
y:B.(3z:A.QoT).

Notice that the last statement of the substitution prirciplessen-
tially and adaptation to binary postconditions of the Hestrde in-
ference rule for sequential composition. This is an add#@i@aspect

10

the objects about which our assertions logic reasons. Turedsess

of the assertion logic established in Theorem 2 makes theemsn
tion between the run-time behavior of HTT and its logicaldébr.

If HTT shows that at some point in the program the heap should
contain a locatiord pointing to a value\/:7, then, when that point

in the program is reached at run-time, the heap containssigras
mentl —, M.

Abstract machines pair up a run-time heap with an expression
be evaluated. They come in two modes: (({) E) is theconcurrent
mode which takes &MD expressionE describing the concurrent
execution of a number of processes; and((R)E: | z:A. E») is
the atomic modeIn the atomic modeF; is anST-computation,
which must be executed before returning to the (concurreant)
tinuation E. The value ofF; is bound to the variable: A in Es.

Stacks are used to select an expression from a set of parallel
expressions inf. The selected expression will be advanced one
step according to the operational semantics. Given a listaaks
% = (k1,...,kn), and a list of predicate® = (Pi,...,P,),
and an expressioz, we write ®; P; E as an abbreviation for
K1[P1, -+ kn—1[Pn—1, kn[Pn, E]]]. Thus, the lists; determines
the sequence of parallel nestings, at the bottom of whiappears,
and the listP; determines the sequence of footprint annotations
provided along the path.

The main judgment of the operational semantics has the form
u— . We present selected rules for concurrent configurations.

X, R P; (z < atomica r,Q F1; E) —
X, E1 | 2:AR; (Pio(R—Q))FE

X, %; P; (publish J; E) — x,%; (P; o (J — Vemp)) E

X, Fi P; (z <= (cmdo E1):CMD {I}{R1} v A{Q1} E) —
X, Ri Pi ((E1/x:A)E)

X, Fq P; ((x1:A1 <= return M;:P; ||£2:A2 < return M2:P»); E)
— X, Fi P ([M1:A1/z1, M2: Az /22| E)
X, Fi P; (z <= if s tt then E; else E; E) — x,R; Py ((E¢/x:A)E)

X, Ri P; (x <= ifs ffthen E¢ else Ey; E) — x, 7 P; ((Ep/x:A)E)

X Fi Pi (21 < fixp [; E) —
X, Ri Pi (x1 < f(cmdo (y <= fixg f;return y)); E)

2008/10/7



The rules use a list of stacks P; to select the first command
to execute. Many different possibilities may arise coroggfing to
different selected stacks, reflecting the the non-detastiimature
of concurrent evaluation.

In the case of atomic, once a commafidis selected for atomic
execution, the abstract machine moves into the atomic amafig

to argue that an operational step can indeed be made if this ste
precondition has been proved in the assertion logic.

7. Related and future work
Transactional Memory. Monads for dealing with transactions

tion, whereE; proceeds to be executed without interference from have been introduced in Haskell [8, 9]. Our approach is simil

other processes, and with exclusive access to the figap

however, we have not considered an explicit abort in thisspap

Upon making a step, both atomic and publish change the local because we are interested in a high-level semantics wheeg-an

heap, and the annotations encountered along the stacklistust

plicit abort is not necessary [17]. Also, we can state andkliee

be updated in order to reflect the new heap values. In the casePre-conditions for an atomic block statically, and do nofuiee an

of atomic, we use the predicate ligP; o (R — Q)), because the
execution ofE; is captured by the relatioR — Q. In the case
of publish, we use the predicate l{g®; o (J — Vemp)), because
the execution of publish must erase the space described apd

this operation is captured by the relatidn— Vemp.
The rules for the atomic configurations are straightforwar
we present the characteristic ones without any comments.

=+ M), (x <+, E) | y:A. E1 —
(x, L=+ M), [M:7/2]E | y:A. E1

X, (x < alloc M; E) | y:A. E1 — (x,l —+ M), [l:nat/z|E | y:A. E1
(x,l— —),(l:=r M;E) | y:A.E1 — (x,l—+ M),E | y:A. Eq
(x,l— —),(dealloc l; E) | y:A. E1 — x, E | y:A. B}

X, (z < (stdo E2):ST{R1}2:B{Q1 }; E) | y:A. E1 —
X; (E2/x:B)E | y:A. E1

X, (return M) | y:A. E1 — x, [M:A/y|E1

explicit abort to ensure correctness of algorithms.

Higher-order and dependent types for effects. Dependently
typed systems with stateful features have to date mostlysfedt

on how to appropriately restrict effects from appearingyipes,
thus polluting the underlying logical reasoning. Sucheyst have
mostly employed singleton types to establish the connedtie
tween the pure and the impure levels of the language. Example
include Dependent ML by Xi and Pfenning [30, 31], Appliedeyp
systems by Chen and Xi [4] and Zhu and Xi [32], a type system for
certified binaries by Shao et al. [26], and the theory of refiaets

by Mandelbaum et at. [12]. HTT differs from these approaches
because we allow effectful computations to freely appeaypes,

as the monadic encapsulation facilitates hygienic mixihtypes
and effects, and thus preserves soundness. There are adsal se
recent proposals for purely functional languages with ddpat
types, like Cayenne [1], Epigram [14], Omega [27] and Sage [7
We also list several works that extend Hoare and Separatiga L
ics with higher-order functions, like the work of Honda, Ber
and Yoshida [2] and Krishnaswami et al. [10]. To our knowkedg

In order to prove the adequacy of operational semantics with hone of the mentioned languages and logics has been extemded

respect to typing, we need a helper judgment to define thedypr
abstract machines. Informallf,;- 1 < x:A. S holds if machine.
preserves the heap invariahtind, if 4 terminates, then the ending
heap satisfies the predicaXeS. The formal definition requires a
translation from run-time heaps to predicates given indelst as
[[] =empand[x,!+—, M] = [x] %! +—+ M.

