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Abstract

All programs interact with their environments in one way or another: they read and
write to memory, query usersfor input, print out results, senddata to remoteservers,
etc. Becauseincreasingly complex environments result in increasingly di�cult and
error-prone programming, programming languagesshould facilitate compile-time de-
tection of erroneousinteractions with environments. In this dissertation, I propose
variants of modal logic with names,and their related � -calculi, as a type theoretic
foundation for such languages.

In the �rst part of the dissertation, I review the judgmental formulation of propo-
sitional constructive modal logic, and the de�nitions of necessity and possibility as
universal and existential quanti�cation over possibleworlds. In the application to
functional programming, possibleworlds in modal logic will correspond to execution
environments.

The secondpart investigatesthe notions of partial judgments; that is, judgments
satis�ed under some abstract condition. Partial necessity and partial possibility
correspond to boundeduniversaland boundedexistential quanti�cation over possible
worlds. While the partialit y condition may be speci�ed in several di�eren t ways, in
this dissertation the focus is on the de�nition of partialit y in terms of names. Names
are labels for propositions, and a set of names represents the partialit y condition
obtained as a conjunction of the respective propositions.

In the third part, I discussapplications of modal logic to staged computation
and metaprogramming. In these applications, it is frequently necessaryto consider
a primitiv e operation of capture-incurring substitution of program expressionsinto
a context, which is naturally expressedin a modal type system.

The last part of the dissertation develops modal type systemsfor e�ects. The
e�ects associated with partial possibility are those that permanently change the
execution environments, and therefore must be executed in a speci�c linear order.
Writing into a memory location is a typical example. The e�ects associated with
partial necessity are thosethat may dependon the executionenvironment, but do not
change it { they are benign, and do not needto be speci�cally serialized. Examples
include memory readsand control o w e�ects.
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In tro duction

It is becoming increasingly important today to execute programs in very complex
run-time environments. Modern programs are often required to run in parallel, be
mobile, use distributed data owned by di�eren t authorities, accommodate dynam-
ically changing run-time conditions. Moreover, as the run-time environments are
becomingmore complex, so is the programming for theseenvironments.

When approaching complex programming problems, a language-enforcedpro-
gramming discipline is crucial, and a natural way to enforcethis discipline is through
the type mechanism of functional languages. Types expressassumptionsand guar-
anteesrequired of expressions,and usually correspond to propositions in somelogic.
The compiler can mechanically check if the expressionmatches its speci�ed type,
thereby aiding the debuggingprocess.

The type systemsof languagestoday usually ensure that functions are invoked
with matching arguments but, unfortunately, ignore how programsinteract with run-
time environments. In order to managethe increasedcomplexity of programming, a
language-enforcedtyping discipline that takes environments into account seemslike
a critical component. Indeed, if types could capture important aspects of run-time
environments, then the type system may also ensure that expressionsare always
executedin matching environments.

What doesit mean for an expressionand an environment to match? The de�ni-
tion may be given in many di�eren t ways, depending on the particular application.
As an illustration of the concept, consider the following example. Assume that an
environment consists on a number of allocated memory locations (not necessarily
initialized). An expressioninteracts with this environment by reading or writing
into the locations. One possiblede�nition of matching may, for example, insist that
each expressionreading from a number of locations is always executedin a state of
memory where theselocations are actually initialized.

A related issue is whether an expressiononly depends on the environment in
which it executes,or perhapsthe execution of the expressionmay causea changein
the environment. To refer to the previous example,a program that doesnot interact
explicitly with the memory locationswill producethe sameresult irrespectively of the
particular valuesstored in the locations. Wecall such a program pure. If the program
reads from a certain location, then changing that location's value may change the
result of the program. If the program actually writes into a location, then it not only
depends on the memory environment, but it also changesit. It may be bene�cial
in several ways to make a typing distinction between expressionsthat are pure,
expressionsthat depend on the environment, and expressionsthat may change the
environment. A pure expressionis self-contained. One can easily optimize it and
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INTR ODUCTION

reasonabout it. If the expressionis impure, optimizations and reasoningare much
harder, becauseinteractions with unknown environments must be taken into account.
The reasoningis made easier if types could restrict the kinds of environments that
may be encountered, and also reect the nature of the interaction.

A natural question then becomes: which logic may capture the properties of
run-time environments, and thus may serve as a foundation for type systemswith
above properties? The proposedanswer in this dissertation is: modal logic. More
speci�cally , the thesis statement of the dissertation is:

Partial modal logic with names provides an appropriate type theoretic
foundation for expressingdiverse aspects of the interaction between a
functional program and the environment in which this program executes.

Modal logic is designedfor reasoning about truth across various { abstract {
worlds. A proposition may be true in some world, but not true in some other.
The versions of modal logic that will be consideredhere feature two operators on
propositions: � (box) and 3 (diamond). The operator � is a universal quanti�er:
� A is true at the current world i� A is necessary, i.e. true at all worlds. The operator
3 is an existential quanti�er: 3 A is true at the current world i� A is possible, i.e. true
in at least someworld.

For the application to programming languages,we may assumethat, intuitiv ely,
the worlds from modal logic stand for the run-time environments in which the pro-
grams execute. Then, according to the proofs-as-programsparadigm of type theory,
deriving truth of a proposition A in a particular world, computationally corresponds
to producing a value of type A in a particular run-time environment.

Wefurther introducean additional condition C, which may or may not besatis�ed
by any given world. The obtained logic will be called partial modal logic. Instead of
two modal operators � and 3 , partial modal logic features two indexed families of
operators � C and 3 C which correspond to boundeduniversaland boundedexistential
quanti�cation over worlds, respectively. The proposition � C A is true at the current
world i� A is true at every world in which C holds. The proposition 3 C A is true at
the current world if there exists a world in which both C holds and A is true.

Computationally, the condition C represents properties of interest that the run-
time environment must satisfy in order for the consideredexpressionto be evaluated.
In the previously mentioned example with memory reads and writes, C may be a
list of currently initialized memory locations. The type system may ensure that
expressionsreading from locations listed in C are always executed in environments
in which locations from C are initialized.

The computational interpretation of the modal type � C A parallels its logical
meaning: � C A classi�es expressionsof type A that may executein any environment
satisfying the condition C. The results of the execution may di�er depending on the
particular environment, but it is important that the environment is not changedas
result of the execution. In our example with memory, � C A will classify expressions
that do not write into any locations, but may read from locations in C, before
computing a value of type A.

The interpretation of the modal type3 C A is dual: 3 C A classi�esexpressionsthat
may changethe current environment (and the condition C captures the aspects that
aresubject to change)beforeproducing a valueof typeA in the changedenvironment.

2



INTR ODUCTION

Such expressionscorrespond to bounded existential quanti�cation. Indeed, they are
the witness that there exists an environment (i.e., the one obtained after the change
has beencarried out) in which a value of type A can be computed. In the example
with memory, 3 C A will classify expressionsthat may �rst write into the memory
locations C beforecomputing a value of type A in the changedstate.

Namesare objects that are usedto formally represent the partialit y condition C.
In the examplewith memory, each memory location is associated with a namewhich
uniquely identi�es this location. The condition C is a set of names,representing the
set of locations that are currently initialized. Namesmay be dynamically allocated
and introduced into the computation.

The idea to use types to di�eren tiate pure from e�ectful expressionscertainly
has beenstudied before. Here we only mention the most popular approaches: type-
and-e�ect systems[GL86, LG88, Wad98, JG91, TJ94, TT97], and monads [Mog91,
Wad92, Wad95, Wad98]. In modal logic, however, the emphasisis not on the e�ects
themselves,but is rather on the environments (as the readerhasundoubtedly already
noticed). For example, in the framework of e�ect systemsor monads,an expression
may be described as \causing the e�ects of reading from memory locations C". In
modal logic, the sameexpressionwill be characterized as being \executable in any
state of memory in which the locations C are initialized".

This switch of emphasiswill allow modal systemsthat may expressinteractions
between programs and environments that are much more diverse than just e�ects.
In fact, the notion of a generic monad gives rise to a particularly simple version of
modal logic, called lax logic [FM97, BBdP98, PD01], and thus monadsmay beseenas
a special caseof the modal approach. Of course,there are many other modal logics,
which may potentially capture many di�eren t aspectsof programsand environments.
For example, Chapter 3 studies in more detail a version of modal logic suitable for
application to stagedcomputation and metaprogramming, where programs may be
generated,compiled, and even inspected at run time.

The rest of this section describes the organization of the dissertation and the
contributions of each particular chapter.

Organization and contributions

Chapter 1: Constructiv e mo dal logic

The purposeof this chapter is to establish the main conceptsthat we operate with in
the rest of the document. We usethe methodology of Martin-L•of [ML96] to clearly
separate between the notions of proposition and judgments, and then develop a
natural deduction for a particular versionof modal logic. The modal logic in question
is called Constructive S4 (CS4), and it will be a basis for all the considerations in
the following chapters. In addition to the usual connectives of propositional logic,
CS4 contains the modal propositional operators � and 3 which expressuniversal
and existential quanti�cation over possibleworlds.

The proof term assignment for the developed natural deduction de�nes a modal
extension of the � -calculus, and provides the computational context for the modal
logic CS4. The modal � -calculus is characterized by the new term constructors box
and let box (which correspond to the inference rules for the operator � ) and dia
and let dia (which correspond to the inferencerules for the operator 3 ).

3



INTR ODUCTION

The chapter concludeswith the formulation of the relevant expressionsubstitu-
tions, and the corresponding substitution principles in the setting of both the natural
deduction and the modal � -calculus.

The presentation in this chapter closely follows the work of Pfenning and Davies
[PD01], and doesnot add novel contributions.

Chapter 2: Partial mo dal logic

This chapter developspartial modal logic CS4,asan extensionof ordinary CS4from
Chapter 1. The main idea is to introduce a condition C that serves to characterize
arbitrary aspect of the possible worlds that may be of relevance for the eventual
applications. The condition C is called support. The basicsof the logic are developed
with the support C kept abstract, so that the chapter is rather general. Eventually,
C is de�ned as a set of names (to be described below), but many other de�nitions
seemplausible.

The introduction of supports leads to the de�nition of modal operators � C and
3 C , which are indexed by the support C. The indexed modal operators correspond
to bounded quanti�cation over possibleworlds. For example, � C A will intuitiv ely be
true at the current world i� A is true at all possibleworlds in which C holds. Dually,
3 C A will be true at the current world i� there existsa world in which both C holds
and A is true.

The extensionsof the logic will also inuence the corresponding � -calculus. In
order to preserve the completeness,we will add new term constructors. But most
importantly, the de�nition of supports will lead to a de�nition of a new and interest-
ing operation of modal substitution. Unlike ordinary substitution, which treats the
substituting terms parametrically, modal substitution allows the term to be mod-
i�ed before it is substituted in. It is important that a di�eren t modi�cation may
be speci�ed for each substituting occurrence. This processof modi�cation is called
reection, and may be de�ned in many ways, depending on the speci�c notions of
support.

This chapter also introduces names, which provide a particular way to specify
supports. Each name is associated with someproposition A, and serves as a place-
holder for a proof that A is true. The development is slightly more general,however,
as we want namesto stand for proofs of other properties of interest, and not only for
truth. As already mentioned, the support C may beviewed asa setof names,and the
condition expressedby C is the conjunction of the propositions associated with each
namein C. The processof reection is then de�ned asan explicit substitution for the
names in C. The proof-term assignment obtained for the partial modal logic with
namesgivesrise to an extensionof a � -calculus, which we call a modal � -calculus.

The chapter concludeswith the proofs of the main principles associated with
ordinary, modal and explicit substitutions. All the work presented in this chapter is
original.

Chapter 3: Staged computation and metaprogramming

In stagedcomputation and metaprogramming, we are concernedwith writing code
that generatesother code. Frequently, the generatedcode may beseenassourcecode
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INTR ODUCTION

(i.e., a syntactic entit y), and the operations of interest include not only generating
but also compiling and inspecting sourcecode.

The type safety for metaprogramming applications has to guarantee that well-
typed metaprograms only generate well-typed source code. One of the most per-
sistent challengesrelated to the types in metaprogramming has been in devising a
type systemthat can di�eren tiate betweensourcecode which is closed (i.e., doesnot
depend on free variables, and may therefore be compiled and executedat run time),
and sourcecode which is open (i.e., may depend on free variables).

It turns out that the � -fragment of the modal � -calculus from Chapter 2 directly
extends to a metaprogramming calculus with typesfor closedand open sourcecode.
The type � CA classi�es sourcecode of type A which may depend on free variables
(i.e., names) listed in the set C. When the set C is empty, then � A classi�es
closed sourcecode. In this chapter, we also de�ne the notion of polymorphism in
supports, so that we can write programs that manipulate sourcecode of di�eren t or
even unknown support. The chapter also presents someinitial development toward
extending the calculus with features for pattern matching against sourcecode.

From the technical standpoint, the contributions of the chapter involve the devel-
opment of the logical relations for the � -fragment of the modal � -calculus,aswell as
proofs of the appropriate progressand type preservation theorems. The work lead-
ing to the results of this chapter has beenpresented previously in a form of several
papers and technical reports [Nan02a, Nan02b, NP02].

Chapter 4: Mo dal theory of e�ects

In this chapter we develop a generalmodal calculus in which types can distinguish
between two kinds of e�ects: e�ects that are persistent, and e�ects that are benign.
The execution of persistent e�ects inicts a changeupon the run-time environment,
while the benign e�ects only depend on the environment, but do not change it. A
typical persistent e�ect is writing into a memory location, while typical benigne�ects
arememory readsor control o w e�ects. The derivedtypesystemis able to di�eren ti-
ate betweenvalues(which are ascribed non-modal types), computations with benign
e�ects (ascribed the indexed modal type � C A) and computations with persistent
e�ects (ascribed the type 3 C A). This development is an original contribution.

The programming style enforcedby this type systemserializesthe computations
with persistent e�ects. The persistent e�ects must be totally ordered,simply because
their execution changesthe run-time environment, soany well-de�ned semantics has
to �x this order. Such a requirement, however, is not imposedon benign e�ects.

The idea to use types to di�eren tiate between values and (possibly e�ectful)
computations has been extensively studied in the past. The most prominent rep-
resentativ e of this line of research are monads and the monadic � -calculus [Mog91,
Wad92, Wad95, Wad98]. The notion of a genericmonadic type operator  givesrise
to lax logic [FM97], which is a simple variant of modal logic.

It is interesting that lax logic may be embeddedinto the constructive modal logic
CS4, as discovered by Pfenning and Davies [PD01]. In this chapter, we present both
the lax logic and its embedding. While we adopt the approach of [PD01] in the
description of lax logic, the embedding itself is presented in a novel way. Rather
than insisting on the formal syntactic particulars of the embedding, we focus on its
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INTR ODUCTION

more illustrativ e semantic importance, which is in identifying the conceptsof truth
and necessity. This identi�cation of truth and necessity may be formally achieved
by adjoining a single axiom schema A ! � A to modal logic CS4. In this case,the
modal operator 3 becomesthe monadic operator  from lax logic.

The development of the chapter proceedsby performing a similar modi�cation to
partial modal logic. When truth and necessity are identi�ed in partial modal logic
(or, equivalently, if partial modal logic is extendedwith the axiom schemaA ! � A),
we obtain a general type system for benign and persistent e�ects described at the
beginning. This observation is also an original contribution.

The general calculus may be uniformly instantiated to treat various di�eren t
e�ects, and we do so to obtain novel calculi for memory readsand writes and calculi
for control e�ects like exceptions, catch-and-throw, and composablecontinuations.
As mentioned before, an important characteristics of these calculi is that benign
e�ects neednot be explicitly serialized. This is an improvement when compared to
the monadic � -calculus, where programs must explicitly specify a total ordering on
all e�ects. In the modal calculus, such total ordering is imposedonly on persistent
e�ects. The modal formulation of benign e�ects may also potentially improve the
e�ciency of the computations, when comparedto the monadic treatment of the same
e�ects.

It is interesting that the � -fragment of the calculus for memory implements a
type-safeversion of dynamic binding. In this calculus, computations that read from
memory are ascribed a universal bounded type � CA. The construct for dynamic
binding binds values to memory locations, and thus speci�es an environment in
which a computation of type � C A may be executed. In this sense,dynamic binding
logically corresponds to instantiation of the bounded universal quanti�er � C .

Dynamic binding hasa long history in functional programming languages,which
dates back to the early versionsof LISP. Several formulations have since beenpro-
posedfor various applications in functional programming and distributed computa-
tion [Mor97, LSML00, LF96, Dam96, Dam98, HO01, SSK02,BHS+ 02]. Despite these
developments, however, dynamic binding remainedoften criticized for its complexity
and lack of logical content. Thus, discovering the logic behind dynamic binding has
beena long-standing problem in functional programming.

The work leading to the results related to the calculi of e�ects given in this
chapter are original, and has beenpresented previously in a form of several papers
and a technical report [Nan03a, Nan03c, Nan03b]. The calculi are implemented, and
the sourcesfor the type checker and the interpreter are accessibleon the Web, at
\ http://www.cs.cmu.edu/~aleks /pa pers /eff ect s/nu box. tar .gz ".
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Chapter 1

Constructiv e mo dal logic

1.1 Natural deduction

1.1.1 Judgmen ts and prop ositions

A modality is a logical operator that quali�es assertionsabout the truth of propo-
sitions. For example, given a certain proposition A, we may consider if A is true or
false,but may also be interested if A is necessarily true, or possiblytrue, wil l be true
at the next moment in time, is believed to be true, and so on.

The assertionsexpressedby modalities are customarily given formal semantics
using the approach of Kripke frames[Kri63]. A Kripk e frame is a relational structure
(W; R), consisting of a set of possible worlds W, and a relation R � W � W of
accessibility. Then, a modally quali�ed proposition expressesan assertion about
truth acrossaccessibleworlds. The nature of the assertion is determined by the
nature of the accessibility relation.

We illustrate the concept of Kripk e frames using a particularly simple example
of temporal modal logic, which is a logic for reasoning about truth in subsequent
moments in time. The appropriate Kripk e frame for this logic de�nes the possible
worlds W as moments in time. The accessibility relation R is discrete and total,
determining the temporal relation between worlds. We have (w; w0) 2 R if and
only if w is a moment occurring sometime before w0. BecauseR is discrete, for
each moment w there is a w0 that can be chosen as a subsequent moment. Then
we can de�ne a modality  as an operator on propositions expressingtruth at the
subsequent time moment. More precisely, we say that  A is true at time moment
w if and only if A is true at the subsequent time moment w0.

Someother operators frequently consideredin modal logic are the operator � of
necessity and the operator 3 of possibility. The two operators expressuniversal and
existential quanti�cation over accessibleworlds, respectively. As an illustration, in
the temporal logic described above, we say that � A is true at sometime moment w
if and only if A is true at all time moments in the future of w. Dually, 3 A is true at
w if and only if A is true at sometime moment in the future of w.

In this section, we review the results of Pfenning and Davies from [PD01] and
consider modal logic from intuitionistic and type theoretic perspective, rather than
from the perspective of Kripk e frames and possibleworlds. The intuitionistic ap-
proach puts special emphasison the constructive import of propositions: A will be

7



1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

consideredtrue, if and only if we can construct and exhibit evidenceof it. In our
formulation, we follow the methodology of Martin-L•of [ML96] to clearly separate
the notions of judgments and propositions. Propositions are logical objects encod-
ing statements about the domain of discourse. Judgments represent properties of
propositions that are subject to proof.

For example, we can judge if a certain proposition A is well formed or not, and
we can formulate a judgment

A prop

de�ning what counts as a proof of well-formedness. If we assumethat our logic
contains an operator ^ for conjunction, then a conjunction of two propositions A
and B is a well-formed proposition whenever both A and B are well-formed. This
(rather self-evident) fact canbeexpressedasan inference rule of the judgment A prop
as follows

A prop B prop

A ^ B prop

The inferencerule is oriented in a top-down manner: the judgments above the line
are premises, and the judgment below the line is a conclusion that may be inferred
after the premiseshave been judged satis�ed (i.e., witnessed by a proof). In this
sense,a proof that A ^ B prop consistsof the proofs that A prop and B prop.

A completely separatejudgment has to be usedto determine when a proposition
A is true, and what constitutes a proof, i.e. evidencefor the truth of A. Appropriately
enough,we call this judgment

A tr ue

and we implicitly assumethat A prop is satis�ed before we can judge if A tr ue. In
intuitionistic logic, we have evidencefor A ^ B if and only if we have evidencefor
each of the two propositions. We can expressthe if-then direction of this fact using
the intr oduction rule

A tr ue B tr ue

A ^ B tr ue

and the only-if direction is encoded using the two elimination rules

A ^ B tr ue

A tr ue

A ^ B tr ue

B tr ue

The introduction rule de�nes when it is justi�ed to conclude that a conjunction
of two propositions is true. The rule is named\in troduction" becauseit allows us to
intr oduce the ^ operator into the proposition A ^ B . The elimination rules de�ne how
to usea conjunction onceit has beenproved. In particular, we can always eliminate
the ^ operator from A ^ B , and obtain A in isolation from B , or vice versa.

Of course, the introduction and elimination rules for a logical operator cannot
be completely arbitrary , but must satisfy certain coherenceconditions which ensure
that the rules match. For example, the elimination rules should not be too strong

8



CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

and allow us to infer unjusti�ed conclusions. We can make a conclusion from the
elimination rule only if we have enoughevidencefor the premises. This property is
known aslocal soundness. It is witnessedby local reduction which constructs evidence
for the conclusionof an elimination rule out of evidencefor the premises.The local
reductions witnessing the local soundnessof the elimination rules for conjunction are
stated in the following form.

A tr ue B tr ue

A ^ B tr ue

A tr ue
=) R A tr ue

and

A tr ue B tr ue

A ^ B tr ue

B tr ue
=) R B tr ue

The �rst local reduction shows that the conclusionA tr ue obtained after eliminating
A ^ B tr ue could have already been obtained as a �rst premise of the rule that
introduced A ^ B tr ue. Therefore, the elimination rule is not too strong, becausewe
can only use it to establish something we already had. The local reduction shows
how the proof could have beenderived without the detour of introducing and then
eliminating the conjunction. This is why it is called\reduction"; it establishessimpler
evidencefor the conclusionobtained after conjunction elimination. The other local
reduction is completely symmetric, except that it usesthe secondelimination rule
for conjunction.

The elimination rules must not be too weak either. We should be able to usean
elimination rule in such a way that its premisescan be recovered. This property is
known as local completeness. It is witnessedby local expansion, which applies the
elimination rules in order to obtain enough knowledge to reconstruct the original
judgment. It is called \expansion" becauseit obtains a more complex evidencefor
the original judgment. In caseof conjunction, the local expansiontakesthe following
form.

A ^ B tr ue =) E

A ^ B tr ue
A tr ue

A ^ B tr ue
B tr ue

A ^ B tr ue

As shown above, the local expansion eliminates A ^ B tr ue to obtain A tr ue and
B tr ue. The two are then combined to reintroduce A ^ B tr ue.

1.1.2 Hyp othetical judgmen ts and implication

A further primitiv e notion that we need is that of a hypothetical judgment, i.e., a
judgment which is madeunder hypotheses,or assumptions. Hypothetical judgments
are neededin order to formalize the concept of implication. We would like to de�ne
the implication A ! B to be true if and only if B tr ue can be proved whenever
A tr ue can. But in order to formally state this causaldependencebetweenA and B ,
we needto de�ne what it meansto judge B tr ue under an assumption that A tr ue.

9
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The general form of a hypothetical judgment is written as

J1; : : : Jn ` J

which expressesthat J can be proved under the hypothesesJ1, : : : , Jn . We alsorefer
to J1, : : : , Jn as antecedents and J as the succedent of the hypothetical judgment.

The �rst speci�c hypothetical judgment that we consider in this section limits
J1, : : : , Jn , J to be instancesof A tr ue, and therefore has the form

A1 tr ue;: : : ; An tr ue ` A tr ue

The collection A1 tr ue, : : : , An tr ue is called a context of hypotheses.We use� and
variants to range over contexts, and will usually write the hypothetical judgment in
an abbreviated form

� ` A tr ue:

When de�ning a new judgment, we need to state what counts as evidence,or
proof for it. In the particular caseof the hypothetical judgment � ` A tr ue, we
need to de�ne a notion of hypothetical proof. What does it mean to derive A tr ue
under assumptions�? In a hypothetical proof of A tr ue under assumptionsA 1 tr ue,
: : : , An tr ue, we can use the hypothesesas if we knew them. Once a derivation of
A i tr ue is given (for someA i ), we can substitute it for the usesof the assumption
A i tr ue in the hypothetical proof, to obtain a judgment and a proof that no longer
depend on A i tr ue. In this sense,a proof of � ` A tr ue prescribeshow a proof A tr ue
can be constructed, once proofs of A1 tr ue, : : : , An tr ue are given. The emphasis
in this construction is on the operation of substitution. When deriving A tr ue, the
proofs of A1 tr ue, : : : , An tr ue may only be usedas given, without any opportunit y
for inspection or modi�cation. Becauseof this particular property, we say that the
hypothetical judgment is parametric in its assumptions.

The nature of the hypothetical judgment and the dependencebetweenantecedents
and succedent is usually stated in the form of the following substitution principle.

If � ` A tr ue and � ; A tr ue;� 0 ` B tr ue, then � ; � 0 ` B tr ue.

The substitution principle implicitly assumesthat the proof of � ` A tr ue is indeed
substituted into the proof of � ; A tr ue;� 0 ` B tr ue to obtain a proof of � ; � 0 ` B tr ue.
Notice that the substitution principle is not an inference rule, but a metatheoretic
property which we will have to prove onceall the inferencerules of � ` A tr ue are
de�ned.

In addition to the substitution principle, we imposesomefurther structure of the
hypothetical judgment. In particular, we require the following structural properties.

1. Exchange. If � 1; A1 tr ue;� 2; A2 tr ue ` B tr ue, then � 1; A2 tr ue;� 2; A1 tr ue `
B tr ue.

This structural property of exchange states that the ordering of hypothesis in
the context � is irrelevant for the judgment. In other words, we may consider
� to be a multiset, rather than a list. We immediately put exchange to use in
order to abbreviate the statements about our hypothetical judgments.

10
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2. Weakening. If � ` B tr ue then � ; A tr ue ` B tr ue.

3. Contraction. If � ; A tr ue;A tr ue ` B tr ue, then � ; A tr ue ` B tr ue.

Using the structural properties of exchange and weakening, we can further sim-
plify the substitution principle for the truth judgment, and rephraseit as presented
below. It is this form of the substitution principle that we adopt in the rest of the
dissertation.

Principle (Substitution)
If � ` A tr ue and � ; A tr ue ` B tr ue, then � ` B tr ue.

The hypothesisrule of the truth judgment formalizesthe intuition that assumptions
in a hypothetical judgment may be usedas if they were known. In particular, under
the assumption A tr ue, we may always conclude A tr ue. Following the structural
property of exchange, the rule ignores the ordering of the hypothesis in the context
�.

� ; A tr ue ` A tr ue

After introducing all the machinery of hypothetical judgments and proofs, we
are �nally ready to de�ne implication A ! B as a new form of propositions, which
expressesthat B tr ue may be derived when A tr ue is given. We will frequently say
that implication internalizes hypothetical truth, becauseit provides meansto reason
about hypothetical truth within the ordinary truth judgment.

As a �rst step in the de�nition of the new propositional operator, we need to
extend the formation judgment A prop so that it can treat the new caseinvolving
the operator ! . The appropriate formation rule simply states that A ! B is a well
formed proposition, whenever both A and B are.

A prop B prop

A ! B prop

More interesting are the inference rules that extend the truth judgment. Fol-
lowing the methodology of natural deduction that we previously used in the case
of conjunction, we provide an introduction and an elimination rule for implication.
The introduction rule formally states that A ! B tr ue can be derived if there is a
hypothetical proof of A tr ue ` B tr ue. The introduction rule thereforeexactly serves
to de�ne the operator of implication asan internalization of hypothetical judgments.

� ; A tr ue ` B tr ue

� ` A ! B tr ue

The elimination rule for implication realizesthe substitution principle, and provides
a way to infer B tr ue when both A ! B tr ue and A tr ue can be obtained.

� ` A ! B tr ue � ` A tr ue

� ` B tr ue

11
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The rules are locally sound and complete,and therefore of matching strength. Local
reduction is presented below, and is justi�ed by the substitution principle.

� ; A tr ue ` B tr ue

� ` A ! B tr ue � ` A tr ue

� ` B tr ue

=) R � ` B tr ue

Indeed, the derivation of � ` B tr ue may be obtained by substituting the premise
� ` A tr ue into the premise � ; A tr ue ` B tr ue, just as claimed by the substitution
principle.

The local completenessis witnessedby local expansion.

� ` A ! B tr ue =) E

� ; A tr ue ` A ! B tr ue � ; A tr ue ` A tr ue

� ; A tr ue ` B tr ue

� ` A ! B tr ue

Local expansion�rst usesthe structural property of weakening to modify � ` A !
B tr ue into � ; A tr ue ` A ! B tr ue. Implication elimination is performed on this
premise to obtain � ; A tr ue ` B tr ue, before reintroducing implication again and
conclude� ` A ! B tr ue.

Example 1 The following are example judgments that can be derived in the logic
presented so far.

1. ` A ! A tr ue

2. ` A ! B ! A tr ue

3. ` (A ! B ! C) ! (A ! B ) ! A ! C tr ue

Derivation of ` A ! A tr ue.

A tr ue ` A tr ue

` A ! A tr ue

Derivation of ` A ! B ! A tr ue.

We �rst use the hypothesis rule to infer A tr ue;B tr ue ` A tr ue, which is then
followed by two introductions.

A tr ue;B tr ue ` A tr ue

A tr ue ` B ! A tr ue

` A ! B ! A tr ue

12
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Derivation of ` (A ! B ! C) ! (A ! B ) ! A ! C tr ue.

(A ! B ! C) tr ue ` A ! B ! C tr ue A tr ue ` A tr ue

(A ! B ! C) tr ue; A tr ue ` B ! C tr ue

(A ! B ) tr ue ` A ! B tr ue A tr ue ` A tr ue

(A ! B ) tr ue; A tr ue ` B tr ue

(A ! B ! C) tr ue; (A ! B ) tr ue; A tr ue ` C tr ue

(A ! B ! C) tr ue; (A ! B ) tr ue ` A ! C tr ue

(A ! B ! C) tr ue ` (A ! B ) ! A ! C tr ue

` (A ! B ! C) ! (A ! B ) ! A ! C tr ue

�

1.1.3 Necessit y

In the previous sectionswe consideredtwo versionsof the judgment for truth: the
hypothetical version � ` A tr ue, and the non-hypothetical version A tr ue. The
hypothetical version � ` A tr ue extends A tr ue, in the sensethat the later can be
recovered as � ` A tr ue where the context � is chosen to be empty. The variant
� ` A tr ue is known as a categorical judgment, becauseit does not depend on any
hypotheses.It can be seenasstating a universalfact, which doesnot rely on external
arguments. Categorical judgments are witnessedby categorical proofs. A categorical
proof is, again, a proof that doesnot depend on any hypotheses;a proof which is, in
somesense,closed.

In this section we isolate the notions of categorical judgment and categorical
proof, and considerthem in and of themselves, rather than as special casesof hypo-
thetical judgments and proofs. To this end, we introduce the judgment for necessity

A nec

de�ned by the following two clauses.

1. If � ` A tr ue, then A nec.

2. If A nec, then � ` A tr ue.

The two clausesde�ne that A nec holds if and only if � ` A tr ue. Clause (1)
establishesthe if-then direction, and clause(2) corresponds to the only-if direction.
Notice that we allow non-empty � in the de�nitional clause (2) in order to avoid
explicit context weakening.

The choice of the name for the necessity judgment is not accidental. As we
will soon demonstrate, the consideration of categorical proofs and categorically true
propositions very quickly leads to a formulation of modal logic. An informal but
useful intuition that relates categorical judgments to modal logic is based on the
following observation. Each context � of a hypothetical truth judgment may be seen
as selectinga set of possibleworlds in a Kripk e-style semantics. The selectedworlds
are those that satisfy all the hypothesesin �. If the proposition A is categorically
true, i.e. if � ` A tr ue, then A is true in a generic world about which we know
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nothing. In other words, A is true in all accessibleworlds. In this sense,categorical
truth corresponds to universal quanti�c ation, and categorically true propositions are
necessary. On the other hand, the hypothetical judgment � ` A tr ue only provides
evidencefor the truth of A in the current world of reference.Wewill frequently rely on
this intuition to motivate particular designchoicesin our logic, but we do not pursue
further its formal side. The interested reader is referred to the work of Alechina et
al. [AMdPR01], which providesa Kripk esemantics for a natural deduction somewhat
di�eren t from ours.

As evident from the de�nition, necessity is a judgment whosemeaningis described
in terms of truth. Thus, necessity in itself does not introduce anything new, unless
we take a further step and extend the truth judgment so that it can depend on
necessaryhypotheses.Becausethe order of hypothesesis not important, we separate
the context into two parts (separatedby semi-colonfor visual clarity), and consider
a judgment of the following form.

B1 nec;: : : ; Bm nec; A1 tr ue;: : : ; An tr ue ` A tr ue

We use� to rangeover setsof hypothesesof the form A tr ue, and � to rangeover sets
of hypothesisA nec. We will implicitly assumethat both the contexts are subject to
the structural properties of weakening, exchangeand contraction.

To de�ne what counts as a proof of the new hypothetical judgment, we need to
extend the notion of categorical proof that was introduced at the beginning of the
section. Similar to before, a categorical proof of �; � ` A tr ue is a proof obtained
without any referenceto truth hypotheses. However, a categorical proof is allowed
to depend on necessaryhypotheses. This is only natural, becausecategorical proofs
are evidencefor necessarypropositions, and could therefore be substituted for nec-
essaryhypotheses.The following substitution principle formally states the described
reasoning.

Principle (Substitution for necessit y)
If �; � ` A tr ue and (� ; A nec); � ` B tr ue then �; � ` B tr ue.

Note that the judgment �; � ` A tr ue in the substitution principle doesnot depend
on true hypotheses.Its proof is categorical, and can therefore be substituted for the
hypothesesA nec to derive B tr ue. The emphasishere is again on substitution. The
proof of A may not be modi�ed or inspected in any way before it is used to derive
B tr ue.

Related to the substitution principle for necessity is the rule for necessaryhy-
potheses.The judgment A nec is witnessedby a categorical proof of A tr ue, and a
categorical proof can always be viewed as an ordinary proof. Thus, given A nec, we
are justi�ed in deriving A tr ue, as the following rule for necessaryhypothesesstates.

(� ; A nec); � ` A tr ue

After introducing the concept of necessity, the next step is to internalize it. To
that end, we introduce a new unary operator on propositions � , with the expected
formation rule.

A prop

� A prop
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The introduction rule follows the de�nition of necessity: we can derive � A tr ue only
if there is a derivation of A nec, i.e. only if there is a categoricalderivation of A tr ue.

�; � ` A tr ue

�; � ` � A tr ue

The elimination rule follows the substitution principle for necessity. Given a deriva-
tion of � A tr ue, we know by de�nition that �; � ` A tr ue. If in addition we have
(� ; A nec); � ` B tr ue, then by the substitution principle for necessity, we may
derive �; � ` B tr ue.

�; � ` � A tr ue (� ; A nec); � ` B tr ue

�; � ` B tr ue

This exact reasoningjusti�es the local reduction and local soundness.

�; � ` A tr ue

�; � ` � A tr ue (� ; A nec); � ` B tr ue

�; � ` B tr ue

=) R �; � ` B tr ue

The local completenessis establishedby the local expansiongiven below.

�; � ` � A tr ue =) E �; � ` � A tr ue

(� ; A nec); � ` A tr ue

(� ; A nec); � ` � A tr ue

�; � ` � A tr ue

Example 2 The following are valid derivations in the modal logic of necessity pre-
sented so far.

1. ` � A ! A tr ue

2. ` � A ! �� A tr ue

3. ` � (A ! B ) ! � A ! � B tr ue

Derivation of ` � A ! A tr ue.

� A tr ue ` � A tr ue A nec; � A tr ue ` A tr ue

� A tr ue ` A tr ue

` � A ! A tr ue

Derivation of ` � A ! �� A tr ue.

� A tr ue ` � A tr ue

A nec; � ` A tr ue

A nec; � ` � A tr ue

A nec; � A tr ue ` �� A tr ue

� A tr ue ` �� A tr ue

` � A ! �� A tr ue
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Derivation of ` � (A ! B ) ! � A ! � B tr ue.

�

(A ! B ) `
�

(A ! B ) tr ue

�

A `
�

A tr ue

A ! B nec; � ` A ! B tr ue A nec; � ` A tr ue

A ! B nec;A nec; � ` B tr ue

A ! B nec;A nec; � `
�

B tr ue

A ! B nec;
�

A `
�

B tr ue
�

(A ! B );
�

A `
�

B tr ue
�

(A ! B ) `
�

A !
�

B tr ue

`
�

(A ! B ) !
�

A !
�

B tr ue

�

1.1.4 Possibilit y

In modal logic, a proposition is necessarily true if it is true in all the accessible
worlds. A dual concept is that of possibletruth . We say that A is possibleif there
exists an accessibleworld in which A is true. The formulation of possibletruth in
classicalmodal logic is usually in terms of necessity, simply becausein classicallogic
existential quanti�cation may be expressedin terms of universal quanti�cation. But
sincewe are interested in a constructive variant of modal logic, this approach is not
available | possibility should be de�ned in and of itself. Furthermore, we would
like to analyze possibility without actually referring to particular worlds within the
formal system, and without describing the totalit y of worlds and the accessibility
relation on it.

As discovered by Pfenning and Davies [PD01], this kind of a formulation can be
achieved if oneadopts a judgmental approach and considershow the knowledgethat
A is possibly true can be used to derive new facts. If A is possibly true, than there
exists a world about which we know nothing, except that A is true at that world.
Therefore, if we assumethat A is true (but nothing else),and then concludethat B
is possible,then B must be possible. Notice that starting from the possibility of A,
we can only make conclusionsabout the possibility of B , but not about the truth
of B . To initially establish that A is possible, we simply need to show that A is
true. To formalize this reasoning,we introduce a new judgment A poss to witness
the possibility of A, and immediately consider its hypothetical variant

�; � ` A poss

where � and � abbreviate necessaryand true assumptions,respectively. The possi-
bilit y judgment is de�ned by the following two clauses.

1. If �; � ` A tr ue, then �; � ` A poss.

2. If �; � ` A poss and �; A tr ue ` B poss, then �; � ` B poss.

Note that the de�nitional clause(2) makesthe necessity assumptions� available for
deriving B poss, but removes the truth assumptions�. This is becausethe context
� stands for propositions that are true in all possible worlds, while � stands for
propositions that are true only in the current world. Therefore, if A is possible
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in someworld, then we may assumeof that world that it validates �, but not �.
The de�nitional clause(2) takesform of a substitution principle, and establishesthe
hypothetical nature of the judgment for possibility with respect to truth hypotheses.
On the other hand, the hypothetical character of possibility with respect to truth
and necessity hypothesesis described by the following versions of the substitution
principles for truth and necessity.

� If �; � ` A tr ue and �; (� ; A tr ue) ` B poss, then �; � ` B poss.

� If �; � ` A tr ue and (� ; A nec); � ` B poss, then �; � ` B poss.

Next we internalize possibility as a propositional operator 3 , with the obvious
formation rule.

A prop

3 A prop

The introduction rule for 3 simply encodes the fact that 3 internalizes possibility
into the truth judgment. The elimination rule for 3 follows the de�nitional clause
(2), except that instead of the assumption �; � ` A poss, it usesthe internalized
variant �; � ` 3 A tr ue.

�; � ` A poss

�; � ` 3 A tr ue

�; � ` 3 A tr ue �; A tr ue ` B poss

�; � ` B poss

We also need an inference rule in order to realize the de�nitional clause(1). This
rule takes the form of a judgmental coercion from truth into possibility.

�; � ` A tr ue

�; � ` A poss

It is easyto seethat the presented inferencerules are locally soundand complete.
Local soundnessis witnessedby the local reduction below.

�; � ` A poss

�; � ` 3 A tr ue �; A tr ue ` B poss

�; � ` B poss

=) R �; � ` B poss

This local reduction is justi�ed on the groundsof the de�nitional clause(2). Indeed,
given the premises�; � ` A poss and �; A tr ue ` B poss, the clause(2) leads to
the reduct �; � ` B poss.

Local completenessis witnessedby the local expansion,which itself relies on the
judgmental coercion from truth to possibility in order to derive �; A tr ue ` A poss.

�; � ` 3 A tr ue =) E
�; � ` 3 A tr ue

�; A tr ue ` A tr ue

�; A tr ue ` A poss

�; � ` A poss

�; � ` 3 A tr ue
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We need a yet further rule to realize the substitution principle for necessary
hypotheseswithin the judgment for possibility.

�; � ` � A tr ue (� ; A nec); � ` B poss

�; � ` B poss

As explained in [PD01], without this rule, the logic will not possessthe strict subfor-
mula property. For example, a proof of the judgment �; � (A ! B ) tr ue;3 A tr ue `
B poss, will �rst have to make a detour and establish a more complicated fact
�; � (A ! B ) tr ue;3 A tr ue ` 3 B tr ue, beforeeliminating 3 B tr ue to obtain B poss.
The new rule is sound,as witnessedby the following local reduction, justi�ed on the
grounds of the substitution principle for necessaryhypotheses.

�; � ` A tr ue

�; � ` � A tr ue (� ; A nec); � ` B poss

�; � ` B poss

=) R �; � ` B poss

Example 3 The following are valid derivations in the judgments modal logic.

1. ` A ! 3 A tr ue

2. ` 33 A ! 3 A tr ue

3. ` � (A ! B ) ! 3 A ! 3 B tr ue

Derivation of ` A ! 3 A tr ue.

A tr ue ` A tr ue

A tr ue ` A poss

A tr ue ` 3 A tr ue

` A ! 3 A tr ue

Derivation of ` 33 A ! 3 A tr ue.

33 A tr ue ` 33 A tr ue

3 A tr ue ` 3 A tr ue

A tr ue ` A tr ue

A tr ue ` A poss

3 A tr ue ` A poss

33 A tr ue ` A poss

33 A tr ue ` 3 A tr ue

` 33 A ! 3 A tr ue
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Derivation of ` � (A ! B ) ! 3 A ! 3 B tr ue.

�

(A ! B ) tr ue `
�

(A ! B ) tr ue

3 A tr ue ` 3 A tr ue

(A ! B ) nec; � ` A ! B tr ue A tr ue ` A tr ue

(A ! B ) nec; A tr ue ` B tr ue

(A ! B ) nec; A tr ue ` B poss

(A ! B ) nec; 3 A tr ue ` B poss

(A ! B ) nec; 3 A tr ue ` 3 B tr ue
�

(A ! B ) tr ue; 3 A tr ue ` 3 B tr ue
�

(A ! B ) tr ue ` 3 A ! 3 B tr ue

`
�

(A ! B ) tr ue ! 3 A ! 3 B tr ue

�

Examples 2 and 3 together list six propositions whosetruth is derivable in our
logic. It is of particular interestshereto emphasizethe connectionbetweentwo pairs
of dual propositions

1. � A ! A and A ! 3 A

2. � A ! �� A and 33 A ! 3 A

In classicalmodal logic thesepairs correspond to particular properties of the acces-
sibilit y relation in the possibleworld semantics. The pair (1), for example, requires
that the accessibility relation betweenworlds is reexive. The pair (2) requires that
the accessibility relation is transitive. The classicalmodal logic satisfying these two
requirements is known under the nameof S4. In analogywith this notational conven-
tion, we call the logic presented hereConstructive S4,or simply CS41. A formulation
of many other intuitionistic modal logics (including a yet another intuitionistic ver-
sion of S4) can be found in the Ph.D. dissertation of Alex Simpson[Sim94].

1.1.5 Summary of the system

We now summarizethe formal systemof modal logic with implication, necessity and
possibility, as described in the previous sections.

Propositions A; B ::= P j A ! B j � A j 3 A
True hypothesis � ::= � j � ; A tr ue
Necessaryhypothesis � ::= � j � ; A nec

The logic consists of three basic judgments A tr ue, A nec and A poss, which
are used as hypothesesin two di�eren t hypothetical judgments �; � ` A tr ue and
�; � ` A poss. The rules of the hypothetical judgments are listed below.

1The name Constructiv e S4 has already been proposedin [AMdPR01 ] for a logic obtained when
the six propositions from Examples 2 and 3 are added to the axioms of the intuitionistic propositional
calculus. The inference rules of Constructiv e S4 include modus ponensand the rule of necessitation.
We take the lib erty to use the same name for our logic, becausewe expect that it is equal to the
logic proposed in [AMdPR01 ]. This conjecture, however, has not been proved.
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�; (� ; A tr ue) ` A tr ue

�; (� ; A tr ue) ` B tr ue

�; � ` A ! B tr ue

�; � ` A ! B tr ue �; � ` A tr ue

�; � ` B tr ue

(� ; A nec); � ` A tr ue

�; � ` A tr ue

�; � ` � A tr ue

�; � ` � A tr ue (� ; A nec); � ` B tr ue

�; � ` B tr ue

�; � ` A tr ue

�; � ` A poss

�; � ` A poss

�; � ` 3 A tr ue

�; � ` 3 A tr ue �; A tr ue ` B poss

�; � ` B poss

�; � ` � A tr ue (� ; A nec); � ` B poss

�; � ` B poss

The inferencerules indeed respect the de�nitional properties of the hypothetical
judgments, as the following theorem shows.

Theorem 1 (Substitution principles)
1. If �; � ` A tr ue then

(a) if �; (� ; A tr ue) ` B tr ue then �; � ` B tr ue

(b) if �; (� ; A tr ue) ` B poss then �; � ` B poss

2. If �; � ` A tr ue, then

(a) if (� ; A nec); � ` B tr ue, then �; � ` B tr ue

(b) if (� ; A nec); � ` B poss, then �; � ` B poss

3. If �; � ` A poss and �; A tr ue ` B poss, then �; � ` B poss

Pro of: Statements (1.a), (1.b), (2.a) and (2.b) are proved by straightforward induc-
tion over the derivation of the �rst judgment in each of the statements. Statement
(3) is proved by induction over its secondjudgment. �

1.2 Mo dal � -calculus

1.2.1 Judgmen ts and pro of terms

Following the type-theoretic methodology of Martin-L•of [ML96], in this section we
annotate the judgments of our natural deduction with proof terms. A proof term
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servesas a witness for its corresponding judgment, in the sensethat a derivation of
the judgment may be recovered by inspection of the proof term. If a judgment is
annotated with a proof term, then each judgment contains in itself an instruction on
how to discover its derivation. It is not necessaryto look outside of the judgment to
establish evidencefor it.

In this case, instead of A tr ue and A poss, we will have judgments e : A and
f � A. The meaningof the judgment e : A is that \ e is a proof term witnessing that
A tr ue". The meaning of the judgment f � A is that \ f is a proof term witnessing
that A poss. The elements of the syntactic category e are called expressions, and the
elements of the syntactic category f are called phrases.

As an illustration, consider the rules for conjunction from Section 1.1.1, here
decoratedwith proof terms.

e1 : A e2 : B

he1; e2i : B

e : A ^ B

fst e : A

e : A ^ B

snd e : B

The proof-annotated rules uncover the computational content of the logic, as proofs
can be treated as programs, and propositions can be treated as types. For example,
the introduction rule for conjunction makes it explicit that the proof of A ^ B can
be constructed using e1 : A and e2 : B as a pair he1; e2i : A ^ B . The elimination
forms fst e and snd e destruct a pair by taking its �rst or secondcomponent.

Local reduction and local expansionscan now be stated using proof terms for
conjunction.

fst he1; e2i =) R e1

snd he1; e2i =) R e2

e : A ^ B =) E hfst e;snd ei

As customary for type theory, the proof-annotated version of local reduction is what
carries the computational meaning of the logical construct, becauseit explains how
a program reducestoward a value. In the caseof conjunction, for example, local
reductions formally specify what it meansto select the �rst or the secondelement
of a pair. If the pair has the form he1; e2i then, in order to compute its �rst element
we simply need to take the expressione1, and to compute the secondelement, we
need to take e2. On the other hand, local expansion implements the principle of
extensionality. In the caseof conjunction, it states that every expressione:A ^ B is
guaranteed to be equal (in an appropriate senseof equality which we do not de�ne
here) to the pair hfst e;snd ei .

To obtain the proof-annotated versions of the hypothetical judgments, we �rst
label the assumptionsfrom the contexts � and � with variables. We write x:A for
\ x is a proof of A tr ue", and u::A for \ u is a proof of A nec". The usual assumptions
of variables contexts hold here as well: variables declaredin � and � are considered
di�eren t and we tacitly employ � -renaming to guarantee this invariant. We will call
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variablesfrom � ordinary or valuevariables,while the variablesfrom � will be modal
variables. The decoratedhypothesisrule now has the form

�; (� ; x:A) ` x:A

and the corresponding substitution principle formalizes how the hypothetical judg-
ments depend on the value variables.

Principle (V alue substitution)
If �; � ` e1 : A then the following holds:

1. if �; (� ; x:A) ` e2 : B , then �; � ` [e1=x]e2 : B .

2. if �; (� ; x:A) ` f 2 � B , then �; � ` [e1=x]f 2 � B .

In this principle, we denote by [e1=x]e2 and [e1=x]f 2 the result of capture-avoiding
substitution of e1 for x in the expressione2 and phrasef 2, respectively. Becausethe
substitution principle now has accessto proof terms, it can explicitly state that the
judgments are parametric with respect to variables. The expressione1 : A can only
be substituted for x in the hypothetical proofs, but cannot be usedin any other way.
This relianceon substitution wasonly implicitly assumedin the previousformulations
of the principle, but onceproof terms are provided, it can be stated explicitly .

The rules for implication introduction and elimination are annotated using � -
abstraction and function application, respectively.

�; (� ; x:A) ` e : B

�; � ` �x :A: e : A ! B

�; � ` e1 : A ! B �; � ` e2 : A

�; � ` e1 e2 : B

As usual, the local soundnessand completenessare witnessedby local reduction and
expansionon the proof terms, which in this caseare the ordinary � -reduction and
� -expansionof the � -calculus.

(�x :A: e1) e2 =) R [e2=x]e1

e : A ! B =) E �x :A: (e x) where x not free in e

Example 4 The following are well-typed expressionin the modal � -calculus. In
this and in other exampleswe will omit the type information from the expressions,
when that improvesreadability.

1. �; � ` �x: x : A ! A

2. �; � ` �x: �y : x : A ! B ! A

3. �; � ` �f : �g : �x: (f x) (g x) : (A ! B ! C) ! (A ! B ) ! A ! C

�

The hypothesisrule for modal variables is annotated as follows

(� ; u::A); � ` u : A
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and the corresponding substitution principle is given below.

Principle (Mo dal substitution)
If �; � ` e1 : A, then the following holds.

1. if (� ; u::A); � ` e2 : B , then �; � ` [[e1=u]]e2 : B

2. if (� ; u::A); � ` f 2 � B , then �; � ` [[e1=u]]f 2 � B

In this principle, the operations [[e1=u]]e2 and [[e1=u]]f 2 are capture-avoiding substi-
tutions of e1 for the modal variable u in e2 and f 2, respectively. We usea di�eren t no-
tation becausethe operation substitutes for a di�eren t kind of variable. The separate
notation will come handy in future sections,where we rede�ne modal substitution
so that it di�ers from ordinary substitution.

The proof-annotated forms of the introduction and elimination rules for � are as
follows.

�; � ` e : A

�; � ` box e : � A

�; � ` e1 : � A (� ; u::A); � ` e2 : B

�; � ` let box u = e1 in e2 : B

and the local soundnessand completenessare witnessedby the local reduction and
expansion

let box u = box e1 in e2 =) R [[e1=u]]e2

e : � A =) E let box u = e in box u

Example 5 The following are well-typed expressionsin the modal � -calculus.

1. �; � ` �x: let box u = x in u : � A ! A

2. �; � ` �x: let box u = x in box box u : 2 A ! �� A

3. �; � ` �x: �y : let box u = x in let box v = y in box u v
: � (A ! B ) ! � A ! � B

�

The inferencerules for possibility are easily annotated as well. The proof terms
that we usein this casebelong to the syntactic category of phrases, and we start by
rewriting the de�nitional clausesfor possibility (Section 1.1.4) to take phrasesinto
account.

1. If �; � ` e : A then �; � ` e � A.

2. If �; � ` f 1 � A and �; x:A ` f 2 � B , then �; � ` hhf 1=xii f 2 � B .
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The de�nitional clause (1) makes it evident that each expressione : A may be
consideredas a phrase witnessing e � A. The de�nitional clause(2) takes a form
of a phrase substitution principle. It usesa new operation of phrase substitution
hhf 1=xii f 2 which we de�ne below after introducing the other phraseconstructors.

Just as in Section 1.1.4, the formulation of the proof-annotated possibility judg-
ment, usesan explicit inferencerule to realize the de�nitional clause(1).

�; � ` e : A

�; � ` e � A

The introduction and elimination rules are decoratedusing the new phraseconstruc-
tors dia and let dia as follows.

�; � ` f � A

�; � ` dia f : 3 A

�; � ` e : 3 A �; x:A ` f � B

�; � ` let dia x = e in f � B

Notice that the typing rule for let dia erasesthe context �, and introducesa new
variable x:A, which is consideredbound by the let dia constructor.

There is also an additional rule for eliminating � into the possibility judgment.

�; � ` e : � A (� ; u::A); � ` f � B

�; � ` let box u = e in f � B

let dia x = dia f 1 in f 2 =) R hhf 1=xii f 2

let box u = box e1 in f 2 =) R [[e1=u]]f 2

e : 3 A =) E dia (let dia x = e in x)

The new substitution operation hhf 1=xii f is de�ned in a slightly unusual way, by
induction on the structure of f 1, rather than by induction on the structure of f .

hhe1=xii f = [e1=x]f

hhlet dia y = e1 in f 2=xii f = let dia y = e1 in hhf 2=xii f

hhlet box u = e1 in f 2=xii f = let box u = e1 in hhf 2=xii f

Example 6 The following are well-typed terms in the modal � -calculus.

1. �; � ` �x: dia x : A ! 3 A

2. �; � ` �x: dia (let dia y = x in let dia z = y in z) : 33 A ! 3 A

3. �; � ` �x: �y : let box u = x in dia (let dia z = y in u z)
: � (A ! B ) ! 3 A ! 3 B

�
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1.2.2 Summary of the system

This section summarizesthe main aspects of the de�nition of the modal � -calculus.

Types A; B ::= P j A ! B j � A j 3 A
Expressions e ::= x j �x :A: e j e1 e2

j u j box e j let box u = e1 in e2

j dia f
Phrases f ::= e j let dia x = e in f

j let box u = e in f
Ordinary contexts � ::= � j � ; x:A
Modal contexts � ::= � j � ; u::A

The calculus contains two typing judgments:

�; � ` e : A and �; � ` f � A

The �rst judgment states that the expressione has type A relative to the modal
context � and ordinary context �. Alternativ ely, e is a proof of A tr ue, under
necessaryhypotheses� and true hypotheses�. The secondjudgment states that
the phrasef hastype A relative to the modal context � and ordinary context �. The
alternative reading of this judgment is that f is a proof of A poss under necessary
hypotheses� and true hypotheses�. The following are the inference rules of the
two judgments.

�; (� ; x:A) ` x:A

�; (� ; x:A) ` e : B

�; � ` �x :A: e : A ! B

�; � ` e1 : A ! B �; � ` e2 : A

�; � ` e1 e2 : B

(� ; u::A); � ` u : A

�; � ` e : A

�; � ` box e : � A

�; � ` e1 : � A (� ; u::A); � ` e2 : B

�; � ` let box u = e1 in e2 : B

�; � ` e : A

�; � ` e � A

�; � ` f � A

�; � ` dia f : 3 A

�; � ` e : 3 A �; x:A ` f � B

�; � ` let dia x = e in f � B

�; � ` e : � A (� ; u::A); � ` f � B

�; � ` let box u = e in f � B

There are three di�eren t forms of capture-avoiding substitution in the calculus:

1. Ordinary substitution. [e1=x]e and [e1=x]f which replace the value variable x
by the expressione1
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2. Modal substitution. [[e1=u]]e and [[e1=u]]f which replacethe modal variable u by
the expressione1

3. Phrase substitution. hhf 1=xii f which replacesan ordinary variable x according
to a phrasef 1.

The ordinary and modal substitutions arede�ned in a standard way, and for purposes
of completeness,werepeat herethe de�nition of phrasesubstitution from the previous
section. Phrasesubstitution hhf 1=xii f is de�ned by induction on the structure of f 1,
as follows.

hhe1=xii f = [e1=x]f

hhlet dia y = e1 in f 2=xii f = let dia y = e1 in hhf 2=xii f

hhlet box u = e1 in f 2=xii f = let box u = e1 in hhf 2=xii f

The following theorem provesthat the presented formulation respects the substi-
tution principles stated beforeas de�nitional properties of the judgments.

