Functional Programming with
Names and Necessity

Aleksandar Nanevski
June 2004
CMU-CS-04-151

Scool of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial full Iment of the requirementsfor
the degree of Doctor of Philosophy

Thesis Committee:

Frank Pfenning, Chair
Dana Scott
Robert Harper
Peter Lee
Andrew Pitts, University of Cambridge

This researty was sponsored in part by the National ScienceFoundation (NSF) under Grant
No. CCR-9988281 and by a generousdonation from the Siebel Scholars Program. The views and
conclusions contained in this document are those of the author and should not be interpreted as
represerting the o cial policies, either expressedor implied, of the sponsorsor any other entity.

Keyw ords: functional programming, modal type systems,modal logic, lambda
calculus, e ect systems,monads, staged computation, metaprogramming

Abstract

All programsinteract with their environments in oneway or another: they read and
write to memory, query usersfor input, print out results, senddata to remote seners,
etc. Becauseincreasingly complex environments result in increasingly di cult and
error-prone programming, programming languagesshould facilitate compile-time de-
tection of erroneousinteractions with environments. In this dissertation, | propose
variants of modal logic with names, and their related -calculi, as a type theoretic
foundation for sud languages.

In the rst part of the dissertation, | review the judgmental formulation of propo-
sitional constructive modal logic, and the de nitions of necessiy and possibility as
universal and existertial quarti cation over possibleworlds. In the application to
functional programming, possibleworlds in modal logic will correspond to execution
ernvironments.

The secondpart investigatesthe notions of partial judgmernts; that is, judgments
satis ed under some abstract condition. Partial necessiy and partial possibility
correspond to boundeduniversaland boundedexistertial quanti cation over possible
worlds. While the partialit y condition may be speci ed in sewral di erent ways, in
this dissertation the focusis on the de nition of partialit y in terms of names. Names
are labels for propositions, and a set of names represerts the partialit y condition
obtained as a conjunction of the respective propositions.

In the third part, | discussapplications of modal logic to staged computation
and metaprogramming. In these applications, it is frequertly necessaryto consider
a primitiv e operation of capture-incurring substitution of program expressionsinto
a context, which is naturally expressedn a modal type system.

The last part of the dissertation develops modal type systemsfor e ects. The
e ects assaiated with partial possibility are those that permanertly change the
execution ervironments, and therefore must be executedin a specic linear order.
Writing into a memory location is a typical example. The e ects assaiated with
partial necessiy arethosethat may dependon the executionenvironment, but do not
changeit { they are benign, and do not needto be speci cally serialized. Examples
include memory readsand cortrol ow e ects.

Ac knowledgmen ts

Writing this dissertation hasbeenatrying endeavor, abundant with arduouspersonal
and professionalchallenges. That | have actually cometo the end of it, | can safely
attribute to the guidance, support and encouragemeh of my advisor Frank Pfen-
ning. | have bene ted immensely from Frank's kind instruction, extensive scienic
expertise, reliability and reassuringin uence.

| am also indebted to my thesis committee for their involvemert and personal
attention during my studies. | thank Dana Scott for teaching me about the invaluable
importance of geometric intuition in researtr. With Dana, | undertook a study of
algorithms for symbolic and algebraic computation, which directly led to my interest
in programming languagesfor such algorithms, and evertually to this dissertation.
| thank Bob Harper for many fruitful discussionsand his support. His pointed
questionshelped me keepmy focusand sharpen my argumerts. | thank Peter Leefor
his advice and encouragemen regarding teaching and academia. Peter has always
been the source of solutions for real-life problems. | thank Andy Pitts for being
very diligent as my external examiner. It was Andy's work that inspired my own
investigations into the interaction of namesand modalities.

I thank my friends with whom | sharedthe experiencesof graduate sdhool and life
in Pittsburgh: Derek Dreyer, Umut Acar, Andrej Bauer, Merete and Lars Birk edal,
Mihai Budiu, Malk Choseed Franklin Chen, Ivica Eftimovski, Natasaand Chen Gar-
rett, Lynn Harper, Beth and Je Helzner, RoseHoberman, Viktor Miladinov, Olja
and Ivo Naumov, Brigitte Pientka, Viki Petrova, Debbie Pollack, Chuck Roserberg,
DesneyTan, Dijana and Stevan Tofovic, and Kevin Watkins.

At the end, this dissertation would not have beenpossiblewithout the unwavering
support of my family. It is as much their achievemert asit is mine.

Table of Contents

Intro duction

1 Constructiv e modal logic

11

1.2

1.3

Natural deduction
1.1.1 Judgmenrs and propositions,
1.1.2 Hypothetical judgments and implication
1.1.3 NECeSSI . . . v v i e e
1.1.4 Possibility
1.1.5 Summaryofthesystem
Modal -calculus
1.2.1 Judgmens and proofterms
1.2.2 Summaryofthesystem
Notes e

2 Partial modal logic

2.1

2.2

2.3

3.1
3.2

3.3
3.4

Natural deduction
2.1.1 Partial judgmentsandsupports
2.1.2 Hypothetical partial judgments
2.1.3 Relativizednecessiy 0.
2.1.4 Simultaneouspossibility,
215 Names.
2.1.6 Name-spacemanagemem
217 SUMMANY . . . e e e e e e e e
Modal -calculus
2.2.1 Partial judgments and proofterms
2.2.2 Name-spacemanagemem
2.2.3 Summary and structural properties.
Notes e e

Staged computation and metaprogramming

Introduction
The -calculus.
3.21 Motivation
3.2.2 Syntax andtypecheking
3.2.3 Operational semartics,
Support polymorphism
Intensional program analysis

31
31
31
33
36
40
44
46
50
52
52
60
63
71

Vi

TABLE OF CONTENTS

3.4.1 Syntax andtypecheking 93
3.4.2 Operational semarics, 98

3.5 Logicalrelations 102
3.6 Notes 116
4 Mo dal theory of e ects 119
4.1 Propositional lax logic o oo o 119
4.1.1 Judgmers and propositions 119
412 Lax -calculus 124
4.1.3 Valuesand computations 126

4.2 Modalities for e ectful computation 130
4.3 A modal type systemfor benigneects. 134
4.4 Dynamic binding e 142
45 State 150
4.6 EXCeptions 163
4.7 Catchandthrow 173
4.8 Composablecortinuations 178
4.9 NOtes e 191

5 Conclusions

In tro duction

It is becomingincreasingly important today to execute programs in very complex
run-time ernvironments. Modern programs are often required to run in parallel, be
mobile, use distributed data owned by di erent authorities, accommalate dynam-
ically changing run-time conditions. Moreover, as the run-time ernvironments are
becomingmore complex, sois the programming for these environments.

When approading complex programming problems, a language-enforcedpro-
gramming discipline is crucial, and a natural way to enforcethis discipline is through
the type medanism of functional languages. Typesexpressassumptionsand guar-
anteesrequired of expressions,and usually correspond to propositions in somelogic.
The compiler can mechanically ched if the expressionmatches its specied type,
thereby aiding the debuggingprocess.

The type systemsof languagestoday usually ensurethat functions are invoked
with matching argumerts but, unfortunately, ignore how programsinteract with run-
time ernvironments. In order to managethe increasedcomplexity of programming, a
language-enforcedyping discipline that takeservironments into accourt seemslike
a critical componert. Indeed, if typescould capture important aspects of run-time
environments, then the type system may also ensurethat expressionsare always
executedin matching environments.

What doesit meanfor an expressionand an ervironment to match? The de ni-
tion may be given in many di erent ways, depending on the particular application.
As an illustration of the concept, considerthe following example. Assumethat an
environment consists on a number of allocated memory locations (not necessarily
initialized). An expressioninteracts with this ervironment by reading or writing
into the locations. One possiblede nition of matching may, for example, insist that
ead expressionreading from a number of locations is always executedin a state of
memory where theselocations are actually initialized.

A related issueis whether an expressiononly depends on the environment in
which it executes,or perhapsthe execution of the expressionmay causea changein
the ervironment. To refer to the previous example,a program that doesnot interact
explicitly with the memory locationswill producethe sameresult irrespectively of the
particular valuesstoredin the locations. We call such a program pure. If the program
reads from a certain location, then changing that location's value may change the
result of the program. If the program actually writes into a location, then it not only
depends on the memory environment, but it also changesit. It may be bene cial
in sewral ways to make a typing distinction between expressionsthat are pure,
expressionsthat depend on the environment, and expressionsthat may change the
ernvironment. A pure expressionis self-cortained. One can easily optimize it and

1

INTR ODUCTION

reasonabout it. If the expressionis impure, optimizations and reasoningare much
harder, becausdanteractions with unknown ernvironments must be taken into accourt.
The reasoningis made easierif types could restrict the kinds of environments that
may be encourtered, and alsore ect the nature of the interaction.

A natural question then becomes: which logic may capture the properties of
run-time environments, and thus may sere as a foundation for type systemswith
above properties? The proposedanswer in this dissertation is: modal logic. More
speci cally, the thesis statemert of the dissertation is:

Partial modal logic with names provides an appropriate type theoretic
foundation for expressingdiverse aspects of the interaction between a
functional program and the environment in which this program executes.

Modal logic is designedfor reasoning about truth acrossvarious { abstract {
worlds. A proposition may be true in some world, but not true in some other.
The versions of modal logic that will be consideredhere feature two operators on
propositions: (box) and 3 (diamond). The operator is a universal quarti er:

A istrue at the current world i A is necessary i.e. true at all worlds. The operator
3 isan existertial quarti er: 3 A istrue at the current world i A is possible i.e. true
in at least someworld.

For the application to programming languages,we may assumethat, intuitiv ely,
the worlds from modal logic stand for the run-time ervironments in which the pro-
grams execute. Then, accordingto the proofs-as-programsparadigm of type theory,
deriving truth of a proposition A in a particular world, computationally corresponds
to producing a value of type A in a particular run-time ernvironment.

Wefurther intro ducean additional condition C, which may or may not be satis ed
by any given world. The obtained logic will be called partial modal logic. Instead of
two modal operators and 3, partial modal logic featurestwo indexead families of
operators ¢ and 3 ¢ which correspondto boundeduniversaland boundedexistertial
quanti cation over worlds, respectively. The proposition ¢A is true at the current
world i A is true at every world in which C holds. The proposition 3 cA is true at
the current world if there exists a world in which both C holds and A s true.

Computationally, the condition C represetts properties of interest that the run-
time environment must satisfy in order for the consideredexpressionto be evaluated.
In the previously mentioned example with memory reads and writes, C may be a
list of currently initialized memory locations. The type system may ensure that
expressionsreading from locations listed in C are always executedin environments
in which locations from C are initialized.

The computational interpretation of the modal type A parallels its logical
meaning: cA classi esexpressionof type A that may executein any ervironment
satisfying the condition C. The results of the execution may di er depending on the
particular environment, but it is important that the environment is not changed as
result of the execution. In our examplewith memory, cA will classify expressions
that do not write into any locations, but may read from locations in C, before
computing a value of type A.

The interpretation of the modal type3 c A isdual: 3 c A classi esexpressionghat
may changethe current environment (and the condition C capturesthe aspectsthat
are subject to change)beforeproducing a value of type A in the changedervironment.

2

INTR ODUCTION

Sudch expressionscorrespond to bounded existertial quanti cation. Indeed, they are
the witnessthat there existsan ervironment (i.e., the one obtained after the change
has been carried out) in which a value of type A can be computed. In the example
with memory, 3 cA will classify expressionsthat may rst write into the memory
locations C before computing a value of type A in the changed state.

Namesare objects that are usedto formally represen the partialit y condition C.
In the examplewith memory, ead memory location is assa&iated with a name which
uniquely identi es this location. The condition C is a set of names,represening the
set of locations that are currently initialized. Namesmay be dynamically allocated
and introduced into the computation.

The idea to usetypesto dierentiate pure from e ectful expressionscertainly
has beenstudied before. Here we only mention the most popular approades: type-
and-e ect systems[GL86, LG88, Wad98 JG91, TJ94, TT97], and monads[Mog91,
Wad92 Wad95 Wad9§. In modal logic, howewer, the emphasisis not on the e ects
themseles, but is rather on the environments (as the readerhasundoubtedly already
noticed). For example,in the framework of e ect systemsor monads, an expression
may be described as\causing the e ects of reading from memory locations C". In
modal logic, the sameexpressionwill be characterized as being \executable in any
state of memory in which the locations C are initialized".

This switch of emphasiswill allow modal systemsthat may expressinteractions
between programs and ernvironments that are much more diversethan just e ects.
In fact, the notion of a generic monad givesrise to a particularly simple version of
modal logic, called lax logic [FM97, BBdP98, PD01], and thus monadsmay be seenas
a special caseof the modal approad. Of course,there are many other modal logics,
which may potentially capture many di erent aspectsof programsand environments.
For example, Chapter 3 studiesin more detail a version of modal logic suitable for
application to staged computation and metaprogramming, where programs may be
generated,compiled, and even inspected at run time.

The rest of this section describes the organization of the dissertation and the
cortributions of ead particular chapter.

Organization and contributions
Chapter 1: Constructiv e modal logic

The purp oseof this chapter is to establishthe main conceptsthat we operate with in
the rest of the documert. We usethe methodology of Martin-Leof [ML96] to clearly
separate between the notions of proposition and judgments, and then dewelop a
natural deduction for a particular versionof modal logic. The modal logic in question
is called Constructive S4 (CS4), and it will be a basisfor all the considerationsin
the following chapters. In addition to the usual connectives of propositional logic,
CS4 contains the modal propositional operators and 3 which expressuniversal
and existential quarti cation over possibleworlds.

The proof term assignmen for the dewveloped natural deduction de nes a modal
extension of the -calculus, and provides the computational context for the modal
logic CS4. The modal -calculusis characterized by the new term constructors b ox
and let box (which correspond to the inferencerules for the operator) and dia
and let dia (which correspond to the inferencerules for the operator 3).

3

INTR ODUCTION

The chapter concludeswith the formulation of the relevant expressionsubstitu-
tions, and the corresponding substitution principles in the setting of both the natural
deduction and the modal -calculus.

The presenation in this chapter closelyfollows the work of Pfenning and Davies
[PDO01], and doesnot add novel cortributions.

Chapter 2: Partial modal logic

This chapter dewelopspartial modal logic CS4, as an extensionof ordinary CS4from
Chapter 1. The main idea is to introduce a condition C that serwesto characterize
arbitrary aspect of the possible worlds that may be of relevance for the eventual
applications. The condition C is called support. The basicsof the logic are developed
with the support C kept abstract, sothat the chapter is rather general. Evertually,
C is de ned as a set of names (to be described below), but many other de nitions
seemplausible.

The introduction of supports leadsto the de nition of modal operators ¢ and
3 ¢, which are indexed by the support C. The indexed modal operators correspond
to boundead quanti cation over possibleworlds. For example, ¢A will intuitiv ely be
true at the current world i A istrue at all possibleworlds in which C holds. Dually,
3 cA will betrue at the current world i there existsa world in which both C holds
and A is true.

The extensionsof the logic will alsoin uence the corresponding -calculus. In
order to presene the completeness,we will add new term constructors. But most
importantly, the de nition of supports will lead to a de nition of a new and interest-
ing operation of madal substitution. Unlike ordinary substitution, which treats the
substituting terms parametrically, modal substitution allows the term to be mod-
ied beforeit is substituted in. It is important that a dierent modi cation may
be speci ed for ead substituting occurrence. This processof modi cation is called
re ection, and may be de ned in many ways, depending on the speci ¢ notions of
support.

This chapter also introduces names which provide a particular way to specify
supports. Each name s assaiated with someproposition A, and seresas a place-
holder for a proof that A is true. The dewvelopmert is slightly more general,howe\er,
aswe want namesto stand for proofs of other properties of interest, and not only for
truth. As already mentioned, the support C may beviewed asa setof names,and the
condition expressedby C is the conjunction of the propositions assa&iated with eath
namein C. The processof re ection is then de ned asan explicit substitution for the
namesin C. The proof-term assignmen obtained for the partial modal logic with
namesgivesrise to an extensionof a -calculus, which we call a modal -calculus.

The chapter concludeswith the proofs of the main principles assciated with
ordinary, modal and explicit substitutions. All the work presered in this chapter is
original.

Chapter 3: Staged computation and metaprogramming

In staged computation and metaprogramming, we are concernedwith writing code
that generatesother code. Frequertly, the generatedcode may be seenassourcecode

4

INTR ODUCTION

(i.e., a syntactic entity), and the operations of interest include not only generating
but also compiling and inspecting sourcecode.

The type safety for metaprogramming applications has to guarantee that well-
typed metaprograms only generate well-typed source code. One of the most per-
sistert challengesrelated to the typesin metaprogramming has beenin devising a
type systemthat candi erentiate betweensourcecode which is close (i.e., doesnot
depend on free variables, and may therefore be compiled and executedat run time),
and sourcecode which is open (i.e., may depend on free variables).

It turns out that the -fragmen of the modal -calculusfrom Chapter 2 directly
extendsto a metaprogramming calculuswith typesfor closedand open sourcecode.
The type A classi es sourcecode of type A which may depend on free variables
(i.e., names) listed in the set C. When the set C is empty, then A classies
closedsourcecode. In this chapter, we also de ne the notion of polymorphism in
supports, sothat we can write programsthat manipulate sourcecode of di erent or
even unknown support. The chapter also presens someinitial dewvelopmert toward
extending the calculus with featuresfor pattern matching against sourcecode.

From the technical standpoint, the contributions of the chapter involve the dewel-
opmert of the logical relations for the -fragment of the modal -calculus,aswell as
proofs of the appropriate progressand type presenation theorems. The work lead-
ing to the results of this chapter has beenpresered previously in a form of seweral
papers and technical reports [Nan02a Nan02b, NP02].

Chapter 4: Mo dal theory of e ects

In this chapter we dewvelop a generalmodal calculusin which typescan distinguish
betweentwo kinds of e ects: e ects that are persistent, and e ects that are benign.
The execution of persistent e ects inicts a changeupon the run-time ernvironment,
while the benign e ects only depend on the ervironment, but do not changeit. A
typical persistert e ect is writing into a memory location, while typical benigne ects
are memory readsor cortrol ow e ects. The derivedtype systemis ableto di eren ti-
ate betweenvalues(which are ascribed non-modal types), computations with benign
e ects (ascribed the indexed modal type ¢A) and computations with persisten
e ects (ascribed the type 3 cA). This dewelopmen is an original cortribution.

The programming style enforcedby this type system serializesthe computations
with persistert e ects. The persisten e ects must betotally ordered, simply because
their execution changesthe run-time ernvironment, soany well-de ned semartics has
to x this order. Suc arequiremert, howewver, is not imposedon benign e ects.

The idea to use typesto dierentiate between values and (possibly e ectful)
computations has been extensiwely studied in the past. The most prominent rep-
resenativ e of this line of researtn are monads and the monadic -calculus [Mog91,
Wad92 Wad95, Wad9§|. The notion of a genericmonadictype operator givesrise
to lax logic [FM97], which is a simple variant of modal logic.

It is interesting that lax logic may be embeddedinto the constructive modal logic
CS4, asdiscovered by Pfenning and Davies [PDO01]. In this chapter, we presen both
the lax logic and its embedding. While we adopt the approac of [PD01] in the
description of lax logic, the embedding itself is preseried in a novel way. Rather
than insisting on the formal syntactic particulars of the embedding, we focus on its

5

INTR ODUCTION

more illustrativ e semartic importance, which is in identifying the conceptsof truth
and necessiy. This identi cation of truth and necessiy may be formally achieved
by adjoining a single axiom schema A ! A to modal logic CS4. In this case,the
modal operator 3 becomesthe monadic operator from lax logic.

The dewelopmert of the chapter proceedsby performing a similar modi cation to
partial modal logic. When truth and necessiy are identi ed in partial modal logic
(or, equivalently, if partial modal logic is extendedwith the axiom schemaA ! A),
we obtain a generaltype system for benign and persistert e ects described at the
beginning. This obsenation is also an original cortribution.

The general calculus may be uniformly instantiated to treat various dierent
e ects, and we do soto obtain novel calculi for memory readsand writes and calculi
for control e ects like exceptions, catch-and-throw, and composable continuations.
As mentioned before, an important characteristics of these calculi is that benign
e ects neednot be explicitly serialized. This is an improvemert when comparedto
the monadic -calculus, where programs must explicitly specify a total ordering on
all e ects. In the modal calculus, such total ordering is imposedonly on persistert
e ects. The modal formulation of benign e ects may also potentially improve the
e ciency of the computations, when comparedto the monadic treatment of the same
e ects.

It is interesting that the -fragmen of the calculus for memory implemernis a
type-safeversion of dynamic binding. In this calculus, computations that read from
memory are ascribed a universal bounded type ¢A. The construct for dynamic
binding binds values to memory locations, and thus speci es an ervironment in
which a computation of type ¢A may be executed. In this sense,dynamic binding
logically correspondsto instantiation of the boundeduniversalquantier ¢.

Dynamic binding hasa long history in functional programming languages,which
dates badk to the early versionsof LISP. Seweral formulations have since been pro-
posedfor various applications in functional programming and distributed computa-
tion [Mor97, LSMLOO, LF96, Dam96, Dam98, HO01, SSK02,BHS* 02]. Despitethese
dewelopmerts, however, dynamic binding remained often criticized for its complexity
and lack of logical content. Thus, discovering the logic behind dynamic binding has
beena long-standing problem in functional programming.

The work leading to the results related to the calculi of e ects given in this
chapter are original, and has beenpreseried previously in a form of seweral papers
and a technical report [Nan03a Nan03¢ Nan03b]. The calculi are implemerted, and
the sourcesfor the type chedker and the interpreter are accessibleon the Web, at
\ http://www.cs.cmu.edu/~aleks /papers/eff ects/nubox.tar .gz".

Chapter 1

Constructiv. e modal logic

1.1 Natural deduction

1.1.1 Judgmen ts and prop ositions

A modality is a logical operator that quali es assertionsabout the truth of propo-
sitions. For example, given a certain proposition A, we may considerif A is true or
false, but may also be interestedif A is necessarily true, or possiblytrue, will be true
at the next momert in time, is believel to be true, and soon.

The assertionsexpressedby modalities are customarily given formal semarics
using the approad of Kripke frames[Kri63]. A Kripk e frame is a relational structure
(W;R), consisting of a set of possibleworlds W, and a relaton R W W of
accessibility. Then, a modally qualied proposition expressesan assertion about
truth acrossaccessibleworlds. The nature of the assertion is determined by the
nature of the accessibiliy relation.

We illustrate the concept of Kripk e frames using a particularly simple example
of temporal modal logic, which is a logic for reasoningabout truth in subsguent
momerts in time. The appropriate Kripk e frame for this logic de nes the possible
worlds W as momerts in time. The accessibiliiy relation R is discrete and total,
determining the temporal relation between worlds. We have (w;w9 2 R if and
only if w is a momert occurring sometime before w® BecauseR is discrete, for
eah momert w there is a w® that can be chosenas a subsguent momert. Then
we can de ne a modality as an operator on propositions expressingtruth at the
subsequeh time momert. More precisely we say that A is true at time moment
w if and only if A is true at the subsguenttime moment w®

Someother operators frequertly consideredin modal logic are the operator of
necessiy and the operator 3 of possibility. The two operators expressuniversal and
existertial quarti cation over accessibleworlds, respectively. As an illustration, in
the temporal logic described above, we say that A is true at sometime momert w
if and only if A is true at all time momerts in the future of w. Dually, 3 A is true at
w if and only if A is true at sometime momert in the future of w.

In this section, we review the results of Pfenning and Davies from [PD01] and
considermodal logic from intuitionistic and type theoretic perspective, rather than
from the perspective of Kripk e frames and possibleworlds. The intuitionistic ap-
proach puts special emphasison the constructive import of propositions: A will be

7

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

consideredtrue, if and only if we can construct and exhibit evidenceof it. In our
formulation, we follow the methodology of Martin-Leof [ML96] to clearly separate
the notions of judgments and propositions. Propositions are logical objects encal-
ing statemerts about the domain of discourse. Judgmerts represern properties of
propositions that are subject to proof.

For example, we can judge if a certain proposition A is well formed or not, and
we can formulate a judgment

A prop

de ning what counts as a proof of well-formedness. If we assumethat our logic
contains an operator ~ for conjunction, then a conjunction of two propositions A
and B is a well-formed proposition whenewer both A and B are well-formed. This
(rather self-eviden) fact canbe expressedasan inference rule of the judgment A prop
as follows

A prop B prop

A" B prop

The inferencerule is oriented in a top-down manner: the judgments above the line
are premises and the judgment below the line is a conclusion that may be inferred
after the premiseshave beenjudged satis ed (i.e., withessedby a proof). In this
sense,a proof that A~ B prop consistsof the proofsthat A propand B prop.

A completely separatejudgment hasto be usedto determine when a proposition
A istrue, and what constitutes a proof, i.e. evidencefor the truth of A. Appropriately
enough, we call this judgment

A true

and we implicitly assumethat A prop is satis ed beforewe can judge if A true. In
intuitionistic logic, we have evidencefor A~ B if and only if we have evidencefor
ead of the two propositions. We can expressthe if-then direction of this fact using
the intr oduction rule

A true B true
AN B true

and the only-if direction is encaded using the two elimination rules

AN B true A" B true
A true B true

The introduction rule de nes wheniit is justied to concludethat a conjunction
of two propositions is true. The rule is named\in troduction" becausat allows usto
intr oduce the ~ operator into the proposition A” B. The elimination rules de ne how
to usea conjunction onceit hasbeenproved. In particular, we can always eliminate
the ~ operator from A~ B, and obtain A in isolation from B, or vice versa.

Of course, the introduction and elimination rules for a logical operator cannot
be completely arbitrary, but must satisfy certain coherenceconditions which ensure
that the rules match. For example, the elimination rules should not be too strong

8

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

and allow us to infer unjustied conclusions. We can make a conclusion from the
elimination rule only if we have enoughevidencefor the premises. This property is
known aslocal soundness It is withessedby local reduction which constructs evidence
for the conclusionof an elimination rule out of evidencefor the premises. The local
reductions witnessing the local soundnesof the elimination rules for conjunction are
stated in the following form.

A true B true
A" B true =) r Atrue
A true

and

A true B true
AN B true =) R B true
B true

The rst local reduction shawns that the conclusionA tr ue obtained after eliminating
A ™ B true could have already been obtained as a rst premise of the rule that
introduced A" B true. Therefore, the elimination rule is not too strong, becausewe
can only useit to establish something we already had. The local reduction shows
how the proof could have beenderived without the detour of introducing and then
eliminating the conjunction. This iswhy it is called\reduction”; it establishessimpler
evidencefor the conclusion obtained after conjunction elimination. The other local
reduction is completely symmetric, except that it usesthe secondelimination rule
for conjunction.

The elimination rules must not be too weak either. We should be able to usean
elimination rule in such a way that its premisescan be recovered. This property is
known as local completeness It is withnessedby local exmnsion, which applies the
elimination rules in order to obtain enough knowledge to reconstruct the original
judgmernt. It is called \expansion" becauseit obtains a more complex evidencefor
the original judgment. In caseof conjunction, the local expansiontakesthe following
form.

ANB true A" B true
ANB true =) g A true B true
AN B true

As showvn above, the local expansioneliminates A » B true to obtain A true and
B true. The two are then combined to reintroduce A * B tr ue.

1.1.2 Hyp othetical judgmen ts and implication

A further primitiv e notion that we needis that of a hypothetical judgment, i.e., a
judgment which is made under hypotheses,or assumptions. Hypothetical judgments
are neededin order to formalize the conceptof implication. We would like to de ne
the implication A'! B to be true if and only if B true can be proved wheneer
A tr ue can. But in order to formally state this causaldependencebetweenA and B,
we needto de ne what it meansto judge B tr ue under an assumptionthat A tr ue.

9

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

The generalform of a hypothetical judgment is written as

NETRRN PN
which expresseshat J canbe proved under the hypothesesly, :::, J,. We alsorefer
to Jq, :::, Jy asantecedents and J asthe suaedent of the hypothetical judgmernt.
The rst specic hypothetical judgment that we considerin this section limits
Jq1, i1, Jn, J to beinstancesof A tr ue, and therefore hasthe form
Aqtrue;::: A, true” A true
The collection A; true, :::, Ap trueis called a context of hypotheses.We use and

variants to range over contexts, and will usually write the hypothetical judgment in
an abbreviated form

© A true:

When de ning a new judgment, we needto state what counts as evidence, or
proof for it. In the particular caseof the hypothetical judgment ~ A true, we
needto de ne a notion of hypothetical proof. What doesit meanto derive A tr ue
under assumptions ? In a hypothetical proof of A tr ue under assumptionsA 1 tr ue,
.1, A, true, we can usethe hypothesesas if we knew them. Once a derivation of
A true is given (for someA;), we can substitute it for the usesof the assumption
A; true in the hypothetical proof, to obtain a judgment and a proof that no longer
dependon A; tr ue. In this sensea proof of ~ A tr ue prescribeshow a proof A tr ue
can be constructed, once proofs of A; true, :::, An true are given. The emphasis
in this construction is on the operation of substitution. When deriving A tr ue, the
proofsof A; true, :::, An tr ue may only be usedas given, without any opportunity
for inspection or modi cation. Becauseof this particular property, we say that the
hypothetical judgment is parametric in its assumptions.

The nature of the hypothetical judgment and the dependencebetweenantecederis
and succeden is usually stated in the form of the following substitution principle.

If ~ Atrueand ;A true;: 9 B true then : 9" B true.

The substitution principle implicitly assumeghat the proof of ~ A trueis indeed
substituted into the proofof ;A true; °° B trueto obtain aproofof ; °° B true.
Notice that the substitution principle is not an inferencerule, but a metatheoretic
property which we will have to prove onceall the inferencerules of ~ A true are
de ned.

In addition to the substitution principle, we imposesomefurther structure of the
hypothetical judgment. In particular, we require the following structural properties.

1. Exchange.lf q;Ajtrue; ,;Aotrue” B true then 1;A,true; o;A;true’
B true.

This structural property of exchange states that the ordering of hypothesisin
the context s irrelevant for the judgment. In other words, we may consider

to be a multiset, rather than a list. We immediately put exchangeto usein
order to abbreviate the statemerts about our hypothetical judgmerts.

10

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

2. Weakening. If ~ B truethen ;A true’ B true.
3. Contraction. If ;A true;A true” B true, then ;A true” B true.

Using the structural properties of exchange and wealening, we can further sim-
plify the substitution principle for the truth judgment, and rephraseit as preserted
below. It is this form of the substitution principle that we adopt in the rest of the
dissertation.

Principle (Substitution)
If ~ Atrueand ;A true” B true, then °~ B true.

The hypothesisrule of the truth judgment formalizesthe intuition that assumptions
in a hypothetical judgment may be usedasif they were known. In particular, under
the assumption A tr ue, we may always conclude A true. Following the structural
property of exchange, the rule ignoresthe ordering of the hypothesisin the context

(A true” A true

After introducing all the madinery of hypothetical judgments and proofs, we
are nally ready to de ne implication A ! B asa new form of propositions, which
expresseghat B tr ue may be derived when A tr ue is given. We will frequertly say
that implication internalizes hypothetical truth, becauseat provides meansto reason
about hypothetical truth within the ordinary truth judgment.

As a rst step in the de nition of the new propositional operator, we need to
extend the formation judgment A prop sothat it can treat the new caseinvolving
the operator ! . The appropriate formation rule simply statesthat A! B is a well
formed proposition, whenewr both A and B are.

A prop B prop

A! B prop

More interesting are the inferencerules that extend the truth judgment. Fol-
lowing the methodology of natural deduction that we previously usedin the case
of conjunction, we provide an introduction and an elimination rule for implication.
The introduction rule formally statesthat A ! B true can be derived if there is a
hypothetical proof of A true ® B tr ue. The introduction rule therefore exactly senes
to de ne the operator of implication asan internalization of hypothetical judgments.

‘A true” B true
Al B true

The elimination rule for implication realizesthe substitution principle, and provides
a way to infer B true whenboth A'! B true and A tr ue can be obtained.

Al B true * A true
" B true

11

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

The rules are locally sound and complete, and therefore of matching strength. Local
reduction is presened below, and is justied by the substitution principle.

‘A true’ B true

Al B true TAtrue =) R T B true
* B true
Indeed, the derivation of ~ B true may be obtained by substituting the premise

* A trueinto the premise ;A true’ B true, just asclaimed by the substitution
principle.
The local completenesss witnessedby local expansion.

cAtrue” A! Btrue ;Atrue A true

“Al Btrue =) g ‘Atrue’ B true
Al B true
Local expansion rst usesthe structural property of weakeningto modify = Al

B trueinto ;A true” A! B true. Implication elimination is performed on this
premiseto obtain ;A true ~ B true, before reintroducing implication again and
conclude ~ A! B true.

Example 1 The following are example judgments that can be derived in the logic
presered sofar.

1. A! Atrue
2. Al B! Atrue
3. (A! B! C)! (A! B)! A! Ctrue

Derivation of © A! A true.

A true” A true
Al Atrue

Derivation of © A! B! A true.

We rst usethe hypothesisrule to infer A true;B true ™ A true, which is then
followed by two intro ductions.

A true;B true” A true

Atrue” B! A true
Al B! Atrue

12

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

Derivation of©* (A! B! C)! (A! B)! A! Ctrue.

(A! B! C)true” A! B! Ctrue Atrue” Atrue (A! B)true A! B true Atrue’ A true

(A! B! C)true;Atrue” B! C true (A! B)true;Atrue’ B true

(A! B! C)true;(A! B)true;A true” C true

(Al B! C)true;(A! B)true® A! C true

(A! B! C)true® (A! B)! A! Ctrue

(Al B! C)! (A! B)! A! Ctrue

1.1.3 Necessity

In the previous sectionswe consideredtwo versionsof the judgment for truth: the
hypothetical version ~ A true, and the non-hypothetical version A true. The
hypothetical version ~ A true extends A true, in the sensethat the later can be
recovered as ~ A true where the cortext is chosento be empty. The variant
* A true is known as a categorical judgment, becauseit doesnot depend on any
hypotheses.It canbe seenasstating a universalfact, which doesnot rely on external
argumerts. Categorical judgments are witnessedby categorical proofs. A categorical
proof is, again, a proof that doesnot depend on any hypotheses;a proof which is, in
somesense closed.
In this section we isolate the notions of categorical judgment and categorical
proof, and considerthem in and of themseles, rather than as special casesof hypo-
thetical judgments and proofs. To this end, we intro duce the judgment for necessity

A nec

de ned by the following two clauses.
1. If ° A true, then A nec.
2. If A nec, then ~ A true.

The two clausesde ne that A nec holds if and only if ~ A true. Clause (1)
establishesthe if-then direction, and clause(2) correspondsto the only-if direction.
Notice that we allow non-empty in the de nitional clause(2) in order to avoid
explicit context weakening.

The choice of the name for the necessiy judgment is not accidertal. As we
will soon demonstrate, the consideration of categorical proofs and categorically true
propositions very quickly leadsto a formulation of modal logic. An informal but
useful intuition that relates categorical judgments to modal logic is based on the
following obsenation. Each context of a hypothetical truth judgment may be seen
as selectinga set of possibleworlds in a Kripk e-style semariics. The selectedworlds
are those that satisfy all the hypothesesin . If the proposition A is categorically
true, i.e. if ~ A true, then A is true in a generic world about which we know

13

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

nothing. In other words, A is true in all accessibleworlds. In this sense,categorical
truth correspondsto universal quanti ¢ ation, and categorically true propositions are
necessary On the other hand, the hypothetical judgment ~ A true only provides
evidencefor the truth of A in the current world of reference.We will frequertly rely on
this intuition to motivate particular designchoicesin our logic, but we do not pursue
further its formal side. The interested reader is referred to the work of Alechina et
al. [AMdPRO01], which providesa Kripk e sematriics for a natural deduction somewhat
di erent from ours.

As evident from the de nition, necessi is ajudgment whosemeaningis described
in terms of truth. Thus, necessiy in itself doesnot intro duce anything new, unless
we take a further step and extend the truth judgment so that it can depend on
necessarnhypotheses.Becausethe order of hypothesesis not important, we separate
the context into two parts (separatedby semi-colonfor visual clarity), and consider
a judgmernt of the following form.

Bi nec;::: ;B necAq true;::: A, true” A true

Weuse to rangeover setsof hypothesesof the form A true, and to rangeover sets
of hypothesisA nec. We will implicitly assumethat both the contexts are subject to
the structural properties of weakening, exchange and cortraction.

To de ne what counts as a proof of the new hypothetical judgment, we needto
extend the notion of categorical proof that was introduced at the beginning of the
section. Similar to before, a categorical proof of ; * A trueis a proof obtained
without any referenceto truth hypotheses. However, a categorical proof is allowed
to depend on necessary hypotheses This is only natural, becausecategorical proofs
are evidencefor necessarypropositions, and could therefore be substituted for nec-
essaryhypotheses.The following substitution principle formally statesthe described
reasoning.

Principle (Substitution for necessity)
If ; ~ Atrueand(;A neg; ° B truethen ; * B true.

Note that the judgment ; ° A truein the substitution principle doesnot depend
on true hypotheses.lIts proof is categorical, and can therefore be substituted for the
hypothesesA necto derive B tr ue. The emphasishereis again on substitution. The
proof of A may not be modi ed or inspectedin any way beforeit is usedto derive
B true.

Related to the substitution principle for necessiy is the rule for necessaryhy-
potheses. The judgment A nec is withessedby a categorical proof of A true, and a
categorical proof can always be viewed as an ordinary proof. Thus, given A nec, we
are justi ed in deriving A tr ue, asthe following rule for necessaryhypothesesstates.

(;Aneg; °~ Atrue

After introducing the concept of necessiy, the next stepis to internalize it. To
that end, we introduce a new unary operator on propositions , with the expected
formation rule.

A prop
A prop

14

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

The introduction rule follows the de nition of necessiy. we canderive A tr ue only
if there is a derivation of A negc, i.e. only if there is a categoricalderivation of A tr ue.

T Atrue

;. Atrue
The elimination rule follows the substitution principle for necessiy. Given a deriva-
tion of A true, we know by de nition that ; ~ A true. If in addition we have
(;A nec; ° B true, then by the substitution principle for necessiy, we may
derive ; ~ B true.

: © A true (;Aneg; ~ B true
: " B true

This exact reasoningjusti es the local reduction and local soundness.
;. Atrue

, Atrue (;Aneg;, " Btrue =) r ; " Btrue

: " B true

The local completenesss establishedby the local expansiongiven below.

(;A neog; ~ Atrue
, Atrue S) e . Ague (:Aned; ° Atrue

: © Atrue

Example 2 The following are valid derivations in the modal logic of necessiy pre-
serted sofar.

1.7 Al Atrue
2.0 Al A true
3.7 (A! B)! A! Btrue

Derivation of © A! A true.

Atrue® Atrue Anec Atrue’ A true
A true” A true

Al Atrue
Derivation of = A'! A true.
A nec, * Atrue
A nec ~ Atrue
Atrue’ Atrue Anec Atrue’ A true
A true” A true

Al A true

15

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

Derivation of© (A! B)! Al B true.

A! Bnec “A! Btrue Anec °~ Atrue

A! B nec;A nec, ~ B true

A" Atrue A! B necAnec °~ B true
(A!' B)" (A! B)true A! Bnec A" B true

(A!' B); A° Btrue

(Al B)" A! Btrue

(A! B)! Al B true

1.1.4 Possibilit y

In modal logic, a proposition is necessarilytrue if it is true in all the accessible
worlds. A dual conceptis that of possibletruth. We say that A is possibleif there
exists an accessibleworld in which A is true. The formulation of possibletruth in
classicalmodal logic is usually in terms of necessiy, simply becausen classicallogic
existertial quanti cation may be expressedn terms of universal quanti cation. But
sincewe are interested in a constructive variant of modal logic, this approac is not
available | possibility should be de ned in and of itself. Furthermore, we would
like to analyze possibility without actually referring to particular worlds within the
formal system, and without describing the totality of worlds and the accessibiliy
relation on it.

As discovered by Pfenning and Davies [PDO01], this kind of a formulation can be
achieved if oneadopts a judgmental approad and considershow the knowledgethat
A is possibly true can be usedto derive new facts. If A is possibly true, than there
exists a world about which we know nothing, exceptthat A is true at that world.
Therefore, if we assumethat A is true (but nothing else),and then concludethat B
is possible,then B must be possible. Notice that starting from the possibility of A,
we can only make conclusionsabout the possibility of B, but not about the truth
of B. To initially establish that A is possible, we simply needto show that A is
true. To formalize this reasoning,we introduce a new judgment A possto witness
the possibility of A, and immediately considerits hypothetical variant

: * A poss

where and abbreviate necessaryand true assumptions,respectively. The possi-
bility judgment is de ned by the following two clauses.

1.1f ; " Atruethen ; ~ A poss
2. If ; " A possand ; A true’ B poss then ; * B poss

Note that the de nitional clause(2) makesthe necessiy assumptions available for
deriving B poss but removesthe truth assumptions . This is becausethe cortext

stands for propositions that are true in all possibleworlds, while stands for
propositions that are true only in the current world. Therefore, if A is possible

16

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

in someworld, then we may assumeof that world that it validates , but not .
The de nitional clause(2) takesform of a substitution principle, and establishesthe
hypothetical nature of the judgment for possibility with respect to truth hypotheses.
On the other hand, the hypothetical character of possibility with respect to truth
and necessiy hypothesesis described by the following versions of the substitution
principles for truth and necessi.

