
Type-theoretic semantics for transactional concurrency

Aleksandar Nanevski
Microsoft Research, Cambridge

aleksn@microsoft.com

Paul Govereau Greg Morrisett
Harvard University

{govereau,greg}@eecs.harvard.edu

Abstract
We propose a dependent type theory that integrates programming,
specifications, and reasoning about higher-order concurrent pro-
grams with shared transactional memory. The design builds upon
our previous work on Hoare Type Theory (HTT), which we ex-
tend with types that correspond to Hoare-style specifications for
transactions. The types track shared and local state of the process
separately, and enforce that shared state always satisfies agiven in-
variant, except at specific critical sections which appear to execute
atomically. Atomic sections may violate the invariant, butmust re-
store it upon exit. HTT follows Separation Logic in providing tight
specifications of space requirements.

As a logic, we argue that HTT is sound and compositional. As
a programming language, we define its operational semanticsand
show adequacy with respect to specifications.

1. Introduction
Transactional memory is one of the most promising directions in
the evolution of concurrent programming languages. It replaces
locks, conditional variables, critical regions and other low-level
synchronization mechanism, with a higher-level linguistic con-
struct of transactions, and delegates to the run-time system the
scheduling of concurrent processes. This frees the programmer
from the need to develop potentially complicated and frequently
non-modular synchronization protocols that arise in otherap-
proaches to concurrency. Transactions make it simpler to write
efficient and correct concurrent programs that avoid data races and
deadlock. Moreover, transactions are sufficiently well-behaved and
compositional to fit naturally into a functional, higher-order lan-
guage like Haskell [9].

In this paper we are interested not only in programming with
transactions, but in developing a formal logic for specification
and reasoning about concurrent programs with shared transac-
tional memory. Most program logics for concurrency are versions
of Hoare Logic [24]. The recent work on concurrent Separation
Logic [22, 3, 28, 6] has made significant inroads into specification
and reasoning about shared memory with locking synchronization.
The advances of Separation Logic mostly revolve around the idea
of spatial separation, whereby each process can be associated with
a logical description of exclusive ownership over the statethat it
requires. This facilitates local reasoning, as the changesthat a pro-
cess makes to its local state do not influence others. Furthermore,

[Copyright notice will appear here once ’preprint’ option is removed.]

Separation Logic connectives lead to particularly convenient de-
scriptions of transferring ownership of state between processes.

When it comes to accessing shared resources, Separation Logic
can specify the resource invariants that processes must preserve
upon the exclusive use of the resource [22, 3]. Alternatively, Sep-
aration Logic can specify upper and lower bounds on how the
shared resource may change, in the style of rely-guarantee reason-
ing [28, 6].

While Separation Logic has significantly simplified the cor-
rectness proofs about shared state, it has mostly concerneditself
with imperativefirst-order languages andlow-level synchroniza-
tion primitivessuch as locks. However, irrespective of whether one
intends to prove his programs correct or not, programming with
such low-level primitives remains difficult. In addition, first-order
languages, by definition, do not support advanced linguistic fea-
tures such as higher-order functions, polymorphism, modules, and
abstract data types; all of these are indispensable for programming
in the large as they facilitate code reuse, information hiding and
modularity. The higher-order abstractions become all the more im-
portant if one wants to support specification and reasoning.Yet,
most program logics based on (sequential or concurrent) Hoare or
Separation Logic have little or no support for these important mod-
ularity features.

In this paper we take the step of combining programming,
specification, and reasoning in the style of Separation Logic about
higher-orderprograms with transactional concurrency. We build on
our previous work on Hoare Type Theory (HTT) [20, 18], which is
a dependent type theory with extensive support for programming
and reasoning about side-effects related to state. Here, weextend
HTT with concurrency and transactional primitives.

The main feature of HTT is theHoare type, which takes the
form ST {P} x:A{Q} and captures partial correctness within the
type system. These types classify programs that can be (sequen-
tially) executed in a state satisfying the predicateP and either di-
verge, or converge to a resultx:A and a state satisfyingQ. In the
course of execution, such programs can perform memory reads,
writes, allocations and deallocations. By capturing specifications-
as-types, HTT makes it possible to abstract over and nest thespeci-
fications, combine them with the programs and data that they spec-
ify, or even build them algorithmically. All of these features signifi-
cantly improve over the information hiding and code reuse facilities
of Hoare Logic.

From the semantic standpoint, the Hoare typeST {P} x:A{Q}
is amonad[16]. Here we introduce yet another monadic family of
Hoare types, which serves to encapsulate concurrent behavior. The
new Hoare types take the formCMD {I}{P} x:A{Q} and clas-
sify concurrent programs that execute in ashared statesatisfying
the invariantI , andlocal statesatisfying the preconditionP . Upon
termination, the invariant on the shared state is preserved, but the
local state is modified according to the predicateQ. The reader fa-
miliar with Haskell’s implementation of transactional memory may
benefit from the (imprecise) analogy by which Haskell’s STM and

1 2008/10/7

IO monads correspond to ourST andCMD type families, respec-
tively. For example, as in Haskell,CMD-computations can invoke
ST-computations, and fork newCMD threads of computation, but
ST-computations are limited to state modifications, in order to fa-
cilitate optimistic techniques for implementing transactions.

Similar to Haskell, HTT monads separate the purely functional
from the effectful, impure fragment. The pure fragment of HTT in-
cludes the Extended Calculus of Constructions (ECC) [11], which
is a full dependent type theory with support for abstractionover
type universes and predicates in higher-order logic. Indeed, we are
currently in the process of implementing HTT in Coq [13], which
itself extends ECC with inductive types and predicates (neither of
which conflicts with our stateful extensions). For the purposes of
this paper, however, we restrict attention to a much smallerfrag-
ment which suffices to illustrate our concurrency extensions.

The first technical contribution of this paper, when compared
to the previous work, is the formulation of the logical connectives
for describing the concurrent behavior. We argue that this logic
is sound, and—particularly importantly—compositional. Just as
in any type theory, compositionality is expressed by substitution
principles, which guarantee that reasoning about HTT programs
can be kept local in the sense that the typechecking and verification
of a larger program only requires typechecking and verification of
its sub-programs, and not any whole-program reasoning.

Just as any type theory, HTT is not only a program logic, but
a programming language at the same time1. As the second contri-
bution of the current paper, we endow the stateful and concurrent
terms of HTT with operational semantics, and prove that thisoper-
ational semantics is adequate for the intended interpretation of the
Hoare types.

The rest of the paper is structured as follows. In Section 2 we
introduce the basic stateful and transactional constructs, and illus-
trate how programs can be specified using Hoare types. In Section 3
we describe the formal syntax of the language, the connection with
some well-known features from Hoare Logic, like ghost variables,
and the definitions of the relational connectives that will serve to
capture the semantics of state and concurrency. Section 4 presents
the type system, and Section 5 describes the basic theorems about
it. In Section 6 we introduce the operational semantics, andthe
proof of its adequacy. Section 7 discusses the related and future
work, and Section 8 concludes.

2. Overview of monadic state and transactional
memory

There are three conceptual levels in HTT: the purely functional
fragment, theST fragment, and theCMD fragment. As the name
suggests, the pure fragment has no computational effects. TheST
fragment includes sequential stateful commandsalloc M (alloca-
tion), ! M (read),M1:=M2 (write), anddealloc M (deallocation).
In addition, theST fragment contains conditionals, and allows
one to construct recursive (i.e., possibly diverging) computations.
TheCMD fragment includes commandsatomic E (atomically run
theST-computationE), andx1⇐E1‖x2⇐E2 (run the twoCMD
computationsE1 andE2 in parallel). TheCMD fragment also in-
cludes apublish primitive which will be explained below, as well
as constructors for conditionals and recursion.

The stateful sequential computations are classified by types of
the formST {P}x:A{Q}, whereP andQ are pre- and postcon-
ditions on the state. To illustrate these types, and their interaction
with lambda abstraction and function types from the pure fragment,
consider the functionincBy, which takes a pointerl to anat, a value
n:nat, and then increments the contents ofl by n. This function can

1 Hence exhibiting a variation on the Curry-Howard isomorphism.

be implemented as follows.

incBy : Πl:loc. Πn:nat.
[v:nat]. ST {l 7→nat v}x:1{l 7→nat v + n}

= λl. λn. stdo (t ⇐ ! l; l := t + n; return ())

The term syntax is chosen to closely resemble Haskell’sdo-
notation, but also to support the meta-theoretic development (i.e.,
substitution principles). The keywordstdo encapsulates in its scope
the stateful part of the code, separating it from the functional
abstraction. The stateful code first reads from the locationl and
binds the obtained value to the (immutable) temporary variable t
(t ⇐ ! l), then writes back the increased value (l := t + n), before
returning():1.

The type ofincBy is a bit more involved: It specifies thatincBy
takes two argumentsl:loc andn:nat, and returns a block of stateful
code with Hoare type[v:nat]. ST {l 7→nat v}x:1{l 7→nat v + n}.
As expected, the preconditionl 7→nat v requires that at the begin-
ning of the stateful block, the locationl points tosome valuev:nat.
The postcondition ensures that at the endl points to an incremented
value. We note the use of the variablev:nat, which is bound in the
Hoare type, with the scope extending through the precondition and
the postcondition. The variablev serves to relate the value stored
in the initial state of the monad, with the value at the endingstate.
In accordance with the standard Hoare logic terminology, wecall v
a ghost variable.

Concurrent computations are classified by types of the form
CMD {I}{P} x:A{Q}, whereP andQ are pre- and post-conditions
on the local state of the computation, andI is an invariant on the
state that is shared with other processes. The key constructmedi-
ating access to shared state is theatomic primitive. It presents the
programmer with the abstraction that the enclosed block of code
executes sequentially, and in isolation from all the other parallel
processes. Of course, implementations are not so naive and extract
parallelism through advanced run-time techniques. In particular,
atomic blocks are optimistically run in parallel with the hope that
the blocks will not perform conflicting changes to memory. Tohan-
dle the case where there is a conflict, the runtime system aborts one
of the conflicting blocks by rolling back its changes to the store and
then re-starting the block.