Theorem 2 (Substitution principles)
1. If �; � ` e1 : A then

(a) if �; (� ; x:A) ` e2 : B then �; � ` [e1=x]e2 : B

(b) if �; (� ; x:A) ` f 2 � B then �; � ` [e1=x]f 2 � B

2. If �; � ` e1 : A, then

(a) if (� ; u::A); � ` e2 : B , then �; � ` [e1=u]e2 : B

(b) if (� ; u::A); � ` f 2 � B , then �; � ` [e1=u]f 2 � B

3. If �; � ` f 1 � A and �; x:A ` f 2 � B , then �; � ` hhf 1=xii f 2 � B

Pro of: By straightforward induction on the structure of the typing derivations
[PD01]. �

1.3 Notes

Related work on the pro of theory of in tuitionistic mo dal logics

As already mentioned, our presentation of constructive S4 from the previous section
was based on the work by Pfenning and Davies [PD01]. But other approaches to
natural deduction have also been proposed. For example, in the work of Alechina
et al. [AMdPR01], Bierman and de Paiva [BdP00], Benton, Bierman and de Paiva
[BBdP98], and Pfenning and Wong [PW95], the modalities are formulated in the
following way.

� ` e1 :
�

A1 � � � � ` en :
�

An x1 :
�

A1 ; : : : ; xn :
�

An ` e : B

� ` box e with �e for �x :
�

B

� ` e :
�

A

� ` un box e : A
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� ` e : A

� ` dia e : 3 A

� ` e1 :
�

A1 � � � � ` en :
�

An � ` e : 3 B x1 :
�

A1 ; : : : ; xn :
�

An ; y : B ` f : 3 C

� ` let dia y = e in f with �e for �x : 3 C

This formulation is similar to the approach by Prawitz in [Pra65]. Notice how the � -
introduction and 3 -elimination rules require explicit substitution. This is avoided in
our presentation in Section1 by separating ordinary variables from modal variables.

In fact, in the subsequent sections (Section 2 and Section 3) we will introduce
Partial CS4, which extends the ordinary CS4 with explicit substitutions. The use
of explicit substitutions there, however, will be directly opposite to the CS4 from
this note. In Partial CS4, it will be the � -elimination and 3 -introduction rules that
use explicit substitutions. This kind of approach will provide a lot of additional
expressivenessand exibilit y when comparedto ordinary CS4.

Another approach to the natural deduction of constructive modal logic in gen-
eral, and versions of modal S4 in particular, is exempli�ed by the work of Alex
Simpson[Sim94]. The truth judgment used in this kind of approacheshas the form
w : A, denoting that the proposition A is true at the world w. The inferencerules
explicitly manipulate the accessibility relation R for the modal logic in question. We
show below the rules for modalities, in the form of derivation trees, as formulated
in [Sim94].

[wRw0]
...

w0 : A w0 � fresh

w : � A

w0 : � A w0Rw

w : A

w0 : A wRw0

w : 3 A

w0 : 3 A

[w00 : A][w0Rw00]
...

w : B w00� fresh

w : B

It is interesting that the version of modal logic formulated by Simpson is slightly
di�eren t from the Constructive S4 introduced in Section 1. In particular, Simpson's
formulation, which is called Intuitionistic S4 (or IS4 for short), admits the following
theorem, which is not derivable in CS4.

(3 A ! � B ) ! � (A ! B )

In fact, if both logics are extended with _ and ? , even further di�erences arise.
For example, the following propositions are not provable in the extension of CS4
[AMdPR01], but are provable in the extensionof IS4.

1. : 3 ?

27



1.3. NOTES CHAPTER 1. MODAL LOGIC

2. 3 (A _ B ) ! (3 A _ 3 B )

Simpson'sdissertation also axiomatizes many other intuitionistic modal logics, and
is a good sourceof historical referenceson this subject.

Related work on the Kripk e semantics of Constructiv e S4

A Kripk e model of CS4 is presented by Alechina et al. in [AMdPR01]. The model
consistsof a set of worlds W and two accessibility relations, one for the intuitionistic
implication v , and one for the modalities ! . More formally:

De�nition 3
A Kripk e model of CS4 is a structure M = (W; v ; ! ; j=) , where W is a non-empty
set of worlds, v and ! are reexiv e and transitiv e binary relations on W , and j= a
relation betweenelements of w 2 W and propositions A, such that:

� v is monotone with respect to atomic propositions, i.e. if w v w0 and P is an
atomic proposition, then w j= P implies w0 j= P

� v and ! are coherent in the following sense:

if w ! v and v v v0, there exists w0 such that w v w0 and w0 ! v0

� the relation j= has the following properties

{ w j= >
{ w j= A ^ B i� w j= A and w j= B
{ w j= A _ B i� w j= A or w j= B
{ w j= A ! B i� for all w0 w w, w0 j= A implies w0 j= B
{ w j= � A i� for all w0 w w and u0  w0, u0 j= A
{ w j= 3 A i� for all w0 w w there exists u0  w0 such that u0 j= A

The de�nition does not require that w 6j= ? . Rather, inconsistent worlds are
permitted, as long as the following requirements are met:

{ if w j= ? and w v w0 then w0 j= ?
{ if w j= ? then for every atomic proposition P, w j= P

In his dissertation [Sim94], SimpsondescribesKripk e semantics for IS4, but not
for CS4. The di�erences betweenthe two semantics include:

1. The semantics for IS4 does not allow inconsistent worlds. The inconsistent
worlds are the feature that eliminates the theorem : 3 ? in the CS4 semantics.

2. In IS4, w j= 3 A i� there exists w0 w w such that w0 j= A. This de�nition
permits the theorem 3 (A _ B ) ! (3 A _ 3 B ).

3. In IS4, a further coherencecondition is imposedbetweenthe two accessibility
relations. In particular, the IS4 semantics requires that

if w0 w w and w ! v, then there exists v0 such that w0 ! v0 and v0 w v

The presenceof this condition in IS4 permits the theorem (3 A ! � B ) !
� (A ! B ).
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Related work on the categorical semantics of Constructiv e S4

Categorical semantics for CS4 has been considered by several authors, most no-
tably by Kobayashi [Kob97], Bierman and de Paiva [BdP00] and Alechina et al.
[AMdPR01]. As establishedin thesepapers, a categorical model for CS4 consistsof
a Cartesian closedcategory with co-products C, together with a monoidal comonad
� and a � -strong monad 3 .
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Chapter 2

Partial mo dal logic

2.1 Natural deduction

2.1.1 Partial judgmen ts and supp orts

In this section, we develop the notion of partial truth judgments. The idea is to
capture that a derivation or a witness of somefact may be obtained, but only if a
certain condition is satis�ed. The syntactic form of the partial truth judgment is

A tr ue[C]

where A is a proposition, and C is a supporting condition, or support, for short. The
semantics of this judgment is to witness that a proof of A tr ue can be obtained if
the condition C is ful�lled. To emphasizethis contrast betweenthe partial judgment
A tr ue[C], and the ordinary judgment A tr ue de�ned in Chapter 1, we will call the
later judgment total. Partial truth judgments resemble somewhat the idea behind
total hypothetical judgments. In a hypothetical judgment

A1 tr ue;: : : ; An tr ue ` A tr ue

the condition on A tr ue consistsof a set of hypothesesA 1 tr ue;: : : ; An tr ue, and a
derivation of A tr ue can be obtained by meansof substitution from the derivations of
A1 tr ue, : : : , An tr ue. Becausethese derivations must be substituted without any
inspection or modi�cation, the judgment A1 tr ue;: : : ; An tr ue ` A tr ue is said to
be parametric in its hypotheses.

Partial judgments, however, are intended to be more general. For example,given
a derivation of A tr ue[C] and a witness that the condition C is satis�ed, it will be
possibleto reconstruct a derivation of A tr ue, but it is not required that the witness
for C is used only via substitution. In fact, any particular application may specify
a di�eren t way to obtain A tr ue from a witness of C and a derivation of A tr ue[C].
In this section, we remain uncommitted and treat this dependencyin the abstract.
That will lead to properties of partial judgments that persist acrossa broader range
of applications.

The processof transforming the proof of A tr ue[C], when a witness for C is
provided, is called reection, and will typically be justi�ed by the metatheoretic
properties of the truth judgment and its derivations. In this sense,a support C may
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be seenas a condition in the metalogical reasoning about derivabilit y of A tr ue.
Correspondingly, reection allows that a conclusion obtained in the metalogic be
coercedinto the truth judgment, when the condition C holds.

Reection will have interesting consequencesfor the computational content of
partial truth, when propositions are seenas types, and proofs as programs. For
example, a proof of A tr ue[C] may be consideredas a program that produces a
value of type A, but only if executed in a run-time environment that satis�es the
condition C. In this case,reection may be de�ned asevaluation, or for that matter,
any other kind of type-preservingprogram transformation.

In the remainder of this section, we embark on the formulation and analysis
of partial truth, which will eventually motivate a development of a whole modal
logic of partial judgments, with very diverseapplications in functional programming.
Becausesupports are syntactic equivalents of metalogicalpropositions, any de�nition
of partial truth must start by formally explaining the correspondencebetweena given
support C and the proposition that C represents. For that purpose,we will usethe
judgments

C supp and C sat

which will need to be de�ned for any particular application, but which we keep
abstract for the time being. The judgment C supp determines if a support C is
well-formed, and the judgment C sat determines if a condition represented by C is
satis�ed. It is implicitly assumedthat C sat is itself well-formed only if C is a valid
support, i.e. only if C supp.

In order to formally capture the causaldependencybetweensupports, we needto
imposesomefurther algebraic structure. In particular, we require that the set of all
supports is partial ly ordered by the reexiv e, anti-symmetric and transitiv e relation
v , and that it has a minimal element 0. The idea is that C v D if and only if the
condition associated with D implies in the metalogic the condition associated with
C. In this case,the minimal support 0 simply corresponds to the condition that is
always, trivially , true. To formalize this intuition, the support judgments will contain
the derivation rules

0 supp and 0 sat

which establish that 0 is a well-formed support, and that 0 corresponds to a true
condition, respectively. We also require the following support weakening principle.

Principle (Supp ort weakening)
If C v D , then any witness of D sat is a witness of C sat as well.

Having introduced the support judgments and ordering, we can now provide a
formal de�nition for the partial truth. Henceforth, we write

A tr ue[C]

if and only if C sat implies A tr ue. We assumehere that the partial truth judgment
is well formed, i.e. that A prop and C supp. Notice that each particular application
will have to specify concretely the dependencybetweenthe derivations of C sat and
A tr ue[C]. However, having in mind that the support 0 is always satis�ed, we impose
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the requirement that A tr ue[0] if and only if A tr ue. This will allow us to regard
the total truth judgment as a special caseof its partial counterpart.

We also considera partial version of the support judgment C sat, and write

C sat [D ]

if and only if D sat implies C sat. In order for this judgment to respect the support
ordering, we require the following as one of its derivation rules.

C v D

C sat [D ]

Again, we insist that C sat [0] if and only if C sat, and treat C sat as a special case
of C sat [D ], when D is the 0 support.

The two partial judgments are further required to respect the partial ordering v ,
in the senseof the following support weakening principle. The support weakening
principle stated previously is subsumedasa special case(obtained when the support
D 0 is taken to be 0).

Principle (Supp ort weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if A tr ue[C], then A tr ue[D ]

2. if C1 sat [C], then C1 sat [D ]

3. if D sat [D1], then C sat [D1]

Finally, in order to relate partial truth with the partial support judgment, we impose
the following requirement phrasedas a reection principle.

Principle (Reection)
If C sat [D ], then the following holds:

1. if A tr ue[C], then A tr ue[D ]

2. if C1 sat [C], then C1 sat [D ]

Notice that if D is taken to be 0, then the reection principle makes a connection
betweenthe partial truth and support judgments and their total counterparts.

2.1.2 Hyp othetical partial judgmen ts

The next step in the development of the logic of partial truth is to extend the non-
hypothetical reasoningassociated with supports and reection, and parametrize the
judgments with respect to a context of hypotheses

A1 tr ue;: : : ; An tr ue:

As customary, we use� to range over contexts, and generalizethe judgments to the
following form

� ` C sat [D ] and � ` A tr ue[D ]:
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Of course,the usual coherenceconditions apply to this generalization. In particular,
if � is the empty context, the new judgments reduceto the non-hypothetical partial
judgments from the previous section. Analogously, if D is the minimal support 0, we
require that the partial judgment � ` A tr ue[0] be equivalent to the total judgment
� ` A tr ue. In a similar fashion, we will abbreviate � ` C sat [0] simply as� ` C sat.
To simplify matters, the de�nition of the partial judgments will immediately assume
that � is a multiset, so that the judgment will satisfy the structural rule of exchange.

Henceforth, we de�ne the judgment

� ` C sat [D ]

to besatis�ed only if a derivation of C sat [D ] canbeobtained given the derivations of
A1 tr ue[D ], : : : , An tr ue[D ]. It is important that the derivations of A i tr ue[D ] must
beusedparametrically { they may not bemodi�ed in any way, and in particular, they
are not subject to reection. The rules of the judgment must extend accordingly, to
account for the context �. For example, the following is a rule of the hypothetical
support judgment which relates causally dependent contexts.

C v D

� ` C sat [D ]

The partial hypothetical truth judgment is de�ned in the similar fashion. We say
that

� ` A tr ue[D ]

only if a derivation of A tr ue[D ] may be obtained from derivations of A 1 tr ue[D ],
: : : , An tr ue[D ], by meansof substitution. Notice how the scope of the support D
in the above de�nitions extends acrossthe whole judgment. The support modi�es
the hypothesesA1 tr ue, : : : , An tr ue, as well as the conclusionsC sat and A tr ue.1

As a coherencecondition, we impose a support weakening principle for hypo-
thetical partial judgments analogousto the support weakening principle from the
previous section.

Principle (Supp ort weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if � ` A tr ue[C], then � ` A tr ue[D ]

2. if � ` C1 sat [C], then � ` C1 sat [D ]

3. if � ` D sat [D1], then � ` C sat [D1]

The extensionsof the reection principle is also straightforward, but with one
essential restriction.

Principle (Reection)
If � ` C sat [D ], then the following holds:

1 In the terminology of modal logic, we can say that the support D is a condition on the current
world. Becausethe hypothesesA 1 tr ue, : : : , A n tr ue are associated with the current world, their
derivations are allowed to be partial in D .
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1. if � ` A tr ue[C], then � ` A tr ue[D ]

2. if � ` C1 sat [C], then � ` C1 sat [D ]

It is of crucial importance to observe that the above reection principle involve
premisesthat are categorical, i.e., do not depend on any hypotheses. In the caseof
supports, we reect a proof of � ` C1 sat [C], and in the caseof truth, we reected
a proof of � ` A tr ue[C], but neither of these judgments depends on �. Indeed,
reecting a hypothetical proof would violate its hypothetical nature, becausethe op-
erations of substitution and reection neednot commute. Any soundway to combine
hypothetical reasoningembodied by substitution, with the non-hypothetical reason-
ing embodied by reection, must imposethat reection is only used on categorical
proofs.

The hypothetical nature of the partial judgments is axiomatized by meansof the
hypothesisrule

� ; A tr ue ` A tr ue[D ]

The corresponding substitution principle simply axiomatizesthe de�nitional proper-
ties.

Principle (Substitution)
If � ` A tr ue[C], then the following holds:

1. if � ; A tr ue ` B tr ue[C], then � ` B tr ue[C]

2. if � ; A tr ue ` D sat [C], then � ` D sat [C]

The partial judgments also require rules to witness that proofs can be derived
by reection. We state the appropriate rules here, but repeat that each speci�c
application may de�ne its own notions of supports and reection. For each of these
applications, we will have to prove that reection is sound, i.e., that the reected
and the derived proof are witnessing one and the samejudgment.

� ` C sat [D ] � ` A tr ue[C]

� ` A tr ue[D ]

� ` C sat [D ] � ` C1 sat [C]

� ` C1 sat [D ]

Just as in the caseof total judgments, we can internalize the hypothetical depen-
dencebetween an antecedent and a conclusion by means of the new propositional
constructor of implication A ! B . We say that � ` A ! B tr ue[C] if and only if
� ; A tr ue ` B tr ue[C] implies � ` B tr ue[C]. The new operator is axiomatized by
standard introduction and elimination rules.

� ; A tr ue ` B tr ue[C]

� ` A ! B tr ue[C]

� ` A ! B tr ue[C] � ` A tr ue[C]

� ` B tr ue[C]

The local reduction and expansionare similar as in the caseof total judgments.
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� ; A tr ue ` B tr ue[C]

� ` A ! B tr ue[C] � ` A tr ue[C]

� ` B tr ue[C]

=) R � ` B tr ue[C]

� ` A ! B tr ue[C] =) E

� ` A ! B tr ue[C]

� ; A tr ue ` A ! B tr ue[C] � ; A tr ue ` A tr ue[C]

� ; A tr ue ` B tr ue[C]

� ` A ! B tr ue[C]

2.1.3 Relativized necessity

As illustrated by the previous sections,dealing with partial judgments and reection
puts a special emphasison proofs that are categorical, i.e., do not depend on any hy-
potheses.It therefore seemsparticularly fruitful for the theory of partial judgments
if we could separatethe notions of categorical and hypothetical partial truth. Such
a development will have many important consequences.For one, we could clearly
specify that reection may only be performed over categorical proofs, but not over
hypothetical ones. But most importantly, categorical partial truth may be inter-
nalized. As described in Section 2.1.1, supports and partial proofs are intended to
capture aspectsof the metatheory of the truth judgment. If we internalize categorical
partial truth, that would provide a way to reason,within the logic itself, about the
metatheoretic properties represented by the supports.

Motiv ated by the need for this distinction, we employ here the theory of modal
logic and modal � -calculus from Section 1.2. The idea is to intro duce a separate
judgment

A nec[C]

of partial , or relativized necessity, to witness the categorical partial truth of � `
A tr ue[C].

The intuition behind necessity in modal logic can be given using the notion of
possibleworlds (Section 1.1.3). We imagine the existenceof a set of worlds, intercon-
nected in someway, so that someworlds are accessiblefrom the others. Any given
proposition may be true at a certain world, but neednot be true elsewhere.In the
hypothetical judgment � ` A tr ue, the set of antecedents describesthe propositions
that are known to be true at the current world, and the conclusionA is deemedtrue
at the sameworld. Therefore, if A nec, then � ` A tr ue, establishing the truth of
A in a genericworld that we know nothing about. In other words, if A nec, then A
is true in all accessibleworlds | necessity is universal quanti�cation over accessible
worlds.

The intuition behind the relativized necessity is similar, exceptthat now A nec[C]
is a witnessthat A is true in all accessibleworlds in which C sat. Relativized necessity
is bounded universal quanti�c ation over accessibleworlds. The reection principles
can then be viewed as specialization of bounded universal quanti�cation. Indeed, if
we have a proof that is valid in all worlds where C sat, by reection we can modify
and specializeit to correspond to the current world.
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Just as in Section 1.1.3, the interesting development begins once we intro duce
hypothesesof relativized necessity, and extend the judgments � ` C sat [D ] and
� ` A tr ue[C] into

�; � ` C sat [D ] and �; � ` A tr ue[D ]

where � is the set of hypothesesB1 nec[C1]; : : : ; Bm nec[Cm ], and � is the set of
hypothesesA1 tr ue;: : : ; An tr ue. Of course, we treat the necessity and truth hy-
pothesesin di�eren t ways. Recall from Section 1.1, that the truth hypothesesin the
hypothetical judgments are used only in a parametric way, by means of substitu-
tions. We adopt a similar requirement here. Given derivations of A 1 tr ue[D ], : : : ,
An tr ue[D ], they may only be substituted to obtain derivations of C sat [D ] and
A tr ue[D ], respectively. Such a restriction is not imposedon necessity hypotheses.
Derivations of B1 nec[C1], : : : , Bm nec[Cm ] in fact witness categorical judgments
� ` B1 tr ue[C1], : : : , � ` Bm tr ue[Cm ], and may therefore be reected beforesubsti-
tution.

Becauserelativized necessity is de�ned via the notion of partial truth, we do not
require a separatejudgment for hypothetical relativized necessity � ` A nec[C]. It
can already be expressedas �; � ` A tr ue[C].

The support weakening principle for the new judgment is a straightforward ex-
tension of the principle from the previous section.

Principle (Supp ort weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if �; � ` A tr ue[C], then �; � ` A tr ue[D ]

2. if �; � ` C1 sat [C], then �; � ` C1 sat [D ]

3. if �; � ` D sat [D1], then �; � ` C sat [D1]

The extensionsof the reection principle still allows reection to beperform only over
derivations that are obtained in a categorical way. In the judgments �; � ` C sat [D ]
and �; � ` A tr ue[D ], a derivation is categorical if it doesnot usethe ordinary truth
hypothesesfrom �. However, a categorical derivation may use hypothesesfrom �,
becausethe hypothesesfrom � themselves stand for other categorical derivations.
This leadsto the following reection principle.

Principle (Reection)
If �; � ` C sat [D ], then the following holds:

1. if �; � ` A tr ue[C], then �; � ` A tr ue[D ]

2. if �; � ` C1 sat [C], then �; � ` C1 sat [D ]

In the axiomatization of the judgment �; � ` A tr ue[C], the hypothetical na-
ture of the judgment with respect to relativized necessity is made explicit by the
hypothesisrule below.

(� ; A nec[C]); � ` C sat [D ]

(� ; A nec[C]); � ` A tr ue[D ]
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The rule is justi�ed on the following grounds: a proof of A nec[C] is a proof of
the categorical judgment � ` A tr ue[C], and hencemay be reected into a proof of
A tr ue[D ], given the evidenceof C sat [D ]. The corresponding substitution principle
follows the de�nition of the hypothetical judgment.

Principle (Substitution for relativized necessit y)
If �; � ` A tr ue[C], then the following holds:

1. if (� ; A nec[C]); � ` B tr ue[D ], then �; � ` B tr ue[D ]

2. if (� ; A nec[C]); � ` D 0 sat [D ], then �; � ` D 0 sat [D ]

We refer to this principle asa substitution principle, even though, strictly speaking,
there is no requirement that the derivation of �; � ` A tr ue[C] must, in fact, be used
unmodi�ed. The reasonfor this terminology is that, while categoricalproofs may be
modi�ed by reection, reection is really the only operation that may be used for
this purpose.Therefore, we may still considerthe judgments parametric in necessity
hypotheses,except that the concept of a parametricity is now extended to admit a
limited and well-speci�e d way to alter derivations. 2

Finally, we internalize the judgment of relativized necessity into the truth judg-
ment, by introducing a new operator on propositions � . Unlike in Section1.1.3, this
time we have a whole family � C operators, in order to expressbounded universal
quanti�cation over accessibleworlds. When the support C is 0, we will simply write
� A instead of � 0A. The formation rule for the � C operator is as follows:

A prop C supp

� C A prop

with the introduction and elimination rules similar as before,but this time indexed
by supports.

�; � ` A tr ue[C]

�; � ` � C A tr ue[D ]

�; � ` � C A tr ue[D ] (� ; A nec[C]); � ` B tr ue[D ]

�; � ` B tr ue[D ]

While the elimination rule above is justi�ed simply on the groundsof the substitution
principle for necessaryhypothesis,it is the introduction rule that is interesting, as it
embodies the de�nition of the relativized necessity. Indeed, � C A is true if and only
if A tr ue[C] can be proved categorically. This motivates the erasureof the context
� from the premise of the rule. In contrast, notice that the support C persists in
the judgment. Unlike � which represents hypothesesthat are local to the current
world, the support condition C has a global nature. On the other hand, while the
conclusion � C A is obtained in a total way, we allow weakening with an arbitrary
support D in order to conform with the support weakening principle.

2The following analogy may be illustrativ e. The parametricit y of truth hypothesesrequires that
the corresponding proofs be usedasblack boxes. The proofs can be substituted into desiredpositions,
but they must remain unmodi�ed. On the other hand, proofs of necessity hypothesesare black boxes
whose functionalit y may be controlled by a well-speci�ed interface C, but by no other means.
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Local soundnessis justi�ed on the grounds of the substitution principle for rela-
tivized necessity.

�; � ` A tr ue[C]

�; � ` � C A tr ue[D ] (� ; A nec[C]); � ` B tr ue[D ]

�; � ` B tr ue[D ]

=) R �; � ` B tr ue[D ]

Local completenessis witnessedby the local expansionsimilar to Section 1.1.3.

�; � ` � C A tr ue[D ] =) E

�; � ` � C A tr ue[D ]

C v C

(� ; A nec[C]); � ` C sat [C]

(� ; A nec[C]); � ` A tr ue[C]

(� ; A nec[C]); � ` � C A tr ue[D ]

�; � ` � C A tr ue[D ]

Note that the local expansionemploys the following rule of the support judgment

C v D

�; � ` C sat [D ]

to derive that (� ; A nec[C]); � ` C sat [C].

Example 7 Let C and D be well-formed supports such that C v D. Then the
following derivation (which we denoteby DA

C;D ) is a valid derivation of the judgment
A nec[C]; � ` A tr ue[D ].

C v D

A nec[C]; � ` C sat [D ]

A nec[C]; � ` A tr ue[D ]

We next usethis derivation to establish that ` � CA ! � D A tr ue.

� C A tr ue ` � C A tr ue

DA
C;D

A nec[C]; � ` A tr ue[D ]

A nec[C]; � tr ue ` � D A tr ue

� C A tr ue ` � D A tr ue

` � C A ! � D A tr ue

We also establish the support-decorated versions of the customary axioms of con-
structiv e modal logic S4 (Section 1.1.3):

1. ` � CA ! A tr ue[D ], if C v D

2. ` � CA ! �� C A tr ue

3. ` � C (A ! B ) ! � CA ! � C B tr ue
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Derivation of ` � C A ! A tr ue[D ].

� C A tr ue ` � C A tr ue[D ]

DA
C;D

A nec[C]; � ` A tr ue[D ]

� C A tr ue ` A tr ue[D ]

` � C A ! A tr ue[D ]

Derivation of ` � C A ! �� C A tr ue.

� C A tr ue ` � C A tr ue

DA
C;C

A nec[C]; � ` A tr ue[C]

A nec[C]; � ` � C A tr ue

A nec[C]; � ` �� CA tr ue

� CA tr ue ` �� CA tr ue

` � C A ! �� C A tr ue

Derivation of ` � C (A ! B ) ! � C A ! � C B tr ue.

To reduce clutter, we split the derivation into two parts. First, we obtain the
derivation D0 for the simpler judgment (A ! B ) nec[C]; � C A tr ue ` � C B tr ue.

�

C A tr ue `
�

C A tr ue

DA ! B
C;C

(A ! B ) nec[C]; � ` A ! B tr ue[C]

DA
C;C

A nec[C]; � ` A tr ue[C]

(A ! B ) nec[C]; A nec[C]; � ` B tr ue[C]

(A ! B ) nec[C]; A nec[C]; � `
�

C B tr ue

(A ! B ) nec[C];
�

C A tr ue `
�

C B tr ue

We then useD0 to obtain a derivation of ` � C (A ! B ) ! � CA ! � C B tr ue.

� C (A ! B ) tr ue ` � C (A ! B ) tr ue
D0

A ! B nec[C]; � C A tr ue ` � C B tr ue

� C (A ! B ) tr ue; � C A tr ue ` � C B tr ue

� C (A ! B ) tr ue ` � C A ! � C B tr ue

` � C (A ! B ) ! � C A ! � C B tr ue

�

2.1.4 Simultaneous possibilit y

The dual conceptsto bounded universal quanti�cation and relativized necessity, are
of course,boundedexistential quanti�cation, and the related notion of simultaneous
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possibility. Where relativized necessity expressesthat a proposition A is true in all
worlds in which C sat, simultaneous possibility expressesthat there exists a world
in which C sat and also A tr ue. In order to formalize the notion of simultaneous
possibility, we introduce a new judgment hC; Ai poss, and immediately generalizeit
to its partial and hypothetical variant

�; � ` hC; Ai poss[D ]

When C is the 0 support, we omit it from the notation and abbreviate simply as
�; � ` A poss[D ]. The intuition behind this judgment is to establish the derivabilit y
of both �; � ` C sat [D ] and �; � ` A tr ue[D ], but wherethe secondderivation may
be obtained by meansof reection using the �rst derivation.

Being intuitiv ely speci�ed in terms of C sat and A tr ue, the new judgment is
required to satisfy similar weakening, reection and substitution principles.

Principle (Supp ort weakening)
If �; � ` hC1; Ai poss[C] and C v D, then �; � ` hC1; Ai poss[D ].

Principle (Reection)
If �; � ` C sat [D ] and �; � ` hC1; Ai poss[C], then �; � ` hC1; Ai poss[D ].

Principle (Substitution for truth)
If �; � ` A tr ue[C] and �; (� ; A tr ue) ` hD ; B i poss[C], then

�; � ` hD ; B i poss[C].

Principle (Substitution for relativized necessit y)
If �; � ` A tr ue[C] and (� ; A nec[C]); � ` hC1; B i poss[D ], then

�; � ` hC1; B i poss[D ].

There are four ways simultaneous possibility can be established,giving raise to
four basic de�nitional principles.

1. If �; � ` A tr ue[C], then �; � ` A poss[C].

2. If �; � ` C sat [D ] and �; � ` A tr ue[C], then �; � ` hC; Ai poss[D ].

3. If �; � ` hC1; Ai poss[D ] and �; A tr ue ` B tr ue[C1], then
�; � ` hC1; B i poss[D ].

4. If �; � ` hC1; Ai poss[D ] and �; A tr ue ` hC2; B i poss[C1], then
�; � ` hC2; B i poss[D ].

Principle (1) is justi�ed by the fact that �; � ` 0 sat [C] always trivially holds.
Taken together with the assumed�; � ` A tr ue[C], this ensuresthat the two judg-
ments simultaneously hold in the current world, and are therefore simultaneously
possible.

41



2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

To justify principle (2), observe that given C sat [D ] and A tr ue[C], wecanobtain
A tr ue[D ] by reection. The derivations are in the current world, and are therefore
simultaneously true. The required reection, however, can only be performed if
A tr ue[C] is derived in a categorical way. Hencethe restriction that the judgment
�; � ` A tr ue[C] usesno truth hypotheses.

Principle (3) is justi�ed by the following observation: if C1 sat and A tr ue are
simultaneously possible, then there exists a world about which we know nothing,
except that C1 sat and A tr ue can be derived in it. If we can usethesetwo facts, but
nothing else,to concludethat B tr ue in the very sameworld, then certainly C1 sat
and B tr ue are simultaneously true in this world, and are therefore simultaneously
possible. If the possibility of C1 sat and A tr ue is partial in D , so would be the
concludedpossibility of C1 sat and B tr ue.

The reasoning behind the principle (4) is similar. If C1 sat and A tr ue are
simultaneously possiblein someworld, and we can use these two facts, but nothing
else, to conclude the simultaneous possibility of C2 sat and B tr ue, then the later
two are certainly possible. If the possibility of C1 sat and A tr ue is partial in D , so
is the concludedpossibility of C2 sat and B tr ue.

In order to internalize simultaneouspossibility of C sat and A tr ue, we introduce
the indexed family of operators 3 C A for bounded existential quanti�cation over
possibleworlds. When the support C is 0, we will simply write 3 A instead of 3 0A.
The appropriate formation rule is

A prop C supp

3 C A prop

and the introduction rule de�nes the operator as an internalization of simultaneous
possibility.

�; � ` hC; Ai poss[D ]

�; � ` 3 C A tr ue[D ]

The axiomatization of the possibility judgment itself reects the de�nitional princi-
ples outlined previously. For example, the principles (1) and (2) are directly trans-
lated into the following derivation rules.

�; � ` A tr ue[C]

�; � ` A poss[C]

�; � ` C sat [D ] �; � ` A tr ue[C]

�; � ` hC; Ai poss[D ]

There are two elimination rules for 3 C , arising from the de�nitional principles (3) and
(4). However, instead of the hypothesishC1; Ai poss, theserules usethe internalized
version 3 C1 A tr ue.

�; � ` 3 C1 A tr ue[D ] �; A tr ue ` B tr ue[C1]

�; � ` hC1; B i poss[D ]

�; � ` 3 C1 A tr ue[D ] �; A tr ue ` hC2; B i poss[C1]

�; � ` hC2; B i poss[D ]
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Local soundnessis establishedby two local reduction, which are justi�ed by the
de�nitional principles (3) and (4). Local completenessand local expansionare also
simple to verify.

�; � ` hC1; Ai poss[D ]

�; � ` 3 C1 A tr ue[D ] �; A tr ue ` B tr ue[C1]

�; � ` hC1; B i poss[D ]

=) R �; � ` hC1; B i poss[D ]

�; � ` hC1; Ai poss[D ]

�; � ` 3 C1 A tr ue[D ] �; A tr ue ` hC2; B i poss[C1]

�; � ` hC2; B i poss[D ]

=) R �; � ` hC2; B i poss[D ]

�; � ` 3 C A tr ue[D ] =) E

�; � ` 3 C A tr ue[D ] �; A tr ue ` A tr ue[C]

�; � ` hC; Ai poss[D ]

�; � ` 3 C A tr ue[D ]

Finally, similar to Section1.1.4, we also have the additional rule for eliminating � C

in the new possibility judgment

�; � ` � CA tr ue[D ] (� ; A nec[C]); � ` hC2; B i poss[D ]

�; � ` hC2; B i poss[D ]

Example 8 Let C, C1 and D be well-formed supports. Then the following are
support-decorated versionsof the customary axioms of constructive modal logic S4
(Section 1.1.4):

1. ` A ! 3 A tr ue

2. ` 3 C1 3 C A ! 3 C A tr ue, for any C, C1

3. ` � C (A ! B ) ! 3 D A ! 3 D B tr ue, for C v D

Derivation of ` A ! 3 A tr ue.

A tr ue ` A tr ue

A tr ue ` A poss

A tr ue ` 3 A tr ue

` A ! 3 A tr ue
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Derivation of ` 3 C1 3 C A ! 3 C A tr ue.

3 C1 3 C A tr ue ` 3 C1 3 C A tr ue

3 C A tr ue ` 3 C A tr ue[C1] A tr ue ` A tr ue[C]

3 C A tr ue ` hC; Ai poss[C1]

3 C1 3 C A tr ue ` hC; Ai poss

3 C1 3 C A tr ue ` 3 C A tr ue

` 3 C1 3 C A ! 3 C A tr ue

Derivation of ` � C (A ! B ) ! 3 D A ! 3 D B tr ue.

In this case,we �rst establishthe simpler judgment (A ! B ) nec[C]; 3 D A tr ue `
hB ; D i poss. We will make useof the derivation DA! B

C;D for (A ! B ) nec[C]; � ` A !
B tr ue[D ], exhibited in Example 7.

3 D A tr ue ` 3 D A tr ue

DA ! B
C;D

(A ! B ) nec[C]; � ` A ! B tr ue[D ] A tr ue ` A tr ue[D ]

(A ! B ) nec[C]; A tr ue ` B tr ue[D ]

(A ! B ) nec[C]; 3 D A tr ue ` hB ; D i poss

We can now use the above derivation (call it D0), to infer the required ` � C (A !
B ) ! 3 D A ! 3 D B tr ue.

� C (A ! B ) tr ue ` � C (A ! B ) tr ue

D0

(A ! B ) nec[C]; 3 D A tr ue ` hB ; D i poss

(A ! B ) nec[C]; 3 D A tr ue ` 3 D B tr ue

� C (A ! B ) tr ue;3 D A tr ue ` 3 D B tr ue

� C (A ! B ) tr ue ` 3 D A ! 3 D B tr ue

` � C (A ! B ) ! 3 D A ! 3 D B tr ue

�

2.1.5 Names

One possible way to specify the notion of support for the modal logic of partial
judgments from Section 2.1.1 is by using names. Namesare elements of a countable
universeN , and will be usedaslabelswitnessinga certain fact about the derivabilit y
of truth judgments. Every name from N is associated with someproposition, and
for each proposition itself there is a countable number of namesassociated with it.
When the name X is associated with the proposition A, we will write that as

typeof(X ) = A:
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The semantics of this relation betweenX and A may be de�ned in various ways. For
example, a particularly simple de�nition { and this is the semantics of namesthat
we consider in this chapter { is to associate X with the existence of a derivation of
A tr ue.

Having intuitiv ely explained names,we de�ne the notion of support as a �nite
set of names. If the support C consists of names X 1; : : : ; X n , then the condition
represented by C is the conjunction of the properties represented by each of the
names. For example, if X 1; : : : ; X n are associated with propositions A1; : : : ; An ,
respectively, then the whole support C stands for the metatheoretic statement that
the judgments A1 tr ue, : : : , An tr ue are all derivable. In such a case,the partial
judgment

A tr ue[X 1; : : : ; X n ]

simply expressesthe fact that A is true, given the derivabilit y of A 1 tr ue, : : : ,
An tr ue.

Notice that propositions may now contain names,as namesspecify supports and
propositions in our modal logic depend on supports. A carelessde�nition of the
typeof relation may thus create a circular dependency between names and propo-
sitions. While such a circular dependency may be desirable for someapplications
(seeSection 4.9 for an example), we disallow it for the time being, and require that
typeof is well-founded. The notion of well-foundednesswill be made precise in the
next section, where we introduce a context � assigningnamesto propositions, and
require that each proposition in � may contain only namesappearing to the left of
it.

In the presented formulation, namesobviously very much resemble ordinary vari-
ables in hypothetical judgments from Chapter 1, but there are several notable dis-
tinctions between the two. First of all, ordinary variables in the hypothetical judg-
ments have local nature. Variables do not have meaning other than as placeholders
for proofs that eventually substitute them. On the other hand, names are global
and each name possessesan identit y that persists across the worlds. This prop-
erty givesnamesa semantic signi�cance independent from variables and proofs. For
example, name identit y will play a role in Chapter 3, where di�eren t names will
de�ne semantically di�eren t program expressions.Also, in Section 3.3 we will con-
sider polymorphism in supports, and universally quantify over arbitrary �nite setsof
names. Similar impredicative quanti�cation over parts of variable contexts will not
be available.

Seconddistinction betweennamesand variables involvesthe processof reection.
The only way a hypothetical proof depending on A1 tr ue, : : : , An tr ue may be
used is by substituting the proofs of A1 tr ue, : : : , An tr ue when these proofs are
available. This is necessaryif we want to preserve the parametric nature of the
ordinary hypothetical judgments. No such restriction applies to names. Namesare
a new feature, and we have more freedomin de�ning their semantics. In particular,
we will allow a categorical proof that is partial in X 1; : : : ; X n to be modi�ed by
reection before it is used in somesubstitution. The processof reection may be
speci�ed in many ways, and in the forthcoming chapters we considerseveral di�eren t
de�nitions, each useful in its own right.

We remark on a yet further distinction along the samelines. While an ordinary
variable of type A in a hypothetical judgment must stand for a derivabilit y of the
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judgment A tr ue, such a requirement is not enforcedon names. It is possiblethat
a name X with typeof(X ) = A stands for the derivations of other judgments related
to the proposition A. For example, X may represent that A tr ue is provable in a
speci�c way, so that the proof satis�es someparticular properties or invariants (e.g.,
the proof usesonly introduction, or only elimination rules). Or, perhaps, X may
even stand for the fact that 6`A tr ue. Combined with modalities and reection, this
provides a way to encode diverseaspects of the metareasoningabout derivabilit y.

Having de�ned the universe of supports as the set P �n (N ), we also need to
establish a partial ordering on it. For the purposesof this section, if C and D are
two supports, we will consider

C v D if and only if C � D

Then the empty support set is the minimal support in this ordering, corresponding to
the support 0 from the previous section. At this point, we changeour notation, and
denotethe empty support set as(�) in order to distinguish the particular name-based
de�nition of support, from the abstract notion consideredpreviously.

The new concretesupport de�nition requiresadditional rules for support forma-
tion.

� supp
C supp

C; X supp

The axiomatization of the judgments �; � ` A tr ue[C] and �; � ` C sat [D ] now
proceedsin a mutually recursive way. The most important rule is

typeof(X ) = A
(� )

�; � ` A tr ue[C; X ]

specifying that if the name X witnessesthe derivabilit y of A tr ue, then we can
certainly conclude that A is true partially in X . Notice that we allow weakening
with an arbitrary support set C in the conclusion,in order to give rise to the support
weakening principle. On the other hand, �; � ` C sat [D ] is axiomatized using the
following two rules:

C � D

�; � ` C sat [D ]

�; � ` A tr ue[D ] �; � ` (C n X ) sat [D ] typeof(X ) = A

�; � ` C sat [D ]

where we denote by C n X the set-di�erence between C and f X g. The �rst of the
above rules serves to establish the basic causaldependencebetweensupports { if D
represents a stronger condition than C, then trivially C sat [D ]. The secondrule
formalizes that the support C actually represents the conjunction of the conditions
associated with the namesin C. Indeed, if C consistsof namesX 1; : : : ; X n , where
typeof(X i ) = A i , then �; � ` C sat [D ] if and only if �; � ` A i tr ue[D ] for every
i = 1; : : : ; n.

2.1.6 Name-space managemen t

A notable feature of the formulation of partial judgments from the previous section
is the global nature of names. Namesare given onceand for all, and are sharedby
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all the worlds. For computational purposes,however, it is bene�cial to intro duce
the notion of local names. Local names can dynamically be generatedduring the
derivation; each generatedname is fresh, i.e., di�eren t from all the namesgenerated
so far. Also, each local name will have a scope within which it can be used, and
outside of which it is inaccessible.

In order to deal with the freshnessof local names,we make the judgments hypo-
thetical in a yet another context { the context of generatednames. This context will
associate each generatedname with its type. For example, the new truth judgment
will now have the form

�; �; � ` A tr ue[C]

where � consists of X 1:A1; : : : ; X n :An , associating the names X 1, : : : , X n with
propositions A1, : : : , An , respectively. We denote by dom(�) the set of names
f X 1; : : : ; X n g. Notice that � is a dependently typed context, becauseeach proposi-
tion may itself depend on names. Henceforth, we imposeon � the typical require-
ments of dependent contexts. In particular, we assumethat the namesX 1; : : : ; X n

are all di�eren t, and that each X i may be usedonly to the right of its declaration.
For example, the name X 1 may appear in the propositions A2; : : : ; An , as well as in
�, �, A and C, but not in A1. The nameX 2 may not appear in A1 and A2, but may
appear elsewhere,and so on. Furthermore, we insist that a namecan be usedin this
judgment only if it is actually declaredin the namecontext �. Thus, we rephrasethe
rule (� ) of the truth judgment from the previous section, which now has the form:

X :A 2 �

�; �; � ` A tr ue[C; X ]

While we insist that the judgment �; �; � ` A tr ue[C] is well-formed only if all its
namesaredeclaredin �, weallow a bit more leeway in de�ning what counts asa proof
of �; �; � ` A tr ue[C]. In particular, the intended meaning of �; �; � ` A tr ue[C]
is that there exists a name context � 1 (well-formed relative to �), and a proof for
�; � ` A tr ue[C], such that the namescontained in this proof are declaredin � ; � 1

(even though �, �, A, and C must still use only the namesfrom �, in order to be
well-formed). In this sense,a proof of the judgment �; �; � ` A tr ue[C] will be
a pair consisting of both � 1 and a proof of �; � ` A tr ue[C] satisfying the above
requirement.

Notice that the outlined semantics of name contexts to serve as lists of currently
generatednamesdoesallow the following structural properties. Here we useJ as an
abbreviation for the �; � ` A tr ue[C], and � ` J as an abbreviation for �; �; � `
A tr ue[C].

1. Name localization. Let X be a name that does not appear in J . Then
(� ; X :A) ` J if and only if � ` J .

Indeed, if X is not used in J , then � ` J is well-formed. Furthermore any
context � 0 � (� ; X :A) is also � 0 � �, and thus a proof of (� ; X :A) ` J is also
a proof of � ` J .

2. Renaming. If (� ; X :A; � 0) ` J and the name Y is not used in �, � 0, A, or J ,
then (� ; Y :A; [Y=X ]� 0) ` ([Y=X ]J ).
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3. Weakening. If � ` J , and X is not usedin J , then (� ; X :A) ` J .

This principle is justi�ed on the groundsof the previousprinciple for renaming.
Indeed, if � ` J , then there exists a name context � 0 � � and a proof of J
using � 0. If � 0 doesnot declareX , then � 0; X :A is a well-formed namecontext
and the proof of J uses� 0; X :A. If � 0 declared X then we can rename that
occurrenceof X in both � 0 and the supplied proof of J .

4. Exchange.Permutation of namecontexts is allowed if it doesnot violate the de-
pendenciesbetweennamesand the propositions associated with them. In other
words, if (� ; X :A; � 0; � 00) ` J , and X is not usedin � 0, then (� ; � 0; X :A; � 00) `
J .

Motiv ated by the exchange property, we proceed to abuse the notation and
treat name contexts as if they were multisets. In particular, we consider � 0

and � to be equal if they only di�er by a dependency-preservingreordering.
Similarly, we write � 0 � �, if � 0 extends � (with possiblename reordering).

Notice however that contraction is not something we require of a name context.
We want to preserve the distinction betweennames: if the judgment B tr ue is derived
by reection using two di�eren t namesX :A and Y :A, there is no requirement that
the samederivation is produced if X and Y are simultaneously renamed into some
new name Z :A. In accordancewith the renaming principle, both X and Y may
sometimesbe renamedindividually into Z , but not at the sametime.

The judgments �; � ` C sat [D ] and �; � ` hC; Ai poss[D ] areextendedwith � in
a similar way. For example, the rules for introduction and elimination of implication
in the truth judgment now have the form

�; �; (� ; A tr ue) ` B tr ue[C]

�; �; � ` A ! B tr ue[C]

�; �; � ` A ! B tr ue[C] �; �; � ` A tr ue[C]

�; �; � ` B tr ue[C]

The elimination rule deserves further discussion. From the premises,we know
that there exist name contexts � 1 and � 2, both well-formed relative to �, such that
the proof of �; � ` A ! B [C] usesonly � ; � 1, and the proof of �; � ` A [C] uses
only � ; � 2. By the substitution principle for truth, we may then producea derivation
of �; � ` B tr ue[C], which usesthe namesfrom � ; � 1; � 2. This derivation, together
with the name context (� 1; � 2) is a witness of �; �; � ` B tr ue[C]. Notice that � 1

and � 2 may be assumeddisjoint, by the renaming principle.
We also need to account for � in the judgments for formation of supports and

propositions, and extend them into � ` C supp and � ` A prop. The relevant rules
of the new judgments are listed below.
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� ` � supp

� ` C supp X 2 dom(�)

� ` C; X supp

� ` A prop � ` C supp

� ` � C A prop

� ` A prop � ` C supp

� ` 3 C A prop

As customary, we will implicitly assumethat the proposition and supports in our
judgments for truth, necessity and possibility are always well-formed according to
the above rules.

The next step in the axiomatization of the judgment �; �; � ` B tr ue[C], is to
internalize the dependenceof the conclusion B tr ue on namesfrom �. With that
goal, we introduce a new constructor on propositions A 9 B , with the following
formation rule.

� ` A prop � ` B prop

� ` A 9 B prop

The judgment A 9 B tr ue should be provable if and only if B tr ue can be proved
using an arbitrary fresh name of type A. In other words, we have the following
introduction rule.

(� ; X :A); �; � ` B tr ue[C]

�; �; � ` A 9 B tr ue[C]

In this rule we assumethat X is fresh, i.e. X doesnot appear in �, �, �, A, B , or
C. Notice that the exact identit y of the name X is irrelevant, as long as X is one of
the unused nameswith typeof(X ) = A. Indeed, by the renaming principle for names,
any chosen fresh name would have produced the same derivation. Furthermore,
becauseX does not appear in �, �, �, A, B , or C, it remains local to the proof of
�; � ` B tr ue[C].

If we can prove �; �; � ` A 9 B tr ue[C], then there exists a proof of �; � `
B tr ue[C] that usesnamesfrom somecontext � 0 � (� ; X :A), whereX is fresh. But
then � 0 � �, and therefore the samederivation proves �; �; � ` B tr ue[C] as well.
This reasoninggives rise to the following elimination rule for A 9 B .

�; �; � ` A 9 B tr ue[C]

�; �; � ` B tr ue[C]

The local reduction for the new type operator is justi�ed by the name localization
principle, becauseof the assumption that X doesnot appear in �, �, �, B , C.

(� ; X :A); �; � ` B tr ue[C]

�; �; � ` A 9 B tr ue[C]

�; �; � ` B tr ue[C]

=) R �; �; � ` B tr ue[C]
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The local expansionis justi�ed by the weakening principle

�; �; � ` A 9 B tr ue[C] =) E

�; �; � ` A 9 B tr ue[C]

�; �; � ` B tr ue[C]

(� ; X :A); �; � ` B tr ue[C]

�; �; � ` A 9 B tr ue[C]

2.1.7 Summary

We conclude this section with a summary of the system with names,as presented
thus far. We postpone proving its properties until Section 2.2 where we intro duce
a proof-term calculus for the judgments. Proof terms will give us a way to describe
explicitly the processof reection, and will provide a concretenotation for developing
our metatheory.

Names X ; Y 2 N
Supports C; D ::= � j C; X
Propositions A; B ::= P j A ! B j A 9 B j � C A j 3 C A
True hypothesis � ::= � j � ; A tr ue
Necessaryhypothesis � ::= � j � ; A nec[C]
Name context � ::= � j � ; X :A

Name contexts � are dependent contexts, becausetypesmay depend on names.
Thus, we imposethe following restriction on well-formed name contexts �: a name
declared in � may be used in the types appearing to the right of its declaration,
but not to the left. This ensuresthat no circular dependencesare created in �, and
thus the relationship betweennamesand their corresponding types is well-founded.
Similarly, propositional contexts � and � can only contain typesand supports that
are well-formed with respect to a given name context �.

The described restrictions are imposedby meansof the judgment for formation
of name contexts, ` � ok, which in turn recursively depends on the judgments for
formation of supports � ` C supp, and propositions � ` A prop. In the later two
judgments, it is implicitly assumedthat � is a well-formed name context.

De�nition of ` � ok.

` � ok ` � ok � ` A prop X 62dom(�)

` (� ; X :A) ok

De�nition of � ` C supp.

� ` � supp
� ` C supp X 2 dom(�)

� ` C; X supp
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De�nition of � ` A prop.

� ` P prop

� ` A prop � ` B prop

� ` A ! B prop

� ` A prop � ` B prop

� ` A � B prop

� ` A prop � ` C supp

� `
�

C A prop

� ` A prop � ` C supp

� ` 3 C A prop

We also require formation judgments for propositional contexts � and �. These
judgments are de�ned in a straightforward way.

De�nition of � ` � ok.

� ` � ok � ` � ok � ` A prop

� ` (� ; A tr ue) ok

De�nition of � ` � ok.

� ` � ok � ` � ok � ` A prop � ` C supp

� ` (� ; A nec[C]) ok

The secondgroup of judgments establishespartial truth �; �; � ` A tr ue[C], par-
tial support �; �; � ` C sat [D ], and simultaneouspossibility �; �; � ` hC; Ai poss[D ].

De�nition of �; �; � ` C sat [D ].

C � D

�; �; � ` C sat [D ]

�; �; � ` A tr ue[D ] �; �; � ` (C n X ) sat [D ] X :A 2 �

�; �; � ` C sat [D ]

�; �; � ` C sat [D ] �; �; � ` C1 sat [C]

�; �; � ` C1 sat [D ]

De�nition of �; �; � ` A tr ue[C].

X :A 2 �

�; �; � ` A tr ue[C; X ]

�; �; � ` C sat [D ] �; �; � ` A tr ue [C]

�; �; � ` A tr ue[D ]

�; �; (� ; A tr ue) ` A tr ue[C]
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�; �; (� ; A tr ue) ` B tr ue [C]

�; �; � ` A ! B tr ue[C]

�; �; � ` A ! B tr ue[C] �; �; � ` A tr ue[C]

�; �; � ` B tr ue[C]

�; (� ; A nec[C]); � ` C sat [D ]

�; (� ; A nec[C]); � ` A tr ue[D ]

�; �; � ` A tr ue[C]

�; �; � `
�

C A tr ue[D ]

�; �; � `
�

C A tr ue [D ] �; (� ; A nec[C]); � ` B tr ue[D ]

�; �; � ` B tr ue[D ]

(� ; X :A); �; � ` B tr ue[C]

�; �; � ` A � B tr ue[C]

�; �; � ` A � B tr ue[C]

�; �; � ` B tr ue[C]

De�nition of �; �; � ` hC; Ai poss[D ].

�; �; � ` A tr ue[C]

�; �; � ` A poss[C]

�; �; � ` C sat [D ] �; �; � ` A tr ue[C]

�; �; � ` hC; Ai poss[D ]

�; �; � ` hC; Ai poss[D ]

�; �; � ` 3 C A tr ue[D ]

�; �; � ` 3 C 1 A tr ue[D ] �; �; A tr ue ` B tr ue[C1 ]

�; �; � ` hC1 ; B i poss[D ]

�; �; � ` 3 C 1 A tr ue [D ] �; �; A tr ue ` hC2 ; B i poss[C1 ]

�; �; � ` hC2 ; B i poss[D ]

�; �; � `
�

C A tr ue [D ] �; (� ; A nec[C]); � ` hC2 ; B i poss[D ]

�; �; � ` hC2 ; B i poss[D ]

2.2 Mo dal � -calculus

2.2.1 Partial judgmen ts and pro of terms

In this section, we develop a proof-term system for the modal logic of partial judg-
ments, which we call the modal � -calculus. The presentation will closely follow the
development and methodology of the modal � -calculus from Section 1.2. Each of
the judgments �; � ` C sat [D ], �; � ` A tr ue[C], and �; � ` hC; Ai poss[D ] de-
�ned in the previous sections,is now decoratedwith proof terms, and has the form
�; � ` h� i : [C] ) [D ], �; � ` e : A [C], and �; � ` f � C A [D ], respectively. As
can be noticed, we now have three separatesyntactic categoriesthat serve to encode
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proofs of our judgments.

1. Expressionsare ranged over by e, and serve as proofs for partial truth and
partial necessity.

2. Phrasesare ranged over by f , and serve to witness simultaneous possibility.

3. Explicit substitutions are ranged over by �, and serve as proof objects for the
support judgment C sat [D ]. Correspondingly, they will be used to witness
derivation of proofs by reection.

The assumptionsfrom contexts � and � are now labeled with variables. We write
x:A and u::A[C] to denote that x stands for a proof of A tr ue and that u stands for
a proof of A nec[C], respectively. Just as in Section 1.2, we will refer to variables
x as ordinary or value variables, and to variables u as modal variables. The usual
assumptionsof variable contexts apply hereaswell: variablesdeclaredin � and � are
considereddi�eren t, and we tacitly employ � -renaming to guarantee this invariant.

We start with the formulation of the � -calculus fragment of the system. The
development is fairly standard. The decoratedversion of the hypothesis rule of the
truth judgment has the form

�; (� ; x:A) ` x:A [C]

The associated substitution principle is also customary. Becausethe judgments
�; � ` f � D A [C] and �; � ` h� i : [D ] ) [C] are de�ned in a mutually recur-
sive fashion with the truth judgment, we list here the substitution principles for
value variables for all three judgments.

Principle (V alue substitution)
Let �; � ` e1 : A [C]. Then the following holds:

1. if �; (� ; x:A) ` e2 : B [C], then �; � ` [e1=x]e2 : B [C]

2. if �; (� ; x:A) ` h� i : [D ] ) [C], then �; � ` h[e1=x]� i : [D ] ) [C]

3. if �; (� ; x:A) ` f � D A [C], then �; � ` [e1=x]f � D A [C]

The rules for implication introduction and elimination are annotated using � -
abstraction and application, respectively, and the local soundnessand completeness
are witnessedby local reduction and expansionon proof terms.

�; (� ; x:A) ` e : B [C]

�; � ` �x :A: e : A ! B [C]

�; � ` e1 : A ! B [C] �; � ` e2 : A [C]

�; � ` e1 e2 : B [C]

(�x :A: e1) e2 =) R [e2=x]e1

e : A ! B [C] =) E �x :A: (e x) where x not free in e
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Of course,the most important development in this section concernsnames,par-
tialit y and the treatment of reection. In order to de�ne the notion of proof for the
judgment of partial truth, we allow namesinto the syntactic category of expression.
Thus, for example, using names to derive partial truth is now formalized by the
following rule.

typeof(X ) = A

�; � ` X : A [C; X ]

The justi�cation for this rule is as follows. If X is associated with the proposition A,
then it stands for a proof of A tr ue. Thus, we may useX itself as a proof of A tr ue,
which is partial in X . Notice that we allow weakening with an arbitrary support C,
in order to provide for the support weakening principle.

Principle (Supp ort weakening)
Let C � D be two supports. Then the following holds.

1. if �; � ` e : A [C], then �; � ` e : A [D ]

2. if �; � ` h� i : [C1] ) [C], then �; � ` h� i : [C1] ) [D ]

3. if �; � ` h� i : [D ] ) [C1], then �; � ` h� i : [C] ) [C1]

4. if �; � ` f � C1 A [C], then �; � ` f � C1 A [D ]

Associated with the notion of partial proofs is the reection principle as a way
to remove or replace the support of a given derivation. In Section 2.1, we used the
judgment C sat [D ] to formalize whena support C may be replacedby the support D
in any given derivation of partial truth. A proof-annotated version of this judgment
has the form �; � ` h� i : [C] ) [D ], where � belongsto the syntactic category of
explicit substitution.