If ; " Atrueand ; (;Atrue) B possthen ; ~ B poss
If ; " Atrueand(;A nec); ° B poss then ; * B poss
Next we internalize possibility as a propositional operator 3, with the obvious
formation rule.
A prop
3A prop

The introduction rule for 3 simply encadesthe fact that 3 internalizes possibility
into the truth judgment. The elimination rule for 3 follows the de nitional clause

(2), exceptthat instead of the assumption ; * A poss it usesthe internalized
variant ; * 3 A true.

;A poss i 3Atrue ; Atrue’ B poss

;. 3Atrue ;B poss

We also need an inferencerule in order to realize the de nitional clause(1). This
rule takesthe form of a judgmental coercion from truth into possibility.

; Atrue
;A poss

It is easyto seethat the presened inferencerules are locally soundand complete.
Local soundnesds withessedby the local reduction below.

: * A poss

: " 3Atrue ; Atrue B poss =) g * B poss

;B poss

This local reduction is justi ed on the grounds of the de nitional clause(2). Indeed,
given the premises ; " A possand ; A true” B poss the clause(2) leadsto
the reduct ; ~ B poss

Local completenesss witnessedby the local expansion,which itself relies on the
judgmental coercion from truth to possibility in order to derive ; A true” A poss

: Atrue’ A true

.V 3Atrue =) g 3Atrue ; Atrue A poss

i A poss
: " 3A true

17

1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

We need a yet further rule to realize the substitution principle for necessary
hypotheseswithin the judgment for possibility.

; Atrue (;A neg; ° B poss

i B poss

As explainedin [PDO01], without this rule, the logic will not possesshe strict subfor-
mula property. For example, a proof of the judgment ; (A! B) true;3A true”
B poss will rst have to make a detour and establish a more complicated fact
i (Al B)true;3Atrue’ 3B true, beforeeliminating 3 B tr ue to obtain B poss
The new rule is sound, as withessedby the following local reduction, justied on the
grounds of the substitution principle for necessaryhypotheses.

T Atrue

; Atrue (;Anec; “Bposs =) g : B poss

: " B poss

Example 3 The following are valid derivations in the judgments modal logic.
1. A! 3Atrue
2. 33 A! 3Atrue
3.0 (A! B)! 3A! 3Btrue

Derivation of © A! 3 A true.

A true” A true
A true’ A poss
A true” 3A true
Al 3Atrue

Derivation of ©~ 33 A! 3 A true.

Atrue’ A true
3Atrue” 3Atrue Atrue’ A poss

33 Atrue” 33 A true 3A true” A poss
33 Atrue” A poss

33 Atrue” 3A true
T 33 A! 3Atrue

18

CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

Derivation of© (A! B)! 3A! 3B true

(A! B)nec; " A! Btrue Atrue” A true

(A! B) nec;A true’ B true

3A true’ 3A true (A! B) nec;A true” B poss

(A! B) nec;3A true” B poss

(A! B)true® (A! B)true (A! B)nec;3A true” 3B true

(A! B)true;3A true” 3B true

(A! B)true® 3A! 3B true

(A! B)true! 3A! 3B true

Examples 2 and 3 together list six propositions whosetruth is derivable in our
logic. It is of particular interests hereto emphasizethe connectionbetweentwo pairs
of dual propositions

1. A! AandA! 3A
2. Al Aand33 A! 3A

In classicalmodal logic these pairs correspond to particular properties of the acces-
sibility relation in the possibleworld semartics. The pair (1), for example, requires
that the accessibiliy relation betweenworlds is re exive. The pair (2) requiresthat

the accessibiliyy relation is transitive. The classicalmodal logic satisfying these two
requiremerts is known under the name of S4. In analogywith this notational corven-
tion, we call the logic preseried here Constructive S4, or simply CS4!. A formulation

of many other intuitionistic modal logics (including a yet another intuitionistic ver-
sion of S4) can be found in the Ph.D. dissertation of Alex Simpson[Sim94].

1.1.5 Summary of the system

We now summarizethe formal system of modal logic with implication, necessiy and
possibility, as described in the previous sections.

Propositions A;B = PjAl Bj Aj3A
True hypothesis =] JAtrue
Necessary hypothesis 2=] ;A nec

The logic consists of three basic judgments A true, A nec and A poss which
are used as hypothesesin two di erent hypothetical judgments ; * A true and
;A poss The rules of the hypothetical judgments are listed below.

1The name Constructiv e S4 has already been proposedin [AMdPRO1] for a logic obtained when
the six propositions from Examples 2 and 3 are added to the axioms of the intuitionistic propositional
calculus. The inference rules of Constructiv e S4include modus ponensand the rule of necessitation.
We take the liberty to use the same name for our logic, becausewe expect that it is equal to the
logic proposedin [AMdPRO1]. This conjecture, however, has not been proved.

19

1.2. MODAL -CALCULUS CHAPTER 1. MODAL LOGIC

; (;A true)” A true
i (;Atrue)” B true ;7 Al Btrue ; " Atrue
; Al Btrue ;B true

(;Aneg; °~ Atrue

;T Atrue ;7 Atrue (;Aned; " Btrue
; A true ; Btrue
; Atrue
;A poss
: * A poss : " 3Atrue ; Atrue’ B poss
; 3Atrue ;B poss

;7 Atrue (;Anec; °~ B poss

i B poss
The inferencerules indeed respect the de nitional properties of the hypothetical

judgmernts, asthe following theorem shows.

Theorem 1 (Substitution principles)
1.1f ; ° A truethen

(@ if ; (;Atrue)” B truethen ; ~ B true
(b) if ; (;Atrue) B possthen ; ~ B poss

2. If ; ~ Atrue, then
(@ if (;Anec; "~ Btruethen ; ~ B true
(b) if (;A nec; °~ B possthen ; ° B poss
3.1f ; " Apossand ; Atrue’ B possthen ; ~ B poss

Pro of: Statemerts (1.a), (1.b), (2.a) and (2.b) are proved by straightforward induc-
tion over the derivation of the rst judgment in ead of the statemerts. Statemert
(3) is proved by induction over its secondjudgmert.

1.2 Modal -calculus

1.2.1 Judgmen ts and pro of terms

Following the type-theoretic methodology of Martin-Leof [ML96], in this section we
annotate the judgments of our natural deduction with proof terms. A proof term

20

CHAPTER 1. MODAL LOGIC 1.2. MODAL -CALCULUS

servesas a witness for its corresponding judgmert, in the sensethat a derivation of
the judgment may be recovered by inspection of the proof term. If a judgment is
annotated with a proof term, then ead judgment contains in itself an instruction on
how to discover its derivation. It is not necessaryto look outside of the judgment to
establish evidencefor it.

In this case,instead of A true and A poss we will have judgments e : A and
f A. The meaningof the judgment e: A is that \ e is a proof term witnessingthat
A true'. The meaningof the judgment f A isthat \f is a proof term witnessing
that A poss The elemerts of the syntactic category e are called expressions and the
elemerts of the syntactic categoryf are called phrases

As an illustration, consider the rules for conjunction from Section 1.1.1, here
decoratedwith proof terms.

e A e B
hei;ei : B
e:A"B e:A"B
fst e: A snd e: B

The proof-annotated rules uncover the computational cortent of the logic, as proofs
can be treated as programs, and propositions can be treated astypes For example,
the introduction rule for conjunction makesit explicit that the proof of A" B can
be constructed usinge; : A and e, : B asa pair hey;ei : A” B. The elimination
forms fst e and snd e destruct a pair by taking its rst or secondcomponer.

Local reduction and local expansionscan now be stated using proof terms for
conjunction.

fst hey; e =) R €
snd heg; ei =) R)
e:A"B =) e Hst e;snd ei

As customary for type theory, the proof-annotated version of local reduction is what
carries the computational meaning of the logical construct, becauseit explains how
a program reducestoward a value. In the caseof conjunction, for example, local
reductions formally specify what it meansto selectthe rst or the secondelemen
of a pair. If the pair hasthe form hey; e»i then, in order to compute its rst elemen
we simply needto take the expressione;, and to compute the secondelemer, we
need to take e;. On the other hand, local expansionimplemerts the principle of
extensionality. In the caseof conjunction, it statesthat every expressione:A * B is
guaranteed to be equal (in an appropriate senseof equality which we do not de ne
here) to the pair Hst e;snd ei.

To obtain the proof-annotated versions of the hypothetical judgments, we rst
label the assumptionsfrom the contexts and with variables. We write x:A for
\x is a proof of A true”, and u::A for \u is a proof of A nec'. The usualassumptions
of variables contexts hold here aswell: variablesdeclaredin and are considered
di erent and we tacitly employ -renamingto guarartee this invariant. We will call

21

1.2. MODAL -CALCULUS CHAPTER 1. MODAL LOGIC

variablesfrom ordinary or valuevariables, while the variablesfrom will be madal
variables. The decoratedhypothesisrule now hasthe form

;o x:A) T XA

and the corresponding substitution principle formalizes how the hypothetical judg-
merts depend on the value variables.

Principle (V alue substitution)

If ; ° e;:A then the following holds:
1.if ; (;x:A)" e :B,then ; ~ [e;=X]e : B.
2.if ; (;x:A)" fo B,then ; " [er=x]f> B.

In this principle, we denote by [e;=x]e» and [e1=X]f» the result of capture-avoiding
substitution of e; for x in the expressione, and phrasef ,, respectively. Becausethe
substitution principle now has accesso proof terms, it can explicitly state that the
judgments are parametric with respect to variables. The expressione; : A can only
be substituted for x in the hypothetical proofs, but cannot be usedin any other way.
This relianceon substitution wasonly implicitly assumedn the previousformulations
of the principle, but once proof terms are provided, it can be stated explicitly.

The rules for implication introduction and elimination are annotated using -
abstraction and function application, respectively.

; (ix:A) T e:B ;e :Al B ;e A
; ~ x:Are:Al B ;, ee:B

As usual, the local soundnessand completenessare withessedby local reduction and
expansionon the proof terms, which in this caseare the ordinary -reduction and
-expansionof the -calculus.

(x:Ale)e =) R [e2=X]er

e:A! B =) E X A (ex) where x not freein e

Example 4 The following are well-typed expressionin the modal -calculus. In
this and in other exampleswe will omit the type information from the expressions,
when that improvesreadability.

1. ; TXs X:TAlDA
2. T x y:x:Al B! A
3.; T frig:x fFxX)@x):(A! B! ! (A B)! Al C

The hypothesisrule for modal variables is annotated as follows

(;uzA); T u:A

22

CHAPTER 1. MODAL LOGIC 1.2. MODAL -CALCULUS

and the corresponding substitution principle is given below.

Principle (Mo dal substitution)

If ; ° e :A, then the following holds.
1.if (;uzA); "~ e:B,then ; ~ [ei=u]e;:B
2.if(;uzA); "~ f, B,then ; " [er=ulf, B

In this principle, the operations [e;=u]e, and [e;=u]f » are capture-avoiding substi-
tutions of e; for the modal variable u in e, and f ,, respectively. We useadi erent no-
tation becausehe operation substitutes for a di erent kind of variable. The separate
notation will come handy in future sections,where we rede ne modal substitution
sothat it diers from ordinary substitution.

The proof-annotated forms of the introduction and elimination rulesfor are as
follows.

© Ce:A e A (;uzA);, " e:B

. boxe: A : “let boxu=¢eine:B

and the local soundnessand completenessare withessedby the local reduction and
expansion

let box u= box e; in & =) R [er=u]ex

e:. A =) e let box u= ein box u

Example 5 The following are well-typed expressionsin the modal -calculus.

1. ; T x: let boxu=xinu: Al A
2. ; T X let box u= xin box box u:2A'! A
3.; 7 x y:letboxu=xinlet boxv=yin boxuv

(Al B)! Al B

The inferencerules for possibility are easily annotated as well. The proof terms
that we usein this casebelongto the syntactic category of phrases and we start by
rewriting the de nitional clausesfor possibility (Section 1.1.4) to take phrasesinto
accourt.

1. 1f ; T e:Athen ; e A.
2. If ; “f; Aand; xA" f, B,then ; © W =xiif, B.

23

1.2. MODAL -CALCULUS CHAPTER 1. MODAL LOGIC

The de nitional clause (1) makes it evidernt that ead expressione : A may be
consideredas a phrase withessinge A. The de nitional clause (2) takes a form
of a phrase substitution principle. It usesa new operation of phrase substitution
i 1=xii f , which we de ne below after introducing the other phrase constructors.

Just asin Section 1.1.4,the formulation of the proof-annotated possibility judg-
ment, usesan explicit inferencerule to realize the de nitional clause(1).

: TerA
;e A
The introduction and elimination rules are decoratedusing the new phraseconstruc-
tors dia and let dia asfollows.
: A : T e:3A XA f B
; diaf:3A ; letdiax=einf B

Notice that the typing rule for let dia erasesthe context , and introducesa new
variable x:A, which is consideredbound by the let dia constructor.
There is also an additional rule for eliminating into the possibility judgment.

;o el A (;uzA); ~f B

: “let boxu=einf B

let dia x = dia f1in f, =) r f 1=xiif
let box u= box e; in f, =) R [er=u]f >
e:3A =) E dia (let dia x = ein x)

The new substitution operation hif ;=xiif is de ned in a slightly unusual way, by
induction on the structure of f 1, rather than by induction on the structure of f .

e =xiif = [e;=X]f
et dia y = e, in fo=xiif = let dia y = e; in Hf =xiif
et box u = e; in fo=xiif = let box u= e; in Mfy=xiif

Example 6 The following are well-typed terms in the modal -calculus.

1. ; T x: diax:A!l 3A
2. ; ~ x dia (let day=xinletdiaz=yinz):33 A! 3A
3.; 7 x y:let boxu= xin dia (let dia z=yin uz)

(Al B)! 3A! 3B

24

CHAPTER 1. MODAL LOGIC 1.2. MODAL -CALCULUS

1.2.2 Summary of the system

This section summarizesthe main aspects of the de nition of the modal -calculus.

Types A;B = PjA! Bj Aj3A
Expressions e 1= Xjx:Aejee
jujbox ejlet box u= ey in e
j dia f
Phrases f = ejletdiax=ceinf
jlet box u= ein f
Ordinary contexts =] ;XA
Modal contexts = j ;usA

The calculus contains two typing judgmerts:
;o erA and A A

The rst judgment states that the expressione has type A relative to the modal

context and ordinary cortext . Alternativ ely, e is a proof of A true, under
necessaryhypotheses and true hypotheses. The secondjudgment states that

the phrasef hastypeA relativeto the modal cortext and ordinary context . The

alternativ e reading of this judgmernt is that f is a proof of A poss under necessary
hypotheses and true hypotheses. The following are the inferencerules of the

two judgmernts.

T el A 7 e A (juzA); T e:B
: “boxe: A : “let boxu= e in e:B
;o erA
: e A
: A : “e:3A xA°f B
: “diaf:3A : “letdax=einf B

;e A (;uzA);, f B
X “let boxu=¢einf B

There are three di erent forms of capture-avoiding substitution in the calculus:

1. Ordinary substitution. [e;=x]e and [e;=x]f which replace the value variable x
by the expressione;

25

1.3. NOTES CHAPTER 1. MODAL LOGIC

2. Modal substitution. [e;=u]e and [e;=u]f which replacethe modal variable u by
the expressione;

3. Phrase substitution. tf ;=xiif which replacesan ordinary variable x according
to a phrasef .

The ordinary and modal substitutions are de ned in a standard way, and for purposes
of completenesswe repeat herethe de nition of phrasesubstitution from the previous
section. Phrase substitution Hf 1=xiif is de ned by induction on the structure of f 1,
as follows.

ey =xii f
et dia y = e in fo=xiif
et box u = e in fy=xiif

[er=X]f
let dia y = e in Hf =xiif
let box u = e in Wf y=xiif

The following theorem provesthat the preseried formulation respectsthe substi-
tution principles stated before as de nitional properties of the judgmernts.

Theorem 2 (Substitution principles)

1.If ; e :Athen
@ if ; (;xXA) e:Bthen; ° [e1=X]ex:B
() if ; (;x:A)" f, Bthen; ° [ei=xX]f B
2.1f ; " e : A, then
(@ if (;uzA); "~ e:B,then; = [ei=ule;: B
(o) if (;uzA); ~f, B,then; ° [e=ulfo B
3. If ; “f;1 Aand; xA" f, B,then ; © W =xiif, B

Pro of: By straightforward induction on the structure of the typing derivations
[PDO1].

1.3 Notes

Related work on the pro of theory of intuitionistic modal logics

As already mertioned, our presenation of constructive S4 from the previous section
was basedon the work by Pfenning and Davies [PD0O1]. But other approades to
natural deduction have also been proposed. For example, in the work of Alechina
et al. [AMdPROL1], Bierman and de Paiva [BdP0Q], Benton, Bierman and de Paiva
[BBdP98], and Pfenning and Wong [PW95], the modalities are formulated in the
following way.

Ter: A T en: An X1: A1;iii;Xn: Ap e:B el A

" box ewith efor x: B " unbox e: A

26

CHAPTER 1. MODAL LOGIC 1.3. NOTES

TelA
" dia e:3A

Ter: A “en: An ‘e:3B X1: AgiiiiXn: Apy:B T f:3C

“let dia y=ein f with efor x:3C

This formulation is similar to the approac by Prawitz in [Pra65]. Notice how the -
intro duction and 3 -elimination rules require explicit substitution. This is avoided in
our presenation in Section 1 by separating ordinary variablesfrom modal variables.

In fact, in the subsequeh sections (Section 2 and Section 3) we will introduce
Partial CS4, which extends the ordinary CS4 with explicit substitutions. The use
of explicit substitutions there, howewver, will be directly opposite to the CS4 from
this note. In Partial CS4,it will bethe -elimination and 3 -introduction rules that
use explicit substitutions. This kind of approad will provide a lot of additional
expressienessand exibilit y when comparedto ordinary CS4.

Another approad to the natural deduction of constructive modal logic in gen-
eral, and versions of modal S4 in particular, is exemplied by the work of Alex
Simpson [Sim94. The truth judgment usedin this kind of approadeshasthe form
w : A, denoting that the proposition A is true at the world w. The inferencerules
explicitly manipulate the accessibiliy relation R for the modal logic in question. We
show below the rules for modalities, in the form of derivation trees, as formulated
in [Sim94].

[WRwY

wo:A wP fresh WO A wRw
w: A w:A

Ww®: AJwRwWY

WO A wRwo WPi3A w:B w9 fresh

w:3A w:B

It is interesting that the version of modal logic formulated by Simpsonis slightly
di erent from the Constructive S4introducedin Section1. In particular, Simpson's
formulation, which is called Intuitionistic S4 (or 1S4 for short), admits the following
theorem, which is not derivable in CS4.

(3A! B)! (A! B)

In fact, if both logics are extended with _ and ?, ewven further dierences arise.
For example, the following propositions are not provable in the extension of CS4
[AMdPRO1], but are provable in the extension of 1S4.

1.:37

27

1.3. NOTES CHAPTER 1. MODAL LOGIC

2.3(A_B)! (3A_3B)

Simpson'sdissertation also axiomatizes many other intuitionistic modal logics, and
is a good sourceof historical referenceson this subject.

Related work on the Kripk e semantics of Constructiv e S4

A Kripk e model of CS4 is preseried by Alechina et al. in [AMdPRO1]. The model
consistsof a set of worlds W and two accessibiliiy relations, onefor the intuitionistic
implication v, and one for the modalities ! . More formally:

De nition 3

A Kripk e model of CS4is a structure M = (W;v ;! ;F), where W is a non-empty
set of worlds, v and! are re exiv e and transitiv e binary relations on W, and F a
relation betweenelemers of w 2 W and propositions A, sud that:

Vv is monotone with respect to atomic propositions, i.e. if wv w®and P is an
atomic proposition, then w F P implies W P

v and! are coherern in the following sense:
if w! vandvv vC there exists w0 such that wv w®and wo! 0

the relation | hasthe following properties

WE >

WEFABI wEp AandwfF B

WFEFA_Bi weAorwgE B

wiE Al Bi forall wlww, wOE A impliesw®F B

wiE Ai foral wwwandu® wl ulE A

{ wi 3A i forall wOw w there existsu® wP®sud that U’ A

Lt B e W e W e W e}

The de nition doesnot require that w 6 ?. Rather, inconsistert worlds are
permitted, aslong asthe following requiremerts are met:

{ ifwEg ? andwv wlthen wlE ?
{ if w ? then for every atomic proposition P, wF P

In his dissertation [Sim94], Simpson describesKripk e semartics for 1S4, but not
for CS4. The di erences betweenthe two semariics include:

1. The semarics for 1S4 does not allow inconsistert worlds. The inconsistert
worlds are the feature that eliminates the theorem: 3 ? in the CS4 semarics.

2.1n 1S4, w E 3A i there exists w®w w such that wo = A. This de nition
permits the theorem3 (A _B)! (3A_3B).

3. In 1S4, a further coherencecondition is imposedbetweenthe two accessibiliy
relations. In particular, the 1S4 sematrtics requiresthat

if wow w andw ! v, then there exists vOsuc that w°! v@and vPw v
The presenceof this condition in 1S4 permits the theorem (3 A ! B) !

(Al B).

28

CHAPTER 1. MODAL LOGIC 1.3. NOTES

Related work on the categorical semantics of Constructiv e S4

Categorical semartics for CS4 has been considered by sewral authors, most no-

tably by Kobayashi [Kob97], Bierman and de Paiva [BdPOQ] and Alechina et al.

[AMdPRO1]. As establishedin these papers, a categorical model for CS4 consistsof

a Cartesian closedcategory with co-products C, together with a monoidal comonad
anda -strong monad3.

29

1.3. NOTES CHAPTER 1. MODAL LOGIC

30

Chapter 2

Partial modal logic

2.1 Natural deduction

2.1.1 Partial judgmen ts and supp orts

In this section, we dewelop the notion of partial truth judgments. The idea is to
capture that a derivation or a witness of somefact may be obtained, but only if a
certain condition is satis ed. The syntactic form of the partial truth judgment is

A true[C]

where A is a proposition, and C is a supporting condition, or support, for short. The
semartics of this judgment is to witness that a proof of A tr ue can be obtained if
the condition C isfullled. To emphasizethis cortrast betweenthe partial judgment
A true[C], and the ordinary judgment A tr ue de ned in Chapter 1, we will call the
later judgment total. Partial truth judgments resenble somewhatthe idea behind
total hypothetical judgments. In a hypothetical judgment

Aqtrue;::: A, true” A true

the condition on A tr ue consistsof a set of hypothesesA; true;::: ;A, true, and a
derivation of A tr ue can be obtained by meansof substitution from the derivations of
A1 true, :::, Ay true. Becausethese derivations must be substituted without any
inspection or modi cation, the judgment A; true;::: ;A, true ™ A true is said to
be parametric in its hypotheses.

Partial judgments, howewer, are intended to be more general. For example, given
a derivation of A tr ue[C] and a witness that the condition C is satis ed, it will be
possibleto reconstruct a derivation of A tr ue, but it is not required that the witness
for C is usedonly via substitution. In fact, any particular application may specify
a dierent way to obtain A tr ue from a witness of C and a derivation of A tr ue[C].
In this section, we remain uncommitted and treat this dependencyin the abstract.
That will leadto properties of partial judgments that persist acrossa broader range
of applications.

The processof transforming the proof of A true[C], when a witness for C is
provided, is called re ection, and will typically be justied by the metatheoretic
properties of the truth judgment and its derivations. In this sense,a support C may

31

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

be seenas a condition in the metalogical reasoning about derivability of A tr ue.
Correspondingly, re ection allows that a conclusion obtained in the metalogic be
coercedinto the truth judgment, when the condition C holds.

Re ection will have interesting consequencegor the computational corntent of
partial truth, when propositions are seenas types, and proofs as programs. For
example, a proof of A true[C] may be consideredas a program that producesa
value of type A, but only if executedin a run-time ervironment that satis es the
condition C. In this case,re ection may be de ned asevaluation, or for that matter,
any other kind of type-preservingprogram transformation.

In the remainder of this section, we embark on the formulation and analysis
of partial truth, which will eventually motivate a developmert of a whole modal
logic of partial judgments, with very diverseapplications in functional programming.
Becausesupports are syntactic equivalents of metalogical propositions, any de nition
of partial truth must start by formally explaining the corresppndencebetweena given
support C and the proposition that C represerts. For that purpose,we will usethe
judgments

C supp and C sat

which will needto be de ned for any particular application, but which we keep
abstract for the time being. The judgment C supp determinesif a support C is
well-formed, and the judgment C sat determinesif a condition represeried by C is
satis ed. It is implicitly assumedthat C sat is itself well-formed only if C is a valid
support, i.e. only if C supp.

In order to formally capture the causaldependencybetweensupports, we needto
imposesomefurther algebraic structure. In particular, we require that the set of all
supports is partial ly ordered by the re exiv e, anti-symmetric and transitiv e relation
v, and that it hasa minimal element0. The ideais that C v D if and only if the
condition assaiated with D implies in the metalagic the condition assaiated with
C. In this case,the minimal support 0 simply correspondsto the condition that is
always, trivially , true. To formalize this intuition, the support judgments will cortain
the derivation rules

0 supp and 0 sat
which establish that 0 is a well-formed support, and that O corresponds to a true
condition, respectively. We also require the following supprt weakening principle.

Principle (Supp ort weakening)
If Cv D, then any witnessof D sat is a witness of C sat aswell.

Having intro duced the support judgments and ordering, we can now provide a
formal de nition for the partial truth. Henceforth, we write
A true[C]

if and only if C sat implies A tr ue. We assumeherethat the partial truth judgment
is well formed, i.e. that A prop and C supp. Notice that ead particular application
will have to specify concretely the dependencybetweenthe derivations of C sat and
A tr ue[C]. Howewer, having in mind that the support 0 is always satis ed, weimpose

32

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

the requiremert that A true[0] if and only if A true. This will allow us to regard
the total truth judgment asa special caseof its partial counterpart.
We also considera partial version of the support judgment C sat, and write

C sat[D]

if and only if D sat implies C sat. In order for this judgment to respect the support
ordering, we require the following as one of its derivation rules.

CvD
C sat[D]

Again, we insist that C sat[0] if and only if C sat, and treat C sat as a special case
of C sat[D], when D is the 0 support.

The two partial judgmernts are further required to respect the partial ordering v ,
in the senseof the following support weakening principle. The support weakening
principle stated previously is subsumedas a special case(obtained when the support
DOis taken to be 0).

Principle (Supp ort weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if A true[C], then A true[D]
2. if C1 sat[C], then C; sat[D]
3. if D sat[D1], then C sat[D4]

Finally, in order to relate partial truth with the partial support judgment, weimpose
the following requiremen phrasedasa re ection principle.

Principle (Re ection)
If C sat[D], then the following holds:

1. if A true[C], then A true[D]
2. if C1 sat[C], then C; sat[D]

Notice that if D is taken to be 0, then the re ection principle makesa connection
betweenthe partial truth and support judgments and their total counterparts.
2.1.2 Hyp othetical partial judgmen ts

The next step in the developmen of the logic of partial truth is to extend the non-
hypothetical reasoningassaiated with supports and re ection, and parametrize the
judgments with respect to a context of hypotheses

A1 true;::: ;Ap true:

As customary, we use to range over contexts, and generalizethe judgments to the
following form
" C sat[D] and “ Atrue[D]

33

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

Of course,the usual coherenceconditions apply to this generalization. In particular,

if isthe empty context, the new judgments reduceto the non-hypothetical partial

judgments from the previous section. Analogously; if D is the minimal support 0, we

require that the partial judgment ~ A true[0] be equivalert to the total judgment
* A true. In asimilar fashion, wewill abbreviate ° C sat[0]simplyas ~ C sat.

To simplify matters, the de nition of the partial judgments will immediately assume

that is a multiset, sothat the judgment will satisfy the structural rule of exchange.

Henceforth, we de ne the judgment

© Csat[D]

to besatis ed only if aderivation of C sat[D] canbe obtained giventhe derivations of
Aitrue[D],:::, Ay true[D]. It isimportant that the derivations of A; tr ue[D] must
be usedparametrically { they may not bemaodi ed in any way, and in particular, they
are not subject to re ection. The rules of the judgment must extend accordingly, to
accourt for the corntext . For example, the following is a rule of the hypothetical
support judgment which relates causally dependert contexts.

Cv D
" C sat[D]

The partial hypothetical truth judgment is de ned in the similar fashion. We say
that
© A true[D]

only if a derivation of A true[D] may be obtained from derivations of A1 true[D],
.., Ap true[D], by meansof substitution. Notice how the scope of the support D
in the above de nitions extends acrossthe whole judgment. The support modi es
the hypothesesA true, :::, A, tr ue, aswell asthe conclusionsC sat and A tr ue.!

As a coherencecondition, we impose a support weakening principle for hypo-
thetical partial judgments analogousto the support weakening principle from the
previous section.

Principle (Supp ort weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1.if ~ Atrue[C],then ~ A true[D]
2. if ° Cpsat[C],then ~ C; sat[D]
3.if ° Dsat[Di],then ~ C sat[D1]

The extensionsof the re ection principle is also straightforward, but with one
essetial restriction.

Principle (Re ection)
If ° C sat[D], then the following holds:
In the terminology of modal logic, we can say that the support D is a condition on the current

world. Becausethe hypothesesA; true, :::, A, tr ue are assaiated with the current world, their
derivations are allowed to be partial in D.

34

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

1.if °~ Atrue[C],then ~ A true[D]

2. if ~ Cysat[C],then ~ C; sat[D]

It is of crucial importance to obsene that the above re ection principle involve
premisesthat are categorical, i.e., do not depend on any hypotheses.In the caseof
supports, we re ect a proof of ~ C; sat[C], and in the caseof truth, we re ected
a proof of ° A true[C], but neither of these judgments dependson . Indeed,
re ecting a hypothetical proof would violate its hypothetical nature, becausethe op-
erations of substitution and re ection neednot commute. Any soundway to combine
hypothetical reasoningembodied by substitution, with the non-hypothetical reason-
ing embodied by re ection, must imposethat re ection is only usedon categorical
proofs.

The hypothetical nature of the partial judgments is axiomatized by meansof the
hypothesisrule

;A true” A true[D]

The corresponding substitution principle simply axiomatizesthe de nitional proper-
ties.

Principle (Substitution)
If ° A true[C], then the following holds:

1.if ;A true’ B true[C],then ~ B true[C]

2. if ;Atrue’ D sat[C],then ~ D sat[C]

The partial judgments also require rules to witness that proofs can be derived
by re ection. We state the appropriate rules here, but repeat that ead specic
application may de ne its own notions of supports and re ection. For ead of these
applications, we will have to prove that re ection is sound, i.e., that the re ected
and the derived proof are witnessing one and the samejudgmernt.

" Csat[D] © A true[C] * Csat[D] T Cp sat[C]
T A true[D] " Cp sat[D]

Just asin the caseof total judgments, we can internalize the hypothetical depen-
dencebetween an antecedernt and a conclusion by means of the new propositional
constructor of implication A! B. Wesaythat ~ A! B true[C] if and only if

;A true” B true[C] implies ° B true[C]. The new operator is axiomatized by
standard introduction and elimination rules.

;A true” B true[C] Al B true[C] © A true[C]
Al B true[C] * B true[C]

The local reduction and expansionare similar asin the caseof total judgments.

35

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

;A true” B true[C]
Al B true[C] T AtruelC] =) g * B true[C]
© B true[C]

Al B true[C]
;Atrue” A! B true[C] ;A true’ A true[C]
;A true” B true[C]
Al B true[C]

TAl Btruel[C] =)

2.1.3 Relativized necessity

As illustrated by the previous sections,dealing with partial judgments and re ection
puts a special emphasison proofsthat are categorical, i.e., do not depend on any hy-
potheses.It therefore seemsparticularly fruitful for the theory of partial judgments
if we could separatethe notions of categorical and hypothetical partial truth. Sucd
a dewelopmert will have many important consequences.For one, we could clearly
specify that re ection may only be performed over categorical proofs, but not over
hypothetical ones. But most importantly, categorical partial truth may be inter-
nalized. As described in Section 2.1.1, supports and partial proofs are intended to
capture aspectsof the metatheory of the truth judgment. If weinternalize categorical
partial truth, that would provide a way to reason,within the logic itself, about the
metatheoretic properties represerted by the supports.

Motiv ated by the needfor this distinction, we employ here the theory of modal
logic and modal -calculus from Section 1.2. The idea is to introduce a separate
judgment

A nec[C]

of partial, or relativized necessity, to witness the categorical partial truth of
A true[C].

The intuition behind necessiy in modal logic can be given using the notion of
possibleworlds (Section 1.1.3). We imagine the existenceof a set of worlds, intercon-
nected in someway, sothat someworlds are accessiblefrom the others. Any given
proposition may be true at a certain world, but neednot be true elsewhere.In the
hypothetical judgment ~ A true, the set of antecederis describesthe propositions
that are known to be true at the current world, and the conclusionA is deemedtrue
at the sameworld. Therefore, if A nec, then ~ A true, establishing the truth of
A in a genericworld that we know nothing about. In other words, if A nec, then A
is true in all accessibleworlds | necessiy is universal quarti cation over accessible
worlds.

The intuition behind the relativized necessyy is similar, exceptthat now A nec[C]
is awitnessthat A istrue in all accessiblavorlds in which C sat. Relativized necessiy
is bounded universal quanti c ation over accessibleworlds. The re ection principles
can then be viewed as specialization of bounded universal quanti cation. Indeed, if
we have a proof that is valid in all worlds where C sat, by re ection we can modify
and specializeit to correspond to the current world.

36

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

Just asin Section 1.1.3, the interesting developmen begins once we introduce
hypothesesof relativized necessiy, and extend the judgments ~ C sat[D] and
© A true[C] into

; Csat[D] and ; ~ Atrue[D]
where s the set of hypothesesB; nec[C,];::: ;Bm nec[Cy], and is the set of
hypothesesA; true;:::; A, true. Of course,we treat the necessiy and truth hy-

pothesesin di erent ways. Recall from Section 1.1, that the truth hypothesesin the
hypothetical judgments are used only in a parametric way, by means of substitu-
tions. We adopt a similar requiremert here. Given derivations of A1 true[D], :::,
A, true[D], they may only be substituted to obtain derivations of C sat[D] and
A true[D], respectively. Such a restriction is not imposedon necessiy hypotheses.
Derivations of B1 nec[C4], :::, Bm nec[Cy] in fact witness categorical judgments

T Bitrue[Cyq],:::, © Bm true[Cn], and may therefore be re ected before substi-
tution.

Becauserelativized necessiy is de ned via the notion of partial truth, we do not
require a separatejudgment for hypothetical relativized necessiy ~ A nec[C]. It
can already be expressedas ; ~ A true[C].

The support weakening principle for the new judgmernt is a straightforward ex-
tension of the principle from the previous section.

Principle (Supp ort weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1.if ;" Atrue[C],then ; ~ Atrue[D]

2. if ; ~ Cpsat[C],then ; ~ C;sat[D]

3.if ;" D sat[D;1],then ; ° C sat[D4]
The extensionsof the re ection principle still allowsre ection to be perform only over
derivations that are obtained in a categorical way. In the judgments ; ~ C sat[D]
and ; ° Atrue[D], aderivation is categoricalif it doesnot usethe ordinary truth

hypothesesfrom . Howewer, a categorical derivation may use hypothesesfrom ,
becausethe hypothesesfrom themseles stand for other categorical derivations.
This leadsto the following re ection principle.

Principle (Re ection)

If ; ° C sat[D], then the following holds:
1.if ; ~ Atrue[C],then ; =~ A true[D]
2. if ; " Cpsat[C],then ; ~ Cysat[D]
In the axiomatization of the judgment ; * A true[C], the hypothetical na-

ture of the judgment with respect to relativized necessiy is made explicit by the
hypothesisrule below.

(;A nedC]); ~ Csat[D]
(;A nedC]); ~ Atrue[D]

37

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

The rule is justied on the following grounds: a proof of A nec[C] is a proof of
the categorical judgment ~ A true[C], and hencemay be re ected into a proof of
A true[D], giventhe evidenceof C sat[D]. The corresponding substitution principle
follows the de nition of the hypothetical judgmernt.

Principle (Substitution for relativized necessity)

If ; ° A true[C], then the following holds:
1.if (;AnedC]); ~ B true[D],then ; ~ B true[D]
2.if (;A nedC]); ~ D%sat[D], then ; ~ D%sat[D]

We refer to this principle asa substitution principle, even though, strictly speaking,
there is no requiremert that the derivation of ; ~ A true[C] must, in fact, be used
unmodi ed. The reasonfor this terminology is that, while categorical proofs may be
modi ed by re ection, re ection is really the only operation that may be used for
this purpose. Therefore, we may still considerthe judgments parametric in necessiy
hypotheses,except that the concept of a parametricity is now extendedto admit a
limited and well-speci e d way to alter derivations. 2

Finally, we internalize the judgment of relativized necessiy into the truth judg-
mernt, by introducing a new operator on propositions . Unlikein Section1.1.3,this
time we have a whole family ¢ operators, in order to expressbounded universal
quanti cation over accessiblevorlds. When the support C is 0, we will simply write

A instead of (A. The formation rule for the ¢ operator is as follows:

A prop C supp
cA prop

with the introduction and elimination rules similar as before, but this time indexed
by supports.

i Atrue[C] i cAtrue[D] (;A nedC]); ~ B true[D]
cA true[D] i B true[D]

While the elimination rule aboveis justi ed simply onthe groundsof the substitution
principle for necessaryhypothesis, it is the introduction rule that is interesting, asit
embodiesthe de nition of the relativized necessiy. Indeed, cA istrue if and only
if A true[C] can be proved categorically This motivates the erasureof the context

from the premise of the rule. In cortrast, notice that the support C persistsin
the judgment. Unlike which represens hypothesesthat are local to the current
world, the support condition C has a global nature. On the other hand, while the
conclusion ¢A is obtained in a total way, we allow weakening with an arbitrary
support D in order to conform with the support weakening principle.

2The following analogy may be illustrativ e. The parametricity of truth hypothesesrequires that
the corresponding proofs be usedasblack boxes The proofscan be substituted into desired positions,
but they must remain unmodi ed. On the other hand, proofs of necessiy hypothesesare black boxes
whose functionalit y may be controlled by a well-speci ed interface C, but by no other means.

38

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

Local soundnesss justied on the grounds of the substitution principle for rela-
tivized necessi.
;. Atrue[C]
; cAtrue[D] (;A nedC]); " Btrue[D] =) r
;B true[D]

;B true[D]

Local completenesss witnessedby the local expansionsimilar to Section 1.1.3.

CvC
(;A nedC]); = Csat[C]
cAtrue[D] =) (;A nedC]); ~ Atrue[C]
;i cAtrue[D] (;A nedC]); °~ CcAtrue[D]
cA true[D]

Note that the local expansionemploys the following rule of the support judgment

CvD
; Csat[D]

to derive that (;A nedC]); = C sat[C].

Example 7 Let C and D be well-formed supports such that C v D. Then the
following derivation (which we denote by Dé;D) is a valid derivation of the judgment
A nedC]; * A true[D].

CvD

A nedC]; * C sat[D]
A nedC]; ~ A true[D]

We next usethis derivation to establishthat = cA'! pA true.
Dé;D
A nedC]; * A trugD]

cAtrue” cAtrue AnedC]; true’ pA true

cAtrue® pA true
T cAl pA true

We also establish the support-decorated versions of the customary axioms of con-
structive modal logic S4 (Section 1.1.3):

1.7 cA! Atrue[D],ifCv D
2. cA' cA true
3.° C(A! B)! cA'! cB true

39

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

Derivation of© cA! A true[D].

Dé;D
cAtrue” cAtrue[D] A nedC]; = A true[D]
cAtrue’ A true[D]

T cAl Atrue[D]

Derivation of = cA'! cA true.
D¢
A nedC]; ~ A true[C]
A nedC]; © cAtrue
cAtrue” cAtrue A nedCj; ° cA true
cA true’ cA true
cA' cA true

Derivation of© ¢(A! B)! cAl cB true.
To reduce clutter, we split the derivation into two parts. First, we obtain the
derivation D°for the simpler judgment (A! B) nec[C]; cAtrue’ B true.

Al B A
DC;C DC;C

(A! B)nec[C]; " A! B true[C] A nec[C]; *~ A truelC]

(A! B) nec[C];A nec[C]; ~ B true[C]

cAtrue” CcA true (A! B) nec[C];A nec[C]; = <¢B true

(A! B)nec[C]; cAtrue” ¢B true

We then useD%to obtain a derivation of © c(A! B)! cA' cB true.