Conceptually, theatomic primitive has the following type:

atomic : ST {I ∗ P}x:A{I ∗ Q} → CMD {I}{P} x:A{Q}

We can think of a thread running the commandatomic M , as ac-
quiring a global lock on the shared state, executing the sequential
codeM , and then releasing the lock. During theatomic block, the
thread is allowed to access both global and local state. Uponen-
try to the block, the global state is described by the invariant I ,
and the local state is described byP . Furthermore, we are guar-
anteed that the local and global state are disjoint through the use
of theseparating conjunctionspecificationI ∗ P . Throughout the
execution of theatomic block, the thread is allowed to read and
modify both the local and global state described by the specifica-
tion. In particular, it can safely violate the invariant on the global
state since no other thread can see the changes during the trans-
action. Furthermore, the thread is able to freely transfer locations
from the local state to the global state and vice versa. Upon ter-
mination of the block, the thread must re-establish that theheap
can be split into a local portion, now described byQ, and a global
portion once again described by the invariantI , resulting in a post-
condition ofI ∗ Q. In summary, a sequential command with type
ST {I ∗ P}x:A{I ∗ Q} can be lifted viaatomic to a concurrent
command with interfaceCMD {I}{P} x:A{Q}.

2 2008/10/7

As a simple example, consider the following definition:

transfer =λl1, l2, n. cmdo
(t ⇐ atomic(

t1 ⇐ ! l1;
if t1 < n then return ff
else (decBy l1 n; incBy l2 n; return tt));

return t)

The transfer command attempts to atomically transfer the value
n from location l1 to location l2, using the auxiliary commands
incBy anddecBy (not shown here). Ifl1 holds a value less thann,
then the transfer aborts and returns booleanff, but if the transfer is
successful, the command returns the booleantt.

We can assigntransfer a number of types, depending upon
what correctness properties we wish to enforce. For example, in
a banking application, we may wish to capture the constraintthat
the sum of the balances of the accounts must remain constant.That
is, money can only be transferred, but not created or destroyed. In
such a setting, we can use the following type:

transfer : Πl1:loc. Πl2:loc. Πn:nat.
CMD {I(l1, l2)}{emp}x:bool{emp}

whereI(l1, l2) = ∃v1:nat. ∃v2:nat. ((l1 7→nat v1) ∗ (l2 7→nat

v2)) ∧ (v1 + v2 = k). Here,emp denotes an empty store, and
l 7→τ v denotes a store where locationl points to a valuev of
typeτ . Thus, the specification oftransfer captures the invariant that
the sum of the values inl1 andl2 must equal the constantk. Note
that during the transfer, the invariant is violated, but is eventually
restored. Thus, irrespective of the number of transfers executed
betweenl1 andl2, the sum of the values stored into these locations
always remainsk. Note also thattransfer operates only on shared
state, and imposes no requirements on the local state. In particular,
it can run even if the local state is empty, and any extensionsof
the local state will not be touched. In HTT, like in Separation
Logic, this property is specified by using the predicateemp as a
precondition, to tightly describe the local space requirements of the
function.

We can now execute a number of transfers betweenl1 and l2
concurrently; the system will take care to preserve the invariant.

transfer2 : Πl1:loc. Πl2:loc.
CMD {I(l1, l2)}{emp}x:bool{emp}

= cmdo((t1 ⇐ transfer l1 l2 10 ‖
t2 ⇐ transfer l2 l1 20);
return(t1 andt2))

The above function forks two processes to concurrently execute
two transfers, one betweenl1 andl2 and the other betweenl2 and
l1. The values obtained as a result of each process are collected
into variablest1 andt2, and the function returnstt if both transfers
succeed.

2.1 Guarded commands

As a more interesting example, we next develop a functionguard
which waits in a busy loop until a provided location containssome
required value2. The guard definition will be a function of four
arguments, so thatguard α l n f reads the contents of locationl,
and loops until this contents equalsn. Then it will execute theST
commandf atomically, and return the obtained value of typeα. For
example,guard 1 l1 42 (decBy l135) will wait until l1 contains 42,
and then decrement its contents by 35.

guard : ∀α. Πl:loc. Πn:nat.
ST {(l 7→nat n) ∗ J ∗ P}x:α{(l 7→nat −) ∗ J ∗ Q(x)} →

CMD {(l 7→nat −) ∗ J}{P} x:α{Q(x)}

2 Of course, a real implementation will provide something like guard as a
blocking primitive instead of encoding it via busy-waiting.

The return type ofguard is aCMD-monad in order to allow other
processes to concurrently set the value ofl, while guard is busy
waiting. Correspondingly,l should be a shared location, requiring
the shared state invariant of theCMD-type to specify thatl 7→nat −.
Whatever the preconditionP and postconditionQ on the local state
this return type has, theST-computation that is executed atomically
should augment them with the knowledge thatl is allocated, and
that l contains valuen at the beginning of the atomic execution.
We further allow that the shared state may include an additional
section described by the predicateJ . This section can be modified
by theST-computation, as long as the validity ofJ is preserved.
Notice thatguard is implicitly polymorphic in the predicatesJ , P
andQ. In this paper we do not discuss explicit polymorphism over
predicates, but notice that such a feature is available in ECC and
Coq, and we have already shown in the previous work that HTT
can consistently (and usefully) be extended with it [18].

We split the implementation ofguard into two parts. We first
assume a helper functionwaitThen which carries out the busy
loop, but instead of immediately returning the result of theatomic
execution, it stores this result into a temporary locationr. Using
waitThen, guard is implemented as follows.

guard = Λα. λl. λn. λst.
cmdo (r ⇐ atomic(t ⇐ alloc 0; return t);

waitThen α l n st r;
t ⇐ atomic(x ⇐ ! r; dealloc r; return x);
return t)

The code first allocates the temporary locationr, then waits onl,
expecting the result of waiting to show up inr. Finally, it reads
the result fromr, and passes it out but only afterr is deallocated.
Notice that the accesses to store are always within an atomicblock.

waitThen = Λα. λl. λn. λst. λr.
cmdo(t ⇐ fix(λc. cmdo

(ok ⇐ atomic(x ⇐ ! l;
if (x = n) then

y ⇐ st;
r := y;
return ff

else return tt);
if ok then x ⇐ c; return x
else return ()));

return t)

Under the fixpoint,waitThen first atomically readsl, and based on
the value, either executesst (by the commandy ⇐ st), storing
the resulty into r, or simply exits the atomic block. Either way,
it passes back via the flagok the information about which branch
was taken. If the contents ofl was not appropriate, it goes around
the loop again, by invoking the fixpoint computationc. Otherwise,
r must contain the required value, so the function exits. The type
of waitThen is

waitThen : ∀α. Πl:loc. Πn:nat. Πr:loc.
ST{(l 7→nat n) ∗ J ∗ P}x:α{(l 7→nat −) ∗ J ∗ Q(x)}

→ CMD{(l 7→nat −) ∗ J}{P ∗ (r 7→nat 0)} t:1
{∃x:α. Q(x) ∗ (r 7→α x)}

Notice that the returnCMD type requires the existence of the
location r in the local state, and guarantees thatr contains the
result of the atomic execution at the end. The later is ensured by the
spatial conjunction withQ(x) in the postcondition. Also, the first
two components of the return type represents the loop invariant of
the busy loop ofwaitThen. Essentially, throughout the iterations,
we know that(l 7→nat −) ∗ J holds for the shared store and
P ∗ (r 7→nat 0) holds for the local store.

3 2008/10/7

2.2 Synchronizing variables

Usingguard, we can now implement synchronizing variables (also
know as “MVars” in Haskell). A synchronizing variable is a loca-
tion in memory that either contains a value, or is empty, withtwo
operations:put andtake. Theput operation will put a new value
into an empty variable, and block otherwise. Thetake operation
will block until a variable becomes full, then read the valuefrom a
full variable, emptying it.

We implement each synchronizing variable using two loca-
tions l and v in the shared heap,l for the empty/full flag, and
v for the value. The invariant for the shared heap isIsv(l, v) =
∃n:nat. ((l 7→nat n) ∧ (n = 0 ∨ n = 1)) ∗ (v 7→A −), requiring
that l points to anat (0 for empty,1 for full), and thatv contains
a value of a fixed type. Bothput andtake are CMD-computations
over a shared heap described byIsv. Since these operations only
operate on the shared state, the pre- and postconditions on the local
state are triviallyemp. The implementations call theguard func-
tion, instantiated withJ = (v 7→A −), andP = Q = emp.

put : Πl:loc. Πv:loc. A → CMD {Isv(l, v)}{emp}x:1{emp}
= λl. λv. λx. guard 1 l 0 stdo (l := 1; v := x; return ())

take : Πl:loc. Πv:loc. CMD {Isv(l, v)}{emp}x:A{emp}
= λl. λv. guard A l 1 stdo (l := 0; x ⇐ ! v; return x)

We can test for fullness/emptiness, without blocking, by using the
function empty, similar to the one provided in Haskell standard
libraries [9].

empty : Πl:loc. Πv:loc. CMD {Isv(l, v)}{emp}x:nat{emp}
= λl. λv. cmdo(t ⇐ atomic(x ⇐ ! l; return x);

return t)

2.3 Producer-consumer pattern

HTT includes an additional concurrency primitivepublish J , which
logically takes a part of the local state described by the predicate
J and moves it into the shared state. A computation may need to
perform this operation if it wants to spawn some child processes
to execute concurrently on the given local state. We illustrate the
primitive by building a producer-consumer pattern, whereby we
allocate a new synchronizing variable, publish it as sharedstate,
and launch two processes which communicate via the now shared
variable. The shared variable becomes a primitive communication
channel between the processes.