De�nition 4 (Explicit substitution, its domain and range)
An explicit substitution � is a �nite partial function from namesto expressions.If
� maps namesX 1, : : : , X n into expressionse1, : : : , en , respectively, we represent it
using the following set-theoretic notation

� = f X 1 ! e1; : : : ; X n ! eng

The domain and range of the explicit substitution � are de�ned as

dom(�) = f X j X ! e 2 � g

and
range(�) = f e j X ! e 2 � g

The set fv(�) of free variables of � is the set of free variables of expressionsin
range(�) . The set fn(�) of free namesof � is the set of namesin the domain and
range of � . The empty substitution is denoted as h i .
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Having de�ned explicit substitutions, we may now use them to axiomatize the
judgment �; � ` h� i : [C] ) [D ], which is the annotated version of the judgment
�; � ` C sat [D ] from Section 2.1.2. Observe that the judgment enforcesthe func-
tional nature of explicit substitutions, as it prohibits that any given namebe de�ned
more than onceby the substitution.

C � D

�; � ` h i : [C] ) [D ]

�; � ` e : A [D ] �; � ` h� i : [C n X ] ) [D ] typeof(X ) = A

�; � ` hX ! e;� i : [C] ) [D ]

Every explicit substitution � determines a function [[�] ] from namesto expres-
sions,de�ned as follows.

[[�] ](X ) =
�

e if X ! e 2 �
X otherwise

This function can also be uniquely extended to a new function f � g that acts over
arbitrary expressionsand phrases. We will de�ne this function explicitly in Sec-
tion 2.2.3, oncewe introduce all the expressionconstructors of the � -calculus. Here
we just present several typical rules.

f � g X = [[�] ](X )
f � g x = x
f � g �x :A: e = �x :A: f � ge x 62fv(�)
f � g e1 e2 = f � ge1 f � ge2

Given two explicit substitutions � and � 0, we can de�ne the operation of substi-
tution composition � � � 0, so that f � � � 0g is a composition of functions f � g and
f � 0g. We also postpone the de�nition of this operation until Section 2.2.3.

The operation f � g is the crucial part of the � -calculus, becauseit describeshow
expressionsare reected, i.e. transformed from proofsof categorical partial judgments
into proofsof total judgments. For example,if e is an expressionsuch that ` e : A [C],
and h� i : [C] ) [ ], then reection of e under � is de�ned as f � ge, and it will be
the casethat f � ge : A. The typing properties of reected categorical proofs are
establishedby the following explicit substitution principle, which is the equivalent of
the reection principles in the logic of partial judgments.

Principle (Explicit substitution)
Let �; � ` h� i : [C] ) [D ]. Then the following holds:

1. if �; � ` e : A [C], then �; � ` f � ge : A [D ]

2. if �; � ` h� 1i : [C1] ) [C], then �; � ` h� � � 1i : [C1] ) [D ]

3. if �; � ` f � C1 A [C], then �; � ` f � gf � C1 A [D ]
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Becausemodal variablesstand for proof expressionsthat are subject to reection,
the hypothesis rule for modal variables must specify the explicit substitutions that
will guide the reection. The annotated version of this rule has the following form.

(� ; u::A[C]); � ` h� i : [C] ) [D ]

(� ; u::A[C]); � ` h� i u : A [D ]

As can be noticed, each use of modal variable u is now paired up with an explicit
substitution � (and when � is the empty substitution, we will abbreviate h� i u sim-
ply as u). The above rule realizesa form of elimination for the bounded universal
quanti�cation that is embodied by relativized necessitation. Indeed, if u::A[C] stands
for a proof that A tr ue in any world in which C sat, and we have an explicit substi-
tution � proving that C sat [D ] in the current world, then A tr ue[D ] must hold in
the current world. The proof of the later, however, is obtained by reection.

This intuition givesrise to the new operation of modal substitution [[e=u]]e0, which
substitutes the categorical proof e for u in e0. However, e may �rst be reected, i.e.
modi�ed in accordancewith the explicit substitutions that are paired up with the
occurrencesof u in e0. The new operation is de�ned by induction on the structure of
e0. Again, we postponethe completede�nition for Section2.2.3, wherewe intro duce
all of our languageconstructs. Here we present the two most important cases,which
illustrate the gist of the operation of modal substitution.

[[e=u]]h� i u = f [[e=u]]� ge

[[e=u]]h� i v = h[[e=u]]� i v u 6= v

It is essential to observe in theseequationsthat substituting e for u in the term h� i u
actually applies f [[e=u]]� g to e. This explicit substitution exactly carries out the
processof reection mentioned above { the categorical expressione is reected before
it is substituted for u. Reection of categorical expressionsis what di�eren tiates
modal substitution from the ordinary valuesubstitution. Ordinary valuesubstitution
treats the substituted expressionsparametrically, and is not allowed to modify them
in any way.

Principle (Mo dal substitution)
Let �; � ` e : A [C]. Then the following holds:

1. if (� ; u::A[C]); � ` e2 : B [D ], then �; � ` [[e1=u]]e2 : B [D ]

2. if (� ; u::A[C]); � ` h� i : [D 0] ) [D ], then �; � ` h[[e1=u]]� i : [D 0] ) [D ]

3. if (� ; u::A[C]); � ` f � C1 B [D ], then �; � ` [[e1=u]]f � C1 B [D ]

The introduction and elimination rules for relativized modal necessity operator
usethe box and let box proof term constructors, just like in the modal � -calculus.

�; � ` e : A [C]

�; � ` box e : � C A [D ]
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�; � ` e1 : � CA [D ] (� ; u::A[C]); � ` e2 : B [D ]

�; � ` let box u = e1 in e2 : B [D ]

However, in the � -calculus, the local reduction is realized by meansof the new
operation of modal substitution [[e1=u]]e2.

let box u = e1 in e2 =) R [[e1=u]]e2 : B [D ]

The local expansionstill has the sameform as in Section 1.1.3.

e : � C A [D ] =) E let box u = e in box u

Example 9 Let X be a name of type A. Then the term T de�ned as

let box u = (box X ) in box (�y :A: hX ! yi u)

is well-typed, of type � (A ! A). The � -reduction of T is computed as

[[X=u]](box (�y :A: hX ! yi u))

= box (�y :A: f X ! ygX )

= box (�y :A: y)

�

Example 10 Let C and D be well-formed supports such that C � D . Then the
following are valid typings in the modal � -calculus.

1. (� ; u::A[C]); � ` u : A [D ]

2. �; � ` �x: let box u = x in box u : � C A ! � D A

3. �; � ` �x: let box u = x in u : � C A ! A [D ]

4. �; � ` �x: let box u = x in box box u : � CA ! �� C A

5. �; � ` �x: �y : let box u = x in let box v = y in box u v
: � C (A ! B ) ! � C A ! � C B

�

The proof annotation of the judgment for simultaneouspossibility starts with the
following two rules.

�; � ` e : A [C]

�; � ` e � A [C]

�; � ` h� i : [C] ) [D ] �; � ` e : A [C]

�; � ` [� ; e] � C A [D ]

The �rst rule follows the de�nitional property (1) of simultaneous possibility
from Section2.1.4. If a proposition A is true in the current world, then A is possible
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(simultaneously with the empty support). If the witness for the truth of A is the
expressione, then e witnessesthe possibility of A as well.

The secondrule above is justi�ed by the de�nitional property (2) of simultaneous
possibility. The rule prescribesthe pair [� ; e] as a witness for simultaneous truth of
�; � ` C sat [D ] and �; � ` A tr ue[D ]. In this pair, � is a proof of �; � ` C sat [D ],
and e is a proof for �; � ` A tr ue[C]. By reection, thesetwo can obtain a derivation
of �; � ` A tr ue[D ]. Notice that e has to be typed with an empty context �, in
order to enablereection.

The introduction rule for 3 C usesthe phraseconstructors dia to internalize the
judgment for simultaneous modal possibility, just like in the modal � -calculus from
Section 1.1.4.

�; � ` f � C A [D ]

�; � ` dia f : 3 C A [D ]

The elimination rules for simultaneous possibility follow the inference rules from
Section 2.1.4. We have two di�eren t let forms, which serve as proof terms corre-
sponding to two di�eren t de�nitional properties. For de�nitional property (3), we
use let cdia x = e1 in e2, where e2 is an expression;for the de�nitional property
(4), we uselet dia x = e1 in f where f is a phrase. As customary in the judgments
for possibility, we also have a term constructor let box u = e in f , that serves to
eliminate relativized necessity in the judgment for simultaneous possibility.

�; � ` e1 : 3 C1 A [D ] �; x:A ` e2 : B [C1]

�; � ` let cdia x = e1 in e2 � C1 B [D ]

�; � ` e : 3 C1 A [D ] �; x:A ` f � C2 B [C1]

�; � ` let dia x = e in f � C2 B [D ]

�; � ` e : � C A [D ] (� ; u::A[C]); � ` f � C1 B [D ]

�; � ` let box u = e in f � C1 B [D ]

Example 11 Let C, C1, D be well-formed supports such that C � D . Then the
following are valid typings in the modal � -calculus.

1. �; � ` �x: dia x : A ! 3 A

2. �; � ` �x: dia (let dia y = x in let cdia z = y in z) : 3 C1 3 C A ! 3 C A

3. �; � ` �x: �y : let box u = x in dia (let cdia z = y in u z)
: � C (A ! B ) ! 3 D A ! 3 D B

�
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The local reductions and expansionsare

let cdia x = dia f 1 in e =) R hhf 1=xii e

let dia x = dia f 1 in f =) R hhf 1=xii f

e : 3 C [D ] =) E dia (let cdia x = e in x)

where the two operations hhf 1=xii e and hhf 1=xii f are de�ned by induction on the
structure of f 1 as follows.

hhe1=xii e = [e1=x]e

hh[� ; e1]=xii e = [� ; ([e1=x]e)]

hhlet cdia y = e1 in e2=xii e = let cdia y = e1 in [e2=x]e

hhlet dia y = e1 in f 2=xii e = let dia y = e1 in hhf 2=xii e

hhlet box u = e1 in f 2=xii e = let box u = e1 in hhf 2=xii e

hhe1=xii f = [e1=x]f

hh[� ; e1]=xii f = f � g� ([e1=x]f )

hhlet cdia y = e1 in e2=xii f = let dia y = e1 in [e2=x]f

hhlet dia y = e1 in f 2=xii f = let dia y = e1 in hhf 2=xii f

hhlet box u = e1 in f 2=xii f = let box u = e1 in hhf 2=xii f

We emphasizein the above de�nition the most characteristic case,which de�nes the
value of hhlet cdia y = e1 in e2=xii f to be let dia x = e1 in [e2=x]f . Notice how
the elimination form waschangedfrom let cdia in the argument of the substitution,
to let dia in the result.

The operation f � g� applies the substitution � to an argument phraseand thus
realizesthe reection principle for phrases.It is de�ned by induction on the structure
of the argument phrase,using the operation f � g of substitution on expressions.

f � g� e = f � ge

f � g� [� 1; e] = [� � � 1; e]

f � g� (let cdia x = e1 in e2) = let cdia x = f � ge1 in e2

f � g� (let dia x = e1 in f 2) = let dia x = f � ge1 in f 2

f � g� (let box u = e1 in f 2) = let box u = f � ge1 in f � g� f 2

Notice here that we only apply f � g� in the body of let box, but not in the bodies
of the other let forms. This fact closelycorresponds to the presented typing rules for
simultaneouspossibility and is therefore important for the soundnessof the calculus.
Indeed, when compared to the other let forms, the rule for let box is the only one
using the samesupport D in both of the premises.Becausethe explicit substitution
� may change the support of a phrase it is applied to, we must apply � to both
the branch and the body of the let box in order to preserve the equality of their
supports.
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In the following sections,we will omit the index � on the operation f � g� , and
simply write f � g, just as we do in the caseof explicit substitutions on expressions.
Which of the two substitutions is intended will always be clear from the context.

Example 12 Let X and Y be namesof type A, and let e1, e2 be expressionssuch
that e1 : A, e2 : A ! A. Consider the phrasef de�ned as

f = let dia y = dia [hX ! e1i ; X ] in [hX ! e2 (X ); Y ! yi ; Y ]:

The phrasef is well-typed, with f � X ;Y A. The � -reduction of f is computed as

f X ! e1g([X=y][hX ! e2 (X ); Y ! yi ; Y ])

= f X ! e1g[hX ! e2 (X ); Y ! X i ; Y ]

= [(X ! e1) � (X ! e2 (X ); Y ! X ); Y ]

= [hX ! e2 (e1); Y ! e1i ; Y ]

�

Principle (Phrase substitution)
If �; � ` f 1 � C1 A [D ], then the following holds:

1. if �; x:A ` e : B [C1], then �; � ` hhf 1=xii e � C1 B [D ].

2. if �; x:A ` f � C2 B [C1], then �; � ` hhf 1=xii f � C2 B [D ].

2.2.2 Name-space managemen t

In Section2.1.6,we decoratedthe judgments with the additional namecontext �, in
order to establisha discipline for dynamic introduction of namesinto derivation. For
example, the partial truth judgment �; �; � ` A tr ue[C] was de�ned to hold if and
only if: (1) the namesappearing in �, �, A and C are all listed with their types in
�, and (2) there exists a namecontext � 0 = (� ; � 1), and a proof of �; � ` A tr ue[C]
which usesonly the namesfrom � 0.

As a consequenceof this semantics, it follows that a proof for the judgment
�; �; � ` A tr ue[C] should in fact consist of a namecontext � 1 and an expressione
such that (� ; � 1) is a well-formed name context, and e is a proof of of the judgment
�; � ` A tr ue[C], under the restriction that e only usesnames in (� ; � 1). The
proof-annotated version of this judgment has the form

�; �; � ` � 1: e : A [C]

and it holds if and only if e is an expressionsuch that fn(e) � dom(� ; � 1) and
�; � ` e : A [C], and �, �, � 1, A and C are well-formed with respect to �. In the
senseof this de�nition, it may be said that � 1 declaresthe namesthat are local to
the expressione.

The de�nition of the annotated judgment obviously motivates the following ver-
sionsof the structural properties from the previous section.
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1. Name localization. Let X be a name that doesnot appear in �, �, B and C.
Then (� ; X :A); �; � ` � 1: e : B [C] if and only if �; �; � ` (X :A; � 1): e : B [C].

2. Renaming. If (� ; X :A; � 0); �; � ` � 1: e : B [C], and the name Y is fresh, i.e. it
doesnot appear anywhere in the above judgment, then

(� ; Y :A; [Y=X ]� 0); [Y=X ]�; [Y=X ]� ` ([Y=X ]� 1): [Y=X ]e : ([Y=X ]B ) [[Y=X ]C]

3. Weakening. If �; �; � ` � 1: e : B [C], and X 62dom(� 1), then (� ; X :A); �; � `
� 1: e : B [C].

Sincethe namesappearing in the judgment are now declaredin the namecontext,
we rephrasethe rules to take this into account. In particular, instead of having the
rule

typeof(X ) = A

�; � ` X : A [C; X ]

we can now introduce the following formulation.

X :A 2 �

�; �; � ` � 1: X : A [C; X ]

The other rules should be appropriately changedas well. For example, the old rule
for application substituted with

�; �; � ` � 1: e1 : A ! B [C] �; �; � ` � 2: e2 : A [C]

�; �; � ` � 1; � 2: e1 e2 : B [C]
:

Here we assumethe disjointness of � 1 and � 2, which is justi�ed by the renaming
principle. The rest of the inferencerules are updated following the samepattern.

In the caseof introduction and elimination rules for the type A 9 B , we needto
introduce new proof terms � X :A: e and choose e, as follows.

(� ; X :A); �; � ` � 1: e : B [C]

�; �; � ` � 1: (� X :A: e) : A 9 B [C]

�; �; � ` � 1: e : A 9 B [C]

�; �; � ` � 1: choose e : B [C]

In the introduction rule it is assumedthat X is a freshname,that is, X 62dom(� ; � 1).
The exact identit y of X is not important { asensuredby the renaming principle, any
unusednameX such that astypeof(X ) = A may bechosen. This observation justi�es
the proof term � X :A: e which actually binds the name X and allows � -renaming X
into other unusednames.

The local soundnessof the new rules is establishedby the following local reduc-
tion, which we present in a form of a derivation tree.

(� ; X :A); �; � ` � 1: e : B [C]

�; �; � ` � 1: (� X :A: e) : A 9 B [C]

�; �; � ` � 1: choose � X :A: e : B [C]

=) R �; �; � ` (� 1; X :A): e : B [C]

or in a more compact form, using proof terms:

� 1: choose � X :A: e =) R (� 1; X :A): e X � fresh
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The local reduction is justi�ed by the strengthening principle. Indeed, if � 1: e is
a witness for (� ; X :A); �; � ` B tr ue[C], then �; � ` e : B [C], and X does not
appear in �, �, B or C. By de�nition, this is su�cien t to ensurethat (� 1; X :A): e
is a witness for �; �; � ` B tr ue[C] as well.

Local completenessis establishedby local elimination as follows.

�; �; � ` � 1: e : A 9 B [C] =) E

�; �; � ` � 1: e : A 9 B [C]

�; �; � ` � 1: choose e : B [C]

(� ; X :A); �; � ` � 1: choose e : B [C]

�; �; � ` � 1: (� X :A: choose e) : A 9 B [C]

or in a short form:
� 1: e =) E � 1: � X :A: choose e

The expanded derivation is justi�ed by the weakening principle and name local-
ization, which allows us to conclude (� ; X :A); �; � ` (� 1; X :A): choose e : B [C]
out of �; �; � ` � 1: choose e : B [C], under the assumption that Y is fresh, i.e.
X 62dom(� ; � 1).

Observe that the namesappearing in the expressione such that �; � ` e : A [C]
can always be recovered by simply inspecting e. Strictly speaking, therefore, it is
not really necessarythat the rules of our judgments explicitly carry the secondname
context � 1. We can always keep � 1 implicit, and only rely on � to declare which
namescan be used in a well-formed judgment. Thus, we abbreviate the notation,
and instead of

�; �; � ` � 1: e : A [C]

simply write
(� ; � 1); �; � ` e : A [C]

The introduction and elimination rules for A 9 B now have the following form.

(� ; X :A); �; � ` e : B [C]

�; �; � ` � X :A: e : A 9 B [C]

�; �; � ` e : A 9 B [C]

�; �; � ` choose e : B [C]

It is important, however, to remember that this is just an abbreviation for the
old judgment. The name context � 0, while made implicit, remains explicit in the
local reduction, and will therefore have a computational import. Once we ascribe
operational semantics to the � -calculus, � 0 will serve as a run-time context that lists
the currently generatednames. It will be used to determine which namesare fresh
and can therefore be introduced next time a fresh name is needed.

On a related note, the local reduction associated with the type constructor 9
will itself have a computational meaning { that of introducing a fresh name into the
computation. In the usual formulation of calculi for fresh name generation [PS93,
PG00, Ode94] , this operation is not related to a � -reduction, but is formulated
by a separate languageconstruct. In this respect, our formulation is closer to the
� -calculus, where computational content is always reserved for � -reduction.

Just as it is customary in � -calculus to abbreviate the expression(�x: e2) (e1),
with let val x = e1 in e2, we can introducea similar abbreviation in caseof choose
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and � . For example, we de�ne a new expressionconstructor let name X :A in e to
stand for

(let name X :A in e) = choose (� X :A: e)

The typing rule for let name is appropriately derived as

(� ; X :A); �; � ` e : B [C]

�; �; � ` let name X :A in e : B [C]

A similar constructor is introduced in the syntactic category of phrases,with the
following typing rule.

(� ; X :A); �; � ` f � C B [D ]

�; �; � ` let name X :A in f � C B [D ]

In both of theserules, it is assumedthat X is a fresh name, i.e. that X 62dom(�).

2.2.3 Summary and structural prop erties

Syntax

The syntax of the modal � -calculus is summarized in the table below. We assume
a countable universe of names, and use X , Y and variants to range over names.
Similarly, we have a countable set of ordinary variables (ranged over by x, y, z), and
a countable set of modal variables (ranged over by u, v, w). We also useP to range
over basetypesof the logic.

Supports C; D ::= � j C; X
Types A; B ::= P j A ! B j A 9 B j � CA j 3 C A
Explicit substitutions � ::= � j X ! e;�
Expressions e ::= X j x j h� i u j �x :A: e j e1 e2

j box e j let box u = e1 in e2

j � X :A: e j choose e
j dia f

Phrases f ::= e j [� ; e] j let cdia x = e1 in e2

j let dia x = e in f j let box u = e in f
Ordinary contexts � ::= � j � ; x:A
Modal contexts � ::= � j � ; u::A[C]
Name context � ::= � j � ; X :A

T yp e system

The type systemconsistsof two groupsof judgments. The �rst group establishesthe
well-formednessof name contexts ` � ok, supports � ` C supp, types � ` A type,
as well as modal contexts � ` � ok and ordinary variable contexts � ` � ok.

The secondgroup consists of the typing judgments for substitutions �; �; � `
h� i : [C] ) [D ], expressions�; �; � ` e : A [C], and phrases�; �; � ` f � C A [D ].
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De�nition of ` � ok.

` � ok ` � ok � ` A ty pe X 62dom(�)

` (� ; X :A) ok

De�nition of � ` C supp.

� ` � supp
� ` C supp X 2 dom(�)

� ` C; X supp

De�nition of � ` A type.

� ` P ty pe

� ` A ty pe � ` B ty pe

� ` A ! B ty pe

� ` A ty pe � ` B ty pe

� ` A � B ty pe

� ` A ty pe � ` C supp

� `
�

C A ty pe

� ` A ty pe � ` C supp

� ` 3 C A ty pe

We also require formation judgments for variable contexts � and �. Thesejudg-
ments are de�ned in a straightforward way.

De�nition of � ` � ok.

� ` � ok � ` � ok � ` A ty pe x 62dom(�)

� ` (� ; x:A) ok

De�nition of � ` � ok.

� ` � ok � ` � ok � ` A ty pe � ` C supp u 62dom(�)

� ` (� ; u::A[C]) ok

Next we proceedwith the de�nition of the typing judgments for substitutions
�; �; � ` h� i : [C] ) [D ], for expressions�; �; � ` e : A [C], and for phrases
�; �; � ` f � C A [D ]. We implicitly assumethat all types, supports and contexts
and well-formed.

De�nition of �; �; � ` h� i : [C] ) [D ].

C � D

�; �; � ` h i : [C] ) [D ]

�; �; � ` e : A [D ] �; �; � ` h� i : [C n X ] ) [D ] X :A 2 �

�; �; � ` hX ! e; � i : [C] ) [D ]
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De�nition of �; �; � ` e : A [C].

X :A 2 �

�; �; � ` X : A [X ; C] �; �; (� ; x:A) ` x : A [C]

�; (� ; u::A[C]); � ` h� i : [C] ) [D ]

�; (� ; u::A[C]); � ` h� i u : A [D ]

�; �; (� ; x:A) ` e : B [C]

�; �; � ` �x :A: e : A ! B [C]

�; �; � ` e1 : A ! B [C] �; �; � ` e2 : A [C]

�; �; � ` e1 e2 : B [C]

�; �; � ` e : A [D ]

�; �; � ` box e :
�

D A [C]

�; �; � ` e1 :
�

D A [C] �; (� ; u::A[D ]); � ` e2 : B [C]

�; �; � ` let box u = e1 in e2 : B [C]

(� ; X :A); �; � ` e : B [C]

�; �; � ` � X :A: e : A � B [C]

�; �; � ` e : A � B [C]

�; �; � ` cho ose e : B [C]

De�nition of �; �; � ` f � C A [D ].

�; �; � ` e : A [C]

�; �; � ` e � A [C]

�; �; � ` h� i : [C] ) [D ] �; �; � ` e : A [C]

�; �; � ` [� ; e] � C A [D ]

�; �; � ` f � C A [D ]

�; �; � ` dia f : 3 C A [D ]

�; �; � ` e1 : 3 C 1 A [D ] �; �; x:A ` e2 : B [C1 ]

�; �; � ` let cdia x = e1 in e2 � C 1 B [D ]

�; �; � ` e : 3 C 1 A [D ] �; �; x:A ` f � C 2 B [C1 ]

�; �; � ` let dia x = e in f � C 2 B [D ]

�; �; � ` e :
�

C 1 A [D ] �; (� ; u::A[C1 ]); � ` f � C 2 B [D ]

�; �; � ` let box u = e in f � C 2 B [D ]

Structural prop erties

As explained in Section 2.2.1, every explicit substitution can be uniquely extended
to a function over arbitrary expressionsand phrases. The de�nition below formally
describesthis operation.
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De�nition 5 (Substitution application)
Given a substitution � , the operations f � g� e and f � g� f for applying � over the
expressione or a phrase f , are de�ned by induction on the structure of e and f as
given below. Substitution application is capture-avoiding.

In the future text, wewill omit the subscripts� and � , and denoteboth operations
simply as f � g. It will always be possibleto disambiguate between them from the
context in which they are used.

f � g� X = [[�] ](X )
f � g� x = x
f � g� (h� 1i u) = h� � � 1i u
f � g� (�x :A: e1) = �x :A: f � g� e1 x 62fv(�)
f � g� (e1 e2) = f � g� e1 f � g� e2

f � g� (box e1) = box e1

f � g� (let box u = e1 in e2) = let box u = f � g� e1 in f � g� e2 u 62fv(�)
f � g� (� X :A: e1) = � X :A: f � g� e1 X 62fn(�)
f � g� (choose e1) = choose f � g� e1

f � g� (dia f 1) = dia f � g� f 1

f � g� e1 = f � g� e1

f � g� [� 1; e1] = [� � � 1; e1]
f � g� let cdia x = e1 in e2 = let cdia x = f � g� e1 in e2 x 62fv(�)
f � g� let dia x = e1 in f 2 = let dia x = f � g� e1 in f 2 x 62fv(�)
f � g� let box u = e1 in f 2 = let box u = f � g� e1 in f � g� f 2 u 62fv(�)

An important aspect of the above de�nition is that substitution application does
not recursively descendunder box. This property is important for the soundnessof
the calculus as it preserves the distinction betweenthe categorical and hypothetical
proofs. It is also justi�ed, as applying explicit substitution � to the expressione is
intended to replace the nameswhich are in the support of e, and namesappearing
under box do not contribute to the support.

The operation of substitution application dependsupon the operation of substi-
tution composition � 1 � � 2, which we de�ne next.

De�nition 6 (Comp osition of substitutions)
Given two substitutions � 1 and � 2, their composition � 1 � � 2 is the set

� 1 � � 2 = f X ! f � 1g([[� 2]](X )) j X 2 dom(� 1) [ dom(� 2)g

It will occasionally be bene�cial to represent this set as a disjoint union of two
smaller sets 	 1 and 	 2 de�ned as:

	 1 = f X ! [[� 1]] (X ) j X 2 dom(� 1) n dom(� 2)g

	 2 = f X ! f � 1g([[� 2]] (X )) j X 2 dom(� 2)g

It is important to notice that, though the de�nitions of substitution applica-
tion and substitution composition are mutually recursive, both operations are well
founded. Substitution application is de�ned inductiv ely over the structure of its ar-
gument, so the size of terms on which it operates is always decreasing. Computing
� 1 � � 2 only requires applying � 1 to subterms in � 2.

66



CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL � -CALCULUS

Lemma 7
Let � 1; � 2; � 3 be explicit substitutions. Then the following holds:

1. f � 1g(f � 2ge) = f � 1 � � 2ge, for every expressione

2. f � 1g(f � 2gf ) = f � 1 � � 2gf , for every phrasef

3. � 1 � (� 2 � � 3) = (� 1 � � 2) � � 3, for every explicit substitution � 3.

Pro of: By simultaneous induction on the structure of e, f and � 3. We present the
characteristic cases.

case e = h� i u. By de�nition, f � 1g(f � 2ge) = h� 1 � (� 2 � �) i u. By secondinduc-
tion hypothesis, this is equal to h(� 1 � � 2) � � i u = f � 1 � � 2ge.

case f = [� 0; e]. Then f � 1g(f � 2gf ) = f � 1g[� 2 � � 0; e] = [� 1 � (� 2 � � 0); e] =
f � 1 � � 2gf .

case � 3 = (X 7! e;� 0). Let Z be an arbitrary name.

If Z = X , then f � 1g([[� 2 � � 3]](Z )) = f � 1g(f � 2ge). By �rst induction hy-
pothesis, this is equal to f � 1 � � 2ge = f � 1 � � 2g([[� 3]](Z )).

If Z 6= X , then f � 1g[[� 2 � � 3]](Z ) = f � 1g[[� 2 � � 0]](Z ), but it is also f � 1 �
� 2g[[� 3]](Z ) = f � 1 � � 2g[[� 0]](Z ). By secondinduction hypothesis, � 1 � (� 2 �
� 0) = (� 1 � � 2) � � 0, and therefore f � 1g[[� 2 � � 0]](Z ) = f � 1 � � 2g[[� 0]](Z ).
Therefore, f � 1g[[� 2 � � 3]](Z ) = f � 1 � � 2g[[� 3]](Z ), thus concluding the proof.

�

We will frequently blur the distinction between a substitution �, and its corre-
sponding function [[�] ], and write �( X ) instead of [[�] ](X ), or f � g(X ). Represen-
tations of substitutions that di�er only in the ordering of the assignment pairs are
consideredto de�ne equal substitutions.

Theorem 8 (Structural prop erties)
The following are the structural properties of the judgment �; �; � ` e : A [C].
Similar properties hold for �; �; � ` h� i : [C] ) [D ] and �; �; � ` f � C A [D ], but
we omit thesefor simplicit y.

1. Context weakening Let � � � 0, � � � 0 and � � � 0. If �; �; � ` e : A [C], then
� 0; � 0; � 0 ` e : A [C].

2. Contraction on variables

(a) if �; �; (� ; x:A; y:A) ` e : A [C], then �; �; (� ; w:A) ` [w=x; w=y]e : A [C]

(b) if �; (� ; u::A[C1]; v::A[C1]); � ` e : A [C], then
�; (� ; w::A[C1]); � ` [w=u;w=v]e : A [C].

3. Renaming If (� ; X :A; � 1); �; � ` e : B [C], and the name Y:A is fresh, then

(� ; Y :A; [Y=X ]� 1); [Y=X ]�; [Y=X ]� ` [Y=X ]e : ([Y=X ]B ) [[Y=X ]C]
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Pro of: By straightforward induction on the structure of the derivations. �

Theorem 9 (Supp ort weakening)
Support weakening is covariant on the right-hand side and contravariant on the left-
hand side of the judgments. More formally, let C � D � dom(�) be well-formed
supports. Then the following holds:

1. if �; �; � ` e : A [C], then �; �; � ` e : A [D ]

2. if �; �; � ` h� i : [C1] ) [C], then �; �; � ` h� i : [C1] ) [D ]

3. if �; �; � ` f � C1 A [C], then �; �; � ` f � C1 A [D ]

4. if �; (� ; u::A[D ]); � ` e : B [C1], then �; (� ; u::A[C]); � ` e : B [C1]

5. if �; �; � ` h� i : [D ] ) [C1], then �; �; � ` h� i : [C] ) [C1]

6. if �; (� ; u::A[D ]); � ` f � C1 B [C2], then �; (� ; u::A[C]); � ` f � C1 B [C2]

Pro of: The �rst three statements are proved by simultaneous induction on the
structure of their derivations. The last three statements are also proved by simulta-
neousinduction on the structure of their respective derivations, but are independent
of the �rst three. �

Theorem 10 (Explicit substitution principle)
Let �; �; � ` h� i : [C] ) [D ]. Then the following holds:

1. if �; �; � ` e : A [C] then �; �; � ` f � ge : A [D ]

2. if �; �; � ` h� 0i : [C1] ) [C], then �; �; � ` h� � � 0i : [C1] ) [D ]

3. if �; �; � ` f � C1 A [C], then �; �; � ` f � gf � C1 A [D ]

Pro of: By simultaneous induction on the structure of the derivations. Proving
the �rst and the third statement is easy. For the secondinduction hypothesis, let
	 = � � � 0. We split 	 into two disjoint sets:

	 0
1 = f X ! �( X ) j X 2 dom(�) n dom(� 0)g

	 0
2 = f X ! f � g(� 0(X )) j X 2 dom(� 0)g

Let X :A. It su�ces to show that

(a) if X 62dom(	) and X 2 C1, then X 2 D

(b) if X ! e 2 	, then �; �; � ` e : A [D ]

To establish (a), observe that X 62dom(	) implies X 62dom(�) and X 62
dom(� 0), by de�nition. If X 62dom(� 0) and X 2 C1, then X 2 C by the typing of
� 0. If X 62dom(�) and X 2 C, then X 2 D, by the typing of �.

To establish (b), we need to consider two cases: (1) X ! e 2 	 0
1 and (2)

X ! e 2 	 0
2. In case(1), by the typing of �, we immediately have �; �; � ` e : A [D ].

In case(2), there exists a term e0 such that X ! e0 2 � 0 and e = f � ge0. By the
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typing of � 0, we have �; �; � ` e0 : A [C]. Becausee0 is a subterm of � 0, we can apply
the �rst induction hypothesis to obtain �; �; � ` f � ge0 : A [D ]. This concludesthe
proof, sincee = f � ge0. �

The following theorem is a version of the substitution principle for truth, deco-
rated with explicit proof terms in the judgments.

Theorem 11 (V alue substitution principle)
Let �; �; � ` e1 : A [C]. Then the following holds:

1. if �; �; (� ; x:A) ` e2 : B [C], then �; �; � ` [e1=x]e2 : B [C]

2. if �; �; (� ; x:A) ` h� i : [C1] ) [C], then �; �; � ` h[e1=x]� i : [C1] ) [C]

3. if �; �; (� ; x:A) ` f � C1 B [C], then �; �; � ` [e1=x]f � C1 B [C]

Pro of: By simultaneous induction on the �rst derivation in each of the three state-
ments. �

De�nition 12 (Mo dal substitution)
Given an expressione and a modal variable u, we de�ne the operations [[e=u]]� ,
[[e=u]]� and [[e=u]]� of capture-avoiding substitutions of e for u in expressions,explicit
substitutions and phrases, respectively. The operations are de�ned in a mutually
recursive way, as presented below. Note that in the �rst clause of the de�nition,
substituting e for u in h� i u is de�ned to actually carry out the explicit substitution.

In the future text, we will omit the indexesand denote all the operations simply
as [[e=u]]. The operations could always be disambiguated from the context in which
they are used.

[[e=u]]� h� i u = f [[e=u]]� � ge
[[e=u]]� h� i v = h[[e=u]]� � i v u 6= v
[[e=u]]� x = x
[[e=u]]� X = X
[[e=u]]� �x :A: e1 = �x :A: [[e=u]]� e1 x 62fv(e)
[[e=u]]� e1 e2 = [[e=u]]� e1 [[e=u]]� e2

[[e=u]]� box e1 = box [[e=u]]� e1

[[e=u]]� let box v = e1 in e2 = let box v = [[e=u]]� e1 in [[e=u]]� e2 v 62fv(e)
[[e=u]]� � X :A: e1 = � X :A: [[e=u]]� e1 X 62fn(e)
[[e=u]]� choose e1 = choose ([[e=u]]� e1)
[[e=u]]� dia f = dia ([[e=u]]� f )

[[e=u]]� (�) = (�)
[[e=u]]� (X ! e1; �) = (X ! [[e=u]]� e1; [[e=u]]� �)

[[e=u]]� e1 = [[e=u]]� e1

[[e=u]]� [� ; e1] = [[[e=u]]� � ; [[e=u]]� e1]
[[e=u]]� let cdia x = e1 in e2 = let cdia x = [[e=u]]� e1 in [[e=u]]� e2 x 62fv(e)
[[e=u]]� let dia x = e1 in f 2 = let dia x = [[e=u]]� e1 in [[e=u]]� f 2 x 62fv(e)
[[e=u]]� let box v = e1 in f 2 = let box v = [[e=u]]� e1 in [[e=u]]� f 2 v 62fv(e)
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The following theorem is a version of the substitution principle for relativized
necessity.

Theorem 13 (Mo dal substitution principle)
Let �; �; � ` e1 : A [C]. Then the following holds:

1. if �; (� ; u::A[C]); � ` e2 : B [D ], then �; �; � ` [[e1=u]]e2 : B [D ]

2. if �; (� ; u::A[C]); � ` h� i : [C1] ) [D ], then �; �; � ` h[[e1=u]]� i : [C1] ) [D ]

3. if �; (� ; u::A[C]); � ` f � C1 B [D ], then �; �; � ` [[e1=u]]f � C1 B [D ]

Pro of: By simultaneous induction on the two derivations. �

De�nition 14 (Phrase substitution)
The operationshhf 1=xii e and hhf 1=xii f of substituting the phrasef 1 into an expression
e or another phrasef 2 are de�ned by induction on the structure of f as follows.

hhe1=xii e = [e1=x]e

hh[� ; e1]=xii e = [� ; ([e1=x]e)]

hhlet cdia y = e1 in e2=xii e = let cdia y = e1 in [e2=x]e

hhlet dia y = e1 in f 2=xii e = let dia y = e1 in hhf 2=xii e

hhlet box u = e1 in f 2=xii e = let box u = e1 in hhf 2=xii e

hhe1=xii f = [e1=x]f

hh[� ; e1]=xii f = f � g([e1=x]f )

hhlet cdia y = e1 in e2=xii f = let dia y = e1 in [e2=x]f

hhlet dia y = e1 in f 2=xii f = let dia y = e1 in hhf 2=xii f

hhlet box u = e1 in f 2=xii f = let box u = e1 in hhf 2=xii f

Observe in the caseof hhlet cdia y = e1 in e2=xii f that the elimination form changes
from let cdia in the argument of the substitution, to let dia in the result.

The following theorem establishesthat our calculus indeed satis�es the substitu-
tion principle for possibility from Section 2.2.1.

Theorem 15 (Phrase substitution principle)
If �; �; � ` f 1 � C1 A [D ], then the following holds:

1. if �; �; x:A ` e : B [C1], then �; �; � ` hhf 1=xii e � C1 B [D ].

2. if �; �; x:A ` f � C2 B [C1], then �; �; � ` hhf 1=xii f � C2 B [D ].

Pro of: By straightforward induction on the structure of f 1. We just present a
selectedcasewhen f 1 = let cdia y = e1 in e2. In this case,by assumption �; �; � `
e1 : 3 C1 A1 [D ], and �; �; y:A1 ` e2 : A [C1].

To establish the �rst statement, recall that �; �; x:A ` e : B [C1]. Then by the
value substitution principle, �; �; y:A1 ` [e2=x]e : B [C1]. According to the typing

70



CHAPTER 2. PARTIAL MODAL LOGIC 2.3. NOTES

rule for let cdia , �; �; � ` let cdia y = e1 in [e2=x]e � C1 B [D ], which wasrequired
to prove.

The proof of the secondstatement is similar. By assumption, �; �; x:A ` f � C2

B [C1], and by the value substitution principle, �; �; y:A 1 ` [e2=x]f � C2 B [C1]. The
conclusionnow follows by the typing rule for let dia . �

2.3 Notes

Related and future work on names

The work that explicitly motivated the developments presented in this dissertation
is described in the seriesof papers on Nominal Logic and FreshML [GP02, PG00,
Pit01, Gab00, SPG03]. The names of Nominal Logic are introduced as the urele-
ments of Fraenkel-Mostowski set theory. FreshML is a languagefor manipulation of
object syntax with binding structure based on this model. Its primitiv e notion is
that of swapping of two nameswhich is then used to de�ne the operations of name
abstraction (producing an � -equivalenceclasswith respect to the abstracted name)
and name concretion (providing a speci�c representativ e of an � -equivalenceclass).

In FreshML, the nameX is in a support of the expressione if the denotation of e
changeswhenX is permuted with someother name. In the early versionsof FreshML
(now calledFreshML 2000),the typesystemkeepstrack and infers the complement of
the expression'ssupport. In most cases,this not-in-the-support relation commutes
with the expressionconstructors. Thus, the above semantic de�nition of support
can informally be approximated by the following syntactic criterion: if X is a name
appearing in the expressione, then the support of e will contain X , unlessX occurs
in deadcode or is otherwiseabstracted using the construct for nameabstraction. An
exceptional caseappears in the treatment of functional abstractions: a name X is
not in the support of the function e if it is not in the support of any freevariable of e.
In FreshML 2000,namesare introduced into the computation by new X in e which
is roughly equivalent to our let name X in e. The typing rule for new X in e
requires that X does not appear in the support of e. This way, the type system
prevents unabstracted namesfrom escapingthe scope of their intro ducing new .

Keeping track of supports in the type system signi�cantly simpli�es FreshML
2000when comparedto someprevious calculi that usenames. For example, the cal-
culus of Pitts and Stark [PS93] studies the interaction betweennames(here treated
as ML referencesof unit type), but unlike FreshML 2000, it does not track sup-
ports of expressions,and does not insist that X is absent from the support of e in
new X in e. As a consequence,the resulting languageis e�ectful, and has a very
involved equational theory. In the current versionsof FreshML, supports are elimi-
nated from the type systemfor practical reasons,and hencethe impurities described
by Pitts and Stark are again allowed (albeit, the notion of support is still important
in the metatheory of FreshML). In the modal � -calculus,rather than eliminating sup-
ports from the type system,we will considerpolymorphic abstractions over supports,
as described in Section 3.3.

The �� -calculus of [Ode94] introduces a somewhat di�eren t idea for treating
names,characterizedby reductions that push the namedeclaration inside other term
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constructors. A typical reduction rule in �� would be paraphrasedin the notation
of �

�

as
let name X in (�x: e) 7�! �x: let name X in e

Just like the calculus of Pitts and Stark, �� does not keep track of which names
appear in the terms. As a consequence,it does not possessthe usual progressand
preservation properties, as well-typed expressionsin �� may get stuck. A typical
example is the expression� X : X , which doesnot denote any value.

All thesecited namecalculi are designedwith the goal of providing the operation
of equality on names. In contrast to this goal, our modal � -calculus usesnames
primarily as a way of describing supports, i.e. as a way of specifying the partialit y of
expressions.In fact, namesin the modal � -calculus are second-classobjects { they
cannot be passedasarguments to other functions, and may not be tested for equality
directly.

The reasonfor second-classnameshasto do with the fact that namesin the modal
� -calculus may be ascribed an arbitrary type; a dynamic introduction of a name of
type A into a computation serves as a dynamic extension of the type A. Such an
extension may render partial the previously de�ned functions with domain A. We
discuss this issue in more detail in Section 3.2.3, where we de�ne an operational
semantics for the modal � -calculus.

This is not to say that namescannot be tested for equality indir ectly. As will be
explained in Section 3, expressionsof the type � C A may be interpreted as syntactic
expressionwith free variables listed in the set C. In Section 3.4, we exploit this
feature, and make someinitial steps toward extending the � -calculus with pattern-
matching against syntactic expressions.Sincethe syntactic expressionsmay contain
names,this will provide an indirect way to test for name equality.

Of course,other ways to extend the � -calculus with �rst-class namesand name
equality may be possible. For example, it may be interesting to de�ne a new type
constructor

N : Type ! Type;

so that N (A) classi�es all the names of type A. The question then becomeshow
namesinteract with the modal operators. Of course,it is likely that all the di�culties
from the name calculi with �rst-class names(lik e the � -calculus of [PS93]) will still
be present. We leave this research direction as an important future work.

Even when dealing with second-classnames, it seemspossible that other ap-
proachesmay beemployed for dynamic namemanagement. For example,the variable
declaration u::A [C] may be viewed as binding the nameslisted in C, so that these
nameshave scope local to the explicit substitutions associated to u. This idea has
been employed in [NPP03] to de�ne a dependently typed calculus for representing
metavariables in logical frameworks.

Ancona and Moggi in their recent work [AM04], motivated by the � -calculusalso
use indexed modal typesto encapsulatenameful expressions.This systemsemploys
resolvers to specify the rebinding of names. Resolvers are similar to our explicit
substitutions, except that resolver variables are also admitted, and box is a binder
for resolver variables. Names are generatedby a separatemonadic construct, but
are not ascribed with a type at generation time. Rather, namesare more similar to
labels in record calculi, as each name can be usedwith many di�eren t types.
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In this dissertation, we deliberately separate name generation from other lan-
guageconstructs, and give namesglobal semantic identit y. In other words, a name
appearing in support of a type is not local to that type, but may appear in other
typesand expressionsaswell. This will help avoid excessive renaming and rebinding.
Moreover, in Chapter 4, we will consider e�ectful computations where names cor-
respond to particular memory locations and exceptions. In practice today memory
locations and exceptionspossesglobal identit y in the above sense,so our approach
will faithfully capture this aspect of e�ects.

Related and future work on contexts and partialit y in mo dal logic

Since the most important semantic model of modal logic considerstruth of propo-
sitions relative to various worlds, it should not be a surprise that modal logic and
partialit y are so closelyrelated. This is especially true of the �rst-order modal logics
with equality (and also of higher-order modal logics), where the research questions
of interest are typically concernedwith reasoningwith and about individuals that
{ in an appropriate sense{ do not really exist. Derivations produced in this way
are partial in the existenceat the given world of the individuals in question. The
namesfrom the modal � -calculus serve to specify the partialit y condition, and thus
may be seenas a simpli�cation (appropriate for the propositional partial CS4 that
we investigate) of the more general concept of an individual. In this sense,names
resemble the non-rigid designatorsconsideredby Fitting and Mendelsohnin [FM99],
namesof Kripk e [Kri80], and the virtual individuals of Scott [Sco70], but also touch
on the issuesof existenceand identit y explored in [Sco79].

Frequently, modal reasoningis only valid under a certain set of hypotheses,i.e.
a context. A context need not include only the existenceof individuals, but may
contain more generalpropositions. The study of contexts as �rst-class logical object
has been initiated by McCarthy [McC93], and we also list the work of Attardi and
Simi [AS95] asa continuation of this line of research. Most of the work on formalizing
contexts has beencarried out in a classicalsetting, but there are also e�orts related
to intuitionistic logic, like the recent work of de Paiva [dP03].

It may be particularly convenient to addressthe mentioned distinction between
the partialit y in individuals and the partialit y in propositions within the framework
of a modal type theory. As an illustration { and a rather far-fetched one, currently
{ consider the following example.

Let X : real be an indeterminate number, for which we assumethat X 2 = � 1.
Such a real number clearly does not exist, and we may easily derive falsehood by
instantiating with X the universalquanti�cation 8x:real: x 2 � 0. However, asargued
by Scott in [Sco79], it may still be useful to use the fact that X 2 = � 1 in order to
derive X 3 = � X or X 4 + X 2 = 0, without stipulating that these equalities are
inconsistent.

If we had a modal theory with names, then perhaps the described equations
may be obtained by using the following two names: the name X : real to stand for
the indeterminate number, and the name P : Proof(X 2 = � 1) to stand for a non-
existent proof that X 2 = � 1. It is important that X and P are names,rather than
ordinary variable. Variablesonly stand for individuals and proofsof appropriate type
that exist, while namesmay remain partial. Using X , P and the usual arithmetic
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properties of real numbers, we can then easily produce a proof Q so that

Q : Proof(X 3 = � X ) [X ; P]

As expected, this proof would be partial in X and P, and could be turned into a
total proof only if witnessesfor X and P are exhibited. This partial derivation will
actually not be inconsistent, as the proposition 8x:real: x 2 � 0 may not be used to
derive contradiction. In this proposition, the universalquanti�cation is over existing
real numbers. BecauseX is a name of type real, it does not stand for any element
of type real, and thus it cannot be usedto instantiate the universal quanti�er.
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Chapter 3

Staged computation and
metaprogramming

3.1 In tro duction

Staging is a programming technique for explicitly dividing a computation in order
to exploit early availabilit y of somearguments [Ers77, GJ95, DP01]. For example,
consider �ltering a set of points to seeon which side of a line de�ned by two points
they lie. This is a typical test used in many convex hull algorithms. The test can
be stagedby �rst forming the line and its normal, and then checking the position of
each point from the set. Such a staged test obviates the need to repeat the part of
the computation pertinent to the normal whenever a new point is tested, and can
potentially save a lot of work.

Becauseit is often quite cumbersometo design programs that fully exploit the
natural stage separation of their arguments, it is very desirable for a programming
languageto provide support for early detection and reporting of staging errors. As
an illustration, let us look at the exponentiation function, presented below in ML-lik e
notation.

fun exp1 (n : int) (x : int) : int =
if n = 0 then 1 else x * exp1 (n-1) x

The function exp1 : int -> int -> int is written in curried form so that it can
be applied when only a part of its input is known. For example, if an actual param-
eter for n is available, exp1(n) returns a function for computing the n-th power of
its argument. From the computational standpoint, however, in most compilers the
outcome of this partial instantiation will be a closure waiting to receive an actual
parameter for x before it proceedswith evaluation. Thus, one can argue that the
following reformulation of exp1 is preferable.

fun exp2 (n : int) : int -> int =
if n = 0 then � x:int.1
else

let val u = exp2 (n - 1)
in

� x:int. x * u(x)
end
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Indeed,when only n is provided, but not x, the expressionexp2(n) performscompu-
tation stepsbasedon the value of n to producea function specializedfor computing
the n-th power of its argument. In particular, the resulting function will not perform
any operations or take decisionsat run time basedon the value of n; in fact, it does
not even depend on n { all the computation stepsdependent on n have beentaken
during the specialization.

A useful intuition for understanding the programming idiom of the above exam-
ple, is to view exp2 as a code generator; once supplied with n, it generates at run
time a specialized function for computing n-th powers. This immediately suggests
a strati�cation of expressionsinto two stages. Object stage (or the stage of gener-
ated expressions)consists of expressionsthat are to be viewed as data { they are
result of the processof code generation. In the exp2 function, such expressionsare
( � x:int.1) and ( � x:int. x * u(x)) . Meta stage(or run-time stage)consistsof ex-
pressionsthat are executable, i.e. they describe computational stepsto be performed
at run time. This is why the above-illustrated programming style is referred to as
staged computation.

We further postulate that there exists an inclusion from the object stage into
the meta stage. In other words, code generatedat the object stageas data, may be
coercedinto the meta stage,and executed. The opposite inclusion, however, doesnot
exist, and in particular, we prohibit that meta-level variables appear in object-level
expressions. For example, in the function exp2, the variable n is absent from the
expressions( � x:int.1) and ( � x:int. x * u(x)) . This restriction guarantees that
none of the computation steps dependent on n are postponed beyond the time at
which n is specializedto a particular integer value.

As it has been noticed in the previous work [PD01, WLP98, WLPD98], the
fragment of the constructive modal logic S4 containing the � operator (Chapter 1),
and the associated proof-term calculus (called �

�

-calculus) are naturally suited to
capture many aspectsof program staging. We recall the syntax of �

�

below, and the
relevant typing rules are presented in Figure 3.1.

Types A; B ::= P j A ! B j � A
Expressions e ::= x j u j �x :A: e j e1 e2 j

box e j let box u = e1 in e2

Ordinary contexts � ::= � j � ; x:A
Modal contexts � ::= � j � ; u::A

The main observation relating stagedcomputation to modal logic is already illus-
trated by our analysis of the exp2 function. Sincegeneratedcode does not depend
on meta-level variables, the object expressionsare either closed, or are computed by
substitution out of other object (and therefore closed)expressions.This operational
property of the object stageexactly matchesthe notion of categorical proof in modal
logic. As de�ned in Chapter 1.1.3, a categorical proof is closedwith respect to value
variables, but it may depend on modal variables (which stand for other categorical
proofs).

Following the analogy betweenobject expressionsand categorical proofs, we can
use the type � A to classify generated code of type A. Under this computational
interpretation of the �

�

calculus, the introduction form box e serves to coerce the
closed expressione into the object stage. The elimination form let box u = e1 in e2
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�; (� ; x:A) ` x : A (� ; u::A); � ` u : A

�; (� ; x:A) ` e : B

�; � ` �x :A: e : A ! B

�; � ` e1 : A ! B �; � ` e2 : A

�; � ` e1 e2 : B

�; � ` e : A

�; � ` box e : � A

�; � ` e1 : � A (� ; u::A); � ` e2 : B

�; � ` let box u = e1 in e2 : B

Figure 3.1: Typing rules for �
�

.

allows code to be generatedby meansof substitution: a code generatedby e1 can
be substituted for u in e2. This way, the �

�

-calculus makes the distinction between
stagesexplicit. The programmer can specify the intended staging using the term
constructors box and let box. Then the type system can check whether the writ-
ten program conforms to the staging speci�cations, turning staging errors into type
errors.

Of course, in order to use the �
�

-calculus for programming, we need to extend
it with some primitiv e types and recursion. In our examples we will assumethe
standard ML-lik e syntax and semantics for natural numbers, integers,booleansand
conditionals, recursive functions and pairs. Addition of these features to the �

�

-
calculus doesnot present any theoretical problems.

Figure 3.2 presents the small-step operational semantics of �
�

. We have decided
on a call-by-value strategy which, in addition, prohibits reductions under box. Thus,
if an expressionis boxed, its evaluation will be suspended. Values of modal types
are thus boxed closed expressionsencoding object-level programs.

We can now usethe type system of �
�

to make explicit the staging of exp2.

fun exp3 (n : int) : � (int->int) =
if n = 0 then box ( � x:int. 1)
else

let box u = exp3 (n - 1)
in

box ( � x:int. x * u(x))
end

Application of exp3 at argument 2 generatesa function for squaring.

- sqbox = exp3 2;
val sqbox = box ( � x:int. x *

( � y:int. y *
( � z:int. 1) y) x) : � (int -> int)

In the elimination form let box u = e1 in e2, the bound variable u belongsto the
context � of modal variables, but it can be used in e2 in both modal positions (i.e.,
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under a box) and meta positions. Thus the calculus is not only capableof composing
generatedprograms, but can also explicitly force their evaluation. For example we
can usethe generatedfunction sqbox in the following way.

- sq = (let box u = sqbox in u);
val sq = [fn] : int -> int
- sq 3;
val it = 9 : int

This example demonstrates how closed object expressionscan be reected, i.e.
coercedfrom the object level into the meta level. The opposite coercion, referred to
as rei�c ation, is not possible. This suggeststhat �

�

could be given even a more spe-
ci�c model in which reection naturally exists, but rei�cation does not. A possible
interpretation exhibiting this behavior considersobject-level expressionsas gener-
ated source code, i.e. actual closedsyntactic expressions,or abstract syntax trees of
closed �

�

-terms. In contrast, the meta-level expressionsare compiled executables.
The operation of reection corresponds to the natural processof compiling a source
program into an executable. The opposite operation of reconstructing sourcecode
out of its compiled equivalent is not usually feasible,so this interpretation doesnot
support rei�cation, just as required. Furthermore, the typing of �

�

ensuresthat
only well-typed syntactic expressionscan be represented in the calculus. This prop-
erty makesthe �

�

approach to syntax representation reminiscent of the well-known
methodology of higher-order abstract syntax [PE88].

The above intuitiv e \syntactic" model makesthe �
�

-calculusvery appropriate not
only for stagedcomputation, but also for metaprogramming. In metaprogramming,
expressionsare again strati�ed into stages, but this time the syntactic structure
of object expressionsmay be inspected and analyzed. In metaprogramming, object
expressionsrepresent sourcecode which can be comparedfor syntactic equality and
even pattern-matched against.

In the rest of this chapter, we will frequently rely on the described syntactic
nature of object expressionsin order to supply the intuition behind formal devel-
opments. However, whether a practical implementation actually needsto represent
object expressionas syntax, will depend on the application. In stagedcomputation,
for example, we are usually not interested in inspecting the structure of generated
programs, so the generatedprograms may be represented in someintermediate, or
even fully compiled form. At this point, we do not commit to any particular imple-
mentation strategy, but instead focus on the logical properties of the type system.

3.2 The � � -calculus

3.2.1 Motiv ation

If we adhere to the interpretation of categorical proofs as generated source code,
then the �

�

staging of exp3 is rather unsatisfactory. The problem is that the object
programs generatedby exp3 (e.g., sqbox), contain unnecessaryvariable-for-variable
redexes,and henceare not optimal. From the standpoint of syntax manipulation,
�

�

is too restrictiv e. The reasonfor the de�ciency lies in the requirement that the
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e1 7�! e0
1

e1 e2 7�! e0
1 e2

e2 7�! e0
2

v1 e2 7�! v1 e0
2 (�x :A: e) v 7�! [v=x]e

e1 7�! e0
1

let box u = e1 in e2 7�! let box u = e0
1 in e2

let box u = box e1 in e2 7�! [e1=u]e2

Figure 3.2: Operational semantics of �
�

.

syntactic object expressionsthat �
�

can represent and manipulate must always be
closed.

Furthermore, if weonly havea typeof closedsyntactic expressionsat our disposal,
we can't ever type the body of an object-level � -abstraction in isolation from the
� -binder itself { subterms of a closed term are not necessarilyclosed themselves.
Thus, it would be impossible to ever inspect, destruct or recurseover object-level
expressionswith binding structure.