DO
c(A! B)true® c(A! B)true A! B nec[C]; cAtrue’ B true

c(A! B)true; cAtrue’ B true
c(A! B)true® cA! cB true
C(A' B)' cA cB true

2.1.4 Simultaneous possibilit y

The dual conceptsto bounded universal quarnti cation and relativized necessiy, are
of course,bounded existertial quarti cation, and the related notion of simultaneous

40

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

possibility. Where relativized necessiy expressedhat a proposition A is true in all
worlds in which C sat, simultaneous possibility expresseghat there exists a world
in which C sat and also A true. In order to formalize the notion of simultaneous
possibility, we introduce a new judgment hC; Ai poss and immediately generalizeit
to its partial and hypothetical variant

7 hC;Ai poss[D]

When C is the 0 support, we omit it from the notation and abbreviate simply as
i~ A poss[D]. The intuition behind this judgment is to establishthe derivability
ofboth ; "~ Csat[D]Jand ; ~ A true[D], but wherethe secondderivation may
be obtained by meansof re ection using the rst derivation.

Being intuitiv ely speci ed in terms of C sat and A true, the new judgment is
required to satisfy similar weakening, re ection and substitution principles.

Principle (Supp ort weakening)
If ; ° hCq;Ai poss[Cland Cv D, then ; ° hCq;Ai poss[D].

Principle (Re ection)
If ; ~ Csat[D]and ; ~ hCi;Ai poss[C],then ; ~ hCy;Ai poss[D].

Principle (Substitution for truth)
If ; " Atrue[C]land ; (;A true) HD;Bi poss[C], then
; HD;Bi poss[C].

Principle (Substitution for relativized necessity)
If ; "~ Atrue[Cland(;A nedC]); ~ hCy;Bi poss[D], then
; NhCyq;Bi poss[D].

There are four ways simultaneous possibility can be established, giving raise to
four basic de nitional principles.

1.If ; ° Atrue[C],then ; ~ A poss[C].
2.If ; "~ Csat[D]and ; °~ A true[C],then ; ~ hC;Ai poss[D].
3.1f ;7 hCy;Ai poss[D]and ; A true” B true[C4], then
; hC1;Bi poss[D].
4. 1f ;7 hCy;Ai poss[D]and ; A true” hCy;Bi poss[C4], then
;. hCy;Bi poss[D].
Principle (1) is justied by the fact that ; ° 0 sat[C] always trivially holds.
Taken together with the assumed; ° A true[C], this ensuresthat the two judg-

ments simultaneously hold in the current world, and are therefore simultaneously
possible.

41

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

Tojustify principle (2), obsenethat givenC sat[D] and A tr ue[C], we can obtain
A true[D] by re ection. The derivations are in the current world, and are therefore
simultaneously true. The required re ection, howewer, can only be performed if
A true[C] is derived in a categorical way. Hencethe restriction that the judgment
;A true[C] usesno truth hypotheses.

Principle (3) is justied by the following obsenation: if C, sat and A true are
simultaneously possible, then there exists a world about which we know nothing,
exceptthat C, sat and A tr ue canbe derivedin it. If we canusethesetwo facts, but
nothing else,to concludethat B tr ue in the very sameworld, then certainly C; sat
and B tr ue are simultaneously true in this world, and are therefore simultaneously
possible. If the possibility of C; sat and A true is partial in D, so would be the
concluded possibility of C; sat and B tr ue.

The reasoning behind the principle (4) is similar. If C, sat and A true are
simultaneously possiblein someworld, and we can usethesetwo facts, but nothing
else,to conclude the simultaneous possibility of C, sat and B tr ue, then the later
two are certainly possible. If the possibility of C, sat and A tr ue is partial in D, so
is the concluded possibility of C, sat and B tr ue.

In order to internalize simultaneous possibility of C sat and A tr ue, we introduce
the indexed family of operators 3 cA for bounded existertial quarti cation over
possibleworlds. When the support C is 0, we will simply write 3 A instead of 3 gA.
The appropriate formation rule is

A prop C supp

3 cA prop

and the introduction rule de nes the operator as an internalization of simultaneous
possibility.

7 hC;Ai poss[D]

i 3cAtruel[D]

The axiomatization of the possibility judgment itself re ects the de nitional princi-
ples outlined previously. For example, the principles (1) and (2) are directly trans-
lated into the following derivation rules.

;. AtruelC] ; Csat[D] ;A true[C]
;A poss[C] ; hC;Ai poss[D]

There aretwo elimination rulesfor 3 ¢, arising from the de nitional principles (3) and
(4). Howewer, instead of the hypothesishC1; Ai poss theserules usethe internalized
version 3 ¢, A tr ue.

; 3c¢,Atrue[D] ; Atrue’ B true[Cq]
7 hCq;Bi poss[D]

;. 3c¢,Atrue[D] ; Atrue’ hCy;Bi poss[Cy]
; hCy;Bi poss[D]

42

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

Local soundnesss establishedby two local reduction, which are justi ed by the
de nitional principles (3) and (4). Local completenessand local expansionare also
simple to verify.

7 hCq; Ai poss[D]
" 3c,Atrue[D] ; Atrue Btrue[C;] =) r ; = hCi;Bi poss[D]
7~ hCq;Bi poss[D]

* hCy; Ai poss[D]
" 3c,Atrue[D] ; Atrue’ ICy;Bi poss[Ci] =) r ; ° hC,;Bi poss[D]
i hCy;Bi poss[D]

" 3cAtrue[D] ; Atrue’ A true[C]
" 3cAtrue[D] =) e ;" hC;Ai poss[D]
i 3cAtrue[D]

Finally, similar to Section1.1.4,we also have the additional rule for eliminating ¢
in the new possibility judgment

i cAtrue[D] (;A nedC]); = hCy;Bi poss[D]
; hCy;Bi poss[D]

Example 8 Let C, C; and D be well-formed supports. Then the following are
support-decorated versionsof the customary axioms of constructive modal logic S4
(Section 1.1.4):

1. A! 3Atrue
2. 3(;13(;A! 3 cA true, for any C,C

3.7 c(A! B)! 3pA! 3pBtrue forCv D

Derivation of © A! 3 A true.

A true’ A true
A true’” A poss
A true” 3A true
Al 3Atrue

43

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

Derivation of © 3¢,;3cA! 3cA true

3cAtrue’ 3cA true[C;] A true” A true[C]
3c,3cAtrue’ 3¢,3cAtrue 3cA true’ hC;Ai poss[Cq]
3c,3cA true’ hC;Ai poss
3c,3cAtrue’ 3¢A true
" 3¢, 3cA!l 3cAtrue

Derivation of© ¢(A! B)! 3pA! 3pB true

In this case,we rst establishthe simplerjudgment (A! B) nec[C];3 pA true’
hB;Di poss We will make useof the derivation D&!,® for (A! B) nec[C]; = A!
B true[D], exhibited in Example 7.

DAL B
(A! B)nec[C]; * A! B true[D] Atrue’ A true[D]
3pAtrue’ 3pA true (A! B) nec|[C];A true” B true[D]

(A! B) nec[C];3pAtrue” hB;Di poss

We can now use the above derivation (call it DY, to infer the required ® ¢ (A !
B)! 3pA! 3pB true

DO
(A! B) nec[C];3pA true” hB;Di poss

c(A! B)true® c(A! B)true (A! B)nec[C];3pAtrue” 3pB true
c(A! B)true;3pAtrue’ 3pB true
c(A! B)true® 3pA! 3pB true
c(A! B)! 3pA! 3B true

2.1.5 Names

One possible way to specify the notion of support for the modal logic of partial
judgments from Section2.1.1is by using names Namesare elemeris of a courtable
universeN , and will be usedaslabelswitnessing a certain fact about the derivability
of truth judgments. Every name from N is assa&iated with some proposition, and
for eat proposition itself there is a countable number of namesassaiated with it.
When the name X is assaiated with the proposition A, we will write that as

typeof(X) = A:

44

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

The semartics of this relation betweenX and A may be de ned in various ways. For
example, a particularly simple de nition { and this is the semariics of hamesthat
we considerin this chapter { is to asseiate X with the existen@ of a derivation of
A true.

Having intuitiv ely explained names, we de ne the notion of support as a nite
set of names. If the support C consistsof names X 1;::: ; X, then the condition
represened by C is the conjunction of the properties represened by ead of the
names. For example, if Xq1;:::; X, are assaiated with propositions Aq;::: ;An,
respectively, then the whole support C stands for the metatheoretic statemert that
the judgments A1 true, :::, Ay true are all derivable. In such a case,the partial
judgmernt

A true[Xq;:::;Xn]

simply expressesthe fact that A is true, given the derivability of Aq true, :::,
Aq true.

Notice that propositions may now corntain names,as namesspecify supports and
propositions in our modal logic depend on supports. A carelessde nition of the
typeof relation may thus create a circular dependency between names and propo-
sitions. While such a circular dependency may be desirable for some applications
(seeSection 4.9 for an example), we disallow it for the time being, and require that
typeof is well-founded. The notion of well-foundednesswill be made precisein the
next section, where we introduce a context assigningnamesto propositions, and
require that ead proposition in may contain only namesappearing to the left of
it.

In the preseried formulation, namesobviously very much resenble ordinary vari-
ablesin hypothetical judgments from Chapter 1, but there are seweral notable dis-
tinctions betweenthe two. First of all, ordinary variablesin the hypothetical judg-
merts have local nature. Variables do not have meaning other than as placeholders
for proofs that ewvertually substitute them. On the other hand, namesare global
and ead name possessesn identity that persists acrossthe worlds. This prop-
erty givesnamesa semartic signi cance independert from variables and proofs. For
example, name identity will play a role in Chapter 3, where di erent names will
de ne semartically dierent program expressions.Also, in Section 3.3 we will con-
sider polymorphism in supports, and universally quantify over arbitrary nite setsof
names. Similar impredicative quanti cation over parts of variable contexts will not
be available.

Seconddistinction betweennamesand variablesinvolvesthe processof re ection.
The only way a hypothetical proof depending on A1 true, :::, An true may be
usedis by substituting the proofs of Ay true, :::, Ap true when these proofs are
available. This is necessaryif we want to presene the parametric nature of the
ordinary hypothetical judgments. No such restriction appliesto names. Namesare
a new feature, and we have more freedomin de ning their semarics. In particular,
we will allow a categorical proof that is partial in Xq;:::; X, to be modied by
re ection beforeit is usedin somesubstitution. The processof re ection may be
speci ed in many ways, and in the forthcoming chapters we considerse\eral di erent
de nitions, ead usefulin its own right.

We remark on a yet further distinction along the samelines. While an ordinary
variable of type A in a hypothetical judgment must stand for a derivability of the

45

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

judgment A true, such a requiremert is not enforcedon names. It is possiblethat
a name X with typeof(X) = A stands for the derivations of other judgmernts related
to the proposition A. For example, X may represen that A true is provable in a
speci ¢ way, sothat the proof satis es someparticular properties or invariants (e.g.,
the proof usesonly introduction, or only elimination rules). Or, perhaps, X may
ewven stand for the fact that 6 A tr ue. Combined with modalities and re ection, this
provides a way to encale diverseaspects of the metareasoningabout derivability.

Having de ned the universe of supports as the set P, (N), we also need to
establish a partial ordering on it. For the purposesof this section, if C and D are
two supports, we will consider

CvD if and only if C D

Then the empty support setis the minimal support in this ordering, corresponding to
the support O from the previous section. At this point, we change our notation, and
denotethe empty support setas() in order to distinguish the particular name-based
de nition of support, from the abstract notion consideredpreviously.

The new concrete support de nition requiresadditional rules for support forma-
tion.
C supp

supp C; X supp

The axiomatization of the judgments ; ~ Atrue[C]land ; ~ C sat[D]now
proceedsin a mutually recursive way. The most important rule is

typeof(X) = A

: A true[C;X]()

specifying that if the name X witnessesthe derivability of A true, then we can
certainly concludethat A is true partially in X. Notice that we allow weakening
with an arbitrary support set C in the conclusion,in order to give rise to the support
wealkening principle. On the other hand, ; ~ C sat[D] is axiomatized using the
following two rules:

C D ; Atrue[D] ; = (CnX)sat[D] typeof(X)=A
, Csat[D] ; Csat[D]

where we denote by C n X the set-di erence betweenC and f X g. The rst of the
above rules seresto establish the basic causaldependencebetweensupports { if D
represens a stronger condition than C, then trivially C sat[D]. The secondrule
formalizes that the support C actually represers the conjunction of the conditions

assaiated with the namesin C. Indeed, if C consistsof namesX 1;::: ; X, where
typeof(X;) = Aj, then ; ° C sat[D] if and only if ; * Aj true[D] for ewery
i=1::::n.

2.1.6 Name-space management

A notable feature of the formulation of partial judgments from the previous section
is the global nature of names. Namesare given once and for all, and are shared by

46

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

all the worlds. For computational purposes,however, it is bene cial to introduce
the notion of local names. Local namescan dynamically be generatedduring the
derivation; ead generatednameis fresh, i.e., di erent from all the namesgenerated
so far. Also, eah local name will have a scope within which it can be used, and
outside of which it is inaccessible.

In order to deal with the freshnessof local names,we make the judgments hypo-
thetical in a yet another context { the context of generatednames. This context will
assaiate ead generatedname with its type. For example, the new truth judgment
will now have the form

;, Atrue[C]
where consistsof X1:A1;:::;Xn:Apn, assaiating the names X4, :::, X, with
propositions A1, :::, Anp, respectively. We denote by dom() the set of names

fX1;:::;Xng. Notice that is a dependerily typed context, becauseeat proposi-
tion may itself depend on names. Henceforth, we imposeon the typical require-
ments of dependert contexts. In particular, we assumethat the namesX;:::; Xnp
are all dierent, and that ead X; may be usedonly to the right of its declaration.
For example,the name X 1 may appearin the propositions A,;::: ; An, aswell asin
, , AandC, but notin A;. The name X, may not appearin A1 and A, but may
appear elsewhereand soon. Furthermore, we insist that a name can be usedin this
judgment only if it is actually declaredin the namecontext . Thus, we rephrasethe
rule () of the truth judgment from the previous section, which now has the form:

X:A2
;5 Atrue[C;X]

While weinsist that the judgment ; ; ~ A true[C]iswell-formed only if all its
namesare declaredin , weallow abit more leeway in de ning what counts asa proof
of ; ; ° Atrue[C]. In particular, the intended meaningof ; ; =~ A true[C]
is that there exists a name context ; (well-formed relative to), and a proof for
;A true[C], suth that the namescontained in this proof are declaredin ; 1
(eventhough , , A, and C must still useonly the namesfrom , in order to be
well-formed). In this sense,a proof of the judgment ; ; © A true[C] will be
a pair consisting of both 1 and a proof of ; * A true[C] satisfying the above
requiremert.

Notice that the outlined semarics of name corntexts to sene aslists of currently
generatednamesdoesallow the following structural properties. Here we useJ asan
abbreviation for the ; ~ A true[C], and ° J asan abbreviation for ; ; °
A true[C].

1. Name localization. Let X be a name that does not appear in J. Then
(;X:A) Jifandonlyif =~ J.

Indeed, if X is not usedin J, then ~ J is well-formed. Furthermore any
conext 9 (;X:A)isalso © , andthusa proofof(;X:A) Jisalso
aproofof = J.

2. Renaming. If (;X:A; 9 J andthe nameY is not usedin , 9 A, orJ,
then (;Y:A:[Y=X] 9 ([Y=X]J).

a7

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

3. Weakening. If " J, and X is not usedin J, then (;X:A) " J.

This principle is justi ed on the groundsof the previous principle for renaming.
Indeed, if ° J, then there exists a name cortext ° and a proof of J
using ° If %doesnot declareX, then ©X:A is a well-formed name context
and the proof of J uses ®X:A. If Cdeclared X then we can rename that
occurrenceof X in both °and the supplied proof of J.

4. Exchange.Permutation of namecortexts is allowed if it doesnot violate the de-
pendenciedbetweennamesand the propositions assaiated with them. In other
words, if (;X:A; ¢ 99 J and X isnotusedin %then(; %X:A; %°
J.

Motiv ated by the exdchange property, we proceedto abusethe notation and
treat name contexts as if they were multisets. In particular, we consider ©°
and to be equalif they only dier by a dependency-preservingreordering.
Similarly, wewrite © | if Cextends (with possiblename reordering).

Notice howewer that contraction is not something we require of a name cornext.
Wewarnt to presenethe distinction betweennames:if the judgment B tr ueis derived
by re ection using two di erent namesX :A and YA, there is no requiremert that
the samederivation is producedif X and Y are simultaneously renamedinto some
new name Z:A. In accordancewith the renaming principle, both X and Y may
sometimesbe renamedindividually into Z, but not at the sametime.

Thejudgments ; =~ Csat[D]and ; ~ hC;Ai poss[D]areextendedwith in
a similar way. For example,the rules for intro duction and elimination of implication
in the truth judgment now have the form

i (;A true) ” B true[C]
Do Al B true[C]

i, Al B true[C] i Atrue[C]
Co * B true[C]

The elimination rule desenes further discussion. From the premises, we know
that there exist namecorniexts 1 and 5, both well-formed relativeto , sud that

the proof of ; " A! BJ[C]usesonly ; i, and the proof of ; * AJ[C] uses
only ; o. By the substitution principle for truth, we may then producea derivation
of ; * B true[C], which usesthe namesfrom ; ; ». This derivation, together
with the namecontext (1; »2) isawitnessof ; ; ° B true[C]. Notice that ;

and , may be assumeddisjoint, by the renaming principle.

We also needto accourt for in the judgments for formation of supports and
propositions, and extend them into ~ C suppand °~ A prop. The relevant rules
of the new judgments are listed below.

48

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

* C supp X 2 dom()
supp © C;X supp
" A prop * C supp * A prop * C supp
cA prop " 3cA prop

As customary, we will implicitly assumethat the proposition and supports in our
judgments for truth, necessiy and possibility are always well-formed according to
the above rules.

The next step in the axiomatization of the judgment ; ; ~ B true[C], isto
internalize the dependenceof the conclusionB true on namesfrom . With that
goal, we introduce a new constructor on propositions A 9 B, with the following
formation rule.

* A prop " B prop

A9 B prop

The judgment A 9 B tr ue should be provable if and only if B tr ue can be proved
using an arbitrary fresh name of type A. In other words, we have the following
intro duction rule.

(;X:A); ;B truelC]

;7 A9 B true[C]

In this rule we assumethat X is fresh,i.e. X doesnot appearin , , , A,B,or
C. Notice that the exactidentity of the name X is irrelevant, aslong as X is one of
the unusal nameswith typeof(X) = A. Indeed, by the renaming principle for names,
any chosen fresh name would have produced the same derivation. Furthermore,
becauseX doesnot appearin , , , A, B, or C, it remains local to the proof of
i B truelC].

If we can prove ; ; " A 9 B true[C], then there exists a proof of ;
B tr ue[C] that usesnamesfrom somecontext © (;X:A), whereX is fresh. But
then © | and therefore the samederivation proves ; ; B true[C] aswell.
This reasoninggivesrise to the following elimination rule for A9 B.

~

i, A9 B true[C]
Co * B true[C]

The local reduction for the new type operator is justied by the name localization

principle, becauseof the assumptionthat X doesnot appearin , , , B, C.
(;X:A);; B true[C]
, » A9 Btrue[C] =)gr ; ; = BtruelC]
Do * B true[C]

49

2.1. NATURAL DEDUCTION CHAPTER 2. PARTIAL MODAL LOGIC

The local expansionis justi ed by the weakening principle

;. A9 B true[C]
Do " B true[C]

(;X:A); ;" B true[C]

i, A9 B true[C]

;A9 Btrue[C] =) g

2.1.7 Summary

We conclude this section with a summary of the system with names, as preserned
thus far. We postpone proving its properties until Section 2.2 where we introduce
a proof-term calculus for the judgments. Proof terms will give us a way to describe
explicitly the processof re ection, and will provide a concretenotation for dewveloping
our metatheory.

Names X;¥ 2 N

Supports C.D = jGCX

Propositions A;B = PjA! BjA9 Bj cAj3cA
True hypothesis =] ;Atrue

Necessary hypothesis = j ;A nedC]

Name context =] XA

Name coniexts are dependert conexts, becausetypesmay depend on names.
Thus, we imposethe following restriction on well-formed name cortexts : a name
declaredin may be usedin the types appearing to the right of its declaration,
but not to the left. This ensuresthat no circular dependencesare createdin , and
thus the relationship betweennamesand their corresponding typesis well-founded.
Similarly, propositional corntexts and canonly conain typesand supports that
are well-formed with respect to a given name context .

The described restrictions are imposedby meansof the judgment for formation
of name cortexts, ° ok, which in turn recursively dependson the judgments for
formation of supports ~ C supp, and propositions ~ A prop. In the later two
judgmernts, it is implicitty assumedthat is a well-formed name context.

De nition of " ok.

ok ~ ok " Aprop X 62om()
T ;X:A) ok
De nition of ~ C supp.
* C supp X 2 dom()
supp * C; X supp

50

CHAPTER 2. PARTIAL MODAL LOGIC 2.1. NATURAL DEDUCTION

De nition of ~ A prop.

* A prop " B prop © A prop " B prop
* P prop Al B prop A B prop
* A prop * C supp * A prop * C supp
cA prop " 3cA prop

We also require formation judgments for propositional contexts and . These
judgments are de ned in a straightforward way.

De nition of °~ ok
ok ook * A prop
*(;A true) ok
De nition of ~ ok
ok ook * A prop * C supp
" (;A nec[C]) ok
The secondgroup of judgmernts establishespartial truth ; ; ° A true[C], par-
tial support ; ; ° Csat[D], andsimultaneouspossibility ; ; ~ hC;Ai poss|[D].
De nition of ; * C sat[D].
C D 7, T Atrue[D] ; ; " (CnX)sat[D] X:A2
' Csat[D] ; » Csat[D]
' Csat[D] ;s Cysat[C]
' Cyp sat[D]
Denition of ; ; ° A true[C].
X:A 2 ; ~ Csat[D] . T Atrue[C]
T A true[C; X] i Atrue[D]

i (;A true) ” A true[C]
51

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

; (;A true)” B true[C] ;. Al B true[C] i Atrue[C]

Al B truelC] ;. B true[C]

; (;A nec[C]); ° Csat[D]
; (;A necC]); ~ Atrue[D]

© A true[C] 7 cAtrue[D] ; (;A necC]); °~ B true[D]
cA true[D] ;7 B true[D]

(;X:A); ;B truelC] i, A B true[C]

A B true[C] i B true[C]

Denition of ; ; ° hC;Ai poss[D].

* A truelC] ; ;7 Csat[D] i Atrue[C]

* A poss[C] i ; hC;Ai poss[D]

* hC; Ai poss[D]

" 3cA true[D]

* 3c,A true[D] ; ; Atrue’ B true[Ci]

* hC1;Bi poss[D]

* 3¢, A true[D] ; ; Atrue” hCy;Bi poss[Ci]

* hC2;Bi poss[D]

cA true[D] 7 (;A nec[C]); °~ hCz;Bi poss[D]

* hC2;Bi poss[D]

2.2 Modal -calculus

2.2.1 Partial judgmen ts and pro of terms

In this section, we dewvelop a proof-term system for the modal logic of partial judg-
ments, which we call the modal -calculus The presenation will closely follow the
dewelopmert and methodology of the modal -calculus from Section 1.2. Each of

the judgments ; =~ Csat[D], ; ~ Atrue[C],and ; ~ hC;Ai poss[D] de-
ned in the previous sections,is now decoratedwith proof terms, and has the form
;7 “hi:[C]) [D],; "~ e:A[Cl,and ; ~ f ¢ A[D], respectively. As

can be noticed, we now have three separatesyntactic categoriesthat sere to encade

52

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

proofs of our judgmerts.

1. Expressionsare ranged over by e, and sene as proofs for partial truth and
partial necessi.

2. Phrasesare ranged over by f , and sere to withess simultaneous possibility.

3. Explicit substitutions are ranged over by , and serwe as proof objects for the
support judgment C sat[D]. Correspondingly, they will be usedto witness
derivation of proofs by re ection.

The assumptionsfrom contexts and are now labeled with variables. We write
x:A and u::A[C] to denotethat x standsfor a proof of A tr ue and that u stands for
a proof of A nedC], respectively. Just asin Section 1.2, we will refer to variables
x as ordinary or value variables, and to variables u as modal variables. The usual
assumptionsof variable contexts apply hereaswell: variablesdeclaredin and are
considereddi erent, and we tacitly employ -renaming to guarantee this invariant.

We start with the formulation of the -calculus fragment of the system. The
dewelopmert is fairly standard. The decorated version of the hypothesisrule of the
truth judgment hasthe form

;(5x:A) T x:A[C]

The assa@iated substitution principle is also customary. Becausethe judgments
; “f p A[C]and ; " hi:[D]) [C]aredened in a mutually recur-
sive fashion with the truth judgment, we list here the substitution principles for
value variables for all three judgmerts.

Principle (V alue substitution)

Let ; e1:A|[C]. Then the following holds:
Lif ; (;x:A)” e:BJ[C],then ; ~ [e;=X]ex : B [C]
2.if ; (;xA)" hi:[D]) [C],then ; "~ Hei=x] i:[D]) [C]
3.if ; (;x:A)" f p A[C],then ; " [ei=x]f p A[C]

The rules for implication introduction and elimination are annotated using -
abstraction and application, respectively, and the local soundnessand completeness
are witnessedby local reduction and expansionon proof terms.

; (x:A) T e:B[C] 7 T ertAl BIC] 7 el A[C]
;7 x:Are:A!l BJC] ;. e1e:BIC]

(x:Are)e =) R [e2=X]e1

e:A! BIC] =) E X :A: (eXx) where x not freein e

53

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

Of course,the most important developmen in this section concernsnames,par-
tialit y and the treatment of re ection. In order to de ne the notion of proof for the
judgment of partial truth, we allow namesinto the syntactic category of expression.
Thus, for example, using namesto derive partial truth is now formalized by the

following rule.
typeof(X) = A

: T X TA[C;X]

The justi cation for this rule is asfollows. If X is assaiated with the proposition A,
then it standsfor a proof of A true. Thus, we may useX itself asa proof of A tr ue,
which is partial in X. Notice that we allow weakening with an arbitrary support C,
in order to provide for the support wealkening principle.

Principle (Supp ort weakening)
Let C D betwo supports. Then the following holds.

1.if ; " e:A[C] then ; " e:A[D]
2.if ; " hi:[Cy) [Clthen; ~hi:[Ci]) [D]
3.if ; " hi:[D]) [Cu then ; ~ hi:[C]) [Ci]
4.if ; °f ¢ A[Clthen ; “f ¢, AD]

Asscciated with the notion of partial proofs is the re ection principle as a way
to remove or replacethe support of a given derivation. In Section 2.1, we usedthe
judgment C sat[D] to formalize when a support C may bereplacedby the support D
in any given derivation of partial truth. A proof-annotated version of this judgment
has the form ; “hi:[C]) [D], where belongsto the syntactic category of
explicit substitution.

De nition 4 (Explicit substitution, its domain and range)

An explicit substitution is a nite partial function from namesto expressions.If
maps namesX, :::, X into expressionsey, ::: , €,, respectively, we represen it

using the following set-theoretic notation

=fX1! e Xn! eng
The domain and range of the explicit substitution are de ned as
dom() =fXjX! e2 g

and
rangg() =fej X! e2 ¢

The set fv() of free variables of is the set of free variables of expressionsin
range() . The setfn() of free namesof s the set of namesin the domain and
range of . The empty substitution is denotedashii.

54

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

Having de ned explicit substitutions, we may now usethem to axiomatize the
judgment ; “hi:[C]) [D], which is the annotated version of the judgment
; * C sat[D] from Section 2.1.2. Obsene that the judgment enforcesthe func-
tional nature of explicit substitutions, asit prohibits that any given namebe de ned

more than onceby the substitution.

C D
; hi:[C]) [D]
;7 ~e:A[D] ; T hi:[CnX]) [D] typeof(X)=A

;X! e i:[C]) [D]

Every explicit substitution determinesa function []] from namesto expres-
sions,de ned as follows.

e ifX1! e2
[116x) = X otherwise
This function can also be uniquely extendedto a new function f g that acts over
arbitrary expressionsand phrases. We will de ne this function explicitly in Sec-
tion 2.2.3,oncewe introduce all the expressionconstructors of the -calculus. Here
we just preser seweral typical rules.

fg X = [11X)

f g X = X

f g x:Ale = x:Af ge X 62v()
fg ee =1fogf ge

Given two explicit substitutions and © we can de ne the operation of substi-
tution composition 0 sothat f % is a composition of functions f g and
f Q. We also postponethe de nition of this operation until Section 2.2.3.

The operation f g is the crucial part of the -calculus, becauset describeshow
expressionsarere ected, i.e. transformed from proofs of categorical partial judgments
into proofsoftotal judgments. For example,if eis an expressionsuch that = e: A [C],
andh i :[C]) [], thenreection of eunder isdened asf ge, andit will be
the casethat f ge : A. The typing properties of re ected categorical proofs are
establishedby the following explicit substitution principle, which is the equivalent of
the re ection principles in the logic of partial judgments.

Principle (Explicit substitution)

Let ; " hi:[C]) [D]. Then the following holds:
1.if ; ~e:A[Cl,then ; ~ f ge:A[D]
2.if ; T h4i:[Cq]) [Cl,then; " h 11 1[C1]) [D]
3.if 5 ~f ¢, A[C],then ; " f of ¢, A[D]

55

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

Becausemodal variables stand for proof expressionghat are subject to re ection,
the hypothesisrule for modal variables must specify the explicit substitutions that
will guide the re ection. The annotated version of this rule hasthe following form.

(;uzA[CD; " hi:[C]) [D]
(;uzA[CD; " hiu:A[D]

As can be noticed, ead use of modal variable u is now paired up with an explicit
substitution (and when is the empty substitution, we will abbreviate h iu sim-
ply asu). The above rule realizesa form of elimination for the bounded universal
quanti cation that is embodied by relativized necessitation. Indeed, if u::A[C] stands
for a proof that A true in any world in which C sat, and we have an explicit substi-
tution proving that C sat[D] in the current world, then A true[D] must hold in
the current world. The proof of the later, howewer, is obtained by re ection.

This intuition givesriseto the new operation of modal substitution [e=uje® which
substitutes the categorical proof e for u in €% Howewer, e may rst be re ected, i.e.
modi ed in accordancewith the explicit substitutions that are paired up with the
occurrencesof u in €2 The new operation is de ned by induction on the structure of
e® Again, we postponethe completede nition for Section2.2.3, where we intro duce
all of our languageconstructs. Here we presen the two most important caseswhich
illustrate the gist of the operation of modal substitution.

[e=u]h iu
[e=uh iv

fle=u] ge

He=u iv ué v

It is essetial to obsene in theseequationsthat substituting e for u in the term h iu
actually applies f[e=U] g to e. This explicit substitution exactly carries out the
processof re ection mertioned above { the categorical expressione is re ected before
it is substituted for u. Re ection of categorical expressionsis what di eren tiates
modal substitution from the ordinary value substitution. Ordinary value substitution
treats the substituted expressiongparametrically, and is not allowed to modify them
in any way.

Principle (Mo dal substitution)

Let ; ~ e:AJ[C]. Then the following holds:
1.if (;uzA[C]); ~ e :B[D],then ; ~ [ei=u]e;:B[D]
2.if (;uzA[C]D; "~ hi:[DY9) [D],then ; ~ He=u] i:[DY9) [D]
3.if (;uzA[Cl); ~f c,B[D], then ; ° [e=ulf ¢, B[D]

The introduction and elimination rules for relativized modal necessiy operator
usethe box and let box proof term constructors, just like in the modal -calculus.

; el A[C]
i boxe: cA[D]
56

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

, er: cA[D] (;uzA[C]); e :BI[D]
: “let box u= e;in e :B[D]

Howewer, in the -calculus, the local reduction is realized by meansof the new
operation of modal substitution [e;=u]e;.

let box u= e in & =) r [ei=u]e::B[D]
The local expansionstill hasthe sameform asin Section1.1.3.

e: cA[D] =) g let boxu=ein box u

Example 9 Let X beanameoftype A. Then the term T de ned as
let box u= (box X)in box (y:A: hX ! yiu)
is well-typed, of type (A! A). The -reduction of T is computed as

[X=u](box (y:A: hiX ! yiu))
= box (y:A:fX ! ygX)
= box (y:Ay)

Example 10 Let C and D be well-formed supports such that C D. Then the
following are valid typings in the modal -calculus.

1. (;uzA[C]); "~ u:A[D]

2., X let boxu=xin boxu: cA! DA

3.; T xiletboxu=xinu: cA! A[D]

4, ; T X let box u= xin box box u: cA'! cA
5.7 7 x: y:let boxu=xinlet boxv=yin boxuv

c(A! B)! Al (B

The proof annotation of the judgment for simultaneous possibility starts with the
following two rules.

: e A[C] : “hi:[C]) [D] ;o erA[C]
, e A[C] ;[;el cAI[D]

The rst rule follows the de nitional property (1) of simultaneous possibility
from Section2.1.4. If a proposition A is true in the current world, then A is possible

57

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

(simultaneously with the empty support). If the witness for the truth of A is the
expressione, then e witnessesthe possibility of A aswell.

The secondrule above is justi ed by the de nitional property (2) of simultaneous
possibility. The rule prescribesthe pair [;€] asa witness for simultaneous truth of

; ~ Csat[D]and ; ~ Atrue[D]. In this pair, isaproofof; ~ Csat[D],
and eisaprooffor ; ° A true[C]. By re ection, thesetwo canobtain a derivation
of ; " A true[D]. Notice that e hasto be typed with an empty context , in

order to enablere ection.

The introduction rule for 3 ¢ usesthe phraseconstructors dia to internalize the
judgment for simultaneous modal possibility, just like in the modal -calculus from
Section1.1.4.

., f cA[D]
; diaf :3cA[D]

The elimination rules for simultaneous possibility follow the inference rules from
Section 2.1.4. We have two dierent let forms, which sene as proof terms corre-
sponding to two dierent de nitional properties. For de nitional property (3), we
uselet cdia x = e; in e, where e is an expression;for the de nitional property
(4), we uselet dia x = e; in f wheref is a phrase. As customary in the judgments
for possibility, we also have a term constructor let box u = ein f, that sernesto
eliminate relativized necessiy in the judgment for simultaneous possibility.

;e :3c,A[D] 7 XA T e B[Cq]
; let cdia x = e;in & ¢, B[D]

; e:3c¢A[D] ; XXAT f ¢, B[Cq]
; letdiax=einf ¢,B[D]

: “e: cA[D] (;uzAlCD; f ¢, BID]

; let boxu=-einf ¢, B[D]

Example 11 Let C, C;, D be well-formed supports such that C D. Then the
following are valid typings in the modal -calculus.

1. ; ~ x diax:A! 3A
2. ; ~ x: dia (let diay=xinlet cdia z=yin z) :3¢,3cA! 3cA
3.; 7 x: y:let boxu= xin dia (let cdia z=yin uz)

c(A! B)! 3pA! 3pB

58

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

The local reductions and expansionsare

let cdia x = dia f1in e =) R Hf 1=xii e
let dia x = dia f1in f =) R Hf 1 =xii f
e:3¢c[D] =) e dia (let cdia x = ein x)

where the two operations hif ;=xiie and Hf 1=xiif are de ned by induction on the
structure of f1 asfollows.

fhe;=xiie = [e1=X]e
Wl se=xiie = [;([ex=X]e)]
et cdia y = e in ex=xiie = let cdia y = e; in [ex=x]e
et dia y = e; in fo=xiie = let dia y = e in Hf,=xiie
et box u= e; in fo=xiie = let box u = e; in Wfy=xiie
e =xiif = [e=x]f
W se=xiif = f g ([ex=X]f)
et cdia y = e1 in ex=xiif = let dia y = e1 in [ex=x]f
et dia y = e, in fo=xiif = let dia y = e; in Hfo=xiif
et box u= e;in fo=xiif = let box u = e; in Wf,=xiif

We emphasizein the above de nition the most characteristic case,which de nes the
value of et cdia y = e; in ex=xiif to belet dia x = e; in [e=x]f. Notice how
the elimination form was changedfrom let cdia in the argumert of the substitution,
to let dia in the result.

The operation f g appliesthe substitution to an argumert phraseand thus
realizesthe re ection principle for phrases.lt is de ned by induction onthe structure
of the argument phrase, using the operation f g of substitution on expressions.

f ge = f ge

f gl 1:¢] = [1, €]
f g(let cdia x=e1ine) = let cdiax=f gein e
f g(let diax=einfy) = letdiax=f ge in f,
f g(let boxu=¢einfy) = let boxu=f gerinf gfs,

Notice herethat we only apply f g in the body of let box, but not in the bodies
of the other let forms. This fact closelycorrespondsto the presered typing rules for
simultaneous possibility and is thereforeimportant for the soundnesf the calculus.
Indeed, when comparedto the other let forms, the rule for let box is the only one
using the samesupport D in both of the premises. Becausethe explicit substitution

may change the support of a phraseit is applied to, we must apply to both
the branch and the body of the let box in order to presene the equality of their
supports.

59

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

In the following sections,we will omit the index on the operation f g, and
simply write f g, just aswe do in the caseof explicit substitutions on expressions.
Which of the two substitutions is intended will always be clear from the context.

Example 12 Let X and Y be namesof type A, and let e1, e, be expressionssuch
that e; : A, e2: A! A. Considerthe phrasef de ned as

f=letdiay=da [X! gi;X]in [X! e((X);Y! yiY]
The phrasef is well-typed, with f x.y A. The -reduction of f is computed as

X1 eg((X=y][X ! e (X);Y I yi;Y])
fX 1 eglX ! e (X):Y! Xi;Y]
(X! &) (X! e(X)Y! X)Y]
[X ! e(e);Y! ei;Y]

Principle (Phrase substitution)

If ; ~ f1 ¢, A[D], then the following holds:
1.if ; xtA~ e:B[C4], then ; =~ Wf;=xiie ¢, B[D].
2.if ; xtA~ f ¢, B[Cq],then ; ° Hf;=xiif ¢, B[D].

2.2.2 Name-space management

In Section2.1.6, we decoratedthe judgments with the additional hame context , in
order to establisha discipline for dynamic intro duction of namesinto derivation. For

example, the partial truth judgment ; ; ° A true[C] wasde ned to hold if and
only if: (1) the namesappearingin , , A and C are all listed with their typesin
, and (2) there existsanamecontext %= (; 1), andaproofof ; = A true[C]

which usesonly the namesfrom °©

As a conseguenceof this semarics, it follows that a proof for the judgment
; ;A true[C] shouldin fact consistof a namecontext 1 and an expressione
such that (; ;) is a well-formed name context, and e is a proof of of the judgment

; A true[C], under the restriction that e only usesnamesin (; 1). The
proof-annotated version of this judgment hasthe form

. 1relA[C]

and it holds if and only if e is an expressionsud that fn(e) dom(; 1) and
X “e:A[Cl,and , , 1, A and C are well-formed with respectto . In the
senseof this de nition, it may be said that ; declaresthe namesthat are local to
the expressione.

The de nition of the annotated judgment obviously motivates the following ver-
sions of the structural properties from the previous section.

60

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

1. Name localization. Let X be a namethat doesnot appearin , , B andC.
Then(;X:A);; =~ g1 e:BJ[C]ifandonlyif ; ; ~ (X:A; 1):e:B]JC].
2. Renaming. If (;X:A; 9;: ° 1:e:B][C], andthe nameY is fresh,i.e. it

doesnot appear anywhere in the above judgment, then

(SY:ATY=XT 9iLY=X]; [Y=X] ° ([Y=X] 1):[Y=X]e: ([Y=X]B) [[Y=X]C]

3. Weakening. If ; ; * 1:e:BJ[C],and X 6dom(i), then(;X:A); ;
1:e:B[C].

Sincethe namesappearingin the judgment are now declaredin the nameconext,
we rephrasethe rules to take this into accourt. In particular, instead of having the

rule
typeof(X) = A

;. X A[C;X]
we can now intro duce the following formulation.
X:A2
;0 1 X TAICX]

The other rules should be appropriately changedas well. For example, the old rule
for application substituted with

Co T o1eAl BIC] Co i z:ez:A[C]'
.. 0 1 2ee:BI[C] '

Here we assumethe disjointnessof 1 and 5, which is justied by the renaming
principle. The rest of the inferencerules are updated following the samepattern.

In the caseof introduction and elimination rules for the type A 9 B, we needto
introduce new proof terms X :A: e and choose e, as follows.

(;X:A);; © 1e:B[C] ,, © 1:e:A9 BIC]
;5 1 (X:Are:A9 B[C] ; 7~ 1:choosee:B][C]

In the introduction rule it isassumedhat X isafreshname,that is, X 62dom(; 1).
The exactidentity of X is not important { asensuredby the renaming principle, any
unusedname X sud that astypeof(X) = A may be chosen. This obsenation justi es
the proof term X :A: e which actually bindsthe name X and allows -renaming X
into other unused names.

The local soundnessof the new rules is establishedby the following local reduc-
tion, which we presert in a form of a derivation tree.

(;X:A);,; =~ 1e:BJ[C]
;0 1 (X:Are):A9 B[C] =) g
, ; 1:choose X:A:e:B][C]

.5 (1nX:A)e:BIC]

or in a more compact form, using proof terms:

1:choose X:A:e =) r (1;X:A)e X fresh

61

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

The local reduction is justied by the strengthening principle. Indeed, if i: eis

a witness for (; X:A); ; * B true[C], then ; " e: BJ[C], and X does not
appearin , , B or C. By de nition, this is sucient to ensurethat (1;X:A): e
is a withessfor ; ; * B true[C] aswell.