Suppose that we have a producer function,p, and a consumer
function, c. Then, we can easily construct functions which read
from and write to a shared variable usingp andc.

produce = λl. λv. cmdo(t = fix λf. cmdo(x ⇐ p;put l v x;
s ⇐ f ; return s);

q ⇐ t; return q)

consume = λl. λv. cmdo(t = fix λf. cmdo(x ⇐ take l v; c x;
s ⇐ f ; return s);

q ⇐ t; return q)

Here, p and c both obtain aCMD-computations with a shared
invariantIsv(l, v). In order to useproduce andconsume, we must
first establish this invariant; this is wherepublish comes in.

cmdo(l ⇐ atomic(t ⇐ alloc 0; return t);
v ⇐ atomic(t ⇐ alloc a; return t);
publish(Isv(l, v));
x1 ⇐ produce l v ‖ x2 ⇐ consume l v;
return ())

After allocatingl andv, we publish them with the invariantIsv.
After the publish,produce and consume can execute in parallel,
and each has access tol andv as shared state.

Types A, B, τ ::= α | bool | nat | 1 | Πx:A. B | ∀α. A |
ST {P}x:A{Q} | CMD {I}{P} x:A{Q}

PredicatesP, Q, R, I ::= idA(M, N) | seleqτ (H, M, N) | > |
⊥ | P ∧ Q | P ∨ Q | P ⊃ Q | ¬P |
∀x:A. P | ∀α. P | ∀h:heap. P |
∃x:A. P | ∃α. P | ∃h:heap. P

Heaps H, G ::= h | empty | updτ (H, M, N)
Terms K, L, M, N ::= x | tt | ff | n̄ | M ⊕ N | () | λx. M | K M |

Λα. M | K τ | stdo E | cmdo E | M : A
Computations E, F ::= return M | x ⇐ K;E | x ⇐ !τ M ;E |

M :=τ N ; E | x ⇐ allocτ M ; E |
dealloc M ;E | x ⇐ atomicA,P,Q E1; E |
(x1:A1 ⇐ E1:P1 ‖ x2:A2 ⇐ E2:P2); E |
publish I;E | x ⇐ fixA M ;E |
x ⇐ ifA M then E1 else E2;E

Contexts ∆ ::= · | ∆, x:A | ∆, α | ∆, h:heap | ∆, P

Figure 1. Syntax of HTT.

3. Formal syntax and definitions
In this section we present the syntax of HTT (Figure 1), and discuss
the constructs in more detail.

3.1 Types

In addition to the already described Hoare types, HTT admits
the types of booleans and natural numbers, dependent function
typesΠx:A. B, and polymorphic quantification∀α. A. The type
variablesα in polymorphic quantification ranges over monomor-
phic types only, as customary in, say, Standard ML (SML). Thus,
HTT supports only predicative polymorphism, although extensions
with impredicativity are currently being investigated by Petersen et
al. [25]. As usual with dependent types, we writeA → B instead
of Πx:A. B, when the typeB does not depend onx. In the current
paper, we ignore the other useful type constructors from pure type
theories, likeΣ-types and inductive types. These do not present any
theoretical problems. For example, we have studied the extension
with Σ-types in the previous work [18], and have also implemented
the stateful (but concurrency-free) part of HTT in Coq, which sup-
ports inductive types and predicates. These extensions, however, do
add bulk to the development, so we omit them here in order to focus
on the main ideas related to concurrency.

3.2 Terms

The purely functional fragment consists of the usual term construc-
tors: boolean values, numeralsn̄ and the basic arithmetic opera-
tions (collectively abbreviated asM ⊕ N), the unit value():1,
lambda abstraction and application, and type abstraction and ap-
plication. We do not annotate lambda abstractions with the do-
main types, but instead provide a constructorM :A to ascribe a
type A to the termM . This organization facilitates bidirectional
typechecking [29]. Thestdo andcmdo constructors are the intro-
duction forms for the corresponding Hoare types, analogousto the
monadic-do in Haskell, except in HTT we have separate construc-
tor for each monad, to avoid any confusion.

3.3 Computations

The scope ofstdo and cmdo is a computation, which is a semi-
colon separated list of commands, terminating with a returnvalue.
We have already described the intuition behind most of the con-
structors in Section 2. However, some of these require explicit an-
notations with types, pre/postconditions and invariants,which were
omitted before, so we now revisit them with the additional details.

For example, HTT supports strong updates by which a location
pointing to a value of typeτ1 may be updated with a value of
some other typeτ2. Correspondingly, theST primitives for reading,

4 2008/10/7

writing and allocation must be annotated with the type of the
manipulated value.

CMD-computations are annotated as follows. (1)(x1:A1 ⇐
E1:P1 ‖ x2:A2 ⇐ E2:P2) forks two parallel child processes
E1 andE2. Upon their termination, the processes arejoined, that
is, their return results are bound tox1 andx2, respectively, their
private space is returned to the parent process, and the execution
proceeds to the subsequent command of the parent process. The ‖
command explicitly requires the return typesA1 andA2 and the
preconditionsP1 andP2 on the parallel processes. The precondi-
tions indicate which part of the local state of the parent process
is delegated to each. The split of the local state must be disjoint.
If the two processes are supposed to share state, then that state
must be declared as shared. (2)x ⇐ atomicA,P,Q E1 explicitly
requires the return type ofE1 as well as the preconditionP and
postconditionQ on the local state thatE1 manipulates. This lo-
cal state will be joined with the shared state of the parent process,
beforeE1 executes atomically. (3)publish I does not require ad-
ditional annotation beyond the predicateI . However, we mention
here thatI must beprecise, in the sense that it uniquely defines the
heap fragment that should be published. For example, the predicate
(x 7→nat − ∗ y 7→nat −) is precise, and would correspond to pub-
lishing the locationsx andy. On the other hand, the predicate>
is not precise, as it holds of every heap. Precision is customarily
required of shared state invariants in Separation Logic [3,22].

Finally, the conditional and the fix constructs are present in both
monads. The conditional is annotated with the expected types of its
branches. Fix is annotated with the typeA, and computes the least
fixed point of the functionM :A→A. HereA must be a Hoare type,
in order to guarantee that all uses of recursion (and hence, potential
occasions for non-termination) appear under the guard ofstdo or
cmdo. Thus, non-termination in HTT is considered an effect, and
is encapsulated under the monad, in order to preserve the logical
properties of the underlying pure calculus. In particular,the encap-
sulation would prevent the recursion from unrolling in the reduc-
tions performed by equational reasoning during typechecking.

3.4 Heaps

In HTT we model heap locations by natural numbers, although in
the examples we writeloc instead ofnat to emphasize when a
natural number is used as a pointer. Heaps are modeled as functions
mapping a locationN to a pair(τ, M) whereM :τ . In this case,
we say thatN points toM , or thatM is thecontentsof N . The
type τ is required to be monomorphic, in order to preserve the
predicativity of the type theory. This is analogous to the treatment
of state in, for example, SML. However,τ can be a dependent
function type, as well as a Hoare type. Thus, heaps in HTT are
higher-order, albeit predicative.

Syntactically, we build heaps out of the following primitives:
(1) empty stands for the empty heap, that is, a nowhere defined
function. (2)updτ (H, M, N) is a function which returnsN :τ at
argumentM , but equalsH at other arguments. It models the heap
obtained fromH by writing N :τ into the addressM .

3.5 Predicate logic and heap semantics

In this paper we consider a first-order, polymorphic, predicate logic
over heaps. We have shown in the previous work [18] that the logic
can easily be scaled to higher-order, simply by introducinga new
type of propositions (as customary in ECC or Coq). The restriction
to first-order will suffice for the current paper.

Aside from the usual connectives of first-order logic, we provide
two primitives: (1)idA(M, N) is the equality at typeA. We will
frequently abbreviate it asM =A N or simply M = N . (2)
seleqτ (H,M, N) reflects the semantics of heaps into the assertion

logic of the Hoare types. It holds iff the heapH containsN :τ at
locationM . The following axioms relateseleq andupdate.

¬seleqτ (empty, M, N)
seleqτ (updτ (H,M, N), M, N)
M1 6= M2 ∧ seleqτ (updσ(H,M1, N1), M2, N2) ⊃

seleqτ (H,M2, N2)
seleqτ (H,M, N1) ∧ seleqτ (H,M, N2) ⊃ N1 =τ N2

The first axiom states that an empty heap does not contain
any assignments. The second and the third are the well-known
McCarthy axioms for functional arrays [15]. The fourth axiom
asserts a version of heap functionality: a heap may assign atmost
one value to a location, for each given type. The fourth axiomis
slightly weaker than expected, as we would like to state thata heap
assigns at most one type and value to a location. This is easily
expressible in the extension of HTT with higher-order logic[18].

3.6 Separation logic

Given the heaps as above, we can now define predicates expressing
heap equality, disjointness, and disjoint union of heaps [20].

P ⊂⊃ Q = P ⊃ Q ∧ Q ⊃ P
H1 = H2 = ∀α.∀x:nat.∀v:α. seleqα(H1, x, v) ⊂⊃

seleqα(H2, x, v)
M ∈ H = ∃α.∃v:α. seleqα(H,M, v)
M 6∈ H = ¬(M ∈ H)

share(H1, H2, M) = ∀α.∀v:α. seleqα(H1, M, v) ⊂⊃
seleqα(H2, M, v)

splits(H,H1, H2) = ∀x:nat. (x 6∈ H1 ∧ share(H, H2, x))∨
(x 6∈ H2 ∧ share(H, H1, x))

In English,⊃ is logical implication,⊂⊃ is logical equivalence,
H1 = H2 is heap equality,M ∈ H iff the heapH assigns to the
locationM , share states thatH1 andH2 agree on the locationM ,
andsplits states thatH can be split into disjoint heapsH1 andH2.

We next formally define the assertions familiar from Separation
Logic [21]. All of these are relative to the free variablem, which
denotes the current heap fragment of reference. We will callpred-
icates with one free heap variablem unary predicates, and use let-
tersP , R, S andI to range over them. Given a unary predicateP ,
we will customarily use the syntax for functional application, and
write P H as an abbreviation for[H/m]P .

emp = m = empty
M 7→τ N = m = updτ (empty, M, N))
M ↪→τ N = seleqτ (m, M, N)
P ∗ S = ∃h1:heap.∃h2:heap.

splits(m, h1, h2) ∧ P h1 ∧ S h2

P —∗S = ∀h1:heap.∀h2:heap.
splits(h2, h1, m) ⊃ P h1 ⊃ S h2

thisH = m = H
precise P = ∀h1, h

′

1, h2, h
′

2:heap.
splits(m, h1, h

′

1) ⊃ splits(m, h2, h
′

2) ⊃
P h1 ⊃ P h2 ⊃ h1 = h2

We have already given the informal descriptions ofemp, M 7→τ N
andP ∗S in Section 2.M ↪→τ N iff current heap containsat least
the locationM pointing toN :τ . P —∗S holds iff any extension of
the current heap by a heap satisfyingP , produces a heap satisfying
S. this (H) iff the current heap equalsH . Concerning the last
predicate,precise P holds iff for any given heapm, there isat most
onesubheaph such thatP h.