What we need in order to avoid the problem of superuous redexes,but also in
order to support code inspection, is the abilit y to represent open expressionsand
specify substitution with capture. This needhas long beenrecognizedin the staged
computation and metaprogrammingcommunit y, and Section3.6discussesseveral dif-
ferent systemsand their solution of the problem. The technique predominantly used
in thesesolutions goesback to Davies' �  -calculus[Dav96]. The type constructor 
of this calculuscorresponds to discrete temporal logic modalit y for propositions true
at the subsequent time moment. In a metaprogramming interpretation, the modal
type  A stands for open object expressionof type A, where the free variables of
the object expressionare modeled by � -bound variables from the subsequent time
moment.

In this chapter, wepresent a di�eren t approach to the problem of spuriousredexes.
The approach is based on names and the fragment of the modal � -calculus from
Section 2.2 that contains the � operator. We call this fragment �

�

-calculus. The
idea is to employ names to stand for the free variables of object expressions,and
correspondingly, to employ explicit name substitutions to facilitate capture of free
variables. Intuitiv ely, the expressionsof the �

�

-calculus are obtained by adjoining
namesto the expressionsof the �

�

-calculus. The situation is somewhatanalogousto
that in polynomial algebra,whereone is given a basealgebraicstructure A and a set
of indeterminates (or generators)f X 1; : : : ; X n g, which are then freely adjoined to A
into a structure of polynomials A[X 1; : : : ; X n ]. In our setup, the indeterminates are
the names,and we build \p olynomials" over the basestructure of �

�

expressions.
When an object expressione contains a name X , we will say that e depends on

X , or that X is in the support of e. For example,assumingfor a moment that X and
Y are namesof type int , and that the usual operations of addition, multiplication
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and exponentiation of integersare primitiv e in �
�

, the term

e1 = X 3 + 3X 2Y + 3X Y 2 + Y 3

would have type int and support set f X ; Y g. The namesX and Y appear in e1 at
the meta level, and indeed, notice that in order to evaluate e1 to an integer, we �rst
needto provide de�nitions for X and Y . On the other hand, if we box the term e1,
we obtain

e2 = box (X 3 + 3X 2Y + 3X Y 2 + Y 3)

which has the type � X ;Y int , but its support is the empty set, as the namesX and
Y only appear at the object level (i.e., under a box). Thus, the support of a term
(in this casee1) becomespart of the type once the term itself is boxed. This way,
the typesmaintain the information about the support of subterms at all stages.For
example,assumingthat our languagehas pairs, the term

e3 = hX 2; box Y 2i

would have the type int � � Y int with support f X g.
As illustrated by the above examples, if an object expressiondepends on some

names,then it is only partially speci�ed. Such partially speci�ed expressionscannot
be evaluated unlessevery name in the expression'ssupport is provided a de�nition.
We useexplicit substitutions for this purpose. Explicit substitutions remove substi-
tuted names from the support, eventually turning non-executableexpressionsinto
executableones.

Example 13 Assuming that X and Y are namesof type int , the �
�

segment below
createsa \p olynomial" expressionover X and Y and then evaluates it at the point
(X = 1; Y = 2).

- let box u = box (X3 + 3X2Y+ 3XY2 + Y3)
in

hX -> 1, Y -> 2i u
end

val it = 27 : int

Notice how the explicit substitution hX ! 1; Y ! 2i captures the namesX and Y
in the expressionX 3 + 3X 2Y + 3X Y 2 + Y 3, when this expressionis substituted for
u. �

In addition to solving the problem of spurious redexesin staged computation,
the �

�

-calculus has an application in metaprogramming as well. In Section 3.4, we
will extend the �

�

-calculus with primitiv es for intensional code analysis i.e. pattern
matching over syntactic structure of object expressions. It is interesting that in-
tensional code analysis crucially dependson the fact that free variables of syntactic
expressionsare represented by names,rather than by � -bound variables (as it is the
casein �  and other modal type systemsbasedon it). Indeed, imagine a function
f that recursesover two expressionswith binding structure to compare them for
syntactic equality modulo � -conversion. Whenever a � -abstraction is encountered in
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both expressions,f needsto introducea new symbol to stand for the bound variable
of that � -abstraction, and then recursively proceed to compare the bodies of the
abstractions. But the construct that generatesthis new symbol should not be a type
introduction form. If it were,then the exact number, typesand order of symbols that
f may generatewill be apparent from and �xed by the type of f . As a consequence,
f could not be recursively invoked over the bodies of the abstractions, becauseof a
type mismatch.

3.2.2 Syntax and typ e checking

Here we recall the constructs of the � -calculus that are relevant for the �
�

-fragment,
and discussthese constructs in terms of their computational application to staging
and metaprogramming. For the logical and type theoretic consideration, we refer
the reader to Chapter 2 and Section 2.2.3. The table below recalls the syntax of the
�

�

-calculus.

Names X ; Y 2 N
Supports C; D ::= � j C; X
Types A; B ::= P j A ! B j A 9 B j � C A
Explicit substitutions � ::= � j X ! e;�
Expressions e ::= X j x j h� i u j �x :A: e j e1 e2

j box e j let box u = e1 in e2

j � X :A: e j choose e
Ordinary contexts � ::= � j � ; x:A
Modal contexts � ::= � j � ; u::A[C]
Name context � ::= � j � ; X :A

The type system of �
�

consistsof two judgments of the modal � -calculus:

�; �; � ` e : A [C]

and
�; �; � ` h� i : [C] ) [D ]

The �rst judgment types expressions. Given an expressione it checks whether e
has type A, and depends on the support C. The secondjudgment types explicit
substitutions. Given a substitution � and two support setsC and D, the substitution
has the type [C] ) [D ] if it mapsexpressionsof support C to expressionsof support
D .

Both judgments work with three contexts: �, � and �. The name context �
ascribes types to names. Becauseeach type may contain names,name contexts are
dependent. We assumethat a name declared in � may only be used to the right
of its declaration. The context of modal variables � ascribes types and supports
to modal variables. Modal variables are bound to object expressionsby the term
constructor let box u = e1 in e2. Context of value variables � ascribes types to
ordinary variables (also called value variables). Ordinary variables are intro duced
into � by � -abstraction, and are bound to expressionsfrom the meta stage. As
already described in the previous section, the meta-stageexpressionscorrespond to
compiledexecutables.The typing rulesof the �

�

-calculusarepresented in Figure 3.3,
and we discussthem next.
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Explicit substitutions

C � D

�; �; � ` h i : [C] ) [D ]

�; �; � ` e : A [D ] �; �; � ` h� i : [C n f X g] ) [D ] X :A 2 �

�; �; � ` hX ! e; � i : [C] ) [D ]

Hyp othesis

X :A 2 �

�; �; � ` X : A [X ; C] �; �; (� ; x:A) ` x : A [C]

�; (� ; u::A[C]); � ` h� i : [C] ) [D ]

�; (� ; u::A[C]); � ` h� i u : A [D ]

� -calculus

�; �; (� ; x:A) ` e : B [C]

�; �; � ` �x :A: e : A ! B [C]

�; �; � ` e1 : A ! B [C] �; �; � ` e2 : A [C]

�; �; � ` e1 e2 : B [C]

Mo dalit y

�; �; � ` e : A [D ]

�; �; � ` box e :
�

D A [C]

�; �; � ` e1 :
�

D A [C] �; (� ; u::A[D ]); � ` e2 : B [C]

�; �; � ` let box u = e1 in e2 : B [C]

Names

(� ; X :A); �; � ` e : B [C]

�; �; � ` � X :A: e : A � B [C]

�; �; � ` e : A � B [C]

�; �; � ` cho ose e : B [C]

Figure 3.3: Typing rules of the �
�

-calculus.

A pervasive characteristic of the type system is support weakening. If the names
that an expressiondepends on are contained in the support set C, then they are
certainly contained in any support D � C. We recall here the formal statement
of the support weakening principle for the two judgments of the �

�

-calculus. The
proof of the support weakening principle, as well as the proofs of the other formal
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statements that we present here, may be found in Section 2.2.3.

Principle (Supp ort weakening)
Support weakening is covariant on the right-hand side and contravariant on the

left-hand sideof the judgments. More formally, let C � D � dom(�) be well-formed
supports. Then the following holds:

1. if �; �; � ` e : A [C], then �; �; � ` e : A [D ]

2. if �; �; � ` h� i : [C1] ) [C], then �; �; � ` h� i : [C1] ) [D ]

3. if �; (� ; u::A[D ]); � ` e : B [C1], then �; (� ; u::A[C]); � ` e : B [C1]

4. if �; �; � ` h� i : [D ] ) [C1], then �; �; � ` h� i : [C] ) [C1]

Explicit substitutions. As explained in Chapter 2, applying the empty substi-
tution over a given term, does not change the term itself { the empty substitution
corresponds to the identit y function on expressions. Thus, when an empty substi-
tution is applied to a term containing namesfrom C, the resulting term obviously
contains the samenames. The typing rule for empty substitutions formalizes this
property. We also allow weakening to an arbitrary superset D , in order to ensure
that the support weakening principle holds. We implicitly require that both the sets
are well-formed; that is, they both contain only namesalready declaredin the name
context �. The rule for non-empty substitutions recursively checks if each of the
component expressionsis well-typed.

The result of applying the substitution � over an expressione is denotedasf � ge.
We denoteby � 1 � � 2 the composition of the substitutions � 1 and � 2. Both of these
operations are formally de�ned in Section 2.2.3.

When an explicit substitution � : [C] ) [D ] is applied over an expression
e : A [C], the result f � ge will have support D . Consider for example the explicit
substitution � = (X ! 10; Y ! 20), with domain dom(�) = f X ; Y g. This sub-
stitution can be given (among others) the typings: [ ] ) [ ], [X ] ) [ ], as well as
[X ; Y; Z ] ) [Z ]. And indeed, � does map a term of support [ ] into another term
with support [ ], a term of support [X ] into a term with support [ ], and a term with
support [X ; Y; Z ] into a term with support [Z ]. These typing properties of explicit
substitutions are summarizedby the following explicit substitution principle.

Principle (Explicit substitution)
Let �; �; � ` h� i : [C] ) [D ]. Then the following holds:

1. if �; �; � ` e : A [C] then �; �; � ` f � ge : A [D ]

2. if �; �; � ` h� 0i : [C1] ) [C], then �; �; � ` h� � � 0i : [C1] ) [D ]

Hyp othesis rules. Becausethere are three kinds of variable contexts, we have three
hypothesisrules. First is the rule for names. A name X can be usedprovided it has
been declared in � and is accounted for in the supplied support set. The implicit
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assumption is that the support set C is well-formed; that is, C � dom(�). The
rule for value variables is straightforward. The typing x:A can be inferred, if x:A
is declared in �. The actual support of such a term can be any support set C as
long as it is well-formed, which is implicitly assumed. Modal variables occur in a
term always pre�xed with an explicit substitution. The rule for modal variables has
to check if the modal variable is declared in the context � and if its corresponding
substitution has the appropriate type.

� -calculus fragmen t. The rule for � -abstraction is quite standard. Its implicit
assumption is that the argument type A is well-formed in name context � before
it is introduced into the variable context �. The application rule checks both the
function and the application argument against the same support set. Associated
with the � -calculus fragment is the value substitution principle.

Principle (V alue substitution)
Let �; �; � ` e1 : A [C]. Then the following holds:

1. if �; �; (� ; x:A) ` e2 : B [C], then �; �; � ` [e1=x]e2 : B [C]

2. if �; �; (� ; x:A) ` h� i : [C1] ) [C], then �; �; � ` h[e1=x]� i : [C1] ) [C]

Mo dal fragmen t. Just asin �
�

-calculus,the meaningof the rule for � -introduction
is to ensure the staging separation between expressions. In the term box e, the
expressione belongsto the object stage, and may be treated as a syntactic entit y.
Correspondingly, the typing rule for box must typecheck e against an empty context
of value variables�. Indeed,value variablesare bound to meta-level expressions,and
meta-level expressionscorrespond to compiled executables.If e is to be syntactic, it
must not depend on compiled code.

The � -elimination rule is also a straightforward extension of the corresponding
�

�

rule. The only di�erence is that the bound modal variable u from the context �
now has to be stored with its support annotation.

Associated with modal variables and with the modal fragment of the calculus is
the operation of modal substitution [[e=u]]e2, where u is a modal variable, and e is a
closed syntactic expression. The operation substitutes e for u in e2, but so that e
is �rst transformed by the explicit substitution associated with each occurrenceof
u in e2. For example, the following are the two most characteristic clausesin the
de�nition of modal substitution.

[[e=u]]h� i u = f [[e=u]]� ge

[[e=u]]h� i v = h[[e=u]]� i v u 6= v

Note that the �rst clauseof the de�nition actually applies to explicit substitution
� to e. The typing properties of this operation are formally stated in the modal
substitution principle below. Again, the complete de�nition of modal substitution
and the proof of the modal substitution principle can be found in Section 2.2.3.
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Principle (Mo dal substitution)
Let �; � ` e : A [C]. Then the following holds:

1. if (� ; u::A[C]); � ` e2 : B [D ], then �; � ` [[e1=u]]e2 : B [D ]

2. if (� ; u::A[C]); � ` h� i : [D 0] ) [D ], then �; � ` h[[e1=u]]� i : [D 0] ) [D ]

Names fragmen t. The introduction form for names is � X :A: e with its corre-
sponding type A 9 B . It introducesa name X :A into the computation determined
by e. It is assumedthat the type A is well-formed relative to the context �. The
term constructor choose is the elimination form for A 9 B . It picks a fresh name
and substitutes it for the bound name in the � -abstraction. In other words, the
operational semantics of the redex choose (� X :A: e) (formalized in Section 3.2.3)
proceedswith the evaluation of e in a run-time context in which a fresh name has
beenpicked for X . It is justi�ed to do so becauseX is bound by � and, by conven-
tion, can be renamed with a fresh name. In the � -introduction rule, it is assumed
that the name X is completely new { it does not appear in the contexts of the
judgment, and in particular, it doesnot appear in the type B and support C. This
typing discipline e�ectiv ely limits X to appear only in subterms of e which are not
encountered during evaluation (i.e. dead-code subterms), or in subterms from which
it will eventually be removed by someexplicit substitution. For example, consider
the following expression.

� X:int. � Y:int.
box (let box u = box X

box v = box Y
in

hX -> 1i u
end)

This expressioncontains a substituted occurrenceof X and a dead-code occurrence
of Y , and is well-typed (of type int 9 int 9 � int ). Another way to paraphrasethis
typing discipline is the following: in order to prevent the name bound in � X :A: e
from escapingthe scope of its de�nition, when leaving this scope we have to turn the
\p olynomials" dependingon X into functions. An illustration of this technique is the
program presented in Example 14. The described aspect of fresh name generation is
important becauseit ensuresthe preservation and progressproperties of �

�

(Theo-
rems 16 and 17). Indeed, if during evaluation, X is encountered outside its de�ning
� , the evaluation will get stuck, becausethere are no expressionto substitute for X .

We will frequently abbreviate the � -redex

choose (� X :A: e)

simply as
let name X :A in e:

In fact, it will becomeapparent from the future examples in this document, that
the only way we actually use choose and � is in some� -redex choose (� X :A: e),
and never in isolation from each other. Of course,all of these usesmay have been
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abbreviated into a let name construct, which raises the following question: why
not de�ne let name as primitiv e and omit choose and � ? The answer lies in the
logical considerationsfrom Section2.1.6. If let name is taken asprimitiv e, then the
judgment �; �; � ` A tr ue[C] obtained by erasing the proof term e from �; �; � `
e : A [C] would not be directed by the syntactic structure of the propositions A.

Example 14 To illustrate the languageconstructors, we present a version of the
stagedexponentiation function that we can write in �

�

-calculus. In this and in other
exampleswe resort to concrete syntax in ML fashion, and assumethe presenceof
the basetype of integers, recursive functions and let-de�nitions.

fun exp (n : int) : � (int -> int) =
let nameX : int

fun exp' (m : int) : � X int =
if m = 0 then box 1
else

let box u = exp' (m - 1)
in

box (X * u)
end

box v = exp' (n)
in

box ( � x:int. hX -> xi v)
end

- sq = exp 2;
val sq = box ( � x:int. x * (x * 1)) : � (int->int)

The function exp takes an integer n and generatesa fresh name X of integer type.
Then it calls the helper function exp' to build the expressionv = X � � � � � X| {z }

n

� 1

of type int and support f X g. Finally, it turns the expressionv into a function by
explicitly substituting the name X in v with a newly introduced bound variable x,
incurring capture. Notice that the generatedresidualcodefor sq doesnot contain any
unnecessaryredexes,in contrast to the �

�

version of the program from Section 3.1.
�

Example 15 This examplepresents the function conv for computing the convolution
of two integer lists. Convolution of lists x = [x1; : : : ; xn ] and y = [y1; : : : ; yn ], is the
list [xny1; : : : ; x1yn ]. We ignore the possibility that the two lists can be of di�eren t
sizes.

The function conv, which we present in Figure 3.4, is stagedin the �rst argument,
so that given the list x, conv outputs a sourcecode specialized for computing the
convolution with x. In this example, we assumethe existenceof a function lift :
int ! � int , mapping each integer n into box n. This is a reasonableassumption,
as the basetype of integersis always consideredobservable; in any realistic situation,
it would be possibleto coercean integer value into its own syntactic representation.
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(*
* val conv : intlist ->
*

�

(intlist -> intlist)
*)

fun conv (xs : intlist) =
let nameTL:intlist
(*
* conv' : intlist ->

�

TLintlist
* ->

�

(intlist -> intlist)
*)

fun conv' (nil) =
� z:

�

TLintlist.
let box u = z
in

box ( � y:intlist.
<TL -> y>u)

end

| conv' (x::xs') =
let val f = conv' (xs')

box x' = lift x
in

� z:
�

TLintlist.
let box u = z
in

f (box (
let val (hd::tl) = TL
in

x'*hd :: <TL -> tl>u
end))

end
end

in
conv' xs (box nil)

end

Figure 3.4: Stagedconvolution.

The helper function conv' recursesover the list x to build the output code; it keeps
the un�nished part of the output abstracted using the variable z: � TLintlist .

Specializing conv to the list [3,2] , results in the following program.

- conv [3,2];
val it = box ( � y:intlist.

let val (hd::tl) = y
in

2*hd :: let val (hd::tl) = tl
in

3*hd :: nil
end

end) : � (intlist -> intlist)

It remains a challengeto write a �
�

program that could generateeven more concise
specializedcode, like for examplethe following fragment for convolution with [3,2] :

box ( � y:intlist. let val (y1::y2::tl) = y in [2*y1, 3*y2])

�

3.2.3 Op erational semantics

Wede�ne the small-stepcall-by-valueoperational semantics of the �
�

-calculusthrough
the judgment

� ; e 7�! � 0; e0

which relates an expressione with its one-stepreduct e0. The expressionse and e0

do not contain any free variables, but they may contain free names. However, we
require that e and e0 must have empty support. In other words, we only consider for
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evaluation those terms whosenames appear exclusively in boxed subterms, or are
otherwise captured by someexplicit substitution. Becausefree names are allowed
under these conditions, the operational semantics has to keep track of them in the
run-time namecontexts � and � 0. The rules of the judgment are given in Figure 3.5,
and the valuesof the languageare generatedby the grammar below.

Values v ::= c j �x :A: e j box e j � X :A: e

The rules agreewith the � -reductions from Section 2.2.3, and are standard except
for two important observations. First of all, the � -redex for the type constructor
9 extends the run-time context with a fresh name beforeproceeding. This way, we
keeptrack of namesthat have beengeneratedin the courseof evaluation, so that we
can selecta fresh name when it is needed.

Even more important is to observe that names in �
�

are not values. This is a
direct consequenceof the fact that namesin �

�

can be ascribed an arbitrary type.
If a name X : A were a value, then introducing X into the computation extends
the type A with a new value. Such a dynamic type extension e�ectiv ely renders
the already de�ned functions of domain A incomplete. Suddenly, if a function f
has domain A, then it is forced to check at run time if its argument is a name-free
value (in which casef can be applied), or if its argument is an expressioncontaining
a name X . This is where the modal constructor � comesin | it classi�es object
expressionswith names,so that the above checks can be done statically during type
checking. Thus, while X :A is not a value in �

�

, the expression(box X ) : � X A is.
In that sense,the requirement that namesare not values is not really a restriction
in expressiveness.

The evaluation relation is sound with respect to typing, and it never gets stuck,
as the following theoremsestablish.

Theorem 16 (T yp e preserv ation)
If �; �; � ` e : A [ ] and � ; e 7�! � 0; e0, then � 0 extends � , and � 0; �; � ` e0 : A [ ].

Pro of: By a straightforward induction on the structure of e using the substitution
principles. �

Theorem 17 (Progress)
If �; �; � ` e : A [ ], then either

1. e is a value, or

2. there exist a term e0 and a context � 0, such that � ; e 7�! � 0; e0.

Pro of: By a straightforward induction on the structure of e. �

The progresstheorem does not indicate that the reduct e0 and the context � 0

are unique for each given e and �. In fact, they are not, as fresh names may be
introduced during the courseof the computation, and two di�eren t evaluations of
one and the same term may choose the fresh names di�eren tly. The determinacy
theorem below shows that the choice of fresh names is actually the only di�erence
that may appear betweentwo reductions of one and the sameterm. As customary,
we denote by 7�! n the n-step reduction relation.
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� ; e1 7�! � 0; e0
1

� ; (e1 e2) 7�! � 0; (e0
1 e2)

� ; e2 7�! � 0; e0
2

� ; (v1 e2) 7�! � 0; (v1 e0
2)

� ; (�x :A: e) v 7�! � ; [v=x]e

� ; e1 7�! � 0; e0
1

� ; (let box u = e1 in e2) 7�! � 0; (let box u = e0
1 in e2)

� ; (let box u = box e1 in e2) 7�! � ; [[e1=u]]e2

� ; e 7�! � 0; e0

� ; choose e 7�! � 0; choose e0

X 62dom(�)

� ; choose (� X :A: e) 7�! (� ; X :A); e

Figure 3.5: Structured operational semantics of �
�

-calculus.

Theorem 18 (Determinacy)
If � ; e 7�! n � 1; e1, and � ; e 7�! n � 2; e2, then there exists a permutation of names
� : N ! N , �xing dom(�) , such that � 2 = � (� 1) and e2 = � (e1).

Pro of: By induction on the length of the reductions, using the property that if
� ; e 7�! n � 0; e0 and � is a permutation on names,then � (�) ; � (e) 7�! n � (� 0); � (e0).
The only interesting caseis when n = 1 and e = choose (� X :A: e0). In that case,it
must be e1 = [X 1=X ]e0, e2 = [X 2=X ]e0, and � 1 = (� ; X 1:A), � 2 = (� ; X 2:A), where
X 1; X 2 2 N are fresh. Obviously, the involution � = (X 1 X 2) which swaps thesetwo
nameshas the required properties. �

3.3 Supp ort polymorphism

It is frequently necessaryto write programs that are polymorphic in the support
of their arguments, becausethey manipulate syntactic expressionsof unknown sup-
port. A typical example is a function that recursesover an expressionwith binding
structure. When this function encounters a � -abstraction, it has to place a fresh
name instead of the bound variable, and recursively continue scanning the body of
the � -abstraction, which is itself a syntactic expressionbut depending on this newly
introducedname1. For such uses,we extend the �

�

-calculuswith a notion of explicit
support polymorphism in the style of Girard and Reynolds [Gir86, Rey83].

1The calculus described in this document cannot support this scenario in full generality yet
becauseit lacks type polymorphism and type-polymorphic recursion, but support polymorphism is
a necessarystep in that direction.
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To add support polymorphism to the simple �
�

-calculus, we create a new syn-
tactic category of support variables, which stand for unknown support sets. Then
the rest of the syntax of �

�

is extended to take support variables into account. We
summarize the changesin the following table.

Support variables p;q 2 S
Supports C; D ::= : : : j C; p
Types A ::= : : : j 8p: A
Expressions e ::= : : : j � p: e j e [C]
Name contexts � ::= : : : j � ; p
Values v ::= : : : j � p: e

Before a support variable can be used, it has to be declared in the name context
�. For the new de�nition of �, we retain the samewell-formednessconditions as
before. In particular, a support variable p 2 � may only be used to the right of its
declaration. It is important that supports themselvesare allowed to contain support
variables, to expressthe situation in which only a portion of a support set is known.
Consequently, the function fn(� ) is updated to return the set of namesand support
variables appearing in its argument. The family of types is extended with the type
8p: A expressinguniversal support quanti�cation. Its introduction form is � p: e,
which binds a support variable p in the expressione. This �-abstraction will also be
a value in the extendedoperational semantics. The corresponding elimination form
is the application e [C] whose meaning is to instantiate the unknown support set
abstracted in e with the provided support set C.

The typing judgment has to be instrumented with new rules for typing support-
polymorphic abstraction and application.

(� ; p); �; � ` e : A [C]

�; �; � ` � p: e : 8p: A [C]

�; �; � ` e : 8p: A [C]

�; �; � ` e [D ] : ([D=p]A) [C]

The 8-introduction rule requires that the bound variable p is a fresh support vari-
able, as customary in binding forms. In particular, p 62 �, and consequently,
p 62� ; � ; fn(A[C]). The rule for 8-elimination substitutes the argument support
set D into the type A. It assumesthat D is well-formed relative to the context �;
that is, D � dom(�). The operational semantics for the new constructs is also not
surprising.

� ; e 7�! � 0; e0

� ; (e [C]) 7�! � 0; (e0 [C]) � ; (� p: e) [C] 7�! � ; [C=p]e
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The extended languagesatis�es the following substitution principle.

Lemma 19 (Supp ort substitution principle)
Let � = (� 1; p; � 2) and D � dom(� 1) and denote by (� )0 the operation of substi-
tuting D for p. Then the following holds.

1. if �; �; � ` e : A [C], then (� 1; � 0
2); � 0; � 0 ` e0 : A0[C0]

2. if �; �; � ` h� i : [C1] ) [C2], then (� 1; � 0
2); � 0; � 0 ` h� 0i : [C0

1] ) [C0
2]

Pro of: By simultaneous induction on the two derivations. We present one case
from the proof of the secondstatement.

case � = (X ! e;� 1), where X :A 2 �.

1. by derivation, �; �; � ` e : A [C2] and �; �; � ` � 1 : [C1 n f X g] ) [C2]

2. by �rst induction hypothesis,(� 1; � 0
2); � 0; � 0 ` e0 : A0[C0

2]

3. by secondinduction hypothesis,(� 1; � 0
2); � 0; � 0 ` � 0

1 : [(C1nf X g)0] ) [C0
2]

4. because(C0
1 n f X g) � (C1 n f X g)0, by support weakening (Lemma 9.5),

(� 1; � 0
2); � 0; � 0 ` � 0

1 : [C0
1 n f X g] ) [C0

2]

5. result follows from (2) and (4) by the typing rule for non-empty substitu-
tions

�

The structural properties presented in Section 2.2.3 readily extend to the new
language with support polymorphism. The same is true of the type preservation
(Theorem 16) and progress(Theorem 17) whoseadditional casesinvolving support
abstraction and application are handled using the above Lemma 19.

Example 16 In a support-polymorphic �
�

-calculus we can slightly generalizethe
program from Example 14by pulling out the helper function exp' and parameterizing
it over the exponentiating expression. In the following program, we use [p] in the
function de�nition as a concretesyntax for �-abstraction of a support variable p.

fun exp' [p] (e : � pint) (n : int) : � pint =
if n = 0 then box 1
else

let box u = exp' [p] e (n - 1)
box w = e

in
box (u * w)

end

fun exp (n : int) : � (int -> int) =
let nameX : int

box w = exp' [X] (box X) n
in

box ( � x:int. hX -> xi w)
end
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- sq = exp 2;
val sq = box ( � x:int. x * (x * 1)) : � (int->int)

�

Example 17 As an example of a more realistic program we present the regular
expressionmatcher from [DP01] and [Dav96]. The exampleassumesthe declaration
of the datatype of regular expressions:

datatype regexp =
Empty

| Plus of regexp * regexp
| Times of regexp * regexp
| Star of regexp
| Const of char

We also assumea primitiv e predicate null : char list -> bool for testing if the
input list of characters is empty. Figure 3.6 presents an ordinary ML implementation
of the matcher, and �

�

and �  versionscan be found in [DP01, Dav96]. The helper
function acc1 in Figure 3.6 takes a regular expressione, a continuation function k,
and an input string s (represented as a list of characters). The function attempts
to match a pre�x of s to the regular expressione. If the matching succeeds,the
remainder of s is passedto the continuation k to determine if s is acceptedor not.

We now want to use the �
�

-calculus to stage the program from Figure 3.6 so
that it can be specialized with respect to a given regular expression. For that pur-
pose, it is useful to view the helper function acc1 from Figure 3.6 as a code gen-
erator. Indeed, acc1 may be seenas follows: it �rst generatescode for matching
a string against a regular expressione, and then appends k to that code. This
is the main idea behind the function acc, and the �

�

program in Figure 3.7. In
this program, we use the name S for the input string to be matched by the code
that acc generates. The continuation k is not a function anymore, but code to be
attached at the end of the generated result. We want code k to contain further
namesstanding for yet unbound variables, and hencethe support-p olymorphic typ-
ing acc : regexp -> 8p.( � S;pbool -> � S;pbool) . The support polymorphism
pays o� when generating code for alternation Plus( e1, e2) and iteration Star( e) .
For example,observe in the alternation casethat the generatedcode doesnot dupli-
cate the \continuation" code of k. Rather, k is emitted as a separatefunction which
is a joining point for the computation branches corresponding to e1 and e2. Simi-
larly, in the caseof iteration, we set up a loop in the output code that would attempt
zero or more matchings against e. The support polymorphism of acc enablesus to
produce code in chunks without knowing the exact identit y of the above-mentioned
joining or looping points. Once all the parts of the output code are generated,we
just stitch them together by meansof explicit substitutions.

At this point, it may beillustrativ e to trace the executionof the program on a con-
crete input. Figure 3.8 presents the function calls and the intermediate results that
occur when the �

�

matcher is applied to the regular expressionStar(Empty) . The
resulting specializedprogram does not contain variable-for-variable redexes,thanks
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(*
* val acc1 : regexp -> (char list -> bool) ->
* char list -> bool
*)

fun acc1 (Empty) k s = k s

| acc1 (Plus (e1, e2)) k s =
(acc1 e1 k s) orelse (acc1 e2 k s)

| acc1 (Times (e1, e2)) k s =
(acc1 e1 (acc1 e2 k)) s

| acc1 (Star e) k s =
(k s) orelse

acc1 e ( � s' =>
if s = s' then false
else acc1 (Star e) k s')

| acc1 (Const c) k s =
case s
of nil => false
| (x::l) =>

((x = c) andalso (k s))

(*
* val accept1 : regexp -> char list -> bool
*)

fun accept1 e s = acc1 e null s

Figure 3.6: Unstaged regular expressionmatcher.

to the featuresand expressivenessof �
�

, but it unnecessarilytests if t = t . Remov-
ing these extraneous tests requires somefurther examination and preprocessingof
e, but the thorough description of such a processis beyond our scope. We refer to
[Har99] for an insightful analysis. �

3.4 In tensional program analysis

3.4.1 Syntax and typ e checking

As explained in Section 3.2, it is possible to consider the type � C A intuitiv ely as
the set of closedsyntactic expressionse, such that �; �; � ` e : A [C]. The calculus
presented so far contains constructs for creating elements of type � C A, but it is
impossibleto inspect the syntactic structure of theseelements, let alone take them
apart.

In this section, we extend the support-polymorphic �
�

-calculus with primitiv es
for pattern matching against syntactic expressionswith binding structure. Our ex-
tension is limited to only test if an expressionis a name, a � -abstraction or an ap-
plication, and limit all other casesfor future work. It is not clear, however, whether
the expressivenessof pattern matching can be extendedto handle a larger subsetof
the object stage of �

�

, without signi�cant additions to the meta stage. The prob-
lem is that any such addition would require extensionsto pattern match against the
additions, which would itself require new extensionsto the meta stage,and so on.
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(*
* val accept : regexp ->
*

�

(char list -> bool)
*)

fun accept (e : regexp) =
let nameS : char list

(*
* acc : regexp -> 8p.(

�

S;p bool
* ->

�

S;p bool)
*)

fun acc (Empty) [p] k = k

| acc (Plus (e1, e2)) [p] k =
let nameJOIN : char list

-> bool
box u1 =
acc e1 [JOIN] box(JOIN S)

box u2 =
acc e2 [JOIN] box(JOIN S)

box kk = k
in

box(let fun join t =
<S->t>kk

in
<JOIN->join>u1

orelse
<JOIN->join>u2

end)
end

| acc (Times (e1, e2)) [p] k =
acc e1 (acc e2 k)

| acc (Star e) [p] k =
let nameT : char list

nameLOOP: char list
-> bool

box u =
acc e [T, LOOP]

box(if T = S then false
else LOOPS)

box kk = k
in

box(let fun loop t =
<S->t>kk
orelse

<LOOP->loop,
T->t,S->t>u

in
loop S

end)
end

| acc (Const c) [p] k =
let box cc = lift c

box kk = k
in

box(case S
of (x::xs) =>

(x = cc) andalso
<S->xs>kk

| nil => false)
end

box code = acc e [] box (null S)
in

box ( � s:char list. <S->s>code)
end

Figure 3.7: Regular expressionmatcher stagedin the �
�

-calculus.
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� accept (Star (Empty))

� acc (Star(Empty)) [] (box (null S))

� acc Empty [T, LOOP](box (if T = S then false
else LOOPS))

� box (if T = S then false else LOOPS)

� box (let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop S

end)

� box ( � s. let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop s

end)

Figure 3.8: Example executiontrace for a regular expressionmatcher in �
�

. Function
calls are marked by � and the corresponding return results are marked by an aligned
� .

The syntactic extensionsthat we consider in this section are summarized in the
the table below.

Patter n var iables w 2 W
H igher-order patter ns � ::= (w x1 : : : xn ):A[C] j X j x j �x :A: � j � 1 � 2

Patter n assignments � ::= � j w ! e;�
Terms e ::= : : : j case e of box � ) e1 else e2

We use higher-order patterns [Mil90] to match against syntactic expressionswith
binding structure. In higher-order patterns, we distinguish betweenpattern variables
and bindablevariables. Pattern variablesare placeholdersintended to bind syntactic
subexpressionsin the processof matching and passthem to the subsequent compu-
tation. Bindable variables are introduced by patterns for binding structure �x :A: �
and are syntactic entities that can match only themselves. We usex, y and variants
to rangeover bindable variables,and w and variants to rangeover pattern variables.

The basicpattern (w x1 : : : xn ):A[C] declaresa pattern variable w which matches
a syntactic expressionof type A and support C subject to the condition that the
expression'sbindable variables are among x1; : : : ; xn . We require that the basic
patterns are linear, i.e. that the bindable variables x1, : : : , xn that appear in the
pattern are always distinct. Pattern X matches a name X from the global name
context. Pattern �x :A: � matches a � -abstraction of domain type A. It declaresa
new bound variable x which is local to the pattern, and demandsthat the body of the
matched expressionconforms to the pattern � . The bound variable x matchesonly
the pattern x. Pattern � 1 � 2 matchesa syntactic expressionrepresenting application.
Notice that the decisionto explicitly assigntypesto every pattern variable forcesthe
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D � C p 62�

�; (� ; x1:A1; : : : ; xn :An ) ` ((w x1 : : : xn ):A[D ]) : A [C]
=) w:8p: � pA1 ! � � � ! � pAn ! � p;D A

X :A 2 �

�; � ` X : A [X ; C] =) � �; (� ; x:A) ` x : A [C] =) �

�; (� ; x:A) ` � : B [C] =) � 1

�; � ` �x :A: � : A ! B [C] =) � 1

�; � ` � 1 : A ! B [C] =) � 1 �; � ` � 2 : A [C] =) � 2 fn(A) � dom(�)

�; � ` � 1 � 2 : B [C] =) (� 1; � 2)

Figure 3.9: Typing rules for patterns.

pattern for application to be monomorphic. In other words, the application pattern
cannot match a pair of expressionsrepresenting a function and its argument if the
domain type of the function is not known in advance. It is an important future work
to extend intensional analysis to allow patterns which are type-polymorphic in this
sense.No pattern variable occurs more than once in a pattern.

The typing judgment for patterns has the form

�; � ` � : A [C] =) � 1:

The judgment is hypothetical in the global context of names�, and the context of
locally declared bound variables �. It checks if the pattern � has type A and support
C and if the pattern variables from � conform to the typings given in the residual
context � 1. The typing rules are presented in Figure 3.9. Most of them are straight-
forward and we do not explain them, but the rule for pattern variables deserves
special attention. As it shows, in order for the pattern expression(w x 1 : : : xn ):A[C]
to be well-typed, the bound variables x1:A1, : : : , xn :An have to be declared in the
local context �. We alsoallow strengtheningof the support: if w is required to match
expressionsof support C, than any expressionwith support D � C is eligible for
matching. If the pattern expression(w x1 : : : xn ):A[C] is well-typed, then w will
match only expressionsof type A with the given bound variables and the names
declared in D . The residual context types w as a function over types � pA i with
polymorphic support. This hints at the operational semantics that will be assigned
to higher-order patterns. If an expressione with a local bound variable x:A matches
a pattern variable w, then w will residualize to a meta-level function whosemean-
ing is as follows: it takes a syntactic expressione0:A and returns back the syntactic
expression[e0=x]e.

In order to incorporate pattern matching into �
�

, the syntax is extended with
a new term constructor case e of box � ) e1 else e2. The intended operational
interpretation of case is to evaluate the argument e to obtain a boxed expression
box e0, then match e0 to the pattern � . If the matching is successful,it createsan
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environment with bindings for the pattern variables, and then evaluates e1 in this
environment. If the matching fails, the branch e2 is taken.

Example 18 Considerthe (rather restricted) function reduce that takesa syntactic
expressionof type A, and checks if it is a � -redex (�x :A: w1) (w2). If the answer is
yes, it applies the \call-b y-value" strategy: it reducesw2, substitutes the reduct for
x in w1 and then continue reducing thus obtained expression.If the answer is no, it
simply returns the argument.

fun reduce (e : � A) : � A =
case e of

box (( � x:A. ((w1 x):A[])) (w2:A[])) =>
(* w1 : 8q. � qA -> � qA *)
(* w2 : 8q. � qA *)

let val e2 = reduce (w2 [])
in

reduce (w1 [] e2)
end

else e

Ideally, one would want to reduce an arbitrary expression,not just simple top-level
redexes. We cannot currently write such a function mainly becauseour language
lacks type-polymorphic patterns and type-polymorphic recursion. In particular, if
the syntactic argument we are dealing with is an application of a general term of
type A ! A rather than a � -abstraction, we cannot recursively reduce that term
�rst unlessthe languageis equipped with type-polymorphic recursion.

Nevertheless,reduce is illustrativ e of the way higher-order patterns work. Pat-
terns transform an expressionwith a bound variable into a function on syntax that
substitutes the bound variable with the argument. That way we can employ meta-
level reduction to perform object-level substitution. This is reminiscent of the idea
of normalization-by-evaluation [BS91, BES98] and type-directed partial evaluation
[Dan96]. �

The typing rule for case is:

�; �; � ` e :
�

D A [C] �; � ` � : A [D ] =) � 1 �; �; (� ; � 1) ` e1 : B [C] �; �; � ` e2 : B [C]

�; �; � ` case e of box � ) e1 else e2 : B [C]

Observe that the secondpremiseof the rule requires an empty variable context, so
that patterns cannot contain outside value or modal variables. However (and this is
important), they can contain names. It is easy to incorporate the new syntax into
the language. We �rst extend explicit substitution over the new case construct

f � g (case e of box � ) e1 else e2) =

= case (f � ge) of box � ) (f � ge1) else (f � ge2)

and similarly for expressionsubstitution, and then all the structural properties de-
rived in Section 2.2.3 easily hold. The only complication comesin handling names
and support substitution becausepatterns are allowed to depend on namesand sup-
port variables from the global context �. However, the lemmasbelow establish the
required invariants.
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�; �; (x1:A1; : : : ; xn :An ) ` e : A [D ]

�; (� ; x1:A1; : : : ; xn :An ) ` e � ((w x1 : : : xn ):A[D ]) : A
=) [w ! � p: �y i :� pA i : let box x i = yi in box e]

(� ; X :A); � ` X � X : A =) � �; (� ; x:A) ` x � x : A =) �

�; (� ; x:A) ` e � � : B =) �

�; � ` �x :A: e � �x :A: � : (A ! B ) =) �

�; � ` e1 � � 1 : A ! B =) � 1 �; � ` e2 � � 2 : A =) � 2

�; � ` e1 e2 � � 1 � 2 : B =) (� 1; � 2)

Figure 3.10: Operational semantics for pattern matching.

Lemma 20 (Structural prop erties of pattern matc hing)
1. Exc hange Let � 0, � 0 and � 0

1 be well-formed contexts obtained by permutation
from � , � and � 1 respectively and �; � ` � : A [C] =) � 1. Then � 0; � 0 ` � :
A [C] =) � 0

1

2. W eakening Let � � � 0 and �; � ` � : A [C] =) � 1. Then � 0; � ` � :
A [C] =) � 1

Pro of: By straightforward introduction on the structure of the typing derivations.
�

Lemma 21 (Supp ort substitution principle for pattern matc hing)
Let � = (� 1; p; � 2) and D � dom(� 1) and denote by (� )0 the operation of substi-
tuting D for p. Assumealso that �; � ` � : A [C] =) � 1. Then (� 1; � 0

2); � 0 ` � 0 :
A0[C0] =) � 0

1.

Pro of: By straightforward induction on the structure of � . �

3.4.2 Op erational semantics

Operational semantics for pattern matching is establishedby the new judgment

�; � ` e � � =) �

which reads: in a global context of namesand support variables � and a context
of locally declared free variables � the matching of the expressione to the pattern
� generatesan assignment of values � to the pattern variables of � . The rules for
this judgment are given in Figure 3.10. Most of the rules are self-evident, but the
rule for pattern variables deserves more attention. Its premise requires a run-time
typecheck of the expressione, in order to preserve soundness.Becauseof this reason,
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the judgment for operational semantics of �
�

-calculus with pattern matching must
keep track of a run-time name context �. The context � not only lists the used
names,but it also assignstypes to the usednames. The following lemma relates the
typing judgment for patterns and their operational semantics.

Lemma 22 (Soundness of pattern matc hing)
Let � bea pattern such that �; � ` � : A [C] =) � 1, where� 1 = (w1:A1; : : : ; wn :An ).
Furthermore, let e be an expressionmatching � to produce a pattern assignment � ,
i.e. �; � ` e� � : A =) � . Then � = (w1 ! e1; : : : ; wn ! en ) where �; �; � ` ei : A1,
for every i = 1; : : : ; n.

Notice that in the lemmawedid not require that ebewell-typed, or evensyntactically
well-formed. If it were not well-formed, the matching simply would not succeed.

Pro of: By induction on the structure of � . We present the basecasebelow.

case � = (w x1 : : : xn ):A[D ], where � = � 2; x i :A i .

1. let e0 = (� p: �y i :� pA i : let box x i = yi in box e) and A0 = 8p: � pA1 !
� � � ! � pAn ! � p;D A

2. by typing derivation, D � C and x i :A i 2 � and also � 1 = (w:A0)

3. by matching derivation, �; �; (x1:A1; : : : ; xn :An ) ` e : A [D ], and � =
(w ! e0)

4. by straightforward structural induction, �; (x1:A1; : : : ; xn :An ); � ` e :
A [D ]

5. it is simply to show now that, (� ; p); (x1:A1[p]; : : : ; xn :An [p]); � ` e :
A [D ; p]

6. and thus also, (� ; p); (x1:A1[p]; : : : ; xn :An [p]); � ` box e : � D ;pA [ ]

7. and therefore(� ; p); �; (y1:� pA1; : : : ; yn :� pAn ) ` let box x i = yi in box e :
� D ;pA [ ]

8. and �nally , �; �; � ` e0 : A0[ ]

�
The last pieceto be added is the operational semantics for the case statement, and
the required rules are given below. Notice that the premiseof last rule makesuseof
the fact that the operational semantics for patterns is decidable; the rule applies if
the expressionand e and the pattern � cannot be matched.

� ; e 7�! � 0; e0

� ; (case e of box � ) e1 else e2) 7�! � 0; (case e0 of box � ) e1 else e2)

�; � ` e � � : A =) (w1 ! e0
1; : : : ; wn ! e0

n )

� ; (case box e of box � ) e1 else e2) 7�! � ; [e0
1=w1; : : : ; e0

n =wn ]e1

�; � ` e � � 6=) � for any �

� ; (case box e of box � ) e1 else e2) 7�! � ; e2
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Finally, using the lemmasestablishedin this section,we can easilyaugment the proof
of the preservation and progresstheorems(Theorem 16 and 17) to cover the extended
language. The statements of the theoremsare unchanged.

Example 19 The following examplespresent a generalizationof our old exponenti-
ation function. Instead of computing only powersof integers,we can compute powers
of functions too, i.e. have a functional for mapping f 7! �x: (f x)n . The functional
is passedthe sourcecode for f , and an integer n, and returns the sourcecode for
�x: (f x)n . The idea is to have the resulting sourcecode be as optimized as possible,
while still computing the extensionally sameresult. We rely on programs presented
in Section 3.2 and Examples 14 and 16.

For comparison, we �rst present a �
�

version of the function-exponentiating
functional.

fun fexp1 (f : � (int->int)) (n : int) : � (int->int) =
let box g = f

box p = exp3 n
in

box ( � v:int. (p (g v)))
end

- fexp1 (box � w:int. w + 1) 2;
val it = box ( � v:int. ( � x.x*( � y.y*( � z.1)y)x) (( � w.w+1)v)) :

� (int->int)

Observe that the residual program contains a lot of unnecessaryredexes. As could
be expected, the �

�

-calculus provides a better way to stage the code2, simply by
using the function exp from Example 14 instead exp3 from Section 3.1.

fun fexp2 (f : � (int->int)) (n : int) : � (int->int) =
let box g = f

box p = exp n
in

box ( � v:int. p (g v))
end

-fexp2 (box � w:int. w + 1) 2;
val it = box ( � v:int. ( � x.x*(x*1)) (( � w.w+1) v)) : � (int->int)

In fact, there is at least one other way to program this functional: we can eliminate
the outer � -redex from the residual code, at the price of duplicating the inner one.

fun fexp3 (f : � (int->int)) (n : int) : � (int->int) =
let nameX : int

box g = f
box e = exp' [X] (box (g X)) n

in
box ( � v:int. hX -> vi e)

end
2And similar programs can be written in �  and MetaML, as well.
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- fexp3 (box ( � w:int. w + 1)) 2;
val it = box ( � v:int. (( � w.w+1) v) * (( � w.w+1) v) * 1) :

� (int->int)

However, neither of the above implementations is quite satisfactory, since,evidently,
the residual code in all the casescontains unnecessaryredexes. The reasonis that
we do not utilize the intensional information that the passedargument is actually
a boxed � -abstraction, rather than a more general expressionof a functional type.
In a languagewith intensional code analysis, we can do a bit better. We can test
the argument at run time and output a more optimized result if the argument is a
� -abstraction. This way we can obtain the most simpli�ed, if not the most e�cien t
residual code.

fun fexp (f : � (int->int)) (n : int) : � (int->int) =
case f of

box ( � x:int. (w x:int[])) =>
(* w : 8q. � qint -> � qint *)
let nameX : int

box F = exp' [X] (w [X] (box X)) n
in

box ( � v:int. hX->vi F)
end

else fexp2 f n

- fexp (box � x:int. x + 1) 2;
val it = box( � v:int.(v + 1) * (v + 1) * 1) : � (int->int)

�

Example 20 This example is a (segment of the) meta function for symbolic di�er-
entiation with respect to a distinguished indeterminate X .

fun diff (e : � X real) : � X real =
case e of

box X => box 1

j box ((w1:real[X]) + (w2:real[X])) =>
let box e1 = diff (w1 [])

box e2 = diff (w2 [])
in

box (e1 + e2)
end
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j box (( � x:real. ((FX x):real[X])) (GX:real[X])) =>
(* FX : 8q. � qreal -> � q;X real *)
(* GX: 8q. � q;X real *)
(* check if FX really depends on X *)
let nameY : real
in

case (FX [Y] (box Y)) of
box (F:real[Y]) =>
(* FX is independent of X;

apply the chain rule *)
let box f = F []

box f' = diff (box hY->Xi f)
box gx = GX[]
box gx' = diff (GX [])

in
box ( hX->gxi f' * gx')

end
else diff (FX [X] (GX []))

end
else (box 0) (* the argument is a constant *)

The most interesting part of diff is its treatment of application. The samelimita-
tions encountered in Example 18 apply here too, in the sensethat we can pattern
match only when the applying function is actually a � -abstraction. Although it is
wrong, we currently let all the other casespassthrough the default case.Neverthe-
less,the example is still illustrativ e.

After splitting the application into the function part f and the argument part
g we test if f is independent of X . If that indeed is the case, it means that our
application was actually a composition of functions f (g X ), and thus we can apply
the chain rule to compute the derivative asf 0 (g X ) � (g0 X ). Otherwise, if f contains
occurrencesof X , the chain rule is inapplicable, so we only reduce the � -redex and
di�eren tiate the result. �

3.5 Logical relations for program equiv alence

In this section we develop the notion of equivalencebetween programs in the core
�

�

-calculus (without recursionand support polymorphism), with which we establish
the intensional properties of the modal operator, and justify our intuitiv e view of
� C A as classifying syntactic expressions.

To that end, we consider two notions of equivalence. The �rst is intensional,
or syntactic, by which two programs are equal if and only if their abstract syntax
representations are the same; the programs may only di�er in the names of their
bound variables,and possiblyalsoin the representation of their explicit substitutions.
On the other hand, two programsare extensionally equivalent if, in someappropriate
sensewhich we will de�ne shortly, they produce the sameresults. Of course,if two
expressionare intensionally equivalent, they should also be extensionally equivalent.
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One of the questions that we explore in this section is an interplay between in-
tensional and extensional equivalencesof programs. The �

�

-calculus is particularly
appropriate for investigating and combining the two notions, becausewe can usethe
modal constructs asexplicit boundariesbetweenthe di�eren t notions of equivalence.
In particular, we can treat valuesof modal typesas being observable, i.e. amenable
to inspection of their structure. Then two general expressionsof modal type will
be extensionally equivalent if and only if their values are intensionally equivalent.
We are also interested in exploring the properties of the calculus when only exten-
sional equivalence is used, as the present formulation of �

�

does not contain any
constructs for inspecting the structure of modal values. In both of these cases,we
will establish that our formulation of �

�

is purely functional, in the sensethat it
satis�es the logical equivalencesarising from the � -reductions and � -expansionsof
the language.The development presented herewill follow the methodology of logical
relations, as used, for example, in other works concernedwith namesin functional
programming [PS93]. However, the details of our approach are di�eren t becausewe
want to make the identit y of locally declared names irrelevant for the purposesof
expressioncomparison.

To motivate our approach, we �rst present several examplesof intensional and ex-
tensional equivalencesthat we would like our programsto satisfy. We usethe symbol
�= for extensional equivalence,and = for intensional equivalence. The equivalences
will always be consideredat a certain type and support.

Example 21 In the examplesbelow, we assumethat X is a name of integer type.

1. (�x :in t : x + 1) 2 �= (�x :in t : x + 2) 1 �= 3 : in t , becauseall three terms evaluate
to 3; however, neither of them is intensionally equivalent to any other.

2. (�x :in t : x + X ) 2 �= 2+ X �= X + 2 : in t [X ], becausewhenever X is substituted
by e (and x is not free in e), the three terms evaluate to the samevalue.

3. (�x :� X in t : 2) (box X ) �= (1 + 1) : in t , becauseboth terms evaluate to 2.
Notice that X doesnot appear in the secondterm, nor in the type and support
of comparison.

4. box (X + 1) �= box (X + 1) : � X in t , becauseX + 1 = X + 1 : in t [X ]
intensionally, as syntactic expressions.

�

As illustrated by this example, in our equivalencerelations we should distinguish
between two di�eren t kinds of names: (1) nameswhich may appear in either of the
comparedterms, as well as their type and support (Example 21 cases2 and 4), and
(2) nameswhich are local to someof the terms (Example 21 case3). The later kind
of namesshould not inuence the equivalencerelations { these namescould freely
be renamed.

The described requirement leadsto the following formulation of the judgment for
extensionalequivalence.

�; �; � ` � 1: e1
�= � 2: e2 : A [C]
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Here we assumethat � is a well-formed name context and that �, �, � 1, � 2, A
and C are all well-formed with respect to �. Intuitiv ely, the context � declaresthe
namesthat matter when comparing two terms; hencethe requirement that �, �, A
and C contain only the namesfrom �. On the other hand, the contexts � 1 and � 2

declarethe namesthat may appear in e1 and e2, but thesenamesare, in somesense,
irrelevant. They will be subject to renaming, as they do not appear in �, �, A or
C. The contexts � 1 and � 2 are disjoint from �.

For the purposesof this section, we further restrict our considerations of in-
tensional equivalenceto only modal terms which are themselves part of the simply
typed fragment of �

�

. In other words, we introduce new categoriesof simple types
and simple terms as follows:

1. a type A is simple i� A = b, or A = A1 ! A2 or A = A1 9 A2 where A1; A2

are simple types

2. a term e is simple if it doesnot contain the modal constructs box and let box.

Then we only allow modal types � C A if A is simple, and modal terms box e if e
is simple. We justify this restriction by a desire to avoid impredicativit y arising in
a languagethat can intensionally analyse the whole set of its expressions. In fact,
it seemsrather improbable that a languagewith such strong intensional capabilities
can be designedat all. Indeed, we added names and modal constructs in order
to represent syntax with free variables. But, the modal constructs can also bind
variables, so a new category of namesand modalities seemsto be required in order
to analyze these new bindings, and then a new category of names and modalities
is required for the bindings by the previous classof modalities, etc. Thus, here we
limit the intensional equivalenceto the simply-typed fragment, and leave the possible
extensionsto larger fragments for future work.

The next step in the development is to formally de�ne the notion of extensional
equivalence. As already mentioned before, the idea is that two expressionsare con-
sideredextensionally equivalent, if and only if they evaluate to the samevalue. The
values that we will consider for comparisonare the valuesat basetype b of natural
numbers, and valuesat modal types � C A which are closedsimple terms of type A
and support C, which we comparefor intensional equivalence.

A standard approach to logical relations starts with a somewhatdi�eren t premise.
Rather than evaluating two expressionsand checking if their values are the same,
we need to check if the values are extensionally equivalent themselves. The later
notion is much more permissive, which is particularly important when comparing
valuesof functional types: two functions are extensionally related if they map related
arguments to related results.

Thus,weneedto de�ne two mutually recursive judgments: onefor the extensional
equivalenceof (closed)expressions,and another for extensionalequivalenceof values.
Our judgment for extensionalequivalenceof expressionshas the form

� ` � 1: e1
�= � 2: e2 : A [C]

and the judgment for extensionalequivalenceof valueshas the form

� ` � 1: v1 � � 2: v2 : A
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The �rst is de�ned by induction on the structure of A and C, by appealing to the
secondjudgment when the support C is empty. The secondis de�ned by induction
on the structure of the type A.

� ` � 1: e1
�= � 2: e2 : A [ ] i� (� ; � 1); e1 7�! � (� ; � 0

1); v1, and
(� ; � 2); e2 7�! � (� ; � 0

2); v2, and
� ` � 0

1: v1 � � 0
2: v2 : A

� ` � 1: e1
�= � 2: e2 : A [C] i� � ` � 0

1: f � 1ge1
�= � 0

2: f � 2ge2 : A [ ] for any
� 0

i � � i , such that � ` � 0
1: � 1

�= � 0
2: � 2 [C]

� ` � 1: v1 � � 2: v2 : b i� v1 = v2 2 N
� ` � 1: v1 � � 2: v2 : A ! B i� vi = �x :A: ei and � ` � 0

1: [v0
1=x]e1

�=
� 0

2: [v2=x]e2 : B , for any � 0
i � � i , such that

� ` � 0
1: v0

1 � � 0
2: v0

2 : A
� ` � 1: v1 � � 2: v2 : � C A i� vi = box ei and e1 = e2 and � ` � 1: e1

�=
� 2: e2 : A [C]

� ` � 1: v1 � � 2: v2 : A 9 B i� vi = � X :A: ei and � ` (� 1; X :A): e1
�=

(� 2; X :A): e2 : B [ ], whereX is a freshname.

Here we abbreviated:
� ` � 1: � 1

�= � 2: � 2 [C] i� � 1, � 2 areexplicit substitutions for the names
in C, such that � ` � 1: � 1(X ) �= � 2: � 2(X ) :
B [ ] for any nameX 2 C such that X :B 2 �.