Local completenesss establishedby local elimination as follows.
Do T 1:e:A9 B[C]
Do * 1:choosee:B[C]
(;X:A);; ° 1:choosee:B]|C]
7 7 1:(X:Archoosee):A9 B[C]

;5 1:e:A9 BIC] =) e

or in a short form:
1.e =) E 1. X:A:choose e

The expanded derivation is justied by the weakening principle and name local-

ization, which allows us to conclude (;X:A); ; " (1;X:A): choosee: B[C]
out of ; ; * 1. choose e : B [C], under the assumption that Y is fresh, i.e.
X 6dom(; q).

Obsene that the namesappearing in the expressione such that ; =~ e: A[C]

can always be recovered by simply inspecting e. Strictly speaking, therefore, it is
not really necessarythat the rules of our judgments explicitly carry the secondname
context 1. We can always keep 1 implicit, and only rely on to declare which
namescan be usedin a well-formed judgment. Thus, we abbreviate the notation,
and instead of

., 1elA[C]

simply write
(5 1:: " erA[C]

The introduction and elimination rules for A 9 B now have the following form.
(;X:A);; " e:BJC] ;. ~e:A9 B[C]
;. X:Are:A9 BI[C] ; ; choosee:B]J[C]

It is important, howewer, to rememnber that this is just an abbreviation for the
old judgment. The name cortext © while made implicit, remains explicit in the
local reduction, and will therefore have a computational import. Once we ascribe
operational semartics to the -calculus, °will serve asa run-time cortext that lists
the currently generatednames. It will be usedto determine which namesare fresh
and can therefore be intro duced next time a fresh name is needed.

On a related note, the local reduction assaiated with the type constructor 9
will itself have a computational meaning{ that of introducing a fresh nameinto the
computation. In the usual formulation of calculi for fresh name generation [PS93,
PG00, Ode94], this operation is not related to a -reduction, but is formulated
by a separatelanguageconstruct. In this respect, our formulation is closerto the

-calculus, where computational cortent is always resened for -reduction.

Just asit is customary in -calculusto abbreviate the expression(x: e») (e1),

with let val x = e; in e, we can intro duce a similar abbreviation in caseof choose

62

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

and . For example,we de ne a new expressionconstructor let name X:A in eto
stand for

(let name X:Ain €0 = choose(X:A: g€
The typing rule for let name is appropriately derived as
(;X:A);; " e:B[C]
; ; let name X:Ain e:B[C]

A similar constructor is introduced in the syntactic category of phrases,with the
following typing rule.

(;X:A);; ~f ¢ BI[D]
Do “let name X:Ainf ¢ BI[D]

In both of theserules, it is assumedthat X is a fresh name,i.e. that X 62dom().

2.2.3 Summary and structural prop erties
Syntax

The syntax of the modal -calculusis summarizedin the table belon. We assume
a countable universe of names, and use X, Y and variants to range over names.
Similarly, we have a courtable set of ordinary variables (ranged over by x, vy, z), and
a courtable set of modal variables (ranged over by u, v, w). We alsouseP to range
over basetypesof the logic.

Supprts C;D = jGCX
Types A;B = PjA! BjA9 Bj cAj3cA
Explicit substitutions = X1 oe
Expressions e = Xjxjhiujx:Aejere
jbox ejlet box u= ey in e
j X:A:ejchoosee
j dia f
Phrases f = ej[;€¢ljlet cdia x = e1in &
jlet dia x =ein f jlet box u=ein f
Ordinary contexts = j ;XA
Modal contexts =] uzA[C]
Name context =] ;XA

Typ e system

The type systemconsistsof two groups of judgments. The rst group establishesthe

well-formednessof name cortexts = ok, supports ° C supp, types = A type
aswell asmodal contexts ~ ok and ordinary variable cortexts ~ ok.

The secondgroup consists of the typing judgments for substitutions ; ;
h i:[C]) [D], expressions; ; ~ e:A[C],andphrases; ; ~f ¢ A[D]

63

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

De nition of " ok.

ok =~ ok T Atype X 62dom()
T (;X:A) ok
De nition of ~ C supp.
* C supp X 2 dom()

supp * C; X supp

De nition of ~ A type
T A type " B type T A type " B type
" P type Al B type A B type
T A type * C supp T A type * C supp
cA type " 3cAtype

We alsorequire formation judgments for variable contexts and . Thesejudg-
merts are de ned in a straightforward way.

De nition of = ok
ok ook * A type x 62dom()
T (;x:A) ok
De nition of ~ ok
ok ook T A type * C supp u62dom()
T (;usA[C) ok

Next we proceedwith the de nition of the typing judgments for substitutions
Do “hi:[C]) [D], for expressions; ; " e : A[C], and for phrases
Vo “f ¢ A[D]. We implicitly assumethat all types, supports and corntexts
and well-formed.

Denition of ; ; "~ h i:[C]) [D].
cC D ;s ~e:A[D] ; ; " hi:[CnX]) [D] X:A2
*hi:[C]) [D] ;X 1oe i:[C]) [D]

64

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

Denition of ; ; ~ e:A][C].

X:A 2
X AX;C] s (xtA) T x D AC]

; (suzA[C]; T hii:[C]) [D]
; (;uzA[CD); C hiu:A[D]

;5 (ix:A) " e:BIC] ;s T e:Al B[C] ;s e rAlC]
* x:Are:A! BIC] ;. e e:BJ[C]
T e:A[D] ;7 T e: pAlC] ; (suzAD]); " e :BIC]
“box e: pAJC] ;3 let box u=e;in e :B]C]
(;X:A);; "~ e:BJ[C] ;. T e:A BJC]
X:Are:A BJ[C] ;7 choose e:B|[C]
Denition of ; ; ~f ¢ A[D].
T erA[C] ;5 hi:[C]) [D] , . erA[C]
e A[C] ;o [,el cAD]
“f ¢ A[D]
“dia f :3cA[D]
" e1:3c¢c,A[D] ;5 XA e 1B [Cq]

" let cdia x = e in &2 ¢, B[D]

" e:3¢,A[D] ;o XXAT f ¢, B[C4]

T let dia x = einf ¢, B[D]

“e: c,AlD] ; (suzAlCh)); T f ¢, BID]

“let boxu=einf ¢, B[D]

Structural prop erties

As explained in Section 2.2.1, every explicit substitution can be uniquely extended
to a function over arbitrary expressionsand phrases. The de nition belowv formally
describesthis operation.

65

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

De nition 5 (Substitution application)
Given a substitution , the operationsf geandf gf for applying over the
expressione or a phrasef , are de ned by induction on the structure of e and f as
given below. Substitution application is capture-avoiding.

In the future text, wewill omit the subscripts and , and denoteboth operations
simply asf g. It will always be possibleto disanmbiguate betweenthem from the
corntext in which they are used.

fg X = [11(X)

f g x = X

f g (h 1iu) = h 1iu

f g (x:A e) = x:Af ge X 62fv()
f g (e1e) = f geaf ge&

f g (box &) = box e

f g (let boxu=eine) = letboxu="f geinf ge u62v()
f g (X:A e) = X:ATf geg X 62fn()
f g (choose e) = choosef ge

f g (dia fq) = diaf gfi

f g e = f ge

fg [el = [1, €]

f g letcdax=eine = letcdiax="f gein e X 62fv()
f g letdiax=-einf; = letdiax=f geyinf, X 62fv()
f g letboxu=einfy, = letboxu=1f geinf gfy u62v()

An important aspect of the above de nition is that substitution application does
not recursively descendunder box. This property is important for the soundnessof
the calculusasit presenesthe distinction betweenthe categorical and hypothetical
proofs. It is alsojusti ed, asapplying explicit substitution to the expressione is
intended to replacethe nameswhich are in the support of e, and namesappearing
under box do not contribute to the support.

The operation of substitution application dependsupon the operation of substi-
tution composition 1 2, which we de ne next.

De nition 6 (Comp osition of substitutions)
Given two substitutions 1 and ,, their composition 1 2 is the set

1 2= XL f gl 21(X)) j X 2 dom(1) [dom(2)g

It will occasionally be bene cial to represen this set as a disjoint union of two
smallersets 1 and , de ned as:

fX 1 [11(X)jX 2dom(1) ndom(»)g
fX 1 f a9l 21(X)) j X 2 dom(2)g

It is important to notice that, though the de nitions of substitution applica-
tion and substitution composition are mutually recursive, both operations are well
founded. Substitution application is de ned inductiv ely over the structure of its ar-
gumert, sothe size of terms on which it operatesis always decreasing. Computing

1 2 only requiresapplying 1 to subtermsin .

1

2

66

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

Lemma 7
Let 1; 2; 3 beexplicit substitutions. Then the following holds:

1.f 19(f 208) =f 1 20 for every expressione
2. f 19(f 20f)=1 1 o0f, for every phrasef
3. 1 (2 3)=(1 2) 3, for every explicit substitution 3.

Pro of: By simultaneousinduction on the structure of e, f and 3. We presert the
characteristic cases.

casee= h iu. By denition, f 1g(f 208) = h 1 (2) iu. By secondinduc-
tion hypothesis,this is equalto i 1) iu=f 1 »ge

casef = [%el. Thenf 19(f 20f) = f 190 2 Cel=[1 (2 9=
f 1 20f.

case 3= (X 7! e; 9. Let Z be an arbitrary name.

If z = X,thenf 19 2 3](Z)) = f 19(f 2ge). By rst induction hy-
pothesis,this isequalto f 1 ,ge=f 1 0 31(2)).

If Z6 X,thenf g » 3](Z)=1f 9] » 9(2), but it isalsof 1
59 31(Z)=f 1 29[9(Z). By secondinduction hypothesis, 1 (2
9= (1 2 CGandthereforef 1g[2 q42Z)=f 1 200 92Z).

Therefore,f 19 2 sJ(2) =1 1 29[3](2), thus concluding the proof.

We will frequertly blur the distinction betweena substitution , and its corre-
sponding function []], and write (X) instead of []](X), or f g(X). Represen-

tations of substitutions that dier only in the ordering of the assignmen pairs are
consideredto de ne equal substitutions.

Theorem 8 (Structural prop erties)

The following are the structural properties of the judgment ; ; T e A[CL
Similar propertiesholdfor ; ; ~ h i:[C]) [D]l]and ; ; ~f ¢ A[D], but
we omit thesefor simplicity.

1. Context weakening Let 0 Oand o1 ; : e:A[C], then
0 8 0" e:A[C]
2. Contraction on variables
@ if ; ; (;x:A;jy:A)" e A[C], then ; ; (;w:A) ° [w=x;w=y]e: A[C]
(b) if ; (;uczA[Cq];viA[C4]); ~ e:A[C], then
i (swEA[CL)); T [w=uyw=v]e: ACL
3. RenamingIf (;X:A; 1);; " e: B [C], and the name Y :A is fresh, then

(SY:ATY=XT)i [Y=X]; [Y=X] ° [y=X]e: ([Y=X]B) [[Y=X]C]

67

2.2. MODAL -CALCULUS CHAPTER 2. PARTIAL MODAL LOGIC

Pro of: By straightforward induction on the structure of the derivations.

Theorem 9 (Supp ort weakening)
Support weakening is covariant on the right-hand side and cortravariant on the left-
hand side of the judgments. More formally, let C D dom() be well-formed
supports. Then the following holds:

1.if ; ; " e:AJC], then ; ; T e:A[D]

2.if ; ;7 T hi:[Ci) [Cl,then ; ; ~hi:[Ci) [D]

3.if " f ¢, A[C], then ; ; " f ¢, A[D]

4.if ; (;uzA[D]; T e:B[Cy],then ; (;u:A[C]); ~ e:B[C4]

5.if ; 5 “hi:[D]) [Ci,then ; ; "~ hi:[C]) [C4]

6.if ; (;uzA[D]); "~ f ¢, B[Cy] then ; (;uzA[C]); ~f ¢, B[C2]

Pro of: The rst three statemeris are proved by simultaneous induction on the
structure of their derivations. The last three statemerts are also proved by simulta-
neousinduction on the structure of their respective derivations, but are independert
of the rst three.

Theorem 10 (Explicit substitution principle)

Let ; ; "~ hi:[C]) [D]. Then the following holds:
1.if ; ; "~ e:A[C]then ; ; ~f ge:A[D]
2.if ; ;7 “h8:[Cq) [Cl,then; ; " h §:[C1) [D]
3.if; ; ~f ¢ A[Clthen ; ; ~f dof ¢, A[D]

Pro of: By simultaneous induction on the structure of the derivations. Proving
the rst and the third statemert is easy For the secondinduction hypothesis, let
= O Wesplit into two disjoint sets:

X1 (X)jX 2dom() ndom(9g
fX 1 f g({X))jX 2 dom(9g

NO RO

Let X:A. It suces to show that
(@) if X 62dom() and X 2 Cq,then X 2 D
() if X! e2, then; ; "~ e:A[D]

To establish (a), obsene that X 62dom() implies X 62dom() and X 62
dom(9, by de nition. If X 62dom(9 and X 2 Cq, then X 2 C by the typing of
O If X 62ddom() and X 2 C, then X 2 D, by the typing of .
To establish (b), we need to considertwo cases: (1) X ! e 2 2 and (2)
X1 e2 9. Incase), by the typing of , weimmediately have ; ; e:A[D].
In case(2), there exists aterm e®such that X | €2 O%ande= f ge By the

68

CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL -CALCULUS

typing of % wehave ; ; ~ €%: A[C]. Becausee'is a subterm of © we canapply
the rst induction hypothesisto obtain ; ; ~ f ge®: A[D]. This concludesthe
proof, sincee= f ge°

The following theorem is a version of the substitution principle for truth, deco-
rated with explicit proof terms in the judgments.

Theorem 11 (V alue substitution principle)

Let ; ; ~ e :A][C]. Then the following holds:
1.if ; ; (;x:A) e :BJ[C],then ; ; ~ [e1=X]ex: B [C]
2.0f 5 5 (;xtA) hi:[Cq]) [C]l,then ; ; = He;=x] i:[Cq]) [C]
3.if; 5 (;xtA) " f ¢, B[C], then ; ; =~ [e;=x]f ¢, B[C]

Pro of: By simultaneousinduction onthe rst derivation in ead of the three state-
merts.

De nition 12 (Mo dal substitution)
Given an expressione and a modal variable u, we de ne the operations [e=l] ,
[e=u] and [e=4] of capture-avoiding substitutions of e for u in expressionsgexplicit
substitutions and phrases, respectively. The operations are de ned in a mutually
recursive way, as presenied belon. Note that in the rst clauseof the de nition,
substituting e for uin h iuis de ned to actually carry out the explicit substitution.
In the future text, we will omit the indexesand denote all the operations simply
as[e=d]. The operations could always be disambiguated from the cortext in which
they are used.

[e=u h iu = fle=d ge

[e=d h iv = He=d iv u v
[e=u] x = X

[e=u] X = X

[e=u x:A:e = x:A:[e=U e1 X 62fv(e)
[e=d e e = [e=d e [e=U &

[e=u box e = box [e=U

[e=u] let boxv=egine = let boxv=[e=Ue in [e=u e Vv 62fv(e)
[e=dl XA e = X:A:[e=d e X 62fn(e)
[e=u] choose e; = choose ([e=U] &)

[e=d] dia f = dia ([e=J] f)

[e=d () = 0

[e=d (X! e) = (X! [e=d e;[e=d)

[e=d e = [e=d e

[e=d [;el = [[e=d ;[e=U ei]

[e=u] let cdia x = e1 in &
[e=u] let dia x = e; in f5
[e=u] let box v=erin f,

let cdia x = [e=U] e; in [e=u] &2 x 62fv(e)
let dia x = [e=u] e1 in [e=d] fo x 62fv(e)
let box v = [e=U e1in [e=u] fo v 62fv(e)

69

2.2. MODAL -CALCULUS

CHAPTER 2. PARTIAL MODAL LOGIC

The following theorem is a version of the substitution principle for relativized

necessiy.

Theorem 13 (Mo dal substitution
Let ; ;

1.if ; (;uzA[C]); = e :B|[D], then ;

2.if ; (;uzA[C]; T hii:[Cq])

3.if ; (;uzA[C]; Cf

[D], then ; ;

c, B[D], then ; ;

principle)
" e, : A[C]. Then the following holds:

, [ex=ule: : B [D]
" He=u] i:[Cq]) [D]

" [er=ulf ¢, B[D]

Pro of: By simultaneous induction on the two derivations.

De nition 14 (Phrase substitution)

The operations hf ;=xii e and i ;=xii f of substituting the phrasef ; into an expression
e or another phrasef, are de ned by induction on the structure of f asfollows.

e, =xii e

M ;e]=xiie

et cdia y = e; in ex=xiie
et dia y = e in fo=xiie
et box u = e; in fy=xiie

tne, =xii f

i ;e]=xiif

et cdia y = e; in ex=xiif
et dia y = ey in fo=xiif
et box u = e in fo=xiif

[e1=x]e

[;([e1=x]e)]

let cdia y = e; in [ex=X]e
let dia y = e in Hf,=xiie
let box u = e; in Wfy=xiie

[er=x]f

fo(ler=x]f)

let dia y = e in [ex=X]f
let dia y = e in Hf o=xiif
let box u = e; in Wf y=xiif

Obsenein the caseof et cdia y = e; in ex=xiif that the elimination form changes
from let cdia in the argumert of the substitution, to let dia in the result.

The following theorem establishesthat our calculusindeed satis es the substitu-
tion principle for possibility from Section2.2.1.

Theorem 15 (Phrase substitution principle)

If ; " f1 ¢, A[D], then the following holds:
1.if ; ; xtA" e:B[Cq],then ; ; ~ Ifi=xiie ¢, B[D].
2.if ; ; xtA™ f ¢, B[C4], then ; W =xiif ¢, B[D].

Pro of: By straightforward induction on the structure of f;. We just preser a
selectedcasewhenf, = let cdia y = e; in &. In this case,by assumption ; ;

e;:3c,A1[D],and ; ; y:A1 T e A[Cq]

To establishthe rst statemert, recall that ; ; x:A " e:B[Ci]. Then by the
value substitution principle, ; ; y:A; [ex=x]e : B [C1]. According to the typing

CHAPTER 2. PARTIAL MODAL LOGIC 2.3. NOTES

rule for let cdia, ; ; = let cdia y= e;in [e;=x]e ¢, B [D], which wasrequired
to prove.

The proof of the secondstatemert is similar. By assumption, ; ; x:A "~ f ¢,
B [C4], and by the value substitution principle, ; ; y:A;1 " [ex=X]f ¢, B[Ci]. The

conclusionnow follows by the typing rule for let dia.

2.3 Notes

Related and future work on names

The work that explicitly motivated the developmernis presered in this dissertation
is described in the seriesof papers on Nominal Logic and FreshML [GP02, PGOOQ,
Pit01, Gab00Q, SPGO03]. The namesof Nominal Logic are introduced as the urele-
ments of Fraenkel-Mostowski set theory. FreshML is a languagefor manipulation of
object syntax with binding structure basedon this model. Its primitiv e notion is
that of swapping of two nameswhich is then usedto de ne the operations of name
abstraction (producing an -equivalenceclasswith respect to the abstracted name)
and name concretion (providing a speci ¢ represenativ e of an -equivalenceclass).

In FreshML, the name X isin a support of the expressione if the denotation of e
changeswhen X is permuted with someother name. In the early versionsof FreshML
(now called FreshML 2000),the type systemkeepstrack and infers the complemern of
the expression'ssupport. In most cases,this not-in-the-support relation comnutes
with the expressionconstructors. Thus, the above semariic de nition of support
can informally be approximated by the following syntactic criterion: if X is a name
appearing in the expressione, then the support of e will contain X, unlessX occurs
in deadcode or is otherwise abstracted using the construct for name abstraction. An
exceptional caseappearsin the treatment of functional abstractions: a name X is
not in the support of the function eif it is not in the support of any free variable of e.
In FreshML 2000,namesare introduced into the computation by new X in e which
is roughly equivalent to our let name X in e The typing rule for new X in e
requires that X does not appear in the support of e. This way, the type system
prevents unabstracted namesfrom escapingthe scope of their introducing new.

Keeping track of supports in the type system signi cantly simplies FreshML
2000when comparedto someprevious calculi that use names. For example, the cal-
culus of Pitts and Stark [PS93 studies the interaction betweennames(here treated
as ML referencesof unit type), but unlike FreshML 2000, it does not track sup-
ports of expressions,and doesnot insist that X is absent from the support of e in
new X in e As a consequencethe resulting languageis e ectful, and has a very
involved equational theory. In the current versionsof FreshML, supports are elimi-
nated from the type systemfor practical reasons,and hencethe impurities described
by Pitts and Stark are again allowed (albeit, the notion of support is still important
in the metatheory of FreshML). In the modal -calculus, rather than eliminating sup-
ports from the type system,we will considerpolymorphic abstractions over supports,
as described in Section 3.3.

The -calculus of [Ode94 introduces a somewhat di erent idea for treating
names,characterized by reductions that pushthe namedeclaration inside other term

71

2.3. NOTES CHAPTER 2. PARTIAL MODAL LOGIC

constructors. A typical reduction rule in would be paraphrasedin the notation
of as
let name X in (x: € 7! x: let name X in e

Just like the calculus of Pitts and Stark, does not keep track of which names
appear in the terms. As a consequenceijt doesnot possesshe usual progressand
presenation properties, as well-typed expressionsin may get stuck. A typical
exampleis the expression X: X, which doesnot denote any value.

All thesecited name calculi are designedwith the goal of providing the operation
of equality on names. In contrast to this goal, our modal -calculus usesnames
primarily asa way of describing supports, i.e. asa way of specifying the partialit y of
expressions.In fact, namesin the modal -calculus are second-clasobjects { they
cannot be passedasargumerts to other functions, and may not be tested for equality
directly.

The reasonfor second-classiameshasto do with the fact that namesin the modal

-calculus may be ascribed an arbitrary type; a dynamic introduction of a name of
type A into a computation serwes as a dynamic extension of the type A. Sud an
extension may render partial the previously de ned functions with domain A. We
discussthis issuein more detail in Section 3.2.3, where we de ne an operational
semariics for the modal -calculus.

This is not to say that hamescannot be tested for equality indirectly. As will be
explainedin Section 3, expressionsof the type ¢A may beinterpreted as syntactic
expressionwith free variables listed in the set C. In Section 3.4, we exploit this
feature, and make someinitial stepstoward extending the -calculus with pattern-
matching against syntactic expressions.Sincethe syntactic expressionsmay corntain
names,this will provide an indirect way to test for name equality.

Of course,other ways to extend the -calculus with rst-class hamesand name
equality may be possible. For example, it may be interesting to de ne a new type
constructor

N :Type! Type;

so that N (A) classies all the namesof type A. The question then becomeshow
namesinteract with the modal operators. Of course,it is likely that all the di culties

from the name calculi with rst-class names(like the -calculus of [PS93]) will still
be presen. We leave this researt direction asan important future work.

Even when dealing with second-classnames, it seemspossible that other ap-
proachesmay be employed for dynamic namemanagememn For example,the variable
declaration u::A [C] may be viewed as binding the nameslisted in C, sothat these
nameshave scope local to the explicit substitutions assaiated to u. This idea has
beenemployed in [NPP0O3] to de ne a dependertly typed calculus for represering
metavariables in logical frameworks.

Ancona and Moggi in their recert work [AM04], motivated by the -calculusalso
useindexed modal typesto encapsulatenameful expressions.This systemsemploys
resolversto specify the rebinding of names. Resolers are similar to our explicit
substitutions, exceptthat resoler variables are also admitted, and box is a binder
for resoler variables. Names are generatedby a separate monadic construct, but
are not ascribed with a type at generationtime. Rather, namesare more similar to
labelsin record calculi, as each name can be usedwith many di erent types.

72

CHAPTER 2. PARTIAL MODAL LOGIC 2.3. NOTES

In this dissertation, we deliberately separate name generation from other lan-
guageconstructs, and give namesglobal semariic identity. In other words, a name
appearing in support of a type is not local to that type, but may appear in other
typesand expressionsaswell. This will help avoid excessie renaming and rebinding.
Moreover, in Chapter 4, we will consider e ectful computations where names cor-
respond to particular memory locations and exceptions. In practice today memory
locations and exceptionspossesglobal identity in the above sense,so our approad
will faithfully capture this aspect of e ects.

Related and future work on contexts and partialit y in modal logic

Since the most important semaric model of modal logic considerstruth of propo-
sitions relative to various worlds, it should not be a surprise that modal logic and
partialit y are so closelyrelated. This is especially true of the rst-order modal logics
with equality (and also of higher-order modal logics), where the researt questions
of interest are typically concernedwith reasoningwith and about individuals that
{ in an appropriate sense{ do not really exist. Derivations produced in this way
are partial in the existenceat the given world of the individuals in question. The
namesfrom the modal -calculussene to specify the partialit y condition, and thus
may be seenas a simpli cation (appropriate for the propositional partial CS4 that
we investigate) of the more general concept of an individual. In this sense,names
resenble the non-rigid designatorsconsideredby Fitting and Mendelsohnin [FM99],
namesof Kripk e [Kri80], and the virtual individuals of Scott [Sco7(, but alsotouch
on the issuesof existenceand identity exploredin [Sco79.

Frequertly, modal reasoningis only valid under a certain set of hypotheses,i.e.
a context. A context need not include only the existence of individuals, but may
contain more generalpropositions. The study of contexts as rst-class logical object
has beeninitiated by McCarthy [McC93], and we also list the work of Attardi and
Simi [AS95 asa cortinuation of this line of researti. Most of the work on formalizing
contexts has beencarried out in a classicalsetting, but there are also e orts related
to intuitionistic logic, like the recert work of de Paiva [dP03].

It may be particularly corveniert to addressthe mertioned distinction between
the partialit y in individuals and the partialit y in propositions within the framework
of a modal type theory. As an illustration { and a rather far-fetched one, currently
{ considerthe following example.

Let X : real be an indeterminate number, for which we assumethat X2 = 1.
Sudh a real number clearly does not exist, and we may easily derive falsehad by
instantiating with X the universalquanti cation 8x:real: x2 0. However, asargued

by Scott in [Sco79, it may still be useful to usethe fact that X2 = 1 in order to
derive X3 = X or X4+ X2 = 0, without stipulating that these equalities are
inconsisten.

If we had a modal theory with names, then perhaps the described equations
may be obtained by using the following two names: the name X : real to stand for
the indeterminate number, and the name P : Proof(X 2 = 1) to stand for a non-
existert proof that X2 = 1. It isimportant that X and P are names,rather than
ordinary variable. Variablesonly stand for individuals and proofs of appropriate type
that exist, while namesmay remain partial. Using X, P and the usual arithmetic

73

2.3. NOTES CHAPTER 2. PARTIAL MODAL LOGIC

properties of real numbers, we can then easily produce a proof Q sothat
Q:Proof(X3= X)[X;P]

As expected, this proof would be partial in X and P, and could be turned into a
total proof only if withessesfor X and P are exhibited. This partial derivation will
actually not be inconsistert, as the proposition 8x:real: x2 0 may not be usedto
derive contradiction. In this proposition, the universalquarti cation is over existing
real numbers. BecauseX is a name of type real, it doesnot stand for any elemen
of type real, and thus it cannot be usedto instantiate the universal quarti er.

74

Chapter 3

Staged computation and
metaprogramming

3.1 Intro duction

Staging is a programming technique for explicitly dividing a computation in order
to exploit early availability of someargumerts [Ers77, GJ95, DP01]. For example,
consider ltering a set of points to seeon which side of a line de ned by two points
they lie. This is a typical test usedin many corvex hull algorithms. The test can
be stagedby rst forming the line and its normal, and then cheding the position of
ead point from the set. Such a stagedtest obviates the needto repeat the part of
the computation pertinent to the normal whenewer a new point is tested, and can
potentially save a lot of work.

Becauseit is often quite cumbersometo design programs that fully exploit the
natural stage separation of their argumerts, it is very desirable for a programming
languageto provide support for early detection and reporting of staging errors. As
anillustration, let uslook at the exponertiation function, preserned below in ML-lik e
notation.

fun expl (n : int) (x : int) : int =
if n=0then 1 else x * expl (n-1) X
The function expl : int -> int -> int is written in curried form sothat it can
be applied when only a part of its input is known. For example,if an actual param-
eter for n is available, expl(n) returns a function for computing the n-th power of
its argumert. From the computational standpoint, howewer, in most compilers the
outcome of this partial instantiation will be a closure waiting to receive an actual
parameter for x beforeit proceedswith evaluation. Thus, one can argue that the
following reformulation of expl is preferable.

fun exp2 (n : int) : int ->int =
if n=0then xintl
else
let val u=-exp2 (n - 1)
in

xint. x * u(x)
end

75

3.1. INTR ODUCTION CHAPTER 3. METAPROGRAMMING

Indeed, whenonly n is provided, but not x, the expressionexp2(n) performscompu-
tation stepsbasedon the value of n to producea function specializedfor computing
the n-th power of its argumert. In particular, the resulting function will not perform
any operations or take decisionsat run time basedon the value of n; in fact, it does
not even depend on n { all the computation stepsdependert on n have beentaken
during the specialization.

A usefulintuition for understanding the programming idiom of the above exam-
ple, is to view exp2 as a code geneator; once supplied with n, it geneates at run
time a specialized function for computing n-th powers. This immediately suggests
a strati cation of expressionsinto two stages. Object stage (or the stage of gener-
ated expressions)consists of expressionsthat are to be viewed as data { they are
result of the processof code generation. In the exp2 function, suc expressionsare
(xint.l) and(x:int. x * u(x)) . Meta stage(or run-time stage)consistsof ex-
pressionsthat are executable i.e. they describe computational stepsto be performed
at run time. This is why the above-illustrated programming style is referred to as
stagel computation.

We further postulate that there exists an inclusion from the object stage into
the meta stage. In other words, code generatedat the object stage as data, may be
coercedinto the meta stage,and executed. The opposite inclusion, however, doesnot
exist, and in particular, we prohibit that meta-level variables appear in object-level
expressions. For example, in the function exp2, the variable n is absen from the
expressions(x:int.1) and (x:int. x * u(x)) . This restriction guaranteesthat
none of the computation steps dependert on n are postponed beyond the time at
which n is specializedto a particular integer value.

As it has been noticed in the previous work [PD01, WLP98, WLPD98], the
fragment of the constructive modal logic S4 cortaining the operator (Chapter 1),
and the assaiated proof-term calculus (called -calculus) are naturally suited to
capture many aspectsof program staging. We recall the syntax of below, and the
relevant typing rules are preseried in Figure 3.1.

Types A;B = PjJA!l Bj A
Expressions e = Xjujx:Aejere]

box ejlet box u= e;in e
Ordinary contexts =] XA
Modal contexts D= GuzA

The main obsenation relating stagedcomputation to modal logic is already illus-
trated by our analysis of the exp2 function. Since generatedcode does not depend
on meta-lewel variables, the object expressionsare either closel, or are computed by
substitution out of other object (and therefore closed)expressions.This operational
property of the object stage exactly matchesthe notion of categorical proof in modal
logic. As de ned in Chapter 1.1.3, a categorical proof is closedwith respect to value
variables, but it may depend on modal variables (which stand for other categorical
proofs).

Following the analogy betweenobject expressionsand categorical proofs, we can
use the type A to classify geneated code of type A. Under this computational
interpretation of the calculus, the introduction form box e seresto coercethe
closal expressione into the object stage. The elimination form let box u = e in &

76

CHAPTER 3. METAPROGRAMMING 3.1. INTRODUCTION

(O xtA) T XA (;uzA); u:A
; (;xtA) e:B ;. e Al B ;e A
O x:Are:A! B . T ee:B
o erA ;e A (;uzA); " e:B
: “boxe: A : “let boxu=¢ein &:B

Figure 3.1: Typing rules for

allows code to be generatedby meansof substitution: a code generatedby e; can
be substituted for u in e,. This way, the -calculus makesthe distinction between
stagesexplicit. The programmer can specify the intended staging using the term
constructors box and let box. Then the type system can chedk whether the writ-
ten program conformsto the staging speci cations, turning staging errors into type
errors.

Of course,in order to usethe -calculus for programming, we needto extend
it with some primitiv e types and recursion. In our exampleswe will assumethe
standard ML-lik e syntax and semartics for natural numbers, integers, booleansand
conditionals, recursive functions and pairs. Addition of these featuresto the -
calculus doesnot presen any theoretical problems.

Figure 3.2 preseris the small-step operational semartics of . We have decided
on a call-by-value strategy which, in addition, prohibits reductionsunderbox. Thus,
if an expressionis boxed, its evaluation will be suspended. Values of modal types
are thus boxed closal expressionsencading object-level programs.

We can now usethe type system of to make explicit the staging of exp2.

fun exp3 (n : int) : (int->int) =
if n =0 then box (x:int. 1)
else
let box u =exp3 (n - 1)
in

box (x:int. x * u(x))
end

Application of exp3 at argument 2 generatesa function for squaring.

- sgbox = exp3 2;
val sgbox = box (xint. x *
(yint. y*
(zint. 1) y) x) : (int -> int)

In the elimination form let box u = e; in &, the bound variable u belongsto the
context of modal variables, but it can be usedin e, in both modal positions (i.e.,

77

3.2. -CALCULUS CHAPTER 3. METAPROGRAMMING

under a box) and meta positions. Thusthe calculusis not only capableof composing
generated programs, but can also explicitly force their evaluation. For example we
can usethe generatedfunction sgbox in the following way.

- sg = (let box u = sghox in u);
val sq =[fn] : int -> int
3.

val it =9 : int

This example demonstrateshow closed object expressionscan be re ected, i.e.
coercedfrom the object level into the meta level. The opposite coercion, referred to
asrei c ation, is not possible. This suggeststhat could be given even a more spe-
ci ¢ model in which re ection naturally exists, but rei cation doesnot. A possible
interpretation exhibiting this behavior considersobject-level expressionsas gener-
ated source code, i.e. actual closedsyntactic expressions,or abstract syntax trees of
closed -terms. In cortrast, the meta-level expressionsare compiled executables.
The operation of re ection correspondsto the natural processof compiling a source
program into an executable. The opposite operation of reconstructing source code
out of its compiled equivalert is not usually feasible,so this interpretation doesnot
support rei cation, just as required. Furthermore, the typing of ensuresthat
only well-typed syntactic expressionscan be represered in the calculus. This prop-
erty makesthe approad to syntax represenation reminiscert of the well-known
methodology of higher-order abstract syntax [PE8S].

The aboveintuitiv e\syntactic" model makesthe -calculusvery appropriate not
only for staged computation, but also for metaprogramming. In metaprogramming,
expressionsare again stratied into stages, but this time the syntactic structure
of object expressionsmay be inspected and analyzal. In metaprogramming, object
expressionsrepresern sourcecode which can be comparedfor syntactic equality and
even pattern-matched against.

In the rest of this chapter, we will frequertly rely on the described syntactic
nature of object expressionsin order to supply the intuition behind formal dewel-
opmerts. Howewer, whether a practical implementation actually needsto represert
object expressionas syntax, will depend on the application. In staged computation,
for example, we are usually not interested in inspecting the structure of generated
programs, so the generated programs may be represerted in someintermediate, or
even fully compiled form. At this point, we do not commit to any particular imple-
mentation strategy, but instead focus on the logical properties of the type system.

3.2 The -calculus

3.2.1 Motiv ation

If we adhereto the interpretation of categorical proofs as generated source code,
then the staging of exp3 is rather unsatisfactory. The problem is that the object
programs generatedby exp3 (e.g., sqbox), contain unnecessaryariable-for-variable
redexes,and henceare not optimal. From the standpoint of syntax manipulation,

is too restrictive. The reasonfor the de ciency lies in the requiremert that the

78

CHAPTER 3. METAPROGRAMMING 3.2. -CALCULUS

e 7! € &7
e1e7 e vie 7! vy ed (x :Aie)v7! [v=x]e
et 7! €

let box u= e in e 7! let box u= €lin e

let box u= box e;in & 7! [ei=U]e

Figure 3.2: Operational sematrtics of

syntactic object expressionsthat can represen and manipulate must always be
closal.

Furthermore, if we only have atype of closedsyntactic expressionsat our disposal,
we can't ever type the body of an object-level -abstraction in isolation from the

-binder itself { subterms of a closedterm are not necessarilyclosed themseles.
Thus, it would be impossibleto ever inspect, destruct or recurse over object-level
expressionswith binding structure.

What we needin order to avoid the problem of super uous redexes,but alsoin
order to support code inspection, is the ability to represen open expressionsand
specify substitution with capture. This needhaslong beenrecognizedin the staged
computation and metaprogramming community, and Section 3.6 discussese\eral dif-
ferent systemsand their solution of the problem. The technique predominantly used
in thesesolutions goesbadk to Davies' -calculus[Dav96]. The type constructor
of this calculus correspondsto discrete temporal logic modality for propositions true
at the subsequenh time momert. In a metaprogramming interpretation, the modal
type A stands for open object expressionof type A, where the free variables of
the object expressionare modeled by -bound variables from the subsequeh time
momert.

In this chapter, we preseri adi erent approad to the problem of spuriousredexes.
The approad is based on names and the fragmert of the modal -calculus from
Section 2.2 that corntains the operator. We call this fragment -calculus. The
idea is to employ namesto stand for the free variables of object expressions,and
correspondingly, to employ explicit hame substitutions to facilitate capture of free
variables. Intuitiv ely, the expressionsof the -calculus are obtained by adjoining
namesto the expressionfthe -calculus. The situation is somewhatanalogousto
that in polynomial algebra, where oneis given a basealgebraic structure A and a set
of indeterminates (or generators)f X 1;::: ; Xg, which are then freely adjoined to A
into a structure of polynomials A[X 1;:::; Xp]. In our setup, the indeterminates are
the names,and we build \p olynomials" over the basestructure of expressions.

When an object expressione contains a name X, we will say that e depends on
X, orthat X isin the supprt of e. For example,assumingfor a momen that X and
Y are namesof type int, and that the usual operations of addition, multiplication

79

3.2. -CALCULUS CHAPTER 3. METAPROGRAMMING

and exponertiation of integersare primitiv ein , the term
er= X3+ 3X2Y + 3X Y2+ Y3

would have type int and support setfX;Yg. The namesX and Y appearin e; at
the meta level, and indeed, notice that in order to evaluate e; to an integer, we rst
needto provide de nitions for X and Y. On the other hand, if we box the term eq,
we obtain

e = box (X3+ 3X2Y + 3X Y2+ Y?d)

which hasthe type x.yint, but its support is the empty set, as the namesX and
Y only appear at the object level (i.e., under a box). Thus, the support of a term
(in this casee;) becomespart of the type oncethe term itself is boxed. This way,
the typesmaintain the information about the support of subtermsat all stages. For
example, assumingthat our languagehas pairs, the term

e3= X% box Y?3i

would have the typeint yint with support fXg.

As illustrated by the above examples,if an object expressiondepends on some
names,then it is only partially speci ed. Such partially speci ed expressionscannot
be evaluated unlessevery namein the expression'ssupport is provided a de nition.
We use explicit substitutions for this purpose. Explicit substitutions remove substi-
tuted namesfrom the support, evertually turning non-executable expressionsinto
executableones.

Example 13 Assumingthat X andY are namesof typeint , the segmem belov
createsa \p olynomial" expressionover X and Y and then evaluatesit at the point
X =1Y =2).

- let box u = box (X3+ 3XY+ 3X¥ + Yd)
in
hX-> 1, Y-> 2i u
end

val it =27 : int

Notice how the explicit substitution hX ! 1;Y ! 2i capturesthe namesX and Y
in the expressionX 3 + 3X2Y + 3X Y2+ Y23, when this expressionis substituted for
u.

In addition to solving the problem of spurious redexesin staged computation,
the -calculus has an application in metaprogramming as well. In Section 3.4, we
will extendthe -calculuswith primitiv esfor intensional code analysisi.e. pattern
matching over syntactic structure of object expressions. It is interesting that in-
tensional code analysis crucially dependson the fact that free variables of syntactic
expressionsare represerted by names,rather than by -bound variables(asit is the
casein and other modal type systemsbasedon it). Indeed, imagine a function
f that recursesover two expressionswith binding structure to compare them for
syntactic equality modulo -corversion. Whenewer a -abstraction is encourtered in

80

CHAPTER 3. METAPROGRAMMING 3.2. -CALCULUS

both expressionsf needsto introduce a new symbol to stand for the bound variable
of that -abstraction, and then recursively proceedto compare the bodies of the
abstractions. But the construct that generatesthis new symbol should not be a type
intro duction form. If it were,then the exact number, typesand order of symbols that

f may generatewill be apparert from and xed by the type of f. As a consequence,
f could not be recursively invoked over the bodies of the abstractions, becauseof a
type mismatch.

3.2.2 Syntax and type checking

Here we recall the constructs of the -calculusthat are relevant for the -fragmen,

and discussthese constructs in terms of their computational application to staging

and metaprogramming. For the logical and type theoretic consideration, we refer

the readerto Chapter 2 and Section 2.2.3. The table below recallsthe syntax of the
-calculus.