With these definitions, it should now be apparent that the pre-
conditions, postconditions and invariants in our Hoare types are
predicates over heaps, and that they implicitly depend on the heap
variable m. For example, the typeST {emp}x:A{emp} really

5 2008/10/7

equalsST {m = empty}x:A{m = empty}, wherem in the pre-
condition denotes the initial heap, andm in the postcondition de-
notes the ending heap of a stateful computation. Thus, the two m
variables are really different. If we wanted to make the scope of m
explicit, we would write the typeST {P} x:A{Q} explicitly as

ST {m. P}x:A{m. Q}

However, in order to reduce clutter, we leave the bindings ofm
implicit. We adopt a similar strategy forCMD {I}{P}x:A{Q},
whereI also depends on an implicitly bound variablem.

3.7 Ghost variables and binary postconditions

The programs from Section 2 already exhibit that the use of Hoare
types frequently requires a set of ghost variables that scope over
the precondition and the postcondition in order to relate the two.
For example, the programincBy with the type

incBy : Πl:loc. Πn:nat. [v:nat]. ST {l 7→nat v}x:1{l 7→nat v + n}

needs the ghost variablev to name the value initially stored intol.
Unfortunately ghost variables are inconvenient for the seman-

tics of HTT, for several reasons. For one, a binding construct like
the [brackets] above complicates the definition of equalitybetween
Hoare types: is the context with a ghost variablex:A×B equal to
the context with two ghost variablesx1:A,x2:B? Another prob-
lem arises if one wants to consider abstraction over predicates, as
is frequently necessary in practical applications in orderto hide the
invariants of the local state of functions and modules [18].Then we
quickly face the need to quantify over contexts of ghost variables.

To avoid dealing with these issues, we need an alternative to
ghost variables, which would still let us relate the preconditions and
postconditions of Hoare types. One type-theoretic possibility is to
explicitly functionally abstract the ghost variables of each Hoare
type. For example,incBy may be re-typed as:

incBy′ : Πl:loc. Πn:nat. Πv:nat.
ST {l 7→nat v} x:1{l 7→nat v + n}

This, however, is not a convenient solution either. Functional ab-
straction will require every caller ofincBy′ to instantiatev at run-
time. The ghost variablev, which should serve only the purpose
of logically connecting the precondition and the postcondition of
the Hoare type, suddenly acquires a computational significance; it
has to be explicitly supplied by the caller, and the value, when in-
stantiated, has to produce a precondition that is true at thegiven
program point. More concretely, in order to increment the contents
of l by executingincBy′, the caller must already know what the
value stored inl is. This, of course, makes the usefulness ofincBy′

quite dubious. If the caller already knows the stored value,why not
simply write its increment back intol directly?

A better alternative, and the one that we adopt here, is to al-
low that postconditions not only depend on the variablem denot-
ing the current heap at the end of the computation, but also onthe
variable i that denotes the initial heap. That is, if we made the
scopes explicit, then the typeST {P}x:A{Q} would be written
asST {m. P}x:A{i. m. Q}. The second heap variable in the post-
condition can be used to relate the values stored in the initial heap,
to the values stored in the ending heap. The type ofincBy may be
written as

incBy
′′ : Πl:loc. Πn:nat. ST{∃v. l 7→nat v} r : 1

{∀v. (l 7→nat v) i ⊃ (l 7→nat v) m}

Under this binding convention, the syntax of Hoare types with
ghost variables becomes just a syntactic sugar. The Hoare type
[∆]. ST {P1}x:A{P2}, where∆ is a variable context, andP1,P2

are unary predicates overm, can be desugared into

ST {∃∆. P1}x:A{∀∆. P1 i ⊃ P2 m}

Similarly, the Hoare type[∆]. CMD {I}{P1}x:A{P2} is desug-
ared intoCMD {I}{∃∆. P1}x:A{∀∆. P1 i ⊃ P2 m}. In the rest
of the paper, we will use the described convention on ghost vari-
ables in order to abbreviate the Hoare types that appear in our ex-
amples. However, in the development of the meta theory of HTT,
we will assume that postconditions in Hoare types depend on two
heap variables:i which denotes the initial heap, andm which de-
notes the ending heap of the computation.

We call predicates that depend on bothi andm binary predi-
cates, and useQ andT to range over them. We useX to range
over either unary or binary predicates. We will again use thesyntax
of functional application and writeQ H1 H2 as an abbreviation for
[H1/i, H2/m]Q.

We next define several operators on binary predicates that will
have a prominent role in the semantics of HTT.

δP = P ∧ i = m
∇P = P ∧ i = i
�P = P i ∧ P m

X ◦ Q = ∃h:heap. [h/m]X ∧ Q h m
Q1 ∗∗ Q2 = ∃i1, i2, m1, m2:heap.

splits(i, i1, i2) ∧ splits(m, m1, m2) ∧
Q1 i1 m1 ∧ Q2 i2 m2

P (Q = ∀i0, h:heap. splits(i, i0, h) ⊃ P i0 ⊃
∃m0. splits(m, m0, h) ∧ Q i0 m0

P1 P2 (◦Q1 Q2 = ∀i0, h:heap. splits(i, i0, h) ⊃
∀i1, i2:heap. splits(i0, i1, i2) ⊃

P1 i1 ⊃ P2 i2 ⊃
∃m0, m1, m2. splits(m, m0, h) ∧

splits(m0, m1, m2) ∧
Q1 i1 m1 ∧ Q2 i2 m2

M ? Q1 Q2 = (M = tt ⊃ Q1) ∧ (M = ff ⊃ Q2)

In English,δP extends the unary predicateP to binary, diagonal
one.∇P is also a binary predicate, albeit one that holds foranydo-
main heap (it ignores the variablei). �P requires thatP holds for
both the domain and the range heaps, but unlikeδ, does not require
that the two heaps are actually equal.X ◦ Q is a relational compo-
sition. The predicateQ1 ∗∗ Q2 is the generalization of separating
conjunction to the binary case. It holds if both domain and range
heaps can be split in two, so thatQ1 relates the first halfs andQ2

relates the second halfs.P (Q is a binary predicate relating the
heapi with m only if m can be obtained by replacing any subheap
of i satisfyingP with a subheap related byQ. P1 P2 (◦Q1 Q2 is
the generalization ofP (Q. It pairwise replacesP1 according to
Q1 andP2 according toQ2 to obtain the heapm starting fromi.
M ? Q1 Q2 is the relational version of a conditional.

Example. The binary relation(l 7→nat v) (∇(l 7→nat v + 1)
holds between two heapsi andm if and only if m can be obtained
from i by replacingall parts of i satisfying l 7→nat v (and there
can be at most one such part), with a part satisfyingl 7→nat v + 1.
Such a relation therefore directly captures the semantics of an ST
computation that increments the contents ofl.

4. Type system
The main focus of this section is to describe the techniques used
in the definition of the semantics of Hoare types in HTT. The
foundations of HTT are in a type theory like the Extended Calculus
of Constructions, or Coq, which are very well suited for reasoning
about typed functions, relations and sets. In HTT, in addition, we
want to support reasoning about effectful computations.

The easiest way to achieve this goal is totranslateeffectful
computations into some entity that is already supported by the
underlying foundational type theory. In this paper, we havechosen
to translate effectful computations intobinary relations on heaps,
so that a computation may be viewed as relating its initial toits
ending heap. Choosing relations for the modeling of Hoare types

6 2008/10/7

has the additional benefit that we can then also represent partial
and non-deterministic computations; that is, computations with no
result, or computations with more than one result, respectively.

The translation of computations into relations is performed by
the typing rules. Having in mind that there is a strong correspon-
dence between relations and predicates (relations are extensions of
predicates), the reader familiar with Dijkstra’s predicate transform-
ers [5] will find the typechecking process completely analogous to
computingstrongest postconditions.

We will have four typing judgments for computations, two for
ST-computations and two forCMD-computations. TheST judg-
ments are∆; P ` E ⇒ x:A.Q and∆; P ` E ⇐ x:A. Q. The
first judgment takes a unary predicateP and a computationE, and
generates the binary predicateQ that most tightly captures the se-
mantics ofE (i.e.,Q is the strongest postcondition). In the process,
the rule also verifies that the return result ofE has typeA, whereA
is supplied as input to the judgment. The second judgment checks
that Q is a postcondition, not necessarily the strongest one forE
with respect toP .

The CMD judgments are, similarly,∆; I ; P ` E ⇒ x:A. Q
and∆; I ;P ` E ⇐ x:A.Q, except that hereP andQ are a pre-
and post-condition on the local state ofE, while the unary predicate
I keeps the invariant on the state thatE shares with other processes.
By formation,I is required to be precise.

We will make use of further several judgments: (1)∆ ` K ⇒
A takes a pure termK and generates its type if it can; (2)∆ `
M ⇐ A checks thatM has typeA. These two judgments imple-
ment bidirectional typechecking for the pure fragment. (3)∆ ` P
checks that the predicateP is true. It is a completely standard natu-
ral deduction for polymorphic first-order logic with equality, except
that it also formalizes heaps, via the four axioms listed in Section 3.
(4) ∆ ` A ⇐ type and∆ ` P ⇐ prop are type and predicate
formation judgments, and (5)∆ ` τ ⇐ mono checks thatτ is a
monomorphic type. The last three judgments are fairly obvious, so
we omit them here.

4.1 TypecheckingST-computations

We start with a structural rule which relates the synthesis and
checking of postconditions: ifQ′ is a strongest postcondition, and
from knowingQ′ we can deriveQ, thenQ is a postcondition.