The most important parts of the above de�nition are the casesde�ning the rela-
tion for valuesat functional, modal typesand 9 types. The de�nition for valuesat
functional types formalizes the intuition that we outlined before: two functions are
related if they map related arguments to related results. The de�nition for values
at modal types contrasts the notions of intensional vs. extensional. We consider
two values box e1 and box e2 extensionally related i� the expressionse1 and e2

are intensionally related. Observe, however, that in the de�nition we actually insist
on the additional requirement that e1 and e2 be extensionally related as well. This
extra clause is added because,at this stage of development, it is not obvious that
intensional equivalenceof expressionsimplies their extensionalequivalence. For that
matter, it is not obvious at this point that that the two new relations are indeed
equivalencesat all. We will prove both of theseproperties in due time, but we need
to start the development with a su�cien tly strong de�nition. The de�nition for val-
ues� X : e1 and � X : e2 at the A 9 B type generatesa fresh name X , and then tests
e1 and e2 for equivalencein the local contexts extendedwith X .

Notice that the above de�nitions are well-founded. In order to establish this fact,
let us de�ne ord� (X ) to be the position in which the name X �rst appears in the
name context �. Also, given a type A and support C, let max� (A[C]) be the last
position in � in which a name from A and C appears. More formally,

max� (A[C]) = maxf ord� (X ) j X 2 fn(A[C])g:

Becauseof the restriction that each type in � may only refer to the namesto the
left of it, it is clear that if X :A 2 �, then max� (A) < ord� (X ). We can now order
the pairs of type A and support C as follows. The pair A[C] is smaller than B [D ] i�
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� max� (A[C]) < max� (B [D ]), or

� max� (A[C]) = max� (B [D ]), but the number of type constructors of A is
smaller than the number of type constructors of B .

It is now easyto observe that each inductiv e step in the de�nitions of the relations
strictly decreasesthis ordering. Indeed, the relation on valuespreservesthe number
of names in the type and support, but makes inductiv e referencesusing types of
strictly smaller structure. The relation on expressionswith non-empty support C
relies on explicit substitutions over the namesin C. But for each name X 2 C with
X :B 2 �, it is clear that max� (B ) < ord� (X ) � max� (fn A[C]).

We next extend our relations to handle expressionswith free variables. We start
with expressionsof empty support.

�; �; � ` � 1: e1
�= � 2: e2 : A [ ] i� � ` � 0

1: [� 1=�] e1
�= � 0

2: [� 2=�] e2 : A [ ] for any
� 0

i � � i , such that � ` � 0
1: � 1 � � 0

2: � 2 : �

In this de�nition, � 1, � 2 are arbitrary substitutions of valuesfor variables in �, and
we write:

� ` � 1: � 1 � � 2: � 2 : � i� � ` � 1: � 1(x) � � 2: � 2(x) : A whenever
x:A 2 �

In the next step, we considerexpressionsof arbitrary support.

�; �; � ` � 1: e1
�= � 2: e2 : A [C] i� �; �; � ` � 0

1: f � 1ge1
�= � 0

2: f � 2ge2 : A [ ] for
any � 0

i � � i , such that �; � ` � 0
1: � 1

�=
� 0

2: � 2 [C]

where � 1, � 2 are explicit substitutions, and

�; � ` � 1: � 1
�= � 2: � 2 [C] i� �; �; � ` � 1: � 1(X ) �= � 2: � 2(X ) : B [ ] for

any name X 2 C such that X :B 2 �

Finally, the relation is extendedwith the context � as follows.

�; �; � ` � 1: e1
�= � 2: e2 : A [C] i� �; �; � ` � 0

1: [[� 1=�] ]e1
�= � 0

2: [[� 2=�] ]e2 :
A [C] for any � 0

i � � i , such that � `
� 0

1: � 1 = � 0
2: � 2 : �

where � 1, � 2 are arbitrary substitutions of expressionsfor modal variables in �, and

� ` � 1: � 1 = � 2: � 2 : � i� � 1(u) = � 2(u) and � ` � 1: � 1(u) �=
� 2: � 2(u) : A [C] whenever u:A[C] 2 �

The above de�nitions are well-founded, as each one refers only to already intro-
duced de�nitions. For the sake of completeness,we also parametrize the intensional
relation = with the context �, as this will be neededin the statement of Lemma 28.

�; � ` � 1: e1 = � 2: e2 : A [C] i� [[� 1=�] ]e1 = [[� 2=�] ]e2 for any � 0
i � � i ,

such that � ` � 0
1: � 1 = � 0

2: � 2 : �

106



CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

Example 22 Let � = X :in t . Then the following are valid instancesof intensional
equivalence.

1. �; � ` X + 1 = X + 1 : in t [X ]

2. �; u:in t [X ] ` (Y :in t ): hX ! 1; Y ! 2i u = hX ! 1i u : in t [ ]

�

Example 23 Consider the simple expressione such that

�; �; � ` choose (� X :B : box e) : � in t :

We will show that �; �; � ` choose (� X :B : box e) �= choose (� X :B : box e) : � in t .
First notice that we can assume� to be empty as, by typing, e cannot contain

variables from �. We can assumethat � is empty as well; this will not result in
any loss of generality becausethe relation of intensional equivalenceis closedwith
respect to modal substitutions � .

The above relation holds if and only if the two instances of the expression
choose (� X :B : box e) evaluate to related values. But, indeed they do, as the
particular choice of X in the evaluation of the expressionsdoes not inuence e. In
fact, becausee is a simple expression,the only namesthat may appear in box e are
the onesappearing in its type. In this case,the type in question is � in t , and it does
not contain any names.

Becauseof reexivit y of � -equivalence,e = e. By determinacy of evaluation, it is
also the casethat � ` e �= e : in t . Thus, we can concludethat � ` box e �= box e :
� in t . �

Lemma 23 (Name perm utation)
Let R1 : � 1 ! � 0

1 and R2 : � 2 ! � 0
2 be bijections where � 0

1 and � 0
2 are well-formed

in � . Then:

1. if � ` � 1: e1
�= � 2: e2 : A [C], then � ` � 0

1: R1 e1
�= � 0

2: R2 e2 : A [C]

2. if � ` � 1: v1 � � 2: v2 : A, then � ` � 0
1: R1 v1 � � 0

2: R2 v2 : A

Pro of: By induction on the structure of the de�nition of the two judgments.
For the �rst induction hypothesis, we start by considering the basecasewhen

C is empty. In this case,if (� ; � i ); ei 7�! � (� ; � i ; 	 i ); vi , then by parametricity of
the evaluation judgment, we also have (� ; � 0

i ); ei 7�! � (� ; � 0
i ; 	 i ); Ri vi . Then we

appeal to the secondinduction hypothesis, to derive that � ` (� 0
1; 	 1): R1 v1 �

(� 0
2; 	 2): R2 v2 : A. The result is easily extended to the casewhen C is not empty.
For the secondinduction hypothesis,the only interesting caseis when A = � D B ,

which is proved by appealing to the �rst induction hypothesis, and the fact that
name permutation doesnot changethe = relation on simple terms. �
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Lemma 24 (Name lo calization)
If C is a well-formed support in � , then the following holds:

1. (� ; � 0) ` � 1: e1
�= � 2: e2 : A [C] if and only if � ` (� 0; � 1): e1

�= (� 0; � 2): e2 :
A [C]

2. (� ; � 0) ` � 1: v1 � � 2: v2 : A if and only if � ` (� 0; � 1): v1 � (� 0; � 2): v2 : A

Pro of: By induction on the structure of the de�nition of the two judgments.
For the �rst induction hypothesis, we start by considering the casewhen C is

empty. Let (� ; � 0; � i ); ei 7�! � (� ; � 0; 	 i ); vi , and (� ; � 0) ` 	 1: v1 � 	 2: v2 : A.
By secondinduction hypothesis, � ` (� 0; 	 1): v1 � (� 0; 	 2): v2 : A, and thus also
� ` (� 0; 	 1): e1

�= (� 0; 	 2): e2 : A. The opposite direction is symmetric. The result
is easily extended to the caseof non-empty C.

For the secondinduction hypothesis, we present the casewhen A = A 1 ! A2,
and vi = �x :A1: ei . In this case,consider � 0

i � � i , such that � ` (� 0; � 0
1): v0

1 �
(� 0; � 0

2): v0
2 : A1. We need to show � ` (� 0; � 0

1): [v0
1=x]e1

�= (� 0; � 0
2): [v0

2=x]e2 : A2.
By induction hypothesisat type A1, we have that (� ; � 0) ` � 0

1: v0
1 � � 0

2: v0
2 : A1, and

therefore (� ; � 0) ` � 0
1: [v0

1=x]e1
�= � 0

2: [v0
2=x]e2 : A2. By induction hypothesisat type

A2, we can push � 0 back inside to get � ` (� 0; � 0
1): [v0

1=x]e1
�= (� 0; � 0

2): [v0
2=x]e2 : A2.

The opposite direction is symmetric. �

Lemma 25 (W eakening)
Let � 0 � � , � 0

1 � � 1 and � 0
2 � � 2, so that � 0

1 and � 0
2 are well-formed with respect

to � 0. Then the following holds:

1. if � ` � 1: e1
�= � 2: e2 : A [C], then � 0 ` � 0

1: e1
�= � 0

2: e2 : A [C]

2. if � ` � 1: v1 � � 2: v2 : A, then � 0 ` � 0
1: v1 � � 0

2: v2 : A

Pro of: By name localization (Lemma 24), it su�ces to consider� 0 = �. The proof
is by simultaneous induction on the de�nition of the two judgments.

For the �rst statement, we only considerthe casewhen C is empty, as the result
is easily generalizedto non-empty C. In this case,let (� ; � i ); ei 7�! � (� ; � i ; 	 i ); vi ,
such that � ` (� 1; 	 1): v1 � (� 2; 	 2): v2 : A. By name permutation, we could as-
sumethat 	 1; 	 2 are disjoint from � 0

1; � 0
2, so that also(� ; � 0

i ); ei 7�! � (� ; � 0
i ; 	 i ); vi .

Then by second induction hypothesis, � ` (� 0
1; 	 1): v1 � (� 0

2; 	 2): v2 : A, and
therefore � ` � 0

1: e1
�= � 0

2: e2 : A.
For the second induction hypothesis, the only interesting case is when A =

A0 ! A00, and vi = �x :A0: ei . In this case,consider � 00
i � � 0

i , such that � ` � 00
1: v00

1 �
� 00

2: v00
2 : A0. By de�nition, � ` � 00

1: [v00
1=x]e1

�= � 00
2: [v00

2=x]e2 : A00, simply because
� 00

i � � 0
i � � i . �

Lemma 26 (Symmetry and transitivit y)
1. If � ` � 1: e1

�= � 2: e2 : A [C], then � ` � 2: e2
�= � 1: e1 : A [C].

2. If � ` � 1: v1 � � 2: v2 : A, then � ` � 2: v2 � � 1: v1 : A.

3. If � ` � 1: e1
�= � 2: e2 : A [C], and � ` � 2: e2

�= � 3: e3 : A [C], then
� ` � 1: e1

�= � 3: e3 : A [C]
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4. If � ` � 1: v1 � � 2: v2 : A, and � ` � 2: v2 � � 3: v3 : A, then � ` � 1: e1 �
� 3: v3 : A

Pro of: Symmetry is obvious, so we present the proofs for transitivit y. The proofs
are by induction on the de�nition of the judgments. For transitivit y of the relation
on expressions,we only consider the casewhen the supports Ci are empty, as it is
easyto generalizeto the caseof non-empty supports.

By assumptions,(� ; � 1); e1 7�! (� ; 	 1); v1, and (� ; � 2); e2 7�! (� ; 	 2); v2, such
that � ` 	 1: v1 � 	 2: v2 : A. Also, (� ; � 2); e2 7�! (� ; 	 0

2); v0
2, and, (� ; � 3); e3 7�!

(� ; 	 3); v3, such that � ` 	 0
2: v0

2 � 	 3: v3 : A.
By determinacy of evaluation, we know that there is a permutation of names�

such that 	 2 = � (	 0
2) and v2 = � (v0

2), and thus by Lemma 23, � ` 	 2: v2 � 	 3: v3 :
A. Then, by the last induction hypothesis, � ` 	 1: v1 � 	 3: v3 : A, and therefore,
� ` � 1: e1 � � 3: e3 : A.

For the relation on values, we only present the caseA = A 1 ! A2 and vi =
�x :A1: ei . In this case,let � 0

1 � � 1 and � 0
3 � � 3, such that � ` � 0

1: v0
1 � � 0

3: v0
3 : A1.

By namepermutation, we can assumethat � 0
3 and � 2 are disjoint; otherwise,we can

just renamethe conicting namesin � 2. By symmetry and transitivit y at type A1,
we obtain � ` � 0

3: v0
3 � � 0

3: v0
3 : A1. By weakening, � ` � 0

1: v0
1 � � 2; � 0

3: v0
3 and

� ` � 2; � 0
3: v0

3 � � 0
3: v0

3; therefore � ` � 0
1: [v0

1=x]e1
�= (� 2; � 0

3): [v0
3=x]e2 : A2 and

� ` (� 2; � 0
3): [v0

3=x]e2
�= � 0

3: [v0
3=x]e3 : A2. Finally, by �rst induction hypothesisat

type A2, we get � ` � 0
1: [v0

1=x]e1
�= � 0

3: [v0
3=x]e3 : A2. �

It is simple now to extend the above results to logical relations over expressions
with free variables. The following lemma restates the relevant properties.

Lemma 27
1. (Name permutation) Let R1 : � 1 ! � 0

1 and R2 : � 2 ! � 0
2 be bijections where

� 0
1 and � 0

2 are well-formed in � . If �; �; � ` � 1: e1
�= � 2: e2 : A [C], then

�; �; � ` � 0
1: R1 e1

�= � 0
2: R2 e2 : A [C].

2. (Name localization) Let � , � , A, C are well-formed in � . Then (� ; � 0); �; � `
� 1: e1

�= � 2: e2 : A [C] if and only if �; �; � ` (� 0; � 1): e1
�= (� 0; � 2): e2 : A [C].

3. (Weakening) Let � 0 � � , and � 0
1 � � 1, � 0

2 � � 2, � 0 � � , � 0 � � and
C0 � C, so that � 0

1,� 0
2,� 0, � 0 and C0 are well-formed with respect to � 0. If

�; �; � ` � 1: e1
�= � 2: e2 : A [C], then � 0; � 0; � 0 ` � 0

1: e1
�= � 0

2: e2 : A [C0].

4. (Symmetry) If �; �; � ` � 1: e1
�= � 2: e2 : A [C], then �; �; � ` � 2: e2

�=
� 1: e1 : A [C].

5. (Transitivity) If �; �; � ` � 1: e1
�= � 2: e2 : A [C], and �; �; � ` � 2: e2

�=
� 3: e3 : A [C], then �; �; � ` � 1: e1

�= � 3: e3 : A [C]

Pro of:
The proofs proceedin a straightforward manner, following the de�nition of the

judgment on open expressions.First we consider the casewhen � is non-empty, but
both C and � are empty. Then we generalizeto the caseof non-empty C, before
�nally a non-empty context � is considered. Just as in the de�nition of the logical
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relations, it is easyto check that in each step of the proof we only rely on the previ-
ously establishedresults. �

To completethe logical relations argument, we needto de�ne the notion of exten-
sional relation on the remaining syntactic category of �

�

{ the category of explicit
substitutions. This de�nition will be utilized in the statement and the proof of
Lemma 28 to establish that term constructors of �

�

(in particular, the constructs
for explicit substitutions and modal variables) preserve extensionalequivalence.

The judgment for logical relation of extensionalequivalencebetweentwo explicit
substitutions � 1 and � 2 has the form

�; �; � ` � 1: h� 1i �= � 2: h� 2i : [C] ) [D ]

and is de�ned by the following clauses:

�; �; � ` � 1: h� 1i �=
� 2: h� 2i : [C] ) [D ]

i� �; �; � ` � 0
1: f � 1ge1

�= � 0
2: f � 2ge2 :

A [D ], for any � 0
i � � i , such that

�; �; � ` � 0
1: e1

�= � 0
2: e2 : A [C]

�; �; � ` � 1: h� 1i �=
� 2: h� 2i : [C] ) [D ]

i� �; �; � ` � 0
1: h[� 1=�]� 1i �=

� 0
2: h[� 2=�]� 2i : [C] ) [D ]

for any � 0
i � � i , such that

� ` � 0
1: � 1 = � 0

2: � 2 : �

As in the caseof previous judgments, the relation �= on explicit substitutions
satis�es the propertiesof namepermutation, namelocalization, weakening, symmetry
and transitivit y.

Lemma 28
Logical relation is preserved by all the expressionconstructors of �

�

. More precisely:

1. (� ; X :A); �; � ` � 1: X �= � 2: X : A [X ; C]

2. �; �; (� ; x:A) ` � 1: x �= � 2: x : A [C]

3. if �; (� ; u:A[D ]); � ` � 1: h� 1i �= � 2: h� 2i : [D ] ) [C], then
�; (� ; u:A[D ]); � ` � 1: h� 1i u �= � 2: h� 2i u : A [C]

4. if �; �; (� ; x:A) ` � 1: e1
�= � 2: e2 : B [C], then �; �; � ` � 1: �x :A: e1

�=
� 2: �x :A: e2 : A ! B [C]

5. if �; �; � ` � 1: e1
�= � 2: e2 : A ! B [C] and �; �; � ` � 1: e0

1
�= � 2: e0

2 : A [C],
then �; �; � ` � 1: e1 e0

1
�= � 2: e2 e0

2 : B [C]

6. If �; � ` � 1: e1 = � 2: e2 : A [C], and �; �; � ` � 1: e1
�= � 2: e2 : A [C], then

�; �; � ` � 1: box e1
�= � 2: box e2 : � C A [D ]

7. if �; �; � ` � 1: e1
�= � 2: e2 : � D A [C] and �; (� ; u:A[D ]); � ` � 1: e0

1
�= � 2: e0

2 :
B [C], then �; �; � ` � 1: let box u = e1 in e0

1
�= � 2: let box u = e2 in e0

2 :
B [C]

110



CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

8. if �; �; � ` (� 1; X :A): e1
�= (� 2; X :A): e2 : B [C], then

�; �; � ` � 1: � X :A: e1
�= � 2: � X :A: e2 : A 9 B [C]

9. if �; �; � ` � 1: e1
�= � 2: e2 : A 9 B [C] then �; �; � ` � 1: choose e1

�=
� 2: choose e2 : B [C]

10. �; �; � ` � 1: h i �= � 2: h i : [C] ) [D ] if C � D

11. if �; �; � ` � 1: e1
�= � 2: e2 : A [D ], and �; �; � ` � 1: h� 1i �= � 2: h� 2i : [C n

X ] ) [D ], and X :A 2 � , then �; �; � ` � 1: hX ! e1; � 1i �= � 2: hX ! e2; � 2i :
[C] ) [D ]

Pro of: To reduce clutter, we just present the selectedcasesas if the contexts �,
� and the support C were empty. The general results are recovered by considering
the interaction between value substitutions � , explicit substitutions � and modal
substitutions � , which is well-behaved in all the casesof the lemma.

In caseof (3), consider� 0
i � � i such that e1 = e2, and � ` � 0

1: e1
�= � 0

2: e2 : A [D ].
We need to show that �; �; � ` � 0

1: f [[e1=u]]� 1ge1
�= � 0

2: f [[e2=u]]� 2ge2 : A [ ]. From
the assumption, we have �; �; � ` � 0

1: h[[e1=u]]� 1i �= � 0
2: h[[e2=u]]� 2i : [D ] ) [ ], and

then the required equality follows by de�nition of extensionalequivalencefor explicit
substitutions

In caseof (7), by equivalenceof e1 and e2, there exist name sets 	 1; 	 2, such
that (� ; � 1); e1 7�! � (� ; 	 1); box t1 and (� ; � 2); e2 7�! � (� ; 	 2); box t2, where
t1 = t2 : A [D ], and � ` 	 1: t1

�= 	 2: t2 : A [D ]. Then it su�ces to show that �; �; � `
	 1: [[t1=u]]e0

1
�= 	 2: [[t2=u]]e0

2 : B [ ]. But this follows from the secondassumption, by
de�nition of extensionalequivalence.

In caseof (11), again consider � 0
i � � i , such that � 0; �; � ` � 0

1: e0
1

�= � 0
2: e0

2 :
B [C]. To be consistent with the notation, in this casewe assumethat D , rather
than C, is empty. To reduce clutter, denote by � 1; � 2 the explicit substitutions
� 1 = hX ! e1; � 1i and and � 2 = hX ! e2; � 2i . Then we need to show that
�; �; � ` � 0

1: f � 1ge0
1

�= � 0
2: f � 2ge0

2 : B [ ]. To establish this, it su�ces to prove that
�; � ` � 0

1: � 1
�= � 0

2: � 2 [C], i.e. that �; �; � ` � 0
1: � 1(Z ) �= � 0

2: � 2(Z ) : A0[ ] for any
name Z 2 C such that Z :A0 2 �. Then the result would follow from the extensional
equivalenceof e0

1 and e0
2. We considertwo cases:Z = X , and Z 2 C n X . If Z = X ,

then A0 = A and � i (Z ) = ei and by �rst assumption, �; �; � ` � 1: � 1(Z ) �= � 2: � 2(Z ) :
A. By weakening, this implies �; �; � ` � 0

1: � 1(Z ) �= � 0
2: � 2(Z ) : A. If Z 2 C nX , then

� i (Z ) = f � i gZ , and also obviously �; �; � ` � 0
1: Z �= � 0

2: Z : A0[C n X ]. Then by the
secondassumption, �; �; � ` � 0

1: � 1(Z ) �= � 0
2: � 2(Z ) : A0[ ]. The two casescombined

demonstrate �; � ` � 0
1: � 1

�= � 0
2: � 2 [C], and this completesthe proof. �

Now we can prove that our logical relations are reexiv e, and thus indeed equiv-
alences.

Lemma 29 (Reexivit y)
1. If �; �; � ` e : A [C], then �; �; � ` e �= e : A [C]

2. If �; �; � ` h� i : [C] ) [D ], then �; �; � ` h� i �= h� i : [C] ) [D ]

Pro of: By induction on the structure of e and �, using Lemma 28. �
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We reiterate that the current development, and in particular Lemma 29, restricts
e and � to only contain simple boxed subterms, becausewe only de�ned intensional
equivalenceto hold on simple subterms. When consideredon this domain, the lemma
has several more interesting consequences.As a �rst observation, it shows that the
�

�

-calculus, as consideredin this section (i.e. with no recursion), is terminating.
Indeed, our de�nition of logical relations on expressionsrequired that related expres-
sions evaluate to related values. Thus, if a well-typed expressionsof the calculus is
related to itself, than it must have a value.

The secondconsequenceof the lemma is that intensionally related expressions
are at the sametime extensionally related aswell. In other words, if �; � ` � 1: e1 =
� 2: e2 : A [C], where e is a simple term, then �; �; � ` � 1: e1

�= � 2: e2 : A [C].
This property trivially follows from the reexivit y, simply becausethe intensional
equivalence,as de�ned on closedsimple terms equatestwo terms if and only if they
are the same(up to � -renaming) and { more importantly { well-typed. Then the
reexivit y lemma can be applied to extensionally relate thesetwo terms. As a result,
extensional equivalenceof modal expressionsbox e1 and box e2 neednot compare
e1 and e2 for extensionalequivalence(as it is required by the de�nition), but can only
rely on their intensional equivalence. This is important, as intensional equivalence,
contrary to the extensionalone, is de�ned inductiv ely, and can be carried out as an
algorithm.

Lemma 30 (Fundamen tal prop ert y of logical relations)
If �; �; � ` � 1: e1

�= � 2: e2 : A [C], then

1. if �; �; (� ; x:A) ` e : B [C], then �; �; � ` � 1: [e1=x]e �= � 2: [e2=x]e : B [C]

2. if �; �; (� ; x:A) ` h� i : [C1] ) [C], then
�; �; � ` � 1: h[e1=x]� i �= � 2: h[e2=x]� i : [C1] ) [C]

Pro of: By straightforward simultaneous induction on the structure of the two typ-
ing derivations, using the fact that the term constructors of the languagepreserve
the logical relation. �

After developing the theory of the two relations, we will use it to prove some
interesting equivalencesin the calculus. But before we do that in the next lemma,
let us remark on an important property of the our presentation. If we dropped the
requirement of intensional equivalencewhen comparing values of modal types that
would correspond to treating modal values extensionally, rather than intensionally.
In fact, that may be a more relevant approach for this section, as the current devel-
opment of logical relations does not consider any constructs for structural analysis
of modal expressions.In this case,we do not have to limit the modal expressionsto
only simple expressions. In particular, the reexivit y lemma (Lemma 29) holds in
full generality.

Finally, the next lemma lists someequivalenceswhich hold in �
�

(irrespective of
the treatment of modal values as intensional or extensional entities). Observe that
the list includes all the � -reductions and � -expansionsof �

�

. In this sense,we can
claim that the calculus presented in this paper is purely functional.
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Lemma 31
In the logical equivalencesbelow we assumethat all the judgments are well-formed
and that the terms are well-typed in appropriate contexts.

1. �; �; � ` (�x: e1) e2
�= [e2=x]e1 : A [C]

2. �; �; � ` e �= �x: (e x) : A ! B [C]

3. �; �; � ` let box u = box e1 in e2
�= [[e1=u]]e2 : B [C]

4. �; �; � ` e �= let box u = e in box u : � D B [C]

5. �; �; � ` choose (� X :A: e) �= (X :A): e : B [C]

6. �; �; � ` (X :A): e �= � X :A: choose e : A 9 B [C]

7. �; �; � ` �z :A: choose (� X :A1: e) �= choose (� X :A1: �z :A: e) : A ! B [C]

8. �; �; � ` � X : � Y: e �= � Y: � X : e : A 9 A 9 B [C]

9. �; �; � ` e1 (choose (� X :A: e2)) �= choose (� X :A: (e1 e2)) : B [C]

10. �; �; � ` (choose (� X :A: e1)) e2
�= choose (� X :A: (e1 e2)) : B [C]

Pro of: Again, in order to reduceclutter, we present the proofs of thesestatements
in the casewhen �, �, C areempty. In the generalcases,weneedto considerinterac-
tions betweenvalue substitutions � , explicit substitutions � and modal substitutions
� , but theseposeno problems.

In the case�, � and C are empty, the statements (3) and (4) are trivial, as the
two expressionsevaluate to the samevalue. In (5), the expressionsevaluate to the
samevalue, modulo the choiceof a local nameY to stand for X in choose (� X :A: e).
But this choice is irrelevant, by the namepermutation property. The statement (10)
is completely symmetric to (9).

To establish (1), let �; �; x:B ` e1 : A, and �; �; � ` e2 : B . As the calculus is
termination, there exist 	 and v2 such that � ; e2 7�! � (� ; 	) ; v2, and therefore also
� ` e2

�= 	 : v2 : B . By the fundamental property of logical relations (Lemma 30),
� ` [e2=x]e1

�= 	 : [v2=x]e1 : A. But it is also the casethat � ` (�x: e1) e2
�=

	 : [v2=x]e1 : A, simply becausethe two expressionsevaluate to the same value.
Then by transitivit y, we get � ` (�x: e1) e2

�= [e2=x]e1 : A.
To establish (2), let � ; e 7�! � (� ; 	) ; (�x: e0), so that �; �; � ` e �= 	 : (�x: e0) :

A ! B . By transitivit y, this holds if � ` 	 : �x: e0 � �x: (e x) : A ! B . In
order to prove this, consider � 0

1; � 0
2 such that � ` 	 ; � 0

1: v1 � � 0
2: v2 : A. It

su�ces to show � ` (	 ; � 0
1): [v1=x]e0 �= � 0

2: (e v2) : B . By the name permutation
property (Lemma 23), we can assumethat 	 and � 2 are disjoint. By the properties
of evaluation, (� 0; � 0

2); (e v2) 7�! � (� 0; � 0
2; 	) ; [v2=x]e0, and thus

� ` � 0
2: (e v2) �= (	 ; � 0

2): [v2=x]e0 (*)

By type preservation, (� ; 	); �; x:A ` e0 : B [ ], and thus by reexivit y �; �; x:A `
	 : e0 �= 	 : e0 : B [ ]. Then by de�nition,

� ` (	 ; � 0
1): [v1=x]e0 �= (	 ; � 0

2): [v2=x]e0 : B (**)
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Finally, from (*) and (**), by transitivit y, we obtain the required

� ` (	 ; � 0
1): [v1=x]e0 �= � 0

2: (e v2) : B :

To establish (6), let (� ; X :A); e 7�! (� ; X :A; 	) ; (� Y :A: e0). Then, by de�nition,
we have � ` (X :A): e �= (X :A; 	) : (� Y :A: e0) : A 9 B . By transitivit y, it su�ces to
show that � ` (X :A; 	) : � Y :A: e0 � � X :A: choose e : A 9 B

By de�nition of the logical relation for values at the type A 9 B , this holds
if and only if � ` (X :A; 	 ; Y :A): e0 �= X :A: choose e : B . Indeed, we could
chose X :A in the local context of the secondargument by the name permutation
property. But the last equation is obviously true, as (� ; X :A); choose e 7�! �

(� ; X :A; 	) ; choose (� Y :A: e0) 7�! (� ; X :A; 	 ; Y :A); e0.
For (7), the consideredequivalence holds i� � ` �z :A: choose (� X :A 1: e) �=

(X :A1): �z :A: e : A ! B , i� �; �; z:A ` choose (� X :A1: e) �= (X :A1): e : B . But
this is true by (6).

To establish (8), notice that by de�nition, the required equivalenceholds if and
only if � ` (X :A; Y :A): e �= (Y :A; X :A): e : B . In this equation, we are justi�ed in
choosing the samenamesX and Y in both sides,by the namepermutation property
(Lemma 23). But the contexts (X :A; Y :A) and (Y :A; X :A) are same,becausethe
type A doesnot depend on neither X nor Y . Thus, the result follows by reexivit y
of �= .

To establish (9), it su�ces to show that � ` e1
�= (X :A): e1 : B 0 ! B and that

� ` choose (� X :A: e2) �= (X :A): e2 : B 0. Then the result would be implied by the
fact that term constructors preserve the equivalence. The �rst of the above equiva-
lencesfollows by reexivit y and weakening. The secondhasalready beenestablished
as the � -reduction for the type A 9 B 0. �

The developed logical relations analyzethe equivalenceof terms from the outside,
rather than by considering their observable operational behavior. A more general
notion of equivalenceis the contextual equivalence, by which two terms e1 and e2 are
related if and only if any observable behavior produced by a useof e1 in a complete
program is also produced by a useof e2, and vice versa.

Logical relations, however, are related to contextual equivalencein the following
sense. Whenever two terms are logically equated, their behavior in any program
context is indiscernible. In other words, logical equivalenceis sound with respect to
the contextual equivalence. We establish this result in the remainder of the section.
The opposite direction of this implication, that is, the completenessof the logical
relations with respect to contextual equivalenceremains future work.

Westart by formalizing what it meansto usean expressionin a program. For that
reason,we de�ne two notions of program contexts: a notion of expressioncontexts,
and a notion of substitution context. An expression context (resp. substitution
context) is an expressionE (substitution F ) with a hole, where the whole can be
�lled with someexpression. We write E[e] (F [e]) for the expression(substitution)
obtained when the hole of E is �lled with e. Furthermore, we consideronly contexts
that are extensional, i.e. whosehole does not appear under a box, as we want to
relate the extensional logical equivalenceto contextual equivalence.

A more formal de�nition of extensional expressionand substitution contexts is
given in the table below.
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Extensional expressioncontexts E ::= [ ] j X j x j hFi u j �x :A: E j E1 E2 j
box e j let box u = E1 in E2 j
� X :A: E j choose E

Extensional substitution contexts F ::= � j X ! E; F

Now we can prove that the extensionalordering on expressionsand substitutions,
as de�ned previously is a congruencewith respect to extensional contexts.

Lemma 32 (Congruence)
If �; �; � ` � 1: e1

�= � 2: e2 : A [C], and E, F are an expressionand substitution
context respectively, then the following holds.

1. � 0; � 0; � 0 ` � 0
1: E[e1] �= � 0

2: E[e2] : B [D ], if E[e1], E[e2] are well-typed in their
appropriate variable contexts.

2. � 0; � 0; � 0 ` � 0
1: hF[e1]i �= � 0

2: hF[e2]i : [D ] ) [D 0], if F [e1], F [e2] arewell-typed
in their appropriate variable contexts.

Pro of: By straightforward simultaneous induction on the structure of E and F ,
using Lemma 28. �

The useof an expressionin a complete program context of basetype de�nes the
contextual equivalencebetweenexpressionsin the following way.

De�nition 33 (Extensional contextual equiv alence)
Let e1, e2 bewell-typedexpressionssuch that � ; � 1; �; � ` e1 : A [C], and � ; � 2; �; � `
e2 : A [C], where � i are local to ei . Then e1 and e2 are contextually equivalent , writ-
ten

�; �; � ` � 1: e1
�= ctx � 2: e2 : A [C]

if and only if for every extensional expressioncontext E such that ` E[e1] : b and
` E[e2] : b, we have

E[e1] 7�! � v i� E[e2] 7�! � v:

It is trivial to show that the de�ned relation is indeedan equivalence.We cannow
proceedto establish the soundnessof the logical relations with respect to contextual
equivalence, as we only need to restrict the attention to program contexts of base
types.

Lemma 34
If �; �; � ` e1

�= e2 : A [C], then �; �; � ` e1
�= ctx e2 : A [C].

Pro of: By the congruenceproperty of �= (Lemma 32), for any well-typed exten-
sional context E, we have that E[e1] �= E[e2]. In the special casewhen E[ei ] are closed
and of basetype b, the relation ` E[e1] �= E[e2] : b by de�nition implies that E[e1] and
E[e2] evaluate to the samevalue. BecauseE is chosenarbitrarily , the expressionse1

and e2 are contextually equivalent. �
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3.6 Notes

Related work on staged computation and run-time code generation

An early referenceto staged computation is [Ers77] which introduces staged com-
putation under the name of \generating extensions". Generating extensions for
purposesof partial evaluation were also foreseenby [Fut71], and the concept is
later explored and eventually expanded into multi-level generating extensions by
[JSS85,GJ95, GJ97]. Most of this work is done in an untyped setting.

The typed calculus that provided the direct motivation and foundation for our
system is the �

�

-calculus. It evolved as a type theoretic explanation of stagedcom-
putation [DP01, WLPD98], and run-time code-generation[LL96, WLP98], and we
described it in Section 3.1.

Related work on metaprogramming

Most of the work on functional metaprogrammingtoday is related to the development
of MetaML [TS97, MTBS99, Tah99, Tah00].

The core fragment of MetaML is based on the �  -calculus. Formulated by
[Dav96], �  is the proof-term calculus for discrete temporal logic, and it provides
a notion of open object code where the free variables of the object expressionsare
represented by meta variables on a subsequent temporal level. The original moti-
vation of �  was to develop a type system for binding-time analysis in the setup
of partial evaluation, but it was quickly adopted for metaprogramming through the
development of MetaML.

MetaML builds upon the open code type constructor of �  and generalizesthe
languagewith several features. The most important one is the addition of a type
re�nement for closedcode. Valuesclassi�ed by the closedcode typesare those open
code expressionsthat do not contain any free meta variables. If an expressionis
typed as a closedcode, then it may be evaluated at run time.

It might be of interest here to point out a certain similarit y betweenour concept
of supports and the dead-code annotations usedin MetaML with references[CMT00,
CMS03]. MetaML cannot naively allow referencesto open code, in order to avoid
the extrusion of scope of bound variables. At the same time, limiting references
to closedcode types is too restrictiv e, as it rules out someprograms that are well-
typed in ML. Scope extrusion has to be allowed, but only if the extruding variables
are never encountered during evaluation. As a solution, MetaML with references
annotates terms with the list of free variables that the term is allowed to contain in
dead-code positions.

In contrast to MetaML, in the �
�

-calculus, free variables are represented by
names,and they are built into the calculus from the beginning. As a consequence,
only one modal constructor su�ces to classify both closedcode and code with free
variables, leading to a conceptually simpler type system. Furthermore, we do not
foreseethat any signi�cant problems will appear in the extension of �

�

with refer-
ences.

Taha and Nielsenpresent another systemfor combining closedand open code in
[NT03]. The systemcanexplicitly namethe object stagesof computation through the
notion of environment classi�ers. Becausethe stagesare explicitly named,each stage
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canberevisited multiple times and variablesdeclaredin previousvisits canbereused.
This feature provides the functionalit y of open code. The environment classi�ers are
related to our support variables in the sensethat they both are bound by universal
quanti�ers and they both abstract over sets. Indeed, our support polymorphism
explicitly abstracts over setsof names,while environment classi�ers are usedto name
parts of the variable context, and thus implicitly abstract over setsof variables.

Related work on higher-order abstract syntax

Coming from the direction of higher-order abstract syntax, probably the �rst work
pointing to the importance of a non-parametric binder like our � -abstraction is
[Mil90]. The connection of higher-order abstract syntax to modal logic has been
recognized by Despeyroux, Pfenning and Sch•urmann in the system presented in
[DPS97], which was later simpli�ed into a two-level system in Sch•urmann's dis-
sertation [Sch00]. The system presented in [Bj�99 ] is capable of pattern matching
against object-level programs, but is not concernedwith their evaluation. There is
also[Hof99] which discussesvarious presheafmodelsfor higher-order abstract syntax,
then [FPT99] which exploresuntyped abstract syntax in a categorical setup, and an
extension to arbitrary types[Fio02].

Related work on logic

The representation of syntactic expressionshas beeninvestigated in terms of modal
logic of provabilit y for quite some time. The connection between the two arises
from G•odel's Incompletenesstheorems, as for example described by Smorynski in
[Smo85]. Montague's work [Mon63] is an early referencetoward the impossibility of
a formal system that can reasonabout its own syntax and at the sametime reect
the syntactically obtained results and treat them as true.
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Chapter 4

Mo dal theory of e�ects

4.1 Prop ositional lax logic

4.1.1 Judgmen ts and prop ositions

Lax logic [FM97] is a logic for reasoningabout truth of propositions under certain
constraints. Unlike in modal logic of partial judgments (Section 2), where the par-
tialit y conditions are explicitly speci�ed by the support of the judgment and can
be manipulated using the reection principle, in lax logic the constraints are left
abstract and unspeci�ed.

Following closelyPfenning and Davies [PD01], we start the judgmental formula-
tion of lax logic with the hypothetical judgments, one for the unconstrained truth
and one for lax truth:

A1 tr ue;: : : ; An tr ue ` A tr ue

and
A1 tr ue;: : : ; An tr ue ` A lax

In the development of lax logic, we use�, rather than � to vary over setsof true
hypotheses.The reasonsfor this changeof notation will becomeclear subsequently,
when we present the embedding of propositional lax logic into the propositional
modal logic. With this notational convention in mind, we write our two judgments
as � ` A tr ue and � ` A lax.

Just asusual, the hypothetical truth is internalized using implication, except that
in this casewe denote the constructor as ) , to di�eren tiate the lax implication from
the implication usedin modal logic. Thus, we will have the following standard rules
for implication

� ; A tr ue ` B tr ue

� ` A ) B tr ue

� ` A ) B tr ue � ` A tr ue

� ` B tr ue

On the other hand, A lax is supposedto hold if, intuitiv ely, the proposition A
is true under some,unspeci�ed constraints. The following two statements formally
capture this intuition and can be taken as de�nitional clausesfor A lax.

De�nition of lax truth

1. If � ` A tr ue then � ` A lax.

119



4.1. LAX LOGIC CHAPTER 4. EFFECTS

2. If � ` A lax and � ; A tr ue ` B lax, then � ` B lax.

The �rst clause states that if A is true, then A is certainly true under some
constraint (namely, the trivial constraint that is always satis�ed). In the second
clause,if A is true under someconstraint, then any consequenceof the unconditional
truth of A will itself be constrained by the original conditions imposedon A.

Internalizing lax truth into the unconstrainedtruth judgment proceedsalong the
familiar lines. We introduce a new unary connective  on propositions, with the
formation rule

A prop

 A prop

and with the introduction rule that relates the new connective to the lax judgment.

� ` A lax

� `  A tr ue

As customary, here we assumethat each proposition A appearing in the judgments
is well-formed.

The elimination rule for  follows the secondde�nitional principle above, but
combines it with the introduction rule for  .

� `  A tr ue � ; A tr ue ` B lax

� ` B lax

We alsoneeda rule to realizethe �rst de�nitional principle and provide a coercion
from true to lax propositions.

� ` A tr ue

� ` A lax

This axiomatization is locally sound and complete, as witnessedby local reduction
and expansion. The local reduction is justi�ed by the de�nitional property (2) above,
from the premises� ` A lax and � ; A tr ue ` B lax.

� ` A lax

� `  A tr ue � ; A tr ue ` B lax

� ` B lax

=) R � ` B lax

� `  A tr ue =) E
� `  A tr ue

� ; A tr ue ` A tr ue

� ; A tr ue ` A lax

� ` A lax

� `  A tr ue

Example 24 The following are somejudgments derivable in lax logic.

1. ` A )  A tr ue

2. `   A )  A tr ue
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3. ` (A ) B ) )  A )  B tr ue

Derivation of ` A )  A tr ue.

A tr ue ` A tr ue

A tr ue ` A lax

A tr ue `  A tr ue

` A )  A tr ue

Derivation of `   A )  A tr ue.

  A tr ue `   A tr ue

 A tr ue `  A tr ue

A tr ue ` A tr ue

A tr ue ` A lax

 A tr ue ` A lax

  A tr ue ` A lax

  A tr ue `  A tr ue

`   A )  A tr ue

Derivation of ` (A ) B ) )  A )  B tr ue.

 A tr ue `  A tr ue

(A ) B ) tr ue ` A ) B tr ue A tr ue ` A tr ue

(A ) B ) tr ue;A tr ue ` B tr ue

(A ) B ) tr ue;A tr ue ` B lax

(A ) B ) tr ue; A tr ue ` B lax

(A ) B ) tr ue; A tr ue `  B tr ue

(A ) B ) tr ue `  A )  B tr ue

` (A ) B ) )  A )  B tr ue

�

Lax logic and mo dalities

From the logical standpoint, onecan imagine that each possibleworld of modal logic
represents a certain { abstract { constraint from the lax logic. Then the judgment
A lax expressesthat there existsa world (i.e. a constraint) in which A is true. Thus,
the judgment for lax truth is semantically very similar to the judgment for possibility,
becauseboth represent a form of existential quanti�cation.

Indeed, the two judgments sharevery similar typing rules and substitutions prin-
ciples. In fact, upon inspection of the typing rules, there appearsonly onedistinction:
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the judgment for lax truth hasonly onecontext of hypotheses�, while the judgment
for modal possibility hastwo contexts � and �, distinguishing betweennecessaryand
true hypotheses.Intuitiv e reasoningthen leads to the following conclusion: if truth
and necessity of modal logic areequated,that will have asa consequencethe equating
of lax truth with modal possibility, and respectively,  with 3 . Note that conating
truth and necessity doesnot conate thesetwo with possibility. If a proposition A is
possible,then it is true at someaccessibleworld (and hencenecessaryat that world).
But it neednot be true and necessaryat the current world.

A precisestatement of this observation involves embedding lax logic into modal
logic. In particular, if A tr ue and A nec are equated on the modal side, then the
propositions A and � A becomelogically equivalent. Henceforth, a lax proof de-
pending on a hypothesisA tr ue, will correspond to a modal proof that dependson
� A tr ue. Similarly, a lax proof dependingon A lax, will correspond to a modal proof
that depends on � A poss. Becausethe judgments for lax truth and for possibility
are not usedas hypotheses,the embedding has to manipulate the internalized forms
of the two judgments. Thus a lax proof depending on  A tr ue should correspond
to a modal proof depending on 3 � A tr ue.

More formally, considerthe translation (� )+ of lax propositionsinto modal propo-
sitions, discovered by Pfenning and Davies in [PD01]:

(A ) B )+ = � A+ ! B +

( A)+ = 3 � A+

P+ = P for atomic P

(�)+ = �

(� ; A tr ue)+ = � + ; A+ nec

Then the following lemmas establishesthe formal correspondencebetween the two
logics.

Lemma 35
1. If � ` A tr ue then � + ; � ` A+ tr ue in modal logic.

2. If � ` A lax then � + ; � ` � A+ poss.

Pro of: By simultaneous induction on the derivations of the �rst judgments [PD01].
�

For the opposite direction, we needan inversetranslation (� ) � , mapping modal
propositions into lax propositions.

(A ! B ) � = A � ) B �

(� A) � = A �

(3 A) � =  A �

P � = P for atomic P

(� ; A nec) � = � � ; A � tr ue

(� ; A tr ue) � = � � ; A � tr ue
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Notice that (A+ )� = A.

Lemma 36
1. If �; � ` A tr ue in modal logic, then (� � ; � � ) ` A � tr ue in lax logic.

2. If �; � ` A poss, then (� � ; � � ) ` A � lax.

Pro of: By simultaneous induction on the given derivation. �

Theorem 37
1. � ` A tr ue in lax logic if and only if � + ; � ` A+ tr ue in modal logic.

2. � ` A lax if and only if � + ; � ` A+ poss

Pro of: The left-to-righ t direction is Lemma 35. For the right-to-left direction
of the �rst statement, if � + ; � ` A+ tr ue in modal logic, then by Lemma 36,
(� + )� ` (A+ )� tr ue, and therefore � ` A tr ue in lax logic. Similar reasoning
proves the secondstatement as well. �

From the axiomatic standpoint, the identi�cation of truth and necessity in con-
structiv e S4modal logic can be accomplishedby addition of the singleaxiom scheme
(or inferencerule)

A ! � A tr ue

Indeed, becauseconstructive S4 already proves � A ! A tr ue, adjoining A !
� A tr ue annihilates the logical distinction between A and � A, and correspond-
ingly, betweentruth and necessity. Notice that if A and � A are equivalent in modal
logic, then instead of the translation (� )+ we could usethe translation (� ) � (de�ned
below), as A+ and A � are equivalent for any A.

(A ) B ) � = A � ! B �

( A) � = 3 A �

P � = P for atomic P

(�)� = �

(� ; A tr ue) � = (� � ; A � nec)

Moreover, the equivalencebetweenA+ and A � leadsto the following theorem.

Theorem 38
1. If � ` A tr ue in lax logic, then � � ; � ` A � tr ue in modal logic with A ! � A.

2. If � ` A lax in lax logic, then � � ; � ` A � poss in modal logic with A ! � A.

3. If �; � ` A tr ue in modal logic with A ! � A, then (� � ; � � ) ` A � tr ue in lax
logic.

4. If �; � ` A poss in modal logic with A ! � A, then (� � ; � � ) ` A � lax in lax
logic.
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Pro of: The �rst two statements trivially follow from Lemma 35 by the equiv-
alence of the translations (� )+ and (� ) � . For the third statement, assumethat
�; � ` A tr ue in modal logic extended with B ! � B . Then by Lemma 36,
(� � ; � � ) ` A � tr ue in lax logic extended with (B ! � B ) � . But, (B ! � B ) � is
equal to B � ) B � , which is already derivable in lax logic. Thus, (� � ; � � ) ` A � tr ue
in lax logic with no additions. The proof of the fourth statement is similar. �

As a consequence,� ` A tr ue and � ` A lax are derivable in lax logic if
and only if � � ; � ` A � tr ue and � � ; � ` A � poss, are derivable in modal logic with
A ! � A, respectively. Notice, however, that the translation (� ) � simply renames
the lax connectives into modal connectives. In other words, the intuitionistic lax
logic is obtained when the constructive modal S4 is extendedwith the axiom scheme
A ! � A. In that case,modal possibility attains the properties of lax truth, and
correspondingly, the operator 3 becomes .

The described embedding also explains why lax logic has only one modal con-
structor, corresponding to 3 , and lacks a constructor corresponding to � .

4.1.2 Lax � -calculus

In this section,wedecoratethe judgments of lax logic with proof terms. The obtained
proof term system, called lax � -calculus, extends the ordinary � -calculus with new
syntactic categoriesto account for the speci�cs of lax logic. Again, we follow Pfenning
and Davies [PD01] in the presentation. The judgments � ` A tr ue and � ` A lax
are now changed into � ` e : A and � ` f :s A, where e and f are proof terms
witnessing the judgments. The syntax of the calculus is summarizedbelow.

Types A; B ::= P j A ) B j  A
Expressions e ::= x j �x :A: e j e1 e2 j val f
Phrases f ::= e j let val x = e in f
Variable contexts � ::= � j � ; x:A

As can be noticed, the syntactic categoriesof expressionsand phrasesare slightly
di�eren t from the categoriesof expressionsand phrasesusedin the modal � - and � -
calculi. Weretain the sameterminology, however, in order emphasizethe relationship
betweenthe modal and lax calculi.

As customary in the transition from logic to � -calculus, the the context � now
contains propositions labeled with variables, so that instead of A tr ue we write x:A.
We present the type systembelow.

� ; x:A ` x : A

� ; x:A ` e : B

� ` �x :A: e : A ) B

� ` e1 : A ) B � ` e2 : A

� ` e1 e2 : B
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� ` e : A

� ` e :s A

� ` f :s A

� ` val f :  A

� ` e :  A � ; x:A ` f :s B

� ` let val x = e in f :s B

As can be seen, the proof terms constructors and the typing rules for uncon-
strained truth de�ne a fragment of the system that corresponds to the ordinary � -
calculus. On the other hand, the constructors and the rules for lax truth are similar
to the rules for the possibility fragment of the modal � -calculus from Section 1.2.

Example 25 The following are well-typed terms in the lax � -calculus.

1. ` �x: val x : A )  A

2. ` �x: val (let val y = x in let val z = y in z) :   A )  A

3. ` �f : �x: val (let val y = x in f y) : (A ) B ) )  A )  B

�

We now restate the de�nitional properties for the lax modalities using the newly
introduced proof terms of the lax � -calculus.

1. If � ` e : A, then � ` e :s A.

2. If � ` f 1 :s A and � ; x:A ` f 2 :s B , then � ` hhf 1=xii f 2 :s B .

The de�nitional property (1) simply expressesthat each expressioncan be coerced
into a phrase. The property (2) is a substitution principle for phrases. It usesa
similar form of phrasesubstitution hhf 0=xii f as the one de�ned in the caseof modal
possibility (Section 1.2).

hhe=xii f = [e=x]f

hhlet val y = e in f 0=xii f = let val y = e in hhf 0=xii f

The local reductions and expansionsof the calculus are

(�x :A: e1) e2 =) R [e2=x]e1

e : A ) B =) E �x :A: e x

let val x = val f 1 in f 2 =) R hhf 1=xii f 2

e :  A =) E val (let val x = e in x)
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4.1.3 Values and computations

In this sectionwereview the main resultson a monadictreatment of e�ects. The idea,
originally proposedby Moggi [Mog89, Mog91] for structuring denotational semantics,
and then adopted by Wadler [Wad92, Wad95, Wad98] for functional programming, is
to usea unary type constructor  (called monad), to distinguish in the type system
between values and e�ectful computations. We deliberately use the notation 
from lax logic, to emphasizethe connection betweenthe lax � -calculus and e�ectful
computations. We will make this connection more explicit subsequently.

For example, if A is a type of values,then  A classi�es computations of type A.
The reasonfor this distinction is that computations do not need to be pure. In the
courseof its evaluation, a computation is not limited to only compute a value { in
fact, it is not even required to { it may be evaluated in order to perform an e�ect.
For example, a computation may update the global store, raise an exception, per-
form I/O, or perhapsdiverge. As argued by many works on type-and-e�ect systems
([GL86, LG88, Mog91, Wad92, Wad95, Wad98, JG91, TJ94, TT97] among others),
and explored in the context of the programming languageHaskell [Pey03], it may be
bene�cial for the programming practice to make explicit in the type system that a
certain program expressionmay perform an e�ect. Such a type system restricts the
classof environments that an expressionmay interact with and makes the reason-
ing about e�ectful programs much more modular, and hencesimpler. This in turn
facilitates the compile-time discovery of programming errors related to e�ects, and
enablesmore aggressive optimizations.

The exact e�ects that a computation may perform may vary. However, indepen-
dently of the nature of particular e�ects, there are two genericoperations applicable
to any notion of computation:

1. Every valuee canbecoercedinto an e�ectful computation that trivially returns
that value.

2. Two e�ectful computations f 1 and f 2 can be composedas follows: �rst f 1 is
evaluated, and its value (if it exists) is supplied as an input to f 2. The result
is a computation \inheriting" the e�ects of both f 1 and f 2.

It is no accident that the description of these two generic operations relates so
closely to the de�nitional principles of lax logic and the lax � -calculus from the pre-
vious section. In fact, the lax � -calculusperfectly embodies the described distinction
betweenvaluesand computations, as witnessedby the following interpretation of its
syntactic categories.

1. An expressione : A describes a pure computations, which evaluates with no
side e�ects, and therefore producesa value of type A. From the operational
standpoint, an expressione is observationally equivalent to its value.

2. The phrase f :s A describes an e�ectful computation of type A. Two e�ect-
ful computations can be combined, as described by the phrase substitution
principle from the previous section.

3. An e�ectful computation f :s A can be internalized asan expressionval f :  A.
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4. An expressione : A (or moreprecisely, its value), canbecoercedinto an e�ectful
computation e :s A and then internalized into an expressionval e :  A.

In the original paperson monadic treatment of e�ects [Mog89, Mog91], Moggi has
proposeda monadic � -calculus as a general framework for describing operations on
e�ectful computations. The monadic � -calculus is very similar to the lax � -calculus,
but it doesnot make a judgmental separation betweenpure and e�ectful computa-
tions. Rather, it conates the notions of expressionsand phrases,and contains only
one judgment � ` e : A, with the following typing rules.

� ; x:A ` x : A

� ; x:A ` e : B

� ` A ) B

� ` e1 : A ) B � ` e2 : A

� ` e1 e2 : B

� ` e : A

� ` comp e :  A

� ` e1 :  A � ; x:A ` e2 :  B

� ` let comp x = e1 in e2 :  B

In fact, Moggi's formulation of the monadic � -calculus usesproof terms val and
let val , which we rename here into comp and let comp , to avoid confusion with
the constructors of the lax � -calculus.

The local reductions and expansionsof the monadic � -calculus are given as fol-
lows.

(�x :A: e1) e2 =) R [e2=x]e1

e : A ) B =) E �x :A: e x

let comp x = comp e1 in e2 =) R [e1=x]f 2

e :  A =) E let comp x = e in comp x

These reductions and expansions,however, are not su�cien t to explain all the in-
teractions betweene�ectful expressions.Becauseof the unusual elimination rule for
 , expressionsof monadic type may be introducedusing both comp and let comp
forms, but the local reduction for  only accounts for the �rst possibility. Thus,
the monadic � -calculusrequiresan additional equational rule to treat the commuting
conversionsbetweennested let comp expressions.

let comp x = (let comp y = e1 in e2) in e =)

let comp y = e1 in (let comp x = e2 in e)

Example 26 In the monadic � -calculus, the particular notions of e�ects are usually
speci�ed by a notational de�nition of the type  A and its corresponding expressions,
in terms of already available languageconstructs.
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For example, if we want a languagecapableof raising an exception of type E, we
use disjoint sums to de�ne the exception monad  and its corresponding monadic
term constructors [Mog91, Wad95].

 A = A + E

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x ) e2 j inr y ) inr y

There are also additional term constructors used to raise and handle the exception
associated with the monad  .

raise : E )  A

raise e = inr e

handle :  A ) (E ) A) ) A

handle e h = case e of inl v ) v j inr exn ) h exn

The constructor raise takesan expressione : E and coercesit into inr e. This way, it
implements exception raising, passingthe value of e along. The constructor handle
takesan expressione :  A and a function h representing an exception handler. If e
evaluates to a value v : A, the result of handling is v. If e raisesthe exception with
a value exn : E , then the result of handling is h exn.

The operational semantics follows the standard operational semantics associated
with disjoint sums. For example, let us assumethat  A = A + E is an exception
monad, and that f : in t )  in t . The following program adds the results of f 1 and
f 2. If the evaluation of any of the two function applications raisesan exception, the
overall computed result is zero.

handle (let comp x1 = f 1
comp x2 = f 2

in
comp (x1 + x2)

end) ( � exn. 0)

�

Example 27 In this example, we present the monad of side e�ects. The monad
of side e�ects de�nes computations that execute in a state. The computation can
read from the state, and modify it. Let S be a set of possible states. A stateful
computation of type A is a computation that may read from the current state,
before returning a value of type A, and a new state. Hence,stateful computations
are classi�ed by the the monad de�ned as follows.

 A = S ) (A � S)

comp e = �s :S: he;si

let comp x = e1 in e2 = �s :S: let hx; s0i = (e1 s) in (e2 s0)
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The type  A = S ) (A � S) expressesthe fact that a stateful computation is
a function: it reads from a state before returning a value and a new state. The
constructor comp coercesa value e into a trivial stateful computation that returns
e and the unchanged state. The constructor let comp evaluates e1 in the current
state, beforepassingthe obtained value x and the new state s0 to e2.

The type S and the notion of state associated with this monad may be de�ned
in many di�eren t ways, depending on the wanted side e�ects. For example, S may
represent memory store in which mutable referencesmay be allocated, read from and
written into [LP95, BHM02]. For simplicit y, in this examplewe assumethat the state
consistsof a single integer location which can be read and written. Correspondingly,
we set S = in t , and adjoin the following speci�c constructors to the state monad  .

read :  in t

read = �s :in t : hs; si

write : in t )  unit

write e = �s :in t : h() ; ei

init : in t )  A ) A

init e1 e2 = fst (e2 e1)

The stateful computation read returns the value of the integer location from the
state s; s remains unchanged. The computation write e changess so that the value
of e is now stored into it. This computation is not evaluated for its value, so that it
returns the trivial value ():unit . The constructor init initializes the state location
with the value of e1, then executesthe stateful computation e2 and returns the
computed value.