Names XY 2 N

Supports C,D == jGCX

Types A;B = PjA! BJA9 Bj CcA

Explicit substitutions = X1 e

Expressions e = Xjxjhiujx:Aejee
jbox ejlet box u= ey in e
j X:A:ejchoosee

Ordinary contexts =] XA

Modal contexts S=] s unA[C]

Name context j i X:A

The type system of consistsof two judgments of the modal -calculus:
, 5 erA[C]

and

; 5~ hi:[C]) [D]
The rst judgment types expressions. Given an expressione it chedks whether e
has type A, and depends on the support C. The secondjudgment types explicit
substitutions. Givenasubstitution and two support setsC and D, the substitution
hasthe type[C]) [D]Iif it mapsexpressionsof support C to expressionsof support
D.

Both judgments work with three corntexts: and . The name conext
ascribestypesto names. Becauseeah type may cortain names,name conexts are
dependert. We assumethat a name declaredin may only be usedto the right
of its declaration. The corntext of modal variables ascribestypes and supports
to modal variables. Modal variables are bound to object expressionsby the term
constructor let box u = e; in e. Context of value variables ascribes typesto
ordinary variables (also called value variables). Ordinary variables are introduced
into by -abstraction, and are bound to expressionsfrom the meta stage. As
already described in the previous section, the meta-stageexpressionscorrespond to
compiled executables.The typing rulesofthe -calculusare preseried in Figure 3.3,
and we discussthem next.

81

3.2. -CALCULUS CHAPTER 3. METAPROGRAMMING

Explicit substitutions

cC D
“hit[C]) [D]

e:A[D] ;7 T~ hi:[CnfXqg]) [D] X:A 2
ThX ! e i:[C]) [D]

Hyp othesis
X:A 2
X AX;C] s (xtA) T x D AC]
; (suzA[lCD; " hi:[C]) [D]
; (;uszA[CD; T hiu:A[D]
-calculus
;5 (ixtA) T erBIC] ;5 T e:tAl B[C] ;. erA[C]
T x:Are:A!l BJ[C] i, ee:BIC]
Mo dalit y
T e:A[D] ;7 T e: pAlC] ; (suzAD]); e :BIC]
“box e: pAJC] ;3 let box u=e;in e :B]C]
Names
(;X:A);; T e:BIC] i, ~e:A BIC]
X:Are:A BJ[C] ; ; ~ choosee:B][C]

Figure 3.3: Typing rules of the -calculus.

A pervasive characteristic of the type systemis supprt weakening If the names
that an expressiondepends on are cortained in the support set C, then they are
certainly contained in any support D C. We recall here the formal statemert
of the support weakening principle for the two judgments of the -calculus. The
proof of the support weakening principle, as well as the proofs of the other formal

82

CHAPTER 3. METAPROGRAMMING 3.2. -CALCULUS

statemerts that we presen here, may be found in Section2.2.3.

Principle (Supp ort weakening)

Support weakening is covariant on the right-hand side and contravariant on the
left-hand side of the judgments. More formally, let C D dom() bewell-formed
supports. Then the following holds:

1.if ; ; " e:AJC], then ; ; T e:A[D]

2.if ; ; " hi:[C]) [Cl,then; ; ~hi:[Ci]) [D]

3.if ; (;uzA[D]); T e:BJ[Cy],then ; (;uzA[C]); ~ e:B][C4]
4.if ; ; T hi:[D]) [Ci,then ; ; ~hi:[C]) [C4]

Explicit substitutions. As explained in Chapter 2, applying the empty substi-
tution over a given term, doesnot changethe term itself { the empty substitution
corresponds to the identity function on expressions. Thus, when an empty substi-
tution is applied to a term containing namesfrom C, the resulting term obviously
corntains the samenames. The typing rule for empty substitutions formalizes this
property. We also allow weakening to an arbitrary supersetD, in order to ensure
that the support weakening principle holds. We implicitly require that both the sets
are well-formed; that is, they both contain only namesalready declaredin the name
context . The rule for non-empty substitutions recursively cheds if ead of the
componert expressionss well-typed.

The result of applying the substitution over an expressione is denotedasf ge.
Wedenoteby 1 » the composition of the substitutions ; and . Both of these
operations are formally de ned in Section2.2.3.

When an explicit substitution : [C]) [D] is applied over an expression
e : A[C], the result f ge will have support D. Consider for example the explicit
substitution = (X! 10Y ! 20), with domain dom() = fX;Yg. This sub-

stitution can be given (among others) the typings: []) [1, [X]) [], aswell as
[X;Y;Z]) [Z]. And indeed, doesmap a term of support [] into another term
with support [], a term of support [X] into a term with support [], and a term with
support [X;Y;Z] into a term with support [Z]. Thesetyping properties of explicit
substitutions are summarizedby the following explicit substitution principle.

Principle (Explicit substitution)

Let ; ; "~ hi:[C]) [D]. Then the following holds:
1.if ; ; ~e:A[C]then ; ; ~f ge:A[D]
2.if ; ; “h8:[C) [Cl,then:; : " h §:[C1]) [D]

Hyp othesis rules. Becausethere are three kinds of variable contexts, we have three
hypothesisrules. First is the rule for names. A name X can be usedprovided it has
beendeclaredin and is accounted for in the supplied support set. The implicit

83

3.2. -CALCULUS CHAPTER 3. METAPROGRAMMING

assumption is that the support set C is well-formed; that is, C dom(). The
rule for value variables is straightforward. The typing x:A can be inferred, if x:A
is declaredin . The actual support of such a term can be any support set C as
long as it is well-formed, which is implicitly assumed. Modal variables occur in a
term always pre xed with an explicit substitution. The rule for modal variables has
to ched if the modal variable is declaredin the context and if its corresponding
substitution hasthe appropriate type.

-calculus fragment. The rule for -abstraction is quite standard. Its implicit
assumption is that the argumert type A is well-formed in name context before
it is introduced into the variable context . The application rule chedks both the
function and the application argumert against the same support set. Asscciated
with the -calculusfragmert is the value substitution principle.

Principle (V alue substitution)

Let ; ; ~ er:AJ[C]. Then the following holds:
1.if ; ; (;x:A) e :BJ[C],then ; ; ~ [e1=X]e;:B][C]
2.0 5 5 (3xtA) " hi:[Cq]) [C] then ; ; ~ He=x] i:[C4]) [C]

Mo dal fragmen t. Justasin -calculus,the meaningofthe rule for -introduction
is to ensurethe staging separation between expressions. In the term box e, the
expressione belongsto the object stage, and may be treated as a syntactic ertity.
Correspondingly, the typing rule for box must typeded e againstan empty corntext
of value variables . Indeed, value variablesare bound to meta-lewel expressionsand
meta-level expressionscorrespond to compiled executables.If e is to be syntactic, it
must not depend on compiled code.

The -elimination rule is also a straightforward extension of the corresponding

rule. The only di erence is that the bound modal variable u from the corntext
now hasto be stored with its support annotation.

Asscciated with modal variables and with the modal fragment of the calculusis
the operation of modal substitution [e=u]e,, where u is a modal variable, and e is a
closa syntactic expression. The operation substitutes e for u in e,, but sothat e
is rst transformed by the explicit substitution assaiated with ead occurrence of
u in e;. For example, the following are the two most characteristic clausesin the
de nition of modal substitution.

[e=u]h iu
[e=dh iv

fle=u] ge
He=d iv ué v

Note that the rst clauseof the de nition actually appliesto explicit substitution
to e. The typing properties of this operation are formally stated in the modal

substitution principle belon. Again, the complete de nition of modal substitution

and the proof of the modal substitution principle can be found in Section2.2.3.

84

CHAPTER 3. METAPROGRAMMING 3.2. -CALCULUS

Principle (Mo dal substitution)

Let ; ° e:A][C]. Then the following holds:
1.if (;uzA[C]); " e :B[D],then ; ~ [ei=u]e;:B[D]
2.if (;uzA[C]D); "~ hi:[DY) [D],then ; ~ He=u] i:[DY9) [D]

Names fragmen t. The introduction form for namesis X:A: e with its corre-
sponding type A 9 B. It introducesa name X :A into the computation determined
by e. It is assumedthat the type A is well-formed relative to the context . The
term constructor choose is the elimination form for A 9 B. It picks a fresh name
and substitutes it for the bound name in the -abstraction. In other words, the
operational semartics of the redex choose (X:A: e) (formalized in Section 3.2.3)
proceedswith the evaluation of e in a run-time context in which a fresh name has
beenpicked for X . It is justied to do sobecauseX is bound by and, by corven-
tion, can be renamedwith a fresh name. In the -introduction rule, it is assumed
that the name X is completely new { it does not appear in the contexts of the
judgment, and in particular, it doesnot appearin the type B and support C. This
typing discipline e ectiv ely limits X to appear only in subterms of e which are not
encourtered during evaluation (i.e. dead-cale subterms), or in subterms from which
it will eventually be removed by someexplicit substitution. For example, consider
the following expression.

X:int. Y:int.
box (let box u = box X
box v = box Y
in
hX -> 1i u
end)

This expressioncontains a substituted occurrenceof X and a dead-cale occurrence
of Y, and is well-typed (of typeint 9 int 9 int). Another way to paraphrasethis
typing discipline is the following: in order to prevert the name bound in X:A: e
from escapingthe scope of its de nition, when leaving this scope we have to turn the
\p olynomials" dependingon X into functions. An illustration of this techniqueis the
program presened in Example 14. The described aspect of fresh name generationis
important becauseit ensuresthe presenation and progressproperties of (Theo-
rems 16 and 17). Indeed, if during evaluation, X is encourtered outside its de ning
, the evaluation will get stuck, becausethere are no expressionto substitute for X.
We will frequertly abbreviate the -redex

choose (X:A: e

simply as
let name X:A in e:

In fact, it will becomeapparert from the future examplesin this documert, that
the only way we actually usechoose and isin some -redexchoose (X:A: €),
and newer in isolation from ead other. Of course,all of these usesmay have been

85

3.2. -CALCULUS CHAPTER 3. METAPROGRAMMING

abbreviated into a let name construct, which raisesthe following question: why
not de ne let name as primitiv e and omit choose and ? The answer lies in the
logical considerationsfrom Section2.1.6. If let name is taken as primitiv e, then the
judgment ; ; ° A true[C] obtained by erasingthe proof term e from ; ;

e: A[C] would not be directed by the syntactic structure of the propositions A.

Example 14 To illustrate the languageconstructors, we presern a version of the
stagedexponertiation function that we canwrite in -calculus. In this and in other
exampleswe resort to concrete syntax in ML fashion, and assumethe presenceof
the basetype of integers, recursive functions and let-de nitions.

fun exp (n : int) : (int -> int) =
let nameX : int
fun exp’ (m: int) : xint =
if m= 0 then box 1
else
let box u =exp' (m- 1)
in
box (X * u)
end
box v = exp' (n)
in
box (xint. hX -> xi v)
end
- sq = exp 2;
val sq = box (xint. x * (x * 1)) : (int->int)

The function exp takesan integer n and generatesa fresh name X of integer type.
Then it calls the helper function exp' to build the expressionv = ?(_{Z_X} 1

n
of typeint and support f X g. Finally, it turns the expressionv into a function by
explicitly substituting the name X in v with a newly intro duced bound variable x,
incurring capture. Notice that the generatedresidual code for sq doesnot cortain any
unnecessaryredexes,in cortrast to the version of the program from Section 3.1.

Example 15 This examplepreseris the function conv for computing the corvolution

of two integer lists. Convolution of lists x = [xq1;::: ;Xpl andy = [y1;:::;Ynl, is the
list [Xny1;:::;X1yn]. We ignore the possibility that the two lists can be of di erent
sizes.

The function conv, which we presert in Figure 3.4, is stagedin the rst argumert,
so that given the list x, conv outputs a sourcecode specialized for computing the
convolution with x. In this example, we assumethe existenceof a function lift
int ! int , mapping ead integer n into box n. This is a reasonableassumption,
asthe basetype of integersis always consideredobsenable; in any realistic situation,
it would be possibleto coercean integer value into its own syntactic represenation.

86

CHAPTER 3. METAPROGRAMMING 3.2. -CALCULUS

* | conv' (x::xs") =
* val conv : intlist -> let val f = conv' (xs'
* (intlist -> intlist) box x' =lift x
*) in
z: qntlist.
fun conv (xs : intlist) = let box u =z
let nameTL:intlist in
¢ - - f (box (
* conv' : intlist -> qintlist let val (hd::tl) =TL
* -> (intlist -> intlist) in
*) x*hd 1 <TL-> tl>u
fun conv' (nil) = end end))
z: qntlist. end
let box u =2z
in in
box (y:intlist. conv' xs (box nil)
<TL -> y>u) end
end

Figure 3.4: Staged cornvolution.

The helper function conv' recursesover the list x to build the output code; it keeps
the un nished part of the output abstracted using the variable z: ppintlist
Specializing conv to the list [3,2] , results in the following program.

- conv [3,2];
val it = box (y:intlist.
let val (hd:tl) =y
in
2*hd :: let val (hd:tl) =t
in
3*hd :: nil
end

end) : (intlist -> intlist)

It remainsa challengeto write a program that could generateeven more concise
specializedcode, like for examplethe following fragment for corvolution with [3,2] :

box (y:intlist. let val (yl:y2:t) =y in [2*y1, 3*y2])

3.2.3 Operational semantics

We de ne the small-stepcall-by-value operational sematrtics ofthe -calculusthrough
the judgmernt

o7l 00
which relates an expressione with its one-stepreduct €. The expressionse and €°
do not cortain any free variables, but they may cortain free names. Howewer, we
require that e and e® must have empty supprt. In other words, we only considerfor

87

3.2. -CALCULUS CHAPTER 3. METAPROGRAMMING

evaluation those terms whose names appear exclusively in boxed subterms, or are
otherwise captured by someexplicit substitution. Becausefree namesare allowed
under these conditions, the operational semariics hasto keeptrack of them in the
run-time namecontexts and © The rules of the judgment are givenin Figure 3.5,
and the valuesof the languageare generatedby the grammar below.

Values v = cj x:A:ejboxej X:A:e

The rules agreewith the -reductions from Section 2.2.3, and are standard except
for two important obsenations. First of all, the -redex for the type constructor
9 extendsthe run-time context with a fresh name before proceeding. This way, we
keeptrack of namesthat have beengeneratedin the courseof evaluation, sothat we
can selecta fresh name when it is needed.

Even more important is to obsene that namesin are not values This is a
direct consequencef the fact that namesin can be ascribed an arbitrary type.
If a name X : A were a value, then introducing X into the computation extends
the type A with a new value. Sud a dynamic type extension e ectiv ely renders
the already de ned functions of domain A incomplete. Suddenly, if a function f
has domain A, then it is forced to ched at run time if its argumert is a name-free
value (in which casef canbe applied), or if its argumert is an expressioncontaining
a name X . This is where the modal constructor comesin | it classi es object
expressionswith names,sothat the above cheds can be done statically during type
cheking. Thus, while X :A is not avaluein , the expression(box X): xA is.
In that sense,the requiremert that namesare not valuesis not really a restriction
in expressieness.

The evaluation relation is sound with respect to typing, and it never gets stuck,
as the following theorems establish.

Theorem 16 (T yp e preserv ation)
If ; : >~ e:A[]and ;e7! ©e%then Oextends ,and % : °~ &% A[].

Pro of: By a straightforward induction on the structure of e using the substitution
principles.

Theorem 17 (Progress)
If ; ; ° e:A]], then either

1. eis avalue, or

2. there exist aterm e®and a context 9 such that ;e7! ©¢€0

Pro of: By a straightforward induction on the structure of e.

The progresstheorem does not indicate that the reduct €® and the corntext ©
are unique for ead given e and . In fact, they are not, as fresh namesmay be
introduced during the course of the computation, and two di erent evaluations of
one and the sameterm may choosethe fresh namesdierently. The determinacy
theorem below shows that the choice of fresh namesis actually the only di erence
that may appear betweentwo reductions of one and the sameterm. As customary,
we denoteby 7! " the n-step reduction relation.

88

CHAPTER 3. METAPROGRAMMING 3.3. SUPPORT POLYMORPHISM

a0

a0 =)

, €] 16 7!
(ae) 7! S &) (vie) 7! %(vy €))

e 7!

(XA e v7! ; [v=x]e

e 7! %€

;(let box u= ey in &) 7! C%(let box u= €} in e)

;(let box u= box ey in &) 7! ;[ei=u]e

e7l 0gd X 62dom()

‘choosee7! %choose €’ choose (X:A: @) 7! (;X:A)e

Figure 3.5: Structured operational semarics of -calculus.

Theorem 18 (Determinacy)
If ;e7!' ™ q;e;,and ;e7! " 5 e, then there exists a permutation of names

N ! N, xing dom() ,suchthat >,= (1)ande= (e).

Pro of: By induction on the length of the reductions, using the property that if

e7! " %land is a permutation on names,then () ; (& 7! " (9; (€9.
The only interesting caseis whenn = 1 and e = choose (X :A: €9. In that case,it
must be e; = [X1=X]e®, & = [Xo=X]e% and 1= (:X1:A), 2= (;X2:A), where
X1; X2 2 N arefresh. Obviously, the involution = (X1 X53) which swapsthesetwo
nameshas the required properties.

3.3 Support polymorphism

It is frequertly necessaryto write programs that are polymorphic in the support
of their argumerts, becausethey manipulate syntactic expressionsof unknown sup-
port. A typical exampleis a function that recursesover an expressionwith binding
structure. When this function encourters a -abstraction, it has to place a fresh
name instead of the bound variable, and recursively continue scanningthe body of
the -abstraction, which is itself a syntactic expressionbut depending on this newly
introduced name'. For sudh uses,we extendthe -calculuswith a notion of explicit
supprt polymorphism in the style of Girard and Reynolds [Gir86, Rey83.

1The calculus described in this document cannot support this scenario in full generality yet
becauseit lacks type polymorphism and type-polymorphic recursion, but support polymorphism is
a necessarystep in that direction.

89

3.3. SUPPORT POLYMORPHISM CHAPTER 3. METAPROGRAMMING

To add support polymorphism to the simple -calculus, we create a new syn-
tactic category of support variables which stand for unknown support sets. Then
the rest of the syntax of is extendedto take support variablesinto accourt. We
summarizethe changesin the following table.

Support variables p;q 2 S

Supports CD == ::1jCp

Types A = ::1j8p:A
Expressions e = 1] p:ejelC]
Name contexts = joap
Values v = 1] p.e

Before a support variable can be used, it has to be declaredin the name context

For the new de nition of , we retain the same well-formednessconditions as
before. In particular, a support variable p2 may only be usedto the right of its
declaration. It is important that supports themselesare allowed to contain support
variables, to expressthe situation in which only a portion of a support setis known.
Consequetly, the function fn() is updated to return the set of namesand supyort
variables appearing in its argumert. The family of typesis extended with the type
8p: A expressinguniversal support quarti cation. Its introduction form is p: g,
which binds a support variable p in the expressione. This -abstraction will alsobe
a value in the extended operational semarics. The corresponding elimination form
is the application e [C] whose meaning is to instantiate the unknown support set
abstracted in e with the provided support set C.

The typing judgment hasto be instrumented with new rules for typing support-
polymorphic abstraction and application.

(pss " erAlC] , , e:8p A[C]
, ; p:e:8p:A[C] . " e[D]:(D=pA)[C]

The 8-introduction rule requires that the bound variable p is a fresh support vari-
able, as customary in binding forms. In particular, p 62 , and consequetly,
p 62 ; ;fn(A[C]). The rule for 8-elimination substitutes the argument support
set D into the type A. It assumesthat D is well-formed relative to the corntext ;
that is, D dom(). The operational semariics for the new constructs is also not
surprising.

7! 0g0

e[ch 7t %(°[C)) (pe)[C]7! ;[C=ple

90

CHAPTER 3. METAPROGRAMMING 3.3. SUPPORT POLYMORPHISM

The extended languagesatis es the following substitution principle.

Lemma 19 (Supp ort substitution principle)

Let = (1;p; 2) andD dom(1) and denoteby ()°the operation of substi-
tuting D for p. Then the following holds.

1.if ; ; “e:A[ClLthen(1; 9); & O €:A%CY

2.0f 5 ; T hi:[Ci) [Cathen(1; 9; % 9 h 9:[C9) [CY

Pro of: By simultaneous induction on the two derivations. We presert one case
from the proof of the secondstatemert.

case = (X! e; 1), whereX:A2 .

by derivation, ; ; "~ e:A[Cyland ; ; ° 1:[CinfXqg]) [Cs]
by rst induction hypothesis,(1; 9); ¢ ©° €°: AO[CY]

by secondinduction hypothesis,(1; 9); ¢ © ¢:[(CinfXg)T) [CI
because(C{nfXg) (CynfXQg)® by support weakening (Lemma 9.5),
(2 %% Y:[CPnfXql) [CF

5. result follows from (2) and (4) by the typing rule for non-empty substitu-
tions

A wdh e

The structural properties preseried in Section 2.2.3 readily extend to the new
language with support polymorphism. The sameis true of the type presenation
(Theorem 16) and progress(Theorem 17) whoseadditional casesinvolving support
abstraction and application are handled using the above Lemma 19.

Example 16 In a support-polymorphic -calculus we can slightly generalizethe
program from Example 14 by pulling out the helper function exp' and parameterizing
it over the exponertiating expression. In the following program, we use[p] in the
function de nition asa concretesyntax for -abstraction of a support variable p.

fun exp' [p] (e : pint) (n :int) : pint =
if n =0 then box 1
else
let box u=-exp' [p] e (n - 1)
box w=e
in
box (u * w)
end
fun exp (n : int) : (int -> int) =

let nameX : int

box w=exp' [X] (box X) n
in

box (xint. hX -> xi w)
end

91

3.3. SUPPORT POLYMORPHISM CHAPTER 3. METAPROGRAMMING

- sq = exp 2;
val sq = box (xint. x * (x * 1)) : (int->int)

Example 17 As an example of a more realistic program we presert the regular
expressionmatcher from [DP01] and [Dav96]. The example assumeshe declaration
of the datatype of regular expressions:

datatype regexp =
Empty

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp

| Const of char
We also assumea primitiv e predicate null : char list -> bool for testing if the
input list of charactersis empty. Figure 3.6 preseris an ordinary ML implementation
of the matcher, and and versionscan be found in [DP01, Dav96]. The helper
function accl in Figure 3.6 takesa regular expressione, a cortinuation function k,
and an input string s (represenied as a list of characters). The function attempts
to match a pre x of s to the regular expressione. If the matching succeedsthe
remainder of s is passedto the continuation k to determineif s is acceptedor not.

We now want to usethe -calculusto stage the program from Figure 3.6 so
that it can be specialized with respect to a given regular expression. For that pur-
pose,it is useful to view the helper function accl from Figure 3.6 as a code gen-
erator. Indeed, accl may be seenas follows: it rst generatescode for matching
a string against a regular expressione, and then appends k to that code. This
is the main idea behind the function acc, and the program in Figure 3.7. In
this program, we use the name S for the input string to be matched by the code
that acc generates. The continuation k is not a function anymore, but code to be
attached at the end of the generatedresult. We want code k to contain further
namesstanding for yet unbound variables, and hencethe support-p olymorphic typ-
ing acc : regexp -> 8p.(gpbool -> gpbool) . The support polymorphism
pays o when generating code for alternation Plus(e;, &) and iteration Star(€).
For example, obsene in the alternation casethat the generatedcode doesnot dupli-
cate the \continuation” code of k. Rather, k is emitted as a separatefunction which
is a joining point for the computation branches corresponding to e; and e,. Simi-
larly, in the caseof iteration, we setup aloop in the output code that would attempt
zero or more matchings against e. The support polymorphism of acc enablesus to
produce code in chunks without knowing the exact identity of the above-mertioned
joining or looping points. Once all the parts of the output code are generated, we
just stitch them together by meansof explicit substitutions.

At this point, it may beillustrativ e to trace the executionof the program on a con-
crete input. Figure 3.8 preseris the function calls and the intermediate results that
occur when the matcher is applied to the regular expressionStar(Empty) . The
resulting specialized program does not contain variable-for-variable redexes,thanks

92

CHAPTER 3. METAPROGRAMMING 3.4. INTENSIONALITY

*

* val accl : regexp -> (char list -> bool) ->
* char list -> bool

)
fun accl (Empty) k s =k s

| accl (Plus (el, e2)) k s =
(accl el k s) orelse (accl e2 k s)

| accl (Times (el, e2)) ks =
(accl el (accl e2 k)) s

| accl (Star e) ks =
(k s) orelse
accl e (s' =>
if s =s" then false
else accl (Star e) k s

| accl (Const c¢) k s =
case s
of nil => false
|) =>
((x =c) andalso (k s))

(*
* val acceptl : regexp -> char list -> bool

*)

fun acceptl e s = accl e null s

Figure 3.6: Unstagedregular expressionmatcher.

to the featuresand expressivenessof |, but it unnecessarilytestsif t = t. Remov-
ing these extraneous tests requires somefurther examination and preprocessingof
e, but the thorough description of sud a processis beyond our scope. We refer to
[Har99] for an insightful analysis.

3.4 Intensional program analysis

3.4.1 Syntax and type checking

As explained in Section 3.2, it is possibleto considerthe type cA intuitiv ely as
the set of closedsyntactic expressionse, such that ; ; °~ e: A[C]. The calculus
preserted so far contains constructs for creating elemers of type cA, but it is
impossibleto inspect the syntactic structure of these elemerts, let alone take them
apart.

In this section, we extend the support-polymorphic -calculus with primitiv es
for pattern matching against syntactic expressionswith binding structure. Our ex-
tension is limited to only test if an expressionis a name,a -abstraction or an ap-
plication, and limit all other casesfor future work. It is not clear, howewver, whether
the expressienessof pattern matching can be extendedto handle a larger subsetof
the object stageof , without signi cant additions to the meta stage. The prob-
lem is that any such addition would require extensionsto pattern match against the
additions, which would itself require new extensionsto the meta stage, and so on.

93

3.4. INTENSIONALITY

CHAPTER 3. METAPROGRAMMING

(*
* val accept :
* (char list

)

fun accept (e :
let namesS:

(*
* acc : regexp -> 8p.(s;bool
* -> s;pb00|)

)

regexp ->
-> bool)

regexp) =
char list

fun acc (Empty) [p] k =k
| acc (Plus (el, e2)) [p] k =
let nameJOIN : char list
-> bool
box ul =
acc el [JOIN] box(JOIN S)
box u2 =
acc e2 [JOIN] box(JOIN S)
box kk = k
box(let fun join t =
<S->t>kk
in
<JOIN->join>ul
orelse
<JOIN->join>u2
end)
end
| acc (Times (el, e2)) [p] k =
acc el (acc e2 k)

Figure 3.7: Regular expressionmatcher stagedin the

| acc (Star e) [p] k =
let nameT : char list
nameLOOP. char list
-> bool
box u =
acc e [T, LOOP]
box(if T = S then false
else LOOPS)
box kk = k
in
box(let fun loop t =
<S->t>kk
orelse
<LOOP->loop,
T->t,S->t>u
in
loop S
end)
end

| acc (Const c) [p] k =
let box cc = lift ¢
box kk = k

in
box(case S
of (xixs) =>
(x = cc) andalso

<S->xs>kk
| nil => false)
end
box code = acc e [] box (null S)
in
box (s:char list. <S->s>code)
end

-calculus.

94

CHAPTER 3. METAPROGRAMMING 3.4. INTENSIONALITY

accept (Star (Empty))
acc (Star(Empty)) [] (box (null S))

acc Empty [T, LOOP](box (if T = S then false
else LOOPS))

box (if T = Sthen false else LOOPS)

box (let fun loop () =
null (t) orelse
if t =t then false else loop(t)
in
loop S
end)

box (s. let fun loop (t) =
null (t) orelse
if t =1t then false else loop(t)
in
loop s
end)

Figure 3.8: Example executiontrace for aregular expressionmatcherin . Function
callsare marked by and the corresponding return results are marked by an aligned

The syntactic extensionsthat we considerin this section are summarizedin the
the table below.

P atter n variables w 2 W
Higher-order patterns = (WX Xp)A[C]JX jx] XA j 1 2
P atter n assignments jw! e

Terms e .::jcaseeof box) e;else e

We use higher-order patterns [Mil90] to match against syntactic expressionswith
binding structure. In higher-order patterns, we distinguish betweenpattern variables
and bindablevariables Pattern variables are placeholdersintended to bind syntactic
subexpressionsin the processof matching and passthem to the subsequeh compu-
tation. Bindable variables are introduced by patterns for binding structure x :A:
and are syntactic entities that can match only themsehes. We usex, y and variants
to range over bindable variables, and w and variants to range over pattern variables.
The basicpattern (w X1 :::X,):A[C] declaresa pattern variable w which matches
a syntactic expressionof type A and support C subject to the condition that the
expression'sbindable variables are among x1;::: ;Xn. We require that the basic
patterns are linear, i.e. that the bindable variables x1, :::, X, that appear in the
pattern are always distinct. Pattern X matches a name X from the global name
context. Pattern X :A: matchesa -abstraction of domain type A. It declaresa
new bound variable x which is local to the pattern, and demandsthat the body of the
matched expressionconformsto the pattern . The bound variable x matchesonly
the pattern x. Pattern 1 > matchesasyntactic expressionrepresening application.
Notice that the decisionto explicitly assigntypesto every pattern variable forcesthe

95

3.4. INTENSIONALITY CHAPTER 3. METAPROGRAMMING

D C p 62
po(XA XeAR) T ((wxeriixp):A[D]) CAC]
=) wi8p: pA1! ' pAn! pDA
X:A2
;X IA[X;C]=9) ; (xA) T xA[C] =)
; (sxtA)T BI[Cl=) 1
;O x:Ar Al BIC]=) 1
;7 1:Al BI[C]=) 1 ;7 2 AC]l=) 2 fn(A) dom()

, 1 2:BIC]=) (1 2

Figure 3.9: Typing rules for patterns.

pattern for application to be monomorphic. In other words, the application pattern
cannot match a pair of expressionsrepresetiing a function and its argumert if the
domain type of the function is not known in advance. It is an important future work
to extend intensional analysisto allow patterns which are type-polymorphic in this
sense.No pattern variable occurs more than oncein a pattern.

The typing judgment for patterns hasthe form

. A[C]) o

The judgmert is hypothetical in the global context of names , and the context of
locally declared bound variables . It cheds if the pattern hastype A and support
C and if the pattern variables from conform to the typings given in the residual
context 1. The typing rules are presened in Figure 3.9. Most of them are straight-
forward and we do not explain them, but the rule for pattern variables desenes
special attention. As it shaws, in order for the pattern expression(w Xi:::Xn):A[C]
to be well-typed, the bound variables x1:A1, :::, Xn:Ap have to be declaredin the
local context . We alsoallow strengtheningof the support: if w is required to match
expressionsof support C, than any expressionwith support D C is eligible for
matching. If the pattern expression(w X1i:::Xn):A[C] is well-typed, then w will
match only expressionsof type A with the given bound variables and the names
declaredin D. The residual context types w as a function over types pA; with
polymorphic support. This hints at the operational semartics that will be assigned
to higher-order patterns. If an expressione with a local bound variable x:A matches
a pattern variable w, then w will residualizeto a meta-lewel function whose mean-
ing is as follows: it takesa syntactic expressione®A and returns badk the syntactic
expression[e’=x]e.
In order to incorporate pattern matching into , the syntax is extended with

a new term constructor case e of box) e; else e;. The intended operational
interpretation of case is to evaluate the argumert e to obtain a boxed expression
box €° then match €°to the pattern . If the matching is successfuljt createsan

96

CHAPTER 3. METAPROGRAMMING 3.4. INTENSIONALITY

environment with bindings for the pattern variables, and then evaluates e; in this
environment. If the matching fails, the branch e, is taken.

Example 18 Considerthe (rather restricted) function reduce that takesa syntactic
expressionof type A, and chedks if it isa -redex (x :A: wi) (w2). If the answer is
yes, it appliesthe \call-by-value" strategy: it reducesw,, substitutes the reduct for
X in w1 and then contin ue reducing thus obtained expression.If the answer is no, it
simply returns the argument.

fun reduce (e : A): A=
case e of
box ((x:A. (w1l x):A[]) (W2A[)) =>
(* wl: 89. qA-> A
(* w2: 8q. 4A%)
let val e2 = reduce (W2 [])
in
reduce (wl [] e2)
end
else e

Ideally, one would want to reduce an arbitrary expression,not just simple top-level
redexes. We cannot currently write suc a function mainly becauseour language
lacks type-polymorphic patterns and type-polymorphic recursion. In particular, if
the syntactic argumert we are dealing with is an application of a generalterm of
type A ! A rather than a -abstraction, we cannot recursively reduce that term
rst unlessthe languageis equipped with type-polymorphic recursion.

Nevertheless,reduce is illustrativ e of the way higher-order patterns work. Pat-
terns transform an expressionwith a bound variable into a function on syntax that
substitutes the bound variable with the argumernt. That way we can employ meta-
level reduction to perform object-level substitution. This is reminiscert of the idea
of normalization-by-evaluation [BS91, BES98] and type-directed partial evaluation
[Dan9g).

The typing rule for case is:
“e: pA[C] ; ° :AD]=) 1 ; ; (; 1) e:B[C] ;; T e:BIC]

‘caseeof box) e else e :B[C]

Obsernwe that the secondpremise of the rule requires an empty variable context, so
that patterns cannot cortain outside value or modal variables. Howewver (and this is
important), they can contain names. It is easyto incorporate the new syntax into
the language. We rst extend explicit substitution over the new case construct

f g(caseeof box) eelsee)=
= case(f ge) of box) (f gep) else (f gey)

and similarly for expressionsubstitution, and then all the structural properties de-
rived in Section 2.2.3 easily hold. The only complication comesin handling names
and support substitution becausepatterns are allowed to depend on namesand sup-
port variables from the global context . Howewer, the lemmasbelow establish the
required invariants.

97

3.4. INTENSIONALITY CHAPTER 3. METAPROGRAMMING

; (XA XniAn) T e AD]

;o (XA XnAR) T e (WX inixn):ADD A
=) [w! pryi: pAjilet box xij = yi in box €]

(;X:A); ~ X X:A=9) p (xA) T X x:IA=9)

p(GxA) T e :B =)
, x:Ale x:A (A! B)=)

;e 1Al B=) 1 ;& 2tA=) o
;T ee 1 2:B=) (1 2)

Figure 3.10: Operational semartics for pattern matching.

Lemma 20 (Structural prop erties of pattern matc hing)
1. Exchange Let % %and 9 bewell-formed cortexts obtained by permutation

from , and qrespectivelyand ; =~ :A[C]=) 1. Then ¢ O°
AlC1=)

2. Weakening Let and ; ° :A[C]=) 1 Then ©
A[C]=) 1

Pro of: By straightforward introduction on the structure of the typing derivations.

Lemma 21 (Supp ort substitution principle for pattern matc hing)

Let = (1;p; 2) andD dom(1) and denoteby ()°the operation of substi-
tuting D for p. Assumealsothat ; ~ :A[C]=) . Then(1; 9J); ©° 0.
A%Cl=) ¢

Pro of: By straightforward induction on the structure of

3.4.2 Operational semantics

Operational sematrtics for pattern matching is establishedby the new judgment
, e =)

which reads: in a global context of namesand support variables and a context
of locally declaredfree variables the matching of the expressione to the pattern

generatesan assignmen of values to the pattern variables of . The rules for
this judgment are given in Figure 3.10. Most of the rules are self-evidert, but the
rule for pattern variables desenes more attention. Its premise requires a run-time
typeded of the expressione, in order to presene soundness.Becauseof this reason,

98

CHAPTER 3. METAPROGRAMMING 3.4. INTENSIONALITY

the judgment for operational semartics of -calculus with pattern matching must
keep track of a run-time name cortext . The context not only lists the used
names,but it also assignstypesto the usednames. The following lemma relatesthe
typing judgment for patterns and their operational semarics.

Lemma 22 (Soundness of pattern matc hing)

Let beapatternsuchthat ; ~ :A[C]=) 1,where 1= (wi:Aq;:i:;wWhiAp).
Furthermore, let e be an expressionmatching to produce a pattern assignmen
ie. ;. T e A=) .Then = (wy! e;::ii;wy! &) where; ; g :Aj,
foreveryi= 1;:::;n.

Notice that in the lemmawe did not require that e bewell-typed, or even syntactically
well-formed. If it were not well-formed, the matching simply would not succeed.

Pro of: By induction on the structure of . We presen the basecasebelow.

case (Wwx1:::Xn):A[D], where = 2;XjA|.

1. let €= (p:yi: pAi:let box xj = yj in box €) and A°= 8p: pA;!

2. by typing derivation, D C and x;:A; 2 andalso 1= (w:A9

3. by matching derivation, ; ;(X1:A1;:::;Xn:Ap) ~ e : A[D], and =
(w! €9

4. by straightforward structural induction, ; (X1:A1;:::;Xn:An); = €.
A[D]

5. it is simply to show now that, (;p); (Xs:A1[pl;::: ;Xn:An[pl); = e:
A[D;p]

6. and thus also, (;p); (X1:A1[p];::: ;Xn:An[p]); ~ box e: ppAl]

7. andtherefore(;p); ;(Y1: pA1;::i;Yn: pAn) let box x; =y;in box e:
ppAll

8. and nally, ; ; " e’ AO[]

The last pieceto be addedis the operational semartics for the case statemert, and
the required rules are given below. Notice that the premiseof last rule makesuse of
the fact that the operational semartics for patterns is decidable;the rule applies if
the expressionand e and the pattern cannot be matched.

o7l C0g0

(caseeof box) e elsee) 7! %(casee’of box) e else &)

S e A=) (wy! o €iiiwg ! €d)
;(case box eof box) ejelsee) 7! ;[ed=w;:::;el=w,le
;e 6) for any
;(case box eof box) e else &) 7! =Y

99

3.4. INTENSIONALITY CHAPTER 3. METAPROGRAMMING

Finally, using the lemmasestablishedin this section, we can easily augmen the proof
of the presenation and progresstheorems(Theorem 16 and 17) to cover the extended
language. The statemerts of the theoremsare unchanged.

Example 19 The following examplespresern a generalization of our old exponerti-
ation function. Instead of computing only powers of integers,we can compute powers
of functions too, i.e. have a functional for mapping f 7! x: (f x)". The functional
is passedthe sourcecode for f, and an integer n, and returns the source code for
x: (fx)". The ideais to have the resulting sourcecode be as optimized as possible,
while still computing the extensionally sameresult. We rely on programs preserned
in Section 3.2 and Examples 14 and 16.
For comparison, we rst preser a version of the function-exponertiating

functional.

fun fexpl (f : (int->int)) (n : int) : (int->int) =
let box g =f
box p = exp3 n
in

box (vint. (p (g V)
end

- fexpl (box w:int. w+ 1) 2;
val it =box (vint. (xx*(yy*(z.1lyx) ((ww+l)v))
(int->int)

Obsenwe that the residual program cortains a lot of unnecessaryredexes. As could
be expected, the -calculus provides a better way to stage the code?, simply by
using the function exp from Example 14 instead exp3 from Section 3.1.

fun fexp2 (f : (int->int)) (n : int) : (int->int) =
let box g =f
box p = exp n
in

box (vint. p (g V)
end

-fexp2 (box wiint. w+ 1) 2;
val it =box (vint. (xx*x*1)) ((w.w+l) v)) : (int->int)

In fact, there is at least one other way to program this functional: we can eliminate
the outer -redexfrom the residual code, at the price of duplicating the inner one.

fun fexp3 (f : (int->int)) (n : int) : (int->int) =

let nameX : int
box g =f
box e = exp' [X] (box (g X)) n

in
box (vint. hX -> vie)

end

2And similar programs can be written in and MetaML, aswell.

100

CHAPTER 3. METAPROGRAMMING 3.4. INTENSIONALITY

- fexp3 (box (wint. w+ 1)) 2;
val it =box (vint. ((ww+l)v) * ((ww+l) v) * 1) :
(int->int)

Howewer, neither of the above implementations is quite satisfactory, since,eviderly,
the residual code in all the casescortains unnecessaryredexes. The reasonis that
we do not utilize the intensional information that the passedargumert is actually
a boxed -abstraction, rather than a more general expressionof a functional type.
In a languagewith intensional code analysis, we can do a bit better. We can test
the argumert at run time and output a more optimized result if the argumert is a

-abstraction. This way we can obtain the most simpli ed, if not the most e cien t
residual code.

fun fexp (f : (int->int)) (n : int) : (int->int) =
case f of
box (x:int. (w x:int[])) =>

(* w: 8g. gq4int -> int *)
let nameX : int
box F = exp' [X] (w [X] (box X)) n
in
box (vint. hX->ViF)
end
else fexp2 f n

- fexp (box x:int. x + 1) 2;
val it = box(vint(v. +1) * (v +1) * 1) : (int->int)

Example 20 This exampleis a (segmen of the) meta function for symbolic di er-
entiation with respect to a distinguished indeterminate X .

fun diff (e : xreal) : xreal =
case e of
box X => box 1

] box ((wl:real[X]) + (w2:real[X])) =>
let box el = diff (wl [])
box e2 = diff (w2 [])
in
box (el + e2)
end

101

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

j box ((xireal. ((FX x):real[X])) (GX:real[X])) =>
(* FX: 8q9. gqreal -> gxreal *)
(* GX: 8g. gxreal ¥
(* check if FXreally depends on X *)
let nameY : real

in
case (FX [Y] (box Y)) of
box (F:real[Y]) =>
(* FXis independent of X;
apply the chain rule *)
let box f = F]
box f = diff (box hY->Xf)
box gx = GX]]
box gx' = diff (GX]])
in
box (hX->gxif* * gx’)
end
else diff (FX [X] (GX])
end

else (box 0) (* the argument is a constant *)

The most interesting part of diff is its treatment of application. The samelimita-
tions encourtered in Example 18 apply here too, in the sensethat we can pattern
match only when the applying function is actually a -abstraction. Although it is
wrong, we currently let all the other casespassthrough the default case. Neverthe-
less,the exampleis still illustrativ e.