∆; P ` E ⇒ x:A. Q′ ∆, x:A, i, m:heap, δP ◦ Q′ ` Q

∆; P ` E ⇐ x:A. Q

Rather than simply takingQ′ as a hypothesis when trying to derive
Q, the rule takesδP ◦ Q′. Unrolling the definitions of◦ and δ,
this basically injects the knowledge that the initial heap of Q also
satisfiesP , which should be expected asP is a precondition that
the checking starts with. This rule essentially implementsthe law
of consequence well-known in Hoare Logic.

The typing rule for monadic unit in a sense corresponds to a rule
for assignment to the variablex found in the classical formulations
of Hoare Logic:

∆ ` M ⇐ A

∆; P ` return M ⇒ x:A. δ(x = M)

The postconditionδ(x = M) simply states that after executing
return M the return valuex = M and the initial and the ending
heap are equal since no state has been modified.

∆ ` τ ⇐ mono ∆ ` M ⇐ nat ∆,m:heap, P ` M ↪→τ −
∆, x:τ ; P ◦ δ(M ↪→τ x) ` E ⇒ y:B. Q

∆; P ` x ⇐ !τ M ;E ⇒ y:B. (∃x:τ. δ(M ↪→τ x) ◦ Q)

The rule for memory read must check thatτ is a well-formed
monomorphic type, as only values of monomorphic types can be
stored into heaps. Further, the locationM must be a natural num-
ber, andM must point to a value of typeτ . The later is ensured

by the entailmentP ` M ↪→τ −, which may be seen as aver-
ification conditionthat needs to be discharged in order to guar-
antee the correctness of the program. The continuationE is then
checked in a context extended with variablex:τ , and the precondi-
tion for checkingE must appropriately reflect the knowledge that
x binds the value read fromM . This is achieved by composingP
with δ(M ↪→τ x). Alternatively, we could have used the equiv-
alent P ∧ (M ↪→τ x), which is the standard postcondition for
memory lookup, but we choose the current formulation in order to
emphasize the compositional nature of typechecking. For example,
after the relationQ corresponding toE is obtained, we need to
lift it to include the semantics of the lookup, before we return it as
a postcondition generated for the original computation. Wedo so
by composingδ(M ↪→τ x) ◦ Q. One can now see the important
intuition that, in general, the strongest postcondition generated for
some computationE always has a form of an ordered sequence of
compositions of smaller relations, each of which preciselycaptures
the primitive effectful commands ofE, in the order in which they
appear inE. This substantiates our claim that typechecking simply
translates theE into a relation (equivalently, predicate). In fact, the
translation is almost literal, as the structure of the obtained predi-
cate completely mirrorsE.

Memory writes follow a similar strategy.

∆ ` M ⇐ nat
∆ ` τ ⇐ mono ∆ ` N ⇐ τ ∆,m:heap, P ` M ↪→ −

∆; P ◦ (M 7→ − (∇(M 7→τ N)) ` E ⇒ x:A. Q

∆; P ` M :=τ N ; E ⇒ x:A. (M 7→ − (∇(M 7→τ N)) ◦ Q

To write into the locationM , we first ensure that it is allocated
(verification conditionP ` M ↪→ −). Then the continuationE is
checked with respect to a predicateP ◦ (M 7→ − (∇(M 7→τ

N)). Intuitively, following the definition of the connective(, this
predicate “replaces” a portion of the heap satisfyingM 7→ − by a
heap satisfyingM 7→τ N , while preserving the rest of the structure
described byP . Thus, the predicate correctly models the semantics
of memory lookup.

The idea behind the typechecking of stateful commands should
now be obvious, so we simply display the rules for allocationand
deallocation without further comment.

∆ ` τ ⇐ mono ∆ ` M ⇐ τ
∆, x:τ ;P ◦ (emp (∇(x 7→τ M)) ` E ⇒ y:B. Q

∆; P ` x ⇐ allocτ M ;E ⇒ y:B. (∃x:τ. (emp (∇(x 7→τ M)) ◦ Q)

∆ ` M ⇐ nat ∆, m:heap, P ` M ↪→ −
∆; P ◦ (M 7→ − (∇emp) ` E ⇒ x:A. Q

∆; P ` dealloc M ;E ⇒ x:A. (M 7→ − (∇emp) ◦ Q

4.2 TypecheckingCMD-computations

TheCMD-judgments have similar rules for consequence and unit
as the one presented in theST case. We omit these here, and focus
instead on the primitives for concurrency.

∆;m:heap, P ` P1 ∗ P2 ∗ >
∆; I;P1 ` E1 ⇒ x1:A1. Q1 ∆; I;P2 ` E2 ⇒ x2:A2. Q2

∆, x1:A1, x2:A2; I;P ◦ (P1 P2 (◦Q1 Q2) ` E ⇒ x:A. Q

∆; I;P ` (x1:A1 ⇐ E1:P1 ‖ x2:A2 ⇐ E2:P2); E
⇒ x:A. (∃x1:A1, x2:A2. (P1 P2 (◦Q1 Q2) ◦ Q)

The command‖ for fork-join parallelism checks the processesE1

andE2 with respect to the ascribed preconditions on local stateP1

andP2 to obtain strongest postconditionsQ1 andQ2. A verifica-
tion condition is issued to check thatP1 andP2 indeed split the lo-
cal state of the parent process into disjoint sections (the entailment
P ` P1∗P2∗>). Then the common continuationE is checked with
respect to a new description of the stateP ◦ (P1 P2 (◦Q1 Q2),
which captures the semantics that the local heap described by P is
changed so that thePi fragment are independently updated accord-
ing to Qi. Thus, the predicate correctly captures the semantics of

7 2008/10/7

concurrent execution ofE1 andE2. SinceE1 andE2 are checked
using the same shared invariantI , they can modify the shared state,
but only in ways which preserve the truth value ofI .

∆,m:heap, P ` P1 ∗ > ∆; I ∗ P1 ` E1 ⇐ x1:A1. �I ∗∗ Q1

∆, x1:A1; I;P ◦ (P1 (Q1) ` E ⇒ x:A. Q

∆; I;P ` x1 ⇐ atomicA1,P1,Q1
E1;E

⇒ x:A. (∃x1:A1. (P1 (Q1) ◦ Q)

Semantically, atomic first acquires exclusive access to theshared
state, executesE1 using both the shared and the designated chunk
of the local state. Thus,E1 must be checked against a precondition
I ∗ P1, whereI is the descriptor of the shared state, andP1 is the
descriptor of the designated chunk of the local state. It is ensured
that P1 describes local state by emitting a verification condition
P ` P1 ∗ >. We emphasize thatE1 is anST-computation, and
thus it makes no semantic distinction between local and shared
state. Upon exit,E1 releases what used to be shared state, so it
must make sure that its invariant is preserved. Thus,E1 is checked
against a postcondition�I ∗∗ Q, which requires thatE1 changes
theI portion of the its initial heap in such a way that the changed
subheap satisfiesI again. This portion is what will be released as
an updated version of the shared state. The rest of the heap iswhat
used to be the local state of the parent process, and is changed
according to some pre-specifiedQ. The continuationE is then
simply checked against a local heap that updates aP1 part of P
according to the binary relationQ. The update is expressed using
the relationP ◦ (P1 (Q1).

In order for the semantics to make sense, we must make sure
that there is only one portion in the combined shared/local heap
that satisfiesI , elseE1 may not know how much space must be
returned to shared status. That is whyI is required to be precise,
enforcing that it always determines a unique subheap. Precision is
a standard requirement on invariants of shared resources inSepara-
tion Logic [3, 22, 28].

∆ ` precise J ∆,m:heap, P ` J ∗ >
∆; I ∗ J ;P ◦ (J (∇emp) ` E ⇒ x:A. Q

∆; I;P ` publish J ; E ⇒ x:A. (J (∇emp) ◦ Q

Publish takes a predicateJ and promotes the chunk of the local
heap satisfyingJ into shared status. Thus,J must hold of a unique
part of the local heap. Existence of such a part is ensured by the
verification conditionP ` J ∗ >, and uniqueness is ensured by
the requirement thatJ is precise. The published state is shared
throughout the scope of the continuationE, which must be checked
against an extended invariant on the shared state (I ∗ J) and a
description of a shrunken local stateP ◦ (J (∇emp). The later
predicate simply states that the uniqueJ part ofP is replaced by
an empty heap, thus subtractingJ from P .

4.3 Typechecking generic computational primitives

The typing rule for conditional is unsurprising; it obtainsthe post-
conditions for the branches, and then checks the continuation with
what amounts to a disjunction of these postconditions. We present
only theCMD rule, as theST rule is analogous.

∆ ` A ⇐ type
∆ ` M ⇐ bool ∆; I;P ◦ δ(M = tt) ` E1 ⇒ x:A. Q1

∆; I;P ◦ δ(M = ff) ` E2 ⇒ x:A. Q2

∆, x:A; I;P ◦ (M ? Q1 Q2) ` E ⇒ y:B. Q

∆; I;P ` x ⇐ ifA M then E1 else E2;E
⇒ y:B. (∃x:A. (M ? Q1 Q2) ◦ Q)

The fragment of HTT described so far may easily be presented
in a more customary form with Hoare triples for partial correctness,
because the constructs have been essentially first-order. We now
describe the two effectful constructs which are higher-order in an
essential way. They have well-known first-order analogues,but
these are significantly less expressive.

The first is monadic bind, whose first-order analogue is the
Hoare rule for sequential composition.

∆ ` K ⇒ CMD {I1}{P1}x1:A1{Q1}
∆,m:heap, I ` I1 ∗ (I1 —∗ I) ∆, m:heap, P ` P1 ∗ >

∆, x1:A1; I;P ◦ (P1 (Q1) ` E ⇒ x:A. Q

∆; I; P ` x1 ⇐ K;E ⇒ x:A. (∃x1:A1. (P1 (Q1) ◦ Q)

The difference is that monadic bind allows the first composed
computation to be obtained byevaluatingK, whereas in Hoare
Logic, the composed processes must be supplied explicitly.HTT,
as well as other monadic calculi, treats computations as first-class
values which can be supplied as function arguments, obtained as
function results, and abstracted. These features are the essential
ingredients for our lifting of Hoare Logic to higher-order.