As an exampleof the constructors for stateful computations, considerthe program
below. In this program, we assumea function add : in t )  in t which adds its
argument to the value of the state location, while returning the old state value as a
result.

init 1 (let comp x = read
comp y = add (x)
comp dummy= write (y + 1)

in
read

end)

The program �rst initializes the state with 1, and then increments it by meansof the
function add. The value bound to y is 1, which is the old value of the state. Then
y + 1 = 2 is re-written into the state, and it is this value that is �nally computed by
the program. �

As establishedby Pfenning and Davies in [PD01] and Benton, Bierman, de Paiva
in [BBdP98] and Kobayashi [Kob97], both the lax � -calculus and the monadic � -
calculus are computationally adequate. However, becausethe lax � -calculus does
not require any special treatment for commuting conversions, it has a bit simpler
and more pleasant proof-theoretic properties.
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4.2 Mo dalities for e�ectful computation

As summarizedand illustrated in the previous section, monadsand lax logic can be
used to di�eren tiate in the type system between values and e�ectful computations.
Having in mind that the monadic and the lax � -calculi very closely correspond to
modal possibility, a natural question arises: doesa dual development to modal pos-
sibilit y and monadshave any computational import to the treatment of e�ects? In
other words, can we employ modal necessity to capture someinvariants of e�ectful
computations, and if so, which invariants doesmodal necessity represent?

We start our analysis of this question by making a distinction similar to the one
made in the monadic and the lax � -calculi in Section4.1.3. We assumethat the non-
modal type A corresponds to values, and that the modal types � A and 3 A stand
for somekind of computations of type A. But, what kind of computations exactly
do the two di�eren t modalities represent?

Let us �rst considermodal possibility, becauseit is related to lax logic and monads
from Section4.1, and thesehave beenextensively studied in the literature. We recall
the relevant typing rules and the substitution principle, in a version decoratedwith
the calculus of proof terms (Section 1.1.4).

�; � ` e : A

�; � ` e � A

�; � ` f � A

�; � ` dia f : 3 A

�; � ` e : 3 A �; x:A ` f � B

�; � ` let dia x = e in f � B

Substitution principle for possibilit y
If �; � ` f 1 � A and �; x:A ` f 2 � B , then �; � ` hhf 1=xii f 2 � B .

In the substitution principle for possibility, the operation of phrase substitution
hhf 0=xii f is de�ned as

hhe=xii f = [e=x]f

hhlet dia y = e in f 0=xii f = let dia y = e in hhf 0=xii f

The important observation about modal possibility is that it enforcesa program-
ming style by which the computations (and therefore, the corresponding e�ects) are
serialized, i.e. totally ordered. Indeed, each phrasewitnessing a possibility judgment
is a nested list of let dia clauses.Thus, for any two computations of types3 A and
3 B respectively, it is always evident from the program which of the two takesprece-
dence. For example, let e1 : 3 A and e2 : 3 B be two computations, and considerthe
phrase

F = let dia x1 = e1 in (let dia x2 = e2 in f )

It is clear from the form of F that e1 takes precedenceover e2, and that any sound
operational semantics for phraseswill have to evaluate e1 �rst, beforeattempting e2.
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Moreover, the de�nition of modal possibility prohibits writing phrasesin which this
ordering is not immediately evident. In particular, let F1 � A ! B and F2 � A be
two phrasesde�ned as follows:

F1 = let dia x1 = e1 in f 1 and F2 = let dia x2 = e2 in f 2

Then it is impossibleto put F1 and F2 together into an application like (F1 F2) where
it is unclear which of two phrases{ and which of the two computations e1 and e2 {
comes�rst. Indeed, F1 F2 is not a well-formed element of the category of phrases,
as de�ned in Section 1.1.4.

The operation of phrasesubstitution hhf =xii f 0 combines the substituted phrases
by giving precedenceto the e�ects of f over the e�ects of f 0. As an illustration, let
F 0 be another phrase with its own computational e�ects, and consider the phrase
substitution hhF=xii F 0, where F is de�ned above.

hhF=xii F 0 = (let dia x1 = e1 in let dia x2 = e2 in hhf =xii F 0)

Notice that the e�ectful computations e1 and e2 are the �rst two computations in
the result of the substitution, and therefore take precedenceover the computations
of F 0. As a conclusion,any operational semantics basedon the substitution principle
for possibility will respect the serialization speci�ed by the phraseconstructors and
appropriately order the computational e�ects of the program.

It is this property, sharedby both monadsand modal possibility, that makesthem
very appropriate for representing persistent e�ectful computations where an e�ect
may changethe environment in which the program executes.A changeinicted upon
the environment may inuence the subsequent computations. Therefore, in order to
have a well-de�ned semantics, it is important that the program e�ects are always
performed in a strictly speci�ed order. A typical example of the persistent kind of
e�ects is writing into a memory location. And indeed,as it is well-known from many
practical algorithmic and systemsapplications, writing into memory locations must
typically be serialized,so that the value stored in the location is always well-de�ned.

Of course, another way to specify the ordering of program e�ects is to de�ne
it by the operational semantics. This strategy is adopted by many programming
languages,a typical example being Standard ML [MTHM97 ]. But, a type system {
like that associated with monadsor modal possibility { that makes it explicit which
expressionsare e�ectful and which are not, has a certain advantage. It not only
speci�es the ordering of e�ects, but it provides the compiler with the knowledge
of e�ectful properties of program expressions. This knowledge can be utilized to
perform better optimizations. For example,if an expressionis e�ectful, then it should
be evaluated in the serialized order given by the program. But if an expressionis
pure, then its subterms may freely be rearranged, optimized, and evaluated out of
order.

Let usnow inspect the possibleuseof modal necessity for representation of e�ects.
We recall the relevant typing rules and the substitution principle for necessity, in its
version decoratedwith proof terms, as presented in Section 1.1.3.
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(� ; u::A); � ` u : A

�; � ` e : A

�; � ` box e : � A

�; � ` e1 : � A (� ; u::A); � ` e2 : B

�; � ` let box u = e1 in e2 : B

Substitution principle for necessit y
If �; � ` e1 : A and (� ; u::A); � ` e2 : B , then �; � ` [e1=u]e2 : B .

Unlike modal possibility, notice that modal necessity doesnot prescribe any par-
ticular ordering among e�ects. To contrast this with our previous discussionof pos-
sibilit y, let e1 : � A and e2 : � B be two computations, and consider the expressions
E1 : A ! B and E2 : A, de�ned as follows:

E1 = let box u1 = e1 in e0
1 and E2 = let box u2 = e2 in e0

2

Then it is perfectly well-de�ned to put together E1 and E2 into an application like
(E1 E2) : B . Observe that the languageconstructs used in this expressiondo not
specify which of the expressionsE1 and E2 { and thereforewhich of the computations
e1 and e2 { takes precedenceover the other. It must be left to the operational
semantics of the languageto determine the evaluation order between the two, but
any strategy is sound. Furthermore, unlike the phrase substitution principle, the
substitution principle for necessity relieson ordinary substitution [e1=u]e2 | it freely
propagatesand even duplicates e�ectful computations, without any concern for the
ordering of the e�ects involved.

As a consequence,if modal necessity is to represent e�ectful computations, these
could only be computations that do not change the run-time environment of the
program. The computations may depend on the environment, but they should not
change it | they are benign. Examples of benign e�ects abound: non-termination,
memory readsand control-o w e�ects like exceptions,to mention but a few.

The simplemodal typesystemin itself, however, is not strong enoughto represent
benigne�ects. In many casesof benigne�ects, resultsof benigncomputations depend
on the evaluation environment. It is of paramount importance, therefore, to prevent
evaluating e�ectful expressionswithin environments that cannot deal with the e�ect
in question. For example,an expressionthat readsfrom a memory location X should
only be evaluated when a memory location X is actually allocated and initialized.
An expressionraising the exception X should only be evaluated when a handler
for X is active. Thus, it is necessaryfor soundnesspurposesthat the type of a
benign computation captures the relevant aspects of the environment on which the
computation dependson.

This is wherenamesand supports, asdeveloped in Section2.2, becomeimportant.
Henceforth, rather than using a simple modal type system,we will considera modal
type system with namesand indexed modalities. For example, if a computation of
type A needsto read from the memory location X , or may raise the exceptionX , we
will ascribe it the type � X A. Namesand supports provide yet further possibilities.
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Using indexed necessity types,we can encode in the type system the notion of han-
dling, i.e. restoring the purit y of an impure computation by meansof someaction.
Handling will be related to the principle of reection from Section 2.1. When the
e�ect X in a computation of type � X A is handled, we obtain a pure computation of
type � A, and then a value of type A.

A following logical analogycan be madeabout modal typesfor e�ects. A compu-
tation of type A with a benign e�ect identi�ed by the nameX is, in a sense,a partial
computation. In order to produce a value of type A, it needsto be evaluated in an
environment capable of dealing with X . But it can be successfullyevaluated in all
such environments | hencewe can ascribe it the the bounded universal type � X A.
On the other hand, a persistent computation of type A that changesthe aspect of
the run-time environment associated with the name X (for example,writes into the
memory location X ), will be ascribed the bounded existential type 3 X A. Indeed,
such a computation is a witness that there existsan environment { the oneobtained
after changing X { in which a value of type A can be computed.

To summarize, we can use the modal type system with names to distinguish
between following computational categories: (1) values, which are associated with
non-modal typesA, (2) computations with benign e�ects, which are associated with
necessitation types � C A, and (3) computations with persistent e�ects, which are
associated with possibility types3 C A. In a modal type system with names,we can
also make a characterization of pure computations. A pure computation of type A is
a computation with no e�ects. In particular, it does not depend on any aspects of
the run-time environment, and can thereforebe ascribed a type � A, wherethe index
support on the modal operator is empty. A pure computation is not necessarilya
value itself, but it may be evaluated to produce a value. This property is logically
characterized by the axiom � A ! A of constructive S4 modal logic.

Just as in the caseof the monadic � -calculus, we will also want to coercevalues
into computations. But in the modal system,we can actually expressthat a compu-
tation obtained by coercing a value is, in fact, pure. An appropriate logical analog
of this coercion is the proposition

A ! � A

As already discussedin Section4.1, adjoining this proposition to CS4modal logic
results in two things: (1) modal possibility becomeslax truth, and correspondingly,
3 becomesa strong monad in the senseof Moggi [Mog91], and (2) the logical dis-
tinction between A and � A is annihilated. In lax logic, this resulted in removing
the operator � from considerations. If this axiom is adjoined to modal logic with
names,it again makes the typesA and � A logically equivalent. However, this does
not remove the need for the operator � and its associated proof terms. In modal
logic with names,there is a whole family of necessitationoperators � C , indexed by
supports C. Identifying A and � A certainly does not collapse this whole indexed
family. The operator � can still make distinctions betweenpropositions. For exam-
ple, one proposition that doesnot becomederivable after equating A and � A is the
implication � X A ! A: The computational content of this proposition states that
every computation with a benign e�ect X evaluates to a value. But this is obvi-
ously false. For example, a computation of type A that may raise the exception X ,
certainly neednot evaluate to a value. Indeed, it may actually raise the exception.
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Before we proceedwith the technical details of a modal type systemfor e�ectful
computations, we needto answer the following important question: do benign com-
putations indeedpresent a separatecategoryand require their own type constructor?
Is it possibleto perhapstreat benign computations using monadsor modal possibil-
it y, or to simply ignore their e�ects and consider them pure?

Of course, every benign computation may be consideredas trivially persistent,
and represented using the same mechanism of monads or modal possibility. But
that representation would fail to capture the important invariant that benign com-
putations do not changethe run-time environment, and therefore do not needto be
serialized. Indeed, why serialize two computations that both read from a memory
location X , when they could easily be evaluated out of order.

On the other hand, perhapsbenign computations may be consideredpure? After
all, this is exactly how non-termination is often treated in practice. Becausediverging
expressionsdo not changethe run-time environment (in fact, they do not evendepend
on the environment), non-termination in most casesis not even consideredan e�ect.
Unlike non-termination, however, not all benign e�ects are independent of the run-
time environment in which they are evaluated. For example, a computation that
reads from the memory location X will produce a di�eren t result, depending on
the content of X at the time of evaluation. Such a computation may therefore
be optimized, rearranged, memoized, evaluated out of order, or in parallel with
many other computations reading from X , but only as long as the content of X
is unchanged. In particular, this evaluation cannot be postponed beyond the �rst
subsequent write into X . This is very di�eren t from pure computations which can
be postponed inde�nitely , and only evaluated when their result is needed.

As a conclusionthen, it is sensibleto employ a modal type systemto distinguish
betweenvalues,pure computations, computations with benign e�ects, and computa-
tions with persistent e�ects. We proceedin the following section with a description
of the technical details of such a type system.

4.3 A mo dal typ e system for benign e�ects

The main judgment of the modal type system for benign e�ects is a variant of the
partial truth judgment for modal logic from Sections2.1 and 2.2:

�; � ` e : A [C]

We recall herethe relevant syntactic conventions. For example,the typing ascriptions
in the context � are of the form u:A [C], assigningthe type A and support C to the
variable u. The name context � consistsof type assignments X 1:A1, : : : , X n :An ,
associating namesX 1, : : : , X n with typesA1, : : : , An , respectively. All the names
usedin the typing judgment are required to bedeclaredand typed in �. It is assumed
that all the namesX 1; : : : ; X n are distinct, and the set f X 1; : : : ; X ng is denoted by
dom(�). The context � is dependently typed, becauseeach type A i may depend on
names. Thus, each X i may be usedonly to the right of its declaration in �.

In the modal system for benign e�ects, namesstand for the particular notion of
e�ects, and this notion may di�er from application to application. For example,if we
want to designa type system that tracks location reads in order to prevent reading
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from uninitialized locations, we will use namesto declare memory locations. If we
want to designa type systemthat tracks raising and handling of exceptions,we will
usenamesto declareindividual exceptions.

In the modal systemfor benign e�ects, the support C associated with the expres-
sion e lists the e�ects that may be enactedduring the evaluation of e. For example,
if the expressione may read from a location X :A, then the name X will be in the
support of e. If the expressione may raise the exception X :A, then the nameX will
be in the support of e. Support C will typically be a �nite set of names,but we will
also consider an application in Section 4.8, where C is a �nite list of names. What
is important, however, is that supports comeequipped with a partial ordering

C v D

whoseminimal element is the empty support (be it a set or a list). This is analogous
to the development of partial judgments in Chapter 2. The idea behind the partial
ordering of supports is the following: if the expressione has support C, then all the
e�ects that may arise during the evaluation of e are listed in C. But then, trivially ,
all thesee�ects are listed in D w C, and thus e could beascribed a support D aswell.
Thus, one of the important structural properties of the type system is the support
weakening principle phrasedas follows.

Principle (Supp ort weakening for expressions)
If �; � ` e : A [C] and C v D, then �; � ` e : A [D ].

By declaring which e�ects may be enacted by the expressione, the support C
also determinesin which run-time environments the expressione may be evaluated.
For example, if e may read from the location X , then e must be evaluated in an
environment in which X is initialized. Or, if e may raise an exception X , then e
must be evaluated in an environment with an active handler for X . Thus, our type
system will have a judgment for typing environments, in order to determine when
an environment � matches a support C. The general form of the judgment for
environments1 is:

�; � ` h� i : [C] ) [D ]

An expressione of support C may only appear in a context of an environment � that
is typed as [C] ) [D ] (for someD). Thus, the typing h� i : [C] ) [D ] declaresthat
� can appropriately deal with the e�ects C. We will keepthe environment judgment
unde�ned for a moment, and provide de�nitions for each particular notion of e�ect
that we consider in the subsequent sections. Obviously, the environment judgment
correspondsto the support judgment C sat [D ] from Section2.1 and the judgment of
explicit substitutions h� i : [C] ) [D ] from Section2.2. The environments aresubject
to the similar support weakening principles as explicit substitutions and C sat [D ].

Principle (Supp ort weakening for environmen ts)
If �; � ` h� i : [C] ) [D ] and D v D 0, then �; � ` h� i : [C] ) [D 0].

1Although, in speci�c caseswe will deviate slightly from this form in order to provide more
information relevant to the environments.
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The relationship between expressionsand environments is established in the type
system via the following rule corresponding to the rule for reection in Section 2.1.

�; � ` e : A [C] �; � ` h� i : [C] ) [D ]

�; � ` h� i e : A [D ]

This rule ensuresthat an expressione is always evaluated in a context of an en-
vironment � that can deal with the e�ects of e. In this sense,the type system of
benign e�ects may be seenasa particular versionof modal logic of partial truth from
Section 2, in which the processof reection is de�ned as evaluation.

There is one notable distinction, however, between benign e�ects and partial
truth. As the reader may have already noticed, none of the judgments for benign
e�ects usesthe context � , which is pervasivein modal logic of partial truth. There is
a reasonfor this omission. When expressionsare treated as e�ectful computations,
then valuesnaturally must be consideredas pure, i.e. e�ect free. Indeed, valuescan
never enact any e�ects, simply becausetheir evaluation is already �nished. Because
a pure computation returning a value of type A is itself typed as � A, treating values
like pure computations logically corresponds to extending the modal type system
with the axiom

A ! � A

This move is identical to the way lax logic and the lax � -calculus are obtained from
modal logic and the modal � -calculus(Section 4.1.2), wherewe usedthe above axiom
to identify truth and necessity. It is only that in the systemfor benigne�ects, westart
with a modal logic for partial judgments (Chapter 2), rather than the propositional
modal logic (Chapter 1). But if truth and necessity are identi�ed, then the context
of truth hypotheses� is subsumedby the context of necessity hypotheses�, as part
of � that declaresvariables of empty support. Correspondingly, in our notation we
will usex, y and variants to range over variables with empty support, and we write
x:A, instead of x:A [ ], when a variable x with empty support is declaredin �.

We immediately put this this notational convention to use in our formulation of
the typing rules for function typesA ! B .

�; (� ; x:A) ` e : B [ ]

�; � ` �x :A: e : A ! B [C]

�; � ` e1 : A ! B [C] �; � ` e2 : A [C]

�; � ` e1 e2 : B [C]

The typing rules follow the customary formulations for � -abstraction and application,
but there areseveral important observations to bemadeabout the support C in these
rules. First of all, notice that the abstraction �x :A: e requiresthe body e to be typed
with empty support. The motivation for this typing is purely computational. In the
usual formulation of operational semantics for functional programming languages,� -
abstractions are always consideredto be values. Becausewe want to identify values
and pure computations, we must require that function bodies be pure. The whole
� -abstraction itself may be ascribed an arbitrary support C, which is a formulation
required by the support weakening principle.

Example 28 Anticipating section 4.6, supposethat our languagecontains a con-
structor raise , such that raise X e raisesan exceptionX , passingthe value of e along
(assumingthat both X and e have the sametype). Expressionsthat may potentially
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raise the exception X , will be ascribed a support X by the type system. That way,
the type system keepstrack of the e�ects that an expressionmay cause. Assuming
that X is an exception of integer type, the following expressionF is not well-typed.

F = �y :in t : 1 + raise X y

The body 1+ raise X y of F is e�ectful and hassupport X . But then F itself cannot
be typed, becauseof the restriction on the rules for � -abstraction, asexplainedabove.

Notice that the restriction on the typing of F is necessary. Evenif F is a value,and
does not immediately perform an e�ect, it still cannot be consideredpure. Indeed,
F has the potential to perform an e�ect, once it is applied to an argument. If F is
typed aspure, the type systemwill not be able to account for the e�ect of F . This is
not to say that function bodies in our calculus cannot contain e�ectful terms. They
can, but the e�ects have to be encapsulated by the constructs for modal necessity.
For example, the term F 0 below is a well-typed counterpart to F .

F 0 = �y :in t : box (1 + raise X y) : in t ! � X in t

The typing of F 0 will be explained in detail in the forthcoming developments. �

A further observation about the typing rules for functions concernsthe seeming
mismatch between the support of the argument e2 in the application rule, and the
support with which the variablesare introducedin the context � in the � -abstraction
rule. Indeed, � -bound variables are declared in � with empty support, but e2 may
have an arbitrary support C. This mismatch is resolved by requiring that e2 must
always be evaluated under the current environment before its value is passedto e1.
Becausethe value of e2 is pure (just like any value), it matches the empty support
used to declarebound variables in �. As a consequence,the calculi that we design
in this section will inherently be call-by-value. To make our operational semantics
concrete,we will also imposea left-to-righ t evaluation strategy. Notice however, that
we deal with benign e�ects, and therefore the evaluations of the function and the
evaluation of function arguments do not interfere with each other. The type system
may in fact be soundly ascribed right-to-left or any other call-by-value evaluation
order.

From the logical standpoint, the describedmismatch in supports is justi�ed by the
observation that our type system identi�es truth and necessity, in the sameways it
is donein the formulation of lax logic (Section 4.1). Becauseof this identi�cation, all
of our expressionsare actually categorical, and are thereforesubject to reection. We
are freeto reect the argument e2 beforesubstituting into e1. As already discussed,in
the type systemfor benign e�ects reection corresponds to evaluation, so we simply
rely on the operational semantics to specify that e2 should be reected before we
passit to e1.

The notion of computation with benign e�ects is internalized into the calculus
by using the modal type constructor for necessity � . For example, given a type A,
the type � C A will classify the computations of type A, whoseevaluation may cause
the benign e�ects determined by the support C. The appropriate typing rules are
obtained by erasingthe context � from the standard formulation of the typing rules
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for � (Section 2.2.1).

�; � ` e : A [C]

�; � ` box e : � C A [D ]

�; � ` e1 : � C A [D ] �; (� ; u:A[C]) ` e2 : B [D ]

�; � ` let box u = e1 in e2 : B [D ]

We also have the following hypothesisrule

C v D

�; (� ; u:A[C]) ` u : A [D ]

The term box e : � C A is a value that encapsulatesan e�ectful computation e. As
already explained, when e is evaluated, it may enact the e�ects whose names are
listed in C. Becausebox e is a value, and therefore pure, it may be weakened to
an arbitrary support D . From the operational standpoint, boxing an expressione
suspends its evaluation. On the other hand, performing let box u = box e in e0

binds e to u, but does not necessarilyevaluate e itself. The expressione will be
evaluated only if u appears in e0 outside of boxed expressions.

It is interesting hereto draw a parallel betweenthe operational behavior of modal
constructors with the behavior of � -abstraction in impure functional languages.Sus-
pendingan e�ectful expressione in an impure functional languageis usually achieved
by creating a � -abstraction �x: e (where x 62fv(e)). For example, in a typical type-
and-e�ect system [GL86, LG88, JG91, TJ94], a computation is represented as a � -
abstractions whosetype is annotated with a list of e�ects. The characteristic typing
rules are usually a variation on the following.

�; (� ; x:A) ` e : B [C]
(� )

�; � ` �x :A: e : A C! B [ ]

�; � ` e1 : A C! B [D1] �; � ` e2 : A [D2]
(�� )

�; � ` e1 e2 : B [C; D1; D2]

Doesthis similarit y indicate that modal constructs are perhapssuperuous and may
be removed in favor of functional abstraction?

The answer to the above question is negative, as the import of the modal con-
structors in the languageof e�ects is not solely operational. Their main role is not
to suspend the evaluation of expressions,but to internalize the notion of e�ectful
computation. For example,note that the rules (*) and (**) are not locally complete,

and therefore are not logically justi�ed. The local expansion of e : A C! B [D ] is
given as

e : A C! B [D ] =) E �x: e x : A
C;D
! B

and the expressione hasa di�er ent type and support from its expansion. To contrast
this, local expansion in the calculus of benign e�ects preserves types and supports,
as can easily be checked from the equation below.

e : � C A [D ] =) E let box u = e in box u
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In fact, when e�ectful computations are internalized as a separatesemantic cat-
egory which is di�eren t from functions, then functions and function types are freed
from the responsibilit y to track e�ects. Moreover, in such situations functions are
usually required to be pure. This is not only the case in our calculus of benign
e�ects, but is also true of the monadic � -calculus [Mog91, Wad92]. In both cal-
culi, a function body may contain an e�ect only if the e�ect is encapsulatedby a
computation-forming construct. And in both calculi, the range type of such a func-
tion will be a computation type (monadic type  A in the monadic calculus, and a
modal type � C A in the calculus of benign e�ects).

Finally, our type systemneedsconstructs for introduction of freshe�ect instances
into the computation. Again, we adopt the approach from the modal calculus of
Section 2.2 with certain modi�cations.

(� ; X :A); � ` e : B [ ]

�; � ` � X :A: e : B [C]

�; � ` e : A 9 B [C]

�; � ` choose e : B [C]

The term constructor � X :A: e is the introduction form for the new type A 9 B .
It declares a fresh e�ect instance under the name X and introduces X into the
context of names�. Any unusednameX 62dom(�) would produce the sameresult,
as justi�ed by the renaming principle below. As a consequence,the form � X :A: e
actually binds the nameX , which can therefore be � -renamedinto any other unused
name of type A. The elimination form choose e allocates a new e�ect instance of
an appropriate type, and usesit instead of the name bound by e. The abstraction
� X :A: e is a value in our calculus, just like all the other type introduction forms that
we introducedso far. For the samereasonas in the caseof � -abstraction, we require
that the body of � -abstraction has empty support, in order to preserve the purit y of
values.

Principle (Renaming)
If (� ; X :A; � 1); � ` e : B [C] and Y :A is a fresh name, i.e. Y does not appear

anywhere in this judgments, then

(� ; Y :A; [Y=X ]� 1); [Y=X ]� ` [Y=X ]e : ([Y=X ]B ) [[Y=X ]C]:

To summarize,the calculusof benign e�ects is very similar to the fragment of the
� -calculus from Section 2 containing the � operator, with several important distinc-
tions. First of all, the calculus of benign e�ects admits the axiom A ! � A, which
is not realized in the � -calculus. The operational import of this axiom is to coerce
values into pure computations. As a consequence,the context � of value variables,
which is characteristic of the judgmental formulations of modal logic and modal cal-
culi, is subsumedby the context � in the calculus of benign e�ects. Second,bodies
of � - and � -abstractions in the calculus of benign e�ects must have empty support,
while in the � -calculus this support may be arbitrary . Third, and probably the most
important is that reection in the � -calculus is performed eagerly, upon modal sub-
stitution, and is de�ned on expressionsthat may contain free modal variables. In
the calculus of benign e�ects, reection of the expressione under the environment
� is speci�ed by a separateterm constructor h� i e. It is not tied to modal variables
and modal substitution.
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Beforewe concludethis section,we summarizethe syntax, typing and operational
semantics of the modal calculus for benign e�ects. Just as in Section 2.1, this will
not be a completesystem,but rather only the commoncorefragment that we extend
in future sectionwith constructs de�ning particular e�ects. In each of thesecaseswe
will provide the appropriate proofs of progressand type preservation.

Names X ; Y 2 N
Supports C; D ::= � j C; X
Types A; B ::= P j A ! B j � A j A 9 B j : : :
Expressions e ::= u j �x :A: e j e1 e2 j

box e j let box u = e1 in e2

� X :A: e j choose e j : : :
Variable contexts � ::= � j � ; u:A[C]
Name contexts � ::= � j � ; X :A

The type system consists of the judgments for formation of contexts, types and
supports, as well as the typing judgment for expressions�; � ` e : A [C]. We only
present the later, as the formation judgments are identical to the onesconsideredin
previous sections. In the de�nition of the typing judgment, it is implicitly assumed
that all parts of the judgment are well-formed.
De�nition of �; � ` e : A [C].

C v D

�; (� ; u:A[C]) ` u : A [D ]

�; (� ; x:A) ` e : B [ ]

�; � ` �x :A: e : A ! B [C]

�; � ` e1 : A ! B [C] �; � ` e2 : A [C]

�; � ` e1 e2 : B [C]

�; � ` e : A [D ]

�; � ` box e :
�

D A [C]

�; � ` e1 :
�

D A [C] �; (� ; u::A[D ]) ` e2 : B [C]

�; � ` let box u = e1 in e2 : B [C]

(� ; X :A); � ` e : B [ ]

�; � ` � X :A: e : A � B [C]

�; � ` e : A � B [C]

�; � ` cho ose e : B [C]

Example 29 If C; C1; C2 and D are well-formed supports, then the following are
derivable typing judgments in the calculus of benign e�ects.

1. ` �x: box x : A ! � D A

2. ` �x: let box u = x in u : � A ! A [� ]

3. ` �x: let box u = x in box u : � C1 A ! � C A, where C1 v C

4. ` �x: let box u = x in box box u : � C1 A ! � D � C A, where C1 v C

5. ` �x: �y : let box u = x in let box v = y in box u v
: � C1 (A ! B ) ! � C2 A ! � CB , where C1; C2 v C
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Notice that the judgment (2) requires that the type of the abstraction argument
is � A, where the index on the modal operator is empty. Indeed, the following
generalizationof (2) to non-empty supports is not derivable in the calculusof benign
e�ects, becauseof the previously discussedrestriction that bodies of � -abstractions
must be pure.

6`�x: let box u = x in u : � C1 A ! A [C]

However, the hypothetical judgment corresponding to this implication is derivable,
as shown below.

x:� C1 A ` let box u = x in u : A [C]; where C1 v C

�

Example 30 To abbreviate notation and reduceclutter, we introduceinto the calcu-
lus the term constructor unbox e asa syntactic abbreviation for let box u = e in u.
The new term constructor has the following derived typing rule

�; � ` e : � CA [D ] C v D

�; � ` unbox e : A [D ]

We also de�ne let val x = e1 in e2 to stand for unbox (( �x: box e2) e1), rather
than the usual (�x: e2) e1. The additional complication arisesbecausewe have to
box e2 and make it pure before we can put it under a � -abstraction. The derived
typing rule for let val is

�; � ` e1 : A [C] �; (� ; x:A) ` e2 : B [C]

�; � ` let val x = e1 in e2 : B [C]

Similarly, the term constructor let name X :A in e is an abbreviation for

unbox (choose (� X :A: box e)) ;

with the typing rule below. It is assumedthat X is a fresh name which does not
appear in dom(�).

(� ; X :A); � ` e : B [C]

�; � ` let name X :A in e : B [C]

�

The operational semantics of this core fragment of the modal calculus of benign
e�ects is de�ned through the judgment

� ; e 7�! � 0; e0

which relates an expressione with its one-stepreduct e0. The expressionse and e0

must not contain any free variables. However, both e and e0 may contain e�ects,
whosenamesare declaredin � and � 0, respectively. The name context � 0 is always
an extensionof �, as the reduction step may introduce new namesto stand for new
e�ect instances.

141



4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

The operational semantics is a call-by-value, left-to-righ t, evaluation context se-
mantics in the style of Wright and Felleisen[WF94]. In order to perform one evalu-
ation step, the expressione is decomposeduniquely as e = E[r ], where r is a redex,
and E is an evaluation context, capturing the environment in which r is reduced.
Then it su�ces to de�ne primitiv e reduction relation for redexes(which we denote
by � ! ), and let the evaluation of expressions(which we denote by 7�! ) always �rst
reducethe redex identi�ed by the unique decomposition.

Values v ::= �x :A: e j box e j � X :A: e j : : :
Redexes r ::= (�x: e) v j let box u = box e in e j choose (� X : e)
Evaluation contexts E ::= [ ] j E e1 j v1 E j let box u = E in e j choose E

� ; (�x: e) v � ! � ; [v=x]e � ; let box u = box e1 in e2 � ! � ; [e1=u]e2

Y 62dom(�)

� ; choose (� X :A: e) � ! (� ; Y :A); [Y=X ]e

� ; r � ! � 0; e0

� ; E [r ] 7�! � 0; E [e0]

4.4 Dynamic binding

Syntax and t yping

The type system that we develop in this section is intended to model memory allo-
cation, lookup and non-destructive update. The idea is to view namesas memory
locations of arbitrary type, and track their dereferencingthrough the mechanism of
supports. Looking up a name in a given environment will be an e�ect, and sub-
stituting a name with a term by meansof an explicit substitution will handle this
e�ect. The operational semantics evaluates expressionswith empty support, and
hencepermits dereferencingof only those namesthat are captured by someexplicit
substitution. Thus, we can only dereferenceinitialized names.

In a sense,this system is a middle way between a calculus with local variables
and let-de�nitions on one side, and a calculus of state on the other side. Names
are really allocated memory locations, but at the same time, assigning values to
namesvia explicit substitutions is not a destructive operation. Each name can be
assigneda value an arbitrary number of times (including zero), but the assignment
only have local scope, and dereferencinga name will use the nearest assignment.
Thus, the obtained calculus is really a type-safeversion of dynamic binding, much in
the style of LISP and Scheme. We will build on this system in Section 4.5 to obtain
a more generalcalculus of state with destructive update. The previous work related
to dynamic binding is discussedin at the end of this chapter in Section 4.9.

The syntax of the calculus for dynamic binding extends the core fragment with
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new constructs for name lookup and substitution. The modal constructor � is used
to internalize e�ectful computations. An expressionof type � C A is a computation
that produces a value of type A when executed, but in the course of evaluation
may needto dereferencethe nameslisted in the support C. In the caseof dynamic
binding, supports are setsof names,and the partial ordering on supports is de�ned as
the subsetordering on sets. In other words, C v D if and only if C � D . Obviously,
the empty set is the minimal element of this ordering. The resulting languageis very
similar to the � -calculus from Section 2.2. However, dynamic binding is an example
of a calculus of benign e�ects, and it inherits the distinctiv e features of the core
calculus for benign e�ects (summarized in Section 4.3).

In dynamic binding, the environment in which expressionsareevaluated is a store,
consisting of a set of names(i.e., memory locations) each of which is associated with
a value. We represent storesusing explicit substitutions. An explicit substitution �
is syntactically de�ned as a set of assignments of expressionsto names. A name X
is referencedby simply using it in someterm. The construct h� i e applies � over the
expressione, or alternatively, evaluates e in the store represented by �.

Explicit substitutions � ::= � j X ! e;�
Expressions e ::= : : : j X j h� i e

Example 31 Let us assumethat X and Y are integer names. The code segment
below de�nes a benign computation u that readsfrom X and Y to return X 2 + Y 2.
Then X and Y are initialized to 1 and 2, respectively, beforeu + 2X Y is evaluated.

- let box u = box (X2 + Y2)
in

<X->1, Y->2> (u + 2XY)
end;

val it = 9 : int

�

The semantics of explicit substitutions is de�ned as in Section 2.2.3, subject to
some minor modi�cation. We repeat the de�nition here in a more compact form,
and point out the di�erences from the previous sections.

Explicit substitutions are partial functions from namesto terms. In other words,
an explicit substitution never assignsan expressionto a name more than once,and
there is no ordering between the substitution assignments. Given a substitution �,
the domain and range of � are the sets

dom(�) = f X j X ! e 2 � g

and
range(�) = f e j X ! e 2 � g

The set fn(�) of freevariablesof � is de�ned asthe set of freevariablesof expressions
in range(�). The set fn(�) of free namesof � is the set of namesin the domain and
range of �. We denote the empty substitution simply by h i .
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Every substitution � de�nes a unique function of substitution application f � g
on expressions.Substitution application f � ge is capture-avoiding and is de�ned by
induction of the structure of e as follows.

f � g X = �( X )
f � g u = h� i u
f � g (h� 0i e) = h� � � 0i e
f � g (�x :A: e) = �x :A: e x 62fv(�)
f � g (e1 e2) = f � ge1 f � ge2

f � g (box e) = box e
f � g (let box u = e1 in e2) = let box u = f � ge1 in f � ge2 u 62fv(�)
f � g (� X :A: e) = � X :A: e X 62fn(�)
f � g (choose e) = choose f � ge

As usual, substitution application does not descendunder box. Names appearing
in a internalized computations neednot be initialized becausean internalized com-
putation is suspended, and hence its names are not dereferenced. However, when
a computation is actually unboxed and executed, this has to be done in a scope
of a substitution that initializes the relevant names, as illustrated in Example 31.
This aspect of explicit substitutions emphasizesand illustrates our observation from
Section 4.3 that modal constructors do not simply serve to suspend computations.
As the above de�nition shows, the construct box e, in addition to suspending the
evaluation of e, also \protects" the expressione from the surrounding explicit sub-
stitutions.

To outline somefurther aspects of the above de�nition, notice that substitution
application over a variable u is explicitly remembered, resulting in a term h� i u.
When the variable u is substituted by a certain expression,the namesappearing in
this expressionwill be initialized by �. On the other hand, substitution application
does not descendinto � - and � -abstractions, becausethe type system guarantees
that abstraction bodies are pure, and therefore name-free.

The operation of substitution application dependsupon the operation of substi-
tution composition � 1 � � 2, which is de�ned as in Section 2.2.3.

� 1 � � 2 = f X ! f � 1g([[� 2]](X )) j X 2 dom(� 1) [ dom(� 2)g

The operation is well-founded { computing � 1 � � 2 only requires applying � 1 to
subterms in range(� 2). On the other hand, substitution application is de�ned in-
ductively, so the sizeof terms on which it operates is always decreasing.

The type systemfor dynamic binding extends the core system for benign e�ects
with rules that describe the speci�c aspectsof namedereferenceand substitution. In
particular, the judgment for expressionsis extendedwith the rules

X :A 2 �

�; � ` X : A [C; X ]

�; � ` e : A [C] �; � ` h� i : [C] ) [D ]

�; � ` h� i e : A [D ]
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where the judgment �; � ` h� i : [C] ) [D ] types explicit substitutions, and is
axiomatized as follows.

C v D

�; � ` h i : [C] ) [D ]

�; � ` e : A [D ] �; � ` h� i : [C n X ] ) [D ] X :A 2 �

�; � ` hX ! e;� i : [C] ) [D ]

Support of an expressiondescribeswhich namesthe expressionmay dereference.In
line with this semantics, the rule for name dereferencingallows X to be used only
if it is present in the support set C; X . Substitutions initialize the names in the
expressionover which they are applied, and so the rule for substitution application
requiresthat the domain support C of the substitution � matchesthe support of the
argument expressione.

Example 32 Consider the ML-lik e program below.

let val xref = ref 0
fun f (y) = !xref + y
val z = f 1

in
((x:=1; f 1), z)

end

A similar program can be written in the calculus of dynamic binding as follows.

- let nameX : int
in

<X -> 0>
let fun f(y : int) : � X int = box (X + y)

box u = f 1
val z = u

in
(<X -> 1>u, z)

end
end;

val it = (2, 1) : int * int

The variable u is bound to the computation (X + 1) , and thus X must be initialized
before u is used. In this particular example, the �rst unsuspended referenceto u
(and therefore to X as well) is in the scope of the substitution <X -> 0> and the
secondone is in the scope of <X -> 1>. �

Op erational semantics

The evaluation judgment for dynamic binding extends the core fragment with the
new construct for substitution application. The judgment still has the form

� ; e 7�! � 0; e0
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where � and � 0 are run-time contexts of currently allocated, but not necessarily
initialized, names. And we still only considerevaluation of expressionse which have
empty support.

We adopt a call-by-value strategy for evaluating substitutions; that is, all the
assignments in a substitutions are �rst reduced to values, before the substitution
itself is applied. To formalize this policy, we de�ne the notion of value substitutions,
and use it to extend the evaluation contexts and redexesof the calculus of benign
e�ects. The de�nition of the syntactic categoriesthat are immediately relevant to
the operational semantics of the calculus are summarizedbelow.

Values v ::= �x :A: e j box e j � X :A: e
Value substitutions � ::= � j X ! v; �
Evaluation contexts E ::= [ ] j E e1 j v1 E j let box u = E in e j choose E j

h� ; X ! E ; � i e
Redexes r ::= (�x: e) v j let box u = box e in e j

choose (� X : e) j h� i e

� ; (�x: e) v � ! � ; [v=x]e � ; let box u = box e1 in e2 � ! � ; [e1=u]e2

Y 62dom(�)

� ; choose (� X :A: e) � ! (� ; Y :A); [Y=X ]e � ; h� i e � ! � ; f � ge

� ; r � ! � 0; e0

� ; E [r ] 7�! � 0; E [e0]

Note that the operational semantics does not evaluate under explicit substitu-
tions, and thus uninitialized nameswill never be encountered during the evaluation.
Rather, the expressionh� i e is reduced by �rst employing the meta operation f � ge
to carry out the substitution � over e, before the evaluation can proceed.

Structural prop erties and t yp e soundness

The structural properties and the main substitution principles of the calculus for
dynamic binding follow closely the presentation from Section 2.2.3. This is not sur-
prising, as the calculus of dynamic binding di�ers very slightly from the � fragment
of the modal � -calculus. As already argued in the previous sectionsof this chapter,
the main distinctions between the two calculi involve: (1) the context � is omitted
in the calculus of dynamic binding; (2) functional and � -abstractions are restricted
to bodies with empty support, and (3) explicit substitutions are not restricted to
appear only around modal variables. These distinctions, however, do not seriously
inuence the proofs of the main properties.

For example, the explicit substitution principle is a straightforward adaptation
of the corresponding explicit substitution principle from Section 2.2.3.
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Lemma 39 (Explicit substitution principle)
Let �; � ` h� i : [C] ) [D ]. Then the following holds

1. if �; � ` e : A [C], then �; � ` f � ge : A [D ]

2. if �; � ` h� 0i : [C1] ) [C], then �; � ` h� � � 0i : [C1] ) [D ]

Pro of:
The proof is by simultaneous induction on the structure of the derivations. The

interesting part is the secondinduction hypothesis,whoseproof utilizes the splitting
of 	 = � � � 0 into two disjoint sets

	 0
1 = f X ! �( X ) j X 2 dom(�) n dom(� 0)g

	 0
2 = f X ! f � g(� 0(X )) j X 2 dom(� 0)g

The argument proceedsin an identical as in Section 2.2.3. �

The calculusof benign e�ects (and thus, the calculusof dynamic binding aswell),
doesnot contain a notion of ordinary value variables, so the Value substitution prin-
ciple of the modal � -calculus (Theorem 11) doesnot have an equivalent in dynamic
binding. However, the Modal substitution principle (Theorem 13) does,becausethe
variables in calculus of dynamic binding really correspond to the modal variables of
the modal � -calculus. Becausethese are the only variables in dynamic binding, we
emphasizethis fact by renaming the principle into Expressionssubstitution principle.

Lemma 40 (Expression substitution principle)
Let �; � ` e1 : A [C]. Then the following holds:

1. if �; (� ; u:A[C]) ` e2 : B [D ], then �; � ` [e1=u]e2 : B [D ]

2. if �; (� ; u:A[C]) ` h� i : [D 0] ) [D ], then �; � ` h[e1=u]� i : [D 0] ) [D ]

Pro of: By simultaneous induction on the two derivations. Selectedcasesare pre-
sented below.

case e2 = box e0, where B = � D 0B 0.

By derivation, �; (� ; u:A[C]) ` e0 : B 0[D 0]. By the �rst induction hypothesis,
�; � ` [e1=u]e0 : B 0[D 0]. Now the result follows by the de�nition of substitu-
tion, and the typing rule for box.

case e2 = let box u0 = e0 in e00.

By derivation, �; (� ; u:A[C]) ` e0 : � D 0B 0[D ] and also�; (� ; u:A[C]; u0:B 0[D 0]) `
e00: B [D ]. By induction hypothesis, we have �; � ` [e1=u]e0 : � D 0B 0[D ] and
�; (� ; u0:B 0[D 0]) ` [e1=u]e00 : B [D ]. This immediately leads to the result, by
the typing rule for let box.

�

The next lemma allows for exchanging expressionsin context, as long as their
types agree. It will be used later in the proofs of Preservation (Lemma 44) and
Progress(Lemma 46).

147



4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

Lemma 41 (Replacemen t)
If �; � ` E [e] : A [� ], then there exist a type B such that

1. �; � ` e : B [� ], and

2. if � 0 extend � , and � 0; � ` e0 : B [� ], then � 0; � ` E [e0] : A [� ]

Pro of:
By induction on the structure of E . The base casewhen E = [ ] is obvious.

For a more complicated case, consider E = h� ; X ! E1; � i e1, where X :B 0 2 �.
By derivation, �; � ` E1[e] : B 0[� ], and the �rst statement of the lemma follows
immediately by the induction hypothesis.

For the secondstatement of the lemma, consider � 0 � � and e0 such that � 0; � `
e0 : B [� ]. By induction hypothesis, � 0; � ` E1[e0] : B 0[� ]. The result now follows by
the typing rules for explicit substitutions.

�

Lemma 42 (Canonical forms)
Let v be a value such that �; � ` v : A [C]. Then the following holds:

1. if A = A1 ! A2, then v = �x :A1: e and �; x:A1 ` e : A1 [ ]

2. if A = � D B , then v = box e and �; � ` e : B [D ]

3. if A = A1 9 A2, then v = � X :A1: e and (� ; X :A1); � ` e : A2 [ ]

As a consequence,the support of v is empty, and can be weakenedarbitrarily .

Pro of: By a straightforward caseanalysis. �

Primitiv e reduction in the calculus of dynamic binding preserves types, as the
Subject reduction lemma shows.

Lemma 43 (Sub ject reduction)
If �; � ` e : A [� ] and � ; e � ! � 0; e0, then � 0 extends � and � 0; � ` e0 : A [� ].

Pro of: The caseswhen e = (�x: e0) v or e = let box u = box e1 in e2 follow by
the expressionsubstitution principle. If e = choose � X : e1 follows by the de�nition
of primitiv e reduction, and the typing rules.

The only mildly interesting caseis when e = h� i e1. In this case,by derivation,
�; � ` e1 : A [C1], and �; � ` h� i : [C1] ) [� ]. By the explicit substitution principle,
�; � ` f � ge1 : A [� ]. But, by de�nition of the primitiv e reductions, it is exactly
� 0 = � and e0 = f � ge1; this concludesthe proof. �

Lemma 44 (Preserv ation)
If �; � ` e : A [� ] and � ; e 7�! � 0; e0, then � 0 extends � , and � 0; � ` e0 : A [� ].

Pro of: By evaluation rules, there existsan evaluation context E such that e = E[r ],
� ; r � ! � 0; r 0 and e0 = E[r 0]. By replacement, there exists B such that �; �; � ` r :
B [� ].
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By subject reduction, � 0 extends �, and � 0; � ` r 0 : B [� ]. By replacement again,
� 0; � ` E [r 0] : A [� ]. Sincee0 = E[r 0], this proves the lemma.

�

Lemma 45 (Unique decomp osition)
If e is a closedexpression(i.e., e doesnot contain any freevariables,but may contain
free names) then either:

1. e is a value, or

2. e = E[X ], for a unique evaluation context E and a name X , or

3. e = E[r ] for a unique evaluation context E and a redex r .

Pro of: By induction on the structure of e. A representativ e caseis when e is an
application of an explicit substitution. In this casewe distinguish three possibilities:

1. e = h� ; X ! E1[Y ]; � i e2. In this case,just pick E = h� ; X ! E1; � i e2, and
the secondstatement of the lemma holds.

2. e = h� ; X ! e1; � i e2, where e1 is not a name in context (this casewas consid-
eredabove), nor a value. In this case,by induction hypothesis,e1 = E1[r ]. We
pick E = h� ; X ! E1; � i e2, and the third statement of the lemma holds.

3. e = h� i e2. In this case,pick E = [ ], r = e, and the third statement of the
lemma holds.

�

Finally, we can now show that the calculus of dynamic binding satis�es the the
usual progressproperties, i.e., that the evaluation of well typed closedexpressions
do not get stuck.

Lemma 46 (Progress)
If �; � ` e : A [ ], then either

1. e is a value, or

2. there exists a term e0 and a context � 0, such that � ; e 7�! � 0; e0.

Pro of: Becausee has empty support, by unique decomposition, e is either a value,
or there exists unique E and r such that e = E[r ]. In casee is not a value, by
replacement lemma, there exists B such that �; � ` r : B [� ]. By caseanalysisof the
structure of r , it is clear that there exists � 0 and e1 such that � ; r � ! � 0; e1. By the
rules for evaluation, � ; E [r ] 7�! � 0; E [e1], so we simply pick e0 = E[e1]. �

The progresslemma proves that a well typed term can always be reduced, but
does not say anything about the uniquenessof this reduct. And indeed, just as
in the modal � -calculus, this reduct is not unique, but the only di�erence between
reducts is due to the di�eren t choicesof fresh namesthat may be allocated during
the reduction.
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Lemma 47 (Determinacy)
If � ; e 7�! n � 1; e1 and � ; e 7�! n � 2; e2, then there exists a permutation of names
� : N ! N , �xing the domain of � , such that � 2 = � (� 1) and e2 = � (e1).

Pro of: Analogous to the proof of determinacy for the modal � -calculus (Theo-
rem 18). �

4.5 State

Syntax and t yping

In the calculusof dynamic binding from Section4.4, namesstand for (possiblyunini-
tialized) memory locations and explicit substitutions assignvalues to locations. In
this sense,dereferencinga name corresponds to a read, and substituting for a name
correspondsto an update. But, asthe following dynamic binding program illustrates,
explicit substitutions may not perform the update destructively.

let nameX : int
in

<X -> 0>
let fun f(y: int) : � X int = box (X + y)

box u = f 1
in

(<X -> 1>u, u + 1)
end

end

Indeed, the subterm <X -> 1>u cannot possibly destructively update X to 1 before
evaluating u, simply becausethe old value of X (in this case0), has to be preserved
for the evaluation of the secondelement of the pair, u + 1. Explicit substitutions
and dynamic binding alone are too weak. This limitation, however, is only to be
expected. After all, the calculus of dynamic binding is a calculus of benign e�ects.
The modal operator � C may only classify e�ectful computations that do not change
the run-time environment in which the program evaluates. Destructively writing into
memory certainly performs exactly such a change.

The solution is to serialize the explicit substitutions, so that oncea substitution
is attempted, its scope extends to the rest of the program; it is never required to
revert back to someprevious substitutions. Thus, there would always be exactly one
substitution \activ e" at every single moment, and it would play the role of global
store.

As wealready mentioned in Section4.2, the serialization of e�ectful computations
is exactly the duty of modal possibility. Thus, if we want to use explicit substitu-
tions to model destructive state update, we need to tie explicit substitutions to 3 .
Intuitiv ely then, we should obtain a whole family 3 C of possibility operators indexed
by support sets,where the type 3 C A classi�es an explicit substitution for C paired
up with a computation of type A. More concretely, 3 C A typesprograms of type A
that �rst write destructively into locations C and then compute a value of type A in
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the new state. This would pleasantly contrast the type � C A that we already used
in Section4.4 to type programsthat read from locations C beforecomputing a value
of type A.

The described typing of the calculus for destructive update will obviously be
very similar to simultaneous possibility from Sections2.1.4 and 2.2. We start the
development by de�ning the following syntactic categorieson top of the syntax of
the calculus of dynamic binding.

Types A ::= : : : j 3 C A
Phrases f ::= [� ; e] j let dia x = e in f j let box u = e in f
Expressions e ::= : : : j dia f

As expected, the grammar of types is extended with the family 3 C A, whoseterm
constructor is dia f , encapsulatinga phrasef . Phrasesare a new syntactic category
intended to describe computations which change the global store. The basic phrase
constructor is the form [� ; e] which ties a substitution � and a term e together;
this is a computation which �rst writes into the locations determined by � before
evaluating e in the new store. When � is the empty substitution, we will simply
write e instead of [�; e]. The changes to the global store are actually enacted by
the elimination form let dia . This form takes an expressione which evaluates to
a phrase, thus carrying a substitution � and an expressione1. The substitution �
is then promoted into a global store, after which e1 is evaluated and bound to x,
before the evaluation of f is undertaken. The phraseform let box u = e in f takes
a computation internalized by the expressione and binds it to u to be used in the
phrasef .

Example 33 Assuming that X and Y are integer names,the expression

let dia z = dia [<X->1, Y->2>, 2XY]
in

X2 + Y2 + z
end

writes 1 and 2 into the locations X and Y respectively, then binds 4 to the local
variable z, before the evaluation steps to the phrase[<X->1, Y->2>, X2 + Y2 + 4] .

�

The type system for state with destructive update consistsof two mutually re-
cursive judgments: one for typing expressions,and another one for typing phrases.
The expressionjudgment extends the system from Section 4.3, and has the form

�; � ` e : A [C]

establishing that e may possibly read from locations listed in the support set C. The
phrase judgment has the form

�; � ` f � C A [D ]

This judgment establishesthat the phrasef consistsof a substitution of type [C] )
[D ], and an expressionof type A. The expressionmay dereferencethe namesfrom
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the support C, becausethey are initialized by the substitution. We present the type
system below, and comment on the rules.

De�nition of �; � ` f � C A [D ].

�; � ` h� i : [C] ) [D ] �; � ` e : A [C]

�; � ` [� ; e] � C A [D ]

�; � ` e : 3 C1 A [D ] �; (� ; x:A) ` f � C2 B [C1]

�; � ` let dia x = e in f � C2 B [D ]

�; � ` e : � C A [D ] �; (� ; u:A[C]) ` f � C2 B [D ]

�; � ` let box u = e in f � C2 B [D ]

De�nition of �; � ` e : A [C].

�; � ` f � D A [C]

�; � ` dia f : 3 D A [C]

The phrase[� ; e] is a computation that, when executed,changesthe global store
according to �, and then evaluates e in the changed store. Thus, the typing rule
for [� ; e] requires that the names used in e are all de�ned by �. In other words,
the support of e must match the domain type of �. In this respect, the phrase
constructor [� ; e] is similar, somewhatcuriously, to the constructor for substitution
application h� i e, as indeed witnessedby their typing rules (seeSection 4.4). The
two constructors, however, have very di�eren t operational meanings. The explicit
substitution h� i e carries out � over the expressione. In the phrase [� ; e], the sub-
stitution � is not applied over e; rather, it is composedwith the current global store
to a�ect a change of the environment. The �rst construct provides non-destructive
location update, while the secondis usedwhen destructive update is required. What
is interesting is that both capabilities harmoniously coexist within the system.

The typing rule for dia is a judgmental coercion from phrasesto expressions.
It internalizes a computation with persistent e�ects, so that it can be used as an
ordinary expression.To justify the typing rule for let dia x = e in f on the grounds
of its intended operational behavior, observe that e : � C1 A [D ], and therefore e
internalizes a phrase consisting of substitution � : [C1] ) [D ] and expressione0 :
A [C1]. The role of let dia is to institute the substitution � as a new global store
providing de�nitions for namesin the support C1, then evaluate e0 to a value, bind it
to x and proceedwith the evaluation of f . Following this semantics, we can allow f
to be supported by C1, becausethe new global store in which f is evaluated de�nes
the namesfrom C1. We are also free to declarex as being of empty support in the
typing of f , becausex will always be bound to a value.
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Example 34 We will usesomefurther syntactic abbreviations as well. Recall that
in the calculus of benign e�ects, we abbreviated:

let val x = e1 in e2 = unbox (( �x: box e2) e1)

let name X :A in e = unbox (choose (� X :A: box e))

We need similar constructs in the syntactic category of phrases;we de�ne them in
terms of let val and let name for expressions.

let val x = e in f = let dia y = (let val x = e in dia f ) in y

let name X :A in f = let dia y = (let name X :A in dia f ) in y

In contrast to the let box construct for phrases,which is primitiv e in the calcu-
lus, and must be present in order to ensure the subformula property, let val and
let name do not eliminate any type and hence do not have any proof theoretic
signi�cance. The typing rules for the two are easily derived as

�; � ` e : A [C] �; (� ; x:A) ` f � D B [C]

�; � ` let val x = e in f � D B [C]

(� ; X :A); � ` f � D B [C]

�; � ` let name X :A in f � D B [C]

�

Example 35 If C and D are well-formed supports, then the following are derivable
judgments in the calculus of state.

1. ` �x: dia (let dia y = x in [�; y]) : 3 D A ! 3 C A, where C � D

2. ` �x: dia [�; x] : A ! 3 A

3. ` �x: dia (let dia y = x in let dia z = y in [�; z]) : 3 C 3 D A ! 3 D A

4. ` �x: �y : let box u = x in dia (let dia z = y in [�; u z])
: � C (A ! B ) ! 3 D A ! 3 D B , where

C � D

As an illustration, we present the derivation of the judgment (1).

x:3 D A ` x : 3 D A

C � D

x:3 D A; y:A ` h�i : [C] ) [D ]

; � C

x:3 D A; y:A ` y : A [C]

x:3 D A; y:A ` [�; y] � C A [D ]

x:3 D A ` let dia y = x in [�; y] � C A

x:3 D A ` dia (let dia y = x in [�; y]) : 3 C A

` �x: dia (let dia y = x in [�; y]) : 3 D A ! 3 C A

153



4.5. STATE CHAPTER 4. EFFECTS

As can be noticed, the function (1) simply � -expands its argument x. It illustrates
that strengthening at the index supports of 3 types is derivable. This is not sur-
prising, as strengthening only involves forgetting someentries from the substitution
associated with the phrasex. The rest of the expressionsgeneralizethe characteris-
tic axioms of the constructive S4 modal possibility introduced in Section 1.1.4. For
example, function (2) is a coercion from expressionsinto phraseswith empty substi-
tution; notice that the range type is 3 A with empty index support. Coercionsfrom
A to 3 C A with non-empty C are not generally available as they require providing
de�nitions for each name in C. In other words,

6`�x: dia [�; x] : A ! 3 C A

However, the following hypothetical judgment is derivable:

x:A ` dia [�; x] : 3 C A [D ] if C � D ;

as witnessedby the derivation below.