DEFINITION 5. We say thaf - < x:A. S if

1. p=x,Eandy = xi1,x2 such that[x:] F I and I; [x2] +
E < z:A VS, or

2. u = x, E1,y:B. Es then there exists a predicafe such that
[X]+ Er < y:B.V(I*xR)andy:B;I;RF E; < 1:A.VS.

Notice that the definition uses unary postconditfbmstead of
binary ones. Binary postconditions served in the typingjodnts
to relate the unknown initial heap to the ending heap. Bugmwh
executing abstract machines, the initial heaps are alwags/ik,
explicitly given by x, so there is no need to have any special
abstractions for naming them.

concurrent Setting.

Separation Logic and concurrency. Resource invariants in (se-
quential) Separation Logic were introduced by O’Hearn gi2d],
and an extension to concurrency with shared resources ks be
considered by Brookes [3] and O’Hearn [22]. These works fpoin
out the need for precise invariants on the shared resources;
der to preserve the soundness of the logic. More recentlgjadis
and Parkinson [28] and Feng at el. [6] have combined Separati
Logic with rely-guarantee reasoning, whereby processesifsp
upper and lower bounds on the evolution of the shared state.

Our treatment of shared state with invariants was inspined b
O’Hearn’s presentation in [22]. Using invariants simpkftbe rea-
soning, but seems strictly weaker than rely-guaranteariants
only enforce a predetermined property, but otherwise lofgrna-
tion about the actual changes to the shared state. We hamd fou
this property somewhat restrictive in several exampled,@an in
the future to reformulate HTT with ideas from the rely-gudes
approaches.

Now our adequacy theorem can be presented in the manner fa-l mplementation and models of concurrency. The model of HTT

miliar from functional programming, as a combination ofggeva-
tion and progress theorems.

THEOREM6 (Preservation)lf 7 - u < x:A.S andp — u/,
thenl +p/ < 2:A.S.

THEOREM7 (Progress)if I + u < x:A. S, then eithery =
(x, return M) or there existg:’ such thaty — .

described here suffices to argue soundness, but is otheqwitse
restrictive, as it cannot support any interesting relatiom effectful
computations, except the monadic laws. A more refined madel o
sequential, impredicative, HTT has been developed by fateat
al. [25]. We hope that this model can be extended to a settitig w
transactions as well.

To improve usability of HTT, we plan to support automatic in-
ference of (some) pre- and post-conditions and loop inmgsid his

The proofs are by case analysis on the structure of the abstra would avoid the current need to explicitly annotate the corency

machines. The progress theorem crucially depends on Tinepre

3The optimistic evaluation usually associated with tratieas need not be
reflected in the operational semantics: it is an implemanmtattrategy for
speeding up the execution that does not change the semantics

11

primitives. Currently, HTT rules compute strongest posttitions,
but a significant amount of annotations can be inferred ifrties
are re-formulated to simultaneously infer the weakestqmdition
that guarantees progress, as well as the strongest posicomdth
respect to this precondition. We are currently implementims
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kind of formulation as an extension of Coq, supporting extn
as code extraction into Haskell.

8. Conclusion

This paper presented Hoare Type Theory (HTT), which is amlepe
dently typed programming language and logic supportinddrig
order programs with transactional shared memory conceyren
HTT follows the “specifications-as-types” principle, amdeir-
nalizes specifications in the form of Hoare triples for frtior-
rectness of stateful and concurrent programs into typeis. i$b-
lates the concerns about side-effects and concurrencytfreiogi-
cal, purely functional foundations of the system, and makssssi-
ble to mix concurrency with various advanced features Higher-
order functions, polymorphism, ADTSs, none of which was fldss
in the previous work on Hoare or Separation Logics for concur
rency. In fact, the pure fragment of HTT can soundly be scaled
the Extended Calculus of Constructions ECC [11] and Coqg [13]

Hoare specifications in HTT are monads, and we support two

different monadic familiesST { P} z: A{Q} classifies stateful se-
guential computations whete and@ are pre- and post-conditions
on the state, andMD {I}{P} z:A{Q} classifies transactional
computations, whergis an invariant on the shared state dhdnd
Q are pre- and post-condition on the local state. Both monads u
propositions from Separation Logic to concisely descriear-
ious aspects of the process state. Transactional congmgatiay
atomicallyinvoke a stateful computation on tebared statgif the
stateful computation provably preserves the invarianhefghared
state. That is, we provide a primitigeomic, which can coerce the
typeST {P«I} x:A{Q * I'} into the typeCMD {I}{ P} z:A{Q}.

We have shown that HTT as a logic is sound and compositional,

so that it facilitates local reasoning. We have defined itvational
semantics, and shown that this semantics is adequate gjpeace
to the specifications from the Hoare types.
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