Returning to the specifics of bind, we notice that the code encap-
sulated byK is executable in a local heap satisfyingP (ensured by
the verification conditionP ` P1∗>), and a shared heap satisfying
I (ensured by the verification conditionI ` I1 ∗ (I1 —∗ I)). The
later condition implies thatI1 is a restriction of I to the subheap
determined byI1, thus ensuring thatK, by preserving the invariant
I1, also preserves the larger invariantI . Finally, according to the
Hoare type ofK, its execution changes theP1 chunk of the local
heap as described by the postconditionQ1. Thus, the continuation
E is appropriately checked against a preconditionP ◦(P1 (Q1).

The second higher-order connective is the fixpoint. Due to the
presence of higher-order functions, HTT can replace the looping
constructs by a general fixpoint combinator over a Hoare type. The
fixpoint computation is supposed to be immediately executed, so
the typing rule combines the usual typing of fixpoint combinators
with monadic bind.

B = CMD {I1}{P1}x1:A1{Q1} ∆ ` B ⇐ type
∆,m:heap, I ` I1 ∗ (I1 —∗ I) ∆, m:heap, P ` P1 ∗ >

∆ ` f ⇐ B → B ∆, x1:A1; I;P ◦ (P1 (Q1) ` E ⇒ x:A. Q

∆; I; P ` x1 ⇐ fixBf ;E ⇒ x:A. (∃x1:A1. (P1 (Q1) ◦ Q)

TheST-judgment contains similar rules for monadic bind and
fixpoint. They are strictly simpler than the above, as they donot
have to account for the the shared state invariantI .

Finally, we integrate the monadic judgments into the pure frag-
ment, using the twodo coercions.

∆; P ` E ⇐ x:A. Q

∆ ` stdo E ⇐ ST {P}x:A{Q}

∆; I;P ` E ⇐ x:A. Q

∆ ` cmdo E ⇐ CMD {I}{P}x:A{Q}

Becausestdo andcmdo hygienically isolate the effectful compu-
tations from the pure ones, the pure fragment may be formulated in
a standard way, drawing on the formalism of ECC.

∆, x:A,∆1 ` x ⇒ A

∆, x:A ` M ⇐ B

∆ ` λx. M ⇐ Πx:A. B

∆ ` K ⇒ Πx:A. B ∆ ` M ⇐ A

∆ ` K M ⇒ [M :A/x]B

∆, α ` M ⇐ A

∆ ` Λα. M ⇐ ∀α. A

∆ ` K ⇒ ∀α. A ∆ ` τ ⇐ mono

∆ ` K τ ⇒ [τ/α]A

∆ ` K ⇒ B A = B

∆ ` K ⇐ A

∆ ` M ⇐ A

∆ ` M :A ⇒ A

In HTT, we adopt a formulation with bidirectional typechecking,
inspired by the work on Concurrent LF [29], where elimination
terms synthesize their types, and introduction terms must be sup-
plied a type to check against. We can always check an elimination
termK by first synthesizing its type and confirming that it is equal
with the supplied type. We can always switch the direction from

8 2008/10/7

waitThen = Λα. λl. λn. λst. λr.
cmdo(−− I1:{(l 7→nat −) ∗ J}

−− P1:{P ∗ r 7→nat 0}
t ⇐ fixA(λc. cmdo

(−− I2:{(l 7→nat −) ∗ J}
−− P2:{P ∗ r 7→nat 0}
ok ⇐ atomic bool,P ∗ (r 7→nat 0),

t1. (t1 ? (P ∗ r 7→nat 0)
(∃y:α. Q(y) ∗ r 7→α y))

(−− P3:{l 7→nat − ∗ J ∗ P2}
x ⇐ !nat l;
−− P4:{l 7→nat x ∗ J ∗ P2}
t1 ⇐ if (x = n) then

−− P5:{l 7→nat n ∗ J ∗ P2}
y ⇐ st;
−− P6:{l 7→nat − ∗ J ∗ Q(y) ∗ r 7→nat 0}
r :=α y;
−− P7:{l 7→nat − ∗ J ∗ Q(y) ∗ r 7→α y}
return ff
else return tt;

−− P8:{(t1 = ff ⊃ ∃y:α. P7) ∧ (t1 = tt ⊃ P4}
return t1);

−− I9:{(l 7→nat −) ∗ J}
−− P9:{ok ? (P ∗ r 7→nat 0)

(∃y:α. Q(y) ∗ r 7→α y)}
if ok then

−− I10:{(l 7→nat −) ∗ J}
−− P10:{P ∗ r 7→nat 0}
t3 ⇐ c;
−− I11:{(l 7→nat −) ∗ J}
−− P11:{∃y:α. Q(y) ∗ r 7→α y}
return t3

else return ())));
−− I12:{(l 7→nat −) ∗ J}
−− P12:{∃y:α. Q(y) ∗ r 7→α y}
return t)

Figure 2. Annotated example.

checking to synthesis by using the constructorM :A to supply the
typeA to be synthesized.

4.4 Annotated example

The code in Figure 2 presents the typing derivation of the function
waitThen from Section 2.1. We check the function against the type:

∀α. Πl:loc. Πn:nat. Πr:loc.
ST{(l 7→nat n) ∗ J ∗ P}x:α{(l 7→nat −) ∗ J ∗ Q(x)} → A

whereA = CMD{(l 7→nat −) ∗ J}{P ∗ (r 7→nat 0)}t:1{∃x:α. Q(x) ∗
(r 7→α x)}. The code is annotated with predicates to illustrate the
properties of the state at the various program points. We useI for
predicates about the shared state, andP for predicates about local
state. The typechecker will require that several verification condi-
tions be proved, before the program is deemed correct. Theseare:
(1) P2 `P ∗ (r 7→nat 0) ∗>, to enteratomic; (2) P3 ` l ↪→nat −,
to read froml; (3) P5 ` l 7→nat n ∗J ∗P ∗>, to executest; (4)
P6 ` r ↪→−, to write intor; (5) P8 `�I2 ∗∗ (t1 ? (P ∗ r 7→nat 0)
(∃y:α. Q(y)∗ r 7→α y)), to prove that the postcondition supplied
as an index toatomic is satisfied, and thusatomic exits cor-
rectly; (6) I10 ` ((l 7→nat −) ∗J) ∗ (((l 7→nat −) ∗J) —∗ I10) and
P10 `P ∗ (r 7→nat 0) ∗>, to execute the recursive call toc, and
(7) P12 `∃x:α. Q(x) ∗ r 7→α x, to prove that the postcondition of
waitThen holds. All of these conditions are fairly easy to discharge.

5. Properties
5.1 Equational reasoning and logical soundness

Like every other type theory, HTT has to define a judgmentA = B
for checking if two typesA andB are equal. This judgment was

used, for example, in the typing rule of the pure fragment where
the bidirectional typechecker switches from synthesis to checking
mode. Because types are dependent, and thus may contain terms,
the judgment is non-trivial, as it has to account for term equality
as well. In addition, it is a desirable property that the equality
judgment be decidable.

Thus, the equality judgment of HTT, as of other (intensional)
type theories, like ECC or Coq, is quite restricted and includes only
equations that lead to decidable theories. In Coq, for example, the
equality judgment only admits beta reduction. Other equations of
interest may, of course, be added as axioms. Properties thatrely on
such axioms cannot be proved automatically by the typechecker,
but must be discharged by the user via explicit proofs.

The development of the monadic fragment of HTT does not de-
pend on the organization and the equations of the pure fragment.
So for example, if we chose Coq as an environment type theory of
HTT, we could freely use beta reduction in the equational reason-
ing.

In the previous work [20], we have allowed equational reason-
ing that relies on beta and eta equalities forΠ-types, and the generic
monadic laws (unit and associativity [16]) for Hoare types.We have
shown that such an equational theory is decidable, using thetech-
nically involved, but conceptually quite simple and elegant idea of
hereditary substitutions[29]. The current paper uses literally the
same pure fragment, so the same proof of decidability applies.

THEOREM1 (Relative decidability of typechecking).Given an or-
acle for deciding the verification conditions (that is, deciding the
judgment∆ ` P , whereP is a proposition), all the typing judg-
ments of HTT are decidable.

In the actual implementation of HTT, the oracle from the above
theorem can be replaced by explicit proofs, to be obtained by
some form of automatic or interactive theorem proving. The later
has been the approach that we adopted in the implementation of
HTT in Coq, where a modicum of automation can be recovered
by employing Coq tactics and tacticals. Theorem 1 can then be
viewed as a guarantee that verification condition generation and
typechecking are terminating processes. This would not be apartic-
ularly deep property in any first-order language, but because HTT
is higher-order, deciding equality requiresnormalization. This is a
non-trivial algorithm, but, by Theorem 1, it terminates.

THEOREM2 (Soundness of the HTT logic).The judgment∆ `
P cannot derive falsehood, and hence is sound.

Theorem 2 is established by exhibiting a model of HTT. In [20], we
have described a set-theoretic model which takes place in ZFC with
infinite inaccessible cardinalsκ0, κ1 All the types are given
their obvious set-theoretic interpretation, the universemono is the
set of all sets of cardinality smaller thanκ0, heaps are interpreted
as finite functions fromnat to Σα:mono. α, and predicates on a
type are interpreted as subsets of the type. Crucially, Hoare types
areinterpreted as singleton sets, and therefore all the computations
in HTT are given the same logical interpretation. This is sufficient
to argue logical soundness, because HTT currently containsno
axioms declaring equations or other kinds of relations on effectful
computations (except the monadic laws, which are very simplistic,
and are handled by the typechecker). Not surprisingly, the same
model suffices to argue the logical soundness of the extension from
the current paper.

The above theorems concerns HTT when viewed as a logic.
But HTT is at the same time a programming language, and we
need to also prove that it is sound when viewed as a programming
language. In particular, we need to show that ifI ;P ` E ⇐
x:A.Q, then indeed, ifE is executed in a shared heap satisfying
invariant I and the local heap satisfying the predicateP , andE

9 2008/10/7

terminates, then the ending heap satisfies the predicateQ. This
theorem would justify our typing rules and show themadequate
with respect to the intuitive operational interpretation of E.