C � D

x:A ` h�i : [C] ) [D ]

; � C

x:A ` x : C

x:A ` [�; x] � C A [D ]

x:A ` dia [�; x] : 3 C A [D ]

Function (3) illustrates that it is only the last layer of 3 's that matter; all the
additional ones can be ignored. Function (4) takes x:� C (A ! B ) and y:3 C A as
arguments. The argument x embodies a computation u:A ! B [C] which depends
on namesC in order to generatea function of type A ! B . The argument y is a
computation that provides a term v:A and de�nitions for namesin C (and possibly
somemore, sinceits index support is D � C). The de�nitions from y are then placed
into the global store and usedas an environment for evaluating u v. �

Example 36 We can use the new type and term constructors for possibility to
serialize the examplegiven at the beginning of the section.

let nameX : int
dia dummy= dia [<X->0>, ()]
fun f(y : int) : � X int = box (X + y)
box u = f 1
val z = u + 1
let dia w = dia [<X->1>, u]
in

(w, z)
end

end

In the last line of this program, weabbreviated, and insteadof [<>, (w, z)] , simply
wrote (w, z) . The program is well-typed in the judgment of phrases,and has the
type in t � in t .
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We next informally describe the evaluation of this program, with the goal of
supplying the intuition for the next section, where we present the operational se-
mantics of the calculus. The evaluation starts by allocating an integer name X ,
which promptly becomespart of the global store, initialized to 0. Then the function
f is de�ned. Notice that we assumerecursive function de�nitions, which are easily
added to the languagewithout any technical problems. The evaluation proceedsby
computing f 1, which evaluatesto box (X + 1), sothat u is bound to X + 1. Because
global store declaresthat X ! 0, the variable z is bound to 2, which is the value of
u + 1 relative to the current global store. Subsequently, however, the global store is
changed into X ! 1, and the variable w is bound to the value of the expressionu,
as computed in this new version of the store. As u is bound to X + 1, w is assigned
the value 2. Thus, the �nal outcome of the evaluation is the pair (2; 2). Observe
that the �nal result doesnot depend on the name X ; this is enforcedby the typing
rules for let name . As a consequence,X can silently be omitted from the store at
the end of the evaluation. �

Op erational semantics

In this section we develop a call-by-value left-to-righ t operational semantics for the
calculus of state with both the modal constructors � and 3 . We ignore the phrase
constructors let val and let name as they are only syntactic sugar and do not
inuence the properties we explore here.

The �rst step is to extend the meta operation of substitution application to
account for the new constructs.

f � g dia f = dia f � gf

f � g [� 0; e] = [� � � 0]e
f � g let dia x = e in f = let dia x = f � ge in f
f � g let box u = e in f = let box u = f � ge in f � gf

Note that the substitution application is carried out only over the branch e, but not
over the body f of a let dia construct. This is justi�ed becausef is evaluated under
a substitution determined by e; any inuence that � might have over f has to be
via e.

The operational semantics is de�ned by meansof two evaluation judgments: one
for expressionsand onefor phrases.We adopt a particular formulation of thesejudg-
ments which emphasizesthe relationship betweenthe simultaneousmodal possibility
and global state. The expressionevaluation judgment has the form

� ; e �7�! � 0; e0

and reads: in a context of declared locations � and a store � assigning values to
theselocations (and somelocations may remain uninitialized), the term e stepsinto
e0 and possibly introduces new locations � 0. The evaluation steps cannot change
the store � , as expressionscan only read from the store but not write into it. The
de�nition is a straightforward extension of the operational semantics of dynamic
binding (Section 4.4).

155



4.5. STATE CHAPTER 4. EFFECTS

The judgment for evaluating phrasesprescribesevaluation of stateful constructs.
It has the form

(� ; � ); f 7�! (� 0; � 0); f 0

where f steps into f 0, changing in the processthe set of allocated locations from
� into � 0 and the global store from � into � 0. The evaluation strategy that we
consider will evaluate under the constructor dia only if it is found in a let-branch
of a let dia . This way, the changesto the global store prescribed under dia will
take place only when they are serializedby a let dia . Note that this is not the only
possibleevaluation strategy, but it is the one that relatessimultaneouspossibility to
global state and destructive update. Following this idea, we extend the categoriesof
values,evaluation contexts and redexesfrom Section 4.3 as summarizedbelow.

Values v ::= �x :A: e j box e j � X :A: e j dia f
Value substitutions � ::= � j X ! v; �
Evaluation contexts E ::= [ ] j E e1 j v1 E j let box u = E in e j

choose E j h� ; X ! E ; � i e
Redexes r ::= (�x: e) v j let box u = box e in e j

choose (� X : e) j h� i e j X
Phrasecontexts F ::= [ ] j let dia x = E in f j let dia x = dia F in f j

let dia x = dia [h� ; X ! E ; � i ; e] in f j
let dia x = dia [�; E ] in f j
let box u = E in f

Phraseredexes c ::= let dia x = dia [� ; e] in f j
let dia x = dia [�; v] in f j
let box u = box e in f

The two evaluation judgments require two primitiv e reduction relations: a primitiv e
reduction for expressions �� ! , and a primitiv e reduction for phrases� ! .

Primitiv e reduction for expressions.

� ; (�x: e) v �� ! � ; [v=x]e � ; let box u = box e1 in e2
�� ! � ; [e1=u]e2

� ; choose (� X :A: e) �� ! (� ; X :A); e � ; h� 0i e �� ! � ; f � 0ge

� ; X �� ! � ; � (X )
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Primitiv e reduction for phrases.

� 0 6= (�)

(� ; � ); let dia x = dia [� 0; e] in f � ! (� ; � � � 0); let dia x = dia [�; e] in f

(� ; � ); let dia x = dia [�; v] in f � ! (� ; � ); [v=x]f

(� ; � ); let box u = box e in f � ! (� ; � ); [e=u]f

Evaluation for expressions.

� ; r �� ! � 0; e0

� ; E [r ] �7�! � 0; E [e0]

Evaluation for phrases.

� ; r �� ! � 0; e0

(� ; � ); F [r ] 7�! (� 0; � ); F [e0]

(� ; � ); c � ! (� 0; � 0); f 0

(� ; � ); F [c] 7�! (� 0; � 0); F [f 0]

All the rules are fairly straightforward, except the one for primitiv e reduction of
phraseswith nonempty substitution. The meaningof this rule is to changethe global
store according to the phrasesubstitution and continue evaluating in the new store.
Thus, the substitution � 0 is moved out of the phraseand composedwith � which is
the current global store. Observe that this rule is required in order to preserve the
soundnessof the operational semantics. In the phraselet dia x = dia [� ; e] in f , the
type systemassumesthat the variable x has empty support. Thus, the expressione
has to be reducedto a value (as valueshave empty support), beforeit can be bound
to x.

Structural prop erties and t yp e soundness

The calculus of state is an extension of the calculus of dynamic binding from Sec-
tion 4.4 with the possibility judgment and the languageconstructs corresponding to
possibility. It's structural properties and substitution principles, thus, extend the
properties of the calculus of dynamic binding, and are also straightforward adapta-
tions of the propertiesof the modal � -calculusfrom 2.2.3. We list the main properties
below, and comment on their proofs.

The support weakening lemmais standard, and will beusedfurther in this section
in the proof of the Replacement lemma (Lemma 52).
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Lemma 48 (Supp ort weakening)
1. if �; � ` e : A [C] and C v D, then �; � ` e : A [D ]

2. if �; � ` h� i : [C1] ) [C] and C v D, then �; � ` h� i : [C1] ) [D ]

3. if �; � ` f � C1 A [C] and C v D, then �; � ` f � C1 A [D ]

Pro of: By a simultaneous induction on the stricture of the three main derivations.
�

The expressionsubstitution principle correspondsto the modal substitution prin-
ciple from Section 2.2.3.

Lemma 49 (Expression substitution principle)
Let �; � ` e1 : A [C]. Then the following holds:

1. if �; (� ; u:A[C]) ` e2 : B [D ], then �; � ` [e1=u]e2 : B [D ]

2. if �; (� ; u:A[C]) ` h� i : [D 0] ) [D ], then �; � ` h[e1=u]� i : [D 0] ) [D ]

3. if �; (� ; u:A[C]) ` f � C1 B [D ], then �; � ` [e1=u]f � C1 B [D ]

Pro of: By simultaneous induction on the structure of the three derivations. We
present the casef = let dia x = e in f 0 in the proof of the third statement. In
this case,by derivation, �; (� ; u:A[C]) ` e : 3 C0A0[D ], and �; (� ; u:A[C]; x:A0) `
f 0 � C1 B [C0], for somesupport C0 and type A0. By the �rst �rst induction hypoth-
esis, �; � ` [e1=u]e : 3 C0A0[D ]. By the third induction hypothesis, �; (� ; x:A 0) `
[e1=u]f 0 � C1 B [C0]. Now the result follows by the typing rule for let dia . �

The explicit substitution principle is also a straightforward adaptation.

Lemma 50 (Explicit substitution principle)
Let �; � ` h� i : [C] ) [D ]. Then the following holds:

1. if �; � ` e : A [C] then �; � ` f � ge : A [D ]

2. if �; � ` h� 0i : [C1] ) [C], then �; � ` h� � � 0i : [C1] ) [D ]

3. if �; � ` f � C1 A [C], then �; � ` f � gf � C1 A [D ]

Pro of: The proof is by simultaneous induction on the three judgments. It is anal-
ogous to the proof of the explicit substitution principle for the modal � -calculus
from Section 2.2.3. We present the casewhen f = [� 0; e], in the proof of the third
statement.

In this case,by derivation, �; � ` e : A [C1] and �; � ` h� 0i : [C1] ) [C]. By
the secondinduction hypothesis, �; � ` h� � � 0i : [C1] ) [D ]. Now, result follows
by typing rule for phrases. �

Lemma 51 (Canonical forms)
Let v be a value such that �; �; ` v : A [C]. Then the following holds:

1. if A = A1 ! A2, then v = �x :A1: e and �; x:A1 ` e : A1 [ ]
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2. if A = � D B , then v = box e and �; � ` e : B [D ]

3. if A = A1 9 A2, then v = � X :A1: e and (� ; X :A1); � ` e : A2 [ ]

4. if A = 3 D B , then v = dia f and �; � ` f � D B [C]

As a consequence,the support of v is empty, and can be weakenedarbitrarily .

Pro of: By a straightforward caseanalysis. �

The next Replacement lemma allows expressionsand phrasesto be exchanged
in an expressionand phrase contexts respectively. Of course, the replacement ex-
pressionsand phraseshave to match the type of the expressionor the phrasethat is
being replaced. Notice that the Replacement lemma in this section, unlike the Re-
placement lemma of the calculus for dynamic binding, considersnon-empty supports
in the typing judgments. The reasonis that, unlike in dynamic binding, the calculus
of state allows evaluation of expressionsand phraseswith non-empty support C, as
long as the namesfrom C are initialized by the global store.

Lemma 52 (Replacemen t)
1. If �; � ` E [e] : A [C], then there exists a type B such that

(a) �; � ` e : B [C], and

(b) if � 0 extends � , and � 0; � ` e0 : B [C], then � 0; � ` E [e0] : A [C]

2. If �; � ` F [e] � C A [D ], then there exists a type B such that

(a) �; � ` e : B [D ], and

(b) if � 0 extends � and � 0; � ` e0 : B [D ], then � 0; � ` F [e0] � C A [D ]

3. If �; � ` F [f ] � C A [D ], then there exists a type B and support C1 such that

(a) �; � ` f � C1 B [D ], and

(b) if � 0 extends � and D1 is a support set such that � 0; � ` f 0 � C1 B [D1],
then � 0; � ` F [f 0] � C A [D1]

Pro of: By simultaneous induction on the structure of the contexts E and F . We
present the proofs for induction hypotheses(2) and (3), as the case(1) is similar to
the proof of Replacement for dynamic binding (Lemma 41).

For the induction hypothesis(2), the following casesmay appear.

case F = let dia x = E1 in f . By derivation, �; � ` E1[e] : 3 C1 A1 [D ], and
�; x:A1 ` f � C A [C1]. By �rst induction hypothesis, there exists B such that
�; � ` e : B [D ]. Also, if � 0; � ` e0 : B [D ], then � 0; � ` E1[e0] : 3 C1 A1 [D ].
Conclusion now follows by typing rule for let dia .

case F = let dia x = dia F1 in f . By derivation, �; � ` F1[e] � C1 A1 [D ], and
�; x:A1 ` f � C A [C1]. By secondinduction hypothesis, there exists B such
that �; � ` e : B [D ]. Also, if � 0; � ` e0 : B [D ], then � 0; � ` F1[e0] � C1 A1 [D ].
The result again follows by typing for let dia .
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case F = let dia x = dia [h� ; X ! E1; � i ; e] in f , whereX :B1 2 �. By derivation,
�; � ` E1[e] : B1 [D ], and �; x:A1 ` f � C A [C1]. By �rst induction hypothesis,
there exists B such that �; � ` e : B [D ]. Also, if � 0; � ` e0 : B [D ], then
� 0; � ` E1[e0] : B1 [D ]. Once again, the typing for let dia lead to the required
conclusion.

case F = let dia x = dia [�; E1] in f . By derivation, �; � ` E1[e] : A1 [C1], where
C1 � D , and �; x:A1 ` f � C A [C1]. By support weakening, �; � ` E1[e] :
A1 [D ] and �; x:A1 ` f � C A [D ]. By �rst induction hypothesis,there exists B
such that �; � ` e : B [D ]. Also, if � 0; � ` e0 : B [D ], then � 0; � ` E1[e0] : A1 [D ].
Finally, usethe typing rule for let dia again to concludethe proof.

For the induction hypothesis(3), the following casesmay appear.

case F = [ ]. In this case,obviously, pick B = A, and C1 = C to �nish the proof.

case F = let dia x = dia F1 in f 1. By derivation, �; � ` F1[f ] � C0 A0[D ], and
�; x:A0 ` f 1 � C A [C0]. By third induction hypothesis, there exist B and C1

such that �; � ` f � C1 B [D ]. Also, if � 0; � ` f 0 � C1 B [D1], then � 0; � `
F1[f 0] � C0 A0[D1]. The result again follows by typing rules for let dia .

�

The Subject reduction lemma establishesthat primitiv e reductions preserve types
and supports. Notice that in the calculusof state, the evaluation is always undertaken
relative to a global store � : [C] ) [ ], which provides de�nitions for a certain set
of namesC that the evaluated expressionsand phrasesare allowed to dereference.
Notice that the evaluation of expressionsmay only depend on the global store � , but
the evaluation of phrasesmay change � into somenew � 0 : [C0] ) [ ]. Of course,in
the typing of the new global store, C0 will always be a well-formed support set, as
the lemma below postulates.

Lemma 53 (Sub ject reduction)
Let �; � ` h� i : [C] ) [ ]. Then the following holds:

1. if �; � ` e : A [C] and � ; e �� ! � 0; e0, then � 0 extends � and � 0; � ` e0 : A [C]

2. if �; � ` f � D A [C] and (� ; � ); f � ! (� 0; � 0); f 0, then � 0 extends � and � 0; � `
h� 0i : [C0] ) [ ] and � 0; � ` f 0 � D A [C0] for somesupport set C0 � dom(� 0)

Pro of: By caseanalysis of the possiblereductions. We present the selectedcases.

case e = h� 0i e1. By derivation, �; � ` e1 : A [C0], and �; � ` h� 0i : [C0] ) [ ]. By
explicit substitution principle, �; � ` f � 0ge1 : A [ ]. By de�nition, e0 = f � ge1,
which �nishes the proof.

case e = X , where X :A 2 �. By derivation, X 2 C, and thus by typing for
substitutions �; � ` � (X ) : A [ ]. Furthermore, because� is a valuesubstitution,
� (X ) is a value, so by canonical forms lemma, its support can be arbitrarily
weakened; in particular �; � ` � (X ) : A [C].
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case f = let dia x = dia [� 1; e] in f 1. By de�nition, � 0 = � and � 0 = � � � 1. By
derivation, �; � ` e : B [C0], and �; � ` h� 1i : [C0] ) [C], and �; x:B ` f 1 � D

A [C0]. By explicit substitution principle, �; � ` h� � � 1i : [C0] ) [ ]. Result
follows by typing rule for let dia .

case f = let dia x = dia [�; v] in f 1. By de�nition, � 0 = � and � 0 = � and C1 = C.
By derivation, �; � ` v : B [C1] for someC1 v C, and �; x:B ` f 1 � D A [C0]. By
canonicalforms lemma, �; � ` v � B [ ]. By support weakening, �; x:B ` f 1 � D

A [C]. Finally, by the expressionsubstitution principle, �; � ` [v=x]f 1 � D A [C].

�

The Preservation lemma extendsthe result of Subject reduction, which wasvalid
only on primitiv e reductions, to the evaluation relation.

Lemma 54 (Preserv ation)
Let �; �; ` h� i : [C] ) [ ]. Then the following holds:

1. if �; � ` e : A [C] and � ; e �7�! � 0; e0, then � 0 extends � and � 0; � ` e0 : A [C]

2. if �; � ` f � D A [C] and (� ; � ); f 7�! (� 0; � 0); f 0, then � 0 extends � and � 0; � `
h� 0i : [C0] ) [ ] and � 0; � ` f 0 � D A [C0] for somesupport set C0 � dom(� 0)

Pro of: The proof of statement (1), proceedsas follows. By evaluation rules, there
exists an evaluation context E such that e = E[r ], � ; r �� ! � 0; r 0 and e0 = E[r 0].
By the replacement lemma, there exists B such that �; � ` r : B [C]. By subject
reduction, � 0 extends �, and � 0; � ` r 0 : B [C]. By replacement again, � 0; � ` E [r 0] :
A [C]. Sincee0 = E[r 0] this provesstatement (1).

To prove the statement (2), observe that by the evaluation rules, it is either
f = F [r ] for someclosurecontext F and term redex r , or f = F [c] for someclosure
redex c.

If f = F [r ], then � ; r �� ! � 0; e0 and f 0 = F [e0], and � 0 = � and C1 = C. By the
replacement lemma, there exists B such that �; � ` r : B [C]. By subject reduction,
� 0 extends �, and � 0; � ` e0 : B [C]. By replacement lemma, � 0; � ` F [e0] : A [C].

On the other hand, if f = F [c], then (� ; � ); c � ! (� 0; � 0); c0 and f 0 = F [c0]. By
replacement lemma, there exists B and D 1 such that �; � ` c � D 1 B [C]. By subject
reduction, � 0 extends �, and � 0; � ` h� 0i : [C0] ) [ ], and � 0; � ` c0 � D 1 B [C0]. By
replacement lemma again, � 0; � ` F [c0] � D A [C0]. �

Lemma 55 (Progress for � ! )
Let � be an arbitrary value substitution. Then the following holds:

1. if �; � ` r : A [C], then there exists a term e0 and a context � 0, such that
� ; r �� ! � 0; e0.

2. if �; � ` c � D A [C], then there exist a phrasef 0, a value substitution � 0 and a
context � 0, such that (� ; � ); c � ! (� 0; � 0); f 0.
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Pro of: By caseanalysis over possibleredexes. For example, in the statement (1),
when r = X , for somename X , we can pick � 0 = � and e = � (X ). The other cases
of statement (1), as well as the statement (2) are also easyto establish. �

Lemma 56 (Unique decomp osition)
1. If e is a closedexpression(i.e., e doesnot contain any free variables,but it may

contain free names), then either:

(a) e is a value, or

(b) e = E[r ] for a unique evaluation context E and a redex r .

2. If f is a closedphrase,then either:

(a) f = [� ; e] for somesubstitution � and expressione, or

(b) f = F [r ] for a unique phrasecontext F and term redex r , or

(c) f = F [c] for a unique phrasecontext F and phraseredex c.

Pro of: Straightforward, by induction on the structure of e and f . �

As customary by now, we proceedto prove that in the calculus of state, well-
typed closedexpressionsand phrasesdo not get stuck, and that reductions from one
and the sameexpressionor a phrase di�er only in the choice of new names. These
claims are formalized by the Progressand Determinacy lemmasbelow.

Lemma 57 (Progress)
Let �; � ` h� i : [C] ) [ ]. Then the following holds:

1. if �; � ` e : A [C], then either

(a) e is a value, or

(b) there exists a term e0 and a context � 0, such that � ; e �7�! � 0; e0.

2. if �; � ` f � D A [C], then either

(a) f = [� ; e] for somesubstitution � and an expressione, or

(b) there exists a phrase f 0, a context � 0, and a value substitution � 0, such
that (� ; � ); f 7�! (� 0; � 0); f 0

Pro of: The proof of statement (1) proceedsas follows. By unique decomposition
lemma, e is either a value, or there exists unique E and r such that e = E[r ]. If
e is not a value, by replacement lemma, there exists B such that �; � ` r : B [C].
By progressfor � ! , there exists � 0 and e1 such that � ; r �� ! � 0; e1. By evaluation
rules, � ; E [r ] �7�! � 0; E [e1]. Now, we can pick e0 = E[e1], to �nish the proof.

To prove statement (2), notice that, by the unique decomposition lemma, f is
either equal to [� ; e], or there exists unique F and r such that f = F [r ], or there
exists unique F and c such that f = F [c]. In the secondcase,by replacement lemma,
there exists B such that �; � ` r : B [C]. By progressfor � ! , there exists � 0 and e1

such that � ; r �� ! � 0; e1. Then we can pick f 0= F [e1]. In the third case,by replace-
ment lemma, there exists a type B and support C1 such that �; � ` c � C1 B [C]. By
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progressfor � ! , there exists a phrase f 1, a context � 0 and a substitution � 0, such
that (� ; � ); c 7�! (� 0; � 0); f 1. In this case,we can pick f 0 = F [f 1]. �

Lemma 58 (Determinacy)
1. If e, e1, e2 are terms such that � ; e �� !

n
� 1; e1 and � ; e �� !

n
� 2; e2, then there

exists a permutation of names� : N ! N , �xing the domain of � , such that
� 2 = � (� 1) and e2 = � (e1).

2. If f , f 1, f 2 are phrasessuch that (� ; � ); f 7�! n (� 1; � 1); f 1 and (� ; � ); f 7�! n

(� 2; � 2); f 2, then there exists a permutation of names� : N ! N , �xing the
domain of � , such that � 2 = � (� 1) and � 2 = � (� 1), and f 2 = � (f 1).

Pro of: The proof of the �rst statement is analogousto the proof of determinacy for
dynamic binding, sowe omit it here. The secondlemma statement is trivial, because
there are no primitiv e phraseconstructors that introduce fresh names. �

4.6 Exceptions

Syntax and t yping

Raising an exception is a control-o w e�ect { it causesthe execution of the program
to make a jump and continue from another point. Along the jump, the exception
passesa value, to be used by the program at the destination point of the jump.
Exactly where and how the execution of the program resumes,is determined by the
exception handler. The handler takes as argument the value that is passedby the
exception, and then proceedswith execution. Thus, a computation that may raise
an exception is, in a sense,partial . It must be executedin an environment in which
a handler for the exception is speci�ed, or elseit may not produce a result. Notice,
however, that exceptionsare benign e�ects. Unlike writing into memory, raising an
exception doesnot causea permanent change in the environment.

In this section we develop a calculus of exceptions, basedon the core fragment
of the calculus for benign e�ects from Section 4.3. The idea is to assigna name to
each exception, which could then be propagatedand tracked by the type system. To
be able to raise and handle exceptions, we need further constructs speci�c only to
exceptions,so we extend the syntax of our languageas follows.

Exception handlers � ::= � j X z ! e;�
Expressions e ::= : : : j raise X e j e handle h� i

Informally, the role of raise X e is to evaluate e and then raise the exception X ,
passingthe value of e along. On the other hand, e handle h� i evaluates e (which
may raise exceptions), so that any exception possibly raised by e is handled by the
exception handler �.

An exception handler is de�ned as a �nite set of exception patterns. A pattern
X z ! e associates the exception X with the expressione; the variable z is bound in
the pattern. Whenever X is raisedwith somevaluev, it will behandledby evaluating
the expression[v=z]e. Given a handler �, its domain dom(�) is de�ned as the set

dom(�) = f X 2 N j X z ! e 2 � g
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Every exception X 2 dom(�) must be associated with a unique pattern of �.
An exception handler � de�nes a unique map [[�] ] : N ! Values! Expressions

as follows.

[[�] ](X )(v) =
�

[v=z]e if X z ! e 2 �
raise X v otherwise

We will frequently identify the handler � with the function [[�] ], and write �( X )(v)
instead of [[�] ](X )(v). According to the above de�nition, if X is an exception such
that X 62dom(�), then � simply propagatesX further.

Example 37 Assuming X and Y are integer names,the following are well-formed
expressions.

1. (1 � raise X raise Y 10) handle hX x ! x + 2; Yy ! y + 3i

2. (1 � raise X 0) handle hX x ! (2 � raise Y x)i handle hY y ! yi

3. (1 � raise X 0) handle hYy ! (2 � raise X y)i handle hX x ! x + 1i

The expressionsevaluate to 13, 0 and 1, respectively. Expression (1) raises the
exception Y , passing 10 along. This is handled by the pattern Yy ! y + 3, to
produce 13. Expression(2) raisesX with value 0, but while handling X it raisesY
with value 0, which is �nally handled by the outside handler hYy ! yi , to produce
0. Expression (3) raisesX with 0, which is propagated by the inside handler, and
then handled by the outside handler hX x ! x + 1i , to return 1. �

The type systemof the calculus of exceptionsconsistsof two judgments: one for
typing expressions,and another one for typing exception handlers. The judgment
for expressionshas the form

�; � ` e : A [C]

and it simply extends the judgment from the core fragment presented in Section 4.3
with the new rules for raise and handle . The speci�c characteristic of the calculus
is that the support C represents sets, collecting the exceptionsthat e is allowed to
raise. Thus, C v D is de�ned asC � D when C and D are viewed assets(i.e., when
the ordering and repetition of elements in these supports are ignored). By support
weakening, e neednot raiseall the exceptionsfrom its support C, but if an exception
can be raised, then it must be in C. The judgment for exception handlers has the
form

�; � ` h� i : [C] A) [D ]

and the handler � will be given the type [C] A) [D ] if: (1) � can handle exceptions
from the support set C arising in a term of type A, and (2) during the handling, �
is allowed to itself raise exceptionsonly from the support set D . The typing rules of
both judgments are presented below, and we briey comment on them.
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De�nition of �; � ` e : A [C].

�; � ` e : A [C] X 2 C X :A 2 �

�; � ` raise X e : B [C]

�; � ` e : A [C] �; � ` h� i : [C] A) [D ]

�; � ` e handle h� i : A [D ]

De�nition of �; � ` h� i : [C] A) [D ].

C v D

�; � ` h i : [C] A) [D ]

�; (� ; z:A) ` e : B [D ] �; � ` h� i : [C n X ] B) [D ] X :A 2 �

�; � ` hX z ! e;� i : [C] B) [D ]

An exception X can be raised only if it is accounted for in the support. Thus
the rule for raise requires X 2 C. The term raise X e changesthe o w of control,
by passinge to the nearesthandler. Becauseof that, the context in which this term
is encountered doesnot matter; we can type raise X e by any arbitrary type B . In
the rule for handle , the type and the support of the expressione must match the
type and the domain support of the handler �. The empty exception handler h i
only propagateswhichever exceptions it encounters. If it is supplied an expression
of support C it will produce an expressionof the samesupport. To maintain the
support weakening property, we allow the rangesupport D of an empty handler to be
a supersetof C. Notice that the empty support handler may be assignedan arbitrary
type A. The rule for nonempty exception handlers simply inductiv ely checks each
of the exception patterns in the handler. The type of each pattern variable z must
match the type of the corresponding exception; this is the type of the value that the
exception will be raised with. The handling terms e must all have the sametype B ,
which would also be the type assignedto the handler itself.

Example 38 The function tail below computes a tail of the argument integer
list, raising an exception EMPTY:unit if the argument list is empty. The function
length usestail to compute the length of a list. Note that the range type of tail
is � EMPTYintlist . This is required becausethe body of tail raises an exception,
and, as explained in Section 4.3, all the e�ects in function bodies must be boxed.
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- let nameEMPTY:unit
fun tail (xs : intlist) : � EMPTYintlist =
(case xs

of nil => box (raise EMPTY())
| x::xs => box xs)

fun length (xs : intlist) : int =
(1 + length (unbox (tail xs)))
handle <EMPTYz -> 0>

in
length [1,2,3,4]

end;
val it = 4;

�

Beforewe proceedto describe the operational semantics of the exceptioncalculus,
let us outline some of its properties and how they relate to other treatments of
exceptionsin functional languages.

First of all, exceptions in our calculus are secondclass. They are not values
and cannot be bound to variables. Correspondingly, exceptions must be explicitly
raised; raising a variable exception is not possible. Aside from this fact, when local
exceptions are concerned(i.e., exceptions which do not originate from a function
call, but are raised and handled in the body of the one and the samefunction), our
calculus very much resembles Standard ML [MTHM97 ]. In particular, exceptions
can be raised, and then handled, without forcing any changes to the type of the
function. It is only when we want the function to propagate an exception so that
it is handled by the caller, that we need to speci�cally mark the range type of that
function with a � -type.

It is also instructiv e to compare our calculus with the monadic formulation of
exceptionsfrom Section4.1.3. To that end,werecall Example 26,wherethe exception
monad  provides for a unique exception of type E. The de�nition of the monad
 and its related term constructors is given as follows.

 A = A + E

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x ) e2 j inr y ) inr y

raise : E )  A

raise e = inr e

handle :  A ) (E ) B ) ) B

handle e h = case e of inl v ) v j inr exn ) h exn

In this de�nition, the operational semantics given to all the constructs relies on the
standard operational semantics associated with disjoint sums. For example, is we
assumethat f : in t )  in t , then the following program adds the results of f 1 and
f 2. If the evaluation of any of the two function applications raisesan exception, the
overall computed result is zero.
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handle (let comp x1 = f 1
comp x2 = f 2

in
comp (x1 + x2)

end) ( � exn. 0)

In our calculusof exceptions,the equivalent of the above program may bewritten
in several ways, depending on the evaluation order that the programmer may wish
to specify. For example, let us assumethat X :E is an exception name, and that
f : in t ! � X in t . Then the operational behavior of the previous monadic program
is exhibited by the following program in the calculus of exceptions.

(let val x1 = unbox (f 1)
val x2 = unbox (f 2)

in
x1 + x2

end) handle <X exn -> 0>

However, becauseexceptions are benign e�ects, the computations internalized
by f 1 and f 2 are independent of each other. There is no need to �rst evaluate
and unbox f 1 and then evaluate and unbox f 2. For example, we could write the
following program that computesthe sameresults.

let box u1 = f 1
box u2 = f 2

in
(u1 + u2) handle <X exn -> 0>

end

The �rst two let box branches of this program evaluate the expressionsf 1 and
f 2 in that order to obtain boxed computations box e1 and box e2, but they do
not evaluatee1 and e2. The computations e1 and e2 are substituted for u1 and u2,
and only then is the execution of (e1 + e2) attempted, in the order speci�ed by the
operational semantics of addition. Following a similar idea, an even more compact
way to compute the sum of f 1 and f 2 is given simply as

(unbox (f 1) + unbox (f 2)) handle <X exn -> 0>

As a conclusion, the calculus of exceptions { and more generally, the calculus
of benign e�ects basedon modal necessity { allows programs that are uncommitted
about the evaluation order of its e�ects. The evaluation order is eventually deter-
mined by the operational semantics, but it is not necessaryto make this order explicit
in the program. This is the major di�erence betweenthe treatment of benign e�ects
and persistent e�ects. It is also the major di�erence betweenthe modal operator �
on one hand, and the monad  and the modal operator 3 on the other hand.

Note that this distinction may potentially have consequencesfor the e�ciency of
exceptional programs. In the monadic case,an expressione :  A either evaluates to
a value, or raisesan exception. The outcome of the evaluation of e has to be tagged
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(with inl or inr ) in order to distinguish betweenthe two cases,and this tag hasto be
checked at run time whenever e is used. In the modal case,the e�ectful computation
boxed in the expressione : � X A will only be evaluated within the scope of some
handler for X . This evaluation can only producea value, and cannot result with an
unhandled exception. In the modal case,there cannot exists a raisedexceptionsthat
is not handled, so there is no needfor tagging and tag checking.

Op erational semantics

The operational semantics of the exception calculus is a simple extension of the
semantics of the core fragment. The evaluation judgment has the sameform

� ; e 7�! � 0; e0

We only needto extend the syntactic categoriesof evaluation contexts and redexes,
and de�ne primitiv e reductions for the new redexes.First, we de�ne new evaluation
contexts.

Evaluation contexts E ::= : : : j raise X E j E handle h� i

Wehavealreadyexplainedthat each exceptionhandler canhandleall exceptions. It is
only that someexceptionsare handled in a speci�ed way, while others are handled by
simple propagation. This will simplify the operational semantics somewhat,because
in order to �nd the handler capableof handling a particular raise we only need to
�nd the nearest, or inner-most handler enclosingthis raise . For that purpose,we
de�ne a special subclassof evaluation contexts, called pure evaluation contexts.

De�nition 59 (Pure evaluation contexts)
An evaluation context E is pure if it does not contain any exception-handling con-
structs acting on the hole of the context. In other words, the syntactic category of
pure evaluation contexts is de�ned as

Pure contexts P ::= [ ] j P e1 j v1 P j let box u = P in e j
choose P j raise X P

The idea of this de�nition is to identify , within each evaluation context E , the han-
dling construct (if any) that is closest to the hole of E , as stated by the following
lemma.

Lemma 60 (Ev aluation context decomp osition)
If E is an evaluation context, then either:

1. E is a pure context, or

2. there exist unique evaluation context E 0 and pure context P 0 such that

E = E 0[P0 handle h� i ].

Pro of: By induction on the structure of E . We present selectedcases.

case E = raise X E1. By induction hypothesis,E1 is either pure, in which casepick
E is pure aswell, or E1 = E 0

1[P0 handle �] in which casepick E 0 = raise X E 0
1.

168



CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

case E = E1 handle �. By induction hypothesis,E1 is either pure, in which case
pick E 0 = [] and P0 = E1, or E1 = E 0

2[P0
2 handle � 2], in which casepick

E 0 = E 0
2 handle � and P 0 = P0

2.

�

This de�nition and lemma provide us with enough notions to de�ne the new
redexesand the primitiv e reductions on them.

Redexes r ::= : : : j v handle h� i j P [raise X v] handle h� i

� ; v handle h� i � ! � ; v � ; P[raise X v] handle h� i � ! � ; �( X )(v)

The �rst reduction exploits the fact that values are exception free, and therefore
simply fall through any handler. The secondreduction choosesthe closesthandler
for any particular raise. It also requires that only values be passedalong with the
exceptions;the operational semantics demandsthat beforean exception is raised, its
argument must be evaluated. If it so happens that the evaluation of the argument
raisesanother exception, this later one will take precedenceand actually be raised.
This is already illustrated in the �rst term from Example 37, whereit is the exception
Y which is raised and eventually handled.

Structural prop erties and t yp e soundness

Beforeproceedingto prove the basicproperties of the calculusof exceptions,we �rst
summarize its basic syntactic constructs.

Expressions e ::= u j �x :A: e j e1 e2 j box e j let box u = e1 in e2 j
� X :A: e j choose e j raise X e j e handle h� i

Exception handlers � ::= � j X z ! e;�
Values v ::= �x :A: e j box e j � X :A: e
Evaluation contexts E ::= [ ] j E e1 j v1 E j let box u = E in e j choose E j

raise X E j E handle h� i
Pure contexts P ::= [ ] j P e1 j v1 P j let box u = P in e j choose P j

raise X P
Redexes r ::= (�x: e) v j let box u = box e in e j

choose (� X : e) j v handle h� i j
P [raise X v] handle h� i

The Expressionsubstitution principle for the exception calculus is similar to the
Expression substitution principle from the calculus of dynamic binding and state,
except that it now includes a statement about exception handlers, rather than a
statement about explicit substitutions.

Lemma 61 (Expression substitution principle)
If �; � ` e1 : A [C], then the following holds:

1. if �; (� ; u:A[C]) ` e2 : B [D ], then �; � ` [e1=u]e2 : B [D ]
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2. if �; (� ; u:A[C]) ` h� i : [D 0] B) [D ], then �; � ` h[e1=u]� i : [D 0] B) [D ]

Pro of: By simultaneous induction on the structure of e and �. We just present the
casesthat are speci�c to exceptions.

case e2 = raise X e0, where X :B 0 2 �, and X 2 D. By derivation, �; (� ; u:A[C]) `
e0 : B 0[D ]. By induction hypothesis,�; � ` [e1=u]e0 : B 0[D ]. The result follows
by the typing for raise .

case e2 = e0 handle �. By derivation, we have �; (� ; u:A[C]) ` e0 : B [D 0], and

�; (� ; u:A[C]) ` h� i : [D 0] B) [D ]. By �rst induction hypothesis, �; � `

[e1=u]e0 : B [D 0]. By secondinduction hypothesis, �; � ` h[e1=u]� i : [D 0] B)
[D ]. The caseis now proved, by using the typing rules for handle .

case � = (�). Obvious.

case � = (X z ! e;� 0), where X :B 0 2 �. By derivation, �; (� ; u:A[C]; z:B 0) `

e : B [D ], and �; (� ; u:A[C]) ` h� 0i : [D 0n X ] B) [D ]. By the �rst induction
hypothesis,�; (� ; z:B 0) ` [e1=u]e : B [D ]. By the secondinduction hypothesis,

�; � ` h[e1=u]� 0i : [D 0n X ] B) [D ]. The result follows by the typing rule for
composite handlers.

�

The replacement lemma now has to account for both pure and impure contexts.
Becausepure contexts do not allow a handler acting on the hole of the context,
placing an expressionwithin a pure context preservesthe expression'ssupport. That
is not necessarilythe casewith ordinary evaluation contexts.

Lemma 62 (Replacemen t)
1. If �; � ` P[e] : A [C], then there exist a type B such that

(a) �; � ` e : B [C], and

(b) if � 0 extends � , and � 0; � ` e0 : B [C], then � 0; � ` P[e0] : A [C]

2. If �; � ` E [e] : A [C], then there exist a type B and a support D such that

(a) �; � ` e : B [D ], and

(b) if � 0 extends � and � 0; � ` e0 : B [D ], then � 0; � ` E [e0] : A [C]

Pro of: The �rst statement is proved by induction on the structure of the pure
context P. For an example, consider the casewhen P = raise X P1, for X :B 0 2 �,
and X 2 C. In this case,by derivation, �; � ` P1[e] : B 0[C]. By induction hypothesis,
there exist B such that �; � ` e : B [C]. Again by induction hypothesis, for every e0

such that � 0; � ` e0 : B [C], we have � 0; � ` P1[e0] : B 0[C]. Now the conclusionfollows
by the typing rule for raise .

To prove the second statement, by Evaluation context decomposition lemma
(Lemma 60, we needonly consider two cases.

case E = P. This casefollows from the already proved replacement for pure con-
texts.
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case E = E1[P handle �]. In this case,by induction hypothesis,there exist B 0 and
D 0 such that �; � ` P[e] handle � : B 0[D 0]. By typing, �; � ` P[e] : B 0[D 00],

and �; � ` h� i : [D 00] B 0

) [D 0]. By replacement for pure contexts, there exists B
such that �; � ` e : B [D 00]. Also, for every e0 such that � 0; � ` e0 : B [D ], we
have � 0; � ` P[e0] : B 0[D 00]. The result now follows by typing for handle .

�

Lemma 63 (Canonical forms)
Let v be a value such that �; �; � ` v : A [C]. Then the following holds:

1. if A = A1 ! A2, then v = �x :A1: e and �; x:A1 ` e : A1 [ ]

2. if A = � D B , then v = box e and �; � ` e : B [D ]

3. if A = A1 9 A2, then v = � X :A1: e and (� ; X :A1); � ` e : A2 [ ]

As a consequence,the support of v is empty, and can be weakenedarbitrarily .

Pro of: By caseanalysis on the structure of values. �

The next step of the development is the Subject reduction lemma. Notice that
the subject reduction for exceptions di�ers from the subject reduction of dynamic
binding. The semantics of dynamic binding only reducesexpressionsof empty sup-
port, while with exceptionswe need to reduce under an exception handler. This is
reected in the subject reduction lemma, where we now allow arbitrary supports C.

Lemma 64 (Sub ject reduction)
If �; � ` e : A [C] and � ; e � ! � 0; e0, then � 0 extends � and � 0; � ` e0 : A [C].

Pro of: By simple caseanalysis over possible redexes. We consider two casesin
detail.

case e = v handle �. By derivation, �; � ` v : A [C0], and �; � ` h� i : [C0] A) [C].
By canonical forms lemma, the support of v can be arbitrary , and in particular
�; � ` v : A [C].

case e = P[raise X v] handle �, whereX :B 0 2 �. By derivation, �; � ` P[raise X v] :

A [C0], and �; � ` h� i : [C0] A) [C]. By replacement lemma, there exists a
type B such that �; � ` raise X v : B [C0]. By typing rules, there must be
X 2 C0, and �; � ` v : B 0[C0]. By canonical forms lemma, support of a value
is empty, i.e., �; � ` v : B 0[� ]. Now, by the well-typing of the handler �,
�; � ` �( X )(v) : A [C]. Since� ; e � ! � ; �( X )(v), this �nishes the proof.

�

The Preservation lemma now generalizesSubject reduction to the evaluation
judgment. For purposesof generality, we follow the statement of the Subject reduc-
tion, and allow arbitrary supports C in the statement of Preservation.
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Lemma 65 (Preserv ation)
If �; � ` e : A [C] and � ; e 7�! � 0; e0, then � 0 extends � , and � 0; � ` e0 : A [C].

Pro of: By evaluation rules, there existsan evaluation context E such that e = E[r ],
� ; r � ! � 0; r 0 and e0 = E[r 0]. By replacement lemma, there exist B and D such that
�; �; � ` r : B [D ]. By subject reduction, � 0 extends �, and � 0; �; � ` r 0 : B [D ]. By
replacement lemma, � 0; � ` E [r 0] : A [C]. Since e0 = E[r 0], this proves the lemma.
Notice how the proof appeals in an essential way to the subject reduction lemma
with non-empty supports. �

The following lemma shows that a closedwell typed redexcan always be reduced.
Again, as in the caseof Subject reduction and Preservation, we considerredexeswith
a general (not necessarilyempty) support C. This will be used in an essential way
in the proof of the Progresslemma below (Lemma 68).

Lemma 66 (Progress for � ! )
If �; � ` r : A [C], then there exists a term e0 and a context � 0, such that � ; r � !
� 0; e0.

Pro of: By straightforward caseanalysis. We only present two cases.

case r = v handle �. By reduction rules, � ; v handle � � ! � ; v. Pick � 0 = �
and e0 = v.

case r = P[raise X v] handle �, whereX :B 2 �. By derivation, �; � ` P[raise X v] :

A [C0], and �; � ` h� i : [C0] A) [C]. By replacement lemma, there exists B 0 such
that �; � ` raise X v : B 0[C0]. By typing rules, it must be X 2 C0, and thus
�( X )(v) is well-de�ned. Now pick � 0 = � and e0 = �( X )(v).

�

The unique decomposition lemma is standard.

Lemma 67 (Unique decomp osition)
For every expressione, either:

1. e is a value, or

2. e = P[raise X v], for a unique pure context P, or

3. e = E[r ] for a unique evaluation context E and a redex r .

Pro of: By induction on the structure of the expressione. �

Finally, we can establish the Progressand Determinacy lemmasbelow.

Lemma 68 (Progress)
If �; � ` e : A [ ], then either

1. e is a value, or

2. there exists a term e0 and a context � 0, such that � ; e 7�! � 0; e0.

172



CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

Pro of: Becausee has empty support, by unique decomposition lemma, e is ei-
ther a value, or there exists unique E and r such that e = E[r ]. If e is not a
value, by replacement lemma, there exists B and C such that �; � ` r : B [C]. By
progressfor � ! , there exists � 0and e1 such that � ; r � ! � 0; e1. By evaluation rules,
� ; E [r ] 7�! � 0; E [e1]. Now, we can pick e0 = E[e1], to complete the proof. �

Lemma 69 (Determinacy)
If � ; e 7�! n � 1; e1 and � ; e 7�! n � 2; e2, then there exists a permutation of names
� : N ! N , �xing the domain of � , such that � 2 = � (� 1) and e2 = � (e1).

Pro of: The most important caseis when n = 1, the rest follows by induction on n,
using the property that if � ; e 7�! n � 0; e0, then � (�) ; � (e) 7�! n � (� 0); � (e0). In case
n = 1, we analysethe possiblereduction cases.

1. If r = (�x: e) v, or r = let box u = box e1 in e2, or r = v handle �, or
r = P[raise X v] handle �, the reducts are unique, i.e. e0

1 = e0
2, and thus

e1 = e2, so the identit y permutation satis�es the conditions.

2. If r = choose � X :A: e, then it must bee0
1 = [X 1=X ]e, e0

2 = [X 2=X ]e, and � 1 =
(� ; X 1:A), � 2 = (� ; X 2:A), where X 1 and X 2 are fresh names. Obviously, the
involution (X 1 X 2) which swaps thesetwo nameshas the required properties.

�

4.7 Catc h and thro w

Syntax and t yping

The catch-and-throw calculus is a simpli�cation of the calculus of exceptions. We
consider it here in its own right in order to illustrate a di�eren t notion of handling.
It will also provide some intuition for the calculus of composable continuation in
Section 4.8. In the catch-and-throw calculus, names are associated with labels to
which the program can jump. Informally, catc h establishesa destination point for
a jump and assignsa name to it, and thro w jumps to the establishedpoint.

Expressions e ::= : : : j thro w X e j catc hX e

The thro w and catc h can be viewed as restrictions of raise and handle ; catc h
handlesa thro w by immediately returning the value associated with the throw.

Becausethe notion of handling in the catch-and-throw calculus is sosimple when
comparedto exceptions,we only needthe typing judgment for expressions�; � ` e :

A [C]. It is not necessaryto de�ne the judgment for handlers �; � ` h� i : [C] A) [D ].
The meaning of �; � ` e : A [C] is that e has type A and may throw to destination
points whosenamesare listed in the support C. The supports are sets, just like in
the calculus of exceptions. The typing rules of the calculus are presented below.
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De�nition of �; � ` e : A [C].

�; � ` e : A [C] X 2 C X :A 2 �

�; � ` thro w X e : B [C]

�; � ` e : A [C; X ] X :A 2 �

�; � ` catc hX e : A [C]

A thro w to a destination point is allowed only if the destination point is present in
the support set. A catc h establishesa destination point by placing it in the support
against which the argument expressionis checked.

Example 39 The following terms (adapted from [Kam00a]) are well-typed in our
catch-and-throw calculus.

choose ( � X:int.
( � f:int-> � X int.

let box u = f 0
in

catch X (1 + u)
end) ( � y:int. box (throw X y)))

choose ( � X:int.
( � f:int-> � X int.

let box u = f 0
in

1 + catch X u
end) ( � y:int. box (throw X y)))

The �rst term evaluatesto 0, becausethe addition with 1 is skippedover by a thro w.
In the secondterm, the catc h is pushedfurther inside, to preserve this addition, and
so the term evaluates to 1. �

Example 40 The program segment below de�nes a recursive function for multiply-
ing elements of an integer list. If an element is found to be equal to 0, then the whole
product will be 0, so rather than uselesslyperforming the remaining computation,
we terminate by an explicit thro w outside of the recursive function.

- let nameEXIT : int
fun mult (xs : intlist) : � EXITint =

case xs
of nil => box 1

| x::xs =>
if x = 0 then box (throw EXIT 0)
else

let box u = mult xs in box(x * u)
in

catch EXIT (unbox(mult[3, 2, 1, 0]) * unbox(mult[1, 2, 3]))
end;

val it = 0 : int

�
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Op erational semantics

The evaluation judgment of the catch-and-throw calculus is again a straightforward
extension of the evaluation judgment � ; e 7�! � 0; e0 of the core fragment from Sec-
tion 4.3. We �rst need to de�ne the new redexes,corresponding to the new catc h
and thro w constructs, and extend the syntactic category of evaluation contexts of
the core calculus of benign e�ects from Section 4.3.

Redexes r ::= (�x: e) v j let box u = box e in e j
choose (� X : e) j catc hX v j catc hX E[thro w X v]

Evaluation contexts E ::= [ ] j E e1 j v1 E j let box u = E in e j choose E j
thro w X E j catc hX E

In the redexcatc hX E[thro w X v] it is assumedthat the context E is X -pure, i.e., E
doesnot contain a catc hX construct acting on the hole of E , although E is allowed
to catch namesother than X . The relation of primitiv e reductions from Section 4.3
is extendedwith the following new cases.

� ; catc hX v � ! � ; v

� ; (catc hX E[thro w X v]) � ! � ; v; E is X -pure

Similar to the exception calculus, values simply fall through the catc h, and every
thro w is caught by the closessurrounding catc h with the appropriate name. The
operational semantics of catch-and-throw requires that only valuesbe passedalong
a thro w. Thus, of possibly nestedthrows, only the last one will actually be subject
to catching.

Structural prop erties and t yp e soundness

We start the exploration of the basicstructural propertiesof the catch and throw cal-
culus by consideringthe appropriate expressionsubstitution principle. The principle
is standard, and analogousto the expressionsubstitution principles already proved
for the calculi of dynamic binding and exceptions.

Lemma 70 (Expression substitution principle)
If �; � ` e1 : A [C] and �; (� ; u:A[C]) ` e2 : B [D ], then �; � ` [e1=u]e2 : B [D ].

Pro of: By induction on the derivation of e2.

case e2 = thro w X e0, whereX :B 0 2 �, and X 2 D. By derivation, �; (� ; u:A[C]) `
e0 : B 0[D ]. By induction hypothesis, �; � ` [e1=u]e0 : B 0[D ]. The conclusion
now follows by the typing rule for thro w .

case e2 = catc hX e0, whereX :B 2 �. By derivation, �; (� ; u:A[C]) ` e0 : B [D ; X ].
By induction hypothesis, �; � ` [e1=u]e0 : B [D ; X ]. The last step of the proof
now applies the typing rule for catc h.

�

The replacement lemmaneedsto take into account that catc h expressionsmay be
acting on the hole of the context E , thus changing the support of enclosedexpression.
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Lemma 71 (Replacemen t)
If �; � ` E [e] : A [C], then there exist a type B and a support D such that

1. �; � ` e : B [D ], and

2. if � 0 extends � and � 0; � ` e0 : B [D ], then � 0; � ` E [e0] : A [C]

Pro of: By induction on the structure of E .

case E = thro w X E1, where X :B 0 2 �, and X 2 C. By derivation, �; � ` E1[e] :
B 0[C]. By induction hypothesis,there exist B and D such that �; � ` e : B [D ].
Again by induction hypothesis,for every e0 such that � 0; � ` e0 : B [D ], we have
� 0; � ` E1[e0] : B 0[C]. Now the conclusionfollows by the typing rules.

case E = catc hX E1, and X :A 2 �. By derivation, �; � ` E1[e] : A [C; X ]. By
induction hypothesis, there exist B and D such that �; � ` e : B [D ]. Again
by induction hypothesis, for every e0 such that � 0; � ` e0 : B [D ], we have
� 0; � ` E1[e0] : A [C; X ]. Conclude the proof by using the typing rule for catc h.

�

Lemma 72 (Canonical forms)
Let v be a value such that �; � ` v : A [C]. Then the following holds:

1. if A = A1 ! A2, then v = �x :A1: e and �; x:A1 ` e : A1 [ ]

2. if A = � D B , then v = box e and �; � ` e : B [D ]

3. if A = A1 9 A2, then v = � X :A1: e and (� ; X :A1); � ` e : A2 [ ]

As a consequence,the support of v is empty and can be weakenedarbitrarily .

Pro of: By a straightforward analysis of the structure of values. �

Similar to the calculus of exceptions, the catch and throw calculus considersfor
evaluation expressionsthat may appear within the scope of a number of catc h con-
structs. Sincecatc h shrinks the support set of an expression,the subject reduction
lemma for catch and throw hasto considerprimitiv e reductions over expressionswith
arbitrary , non-empty, support C.

Lemma 73 (Sub ject reduction)
If �; � ` e : A [C] and � ; e � ! � 0; e0, then � 0 extends � and � 0; � ` e0 : A [C].

Pro of: By caseanalysis over possibleredexes.We present below somerepresenta-
tiv e cases.

case e = catc hX v, where X :A 2 �. By derivation, �; � ` v : A [C; X ]. By
canonical forms lemma, the support of v can be arbitrary , and in particular
�; � ` v : A [C].
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case e = catc hX E[thro w X v], whereX :A 2 �. By derivation, �; � ` E [thro w X v] :
A [C; X ]. By replacement lemma, there exist B and D such that �; � ` thro w X v :
B [D ]. By typing rules, there must beX 2 D, and �; � ` v : A [D ]. By canonical
forms lemma, support of a value can be arbitrary; in particular, �; � ` v : A [C].
Since� ; e � ! � ; v, this �nishes the proof.

�

The Preservation lemma follows the samepatter as Subject reduction, and con-
sidersexpressionswith arbitrary support C.

Lemma 74 (Preserv ation)
If �; � ` e : A [C] and � ; e 7�! � 0; e0, then � 0 extends � , and � 0; � ` e0 : A [C].

Pro of: By evaluation rules, there existsan evaluation context E such that e = E[r ],
� ; r � ! � 0; r 0 and e0 = E[r 0]. By replacement lemma, there exist B and D such that
�; �; � ` r : B [D ]. By subject reduction, � 0 extends �, and � 0; �; � ` r 0 : B [D ]. By
replacement lemma, � 0; � ` E [r 0] : A [C]. Sincee0 = E[r 0] this provesthe lemma. �

Lemma 75 (Progress for � ! )
If �; � ` r : A [C], then there exists a term e0 and a context � 0, such that � ; r � !
� 0; e0.

Pro of: By caseanalysis on the structure of redexes.

case r = catc hX v, where X :A 2 �. By reduction rules, � ; catc hX v � ! � ; v.
Then we can pick, � 0 = � and e0 = v.

case r = catc hX E[thro w X v], where X :A 2 �. By derivation, we have �; � `
E [thro w X ke1] : A [C; X ]. By replacement lemma, there exist B and D such
that �; � ` thro w X v : B [D ]. By typing rules, it must be B = A and X 2 D
and �; � ` v : A [D ]. By canonical forms lemma, v has empty support, and can
be arbitrary weakened; in particular �; � ` v : A [C]. We can thus pick � 0 = �
and e0 = v.

�

The Unique decomposition lemma takes the usual form, as do the Progressand
Determinacy lemmas.

Lemma 76 (Unique decomp osition)
For every closedexpressione, either:

1. e is a value, or

2. e = E[thro w X v], for a unique context E which doesnot catch X , or

3. e = E[r ] for a unique evaluation context E and a redex r .

Pro of: Straightforward, by induction on the structure of e. �
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Lemma 77 (Progress)
If �; � ` e : A [ ], then either

1. e is a value, or

2. there exists a term e0 and a context � 0, such that � ; e 7�! � 0; e0.

Pro of: Becausee has empty support, by unique decomposition lemma, e is ei-
ther a value, or there exists unique E and r such that e = E[r ]. If e is not a
value, by replacement lemma, there exists B and C such that �; � ` r : B [C]. By
progressfor � ! , there exists � 0and e1 such that � ; r � ! � 0; e1. By evaluation rules,
� ; E [r ] 7�! � 0; E [e1]. We can pick e0 = E[e1], to complete the proof. �

Lemma 78 (Determinacy)
If � ; e 7�! n � 1; e1 and � ; e 7�! n � 2; e2, then there exists a permutation of names
� : N ! N , �xing the domain of � , such that � 2 = � (� 1) and e2 = � (e1).

Pro of: Analogousto the proofsof Determinacy in the previously consideredcalculi.
�

4.8 Comp osable contin uations

Syntax and t yping

Similar to the catch-and-throw calculus,composablecontinuations usenamesto label
destination points to which a program can jump. A destination point for a jump is
established with the construct mark which also assignsa name to it; thus, it is
similar to catc h from the previous section. The jump itself is performed by recall ,
which corresponds to thro w from the catch-and-throw calculus. The exact syntax
of the calculus is de�ned as follows.

Expressions e ::= : : : j recall X k: e j mark X e

The di�erences from the catch-and-throw calculus,however, arise from the following
property, which is characteristic for continuation calculi: unlike thro w, when the
construct recall X k: e is evaluated, it captures into the variable k the part of the
surrounding environment between this recall and corresponding mark which pre-
cedesit; k may then be used to compute the value of e that is passedalong with
the jump. It is important that the evaluation of e is undertaken in the changed
environment from which the part captured in k hasbeenremoved. More speci�cally ,
e itself will not be able to recall to mark points which were de�ned in the captured
and removed part.