After splitting the application into the function part f and the argumert part
g we test if f is independert of X . If that indeed is the case,it meansthat our
application was actually a composition of functions f (g X), and thus we can apply
the chain rule to compute the derivative asf °(g X) (g®X). Otherwise, if f cortains
occurrencesof X, the chain rule is inapplicable, so we only reducethe -redex and
di erentiate the result.

3.5 Logical relations for program equivalence

In this section we dewelop the notion of equivalence between programs in the core
-calculus (without recursionand support polymorphism), with which we establish

the intensional properties of the modal operator, and justify our intuitiv e view of
cA as classifying syntactic expressions.

To that end, we consider two notions of equivalence. The rst is intensional,
or syntactic, by which two programs are equal if and only if their abstract syntax
represertations are the same; the programs may only dier in the names of their
bound variables,and possiblyalsoin the represertation of their explicit substitutions.
On the other hand, two programsare extensionaly equivalert if, in someappropriate
sensewhich we will de ne shortly, they produce the sameresults. Of course,if two
expressionare intensionally equivalert, they should also be extensionally equivalert.

102

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

One of the questionsthat we explore in this sectionis an interplay betweenin-
tensional and extensional equivalencesof programs. The -calculusis particularly
appropriate for investigating and conbining the two notions, becausewe can usethe
modal constructs as explicit boundariesbetweenthe di erent notions of equivalence.
In particular, we can treat values of modal typesas being observablei.e. amenable
to inspection of their structure. Then two general expressionsof modal type will
be extensionally equivalent if and only if their values are intensionally equivalent.
We are also interested in exploring the properties of the calculus when only exten-
sional equivalenceis used, as the presen formulation of does not corntain any
constructs for inspecting the structure of modal values. In both of these cases,we
will establish that our formulation of is purely functional, in the sensethat it
satis es the logical equivalencesarising from the -reductions and -expansionsof
the language. The dewvelopmert preserned herewill follow the methodology of logical
relations, as used, for example, in other works concernedwith namesin functional
programming [PS93. Howeer, the details of our approac are di erent becausewe
want to make the identity of locally declared namesirrelevant for the purposesof
expressioncomparison.

To motivate our approad, we rst presen seweral examplesof intensional and ex-
tensional equivalencesthat we would like our programsto satisfy. We usethe symbol
= for extensional equivalence,and = for intensional equivalence. The equivalences
will always be consideredat a certain type and support.

Example 21 In the examplesbelow, we assumethat X is a name of integer type.

1. (x:nt:x+1)2= (x:int:x+ 2) 1= 3:int, becauseall three terms evaluate
to 3; howewer, neither of them is intensionally equivalert to any other.

2. (x:int:x+X)2=2+X = X+ 2:int [X], becausevhenewer X is substituted
by e (and x is not freein €), the three terms evaluate to the samevalue.

3. (x: xint: 2) (box X) = (1 + 1) : int, becauseboth terms ewaluate to 2.
Notice that X doesnot appearin the secondterm, nor in the type and support
of comparison.

4. box (X + 1) = box (X +1): xint, becauseX + 1 = X + 1 : int[X]
intensionally, as syntactic expressions.

As illustrated by this example,in our equivalencerelations we should distinguish
betweentwo di erent kinds of names: (1) nameswhich may appear in either of the
comparedterms, as well astheir type and support (Example 21 cases2 and 4), and
(2) nameswhich are local to someof the terms (Example 21 case3). The later kind
of namesshould not in uence the equivalencerelations { these namescould freely
be renamed.

The described requiremert leadsto the following formulation of the judgment for
extensional equivalence.

;o 1ter= el A[C]

103

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

Here we assumethat is a well-formed name context and that , , 1, 2, A
and C are all well-formed with respectto . Intuitiv ely, the cortext declaresthe
namesthat matter when comparing two terms; hencethe requiremert that , , A

and C contain only the namesfrom . On the other hand, the contexts 1 and »
declarethe namesthat may appearin e; and e, but thesenamesare, in somesense,
irrelevant. They will be subject to renaming, as they do not appearin , , A or
C. The conexts 1 and » are disjoint from .

For the purposesof this section, we further restrict our considerations of in-
tensional equivalenceto only modal terms which are themseles part of the simply
typed fragment of . In other words, we introduce new categoriesof simple types
and simple terms as follows:

1. atypeAissimplei A=Db orA=A;! AorA=A19 A, whereA;;As
are simple types

2. aterm eis simpleif it doesnot contain the modal constructs box and let box.

Then we only allow modal types cA if A is simple, and modal terms box e if e
is simple. We justify this restriction by a desireto avoid impredicativity arising in
a languagethat can intensionally analysethe whole set of its expressions. In fact,
it seemsrather improbable that a languagewith sud strong intensional capabilities
can be designedat all. Indeed, we added names and modal constructs in order
to represen syntax with free variables. But, the modal constructs can also bind
variables, so a new category of namesand modalities seemsto be required in order
to analyze these new bindings, and then a new category of names and modalities
is required for the bindings by the previous classof modalities, etc. Thus, here we
limit the intensional equivalenceto the simply-typedfragmen, and leave the possible
extensionsto larger fragmerts for future work.

The next step in the dewvelopmert is to formally de ne the notion of extensional
equivalence. As already mentioned before, the idea is that two expressionsare con-
sidered extensionally equivalert, if and only if they evaluate to the samevalue. The
valuesthat we will considerfor comparisonare the valuesat basetype b of natural
numbers, and valuesat modal types ¢A which are closedsimple terms of type A
and support C, which we compare for intensional equivalence.

A standard approad to logical relations starts with a somewhatdi erent premise.
Rather than evaluating two expressionsand cheding if their values are the same
we needto ched if the values are extensionaly equivalent themselwes. The later
notion is much more permissive, which is particularly important when comparing
valuesof functional types: two functions are extensionally related if they map related
argumerts to related results.

Thus, we needto de ne two mutually recursive judgments: onefor the extensional
equivalenceof (closed)expressionsand another for extensionalequivalenceof values.
Our judgment for extensional equivalenceof expressionshas the form

11e1= 2 e A[C]
and the judgmernt for extensional equivalenceof valueshasthe form
1. V1 2: Vo L A

104

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

The rst is de ned by induction on the structure of A and C, by appealingto the
secondjudgment when the support C is empty. The secondis de ned by induction
on the structure of the type A.

e = 26 A[] i (e T (; Divi, and
(; 2 7 (; Dive, and
o %vi v A

11e1= 2 e:A[C] i V% 1ger = 9 f ,0e i A[] for any
O 4 sudthat & 1= % ,[C]

1. V1 iV b i vi=Vv22N

1 V1 2V2:Al B i v = x:Ar g and Y [W=xe =
9 [vo=x]ez : B, forany ? |, sud that
v Ve A

1. V1 2:Vo: cA i vi=boxegande =e and =~ e =
2.6 1 A[C]

1. V1 22V:A9 B i vi = X:A g and (XA g =

(2;X:A): e B[], whereX isafreshname.

Here we abbreviated:

10 1= 2. 2[C] i 1, 2 areexplicit substitutions for the names
in C,suchthat ~ 11 1(X)= 21 2(X):
B []forany nameX 2 C suchthat X:B 2 .

The most important parts of the above de nition are the casesde ning the rela-
tion for valuesat functional, modal typesand 9 types. The de nition for valuesat
functional typesformalizesthe intuition that we outlined before: two functions are
related if they map related argumerts to related results. The de nition for values
at modal types contrasts the notions of intensional vs. extensional. We consider
two valuesbox e; and box e, extensionaly related i the expressionse; and e
are intensionally related. Obsere, however, that in the de nition we actually insist
on the additional requiremert that e; and e, be extensionally related as well. This
extra clauseis added because,at this stage of developmen, it is not obvious that
intensional equivalenceof expressionamplies their extensional equivalence. For that
matter, it is not obvious at this point that that the two new relations are indeed
equivalencesat all. We will prove both of theseproperties in due time, but we need
to start the dewvelopmert with a su cien tly strong de nition. The de nition for val-
ues X:e and X:e atthe A9 B typegeneratesa fresh name X, and then tests
e, and e, for equivalencein the local contexts extendedwith X.

Notice that the above de nitions are well-founded. In order to establishthis fact,
let us de ne ord (X) to be the position in which the name X rst appearsin the
name cortext . Also, given a type A and support C, let max (A[C]) be the last
position in in which a nhame from A and C appears. More formally,

max (A[C]) = maxford (X)]j X 2 fn(A[C])g:

Becauseof the restriction that ead typein may only refer to the namesto the
left of it, it is clearthat if X:A 2 , then max (A) < ord (X). We can now order
the pairs of type A and support C asfollows. The pair A[C] is smallerthan B[D] i

105

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

max (A[C]) < max (B[D]), or

max (A[C]) = max (B[D]), but the number of type constructors of A is
smaller than the number of type constructors of B.

It is now easyto obsene that ead inductive step in the de nitions of the relations
strictly decreaseghis ordering. Indeed, the relation on valuespresenesthe number
of namesin the type and support, but makes inductive referencesusing types of
strictly smaller structure. The relation on expressionswith non-empty support C
relies on explicit substitutions over the namesin C. But for ead name X 2 C with
X:B 2 , itisclearthat max (B) < ord (X) max (fn A[C]).

We next extend our relations to handle expressionswith free variables. We start
with expressionsof empty support.

;0 ser= 2elA[] Yl 1=le= %[2=]ex:A[lforany
{ i, sudh that ~ § 4 9 5

In this de nition, 1, » are arbitrary substitutions of valuesfor variablesin , and

we write:

101 2 o i oo 1(x) 2. 2(X) : A whenewer
X:A 2
In the next step, we considerexpressionsof arbitrary support.
c o ve= 2erAlCI i 5 0 %foage = %f oge i A[] for
any 9 i, suh that ; - ¢ ;=
9 2IC]

where 1, » are explicit substitutions, and

;o 1oa= o2 2[C 0 s T 1 (X)) = ar (X)) B[] for
any name X 2 C such that X:B 2

Finally, the relation is extendedwith the cortext asfollows.

c s re= 2eACl 0 5 T flElle = Se=ller
A[C] for any ? i, suc that
1= % 2

where 1, o are arbitrary substitutions of expressionsfor modal variablesin , and

1 1= 20 2! i 1(u) = 2(u) and T () =
2. 2(u) : A[C] whenewer u:A[C] 2

The above de nitions are well-founded, as ead one refersonly to already intro-
duced de nitions. For the sake of completenesswe also parametrize the intensional
relation = with the context , asthis will be neededin the statemert of Lemma 28.

;. pre= xeiA[C] i [1=]]lei=[2=]leforany ©
suhthat ~ ¢ ;= % 5

106

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

Example 22 Let = X:int. Then the following are valid instancesof intensional
equivalence.
1. ; " X+1=X+1:int[X]

2. ; wint[X]" (Yiint): X! L;Y! 2iu=hX! 1liu:int[]

Example 23 Considerthe simple expressione sud that
; ; choose(X:B:box e): int:

Wewill shovthat ; ; ~ choose(X:B:box e) = choose(X:B:boxe): int.

First notice that we can assume to be empty as, by typing, e cannot contain
variables from . We can assumethat is empty as well; this will not result in
any loss of generality becausethe relation of intensional equivalenceis closedwith
respect to modal substitutions

The above relation holds if and only if the two instances of the expression
choose (X:B: box e) ewaluate to related values. But, indeed they do, as the
particular choice of X in the evaluation of the expressionsdoesnot in uence e. In
fact, becausee is a simple expression,the only namesthat may appearin box e are
the onesappearingin its type. In this case,the typein questionis int, and it does
not contain any names.

Becauseof re exivit y of -equivalence,e = e. By determinacy of evaluation, it is
alsothe casethat ~ e= e:int. Thus, we canconcludethat ~ box e= box e:

int.

Lemma 23 (Name perm utation)

LetRy: 1! %andRy: ! 9 bebijections where 9 and J are well-formed
in . Then:

1.if ° 11e= 2e:A[Cl,then ~ ¢ Riei= JRre:A[C]

2.if ° 1wvg 2Vy:A then ~ %Rivp S Rovp A

Pro of: By induction on the structure of the de nition of the two judgmerts.

For the rst induction hypothesis, we start by considering the base casewhen
C is empty. In this case,if (; i);e 7' (; i; i);Vvi, then by parametricity of
the evaluation judgment, we also have (; io);e-, 7 (; iO; i);Ri vi. Then we
appeal to the secondinduction hypothesis, to derive that T ((1’; 1): Rivi
(9 2):Rz2vy:A. The result is easily extendedto the casewhen C is not empty.

For the secondinduction hypothesis,the only interesting caseis whenA = pB,
which is proved by appealing to the rst induction hypothesis, and the fact that
name permutation doesnot changethe = relation on simple terms.

107

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

Lemma 24 (Name localization)
If C is awell-formed support in , then the following holds:

1.(; 9 1e= e:A[Clifandonlyif ~ (¢ 1)ier=(% 2)e:
A[C]

2.(: 9 1wg sxvo i Aifandonlyif (% Divi (% 2w A

Pro of: By induction on the structure of the de nition of the two judgmerts.

For the rst induction hypothesis, we start by considering the casewhen C is
empty. Let (; % e 70 (5 %)svi,and(; 9 1w 2l Vo 1A
By secondinduction hypothesis, ~ (¢ 1):vi (% 2):wvs: A, and thus also

(% Dier=(% ,):e:A. The opposite direction is symmetric. The result
is easily extendedto the caseof non-empty C.
For the secondinduction hypothesis, we present the casewhen A = A1 ! Ay,
and vi = x :A;: &. In this case,consider ° i, suh that =~ (% 9P

O 9:v9:A;. Weneedtoshav =~ (% 9):[vi=xle; = (& 9): VI=x]e, : A,
By induction hypothesisat type A;, wehavethat (; 9~ 9:v? $:v: A4, and
therefore (; 9 $:[vP=xje1 = 9:[v9=x]e; : A,. By induction hypothesisat type
A,, wecanpush %badkinsidetoget ~ (¢ 9):[Vd=xle1 = (¢ 9):[vI=xle;: A,.
The opposite direction is symmetric.

Lemma 25 (W eakening)
Let © , ¢ sand 9 , sothat $and 9 arewell-formed with respect
to © Then the following holds:

1.if ° grer= 2e:A[Clthen 0 Y%eg= $e:A[C]
2.if ° 1wvg 2 Vp: A then 00 vy Ovai A
Pro of: By namelocalization (Lemma 24), it su ces to consider °= . The proof

is by simultaneous induction on the de nition of the two judgments.
For the rst statemert, we only considerthe casewhen C is empty, asthe result

is easily generalizedto non-empty C. In this case,let (; ;);e 7' (; i i):Vi,
suchthat =~ (1; 1):vi (25 2):v2:A. By name permutation, we could as-
sumethat 1; jaredisjoint from 9; 9 sothat also(; X;e 7! (; & v
Then by secondinduction hypothesis, =~ ($; 1):va (9 2):v2: A, and
therefore = $:ep= Siep:A.
For the second induction hypothesis, the only interesting caseis when A =
A% A® andv; = x :A%eg. In this case,consider ° 0 sudthat ~ 99v0
PvP: A% By denition, 9 [vi:xle; = 99 [v8%x]e, : A% simply because

00 0 .
i i I

Lemma 26 (Symmetry and transitivit vy)

LIf 7 pe= 2:e:A[Cl,then ~ s e= 1:e:A[C]
2. 1f 5 1w VoA, then ° 1w 1V DAL
3. If oo e = e A[Cl,and T 2 e = 3 e3: A[C], then

1:e1= 3 e3:A[C]

108

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

4. 1f ° 1w Vot A,and T ol vo 3:v3: A, then ~ e
3: V3 A

Pro of: Symmetry is obvious, so we presen the proofs for transitivit y. The proofs
are by induction on the de nition of the judgments. For transitivit y of the relation
on expressions,we only considerthe casewhen the supports C; are empty, asit is
easyto generalizeto the caseof non-empty supports.

By assumptions,(; 1);e1 7! (; 1);vi,and(5 2);e 7! (5 2);V2, sud
that = 1:1vg 2 Vo AL Also, (5 ie 7 (5 v and, (; 3);es 7!
(; 3)vs sudhthat ~ 99 3: V3 A.

By determinacy of evaluation, we know that there is a permutation of names
suhthat ,= (9 andvy= (V9), andthusby Lemma23, ° v, 3. V3
A. Then, by the last induction hypothesis, =~ 1:v; 3: V3 A, and therefore,

1. €1 3. 63 A.

For the relation on values, we only presen the caseA = A; ! Ay andv; =
x :A1ie. Inthiscaselet § jand § 3 sudithat ~ $v? SVl AL
By namepermutation, we can assumethat gand o are disjoint; otherwise, we can
just renamethe conicting namesin ,. By symmetry and transitivit y at type Ay,
we obtain *~ $: v 9:v3 : A;. By weakening, v 2, 9 v and
o 98 9:vg; therefore * 21 [vi=xle1 = (2 9): [VI=Xle; : A, and
(2 9:vi=xlex = 9 [vi=xles : A,. Finally, by rst induction hypothesisat
type Ay, weget 9 [VI=xle; = 9 [vI=xles: A,.

o

It is simple now to extend the above results to logical relations over expressions
with free variables. The following lemma restatesthe relevant properties.

Lemma 27
1. (Name permutation) Let R;: 1! 2andRy: ! 9 be bijections where
Qand 9 arewell-formedin . If ; ; ° 1ie = 2 e : A[C], then
;5 YRie= Y Rae:A[CIL
2. (Name localization) Let , , A, C arewell-formedin . Then (; 9; ;
e1= e :A[Clifandonlyif ; ;0 (% Der=(% 2):e:A[C]
3. (Weakening) Let © ,and ¢ L9 5, 0 , 0 and

C% C,sothat 9, 9, 9 O9and C%are well-formed with respectto © If
;e = 2e:A[Cl,then & O 0 0g = 96 :A[CY.

4. (Symmetry) If ; ; 11 e = 2 & A[C], then ; ; T e =
1.6 A[C].
5. (Transitivity) If ; ; o1 e = 2.6 A[C]l, and ; ; Tl ey =
s:e3:A[C],then ; ; ~ 1:e1= 3:e3:A[C]
Pro of:

The proofs proceedin a straightforward manner, following the de nition of the
judgment on open expressions.First we considerthe casewhen is non-empty, but
both C and are empty. Then we generalizeto the caseof non-empty C, before
nally a non-empty cortext is considered. Just asin the de nition of the logical

109

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

relations, it is easyto ched that in ead step of the proof we only rely on the previ-
ously establishedresults.

To completethe logical relations argumert, we needto de ne the notion of exten-
sional relation on the remaining syntactic category of { the category of explicit
substitutions. This de nition will be utilized in the statemert and the proof of
Lemma 28 to establish that term constructors of (in particular, the constructs
for explicit substitutions and modal variables) presene extensional equivalence.

The judgment for logical relation of extensional equivalencebetweentwo explicit
substitutions 1 and 5 hasthe form

;s 1thai= 2:h i [C]) [D]
and is de ned by the following clauses:

0 > 1thai= i s S oqger = I f L0e
>1h »i 1[C]) [D] A[D], for any 0 i, suc that
;5 Ye= YerAlC]

S 2T i) 0 Ha=l 4 =
2:h 20 :[C]) [D] 9 Ho=] 2 : [C]) [D]
for any 9 i, sud that

= 9o

As in the caseof previous judgmernts, the relation = on explicit substitutions
satis es the properties of namepermutation, namelocalization, weakening, symmetry
and transitivit .

Lemma 28
Logical relation is presened by all the expressionconstructorsof . More precisely:

1. (; X:A);; o X = X IA[X;C]

2.5 ;5 (xtA)T 1ix= x:A[C]

3.if ; (;wA[D]D; ° 1:h 4= o:h %i:[D]) [C], then
i (JWwAID]D; 0 1:h qiu= 2:h oiu: A[C]

4.if ; ; (;xA) T e = 2 e BIC] then ; ; T X:Ale =
2. X:Aiex: Al BIC]

5if; ; ° 1e= 2xe:Al! B[Cland; ; €)= ,e:A[C],
then ; ; ° ree= ee):B[C]

6. If ; o e= e AlCl,and ; ;T 1iep = e A[C], then
;7 1.boxe= s boxe: cA[D]

7.if 5 ;0 1er= 2e: pA[Cland ; (;wA[D]); 1:€)= 2 €):
B[Cl, then ; ; ~ q:let boxu= e in € = ,: let box u=ein & :
B [C]

110

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

8.if ; ; T (1yX:A):er=(2;X:A): e :B]JC] then
P 10 XArer= o XAAlee:A9 BIC]

9.if ; ; o e= 26 :A9 B[C]then ; ; 1. choosee =
2. choose e : B [C]

10. ; ; ° 1:hi= 2:hi:[C]) [D]ifC D

11.if ; ; To1e= 2 e:A[D],and ; ; T o1th4i= oih i [Cn
X]) [D],andX:A2 ,then; ; oKX e qi= XD ey o
[C]) [D]

Pro of: To reduce clutter, we just presen the selectedcasesas if the corntexts

and the support C were empty. The generalresults are recovered by considering
the interaction between value substitutions , explicit substitutions and modal
substitutions , which is well-behaved in all the casesof the lemma.

In caseof (3), consider ¢ jsudthate; = ep,and ~ e = e A[D]
We needto show that ; ; ~ 9 fle;=u] 1ge; = 9: flex=u] »ge> : A[]. From
the assumption, we have ; ; ~ $:Hei=u] 1i = 9 Hex=u] ,i :[D]) [], and

then the required equality follows by de nition of extensionalequivalencefor explicit
substitutions
In caseof (7), by equivalenceof e; and e,, there exist name sets 1; 2, sud
that (; 1);e 7! (; ;box ty and (; 2);e 7! (; 2);box ty, where
ty=ty:A[D],and ~ q:ti= ity A[D]. Thenit suces to shavthat ; ; °
1 [ti=ulef = 2 [to=ul€d : B []. But this follows from the secondassumption, by
de nition of extensional equivalence.
In caseof (11), again consider ? i,suhthat G; ° % &)= 9:6&:

B [C]. To be consistent with the notation, in this casewe assumethat D, rather
than C, is empty. To reduce clutter, denote by 1; » the explicit substitutions
1 = X! e; 1iandand 5, = hX ! e »i. Then we needto show that
ooy 0 %f g9 = 9 f ,0€) B[] To establishthis, it suces to prove that
;0 = % s[Clie that ;Y 1(Z2)= 9 x(2) A9] for any
nameZ 2 C sud that Z:A%2 . Then the result would follow from the extensional
equivalenceof €} and €J. We considertwo cases:Z = X,andZ 2 CnX. If Z = X,
then A= A and {(Z) = ¢ andby rst assumption, ; ; ° 1. 1(Z)= 2 2(2):
A. By wealening, this implies ; ; ~ 90 1(Z)= 9 2(Z):A.1f Z2 CnX, then
i(Z)=1f gZ,andalsoobviously ; ; ° %z = 9:Z:A%CnX]. Then by the
secondassumption, ; ; ~ ¢ 1(Z)= % 2(Z) : A°[]. The two casescombined
demonstrate ; ~ % ;= 9 ,[C], and this completesthe proof.

Now we can prove that our logical relations are re exiv e, and thus indeed equiv-
alences.

Lemma 29 (Re exivit Y)
1.If; ; "~ e:A[ClL,then ; ; "~ e=-e:A[C]

2.1f ; ;7 " hi:[C]) [Dl,then; ; ~hi=hi:[C]) [D]

Pro of: By induction on the structure of eand , using Lemma 28.

111

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

We reiterate that the current developmen, andin particular Lemma 29, restricts
eand to only cortain simple boxed subterms, becausewe only de ned intensional
equivalenceto hold on simple subterms. When consideredon this domain, the lemma
has seweral more interesting consequencesAs a rst obsenation, it shows that the

-calculus, as consideredin this section (i.e. with no recursion), is terminating.
Indeed, our de nition of logical relations on expressiongequired that related expres-
sions evaluate to related values. Thus, if a well-typed expressionsof the calculusis
related to itself, than it must have a value.

The secondconsequenceof the lemma is that intensionally related expressions
are at the sametime extensionally related aswell. In other words, if ; Toie =

2. & : A[C], where e is a simple term, then ; ; ~ 16 = 5 & :A[C]
This property trivially follows from the re exivit y, simply becausethe intensional
equivalence,as de ned on closedsimple terms equatestwo terms if and only if they
are the same(up to -renaming) and { more importantly { well-typed. Then the
re exivit y lemmacan be applied to extensionally relate thesetwo terms. As a result,
extensional equivalenceof modal expressionsbox e; and box e neednot compare
e, and e, for extensionalequivalence(asit is required by the de nition), but canonly
rely on their intensional equivalence. This is important, as intensional equivalence,
cortrary to the extensionalone, is de ned inductiv ely, and can be carried out as an
algorithm.

Lemma 30 (Fundamen tal prop erty of logical relations)
If ; ; ° 1:e1= 2 e :AJ[C], then

L.if ; ; (;x:A) e:B[C]l,then ; ; ~ j:[ei=Xle= 2:[ex=x]e:B[C]

2.0fF ;5 (;x:A)” hi:[Cq]) [C], then
;s aHe=] i= 2rHe=x] i:[Cq]) [C]

Pro of: By straightforward simultaneous induction on the structure of the two typ-
ing derivations, using the fact that the term constructors of the language presene
the logical relation.

After deweloping the theory of the two relations, we will useit to prove some
interesting equivalencesin the calculus. But before we do that in the next lemma,
let us remark on an important property of the our presenation. If we dropped the
requiremert of intensional equivalencewhen comparing values of modal types that
would correspond to treating modal values extensionally, rather than intensionally.
In fact, that may be a more relevant approad for this section, asthe current devel-
opmert of logical relations does not considerany constructs for structural analysis
of modal expressions.In this case,we do not have to limit the modal expressionsto
only simple expressions. In particular, the re exivit y lemma (Lemma 29) holds in
full generality.

Finally, the next lemma lists someequivalenceswhich hold in (irrespective of
the treatment of modal values as intensional or extensional ertities). Obsenrve that
the list includes all the -reductions and -expansionsof . In this sense,we can
claim that the calculus preseried in this paper is purely functional.

112

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

Lemma 31
In the logical equivalencesbelov we assumethat all the judgments are well-formed
and that the terms are well-typed in appropriate cortexts.

1.5 5 (X e)e=[e=xXe A[C]
o, S e=x (ex):Al BIC]
;7 let box u= box e; in & = [e;=u]e; : B [C]
Do “e=let box u=ein box u: pB]JC]
" choose (X:A:e) = (X:A):e:B][C]
;7 (X:A):e= X:A:choosee:A9 BI[C]
;7 z:A:choose(X:Aj;:e)=choose(X:A1: z:Aie):A! B[C]
0 X: Y:ie= Y: X:e:A9 A9 BIC]

© ® N o g ~ W N

;7 ep(choose (X:A: e)) = choose (X:A: (e1 &)) : B[C]
10. ; ; ~ (choose (X:A:e1)) e = choose (X:A: (e1 &)) : B[C]

Pro of: Again, in order to reduceclutter, we presen the proofs of these statemerts

in the casewhen , , C areempty. In the generalcaseswe needto considerinterac-

tions betweenvalue substitutions , explicit substitutions and modal substitutions
, but theseposeno problems.

In the case, and C are empty, the statemerts (3) and (4) are trivial, asthe
two expressionsevaluate to the samevalue. In (5), the expressionsevaluate to the
samevalue, modulo the choiceof alocal nameY to stand for X in choose (X :A: e).
But this choiceis irrelevant, by the name permutation property. The statemert (10)
is completely symmetric to (9).

To establish (1), let ; ;x:B " e;:A,and ; ; = e :B. As the calculusis
termination, there exist and v, sudhthat ;e 7! (;) ;vz, and therefore also

" & = :vy:B. By the fundamental property of logical relations (Lemma 30),

T [ex=x]er = : [vo=X]e; : A. But it is alsothe casethat =~ (X! e€1) & =

. [vo=x]e1 : A, simply becausethe two expressionsevaluate to the same value.
Then by transitivit y, weget ~ (x: 1) & = [ex=X]e; : A.

To establish(2), let :e7! (;) :;(x: €), sothat ; ; ~e= :(x €:
A ! B. By transitivit y, this holdsif ~ : x: €° x: (ex):A! B. In
order to prove this, consider ¢; 9 such that =~ ; vy O vp t AL It
suces to shov =~ (; 9):[vi=x]e°= 9: (evp) : B. By the name permutation

property (Lemma 23), we can assumethat and » are disjoint. By the properties
of evaluation, (¢ 9;(ev2) 7! (% 9) ;[v2=x]€’ and thus

9 (eva) = (5 D:lvo=xle’ *)

By type presenation, (;); ;x:A €%: B[], and thus by reexivity ; ;x:A°
:e’= :e%:B[]. Then by de nition,

T D= (5 D) [ve=x]e: B *)

113

3.5. LOGICAL RELATIONS CHAPTER 3. METAPROGRAMMING

Finally, from (*) and (**), by transitivit y, we obtain the required
(5 D viexel= 9 (ewvn) @ B:

To establish (6), let (;X:A);e7! (;X:A;) ;(Y:A: €Y. Then, by de nition,
wehave = (X:A):e= (X:A;) :(Y:A:e):A9 B. By transitivit y, it suces to
shovthat =~ (X:A;) : Y:A:e® X:A:choosee:A9 B

By de nition of the logical relation for values at the type A 9 B, this holds
if and only if Y (X:A; ;Y:A): €9 = X:A: choosee : B. Indeed, we could
chose X :A in the local cortext of the secondargumert by the name permutation
property. But the last equation is obviously true, as (;X:A);choose e 7!

(;X:A;) ;choose (Y:A:e) 7! (;X:A; ;Y:A); €

For (7), the consideredequivalence holds i * z:A: choose (X:Aii e =
(X:Aq): z:Ate: Al B,i ; ;z2A choose(X:Ai:e) = (X:A1): e: B. But
this is true by (6).

To establish (8), notice that by de nition, the required equivalenceholds if and
only if ~ (X:A;Y:A): e= (Y:A; X:A): e: B. In this equation, we are justied in
choosingthe samenamesX and Y in both sides,by the name permutation property
(Lemma 23). But the cortexts (X:A; Y:A) and (Y:A; X:A) are same, becausethe
type A doesnot depend on neither X nor Y. Thus, the result follows by re exivit y
of =.

To establish (9), it suces to shov that ~ e; = (X:A): e : B%! B and that

* choose (X:A: &) = (X:A): & : B2 Then the result would be implied by the
fact that term constructors presene the equivalence. The rst of the above equiva-
lencesfollows by re exivit y and weakening. The secondhas already beenestablished
asthe -reduction for the type A9 BC

The deweloped logical relations analyzethe equivalenceof terms from the outside,
rather than by considering their obsenable operational behavior. A more general
notion of equivalenceis the contextual equivalene, by which two terms e; and e, are
related if and only if any obsenable behavior producedby a useof e; in a complete
program is also produced by a useof e,, and vice versa.

Logical relations, howewer, are related to cortextual equivalencein the following
sense. Whenewer two terms are logically equated, their behavior in any program
context is indiscernible. In other words, logical equivalenceis sound with respect to
the contextual equivalence. We establish this result in the remainder of the section.
The opposite direction of this implication, that is, the completenessof the logical
relations with respect to contextual equivalenceremains future work.

We start by formalizing what it meansto usean expressionin a program. For that
reason,we de ne two notions of program contexts: a notion of expressioncortexts,
and a notion of substitution context. An expression context (resp. substitution
conext) is an expressionE (substitution F) with a hole, where the whole can be
lled with someexpression. We write E[e] (F[€]) for the expression(substitution)
obtained when the hole of E is lled with e. Furthermore, we consideronly contexts
that are extensional i.e. whosehole does not appear under a box, as we want to
relate the extensionallogical equivalenceto contextual equivalence.

A more formal de nition of extensional expressionand substitution corntexts is
given in the table below.

114

CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

Extensional expressioncontexts E [1IX jxjhFiu] x (ACE|jEL B
box ejlet box u= E; in B j
X:A: Ejchoose E

X! EF

Extensional substitution contexts F

Now we can prove that the extensionalordering on expressionsand substitutions,
as de ned previously is a congruencewith respect to extensional cortexts.

Lemma 32 (Congruence)
if ; ; o1 er= 2 e A[C], and E, F are an expressionand substitution
corntext respectively, then the following holds.

1. ¢ 0 0 O Fle]= 9 E[ey] : B[D], if E[e;], E[e;] are well-typed in their
appropriate variable contexts.

2. 6 0 0 9 nF[eli= 9 hF[e]i:[D]) [DY,if Flel, F[e] arewell-typed
in their appropriate variable conexts.

Pro of: By straightforward simultaneous induction on the structure of E and F,
using Lemma 28.

The useof an expressionin a complete program cortext of basetype de nes the
contextual equivalencebetweenexpressionsin the following way.

De nition 33 (Extensional contextual equiv alence)

Let e1, & bewell-typedexpressionsuc that ; 4; ; T e A[C]l,and ; o ;

e : A[C], where ; arelocalto e. Then e; and e, are contextually equivalert, writ-
ten

M Tore =k 2:€:A[C]

if and only if for every extensional expressioncortext E such that ° E[es] : b and
* E[eo] : b, we have
Ele1] 7! v i Ele)] 7V v:

It istrivial to shaw that the de ned relation is indeedan equivalence. We can now
proceedto establishthe soundnesf the logical relations with respect to cortextual
equivalence, as we only needto restrict the attention to program conexts of base
types.

Lemma 34
If ; ; ‘e = e A[C], then ; ; Ter=cx & A[C]

Pro of: By the congruenceproperty of = (Lemma 32), for any well-typed exten-
sional context E, we have that E[e;] = E[e;]. In the special casewhen E[g;] are closed
and of basetype b, the relation ~ E[e;1] = E[e;] : bby de nition implies that E[e;] and
E[e;] evaluate to the samevalue. BecauseE is chosenarbitrarily , the expressionse;
and e, are contextually equivalent.

115

3.6. NOTES CHAPTER 3. METAPROGRAMMING

3.6 Notes

Related work on staged computation and run-time code generation

An early referenceto staged computation is [Ers77] which introduces staged com-
putation under the name of \generating extensions". Generating extensions for
purposesof partial evaluation were also foreseenby [Fut71], and the concept is
later explored and eventually expanded into multi-level generating extensions by
[JSS85,GJ95, GJ97]. Most of this work is donein an untyped setting.

The typed calculus that provided the direct motivation and foundation for our
systemis the -calculus. It ewlved as a type theoretic explanation of stagedcom-
putation [DP01, WLPD98], and run-time code-generation[LL96, WLP98], and we
described it in Section3.1.

Related work on metaprogramming

Most of the work on functional metaprogrammingtoday is related to the developmen
of MetaML [TS97, MTBS99, Tah99 Tah0Q.

The core fragment of MetaML is based on the -calculus. Formulated by
[Dav9ag], is the proof-term calculus for discrete temporal logic, and it provides
a notion of open object code where the free variables of the object expressionsare
represened by meta variables on a subsequen temporal level. The original moti-
vation of was to dewelop a type system for binding-time analysis in the setup
of partial evaluation, but it was quickly adopted for metaprogramming through the
dewelopmert of MetaML.

MetaML builds upon the open code type constructor of and generalizesthe
language with seweral features. The most important one is the addition of a type
re nement for closedcode. Valuesclassi ed by the closedcode typesare those open
code expressionsthat do not contain any free meta variables. If an expressionis
typed as a closedcode, then it may be evaluated at run time.

It might be of interest hereto point out a certain similarity betweenour concept
of supports and the dead-cale annotations usedin MetaML with referencegCMTOO0,
CMSO03. MetaML cannot naively allow referencesto open code, in order to avoid
the extrusion of scope of bound variables. At the sametime, limiting references
to closedcode typesis too restrictive, as it rules out someprograms that are well-
typedin ML. Scope extrusion hasto be allowed, but only if the extruding variables
are never encourtered during ewvaluation. As a solution, MetaML with references
annotatesterms with the list of free variablesthat the term is allowed to cortain in
dead-cale positions.

In contrast to MetaML, in the -calculus, free variables are represerted by
names,and they are built into the calculus from the beginning. As a consequence,
only one modal constructor su ces to classify both closedcode and code with free
variables, leading to a conceptually simpler type system. Furthermore, we do not
foreseethat any signi cant problems will appear in the extension of with refer-
ences.

Taha and Nielsenpresen another systemfor combining closedand open code in
[NTO3]. The systemcanexplicitly namethe object stagesof computation through the
notion of environment classi ers. Becausethe stagesare explicitly named, ead stage

116

CHAPTER 3. METAPROGRAMMING 3.6. NOTES

canberevisited multiple times and variablesdeclaredin previousvisits can bereused.
This feature provides the functionality of open code. The environment classi ers are
related to our support variablesin the sensethat they both are bound by universal
quarti ers and they both abstract over sets. Indeed, our support polymorphism
explicitly abstracts over setsof names,while ervironment classi ers are usedto name
parts of the variable context, and thus implicitly abstract over setsof variables.

Related work on higher-order abstract syntax

Coming from the direction of higher-order abstract syntax, probably the rst work
pointing to the importance of a non-parametric binder like our -abstraction is
[Mil90]. The connection of higher-order abstract syntax to modal logic has been
recognized by Despeyroux, Pfenning and Schermann in the system presered in
[DPS97], which was later simplied into a two-level system in Schermann's dis-
sertation [Sh00]. The system presenried in [Bj 99] is capable of pattern matching
against object-level programs, but is not concernedwith their evaluation. There is
also[Hof99 which discussewarious presheafmodelsfor higher-order abstract syntax,
then [FPT99] which exploresuntyped abstract syntax in a categorical setup, and an
extensionto arbitrary types|[Fio02].

Related work on logic

The represertation of syntactic expressionshas beeninvestigated in terms of modal
logic of provability for quite sometime. The connection between the two arises
from Gedel's Incompletenesstheorems, as for example described by Smorynski in
[Smo8Y. Montague's work [Mon63] is an early referencetoward the impossibility of
a formal systemthat can reasonabout its own syntax and at the sametime re ect
the syntactically obtained results and treat them astrue.

117

3.6. NOTES CHAPTER 3. METAPROGRAMMING

118

Chapter 4

Mo dal theory of e ects

4.1 Prop ositional lax logic

4.1.1 Judgmen ts and prop ositions

Lax logic [FM97] is a logic for reasoningabout truth of propositions under certain
constraints. Unlike in modal logic of partial judgments (Section 2), where the par-
tialit y conditions are explicitly speci ed by the support of the judgment and can
be manipulated using the re ection principle, in lax logic the constraints are left
abstract and unspeci ed.

Following closely Pfenning and Davies [PD01], we start the judgmental formula-
tion of lax logic with the hypothetical judgments, one for the unconstrained truth
and one for lax truth:

Aqtrue;::: A, true” A true

and
Aqtrue;::: A, true’ A lax

In the dewvelopmert of lax logic, we use , rather than to vary over setsof true
hypotheses. The reasonsfor this change of notation will becomeclear subsequetly,
when we present the embedding of propositional lax logic into the propositional
modal logic. With this notational convertion in mind, we write our two judgments
as ~ Atrueand = A lax.

Just asusual, the hypothetical truth is internalized usingimplication, exceptthat
in this casewe denotethe constructor as) , to di erentiate the lax implication from
the implication usedin modal logic. Thus, we will have the following standard rules
for implication

;A true” B true “A) B true " Atrue

" A) B true * B true

On the other hand, A lax is supposedto hold if, intuitiv ely, the proposition A
is true under some, unspeci ed constraints. The following two statemerts formally
capture this intuition and can be taken as de nitional clausesfor A lax.

De nition of lax truth

1.If °~ Atruethen =~ A lax.

119

4.1. LAX LOGIC CHAPTER 4. EFFECTS

2.1f "~ Alaxand ;A true’ B lax,then ~ B lax.

The rst clause states that if A is true, then A is certainly true under some
constraint (namely, the trivial constraint that is always satis ed). In the second
clause,if A is true under someconstraint, then any consequencef the unconditional
truth of A will itself be constrained by the original conditions imposedon A.

Internalizing lax truth into the unconstrainedtruth judgment proceedsalong the
familiar lines. We introduce a new unary connective on propositions, with the
formation rule

A prop
A prop
and with the introduction rule that relatesthe new connective to the lax judgmernt.