We will prove thisadequacy theoremfor the current extension
of HTT in Section 6, after we have formally defined the operational
semantics.

5.2 Framing and compositionality

HTT computations satisfy the following standard properties.

LEMMA 3. Suppose that∆; I ; P ` E ⇐ x:A. Q. Then:

1. Weakening consequent. If∆, x:A, i:heap, m:heap, Q ` Q′,
then∆; I ; P ` E ⇐ x:A. Q′.

2. Strengthening precedent. If∆, m:heap, P ′ ` P , then∆; I ; P ′ `
E ⇐ x:A. δP ′ ◦ Q.

3. Local frame.∆; I ; P ∗ > ` E ⇐ x:A.P (Q.
4. Shared frame. IfJ is precise, then∆; I ∗ J ; P ` E ⇐ x:A.Q.

Similar properties hold forST-computations as well.

The proofs of these properties are somewhat involved, and the
interested reader is referred to the associated technical report [19].
However, we do comment here on the Local frame property, which
may be seen as somewhat unusual, compared to the other works
on Separation Logic. A more recognizable form of the local frame
property may be

∆; I ;P ∗ R ` E ⇐ x:A. Q ∗∗ δR

which directly states thatE may be executed in an initial heap
extended with an arbitrary subheap satisfyingR, as long as the
ending heap is extended with the same subheap, also satisfyingR.
Intuitively, this property holds since the initial typing of E prevents
it from touching any disjoint state, and thusR must be preserved
across the execution.

We note that the later form of the frame principle is easily
derivable from Lemma 3. Indeed if∆; I ; P ∗> ` E ⇐ x:A. P (

Q, then by strengthening precedent we first get∆; I ; P ∗R ` E ⇐
x:A. δ(P ∗ R) ◦ (P (Q) and then becauseδ(P ∗ R) ◦ (P (

Q) ` Q ∗∗ δR we can weaken the consequent into∆; I ; P ∗ R `
E ⇐ x:A. Q ∗∗ δR.

We further show that HTT is compositional in the sense that
typechecking of a program (which amounts to verification) requires
only that the individual sub-programs are typechecked separately.
There is no need for whole-program reasoning, as the types are
strong enough to isolate the program components and serve astheir
interfaces.

As in any other type theory, HTT’s compositionality theorem
takes the form of a substitution principle, and we present some
selected statements. Here we assume the operation〈E1/x:A〉E2 on
computationsE1 andE2 thatprependsE1 ontoE2. More formally,
if E1 = (C; return M), whereC is a list of commands, then
〈E1/x:A〉E2 is defined to beC; [M :A/x]E2.

LEMMA 4 (Substitution principle).Suppose that∆ ` M ⇐ A,
and abbreviate[M :A/x]T with T ′, for arbitrary T . Then the
following holds:

1. If ∆, x:A, ∆1 ` N ⇐ B then∆, ∆′

1 ` N ′ ⇐ B′.
2. If ∆, x:A, ∆1; I ;P ` E ⇐ y:B. Q and y 6∈ FV(M), then

∆, ∆′

1; I
′; P ′ ` E′ ⇐ y:B′. Q′.

3. If ∆; I ; P ` E1 ⇐ x:A.Q and ∆, x:A; I ;P ◦ Q ` E2 ⇐
y:B. T , and x 6∈ FV(B) then ∆; I ;P ` 〈E1/x:A〉E2 ⇐
y:B. (∃x:A. Q ◦ T).

Notice that the last statement of the substitution principle is essen-
tially and adaptation to binary postconditions of the Hoare-style in-
ference rule for sequential composition. This is an additional aspect

of the connection between monadic bind and sequential composi-
tion that we mentioned in Section 4. The proofs of these lemmas
can be found in the associated technical report [19].

6. Operational semantics
In this section we focus on the operational semantics of the
monadic fragment of HTT, and prove theorems aboutST and
CMD-computations. The purely functional fragment is quite stan-
dard. Since the functional fragment is a sub-language of ECC, we
know that it isstrongly normalizing. Therefore, we can give the
functional fragment a number of reduction strategies, including
call-by-name and call-by-value. Alternatively, we cannormalize
all of the pure subterms before applying the evaluation rules for the
monadic terms. Thus, we omit the treatment of the pure fragment,
and refer the interested reader to [20].

The operational semantics of monadic computations requires
the following syntactic categories.

Run-time heaps χ ::= · | χ, l 7→τ M
Abstract machinesµ ::= (χ, E) | (χ, E1 | x:A. E2)
Stacks κ [P,E] ::= (x1:A1 ⇐ E1:P1 ‖ x1:A2 ⇐ E:P); E3 |

(x1:A1 ⇐ E:P ‖ x2:A2 ⇐ E2:P2); E3

Run-time heaps are finite maps from locations to terms. Theseare
the objects about which our assertions logic reasons. The soundness
of the assertion logic established in Theorem 2 makes the connec-
tion between the run-time behavior of HTT and its logical behavior.
If HTT shows that at some point in the program the heap should
contain a locationl pointing to a valueM :τ , then, when that point
in the program is reached at run-time, the heap contains an assign-
mentl 7→τ M .

Abstract machines pair up a run-time heap with an expressionto
be evaluated. They come in two modes: (1)(χ, E) is theconcurrent
mode, which takes aCMD expressionE describing the concurrent
execution of a number of processes; and (2)(χ, E1 | x:A. E2) is
the atomic mode. In the atomic mode,E1 is anST-computation,
which must be executed before returning to the (concurrent)con-
tinuationE2. The value ofE1 is bound to the variablex:A in E2.

Stacks are used to select an expression from a set of parallel
expressions inE. The selected expression will be advanced one
step according to the operational semantics. Given a list ofstacks
κi = (κ1, . . . , κn), and a list of predicatesPi = (P1, . . . , Pn),
and an expressionE, we write κi Pi E as an abbreviation for
κ1[P1, · · ·κn−1[Pn−1, κn[Pn, E]]]. Thus, the listκi determines
the sequence of parallel nestings, at the bottom of whichE appears,
and the listPi determines the sequence of footprint annotations
provided along the path.

The main judgment of the operational semantics has the form
µ ↪→ µ′. We present selected rules for concurrent configurations.

χ, κi Pi (x ⇐ atomicA,R,Q E1;E) ↪→

χ, E1 | x:A. κi (Pi ◦ (R (Q)) E

χ, κi Pi (publish J ;E) ↪→ χ, κi (Pi ◦ (J (∇emp)) E

χ, κi Pi (x ⇐ (cmdo E1):CMD {I}{R1} x:A{Q1}; E) ↪→
χ, κi Pi (〈E1/x:A〉E)

χ, κi Pi ((x1:A1 ⇐ return M1:P1 ‖ x2:A2 ⇐ return M2:P2); E)
↪→ χ, κi Pi ([M1:A1/x1, M2:A2/x2]E)

χ, κi Pi (x ⇐ ifA tt then Et else Ef ; E) ↪→ χ, κi Pi (〈Et/x:A〉E)

χ, κi Pi (x ⇐ ifA ff then Et else Ef ;E) ↪→ χ, κi Pi (〈Ef /x:A〉E)

χ, κi Pi (x1 ⇐ fixB f ;E) ↪→
χ, κi Pi (x1 ⇐ f(cmdo (y ⇐ fixB f ; return y)); E)

10 2008/10/7

The rules use a list of stacksκi Pi to select the first command
to execute. Many different possibilities may arise corresponding to
different selected stacks, reflecting the the non-deterministic nature
of concurrent evaluation.

In the case of atomic, once a commandE1 is selected for atomic
execution, the abstract machine moves into the atomic configura-
tion, whereE1 proceeds to be executed without interference from
other processes, and with exclusive access to the heapχ3.

Upon making a step, both atomic and publish change the local
heap, and the annotations encountered along the stack list,κi, must
be updated in order to reflect the new heap values. In the case
of atomic, we use the predicate list(Pi ◦ (R (Q)), because the
execution ofE1 is captured by the relationR (Q. In the case
of publish, we use the predicate list(Pi ◦ (J (∇emp)), because
the execution of publish must erase the space described byJ , and
this operation is captured by the relationJ (∇emp.

The rules for the atomic configurations are straightforward, so
we present the characteristic ones without any comments.

(χ, l 7→τ M), (x ⇐ !τ l;E) | y:A. E1 ↪→
(χ, l 7→τ M), [M :τ/x]E | y:A. E1

χ, (x ⇐ allocτ M ;E) | y:A. E1 ↪→ (χ, l 7→τ M), [l:nat/x]E | y:A. E1

(χ, l 7→ −), (l :=τ M ; E) | y:A. E1 ↪→ (χ, l 7→τ M), E | y:A. E1

(χ, l 7→ −), (dealloc l;E) | y:A. E1 ↪→ χ, E | y:A. E1

χ, (x ⇐ (stdo E2):ST {R1}x:B{Q1}; E) | y:A. E1 ↪→
χ, 〈E2/x:B〉E | y:A. E1

χ, (return M) | y:A. E1 ↪→ χ, [M :A/y]E1

In order to prove the adequacy of operational semantics with
respect to typing, we need a helper judgment to define the typing for
abstract machines. Informally,I ` µ ⇐ x:A. S holds if machineµ
preserves the heap invariantI and, ifµ terminates, then the ending
heap satisfies the predicate∇S. The formal definition requires a
translation from run-time heaps to predicates given inductively as
[[·]] = emp and[[χ, l 7→τ M]] = [[χ]] ∗ l 7→τ M .

DEFINITION 5. We say thatI ` µ ⇐ x:A. S if

1. µ = χ, E andχ = χ1, χ2 such that[[χ1]] ` I and I ; [[χ2]] `
E ⇐ x:A.∇S, or

2. µ = χ, E1, y:B. E2 then there exists a predicateR such that
[[χ]] ` E1 ⇐ y:B.∇(I ∗R) andy:B; I ;R ` E2 ⇐ x:A.∇S.