The explained operational intuition is formalized by the following de�nitions of
evaluation contexts, redexesand primitiv e reductions. Becauseeach recall is handled
by the nearest mark , we need to identify within each evaluation context E that
mark (if any) that is closest to the hole of E . Thus, we de�ne a speci�c subclass
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of evaluation contexts that are pure, in the sensethat they do not contain a mark
acting on their hole.

Evaluation contexts E ::= : : : j mark X E
Pure contexts P ::= [ ] j P e1 j v1 P j let box u = P in e j choose P
Redexes r ::= : : : j mark X v j mark X P[recall X k: e]

� ; mark X v � ! � ; v

� ; (mark X P[recall X k: e]) � ! � ; [K =k]e;

where K = �x: let box u = x in box P[u]

Example 41 In order to illustrate the calculus of composablecontinuations, we
present he following well typed expressions(adapted from [DF89, Wad94]). Notice
that each recall to a nameappearsin the scope of a corresponding mark . This kind
of programming discipline is enforcedby the type system, and will be explained in
the forthcoming development.

e1 = 1 + markX (10 + recall X f: � X int-> � X int.
let box u = f (f (box 100))
in

markX u
end)

e2 = 1 + markX (10 + recall X f. 100)

e3 = 1 + markX (10 + recall X f.
let box u1 = f (box 100)

box u2 = f (box 1000)
in

markX (u1 + u2)
end)

The expressionsevaluate to 121, 101 and 1121, respectively. In each of these ex-
amples, the continuation variable f : � X in t ! � X in t is bound to the expression
�x: let box v = x in box (10 + v). It captures and internalizes the evaluation en-
vironment (10 + � ), which is enclosedbetweenmark and recall . Notice that upon
capturing of the environment into f , the delimiting mark is removed from the reduct,
as prescribed by the primitiv e reductions. In order for this semantics to be sound,
the type system must require that additional mark X constructs be intro duced into
the expressions. We draw the attention to the the above example expressionse1

and e3, where the useof variables u, u1 and u2 are pre�xed by a seeminglyspurious
mark X . In general,however, this useof a mark around variables is not spurious. If
someof the variables is substituted by a recalling expression,then the recall must
have a corresponding mark. Thus, we need to provide one, in order to ensure the
progressof the evaluation.

As an illustration of the operational semantics, we show in full the evaluation of
e1.
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1 + markX (10 + recall X f.
let box u = f (f (box 100))
in

markX u
end)

7�! 1 + (let box u = f (f (box 100))
in

markX u
end); where f = � x. let box v = x in box (10 + v)

7�! 1 + (let box u = f (box (10 + 100))
in

markX u
end)

7�! 1 + (let box u = box (10 + (10 + 100))
in

markX u
end)

7�! 1 + markX (10 + (10 + 100))
7�! 1 + markX (10 + 110)
7�! 1 + markX 120
7�! 1 + 120
7�! 121

�

It is the expressionbound to k that is actually referred to as a composablecon-
tinuation (and other namesin useare: partial continuation, delimited continuation
and subcontinuation). The ordinary calculusof continuations [Lan65, SW74, Rey72,
SF90b, Fil89, Gri90, DHM91, FFKD86, Thi97] canbeviewedasa calculusof compos-
able continuations in which all the jumps have a unique destination point, prede�ned
to be at the beginning of the program. In both calculi, continuations are functions
whoserange type is equal to the type of the destination point. But, in the special
caseof ordinary continuations, this type is necessarily? , and that is why ordinary
continuations cannot be composedin any non-trivial way.

The typing judgment of the calculus for composablecontinuations is again

�; � ` e : A [C]:

It establishesthat the expressione has type A and may recall the destination points
whosenamesare listed in the support C. The support C is an ordered set of names,
and e is allowed to recall to a nameonly it it is at the top of the support C. Thus, if
recalls to a name deeper down in the support C are required, this must be done by
�rst successively recalling to all the precedingnames.

In order to avoid the possibleconfusionlater, we emphasizeherethat the calculus
of composable continuation, obviously, deals with two di�eren t orderings: (1) the
ordering betweensupports, and (2) the ordering between the namesof one and the
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samesupport. The reasonfor imposing the secondordering will becomeclear once
we discussthe the typing rules of the calculus.

The typing rules for composablecontinuations are presented below.

De�nition of �; � ` e : A [C].

�; (� ; k:� C;X B ! � C;X A) ` e : A [C] X :A 2 �

�; � ` recall X k: e : B [C; X ]

�; � ` e : A [C; X ] C v D X :A 2 �

�; � ` mark X e : A [D ]

In the caseof composablecontinuations, it is a recall to a namethat is the notion
of e�ect, and mark -ing a name as a destination point is the notion of handling.
Therefore, the type system should enable a recall to X only if X appears at the
support C, placed there by a corresponding mark . The situation, however, is a
bit more involved. As already mentioned, recall X k: e evaluates e in a changed
environment from which the part enclosedbetween mark X and recall X has been
removed. Correspondingly, e has to be checked against a support from which X has
beenremoved.

The above argument explains why the ordering of namesin the support of a term
is important. Capture of a continuation removesmarks from the environment, sothe
type systemmust ensurethat theseare removed in the order in which they actually
appear. For example, the type system will allow a recall to a certain name only
if that name is at the end of the support. This is illustrated in the typing rule for
recall X k: e, wherewe demand that X is the rightmost name in the support (C; X ).
If a recall is required to a namewhich is deeper to the left in C, it can still be doneby
performing a sequenceof nestedrecalls in a last-in-�rst-out manner to all the names
in between. In this sense,the supports of the calculus of composablecontinuations
may be seenas stacks, where the top of the stack is at the rightmost end of the
support.

There are yet further important aspectsof the typing rule for recall that needto
be explained. The expressione computesthe value to be passedalong with the jump,
so it must have the sametype as the destination point X . Becausethe jump changes
the o w of control, the immediate environment of the recall doesnot matter; we can
type recall by an arbitrary type B . The domain and the range of the continuation
k must match the sourceand the destination points of the jump, which in this rule
have types B and A, respectively. The recall appears in the context of a support
(C; X ) and that is why the domain type of k is � C;X B . The range type of k is
� C;X A, meaning that the environment captured in k wil l not include the delimiting
mark X .

The typing rule for mark is much simpler. The construct mark X e establishes
a destination point X and allows the expressione to recall to X by placing X in
the support. If e is a value, it immediately falls through to the destination point X ,
and thus e and X must have sametypes. We further allow an arbitrary weakening
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of supports in the conclusionof this rule, in order to satisfy the support weakening
principle.

The partial ordering on the family of supports is the trivial partial ordering with
the empty set as the smallest element: C v D holds i� C = (�) or C = D as
sequences.The �rst de�nitional clauseof the ordering allows weakening of C = (�)
to an arbitrary support. Such a weakening signi�es that expressionsthat do not
recall to any names (i.e., expressionsthat are pure) may be placed in a scope of
an arbitrary context of marks, becausethe marks will essentially be ignored. The
secondde�nitional clauseof the partial order prevents the weakening of non-empty
supports into a properly larger support 2.

Example 42 The program below is a particularly convoluted way of reversing
a list, adapted from [DF89]. The program can be explained in terms of staged
computation as follows: it recursesover the argument list l and generatesas an
output a boxed expressionconsisting of a sequenceof nestedmarks and recalls. The
generatedexpressionessentially builds the reverseof each pre�x of l , until the whole
list l is reversed.

fun reverse (l : intlist) : intlist =
let nameX : intlist

fun rev' (l : intlist) : � X intlist =
case l

of nil => box nil
| (x::xs) =>

let val y = rev' xs
in

box (recall X c: � X intlist -> � X intlist.
markX x :: unbox (c y))

end
box v = rev' l

in
markX v

end

To better understand reverse , it is instructiv e to view a particular evaluation of
the helper function rev' . For example, rev' [2, 1, 0] generatesthe following
specializedcode:

box (recall X c3.
markX 2 :: unbox c3 (box recall X c2.

markX 1 :: unbox c2 (box recall X c1.
markX 0 :: unbox c1 (box nil))))

When prepended by a markX , unboxed and evaluated, this code usesthe contin-
uations ci to accumulate the reversed pre�x of the list. For example, the vari-
able c3 is bound to �x: let box u = x in box u corresponding to the initial

2We have decided on this ordering for reasonsof simplicit y. A more natural de�nition may have
been: C v D if C is a su�x of D . However, this ordering would complicate the support weakening
principle. The support C occurs in negative positions in the typing rule for recall , making it
problematic to prove support weakening by a simple inductiv e argument.
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empty pre�x; c2 is bound to �x: let box u = x in box (2 :: u); c1 is bound to
�x: let box u = x in box (1 :: 2 :: u), until �nally the reversed list [0,1,2] is
produced. �

There is actually a bit of a leeway in de�ning the static and dynamic semantics for
composablecontinuations, which has to do with whether the continuation captured
by recall should include the delimiting mark and/or remove it from the environment.
The primitiv e reduction that we have used in our formulation is

� ; (mark X P[recall X k: e]) � ! � ; [K =k]e;

where K = �x: let box u = x in box P[u]

As can be seen,this reduction removes mark both from the captured continuation
K , and from the evaluation context of the reducedterm. But either of the following
rules is a possiblechoice, and we discussthem informally below.

� ; (mark X P[recall X k: e]) � ! � ; [K =k]e; (4.1)

where K = �x: let box u = x in box (mark X P[u])

� ; (mark X P[recall X k: e]) � ! � ; mark X [K =k]e; (4.2)

where K = �x: let box u = x in box P[u]

� ; (mark X P[recall X k: e]) � ! � ; mark X [K =k]e; (4.3)

where K = �x: let box u = x in box (mark X P[u])

The rule (4.1) captures mark X into K , but removesit from the evaluation envi-
ronment of e. The typing rule matching this operational semantics is

�; (� ; k:� C;X B ! � C A) ` e : A [C] X :A 2 �

�; � ` recall X k: e : B [C; X ]

Becausethe mark X is removed from the environment, it becomesimpossiblefor e to
recall to X . This is why X doesnot appear in the support of the premiseof this typing
rule. Becausethe mark X is captured into the continuation, the result of applying
the continuation does not require a mark for X in its evaluation environment, and
so X is also dropped from the range type of k.

The rule (4.2) omits the mark from the continuation K , but leaves it in the
evaluation environment of e. The corresponding typing rule leavesX in the support
of the premiseand in the range type of k.

�; (� ; k:� C;X B ! � C;X A) ` e : A [C; X ] X :A 2 �

�; � ` recall X k: e : B [C; X ]
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Becausethe mark is left in the evaluation environment, it becomesimpossible to
jump in sequenceto names that are further down in the support stack. In this
setting, it becomesnecessaryto considersemantics that allow jumps arbitrarily deep
into the support stack. This is very related to the behavior of Felleisen'sF operator
[Fel88]. If we label by D the top of the support stack, up to but not including the
target mark, then a recall which would jump over the namesin D will be typed as
follows.

�; (� ; k:� C;X ;D B ! � C;X A) ` e : A [C; X ] X :A 2 � X 62D

�; � ` recall X k: e : B [C; X ; D ]

Indeed, becausethe namesfrom D are captured into the continuation, they must be
removed from the range type of k. Support D is also removed from the evaluation
environment, and hencemust be omitted from the support of the premise.

The rule (4.3) leaves the mark into both the continuation K and the evaluation
environment of e, and the typing rule for it is thus

�; (� ; k:� C;X B ! � C A) ` e : A [C; X ] X :A 2 �

�; � ` recall X k: e : B [C; X ]

This choice of semantics corresponds to Danvy and Filinski's shift operator [DF89,
DF90].

Our choice of operational semantics for composablecontinuations is similar to
the one for the set/ cupto operators of Gunter, R�emy and Riecke [GRR95]. We
have decided on this choice of operational semantics for composablecontinuations
becauseall the other choices can be encoded within it. Obviously, if the mark is
discarded during reduction, it can always be placed back; if it is retained, it can
never be eliminated. We do not know if the other operational semantics can match
this expressiveness.

Example 43 Composable continuations have been used to conveniently express
\nondeterministic computation"; that is, computation which can return many results
[DF89, DF90]. The following example is a program for �nding all the partitions of
a natural number n, i.e. all the lists of natural numbers that add up to n. The
main function partition is very e�ectiv ely phrasedin terms of a primitiv e function
choice . The idea is to usechoice to non-deterministically pick a number between1
and n, and not worry about backtracking and exploring other options. Backtracking
is automatically handled by choice .

fun partition n =
if n = 0 then box (nil)
else

box (let val i = unbox (choice n)
box l = partition (n - i)

in
(i::l)

end)
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The important point is that choice itself can be implemented using composable
continuations. The way choice is implemented will determine the ordering in which
partition considersthe candidate lists for partitioning n.

The processof generatingpartitions for n may beseenasa traversalof a tree with
labeled nodes and edges{ a partition tree. Paths in the partition tree emanating
from a node labeled by n represent the partitions of n. An inductiv e de�nition of
the partition tree for n is given as follows:

(i ) if n = 0, then the tree consistsof a single node labeled 0.

(ii ) if n > 0, then the root of the tree is labeled with n, and edgeslabeled with
n; n � 1; : : : ; 1 connectthe root to partition treesfor 0; 1; : : : ; n � 1, respectively.

An example partition tree for n = 4 is presented below.

4

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

1234

123121

1211

1

Of course,just as with any tree, various traversal strategiesmay be employed to
generatethe partitions for n. For example,a depth-�rst strategy may employ a stack
k to store the nodesthat remain to be traversed. After putting the root node on the
stack, the depth-�rst strategy repeats the following algorithm: remove the top node
t from k, and expand it, i.e. determine all the children of t (if any), and put them
onto the top of k; if k is empty, then exit.

On the other hand, a breadth-�rst strategy may employ a queuek to store the
nodes that remain to be traversed. After putting the root node on the queue, the
breadth-�rst strategy repeats the following: remove the top node t from k, and
expand it, i.e. determine all the children of t (if any), and put them at the bottom of
k; if k is empty, then exit.
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In our implementation of the partition algorithm, the partition tree for n is
never explicitly built, but is implicitly described by the execution of the partition
function. For example, we present below a version of choice which facilitates a
depth-�rst traversal of the tree. In this implementation, we assumethat a name X
of unit type has already beendeclaredand allocated.

(* choice : int -> � X int *)
fun choice n =

box (recall X t : � X int -> � X unit.
let fun loop (s : int) : unit =

if s = 0 then ()
else

let box u = t (box s)
in

(markX u);
loop (s - 1)

end
in

loop (n)
end)

The program works by viewing the current global program continuation as an im-
plicit stack k of nodes to be expandedin order. Each node has its own composable
continuation, all of which composeto createk. The function choice simply captures
into t the composablecontinuation for the �rst node in the sequence.The captured
node is removed, and t is applied to generateall of its children { one child for each
possiblevalue of the variable s. The children nodesare added in place of the parent
node at the top of the global program continuation k. Becausethe new nodes are
added to the beginning, they will be the the �rst to expand in the subsequent exe-
cution. As a consequence,this implementation of choice usesa depth-�rst traversal
strategy.

With this version of choice , partition has the type int -> � X intlist . To
compute the partitions for 4, we run markX print (unbox partition 4) . The
result consistsof the lists [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1,
1, 1]. Becausedepth-�rst traversal is employed, the lists are sorted in lexicographic
order.

In our calculus, it is also possible to implement choice so that it facilitates
breadth-�rst strategy. When generating the children of some node, we only need
to attach them at the end, rather than at the beginning of the queue k that the
global continuation represents. One possiblebreadth-�rst implementation of choice
is given below.
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(* choice : int -> � Y;X int *)
fun choice n =

box (recall X t : � Y;X int -> � Y;X unit.
recall Y k : � Y unit -> � Y unit.

markY

let fun loop (s : int) : � Y unit =
if s = 0 then box ()
else

let box u = t (box s)
box u' = loop (s - 1)

in
box (markX u; u')

end
box v = k (box markX ())
box v' = loop n

in
v; v'

end)

How doesthis function work? First, we must assumethat the queueis marked by a
new name Y of unit type, so that it can be captured into a continuation itself. The
function choice captures the topmost node into t, and then captures the rest of the
queueinto k. It is important that the continuation k will not contain the delimiting
mark Y . Then choice expandsthe topmost node t, addsthe obtained children nodes
to the bottom of k, and puts mark Y back, so that its scope includes the children
nodes. Again, it is crucial for this application that the captured continuations omit
the target mark (unlik e, for example,in the calculi from [DF89, DF90]), asthis mark
will get in the way of adding new nodesat the bottom of k.

With this implementation of choice , the appropriate type for partition is
int-> � Y;X intlist . To compute the partitions for 4, we run

markY markX print (unbox partition 4)

to obtain the lists [4], [3, 1], [2, 2], [1, 3], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1].
Becausewe usedbreadth-�rst traversal strategy, we �rst explored all the partitions
of size1, then all the partitions of size2, etc. Thus, the lists will be sorted �rst by
size, rather than lexicographically, as was the casewith depth-�rst traversal.

�
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Structural prop erties and t yp e soundness

The table below presents the summary of the syntactic categoriesthat we rely on in
this section.

Expressions e ::= u j �x :A: e j e1 e2 j box e j let box u = e1 in e2 j
� X :A: e j choose e j recall X k: e j mark X e

Values v ::= �x :A: e j box e j � X :A: e
Evaluation contexts E ::= [ ] j E e1 j v1 E j let box u = E in e j choose E j

mark X E
Pure contexts P ::= [ ] j P e1 j v1 P j let box u = P in e j choose P
Redexes r ::= (�x: e) v j let box u = box e in e j

choose (� X : e) j mark X v j
mark X P[recall X k: e]

The �rst property of interest establishesthat in each evaluation context E we can
identify the closesmark acting on the hole of E .

Lemma 79 (Ev aluation context decomp osition)
If E is an evaluation context, then either:

1. E is a pure context, or

2. there exist unique evaluation context E 0 and pure context P 0 such that E =
E 0[mark X P0]

Pro of: Straightforward, by induction on the structure of E . �
Next we proceedwith the basic substitution principle of the calculus, whosestate-
ment is identical to the corresponding principles established in several previously
consideredcalculi.

Lemma 80 (Expression substitution principle)
If �; � ` e1 : A [C] and �; (� ; u:A[C]) ` e2 : B [D ], then �; � ` [e1=u]e2 : B [D ].

Pro of: By induction on the structure of e2. We present the characteristic cases
below.

case e2 = recall X k: e0, where X :B 0 2 �, and D = (D 0; X ).

By derivation, �; (� ; u:A[C]; k:� D 0;X B ! � D 0;X B 0) ` e0 : B 0[D 0]. By induc-
tion hypothesis, �; (� ; k:� D 0;X B ! � D 0;X B 0) ` [e1=u]e0 : B 0[D 0]. Now the
result follows by the typing rules for recall .

case e2 = mark X e0, whereX :B 2 �. By derivation, �; (� ; u:A[C]) ` e0 : B [D 0; X ],
whereD 0 v D . By induction hypothesis,�; � ` [e1=u]e0 : B [D 0; X ]. The result
now follows by the typing rules for mark .

�
Just as was the casewith exceptions, the Replacement lemma for composablecon-
tinuation needsto distinguish between pure and ordinary contexts. Becausepure
contexts do not allow a mark acting on the hole of the context, placing an expression
within a pure context preservesthe expression'ssupport.
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Lemma 81 (Replacemen t)
1. If �; � ` P[e] : A [C], then there exists a type B such that

(a) �; � ` e : B [C], and

(b) if � 0 extends � and � 0; � ` e0 : B [C], then � 0; � ` P[e0] : A [C]

2. if �; � ` E [e] : A [C], then there exist a type B and a support D such that

(a) �; � ` e : B [D ], and

(b) if � 0 extend � and � 0; � ` e0 : B [D ], then � 0; � ` E [e0] : A [C]

Pro of: By induction on the structure of P and E. The �rst part of the lemma
is straightforward. To establish the secondpart, by the decomposition lemma for
evaluation contexts, it is enoughto consider the following two cases.

case E is pure. In this case,the result follows from the already establishedreplace-
ment property for pure contexts.

case E = E1[mark X P], where X :B 0 2 �. By secondinduction hypothesis, there
exists B1 and D1 such that �; � ` mark X P[e] : B1 [D1]. By typing, it must
be B1 = B 0 and �; � ` P[e] : B1 [D 0; X ], where D 0 v D1. By the �rst induction
hypothesis, there exist B such that �; � ` e : B [D 0; X ]. Pick D = (D 0; X ) for
the part (a). Also by the �rst induction hypothesis, if � 0; � ` e0 : B [D 0; X ]
then � 0; � ` P[e0] : B1 [D 0; X ]. By typing, � 0; � ` mark X P[e0] : B1 [D1]. By
induction hypothesis, � 0; � ` E1[mark X P[e0]] : A [C].

�

Lemma 82 (Canonical forms)
Let v be a value such that �; � ` v : A [C]. Then the following holds:

1. if A = A1 ! A2, then v = �x :A1: e and �; x:A1 ` e : A1 [ ]

2. if A = � D B , then v = box e and �; � ` e : B [D ]

3. if A = A1 9 A2, then v = � X :A1: e and (� ; X :A1); � ` e : A2 [ ]

As a consequence,the support of v can be weakenedarbitrarily .

Pro of: By simple caseanalysis. �

Similar to the previous calculi, in the caseof composablecontinuations, we allow
evaluation within a context of one or more marks. Thus, the lemmas on Subject
reduction, Preservation and Progress for � ! , all have to consider arbitrary non-
empty supports C.

Lemma 83 (Sub ject reduction)
If �; � ` e : A [C] and � ; e � ! � 0; e0, then � 0 extends � and � 0; � ` e0 : A [C].

Pro of: By caseanalysis of possible reductions. The two characteristic casesare
presented below.
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case e = mark X v, where X :A 2 �. By derivation, �; � ` v : A [C0; X ], where
C0 v C. By canonical forms lemma, the support of v can be arbitrary , and in
particular �; � ` v : A [C].

case e = mark X P[recall X k: e0], where X :A 2 �.

1. By derivation, �; � ` P[recall X k: e0] : A [C0; X ], where C0 v C.

2. By replacement lemma for pure contexts, there exists B such that �; � `
recall X k: e0 : B [C0; X ].

3. Also by replacement lemma, �; u:B [C0; X ] ` P[u] : A [C0; X ].

4. Thus �; � ` �x: let box u = x in box P[u] : (� C0;X B ! � C0;X A) [ ].

5. From the typing (2), �; k:(� C0;X B ! � C0;X A) ` e0 : A [C0].

6. From (4) and (5), if we set K = �x: let box u = x in box P[u], by sub-
stitution principle, we get �; � ` [K =k]e0 : A [C0].

7. By support weakening, �; � ` [K =k]e0 : A [C], becauseC0 v C.

8. Sinceit is exactly � ; e � ! � ; [K =k]e0, this proves the case.

�

Lemma 84 (Preserv ation)
If �; � ` e : A [C] and � ; e 7�! � 0; e0, then � 0 extends � , and � 0; � ` e0 : A [C].

Pro of: By evaluation rules, there existsan evaluation context E such that e = E[r ],
� ; r � ! � 0; r 0 and e0 = E[r 0]. By replacement lemma, there exist B and D such that
�; � ` r : B [D ]. By subject reduction lemma, � 0 extends�, and � 0; � ` r 0 : B [D ]. By
replacement again, � 0; � ` E [r 0] : A [C]. Sincee0 = E[r 0] this proves the lemma. �

Lemma 85 (Progress for � ! )
If �; � ` r : A [C], then there exists a term e0 and a context � 0, such that � ; r � !
� 0; e0.

Pro of: By case analysis over the possible redexesr . The interesting casesare
presented below.

case e = mark X v, where X :A 2 �. By reduction rules, � ; mark X v � ! � ; v. We
can pick � 0 = � and e0 = v to prove the statement of the lemma.

case e = mark X (P[recall X k: e1]), where X :A 2 �. By derivation, �; � `
P[recall X k: e1] : A [C0; X ], where C0 v C. By replacement lemma, there
exists B such that �; � ` recall X k: e1 : B [C0; X ]. By reduction rules,
� ; mark X (P[recall X k: e1]) � ! � ; [K =k]e1, where K abbreviates the ex-
pression�x: let box u = x in box P[u]. Pick � 0 = � and e0 = [K =k]e1.

�

Finally, the unique decomposition lemma takes the usual form, as do the Progress
and Determinacy lemmas.
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Lemma 86 (Unique decomp osition)
For every closedexpressione, either:

1. e is a value, or

2. e = P[recall X k: e0], for a unique pure context P, or

3. e = E[r ] for a unique evaluation context E and a redex r .

Pro of: By straightforward caseanalysis. �

Lemma 87 (Progress)
If �; � ` e : A [ ], then either

1. e is a value, or

2. there exists a term e0 and a context � 0, such that � ; e 7�! � 0; e0.

Pro of: The proof is identical to the one presented in the previous calculi, so we
omit it here. �

Lemma 88 (Determinacy)
If � ; e 7�! n � 1; e1 and � ; e 7�! n � 2; e2, then there exists a permutation of names
� : N ! N , �xing the domain of � , such that � 2 = � (� 1) and e2 = � (e1).

Pro of: The proof is identical to the onespresented in the previous calculi. �

4.9 Notes

Related work on t yp e-and-e�ect systems

Integrating e�ects into typed functional calculi has quite a long history, and this
section is bound to be very incomplete. Numerous systems have been proposed,
treating various e�ects and with various levels of precision and verbosity of typing.
As a representativ e exampleof thesetype-and-e�ect systems, we simply list the works
of Gi�ord, Lucassen,Jouvelot, Talpin and Tofte [GL86, LG88, JG89, JG91, TJ92,
TJ94, TT97]. The approach usually taken by type-and-e�ect systemsis to extend

the languagewith a type of e�ectful functions A C! B . Here, C is a set of e�ects
that the evaluation of the function body may cause.

Coming from the sideof logic and typetheory, type-and-e�ect systemsaredirectly
related to monads. A monad is a typeconstructor which is usedto di�eren tiate be-
tweenvaluesand e�ectful computations. In monadic calculi, the type  A is ascribed
to expressionswhich may evaluate to a value of type A, but may causesomee�ect
in the courseof evaluation. Monads were invented for usein denotational semantics
by Moggi [Mog89, Mog91], and were later adopted for functional programming by
Wadler [Wad92, Wad95].

The connection between monads and e�ect systems is described by Wadler in

[Wad98]. Briey , the e�ectful function type A C! B in the type-and-e�ect systems
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corresponds to the monadic type A !  C B . One advantage of monads over type-
and-e�ect systemsis that monads encapsulatee�ects, so that e�ects can be added
to the languagein a modular way, without changing the already existing language
constructs. This is opposite to the type-and-e�ect systems,which require that the

function typesA ! B be extended into e�ectful function typesA C! B .
The modal e�ect calculi described in this dissertation alsoencapsulatee�ects and

add them to the languagein a modular way, without changing the underlying function
types. However, the modal framework allows more than onetype operator for e�ects,
and thus allows more precisedistinctions betweendi�eren t e�ectful computations.

Related work on dynamic binding

Dynamic binding has been introduced in the early versionsof LISP, and eventually
becamea standard, albeit controversial and often criticized feature.

Moreau in [Mor97] develops an untyped calculus for dynamic binding with � -
abstraction, application and a dynamic-let construct (which approximately corre-
sponds to our explicit substitutions). There are no additional constructs for encap-
sulation of computations with dynamic variables. The semantics of the language
is given by meansof an dynamic-environment passing translation into an ordinary
� -calculus. The languagedi�eren tiates betweenordinary variablesand dynamic vari-
ables. The later are replaced by the dynamic-environment passingtranslation into
lookups in the current dynamic environment. The paper proceedsto analyze the
interaction of dynamic binding with futures for the purposeof parallel evaluation,
and with �rst-class continuations for the purposeof encoding exceptions.

A typedcalculusfor dynamic binding, called�N , is presented by Dami in [Dam96,
Dam98]. The �N -calculus is related to our system in that both use names,but in
a slightly di�eren t way. The dynamic variables of �N are introduced as ordinary
� -bound variables, but are then indexed by namesto distinguish the various values
that can be assignedto them. The type system does not have a notion of support,
so it cannot prevent reading from uninitialized dynamic variables.

The calculus of Lewis et al. [LSML00] extends Haskell with dynamic binding. It
relies on implicit parameters which are essentially dynamically-scoped variables, or
namesin our calculus. The type system relies on the mechanism of type schemesto
tracks the useof implicit parameters. Type schemesdescribe the typing of let-bound
variables in Hindley-Milner-st yle type systems. Here, type schemesare extended to
account for implicit parameters as well. It is interesting that the calculus does not
internalize the notion of implicitly parametrized computation in terms of a modality
or a monad. Thus, dynamic binding in Haskell is treated rather di�eren tly from the
other notions of e�ect. The absenceof such an internalized notion of computation and
its corresponding type leadsto restrictions in the type systemin order to prevent the
inadvertent capture of implicit parametersthat may occur in a higher-order setting.
In particular, implicitly parametrized functions are not �rst-class, and hencecannot
be passedto other functions.

The ��� -calculus of Sato et al. [SSK02], allows a simultaneous abstraction over
a set of variables. For example, the expression� f Cg: e abstracts the variables listed
in C from the expressione : A. The type of � f Cg: e is A C , similar to our type � C A.
There are many distinctions, however, between ��� and our calculus of dynamic
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binding, arising mostly because��� is not basedon modal logic. For example, the
context in ��� associates variables with types, but not with supports. This leads
to a somewhat complicated formulation, where each variable must be assignedan
integer level, and the typing rules and the operation of substitution must perform
arithmetic over levels. The �� -calculus of Sato et al. [SSB01]is a precursor to ��� .
The �� -calculusprovidesexplicit substitution of terms for variables,but not dynamic
binding, as a variable may be usedonly if it is de�ned by an explicit substitution.

Mason[Mas99] extendsthe untyped � -calculuswith a primitiv e notion of context,
and the related operations for declaring and �lling context holes. Holesare similar to
our modal variables, in the sensethat each hole is decoratedwith its corresponding
substitution, but abstraction over holes is not considered.Holes may be �lled using
strong or weak substitution, which approximately correspond to our modal substitu-
tion. Strong substitution propagatesdown to the holesand composeswith the holes'
substitutions. Weak substitution propagatesdown to the holes,but doesnot change
the domainsof the holes' substitutions. In our calculusof dynamic binding (and also
in the modal � -calculus), there is no needto split the concept of modal substitution
into weak and strong, becausethe propagation of substitutions is controlled by the
modal term constructor (recall that substitution doesnot descendunder a box).

Hashimoto and Ohori [HO01] present a typed calculus of contexts. The calculus
does not internalize the notion of a computation in context, but provides a type of
functions from contexts to values. Similarly to our modal � -calculus,Hashimoto and
Ohori distinguish between ordinary variables and hole variables (corresponding to
our modal variables). The context � of hole variables associates each hole variable
u with its type A and an interface C (roughly corresponding to our support), but
also with an explicit substitution � which speci�es the bindings of the hole. The
explicit substitutions in this calculus only rename variables with other variables.
Storing the variable u and its substitution into the variable context, complicatesthe
systemsigni�cantly and reducesits expressiveness.For example, the typing rules for
constructs that bind ordinary variablesmust non-trivially manipulate the context �,
to account for the new bindings. Each hole variable u can be attached to only one
explicit substitution, becauseu is assigneda substitution upon its de�nition, rather
than upon its use. In fact, the calculus imposeseven more severe restrictions. For
example, the context � of hole variables is linear, i.e., each hole variable u can only
be usedonce,and ordinary variables can be referencedonly with an empty context
�.

A more recent reference on dynamic binding is the work by Bierman et al.
[BHS+ 02], which applies dynamic binding to marshaling and dynamic software up-
date. The paper introduces a � d-calculus with so-called destruct-time semantics,
where the idea is to postpone instantiation of a bound variable as long as possible
i.e., until the variable's value is required (essentially becauseit must be taken apart
by the computation). The values of the � d-calculus comprise the customary values
of the � -calculus, but also bound variables, and let de�nitions.

Related work on exceptions

A treatment of exceptionsin Haskell is consideredby Peyton Joneset al. in [PRH+ 99].
It is interesting that this paper doesnot usethe exception monad in order to extend
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the underlying language,but rather implements imprecise exceptions. With impre-
ciseexceptions,the program is not guaranteed to always report the sameexception
that would be encountered by a straightforward sequential execution. In this calcu-
lus, an exceptional expressionevaluates to an exceptional value, which has a whole
set of possibleexceptionsassociated with it. The associated exceptionsare the ones
that the expressionmay have potentially raised. Informally, this associated exception
set comparesto our notion of support.

At run time, of course,it is not a whole set of exceptionsthat an evaluation of an
expressionreturns. What is returned is the �rst expressionout of this set, that got
raised. It is important, however, that the returned exceptionmay changein di�eren t
compilations and runs, becausethe optimizations performedat di�eren t compilations
may result with di�eren t order of evaluation. Obviously, the semantics of the calculus
cannot depend on optimizations, so it assumesthat the returned exception is chosen
non-deterministically out of the possibleset.

Another exception calculi is presented by de Groote in [dG95]. It is a call-by-
value calculus which usesseparatebinding mechanismsto introduce exceptionsinto
the computation. However, becauseof the lack of modal or monadic types, it has
to speci�cally require that values of the language are e�ect-free, in which case it
implements the Standard ML exception mechanism. This paper also discussesthe
logical content of exceptions, and relationship with classical logic. The exception
mechanism of Java relates to our calculus as well, as Java methods must be labeled
by the exceptions they can raise [GJS97]. The catch and throw calculus is a spe-
ci�c simpli�cations of exceptions,and we refer to the following theoretical works on
catch and throw [Nak92, Kam00a, KS02]. Thesecalculi also lack the type construc-
tor for exceptional computations, and thus have to restrict the way exceptionsare
introduced, propagated and handled.

Related work on comp osable contin uations

Composablecontinuations wereprobably �rst consideredby Felleisenin [Fel88], in an
untyped setting and with recalling (or shifting) to only the nearestmark (or reset,or
prompt). A generalizationto a whole family of control operators for recalling, each of
which is indexedby a numeral proscribing how many closestmarks shouldbe jumped
over, appeared in [SF90a]. Also in untyped setting, Hieb, Dybvig and Anderson in
[HDA94] introduce labels instead of numerals to describe the destination points for
a hierarchy of recalls.

In a typed setting, Danvy and Filinski in [DF89] develop a calculus for compos-
able continuations with a single recall operator. The marks are not labeled. In the
Appendix C, they also briey discussthe idea which we have employed here: upon
capturing, remove the marks from the environment, so that jumps can be made to
the marks further down in the context stack. Danvy and Filinski further relate com-
posablecontinuations to the CPS transformation in [DF90, DF92]. Thesepapersalso
contain extensive commentary on the related work regarding composablecontinua-
tions. Gunther, R�emi and Riecke in [GRR95] develop a calculus whoseoperational
semantics is very similar to the oneusedfor the calculusof composablecontinuation
in this dissertation. In particular, this calculus removes the delimiting mark upon
capture, from both the environment and the reduct. Most recently, Kameyama in
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[Kam00a, Kam00b] works with labels instead of numerals to provide a hierarchy of
recall operators. The mentioned typed calculi lack a type constructor for e�ectful
computations, so they must imposerestrictions on expressivenessand type safety in
order to avoid the extrusion of e�ect scope.

Logical content of composable continuations is studied by Murth y in [Mur92].
This paper developsa type system for composablecontinuation with a hierarchy of
recall operators,which is basedon monadsindexedby setsof types,but hasto restrict
the marks to only implication-free types in order to preserve soundness.Wadler in
[Wad94] further analysesthe above type systemsfor composablecontinuations with
a single recall operator, and with a hierarchy of recall operators, and presents them
in terms of indexed monads. All these calculi are characterized by the serialization
of e�ects inherent in the monadic programming.

Monadic reection and rei�cation

One of the main features of the monadic calculi is the programming style in which
the program itself must specify a total ordering on the computational e�ects. But
sometimes,most notably in the caseof benign e�ects, e�ectful computations may be
independent and therefore may be evaluated out of order.

This problem with excessiveserialization of monadicprogramshasbeenaddressed
previously by Filinski, using monadic reection and rei�cation [Fil94, Fil96, Fil99].
Reection and rei�cation are translations betweenan e�ectful sourcelanguageand a
monadic � -calculus. The e�ectful sourcelanguageprovides the syntax for program-
ming (which avoids the burden of excessive serialization), while the monadic calculus
de�nes the semantics for the program. The modal approach to e�ects addressesthe
sameproblem of excessive serialization, but it does so directly, using only natural
deduction, and without any translations.

A further di�erence between monadic and modal calculi was discussedin Sec-
tion 4.6 regarding the calculus of exceptions. Monadic formulation of exceptionsre-
quires tagging and run-time tag checking of monadic values. Furthermore, reection
and rei�cation do not help avoid theseoperations; as concludedin [Fil94], reection
and rei�cation still incur the operational penalties of tag checking. In contrast, tag-
ging is not required in the modal calculus for exceptions. Rather, the operational
semantics of the modal calculus of exceptionscorresponds closely to the customary
way in which exceptionsare handled in practical languages:by unwinding the stack
until an appropriate handler is reached.

Kripk e semantics for lax logic

As described in Section 4.1, the identi�cation of truth and necessity in CS4 leadsto
the formulation of lax logic, in the sensethat the modal operator 3 translates into
the lax operator  . This identi�cation is achieved by extending the CS4 logic with
the axiom A ! � A.

In the Kripk e semantics of CS4, truth and necessity are identi�ed if the Kripk e
model satis�es the following monotonicity property:

for every world w and proposition A, if w j= A and w ! w0 then w0 j= A.
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Indeed, in this classof models, if A is true at the current world, then A is true at all
accessibleworlds, and is therefore necessary. Then, as establishedby Alechina et al.
in [AMdPR01], a Kripk e model for propositional lax logic consistsof a Kripk e model
for CS4 that satis�es the above monotonicity property.

Logical meaning of dynamic binding and exceptions

In this note we describe a possible logical interpretation for the calculi of dynamic
binding and exceptions (Sections 4.4 and 4.6). The main idea is to involve two
levels of interpretation. The judgment from the calculi of dynamic binding and
for exceptions form the object level. The meta level, or the meta logic, de�nes the
reasoning about the derivabilit y in the calculi from the object level. The modal
operators may be seenas internalizing properties of the meta logic for reasoning
about categorical derivations from the object level. This note will necessarilybe very
informal, and making the presented intuition preciseis left for future work.

The propositions from the object level should be contrasted to meta propositions,
which belong to the meta logic. For example, the atomic propositions of this meta
logic are of the form A where A is a proposition from the object level. At the
meta level, the truth of a proposition A may be derived by more expressive means
than those allowed for derivations at the object level. For each object connective
on propositions, the meta logic ought to contain a corresponding connective, and
appropriately relate the two. For example, in the meta logic we have

A � B

whenever we may derive A ! B .
NamesX 1:A1; : : : ; X n :An in the calculus of dynamic binding, may be treated as

labels for the meta propositions A1; : : : ; An . Then, we require that

� X 1 ;::: ;X n A tr ue

if and only if the conclusionA may be derived in the meta logic from the hypotheses
X 1, : : : , X n . In the calculus of dynamic binding, the reection principle is realized
by meansof explicit substitutions, and it simply allows that metalogical derivations
be translated into the object logic.

The meta logic for dynamic binding rather closely follows the object calculus, in
the sensethat the meta logic only contains connectivesthat correspond to the object
level connectives. But this need not be the case. For example, the meta logic for
exceptionsshould contain a propositional operator : for negation, while negation is
not an operator on the object level.

Exceptions X 1:A1; : : : ; X n :An may be consideredas labels for the meta logical
propositions : (A1), : : : , : (An ). Then we require that

� X 1 ;::: ;X n A tr ue

if and only if the conclusionA may be derived in the meta logic from the hypotheses
X 1; : : : ; X n .

For example, let us assumethat A can be proved in the meta logic, and let the
name X :A be a label for the proposition : (A). Then we can use X to reasonby
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contradiction and prove B , where B is an arbitrary object proposition. In other
words, given A (and thus also A), we can derive � X B tr ue. This reasoningdirectly
corresponds to the following derivation in the calculus of exceptions:

if ` e : A then ` box (raise X e) : � X B .

However, we cannot directly conclude B tr ue at the object level, becausethe
above derivation usesreasoningby contradiction, which is available at the meta level,
but not at the object level. In order to derive B tr ue, we needto use the reection
principle to show that the reasoningby contradiction can somehow be avoided. In
the calculusof exceptions,the reection principle correspondsto exceptionhandling,
and it allows that metalogical derivations be coercedinto object logic. Let us assume
that we are given the object proposition � X B tr ue and the metalogical proposition
A � B . Because� X B tr ue corresponds to : (A) � B , we can employ the law of
excluded middle and derive B . This reasoningdirectly corresponds to the following
derivation in the calculus of exceptions.

if ` e : � X B and ` h� i : [X ] B) [ ], then ` (unbox e) handle � : B .

From the standpoint of Kripk e semantics, it seemsplausible that the indexed
modalities may be introduced by the following rede�nition of the j= relation.

1. w j= � CA i� for all w0 w w and u0  w0, u0 j= C implies u0 j= A.

2. w j= 3 C A i� for all w0 w w there exists u0  w0 such that u0 j= C and u0 j= A

In this de�nition, C is the set of namesC = f X 1; : : : ; X n g, where the name X i

has the type A i . In the caseof dynamic binding, we set w j= C if and only w j= A 1,
: : : , w j= An . On the other hand, in the caseof exceptionswe set w j= C if and only
if w 6j= A1, : : : , w 6j= An .

Recursiv ely dep enden t names and future work on dynamic binding and
state

It is a well known property of functional languages,that in the presenceof state and
higher-order functions, recursion becomesadmissible. For example, we can de�ne a
recursive function fact:int->int for computing factorials, without explicitly using
the constructs for recursion. Below is an example in ML-lik e notation.

let val fact : int -> int =
let val F = ref ( � x. x) (* a dummyvalue *)

val g = � x. if x = 0 then 1
else x * (!F)(x - 1)

in
(F := g); g

end

The admissibility of recursion is a slightly disconcerting property of stateful com-
putations, becauseit shows that state destroys the connection with logic, which is
otherwise enjoyed by the pure � -calculus.

We may attempt to translate the above program into the calculus of dynamic
binding from Sections 4.4, by declaring F as a name of type int -> int . This
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translation, however, will not result in a well-typed program. Indeed, the function g
must be typed as int -> � F int , becauseg referencesF in its body. But then, it is
not possibleto assigng to F becauseof a type mismatch. The type of F cannot simply
be int -> int , but rather must be int -> � F int . When the type of F dependson
F itself, as it is the casehere,we say that F is a recursively dependentname. With an
explicit construct for recursively dependent names, the recursive factorial function
can be de�ned in the calculus of dynamic binding.

let val fact : int -> int =
let recname F : int -> � F int (* no need for a dummyvalue *)

val g = � x. if x = 0 then box 1
else box (x * unbox (F (x - 1)))

in
� n. <F -> g> unbox (g n)

end

Incidentally, the fact that recursion does not seempossibleunlessenabled by a
separate language construct, is a compelling reason to conjecture that the modal
calculi for dynamic binding and state from Sections4.4 and 4.5 are actually strongly
normalizing. This conjecture is left for future work.

Many other features, in addition to recursively dependent names, need to be
consideredif the modal calculus is to be extended into a full-edged languagewith
state. It seemsimportant, for example, to consider�rst-class names(as suggestedin
Section 2.3), support polymorphism (Section 3.3), explicit substitutions of variable
names,etc. The design spaceis rather large, and each of these extensionsmay be
interesting in its own right. We also note here the similarit y between recursively
dependent namesand recursively dependent signatures from [CHP99].

Related work on the comonadic form ulation of e�ects

In category theory, the operator � of CS4 modal logic is usually modeled by a
comonad. That comonadsmay represent intensional computations have previously
beennoticed by Brookesand Geva [BG92], and that comonadsmay represent e�ects
has beensuggestedby Kieburtz [Kie99].

It is interesting that Brookesand Geva considera particular family of comonads,
called computational comonads. The comonad � is computational, if in addition
to the standard comonadic laws it admits a natural transformation  : A ! � A
(with certain commuting conditions, that we omit here). As evident from its type,
 corresponds to the extension of the modal CS4 calculus with the axiom A ! � A,
and thus provides a way to coercevalues into computations.

Kieburtz in [Kie99] proposescomonadsfor thosee�ectful computations that may
depend on the run-time environment, but do not change it. It is interesting that
the comonadsin [Kie99] are not computational in the sensede�ned by Brookesand
Geva, and do not readily admit the coercion of valuesinto computations.

Neither of the cited papers on comonadsmake the connection with handling of
e�ects and with modal logic.
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Mo dal t yp es for div erging computations

Consider a purely functional languagewith a �xp oint construct, de�ned by the fol-
lowing typing rule and operational semantics.

� ; x:A ` e : A

� ` �x x:A: e : A

�x x:A: e 7�! [�x x:A: e=x]e

Expressionsin this languageeither evaluate to a value, or never terminate. Such
expressionsarepartial , becausethey may diverge. A typical exampleis the expression
�x x:A: x, which reducesto itself. Notice however, that the evaluation of a non-
terminating expressiondoesnot perform any changesto the run-time environment.
Depending on the operational semantics of the language, divergencemay prevent
some expressionsfrom being evaluated, but it does not inuence the outcome of
those evaluations that do take place. Divergenceis a benign e�ect.

In fact, divergenceis such a simple e�ect, that non-terminating computations do
not even dependon the run-time environment; if the computation doesnot terminate
in oneenvironment, it will not terminate in any other environment either. This is in
fact one of the reasonsthat divergenceis frequently not even consideredan e�ect.

However, if we do want to treat diverging computations as e�ectful, the benign
nature of divergencesuggeststhat we should use the type system for benign e�ects
(Section 4.3). How? The idea comesfrom the operational semantics. Observe that
the reduction of �x x: e substitutes the variable x by �x x: e. The fact that x
is substituted by an e�ectful computation, should be made explicit in the variable
context.

With that in mind, we introduce a name N to serve as a marker for non-
termination. If an expressionis possibly diverging, its support will contain the name
N . In fact, becausewe assumedthat our languageis pure except for divergence,our
supports will either be empty, or contain the single name N . Given the name N , we
may now rede�ne the typing rule for �x , as follows.

� ; x:A [N ] ` e : A [C]

� ` �x x:A: e : A [C]

Notice that the support set C of the expression�x x: e may equal the singleton
f N g, but may also be empty, depending on how x is usedin e. Of course,if �x x: e
has empty support, than by the support weakening principle, it may be considered
as having support f N g as well. As a consequence,the operational semantics that
substitutes x : A [N ] by �x x: e obeysthe prescribed supports, and will be type safe.

It is interesting that non-termination does not admit any obvious notions of
handling, by which we could remove the nameN from the support of a possiblynon-
terminating computation, and therefore restore the purit y of such a computation. In
fact, it may be appropriate to view non-termination as an e�ect that is handled by
someentit y outside of the language(e.g. the operating system). Of course,then we
should allow that expressionswith non-empty support be evaluated. This contrasts
Chapter 4, where we only evaluate expressionswith empty support.

To illustrate the above ideas, we present the code for a factorial function which
uses�x-p oints and is therefore conservatively labeled as non-terminating.
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- fix fact : int -> � N int.
� n:int. if n = 0 then box 1
else box (n * unbox (fact (n - 1)));

val fact = [fn] : int -> � N int

- unbox (fact 2) + unbox (fact 3);
val it = 8 : int

Notice that the �x-p oint expressionmay not be typed simply as int -> int , but
must be given a more complicated type int -> � N int . Indeed, the recursive ref-
erence to fact in the � -abstraction must be boxed. Otherwise, the body of the
� -abstraction would have had non-empty support, which is not allowed by the type
systemfor benign e�ects (Section 4.3). In this example,the function fact hasempty
support, but the result 8 is obtained with support N . We may suppressthis infor-
mation, however, becauseexpressionswith both empty and non-empty supports are
admitted for evaluation.
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Conclusions

This dissertation considersa versionof modal logic and the corresponding � -calculus,
as a foundation for functional languagesin which the type system can represent se-
lected properties of the program's execution environment. Type systemswith this
property are interesting becausein programming practice it is almost always the case
that programs are not pure, but must interact with their execution environment in
someway. A languagewith a modal type systemmay facilitate an early detection of
programming errors resulting from the program/environment interaction. Further-
more, becausethe typesrestrict the kinds of environments that may be encountered
during the evaluation, the compiler may exploit this knowledge to perform more
aggressive program transformations and optimizations.

The modal logic consideredfor this purposeis a constructive version of S4, with
indexed families of modal operators. The indexes on the modal operators capture
the property of the execution environments that is important for the application of
interest.

In the particular examplesconsideredin the dissertation, programsinteract with:

Memory. This instantiation of the modal calculus gives rise to languagesfor
non-destructive state update (i.e. dynamic binding), and destructive state update.
The modal type � C A classi�es computations that read from memory, but do not
changeit, and the modal type 3 C A classi�es computations that may also write into
memory.

This separationof computations into two categoriesnaturally corresponds to the
two di�eren t kinds of quanti�cation. The operator � of modal logic is a universal
quanti�er over possibleenvironments. A computation that realizes the type � CA
can be executedin any state of memory that satis�es the speci�cation C. As a result
it producesa value of type A. This is exactly the behavior of a computation that
only reads.

Dually, a computation realizing the type 3 C A is a witness that there exists a
state satisfying the speci�cation C, in which a value of type A can be computed.
Such a computation must exhibit how the state should be changed,and how a value
can becomputed in the changedstate. Becausethe operation of writing into memory
witnessesthe changeof state, the modal type 3 C A classi�es writing computations.

Control-ow stack. This instantiation of the modal calculus gives raise to lan-
guagesfor exceptions,catch and throw, and composablecontinuations. The impor-
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tant observation regarding control e�ects is that they do not change the execution
environment of the program. A jump in the control-o w may inuence whether a
certain program subterm is evaluated or not, but it doesnot inuence the valuesof
the evaluated subterms. This is di�eren t from, for example, writing into memory,
where a change of the content of somespeci�c memory location may inuence the
subsequent program execution.

As a consequence,control e�ects shouldbeencapsulatedusing the universalquan-
ti�er � , rather than the existential quanti�er 3 . In this approach, the computations
with control e�ects neednot be serialized,as is the casein the currently most widely
adopted logical treatment of control e�ects basedon monads.

Contexts (i.e. program expressionswith a hole). In this instance, the notion of
interaction is variable capture of expressionsthat are substituted into the hole of
the context. Depending on whether the contexts are treated as syntactic entities or
as compiled code, the obtained calculi are suitable for intensional manipulation of
abstract syntax or for run-time code generation.

A lot more remains to be investigated. The framework of modal logic is very
general, and it may potentially capture and represent many more ways in which
programs interact with their environments. In terms of practicalit y of programming,
the future work needsto addressthe expressivenessand usability of modal calculi.
We outline below sometargets for future investigations.

Decorated typ es

There are many applications which require that the program typesbe decoratedwith
someadditional information describingthe executionenvironment. Examplesinclude
distributed computation, security and information o w, resourcebounds,ownership,
etc. The currently existing languagesfor thesekinds of applications typically do not
attempt to encapsulatethe environment-dependent computations, which in turn may
lead to interference of languagefeatures. Perhaps a restructuring basedon modal
logic, and encapsulationsusing � , 3 or someother modal operator, may improve
the modularit y of design.

For example, the type � X A may stand for: (a) expressionsexecutable on all
networked computers that provide the resourceX , or are owned by the authorit y X ;
(b) computations encrypted by the key X ; (c) computations that may read from the
databaseof objects with the security level X (or lower). Dually, the type 3 X A may
stand for: (a) expressionsexecutableon somenetworked computerswith resourceX ;
(b) a key X and a computation encrypted by X ; (c) computations that may write
into the databaseof objects with the security level X (or higher).

Other e�ects and e�ect combinations

There are many other notions of benign e�ects which may bene�t from a modal
type system, the main examplebeing I/O. Several decisionsmust be made,however,
before I/O is cast into the modal framework. For example, should printing on the
screenbe seenas a computation that changesthe execution environment? In other
words, should printing computations be serialized or not? Information display is a
channel of communication, which may changethe user'sperception of the world, and
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prompt certain reactions. In such cases,the order in which information is displayed
is obviously important. But sometimesthis ordering does not matter, or at least
doesnot have to be linear. Such a behavior is frequently encountered in parallel and
distributed applications, where the order in which the display is acquired by various
processesis not determined prior to program execution.

Thus, both approachesto the serialization of program output seemto make sense.
If the serialization is desired, it can be achieved by meansof the modal operator 3 .
Otherwise, program output can be tracked by meansof � , in a way similar to the
tracking of non-termination explained in Section 4.9. Indeed, a computation of type
A that prints on the screenmay be seenasa conditional: it producesa value if access
to the screenis provided. Thus, we may type such a computation as � SA, where S
is a new name denoting that accessto the screenis required.

Program input may also o�er possibilities for a modal treatment. It may be
advantageousto view the operation of reading from the �le systemasa computation
that does not change the execution environment, and thus does not need to be
serialized. This is not quite straightforward, as reading from a �le advancesthe �le
pointer, and hencedoeschange the environment. Thus, perhapsa starting point in
the modal treatment of input is to reformulate the set of �le operations to separate
the reading of the current character in the �le, from the advancement of the �le
pointer.

Obviously, it is desirableto beable to combine all thesedi�eren t notions of e�ects.
In fact, the problem of combination of e�ects in the monadic setting have already
been encountered, and several solutions exist in the literature [KW92, GL02]. In
the modal setting, the question may be poseda bit di�eren tly: how can we combine
di�eren t modal logics? This is much more general than combining monads, as we
do not need to restrict ourselves to particular variants of constructive S4. Indeed,
we may be interested in adding exceptionsto a metaprogramming language,or to a
languagefor distributed computation or for security and information o w. Having
said that, when the Kripk e structure of the logic is �xed, combining di�eren t e�ectful
computations may amount to combining the supports of their respectivemodal types.
This in turn correspondsto manipulating the independent piecesof the possibleworld
that the program environment represents.

T yp e and supp ort polymorphism and inference

Type polymorphism and inferenceare necessaryingredients of every practical lan-
guage. In the setting of the modal � -calculusand related e�ect calculi, the additional
challengesare support polymorphism and support inference. Of course,combination
of e�ects with polymorphism and the type inference in this combined setting have
beenstudied before[LG88, TJ92, BT01, LP00, GSSS02],and the existing approaches
should generalizeto the modal calculus. In fact, it may also be possiblethat the en-
capsulation of e�ects, and the underlying foundation in modal logic, may simplify
the processof type and support inference. For example, the current implementa-
tion of the modal calculi of e�ects employs the standard algorithm for bi-directional
type checking [PT98], thus eliminating the needfor all type and support annotations
except at the introduction languageforms.

Obviously, the extent to which the full type and support inference is possible
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will depend on the expressivenessof the language. Should we consider recursively
dependent names from Section 4.9 (which add to the language a a vor of recur-
sive types), or not? Should we considerHindley-Milner or Girard-Reynolds style of
polymorphism in typesand support? As is well known, in the presenceof type poly-
morphism in Girard-Reynolds style, typechecking and type inferenceareundecidable
[Wel99]. Similarly, it is plausible that the modal calculuswith Girard-Reynolds style
support polymorphism from Section3.3 will have undecidableinference,but that the
inferenceis possiblein the Hindley-Milner variant.

First-class names

As already described in Section2.3, namesconsideredin this dissertation are second-
class,in the sensethat they cannot be passedas function arguments. An important
direction for future work is to promote names to �rst class, and correspondingly
extend the described modal calculi.

First-class nameswill require a type constructor N : Type ! Type, so that func-
tions that take name arguments, or return name results may be typed. The explicit
substitutions in the modal � -calculus, and the exception handlers in the modal cal-
culus of exceptionswill have to allow assignment of expression(resp. handlers) to
variable names.

Of course,�rst-class namescan be generatedby arbitrary recursive functions, so
it becomesimpossibleto fully and statically track namegenerationand propagation.
Thus, name generation should be viewed as an e�ect that changesthe state of the
world, and should thus be tracked by the 3 modality { unlike in the present calculi,
wherethe e�ects of namegenerationare localizedby meansof supports. The useof 3
modality for namegenerationwill lead to a semantics similar to that of the dynamic
allocation monad, recently used in another work on namesby Shinwell, Pitts and
Gabbay [SPG03].

In addition, support polymorphism, as discussedin the previous section will
becomevery important. With �rst-class names, expressionsupports will become
unknown statically, so we will have to universally and existentially abstract over
them.

Mo dal t yp e theory

Modal typeso�er a rich structure capableof capturing computational conceptsfrom
very diverseapplication domains in a rather uniform way. The uniformit y makes it
plausible that common formal methods for representing, reasoningabout and veri-
fying modal programs could be identi�ed and developed. A dependent modal type
theory [NPP03] is a likely framework for such an investigation.
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