A lax
A true

As customary, here we assumethat ead proposition A appearing in the judgments
is well-formed.

The elimination rule for follows the secondde nitional principle above, but
combines it with the introduction rule for

A true A true” B lax

" B lax

We alsoneedarule to realizethe rst de nitional principle and provide a coercion
from true to lax propositions.

T Atrue
T A lax
This axiomatization is locally sound and complete, as witnessedby local reduction

and expansion. The local reduction is justi ed by the de nitional property (2) above,
from the premises ~ Alax and ;A true’ B lax.

T A lax
Atrue ;Atrue’ Blax =) g * B lax
B lax
A true’ A true
Atrue =) g Atrue ;Atrue’ A lax
T A lax
A true

Example 24 The following are somejudgments derivable in lax logic.
1. A) A true

2.° A) A true

120

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

3. (A) B)) A) B true

Derivation of = A) A true.

A true’ A true
Atrue” A lax
A true® A true

T A) A true

Derivation of ° A) A true.

A true” A true
Atrue Atrue A true’ A lax

A true’ A true A true” A lax
A true” A lax
Atrue” Atrue
A) A true

Derivation of © (A) B)) A) B true.

(A) B)true® A) Btrue Atrue A true

(A) B)true;Atrue’ B true

Atrue® Atrue (A) B)true;Atrue” B lax
(A) B)true; Atrue’ B lax
(A) B)true; Atrue’ B true
(A) B)true® A) B true
“(A) B)) A) B true

Lax logic and mo dalities

From the logical standpoint, one canimagine that eat possibleworld of modal logic
represens a certain { abstract { constraint from the lax logic. Then the judgment
A lax expresseghat there existsa world (i.e. a constraint) in which A is true. Thus,
the judgment for lax truth is semartically very similar to the judgment for possibility,
becauseboth represern a form of existertial quanti cation.

Indeed, the two judgments sharevery similar typing rules and substitutions prin-
ciples. In fact, uponinspection of the typing rules, there appearsonly onedistinction:

121

4.1. LAX LOGIC CHAPTER 4. EFFECTS

the judgment for lax truth hasonly onecontext of hypotheses, while the judgment
for modal possibility hastwo contexts and , distinguishing betweennecessaryand
true hypotheses.Intuitiv e reasoningthen leadsto the following conclusion: if truth
and necessiy of modal logic are equated,that will have asa consequencéhe equating
of lax truth with modal possibility, and respectively, with 3. Note that con ating
truth and necessiy doesnot con ate thesetwo with possibility. If a proposition A is
possible,then it is true at someaccessiblevorld (and hencenecessaryat that world).
But it neednot be true and necessaryat the current world.

A precisestatemert of this obsenation involves embedding lax logic into modal
logic. In particular, if A true and A nec are equated on the modal side, then the
propositions A and A becomelogically equivalert. Henceforth, a lax proof de-
pending on a hypothesis A tr ue, will correspond to a modal proof that dependson

A true. Similarly, alax proof dependingon A lax, will correspondto a modal proof
that dependson A poss Becausethe judgments for lax truth and for possibility
are not usedas hypotheses,the embedding hasto manipulate the internalized forms
of the two judgments. Thus a lax proof depending on A tr ue should correspond
to a modal proof dependingon 3 A true.

More formally, considerthe translation ()* of lax propositionsinto modal propo-
sitions, discovered by Pfenning and Davies in [PDO1]:

(A) B)Y = A*1 B*
(A)Y = 3 A*
PT = P for atomic P
()" =
(;Atrue)t = *A* nec

Then the following lemmas establishesthe formal corresppndencebetweenthe two
logics.

Lemma 35
1.1f ~ Atruethen *; ° A* truein modal logic.
2.1f " Alaxthen *; ° A" poss

Pro of: By simultaneousinduction on the derivations of the rst judgments [PDO01].

For the opposite direction, we needan inversetranslation () , mapping modal
propositions into lax propositions.

(A' B) = A) B
(A = A
(3A) = A
P = P for atomic P
(;Aneg = ‘A true
(;A true) = A true

122

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

Notice that (A*) = A.

Lemma 36
1.If ; ° Atruein modal logic,then (;) A truein lax logic.
2. If ; “Apossthen(;)T A lax.

Pro of: By simultaneousinduction on the given derivation.

Theorem 37

1. " Atruein lax logicif andonly if *; ° A™ truein modal logic.

2. " Alaxifandonlyif *; ° A* poss
Pro of: The left-to-right direction is Lemma 35. For the right-to-left direction
of the rst statemert, if *; ° A* true in modal logic, then by Lemma 36,
(*) ° (A") true, and therefore ~ A true in lax logic. Similar reasoning

provesthe secondstatemert as well.

From the axiomatic standpoint, the identi cation of truth and necessy in con-
structive S4 modal logic can be accomplishedby addition of the single axiom scheme
(or inferencerule)

Al A true

Indeed, becauseconstructive S4 already proves A ! A true, adjoining A !

A true annihilates the logical distinction between A and A, and correspond-
ingly, betweentruth and necessiy. Notice that if A and A are equivalent in modal
logic, then instead of the translation ()* we could usethe translation () (de ned
below), asA* and A are equivalert for any A.

(A) B) = AIl B
(A = 3A
P =P for atomic P
() =
(;Atrue) = (;A neg

Moreover, the equivalencebetweenA* and A leadsto the following theorem.

Theorem 38
1. If ° A truein lax logic, then ; ~ A truein modal logic with A'! A.
2. If ° Alaxin lax logic,then ; ° A possin modal logic with Al A.
3.1f ; ~ Atruein modal logicwith A! A,then(;) A trueinlax
logic.
4. 1f ; ° A possin modal logicwith A! A,then(;) A laxin lax
logic.

123

4.1. LAX LOGIC CHAPTER 4. EFFECTS

Pro of: The rst two statemerts trivially follow from Lemma 35 by the equiv-
alence of the translations ()* and () . For the third statemert, assumethat

; * A true in modal logic extended with B ! B. Then by Lemma 36,
(;) A truein lax logic extended with (B ! B) . But, (B! B) is
equaltoB) B ,whichisalreadyderivablein lax logic. Thus,(;) A true

in lax logic with no additions. The proof of the fourth statemert is similar.

As a consequence, - A true and * A lax are derivable in lax logic if
andonlyif ; ~ A trueand ; °~ A poss are derivable in modal logic with
Al A, respectively. Notice, howewer, that the translation () simply renames
the lax connectives into modal connectives. In other words, the intuitionistic lax
logic is obtained when the constructive modal S4is extendedwith the axiom scheme
Al A. In that case,modal possibility attains the properties of lax truth, and
correspondingly, the operator 3 becomes

The described enbedding also explains why lax logic has only one modal con-

structor, corresponding to 3, and lacks a constructor corresponding to

412 Lax -calculus

In this section, we decoratethe judgmernts of lax logic with proof terms. The obtained
proof term system, called lax -calculus, extendsthe ordinary -calculus with new
syntactic categoriesto accourt for the speci cs of lax logic. Again, we follow Pfenning
and Davies [PD01] in the presenation. The judgments ~ A trueand ~ A lax
are now changedinto =~ e: A and ~ fs A, whereeandf are proof terms
witnessing the judgments. The syntax of the calculusis summarizedbelow.

Types A;B = PjA) Bj A
Expressions e 1= Xjx:Aejegejvalf
Phrases f = ejletvalx=-=¢einf
Variable contexts =] XA

As can be noticed, the syntactic categoriesof expressionsand phrasesare slightly
di erent from the categoriesof expressionsand phrasesusedin the modal - and -
calculi. Weretain the sameterminology, howewer, in order emphasizethe relationship
betweenthe modal and lax calculi.

As customary in the transition from logic to -calculus, the the cortext now
contains propositions labeledwith variables, sothat instead of A tr ue we write x:A.
We presen the type systembelow.

XA T XA

‘XA e:B e :A) B et A
x:A:e:A) B e1e:B

124

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

TerA
T es A
T fsA e A XA fsB
“valf: A “let val x = ein fsB

As can be seen,the proof terms constructors and the typing rules for uncon-
strained truth de ne a fragmert of the systemthat correspondsto the ordinary -
calculus. On the other hand, the constructors and the rules for lax truth are similar
to the rules for the possibility fragmert of the modal -calculusfrom Section1.2.

Example 25 The following are well-typed terms in the lax -calculus.
1. x: valx:A) A
2.° x: val (let valy=xinlet val z=yin 2): A) A

3. f:x val(letvaly=xinfy:(A) B)) A) B

We now restate the de nitional propertiesfor the lax modalities using the newly
intro duced proof terms of the lax -calculus.

1.If "~ e:A,then ~ esA.
2. 1f "~ fisAand ;x:A" fo,sB,then =~ hf=xiif,s B.

The de nitional property (1) simply expresseghat ead expressioncan be coerced
into a phrase. The property (2) is a substitution principle for phrases. It usesa
similar form of phrase substitution f %xiif asthe onede ned in the caseof modal
possibility (Section 1.2).

the=xii f
et val y = ein f &xiif

[e=Xf
let val y = ein Hf &xiif

The local reductions and expansionsof the calculus are

(x:Are) ez =) r [e22X]e
e:A) B =) E X (Al ex

let val x = val f1in f» =) R Hf 1 =xii f »
e: A =) e val (let val x = ein x)

125

4.1. LAX LOGIC CHAPTER 4. EFFECTS

4.1.3 Values and computations

In this sectionwe review the main results on a monadictreatment of e ects. The idea,
originally proposedby Moggi [Mog89, Mog91] for structuring denotational sematriics,
and then adopted by Wadler [Wad92, Wad95 Wad9§] for functional programming, is
to usea unary type constructor (called monad), to distinguish in the type system
between values and e ectful computations. We deliberately use the notation
from lax logic, to emphasizethe connection betweenthe lax -calculus and e ectful
computations. We will make this connection more explicit subsequetly.

For example,if A is atype of values,then A classi es computations of type A.
The reasonfor this distinction is that computations do not needto be pure. In the
courseof its evaluation, a computation is not limited to only compute a value { in
fact, it is not even required to { it may be ewvaluated in order to perform an e ect.
For example, a computation may update the global store, raise an exception, per-
form 1/0O, or perhapsdiverge. As argued by many works on type-and-e ect systems
(IGL86, LG88, Mog9l, Wad92 Wad95 Wad98, JG91, TJ94, TT97] among others),
and exploredin the context of the programming languageHaskell [Pey03, it may be
bene cial for the programming practice to make explicit in the type systemthat a
certain program expressionmay perform an e ect. Suc a type systemrestricts the
classof ervironments that an expressionmay interact with and makes the reason-
ing about e ectful programs much more modular, and hencesimpler. This in turn
facilitates the compile-time discovery of programming errors related to e ects, and
enablesmore aggressie optimizations.

The exact e ects that a computation may perform may vary. Howewver, indepen-
dently of the nature of particular e ects, there are two genericoperations applicable
to any notion of computation:

1. Every value e canbe coercedinto an e ectful computation that trivially returns
that value.

2. Two e ectful computations f1 and f, can be composedas follows: rst f; is
evaluated, and its value (if it exists) is supplied as an input to f,. The result
is a computation \inheriting" the e ects of both f1 and f,.

It is no accident that the description of these two generic operations relates so
closelyto the de nitional principles of lax logic and the lax -calculusfrom the pre-
vious section. In fact, the lax -calculusperfectly embodiesthe described distinction
betweenvaluesand computations, aswitnessedby the following interpretation of its
syntactic categories.

1. An expressione : A describesa pure computations, which evaluates with no
side e ects, and therefore producesa value of type A. From the operational
standpoint, an expressione is obsenationally equivalent to its value.

2. The phrasef s A describes an e ectful computation of type A. Two e ect-
ful computations can be combined, as described by the phrase substitution
principle from the previous section.

3. An e ectful computation f s A canbeinternalized asan expressionval f ;. A.

126

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

4. An expressiore : A (or more precisely its value), canbe coercedinto an e ectful
computation es A and then internalized into an expressionval e: A.

In the original paperson monadictreatment of e ects [Mog89, Mog91], Moggi has
proposeda monadic -calculus as a generalframework for describing operations on
e ectful computations. The monadic -calculusis very similar to the lax -calculus,
but it doesnot make a judgmental separation between pure and e ectful computa-
tions. Rather, it con ates the notions of expressionsand phrases,and contains only

onejudgment e: A, with the following typing rules.
XA XA
XA e:B "e1:A) B TelA
"A) B e B
Ce:A e A XA e: B
Tcomp e: A “let comp x=eine: B

In fact, Moggi's formulation of the monadic -calculus usesproof terms val and
let val, which we rename here into comp and let comp, to avoid confusion with
the constructors of the lax -calculus.

The local reductions and expansionsof the monadic -calculus are given as fol-
lows.

(x:Are)e =) r [e23Xe

e:A) B =) e X A ex

let comp x = comp €; in & =) R [e1=X]f »
e: A =) E let comp x = ein comp X

These reductions and expansions,however, are not su cien t to explain all the in-
teractions betweene ectful expressions.Becauseof the unusual elimination rule for

, expressionof monadic type may be introduced using both comp and let comp
forms, but the local reduction for only accourts for the rst possibility. Thus,
the monadic -calculusrequiresan additional equational rule to treat the commuting
conversionsbetweennestedlet comp expressions.

let comp x = (let comp y = e;in) in e =)
let comp y= e;in (let comp X = e in €

Example 26 In the monadic -calculus,the particular notions of e ects are usually
speci ed by a notational de nition of the type A andits corresponding expressions,
in terms of already available languageconstructs.

127

4.1. LAX LOGIC CHAPTER 4. EFFECTS

For example, if we want a languagecapableof raising an exception of type E, we
usedisjoint sumsto de ne the exeption monad and its corresponding monadic
term constructors [Mog91, Wad95.

A = A+E
comp e = inl e
let comp x = e ine = case egof inl X) ejinry) inry

There are also additional term constructors usedto raise and handle the exception
asseiated with the monad

raise . E) A
raise e = inr e
handle : A) (E) A) A
handle eh = case eof inl v) vjinr exn) hexn

The constructor raise takesan expressione : E and coercesit into inr e. This way, it
implemerts exception raising, passingthe value of e along. The constructor handle
takesan expressione: A and a function h represetting an exception handler. If e
evaluatesto a valuev : A, the result of handling is v. If e raisesthe exception with
a value exn : E, then the result of handling is h exn.

The operational semariics follows the standard operational semariics assaiated
with disjoint sums. For example, let us assumethat A = A + E is an exception
monad, and that f :int) int. The following program addsthe results of f 1 and
f 2. If the evaluation of any of the two function applications raisesan exception, the
overall computed result is zero.

handle (let compxl =

f 1
compx2 =f 2

in
comp(x1 + x2)
end) (exn. 0)

Example 27 In this example, we presert the monad of side e ects. The monad
of side e ects de nes computations that executein a state. The computation can
read from the state, and modify it. Let S be a set of possible states. A stateful
computation of type A is a computation that may read from the current state,
before returning a value of type A, and a new state. Hence, stateful computations
are classi ed by the the monad de ned asfollows.

A
comp e

S) (A S
S :S: he;si
s:S:let h;s% = (e s)in (e289

let comp x = e in &

128

CHAPTER 4. EFFECTS 4.1. LAX LOGIC

The type A =S) (A S) expressesthe fact that a stateful computation is
a function: it reads from a state before returning a value and a new state. The
constructor comp coercesa value e into a trivial stateful computation that returns
e and the unchanged state. The constructor let comp evaluates e; in the current
state, before passingthe obtained value x and the new state sto e,.

The type S and the notion of state assaiated with this monad may be de ned
in many di erent ways, depending on the wanted side e ects. For example, S may
represemn memory store in which mutable referencesmay be allocated, read from and
written into [LP95, BHMO02]. For simplicity, in this examplewe assumethat the state
consistsof a single integer location which can be read and written. Correspondingly,
we set S = int, and adjoin the following speci ¢ constructors to the state monad

read int
read = s:int:hs;si
write : int) unit
write e = s:int:h);e
int : int) A) A
int &g e = fst (e &)

The stateful computation read returns the value of the integer location from the
state s; s remains unchanged. The computation write e changess sothat the value
of e is now stored into it. This computation is not evaluated for its value, sothat it
returns the trivial value ():unit . The constructor init initializes the state location
with the value of e;, then executesthe stateful computation e, and returns the
computed value.

As an exampleof the constructorsfor stateful computations, considerthe program
below. In this program, we assumea function add : int) int which adds its
argumert to the value of the state location, while returning the old state value as a
result.

init 1 (let compx = read
compy = add (x)
compdummy= write (y + 1)
in
read
end)

The program rst initializes the state with 1, and then incremerts it by meansof the
function add. The value bound to y is 1, which is the old value of the state. Then
y+ 1= 2is re-written into the state, and it is this value that is nally computed by
the program.

As establishedby Pfenning and Davies in [PD01] and Benton, Bierman, de Paiva
in [BBdP98] and Kobayashi [Kob97], both the lax -calculus and the monadic -
calculus are computationally adequate. Howewer, becausethe lax -calculus does
not require any special treatment for commuting corversions, it has a bit simpler
and more pleasan proof-theoretic properties.

129

4.2. MODALITIES CHAPTER 4. EFFECTS

4.2 Mo dalities for e ectful computation

As summarizedand illustrated in the previous section, monadsand lax logic can be
usedto dierentiate in the type system betweenvaluesand e ectful computations.
Having in mind that the monadic and the lax -calculi very closely correspond to
modal possibility, a natural question arises: doesa dual developmert to modal pos-
sibility and monads have any computational import to the treatment of e ects? In
other words, can we employ modal necessiy to capture someinvariants of e ectful

computations, and if so, which invariants doesmodal necessiy represemn?

We start our analysis of this question by making a distinction similar to the one
madein the monadic and the lax -calculi in Section4.1.3. We assumethat the non-
modal type A corresponds to values and that the modal types A and 3 A stand
for somekind of computations of type A. But, what kind of computations exactly
do the two di erent modalities represent?

Let us rst considermodal possibility, becausat is related to lax logic and monads
from Section4.1, and thesehave beenextensiwely studied in the literature. We recall
the relevant typing rules and the substitution principle, in a version decoratedwith
the calculus of proof terms (Section 1.1.4).

X TelA
; e A
X f A : T e:3A XA f B
: “diaf :3A : “let dax=einf B
Substitution principle for possibilit y
If : “f;1 Aand; xA" f, B,then ; T W =xiif, B.

In the substitution principle for possibility, the operation of phrase substitution
tf &xiif is de ned as

the=xii f
thet dia y = ein f &xiif

[e=X|f
let dia y = ein Hf &xiif

The important obsenation about modal possibility is that it enforcesa program-
ming style by which the computations (and therefore, the corresponding e ects) are
serialized, i.e. totally ordered. Indeed, eat phrasewitnessing a possibility judgment
is a nestedlist of let dia clauses.Thus, for any two computations of types3 A and
3 B respectively, it is always evident from the program which of the two takesprece-
dence. For example,let e; : 3A and e, : 3 B be two computations, and considerthe
phrase

F = let dia x1 = e; in (let dia x> = e in)

It is clear from the form of F that e; takesprecedenceover e,, and that any sound
operational semattics for phraseswill have to evaluate e; rst, beforeattempting e».

130

CHAPTER 4. EFFECTS 4.2. MODALITIES

Moreover, the de nition of modal possibility prohibits writing phrasesin which this
ordering is not immediately evidert. In particular, let F; A! B andF, A be
two phrasesde ned as follows:

Fi=let dia xy=¢einf; and Fo=let dia x2 = & in f,

Then it isimpossibleto put F1 and F, together into an application like (F; F») where
it is unclear which of two phrases{ and which of the two computations e; and e, {
comes rst. Indeed, F; F> is not a well-formed elemen of the category of phrases,
asde ned in Section1.1.4.

The operation of phrase substitution Hf =xiif ° combines the substituted phrases
by giving precedenceto the e ects of f over the e ects of f © As an illustration, let
F 9 be another phrase with its own computational e ects, and consider the phrase
substitution HF=xii F° whereF is de ned above.

WF=xiiF® = (let dia x; = e in let dia x2 = e in Hf =xiiFY

Notice that the e ectful computations e; and e, are the rst two computations in
the result of the substitution, and therefore take precedenceover the computations
of F As a conclusion,any operational semartics basedon the substitution principle
for possibility will respect the serialization speci ed by the phrase constructors and
appropriately order the computational e ects of the program.

It is this property, sharedby both monadsand modal possibility, that makesthem
very appropriate for represening persistent e ectful computations where an e ect
may changethe environmentin which the program executes.A changein icted upon
the environment may in uence the subsequeh computations. Therefore, in order to
have a well-de ned semartics, it is important that the program e ects are always
performed in a strictly speci ed order. A typical example of the persistert kind of
e ects is writing into a memory location. And indeed, asit is well-known from many
practical algorithmic and systemsapplications, writing into memory locations must
typically be serialized,sothat the value storedin the location is always well-de ned.

Of course, another way to specify the ordering of program e ects is to de ne
it by the operational semarics. This strategy is adopted by many programming
languages,a typical example being Standard ML [MTHM97]. But, atype system{
like that assaiated with monadsor modal possibility { that makesit explicit which
expressionsare e ectful and which are not, has a certain advantage. It not only
speci es the ordering of e ects, but it provides the compiler with the knowledge
of e ectful properties of program expressions. This knowledge can be utilized to
perform better optimizations. For example,if an expressionis e ectful, then it should
be ewvaluated in the serialized order given by the program. But if an expressionis
pure, then its subterms may freely be rearranged, optimized, and evaluated out of
order.

Let usnow inspect the possibleuseof modal necessiy for represertation of e ects.
We recall the relevant typing rules and the substitution principle for necessy, in its
version decoratedwith proof terms, as preseried in Section1.1.3.

131

4.2. MODALITIES CHAPTER 4. EFFECTS

T erA e A (;uzA); " e:B
: “boxe: A : “let boxu=¢ein &:B

Substitution principle for necessity
If : “er:Aand(;ucA); " e :B,then ; * [e1=ule; : B.

Unlik e modal possibility, notice that modal necessiy doesnot prescribe any par-
ticular ordering amonge ects. To contrast this with our previous discussionof pos-
sibility, let e : A and e, : B betwo computations, and considerthe expressions
Ei:A! B andE,:A, de ned asfollows:

Ei=let box up = e in €0 and E, = let box u; = e in €

Then it is perfectly well-de ned to put together E; and E» into an application like
(E1 E») : B. Obsene that the languageconstructs usedin this expressiondo not
specify which of the expressions 1 and E» { and therefore which of the computations
e, and e { takes precedenceover the other. It must be left to the operational
semartics of the languageto determine the evaluation order between the two, but
any strategy is sound. Furthermore, unlike the phrase substitution principle, the
substitution principle for necessiy relieson ordinary substitution [e;=ule, | it freely
propagatesand even duplicates e ectful computations, without any concernfor the
ordering of the e ects involved.

As a consequenceif modal necessiy is to represen e ectful computations, these
could only be computations that do not change the run-time ernvironment of the
program. The computations may depend on the environment, but they should not
changeit | they are benign. Examples of benign e ects abound: non-termination,
memory readsand cortrol- o w e ects like exceptions,to mention but a few.

The simple modal type systemin itself, howewer, is not strong enoughto represert
benigne ects. In many casef benigne ects, results of benign computations depend
on the evaluation ervironment. It is of paramount importance, therefore, to prevent
evaluating e ectful expressionswithin environments that cannot deal with the e ect
in question. For example,an expressionthat readsfrom a memory location X should
only be evaluated when a memory location X is actually allocated and initialized.
An expressionraising the exception X should only be ewvaluated when a handler
for X is active. Thus, it is necessaryfor soundnesspurposesthat the type of a
benign computation captures the relevant aspects of the environment on which the
computation dependson.

This is wherenamesand supports, asdewvelopedin Section2.2, becomeimportant.
Henceforth, rather than using a simple modal type system, we will considera modal
type system with namesand indexed modalities. For example, if a computation of
type A needsto read from the memory location X, or may raisethe exception X , we
will ascribe it the type x A. Namesand supports provide yet further possibilities.

132

CHAPTER 4. EFFECTS 4.2. MODALITIES

Using indexed necessiy types,we can encade in the type systemthe notion of han-
dling, i.e. restoring the purity of an impure computation by meansof someaction.
Handling will be related to the principle of re ection from Section 2.1. When the
e ect X in a computation of type x A is handed, we obtain a pure computation of
type A, and then a value of type A.

A following logical analogy can be made about modal typesfor e ects. A compu-
tation of type A with a benigne ect identied by the nameX is, in a sensea partial
computation. In order to produce a value of type A, it needsto be evaluated in an
environment capable of dealing with X . But it can be successfullyevaluated in all
such environments | hencewe can ascribe it the the bounded universaltype xA.
On the other hand, a persistert computation of type A that changesthe aspect of
the run-time ervironment assaiated with the name X (for example, writes into the
memory location X), will be ascribed the bounded existertial type 3 x A. Indeed,
sudh a computation is a witnessthat there existsan ervironment { the one obtained
after changing X { in which a value of type A can be computed.

To summarize, we can use the modal type system with namesto distinguish
between following computational categories: (1) values which are assaiated with
non-modal typesA, (2) computations with benign e ects, which are assaiated with
necessitationtypes cA, and (3) computations with persistent e ects, which are
assaiated with possibility types3 cA. In a modal type systemwith names,we can
also make a characterization of pure computations. A pure computation of type A is
a computation with no e ects. In particular, it doesnot depend on any aspects of
the run-time ervironment, and cantherefore be ascribedatype A, wherethe index
support on the modal operator is empty. A pure computation is not necessarilya
value itself, but it may be evaluated to produce a value. This property is logically
characterized by the axiom A! A of constructive S4 modal logic.

Just asin the caseof the monadic -calculus, we will alsowant to coercevalues
into computations. But in the modal system, we can actually expressthat a compu-
tation obtained by coercing a value is, in fact, pure. An appropriate logical analog
of this coercion is the proposition

Al A

As already discussedn Section4.1, adjoining this proposition to CS4modal logic
results in two things: (1) modal possibility becomedax truth, and correspondingly,
3 becomesa strong monad in the senseof Moggi [Mog91]], and (2) the logical dis-
tinction between A and A is annihilated. In lax logic, this resulted in removing
the operator from considerations. If this axiom is adjoined to modal logic with
names,it again makesthe typesA and A logically equivalent. Howewer, this does
not remaove the needfor the operator and its asseiated proof terms. In modal
logic with names,there is a whole family of necessitationoperators ¢, indexed by
supports C. Identifying A and A certainly does not collapsethis whole indexed
family. The operator can still make distinctions between propositions. For exam-
ple, one proposition that doesnot becomederivable after equating A and A is the
implication xA ! A: The computational content of this proposition states that
every computation with a benign e ect X evaluates to a value. But this is obvi-
ously false. For example, a computation of type A that may raise the exception X,
certainly neednot evaluate to a value. Indeed, it may actually raise the exception.

133

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

Before we proceedwith the technical details of a modal type systemfor e ectful
computations, we needto answer the following important question: do benign com-
putations indeedpresen a separatecategory and require their own type constructor?
Is it possibleto perhapstreat benign computations using monadsor modal possibil-
ity, or to simply ignore their e ects and considerthem pure?

Of course, every benign computation may be consideredas trivially persisten,
and represerned using the same medanism of monads or modal possibility. But
that represenation would fail to capture the important invariant that benign com-
putations do not changethe run-time ervironment, and therefore do not needto be
serialized. Indeed, why serialize two computations that both read from a memory
location X, when they could easily be evaluated out of order.

On the other hand, perhapsbenign computations may be consideredpure? After
all, this is exactly how non-termination is often treated in practice. Becausediverging
expressionglo not changethe run-time ernvironment (in fact, they do not evendepend
on the environment), non-termination in most casesis not even consideredan e ect.
Unlik e non-termination, howewer, not all benign e ects are independert of the run-
time environment in which they are evaluated. For example, a computation that
reads from the memory location X will produce a dierent result, depending on
the content of X at the time of ewvaluation. Sud a computation may therefore
be optimized, rearranged, memoized, evaluated out of order, or in parallel with
many other computations reading from X, but only as long as the cortent of X
is unchanged. In particular, this evaluation cannot be postponed beyond the rst
subsequeh write into X . This is very di erent from pure computations which can
be postponedinde nitely , and only evaluated when their result is needed.

As a conclusionthen, it is sensibleto employ a modal type systemto distinguish
betweenvalues, pure computations, computations with benign e ects, and computa-
tions with persistert e ects. We proceedin the following sectionwith a description
of the technical details of such a type system.

4.3 A modal type system for benign e ects

The main judgment of the modal type system for benign e ects is a variant of the
partial truth judgment for modal logic from Sections2.1 and 2.2:

: T e:AlC]

We recall herethe relevant syntactic corventions. For example,the typing ascriptions
in the context are of the form u:A [C], assigningthe type A and support C to the
variable u. The name context consistsof type assignmeis X 1:A1, :::, Xn:Ap,
assaiating namesX 1, :::, X, with typesAzq, :::, An, respectively. All the names
usedin the typing judgment are requiredto be declaredand typedin . It isassumed
that all the namesX;::: ; X, aredistinct, and the setfXi;::: ; Xng is denoted by
dom(). The context is dependertly typed, becauseead type A; may dependon
names. Thus, ead X; may be usedonly to the right of its declaration in .

In the modal systemfor benign e ects, namesstand for the particular notion of
e ects, and this notion may di er from application to application. For example,if we
want to designa type systemthat tracks location readsin order to prevent reading

134

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

from uninitialized locations, we will use namesto declare memory locations. If we
want to designa type systemthat tracks raising and handling of exceptions,we will
use namesto declareindividual exceptions.

In the modal systemfor benign e ects, the support C assaiated with the expres-
sion e lists the e ects that may be enactedduring the evaluation of e. For example,
if the expressione may read from a location X :A, then the name X will bein the
support of e. If the expressione may raise the exception X :A, then the name X will
bein the support of e. Support C will typically be a nite set of names,but we will
also consider an application in Section 4.8, where C is a nite list of names. What
is important, howewer, is that supports come equipped with a partial ordering

Cv D

whoseminimal elemert is the empty support (beit a setor alist). This is analogous
to the dewelopmert of partial judgments in Chapter 2. The idea behind the partial

ordering of supports is the following: if the expressione has support C, then all the
e ects that may arise during the evaluation of e are listed in C. But then, trivially ,

all thesee ects arelisted in D w C, and thus e could be ascribed a support D aswell.

Thus, one of the important structural properties of the type system is the support

weakening principle phrasedas follows.

Principle (Supp ort weakening for expressions)
If ; "~ e:A[ClandCv D,then ; " e:A[D].

By declaring which e ects may be enacted by the expressione, the support C
also determinesin which run-time ervironments the expressione may be evaluated.
For example, if e may read from the location X, then e must be evaluated in an
environment in which X is initialized. Or, if e may raise an exception X, then e
must be evaluated in an ervironment with an active handler for X. Thus, our type
system will have a judgment for typing environments in order to determine when
an ervironment matches a support C. The general form of the judgment for
ervironments?! is:

,hi:[C]) [D]

An expressione of support C may only appearin a context of an ervironment that
istypedas[C]) [D] (for someD). Thus, the typing h i :[C]) [D] declaresthat
can appropriately dealwith the e ects C. We will keepthe ervironment judgmernt
unde ned for a moment, and provide de nitions for ead particular notion of e ect
that we considerin the subsequeh sections. Obviously, the ervironment judgment
correspondsto the support judgment C sat[D] from Section2.1 and the judgment of
explicit substitutions h i : [C]) [D]from Section2.2. The environments are subject
to the similar support weakening principles as explicit substitutions and C sat [D].

Principle (Supp ort weakening for environmen ts)
If ; "~ hi:[C]) [DlandDv D%then ; " hi:[C]) [DY.

1 Although, in specic caseswe will deviate slightly from this form in order to provide more
information relevant to the environments.

135

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

The relationship between expressionsand ernvironments is establishedin the type
systemvia the following rule corresponding to the rule for re ection in Section2.1.

: T e:A[C] ; “hi:[C]) [D]
; " hie:A[D]

This rule ensuresthat an expressione is always evaluated in a cortext of an en-
vironment that can deal with the e ects of e. In this sense,the type system of
benigne ects may be seenasa particular version of modal logic of partial truth from
Section 2, in which the processof re ection is de ned as evaluation.

There is one notable distinction, howewer, between benign e ects and partial
truth. As the reader may have already noticed, none of the judgments for benign
e ects usesthe context , whichis pervasivein modal logic of partial truth. There is
a reasonfor this omission. When expressionsare treated as e ectful computations,
then valuesnaturally must be consideredas pure, i.e. e ect free. Indeed, valuescan
never enact any e ects, simply becausetheir evaluation is already nished. Because
a pure computation returning a value of type A is itself typedas A, treating values
like pure computations logically corresponds to extending the modal type system
with the axiom

Al A

This move is identical to the way lax logic and the lax -calculus are obtained from
modal logic and the modal -calculus(Section4.1.2), wherewe usedthe above axiom
to identify truth and necessy. It isonly that in the systemfor benigne ects, we start
with a modal logic for partial judgments (Chapter 2), rather than the propositional
modal logic (Chapter 1). But if truth and necessiy are identi ed, then the context
of truth hypotheses is subsumedby the context of necessiy hypotheses, aspart
of that declaresvariables of empty support. Correspondingly, in our notation we
will usex, y and variants to range over variables with empty support, and we write
X:A, instead of x:A [], when a variable x with empty support is declaredin .

We immediately put this this notational cornvention to usein our formulation of
the typing rules for function typesA ! B.

(xiA) T e:BJ] ; e Al BIC] ;e AlC]
; " x:Are:Al B[C] ; e e :B[C]

The typing rulesfollow the customary formulations for -abstraction and application,
but there are seeral important obsenations to be madeabout the support C in these
rules. First of all, notice that the abstraction x :A: erequiresthe body e to betyped
with empty supprt. The motivation for this typing is purely computational. In the
usual formulation of operational semartics for functional programming languages, -
abstractions are always consideredto be values Becausewe want to identify values
and pure computations, we must require that function bodies be pure. The whole

-abstraction itself may be ascribed an arbitrary support C, which is a formulation
required by the support weakening principle.

Example 28 Anticipating section 4.6, supposethat our languagecortains a con-
structor raise, sud that raise x e raisesan exception X, passingthe value of e along
(assumingthat both X and e have the sametype). Expressionsthat may potertially

136

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

raise the exception X, will be ascribed a support X by the type system. That way,
the type system keepstrack of the e ects that an expressionmay cause. Assuming
that X is an exception of integer type, the following expressionF is not well-typed.

F = y:int: 1+ raisex y

The body 1+ raise x y of F is e ectful and hassupport X . But then F itself cannot
betyped, becauseof the restriction onthe rulesfor -abstraction, asexplainedabove.

Notice that the restriction onthe typing of F is necessary Evenif F isavalue, and
doesnot immediately perform an e ect, it still cannot be consideredpure. Indeed,
F hasthe potential to perform an e ect, onceit is applied to an argumert. If F is
typed as pure, the type systemwill not be ableto accoun for the e ect of F. This is
not to say that function bodiesin our calculus cannot corntain e ectful terms. They
can, but the e ects have to be enapsulatal by the constructs for modal necessiy.
For example, the term F % below is a well-typed counterpart to F.

FO= y:int:box (1L+ raisex y):int! xint
The typing of FOwill be explainedin detail in the forthcoming developmerts.

A further obsenation about the typing rules for functions concernsthe seeming
mismatch betweenthe support of the argument e, in the application rule, and the
support with which the variablesareintroducedin the context in the -abstraction
rule. Indeed, -bound variables are declaredin with empty support, but e, may
have an arbitrary support C. This mismatch is resolved by requiring that e, must
always be evaluatel under the current environment before its value is passedto e;.
Becausethe value of e, is pure (just like any value), it matchesthe empty support
usedto declarebound variablesin . As a consequencethe calculi that we design
in this section will inherertly be call-by-value To make our operational semarics
concrete,we will alsoimposea left-to-right evaluation strategy. Notice however, that
we deal with benign e ects, and therefore the evaluations of the function and the
evaluation of function argumerts do not interfere with ead other. The type system
may in fact be soundly ascribed right-to-left or any other call-by-value evaluation
order.

From the logical standpoint, the described mismatch in supportsisjusti ed by the
obsenation that our type systemidenti es truth and necessiy, in the sameways it
is donein the formulation of lax logic (Section 4.1). Becauseof this identi cation, all
of our expressionsare actually categorical, and are therefore subject to re ection. We
arefreeto re ect the argumern e, beforesubstituting into e;. As already discussedjn
the type systemfor benign e ects re ection correspondsto evaluation, sowe simply
rely on the operational semartics to specify that e, should be re ected before we
passit to e;.

The notion of computation with benign e ects is internalized into the calculus
by using the modal type constructor for necessiy . For example, given a type A,
the type cA will classifythe computations of type A, whoseevaluation may cause
the benign e ects determined by the support C. The appropriate typing rules are
obtained by erasingthe cortext from the standard formulation of the typing rules

137

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

for (Section2.2.1).
;7 elA[C]
;. boxe: cA[D]

, er: cA[D] ; (JWAIC]) * e2:B[D]
: " let box u= e, in & :B[D]

We also have the following hypothesisrule
Cv D

; (;WA[C]) " u:A[D]

The term box e: A is avaluethat enapsulatesan e ectful computation e. As
already explained, when e is evaluated, it may enact the e ects whose namesare
listed in C. Becausebox e is a value, and therefore pure, it may be wealkened to
an arbitrary support D. From the operational standpoint, boxing an expressione
susgends its evaluation. On the other hand, performing let box u = box e in €°
binds e to u, but does not necessarilyevaluate e itself. The expressione will be
evaluated only if u appearsin €° outside of boxed expressions.

It isinteresting hereto draw a parallel betweenthe operational behavior of modal
constructors with the behavior of -abstraction in impure functional languages.Sus-
pendingan e ectful expressionein animpure functional languageis usually achieved
by creating a -abstraction x: e (where x 62fv(e)). For example,in a typical type-
and-e ect system [GL86, LG88, JG91, TJ94], a computation is represerted asa -
abstractions whosetype is annotated with a list of e ects. The characteristic typing
rules are usually a variation on the following.

; (;x:A) T e:BIC]

()

;) x:A:e:A!CB[]

< C <
: er Al B[D4] ; e A[D2]
, e1e:B[C;Dy;D2]

Doesthis similarity indicate that modal constructs are perhapssuper uous and may
be removed in favor of functional abstraction?

The answer to the above question is negative, as the import of the modal con-
structors in the languageof e ects is not solely operational. Their main role is not
to suspend the evaluation of expressions,but to internalize the notion of e ectful
computation. For example, note that the rules (*) and (**) are not locally complete,

and therefore are not logically justied. The local expansionof e : A © B [D] is
given as

e:A!CB[D] =) e x: ex:AT° B

and the expressione hasa di er ent type and support from its expansion. To contrast
this, local expansionin the calculus of benign e ects presenestypesand supports,
as can easily be cheded from the equation below.

e: cA[D] =) E let box u= ein box u

138

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

In fact, when e ectful computations are internalized as a separatesemariic cat-
egory which is di erent from functions, then functions and function typesare freed
from the responsibility to track e ects. Moreover, in sud situations functions are
usually required to be pure. This is not only the casein our calculus of benign
e ects, but is also true of the monadic -calculus [Mog91, Wad97. In both cal-
culi, a function body may cortain an e ect only if the e ect is encapsulatedby a
computation-forming construct. And in both calculi, the range type of such a func-
tion will be a computation type (monadic type A in the monadic calculus, and a
modal type cA in the calculus of benign e ects).

Finally, our type systemneedsconstructs for intro duction of freshe ect instances
into the computation. Again, we adopt the approac from the modal calculus of
Section 2.2 with certain modi cations.

(;X:A); "~ e:BJ] ;, e:A9 B[C]
; T X:Are:BJ[C] ; " choose e: B [C]

The term constructor X:A: e is the introduction form for the new type A 9 B.
It declaresa fresh e ect instance under the name X and introduces X into the
context of names . Any unusednameX 62dom() would producethe sameresult,
as justied by the renaming principle belon. As a consequencethe form X:A: e
actually bindsthe name X, which canthereforebe -renamedinto any other unused
name of type A. The elimination form choose e allocates a new e ect instance of
an appropriate type, and usesit instead of the name bound by e. The abstraction

X:A: eisavaluein our calculus,just like all the other type introduction forms that
we introduced sofar. For the samereasonasin the caseof -abstraction, we require
that the body of -abstraction hasempty support, in order to presene the purity of
values.