Notice that the definition uses unary postconditionS instead of
binary ones. Binary postconditions served in the typing judgments
to relate the unknown initial heap to the ending heap. But, when
executing abstract machines, the initial heaps are always known,
explicitly given by χ, so there is no need to have any special
abstractions for naming them.

Now our adequacy theorem can be presented in the manner fa-
miliar from functional programming, as a combination of preserva-
tion and progress theorems.

THEOREM 6 (Preservation).If I ` µ ⇐ x:A. S and µ ↪→ µ′,
thenI ` µ′ ⇐ x:A. S.

THEOREM 7 (Progress).If I ` µ ⇐ x:A. S, then eitherµ =
(χ, return M) or there existsµ′ such thatµ ↪→ µ′.

The proofs are by case analysis on the structure of the abstract
machines. The progress theorem crucially depends on Theorem 2

3 The optimistic evaluation usually associated with transactions need not be
reflected in the operational semantics: it is an implementation strategy for
speeding up the execution that does not change the semantics.

to argue that an operational step can indeed be made if the step’s
precondition has been proved in the assertion logic.

7. Related and future work
Transactional Memory. Monads for dealing with transactions
have been introduced in Haskell [8, 9]. Our approach is similar,
however, we have not considered an explicit abort in this paper
because we are interested in a high-level semantics where anex-
plicit abort is not necessary [17]. Also, we can state and check the
pre-conditions for an atomic block statically, and do not require an
explicit abort to ensure correctness of algorithms.

Higher-order and dependent types for effects. Dependently
typed systems with stateful features have to date mostly focused
on how to appropriately restrict effects from appearing in types,
thus polluting the underlying logical reasoning. Such systems have
mostly employed singleton types to establish the connection be-
tween the pure and the impure levels of the language. Examples
include Dependent ML by Xi and Pfenning [30, 31], Applied type
systems by Chen and Xi [4] and Zhu and Xi [32], a type system for
certified binaries by Shao et al. [26], and the theory of refinements
by Mandelbaum et at. [12]. HTT differs from these approaches,
because we allow effectful computations to freely appear intypes,
as the monadic encapsulation facilitates hygienic mixing of types
and effects, and thus preserves soundness. There are also several
recent proposals for purely functional languages with dependent
types, like Cayenne [1], Epigram [14], Omega [27] and Sage [7].
We also list several works that extend Hoare and Separation Log-
ics with higher-order functions, like the work of Honda, Berger
and Yoshida [2] and Krishnaswami et al. [10]. To our knowledge,
none of the mentioned languages and logics has been extendedto a
concurrent setting.

Separation Logic and concurrency. Resource invariants in (se-
quential) Separation Logic were introduced by O’Hearn et al. [23],
and an extension to concurrency with shared resources has been
considered by Brookes [3] and O’Hearn [22]. These works point
out the need for precise invariants on the shared resources,in or-
der to preserve the soundness of the logic. More recently, Vafeiadis
and Parkinson [28] and Feng at el. [6] have combined Separation
Logic with rely-guarantee reasoning, whereby processes specify
upper and lower bounds on the evolution of the shared state.

Our treatment of shared state with invariants was inspired by
O’Hearn’s presentation in [22]. Using invariants simplifies the rea-
soning, but seems strictly weaker than rely-guarantee. Invariants
only enforce a predetermined property, but otherwise lose informa-
tion about the actual changes to the shared state. We have found
this property somewhat restrictive in several examples, and plan in
the future to reformulate HTT with ideas from the rely-guarantee
approaches.

Implementation and models of concurrency. The model of HTT
described here suffices to argue soundness, but is otherwisequite
restrictive, as it cannot support any interesting relations on effectful
computations, except the monadic laws. A more refined model of
sequential, impredicative, HTT has been developed by Petersen et
al. [25]. We hope that this model can be extended to a setting with
transactions as well.

To improve usability of HTT, we plan to support automatic in-
ference of (some) pre- and post-conditions and loop invariants. This
would avoid the current need to explicitly annotate the concurrency
primitives. Currently, HTT rules compute strongest postconditions,
but a significant amount of annotations can be inferred if therules
are re-formulated to simultaneously infer the weakest precondition
that guarantees progress, as well as the strongest postcondition with
respect to this precondition. We are currently implementing this

11 2008/10/7

kind of formulation as an extension of Coq, supporting evaluation
as code extraction into Haskell.

8. Conclusion
This paper presented Hoare Type Theory (HTT), which is a depen-
dently typed programming language and logic supporting higher-
order programs with transactional shared memory concurrency.

HTT follows the “specifications-as-types” principle, and inter-
nalizes specifications in the form of Hoare triples for partial cor-
rectness of stateful and concurrent programs into types. This iso-
lates the concerns about side-effects and concurrency fromthe logi-
cal, purely functional foundations of the system, and makesit possi-
ble to mix concurrency with various advanced features, likehigher-
order functions, polymorphism, ADTs, none of which was possible
in the previous work on Hoare or Separation Logics for concur-
rency. In fact, the pure fragment of HTT can soundly be scaledto
the Extended Calculus of Constructions ECC [11] and Coq [13].

Hoare specifications in HTT are monads, and we support two
different monadic families:ST {P}x:A{Q} classifies stateful se-
quential computations whereP andQ are pre- and post-conditions
on the state, andCMD {I}{P} x:A{Q} classifies transactional
computations, whereI is an invariant on the shared state andP and
Q are pre- and post-condition on the local state. Both monads use
propositions from Separation Logic to concisely describe the var-
ious aspects of the process state. Transactional computations may
atomicallyinvoke a stateful computation on theshared state, if the
stateful computation provably preserves the invariant of the shared
state. That is, we provide a primitiveatomic, which can coerce the
typeST {P ∗I}x:A{Q ∗ I} into the typeCMD {I}{P}x:A{Q}.

We have shown that HTT as a logic is sound and compositional,
so that it facilitates local reasoning. We have defined its operational
semantics, and shown that this semantics is adequate with respect
to the specifications from the Hoare types.

References
[1] L. Augustsson. Cayenne – a language with dependent types. In

International Conference on Functional Programming, ICFP’98,
pages 239–250.

[2] M. Berger, K. Honda, and N. Yoshida. A logical analysis ofaliasing
in imperative higher-order functions. InInternational Conference on
Functional Programming, ICFP’05, pages 280–293.

[3] S. Brookes. A semantics for concurrent separation logic. In
CONCUR’04, pages 16–34.

[4] C. Chen and H. Xi. Combining programming with theorem proving.
In International Conference on Functional Programming, ICFP’05,
pages 66–77.

[5] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs.Communications of the ACM, 18(8):453–457,
1975.

[6] X. Feng, R. Ferreira, and Z. Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In
European Symposium on Programming, ESOP’07, pages 173–188.

[7] C. Flanagan. Hybrid type checking. InSymposium on Principles of
Programming Languages, POPL’06, pages 245–256.

[8] T. Harris and K. Fraser. Language support for lightweight transactions.
ACM SIGPLAN Notices, 38(11):388–402, 2003.

[9] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy. Composable
memory transactions. InSymposium on Principles and Practice of
Parallel Programming, PPoPP’05, pages 48–60.

[10] N. Krishnaswami. Separation logic for a higher-order typed language.
In Workshop on Semantics, Program Analysis and Computing
Environments for Memory Management, SPACE’06, pages 73–82.

[11] Z. Luo. An Extended Calculus of Constructions. PhD thesis,
University of Edinburgh, 1990.

[12] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory
of type refinements. InInternational Conference on Functional
Programming, ICFP’03, pages 213–226.

[13] The Coq development team.The Coq proof assistant reference
manual. LogiCal Project, 2004. Version 8.0.

[14] C. McBride and J. McKinna. The view from the left.Journal of
Functional Programming, 14(1):69–111, January 2005.

[15] J. L. McCarthy. Towards a mathematical science of computation. In
IFIP Congress, pages 21–28, 1962.

[16] E. Moggi. Notions of computation and monads.Information and
Computation, 93(1):55–92, 1991.

[17] K. F. Moore and D. Grossman. High level small step operational
semantics for transactions. InWorkshop on Transactional Computing,
2007.

[18] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract
Predicates and Mutable ADTs in Hoare Type Theory. InEuropean
Symposium on Programming, ESOP’07, pages 189–204, 2007.

[19] A. Nanevski, P. Govereau, and G. Morriset. Type-theoretic semantics
for transactional concurrency. Technical Report TR-09-07, Harvard
University, July 2007.

[20] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare Type Theory,
Polymorphism and Separation.Journal of Functional Programming,
pages ??–??, 2007. To appear.

[21] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. InInternational Workshop on
Computer Science Logic, CSL’01, pages 1–19.

[22] P. W. O’Hearn. Resources, concurrency and local reasoning.
Theoretical Computer Science, 375(1–3):271–307, May 2007.

[23] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. InSymposium on Principles of Programming
Languages, POPL’04, pages 268–280.

[24] S. Owicki and D. Gries. Verifying properties of parallel programs:
an axiomatic approach.Communications of the ACM, 19(5):279–285,
1976.

[25] R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A
realizability model for impredicative Hoare Type Theory. In European
Symposium on Programming, ESOP’08, pages ??–??.

[26] Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A type system
for certified binaries.ACM Transactions on Programming Languages
and Systems, 27(1):1–45, January 2005.

[27] T. Sheard. Languages of the future. InOOPSLA’04, pages 116–119.

[28] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. InCONCUR’07, pages ??–??.

[29] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework: The propositional fragment. InTypes for Proofs
and Programs, pages 355–377, 2004.

[30] H. Xi and F. Pfenning. Eliminating array bound checkingthrough
dependent types. InConference on Programming Language Design
and Implementation, PLDI’98, pages 249–257.

[31] H. Xi and F. Pfenning. Dependent types in practical programming.
In Symposium on Principles of Programming Languages, POPL’99,
pages 214–227.

[32] D. Zhu and H. Xi. Safe programming with pointers throughstateful
views. In Practical Aspects of Declarative Languages, PADL’05,
pages 83–97.

12 2008/10/7