Principle (Renaming)
If (;X:A; 1); ~ e:BJ[C]and Y:A is a fresh name, i.e. Y does not appear
anywhere in this judgments, then

(SY:ACLY=XT 1) [Y=X] ° [Y=X]e: ([Y=X]B) [[Y=X]C]:

To summarize,the calculusof benign e ects is very similar to the fragment of the
-calculusfrom Section 2 containing the operator, with seweral important distinc-
tions. First of all, the calculus of benign e ects admits the axiom A ! A, which
is not realizedin the -calculus. The operational import of this axiom is to coerce
valuesinto pure computations. As a consequencethe context of value variables,
which is characteristic of the judgmental formulations of modal logic and modal cal-
culi, is subsumedby the cortext in the calculus of benign e ects. Second,bodies
of -and -abstractionsin the calculus of benign e ects must have empty support,
while in the -calculusthis support may be arbitrary. Third, and probably the most
important is that re ection in the -calculusis performed eagerly, upon modal sub-
stitution, and is de ned on expressionsthat may contain free modal variables. In
the calculus of benign e ects, re ection of the expressione under the ervironment
is speci ed by a separateterm constructor h ie. It is not tied to modal variables
and modal substitution.

139

4.3. TYPE SYSTEM CHAPTER 4. EFFECTS

Beforewe concludethis section, we summarizethe syntax, typing and operational
semartics of the modal calculus for benign e ects. Just asin Section 2.1, this will
not be a complete system, but rather only the common corefragmen that we extend
in future sectionwith constructs de ning particular e ects. In ead of thesecaseswe
will provide the appropriate proofs of progressand type presenation.

Names X;5¥Y 2 N

Supports C;D = jCX

Types A;B = PjA! Bj AjA9 Bj:::
Expressions e = ujx:Aejerej

box ejlet box u=e;in e
X:A: ejchooseej:::

i TWAIC]

i G XGA

Variable contexts
Name contexts

The type system consists of the judgments for formation of cortexts, types and
supports, as well as the typing judgment for expressions; T e:A[C]. Weonly
presen the later, asthe formation judgments are identical to the onesconsideredin
previous sections. In the de nition of the typing judgmert, it is implicitly assumed
that all parts of the judgment are well-formed.

Denition of ; ~ e:AJC].
Cv D
; (SwA[C]) T u:A[D]
; (x:A) T e:B] ; e Al BIC] ; et AC]
T x:Are:A! BIC] ; T e1e:BJ[C]
" e:A[D] ; e pAJC] ; (;uzA[D] T e :BIC]
" box e: pA[C] ; “let box u=e1in e :B[C]
(;X:A); " e:BJ[] ; “e:A BJC]
X:Are:A BJ[C] ; * choose e: B [C]

Example 29 If C;C1;C, and D are well-formed supports, then the following are
derivable typing judgmernts in the calculus of benign e ects.

1." x: box x:A! DA

2 X: let boxu=xinu: A! A[]

3.7 x: let box u=xin boxu: c,A! cA, whereCiv C

4 x: let box u= xin box box u: ¢,A! p cA, whereCiv C
5

X: y:let box u= xin let box v=yin box uv
Cl(A ! B) ! CzA ! cB, whereCy;Cov C

140

CHAPTER 4. EFFECTS 4.3. TYPE SYSTEM

Notice that the judgment (2) requiresthat the type of the abstraction argument
is A, where the index on the modal operator is empty. Indeed, the following
generalization of (2) to non-empty supports is not derivable in the calculusof benign
e ects, becauseof the previously discussedrestriction that bodies of -abstractions
must be pure.

6 x: let boxu=xinu: c,A! A[C]

Howewer, the hypothetical judgment corresponding to this implication is derivable,
as shown below.

X: c,A let box u= xin u:A[C]; whereC; v C

Example 30 To abbreviate notation and reduceclutter, we introduceinto the calcu-
lus the term constructor unbox e asa syntactic abbreviation for let box u = ein u.
The new term constructor has the following derived typing rule

; T e: cA[D] CvD
i ~unbox e:A[D]

We alsode ne let val x = e; in e to stand for unbox ((x: box) e;1), rather
than the usual (x: &) €. The additional complication arisesbecausewe have to
box e, and make it pure before we can put it under a -abstraction. The derived
typing rule for let val is

;e :A[C] ; (xtA) T e :BIC]
: “let val x = e; in & :B[C]

Similarly, the term constructor let name X:A in e is an abbreviation for
unbox (choose (X:A: box €);

with the typing rule below. It is assumedthat X is a fresh name which does not
appearin dom().
(;X:A); " e:B[C]

; " let name X:A in e: B [C]

The operational semartics of this core fragment of the modal calculus of benign
e ects is de ned through the judgment

o7l 00

which relates an expressione with its one-stepreduct €. The expressionse and e°
must not cortain any free variables. However, both e and €® may cortain e ects,
whosenamesare declaredin and © respectively. The name cortext Cis always
an extensionof , asthe reduction step may introduce new namesto stand for new
e ect instances.

141

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

The operational semartics is a call-by-value, left-to-right, evaluation conext se-
mantics in the style of Wright and Felleisen[WF94]. In order to perform one evalu-
ation step, the expressione is decomposeduniquely ase = E[r], wherer is a redex,
and E is an evaluation cortext, capturing the ervironment in which r is reduced.
Then it suces to de ne primitiv e reduction relation for redexes(which we denote
by !), and let the evaluation of expressiongwhich we denoteby 7!) always rst
reducethe redexidenti ed by the unique decomposition.

Values \Y%
Redexes r
Evaluation contexts E

X :Arejboxej X:Aej:::
(x: e)vjlet box u= box ein ejchoose (X: €
[J[JEeijviEjlet box u= E in ejchoose E

(x: v ! ; [v=x]e ;let box u= box e; in & ! s [e1=u]ex

Y 62dom()
;choose (X:A:e) | (;Y:A);[Y=X]e

r 1 Gg

E[r] 7! CE[E]

4.4 Dynamic binding

Syntax and typing

The type systemthat we dewelop in this sectionis intended to model memory allo-
cation, lookup and non-destructive update. The idea is to view namesas memory
locations of arbitrary type, and track their dereferencingthrough the medanism of
supports. Looking up a name in a given environment will be an e ect, and sub-
stituting a name with a term by meansof an explicit substitution will hande this
e ect. The operational semartics evaluates expressionswith empty support, and
hencepermits dereferencingof only those namesthat are captured by someexplicit
substitution. Thus, we can only dereferencenitialized names.

In a sense,this systemis a middle way between a calculus with local variables
and let-de nitions on one side, and a calculus of state on the other side. Names
are really allocated memory locations, but at the sametime, assigning values to
namesyvia explicit substitutions is not a destructive operation. Each name can be
assigneda value an arbitrary number of times (including zero), but the assignmen
only have local scope, and dereferencinga name will use the nearest assignmen
Thus, the obtained calculusis really a type-safeversion of dynamic binding, much in
the style of LISP and Scheme. We will build on this systemin Section4.5to obtain
a more generalcalculus of state with destructive update. The previous work related
to dynamic binding is discussedin at the end of this chapter in Section4.9.

The syntax of the calculus for dynamic binding extendsthe core fragment with

142

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

new constructs for name lookup and substitution. The modal constructor is used
to internalize e ectful computations. An expressionof type ¢A is a computation
that producesa value of type A when executed, but in the course of evaluation
may needto dereferencethe nameslisted in the support C. In the caseof dynamic
binding, supports are setsof names,and the partial ordering on supports is de ned as
the subsetordering on sets. In other words, C v D if andonly if C D. Obviously,
the empty setis the minimal elemen of this ordering. The resulting languageis very
similar to the -calculusfrom Section2.2. However, dynamic binding is an example
of a calculus of benign e ects, and it inherits the distinctiv e features of the core
calculusfor benign e ects (summarizedin Section4.3).

In dynamic binding, the environment in which expressionsare evaluated is a store,
consisting of a set of names(i.e., memory locations) eat of which is assaiated with
a value. We represen storesusing explicit substitutions. An explicit substitution
is syntactically de ned as a set of assignmers of expressionsto names. A name X
is referencedby simply usingit in someterm. The construct h ie applies over the
expressione, or alternatively, evaluatese in the store represerted by .

X1 e
rjXjhie

Explicit substitutions
Expressions e

Example 31 Let usassumethat X and Y are integer names. The code segmen
below de nes a benign computation u that readsfrom X and Y to return X 2+ Y2,
Then X and Y are initialized to 1 and 2, respectively, beforeu + 2XY is ewvaluated.

- let box u = box (X?+ Y?)
in
<X->1, Y->2> (u + 2XY)
end;

val it =9 : int

The semartics of explicit substitutions is de ned asin Section 2.2.3, subject to
some minor modi cation. We repeat the de nition here in a more compact form,
and point out the di erences from the previous sections.

Explicit substitutions are partial functions from namesto terms. In other words,
an explicit substitution never assignsan expressionto a hame more than once, and
there is no ordering betweenthe substitution assignmems. Given a substitution
the domain and range of are the sets

dom() =fXjX! e2 g

and
range() =fejX ! e2 g

The setfn() of freevariablesof s de ned asthe setof free variablesof expressions
in rangg(). The setfn() of freenamesof is the setof namesin the domain and
range of . We denote the empty substitution simply by hi.

143

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

Every substitution de nes a unique function of substitution application f g
on expressions.Substitution application f ge is capture-avoiding and is de ned by
induction of the structure of e asfollows.

f g X = (X)

f gu = hiu

f g (h Ge = h Ye

f g (x:Ae = Xx:Ae X 62fv()
f g (e1e) = f gaf ge

f g (box ¢ = box e

f g (let boxu=eine) = let boxu=1f gerinf ge u62v()
f g (X:Ae = X:A:e X 62fn()
f g (choosee) = choosef ge

As usual, substitution application does not descendunder box. Namesappearing
in a internalized computations neednot be initialized becausean internalized com-
putation is suspended, and henceits namesare not dereferenced. Howewver, when
a computation is actually unboxed and executed, this has to be done in a scope
of a substitution that initializes the relevant names, as illustrated in Example 31.
This aspect of explicit substitutions emphasizesand illustrates our obsenation from
Section 4.3 that modal constructors do not simply serwe to suspend computations.
As the above de nition shaws, the construct box e, in addition to suspending the
evaluation of e, also\protects” the expressione from the surrounding explicit sub-
stitutions.

To outline somefurther aspects of the above de nition, notice that substitution
application over a variable u is explicitly remenbered, resulting in a term h iu.
When the variable u is substituted by a certain expression,the namesappearing in
this expressionwill beinitialized by . On the other hand, substitution application
does not descendinto - and -abstractions, becausethe type system guarantees
that abstraction bodies are pure, and therefore name-free.

The operation of substitution application dependsupon the operation of substi-
tution composition 1 2, which is de ned asin Section2.2.3.

1 2= X0 f ([20(X)) j X 2 dom(1) [dom(2)g

The operation is well-founded { computing 3 2 only requires applying i to
subterms in range(2). On the other hand, substitution application is de ned in-
ductively, sothe size of terms on which it operatesis always decreasing.

The type systemfor dynamic binding extendsthe core systemfor benign e ects
with rulesthat describe the speci ¢ aspects of name dereferenceand substitution. In
particular, the judgment for expressionss extendedwith the rules

X:A2
: T X TA[C;X]

: T e:A[C] ; “hi:[C]) [D]
: " hie:A[D]

144

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

where the judgment ; “hi:[C]) |[D]typesexplicit substitutions, and is
axiomatized as follows.
CvD
; hi:[C]) [D]
; T e:A[D] ; “hi:[CnX]) [D] X:A2

;X! e i:[C]) [D]

Support of an expressiondescribeswhich namesthe expressionmay dereference.In
line with this semartics, the rule for name dereferencingallows X to be usedonly
if it is present in the support set C; X . Substitutions initialize the namesin the
expressionover which they are applied, and so the rule for substitution application

requiresthat the domain support C of the substitution matchesthe support of the
argumert expressione.

Example 32 Considerthe ML-lik e program below.

let val xref =ref 0O
fun f (y) = Ixref +vy
val z=f 1

in
(x:=1;, f 1), 2)

end

A similar program can be written in the calculus of dynamic binding as follows.

- let nameX : int

in
<X -> 0>
let fun fly : int) : xint = box (X +vy)
box u=f 1
val z = u
in
(<X -> 1>u, 2)
end
end;

val it =(2, 1) : int * int

The variable u is bound to the computation (X + 1), and thus X must be initialized
before u is used. In this particular example, the rst unsuspended referenceto u

(and therefore to X as well) is in the scope of the substitution <X -> 0> and the
secondoneis in the scope of <X -> 1>,

Op erational semantics

The ewaluation judgment for dynamic binding extendsthe core fragmert with the
new construct for substitution application. The judgment still hasthe form

o7l 00

145

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

where and ©are run-time cortexts of currently allocated, but not necessarily
initialized, names. And we still only considerevaluation of expressionse which have
empty support.

We adopt a call-by-value strategy for evaluating substitutions; that is, all the
assignmers in a substitutions are rst reduced to values, before the substitution
itself is applied. To formalize this policy, we de ne the notion of value substitutions,
and useit to extend the ewvaluation contexts and redexesof the calculus of benign
e ects. The de nition of the syntactic categoriesthat are immediately relevant to
the operational semariics of the calculus are summarizedbelow.

Values v = Xx:Aejboxej X:Ae

Value substitutions = X

Evaluation contexts E = []jEeijviEjlet box u= E in ejchoose E |
h: X1 E; ie

Redexes r = (x: evjlet box u= box ein ej

choose (X:€e)jhie

(x: ev ! ; [v=x]e ;let box u= box e;in e ! s [e1=u]lex
Y 62dom()
;choose (X:A:e) ! (;Y:A);[Y=X]e ;hie ! T ge
r 1 00

E[r1 7" %E[E]

Note that the operational semartics does not evaluate under explicit substitu-
tions, and thus uninitialized nameswill never be encourtered during the evaluation.
Rather, the expressionh ie is reducedby rst employing the meta operation f ge
to carry out the substitution over e, beforethe evaluation can proceed.

Structural prop erties and typ e soundness

The structural properties and the main substitution principles of the calculus for
dynamic binding follow closely the preseration from Section 2.2.3. This is not sur-
prising, asthe calculus of dynamic binding di ers very slightly from the fragment
of the modal -calculus. As already argued in the previous sectionsof this chapter,
the main distinctions betweenthe two calculi involve: (1) the cortext is omitted
in the calculus of dynamic binding; (2) functional and -abstractions are restricted
to bodies with empty support, and (3) explicit substitutions are not restricted to
appear only around modal variables. These distinctions, however, do not seriously
in uence the proofs of the main properties.

For example, the explicit substitution principle is a straightforward adaptation
of the corresponding explicit substitution principle from Section 2.2.3.

146

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

Lemma 39 (Explicit substitution principle)

Let ; “hi:[C]) [D]. Then the following holds

1.if ; "~ e:A[C],then ; ~f ge:A[D]

2.if ; " h 9:[C4) [Cl,then ; " h 9 :[Ci) [D]
Pro of:

The proof is by simultaneous induction on the structure of the derivations. The
interesting part is the secondinduction hypothesis,whoseproof utilizes the splitting
of = Ointo two disjoint sets

X1 (X)jX 2dom() ndom(9g
fX 1 f g(X)) jX 2 dom(9g

NO RO

The argumert proceedsin an identical asin Section2.2.3.

The calculusof benign e ects (and thus, the calculusof dynamic binding aswell),
doesnot cortain a notion of ordinary value variables, sothe Value substitution prin-
ciple of the modal -calculus (Theorem 11) doesnot have an equivalert in dynamic
binding. Howewer, the Modal substitution principle (Theorem 13) does, becausethe
variablesin calculus of dynamic binding really correspond to the modal variables of
the modal -calculus. Becausethese are the only variables in dynamic binding, we
emphasizethis fact by renamingthe principle into Expressionssubstitution principle.

Lemma 40 (Expression substitution principle)

Let ; " €1 : A[C]. Then the following holds:
1.if ; (;uA[C]) " e :B[D], then ; " [er=ule; : B [D]
2.0f ; (;wA[C]) hi:[D9) [D],then ; ~ Hei=u] i:[DY) [D]

Pro of: By simultaneous induction on the two derivations. Selectedcasesare pre-
serted below.

casee, = box €2 whereB = oBY

By derivation, ; (;wA[C]) > €°: BDY. By the rst induction hypothesis,
. [er=u]e’: B°DY. Now the result follows by the de nition of substitu-
tion, and the typing rule for box.

casee, = let box u°= €%in €®
By derivation, ; (;uwA[C])" €°: poBDJandalso; (;u:A[CJ;u®BIDY) "
e%: B [D]. By induction hypothesis,we have ; ~ [e;=u]le’: poBOD]and
:(;ulBIDY) ° [e1=ule®: B [D]. This immediately leadsto the result, by
the typing rule for let box.

The next lemma allows for exdhanging expressionsin cortext, as long as their
types agree. It will be used later in the proofs of Presenation (Lemma 44) and
Progress(Lemma 46).

147

4.4. DYNAMIC BINDING CHAPTER 4. EFFECTS

Lemma 41 (Replacemen t)
If ; ~ E[e]:A[], then there exist atype B suc that

1. ; "~ e:BJ[],and
2.if Oextend ,and @ "~ €”:B[],then & °~ E[e9:A[]

Pro of:
By induction on the structure of E. The basecasewhen E = [] is obvious.
For a more complicated case,considerE = h ;X ! Ej1; ie;, where X 'BO2

By derivation, ; ~ Eq[e] : B[], and the rst statemert of the lemma follows
immediately by the induction hypothesis.
For the secondstatemert of the lemma, consider © and °such that ¢ °

e?: B[]. By induction hypothesis, ¢ ~ E1[€9: B9]. The result now follows by
the typing rules for explicit substitutions.

Lemma 42 (Canonical forms)
Let v beavaluesuch that ; ~ v:AJ[C]. Then the following holds:

L.ifA=A;! Ap thenv= x:Ajieand ; XA e:Aq[]
2.ifA= pB,thenv=Dbox eand ; " e:B][D]
3.ifA=A19 Ay thenv= X:Apeand(;X:Aj1); " e:A;x[]
As a consequencethe support of v is empty, and can be weakened arbitrarily .

Pro of: By a straightforward caseanalysis.

Primitiv e reduction in the calculus of dynamic binding presenestypes, as the
Subject reduction lemma shows.

Lemma 43 (Sub ject reduction)
If ; ~e:A[Jand :e ! ©e%then Oextends and ¢ ~ &:A[]

Pro of: The caseswhene= (x: €} vore= let box u= box e; in e follow by
the expressionsubstitution principle. If e= choose X: e; follows by the de nition
of primitiv e reduction, and the typing rules.

The only mildly interesting caseis when e = h ie;. In this case,by derivation,

;e A[Ci,and ; T hi:[Ci) [] By the explicit substitution principle,
;- f ger : A[]. But, by denition of the primitiv e reductions, it is exactly
0= ande’= f gey; this concludesthe proof.

Lemma 44 (Preserv ation)
If ; ~e:A[Jand :e7! ©e&%then Oextends ,and ©¢ * %:A[]

Pro of: By evaluation rules, there existsan evaluation cortext E such that e= E[r],
r 1 %r%and 2= E[r9. By replacemen, there exists B such that ; ; ~ r:

B[]

148

CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

By subject reduction, C®extends, and ¢ " r%:B[]. By replacemen again,
O E[r9:A[] Sincee’= E[r9, this provesthe lemma.

Lemma 45 (Unigue decomp osition)

If eis aclosedexpression(i.e., e doesnot cortain any free variables, but may contain
free names)then either:

1. eis avalue, or

2. e= E[X], for a unigue evaluation corntext E and a hame X, or
3. e= E[r] for a unique evaluation context E and a redexr.

Pro of: By induction on the structure of e. A represertativ e caseis when e is an
application of an explicit substitution. In this casewe distinguish three possibilities:

l.e= h ;X! E4[Y]; ie. In this case,just pick E = h;X ! Ej; iey, and
the secondstatemert of the lemma holds.

2.e=h ;X! e ie, wheree;isnotanamein conext (this casewas consid-
eredabove), nor a value. In this case,by induction hypothesis,e; = E4[r]. We
pick E=h ;X ! Ej; iep, and the third statemernt of the lemma holds.

3. e= hie. In this case,pick E = [], r = e, and the third statemert of the
lemma holds.

Finally, we can now show that the calculus of dynamic binding satis es the the

usual progressproperties, i.e., that the evaluation of well typed closed expressions
do not get stuck.

Lemma 46 (Progress)
If ; ° e:A[], then either

1. eis avalue, or

2. there existsa term e®and a context 9 such that ;e7! ©¢&°

Pro of: Becausee hasempty support, by unique decomposition, e is either a value,
or there exists unique E and r such that e = E[r]. In casee is not a value, by
replacemen lemma, there existsB suchthat ; ~ r: B[]. By caseanalysisof the
structure of r, it is clearthat there exists ®ande; suchthat ;r ! Ce;. By the
rules for evaluation, ;E[r] 7! % E[e1], sowe simply pick €°= E[e4].

The progresslemma provesthat a well typed term can always be reduced, but
does not say anything about the uniquenessof this reduct. And indeed, just as
in the modal -calculus, this reduct is not unique, but the only di erence between

reducts is due to the di erent choicesof fresh namesthat may be allocated during
the reduction.

149

4.5. STATE CHAPTER 4. EFFECTS

Lemma 47 (Determinacy)
If ;e7!' " q;epand ;e 7! " 5;e, then there exists a permutation of names
:N ! N, xing the domainof ,suchthat = (1)ande = (e1).

Pro of: Analogous to the proof of determinacy for the modal -calculus (Theo-
rem 18).

45 State

Syntax and typing

In the calculus of dynamic binding from Section4.4, namesstand for (p ossibly unini-
tialized) memory locations and explicit substitutions assignvaluesto locations. In
this sense dereferencinga name correspondsto a read, and substituting for a name
correspondsto an update. But, asthe following dynamic binding program illustrates,
explicit substitutions may not perform the update destructively.

let nameX : int

in
<X -> 0>
let fun f(y: int) : xint = box (X +vY)
box u=1f 1
in
(<X -> 1>u, u + 1)
end
end

Indeed, the subterm <X -> 1>u cannot possibly destructively update X to 1 before
evaluating u, simply becausethe old value of X (in this case0), hasto be presened
for the evaluation of the secondelemen of the pair, u + 1. Explicit substitutions
and dynamic binding alone are too weak. This limitation, howewer, is only to be
expected. After all, the calculus of dynamic binding is a calculus of benign e ects.
The modal operator ¢ may only classify e ectful computations that do not change
the run-time ernvironment in which the program evaluates. Destructively writing into
memory certainly performs exactly such a change.

The solution is to serialize the explicit substitutions, sothat oncea substitution
is attempted, its scope extends to the rest of the program; it is never required to
revert back to someprevious substitutions. Thus, there would always be exactly one
substitution \activ e" at ewvery single momenr, and it would play the role of glokal
store.

As we already mentioned in Section4.2, the serialization of e ectful computations
is exactly the duty of modal possibility. Thus, if we want to use explicit substitu-
tions to model destructive state update, we needto tie explicit substitutions to 3.
Intuitiv ely then, we should obtain a whole family 3 ¢ of possibility operatorsindexed
by support sets,wherethe type 3 cA classi es an explicit substitution for C paired
up with a computation of type A. More concretely 3 cA typesprograms of type A
that rst write destructively into locations C and then compute a value of type A in

150

CHAPTER 4. EFFECTS 4.5. STATE

the new state. This would pleasarily cortrast the type cA that we already used
in Section4.4to type programsthat read from locations C beforecomputing a value
of type A.

The described typing of the calculus for destructive update will obviously be
very similar to simultaneous possibility from Sections2.1.4 and 2.2. We start the
dewelopmert by de ning the following syntactic categorieson top of the syntax of
the calculus of dynamic binding.

Types A == :1]J]3cA
Phrases f [;€]ljlet dia x = ein f jlet box u= ein f
Expressions e = :::jdiaf

As expected, the grammar of typesis extended with the family 3 cA, whoseterm
constructor is dia f, encapsulatinga phrasef . Phrasesare a new syntactic category
intended to describe computations which changethe global store. The basic phrase
constructor is the form [;€] which ties a substitution and a term e together;
this is a computation which rst writes into the locations determined by before
evaluating e in the new store. When is the empty substitution, we will simply
write e instead of [;€]. The changesto the global store are actually enacted by
the elimination form let dia. This form takes an expressione which evaluates to
a phrase, thus carrying a substitution ~ and an expressione;. The substitution

is then promoted into a global store, after which e; is evaluated and bound to x,
beforethe evaluation of f is undertaken. The phraseform let box u = ein f takes
a computation internalized by the expressione and binds it to u to be usedin the
phrasef .

Example 33 Assumingthat X and Y are integer names,the expression
let dia z = dia [<X->1, Y->2>, 2XY]
in
X+ Y+ 7
end

writes 1 and 2 into the locations X and Y respectively, then binds 4 to the local
variable z, beforethe evaluation stepsto the phrase[<X->1, Y->2>, X2+ Y2+ 4].

The type system for state with destructive update consistsof two mutually re-
cursive judgmernts: one for typing expressions,and another one for typing phrases.
The expressionjudgment extendsthe systemfrom Section 4.3, and has the form

: T e:AlC]

establishingthat e may possibly read from locations listed in the support setC. The
phrasejudgment hasthe form

, f cA[D]

This judgment establishesthat the phrasef consistsof a substitution of type [C])
[D], and an expressionof type A. The expressionmay dereferencethe namesfrom

151

4.5. STATE CHAPTER 4. EFFECTS

the support C, becausethey are initialized by the substitution. We presen the type
systembelow, and commert on the rules.

Denition of ; ~ f ¢ A[D].
, hi:[C]) [D] , elAlC]
;[:e] cA[D]
X " e:3c,A[D] ; (sxtA) T f ¢, B[C4]

; “let dia x = einf ¢, B[D]

: T e: cA[D] ; (swA[C) T f ¢, BI[D]

; " let boxu=-einf ¢,B[D]

Denition of ; ~ e:AJC].

, T pA[C]
; diaf :3pA[C]

The phrase[;€] is a computation that, when executed,changesthe global store
accordingto , and then evaluates e in the changed store. Thus, the typing rule
for [;€] requires that the namesusedin e are all dened by . In other words,
the support of e must match the domain type of . In this respect, the phrase
constructor [;€] is similar, somewhatcuriously, to the constructor for substitution
application h ie, asindeed witnessedby their typing rules (see Section 4.4). The
two constructors, however, have very di erent operational meanings. The explicit
substitution h ie carriesout over the expressione. In the phrase[;e€], the sub-
stitution is not applied over g; rather, it is composedwith the current global store
to aect a changeof the ervironment. The rst construct provides non-destructive
location update, while the secondis usedwhen destructive update is required. What
is interesting is that both capabilities harmoniously coexist within the system.

The typing rule for dia is a judgmental coercion from phrasesto expressions.
It internalizes a computation with persistert e ects, so that it can be used as an
ordinary expression.To justify the typing rule for let dia x = ein f on the grounds
of its intended operational behavior, obsene that e : ¢, A[D], and therefore e
internalizes a phrase consisting of substitution : [C4]) [D] and expressione® :
A[C1]. The role of let dia is to institute the substitution asa new global store
providing de nitions for namesin the support C1, then evaluate e°to a value, bind it
to x and proceedwith the evaluation of f . Following this sematrtics, we can allow f
to be supported by C;, becausethe new global store in which f is evaluated de nes
the namesfrom C;. We are also free to declarex as being of empty support in the
typing of f, becausex will always be bound to a value.

152

CHAPTER 4. EFFECTS 4.5. STATE

Example 34 We will usesomefurther syntactic abbreviations aswell. Recall that
in the calculus of benign e ects, we abbreviated:

let val Xx = e1 in & unbox ((x: box e) e1)

unbox (choose (X:A: box €))

let name X:Ain e

We need similar constructs in the syntactic category of phrases;we de ne them in
terms of let val and let name for expressions.

let val x = ein f
let name X:Ain f

let dia y = (let val x = ein dia f)iny
let dia y = (let name X:Ain dia f)iny

In cortrast to the let box construct for phrases,which is primitiv e in the calcu-
lus, and must be presert in order to ensurethe subformula property, let val and
let name do not eliminate any type and hence do not have any proof theoretic
signi cance. The typing rules for the two are easily derived as

;T erAlC] ; (x:A) T f p BIC]

; “letvalx=einf p B[C]

(;X:A);, ~f pBIC]
7 let name X:Ainf p BJ[C]

Example 35 If C and D are well-formed supports, then the following are derivable
judgments in the calculus of state.

1.7 x: dia (let diay=xin[;y]):3pA! 3cA, whereC D

2 x: dia[;x]:A! 3A

3.7 x: dia (let day=xinletdiaz=yin[;z]):3¢c3pA! 3pA
4

X: y:let box u= xin dia (let dia z=yin [;u z])
C(A! B)! 3pA! 3pB, where
C D

As an illustration, we presen the derivation of the judgment (1).
C D ; C
X:3pA;y:A” hi:[C]) [D] x:3pA;y:A" y:A[C]
x:3pA~ Xx:3pA xX3pA; VAT [;y] c A[D]

x:3pA - letdiay=xin[;y] cA
x:3pA " dia (let diay=xin [;y]):3cA
x: dia (let dia y=xin[;y]):3pA! 3cA

153

4.5. STATE CHAPTER 4. EFFECTS

As can be noticed, the function (1) simply -expandsits argumert x. It illustrates
that strengthening at the index supports of 3 typesis derivable. This is not sur-
prising, as strengthening only involvesforgetting someertries from the substitution
assaiated with the phrasex. The rest of the expressionsgeneralizethe characteris-
tic axioms of the constructive S4 modal possibility introducedin Section 1.1.4. For
example, function (2) is a coercion from expressionsnto phraseswith empty substi-
tution; notice that the rangetypeis 3 A with empty index support. Coercionsfrom
A to 3 cA with non-empty C are not generally available as they require providing
de nitions for eath namein C. In other words,

6 x: dia [;x]:A! 3cA
Howeer, the following hypothetical judgment is derivable:
x:A " dia [;x]:3cA[D] if C D;
as witnessedby the derivation below.
CcC D ;. C
x:A” hi:[C]) [D] xA" x:C
XA~ [;x] cA[D]
x:A " dia [;x]:3cA[D]

Function (3) illustrates that it is only the last layer of 3's that matter; all the
additional onescan be ignored. Function (4) takesx: c(A! B) and y:3cA as
argumerts. The argumert x enbodies a computation u:A ! B[C] which depends
on namesC in order to generatea function of type A'! B. The argument y is a
computation that provides a term v:A and de nitions for namesin C (and possibly
somemore, sinceits index support isD C). The de nitions from y are then placed
into the global store and usedas an ervironment for evaluating u v.

Example 36 We can usethe new type and term constructors for possibility to
serializethe example given at the beginning of the section.

let nameX : int
dia dummy= dia [<X->0>, ()]
fun fly : int) : xint =box (X +y)
box u=1f 1
val z=u+1
let dia w=dia [<X->1> U]
in
(w, 2z)
end
end

In the last line of this program, we abbreviated, and instead of [<>, (w, Zz)] , simply
wrote (w, z). The program is well-typed in the judgment of phrases,and has the
typeint int.

154

CHAPTER 4. EFFECTS 4.5. STATE

We next informally describe the evaluation of this program, with the goal of
supplying the intuition for the next section, where we presen the operational se-
mantics of the calculus. The ewaluation starts by allocating an integer name X,
which promptly becomespart of the global store, initialized to 0. Then the function
f is de ned. Notice that we assumerecursive function de nitions, which are easily
addedto the languagewithout any technical problems. The evaluation proceedshy
computing f 1, which evaluatesto box (X + 1), sothat u isboundto X + 1. Because
global store declaresthat X ! 0, the variable z is bound to 2, which is the value of
u+ 1relative to the current global store. Subsequetly, however, the global store is
changedinto X ! 1, and the variable w is bound to the value of the expressionu,
as computed in this new version of the store. As u is boundto X + 1, w is assigned
the value 2. Thus, the nal outcome of the evaluation is the pair (2;2). Obserwe
that the nal result doesnot depend on the name X ; this is enforcedby the typing
rules for let name. As a consequenceX can silertly be omitted from the store at
the end of the evaluation.

Op erational semantics

In this section we dewelop a call-by-value left-to-right operational semarics for the
calculus of state with both the modal constructors and 3. We ignore the phrase
constructors let val and let name as they are only syntactic sugar and do not
in uence the properties we explore here.

The rst step is to extend the meta operation of substitution application to
accourn for the new constructs.

f g diaf

dia f of

f g [%€ = [%e
f g let diax=c¢einf let dia x = f gein f
f g let boxu=ein f let box u=f gein f df

Note that the substitution application is carried out only over the branch e, but not
over the body f of alet dia construct. This is justied becausef is evaluated under
a substitution determined by e; any inuence that might have over f hasto be
via e.

The operational semariics is de ned by meansof two evaluation judgments: one
for expressionsand onefor phrases. We adopt a particular formulation of thesejudg-
mernts which emphasizeghe relationship betweenthe simultaneous modal possibility
and global state. The expressionevaluation judgment hasthe form

g7l Gg0

and reads: in a context of declaredlocations and a store assigning values to
theselocations (and somelocations may remain uninitialized), the term e stepsinto
e and possibly introduces new locations © The ewaluation steps cannot change
the store , asexpressionscan only read from the store but not write into it. The
de nition is a straightforward extension of the operational semartics of dynamic
binding (Section 4.4).

155

4.5. STATE CHAPTER 4. EFFECTS

The judgment for evaluating phrasesprescribesevaluation of stateful constructs.

It hasthe form
(5 nf7r (8% %f°

where f stepsinto f © changing in the processthe set of allocated locations from

into % and the global store from into © The ewaluation strategy that we
consider will evaluate under the constructor dia only if it is found in a let-branch
of a let dia. This way, the changesto the global store prescribed under dia will
take place only when they are serializedby a let dia. Note that this is not the only
possibleevaluation strategy, but it is the onethat relates simultaneous possibility to
global state and destructive update. Following this idea, we extend the categoriesof
values, evaluation contexts and redexesfrom Section 4.3 as summarizedbelow.

Values Y X :Arejbox ej X:A:ejdiaf

Value substitutions = jX g

Evaluation contexts E [lJEeijviEjlet box u=E in e]j
chooseEjh ;X! E; ie

Redexes r = (x: evjlet box u= box ein ej
choose (X:e)jhiejX
Phrase contexts F = []jletdiax=Einf jlet dia x = dia F in f |

let dia x =dia[h; X! E; i;elinfj
let dia x = dia [;E]in f j
let box u= E in f
Phraseredexes c = letdiax=dal;€einf]
let dia x = dia [;v]in f |
let box u= box ein f

The two evaluation judgments require two primitiv e reduction relations: a primitiv e
reduction for expressions ! , and a primitiv e reduction for phrases !

Primitiv e reduction for expressions.

(x: ev ! s [v=x]e ;let box u= box e; in e ! s [e1=u]lex

:choose (X:A:e) | (:X:A)e hGe 1 :f %e

X (X)

156

CHAPTER 4. EFFECTS 4.5. STATE

Primitiv e reduction for phrases.

°6 ()
(;)let dia x=da[%einf ! (; 9:let dia x = dia [;€]in f

(;)let dia x = dia [;v]in f ! (;);[v=x|f

(;);let box u=boxeinf ! (;);[e=uf

Evaluation for expressions.

r 1 0l

E[r] 7! SE[E]

Evaluation for phrases.

0 ¢ (5 et (8 90

(5 BFII7E (%)F[EY (5 BFIA7! (8 %FIF9

ro !

All the rules are fairly straightforward, exceptthe one for primitiv e reduction of
phraseswith nonempty substitution. The meaningof this rule is to changethe global
store accordingto the phrasesubstitution and cortin ue evaluating in the new store.
Thus, the substitution ©is moved out of the phraseand composedwith which is
the current global store. Obsene that this rule is required in order to presene the
soundnesof the operational semartics. In the phraselet dia x = dia [;€] in f, the
type systemassumesghat the variable x has empty support. Thus, the expressione
hasto bereducedto a value (as valueshave empty support), beforeit can be bound
to x.

Structural prop erties and typ e soundness

The calculus of state is an extension of the calculus of dynamic binding from Sec-
tion 4.4 with the possibility judgment and the languageconstructs corresponding to
possibility. It's structural properties and substitution principles, thus, extend the
properties of the calculus of dynamic binding, and are also straightforward adapta-
tions of the properties of the modal -calculusfrom 2.2.3. We list the main properties
below, and commert on their proofs.

The support weakening lemmais standard, and will be usedfurther in this section
in the proof of the Replacemen lemma (Lemma 52).

157

4.5. STATE CHAPTER 4. EFFECTS

Lemma 48 (Supp ort weakening)

1.if ; "~ e:A[ClandCvVv D,then ; ~ e:A[D]
2.if ;" hi:[Cq) [ClandCvVv D,then ; ~ hi:[C4]) [D]
3.if; ' f ¢ A[ClandCvVv D,then ; "~ f ¢, A[D]

Pro of: By a simultaneousinduction on the stricture of the three main derivations.

The expressionsubstitution principle correspondsto the modal substitution prin-
ciple from Section2.2.3.

Lemma 49 (Expression substitution principle)

Let ; " €1 : A[C]. Then the following holds:
1.if ; (;uA[C]) " e :B[D], then ; " [er1=ule; : B [D]
2.if ; (;wA[C]) hi:[D9) [D],then ; ~ He=u] i:[DY) [D]
3.if 5 (;wA[C]) " f ¢, B[D], then ; ° [e=ulf ¢, B[D]

Pro of: By simultaneous induction on the structure of the three derivations. We
preseri the casef = let dia x = ein f%in the proof of the third statemert. In
this case,by derivation, ; (;u:A[C]) ~ e: 3coA°D], and ; (;uA[C];x:A9
f0 ¢, B[CQ, for somesupport C%and type A% By the rst rst induction hypoth-
esis, ; * [er=ule : 3 coA°[D]. By the third induction hypothesis, ; (;x:A9
[er=ulf © ¢, B[CY. Now the result follows by the typing rule for let dia.

The explicit substitution principle is also a straightforward adaptation.

Lemma 50 (Explicit substitution principle)

Let ; “hi:[C]) [D]. Then the following holds:
1.if ; "~ e:A[C]then ; "~ f ge:A[D]
2.if; “h9:[Cd) [Clthen: “h G:[Cid) [D]
3.iff; ~f ¢ A[Cl,then ; "~ f of ¢, A[D]

Pro of: The proof is by simultaneous induction on the three judgments. It is anal-
ogousto the proof of the explicit substitution principle for the modal -calculus
from Section 2.2.3. We presen the casewhenf = [©¢], in the proof of the third
statemert.

In this case,by derivation, ; T e:A[Ci and ; “h 4:[C) [C]. By
the secondinduction hypothesis, ; " h 9 :[C4) [D]. Now, result follows
by typing rule for phrases.

Lemma 51 (Canonical forms)
Let v beavalue such that ; ;° v:AJ[C]. Then the following holds:

1L.ifA=A;! As thenv= x:Ajieand ; x:A;1 e:A1[]

158

CHAPTER 4. EFFECTS 4.5. STATE

2.ifA= pB,thenv=Dbox eand ; " e:B][D]
3.ifA=A19 Ay thenv= X:Apeand(;X:Aj1); " e:Ax[]
4. if A=3pB,thenv=diafand; ~f p BJ[C]
As a consequencethe support of v is empty, and can be weakened arbitrarily .

Pro of: By a straightforward caseanalysis.

The next Replacemen lemma allows expressionsand phrasesto be exchanged
in an expressionand phrase cortexts respectively. Of course, the replacemen ex-
pressionsand phraseshave to match the type of the expressionor the phrasethat is
being replaced. Notice that the Replacemen lemma in this section, unlike the Re-
placemen lemma of the calculusfor dynamic binding, considersnon-empty supports
in the typing judgments. The reasonis that, unlike in dynamic binding, the calculus
of state allows evaluation of expressionsand phraseswith non-empty support C, as
long asthe namesfrom C are initialized by the global store.

Lemma 52 (Replacemen t)
1. If ; ° EJ[¢g]: A[C], then there exists a type B such that

(@ ; "~ e:BJC],and
(b) if Yextends ,and @ ° €%:B[C], then ¢ " E[e9:A]C]

2. If ; " F[e] c A[D], then there exists a type B such that
(@ ; "~ e:B[D], and
(b) if Yextends and ©¢ e:B[D], then ¢ °~ F[e9 ¢ A[D]

3.1f ; " F[f] ¢ A[D], then there existsa type B and support C; suc that
@ ; ~f ¢, B[D], and

(b) if Cextends and D is a support setsuchthat S 0 o B[Dy],
then ¢ ~ F[fq ¢ A[D4]

Pro of: By simultaneous induction on the structure of the contexts E and F. We
presen the proofs for induction hypotheses(2) and (3), asthe case(1) is similar to
the proof of Replacemen for dynamic binding (Lemma 41).

For the induction hypothesis(2), the following casesmay appear.

caseF = let dia x = E; in f. By derivation, ; ~ Ejle] : 3¢,A1[D], and
; X:Ap ' f ¢ A[C4]. By rst induction hypothesis,there exists B suc that
; " e:B[D]. Also,if & * € :B[D],then % ° Ej[€?: 3¢,A1[D].
Conclusion now follows by typing rule for let dia.

caseF = let dia x = dia Fy in f. By derivation, ; ~ Fife] ¢, A1[D], and
; X:Ap© f ¢ A[C.]. By secondinduction hypothesis, there exists B such
that ; ~ e:BI[D]. Also,if ¢ ~ €:B[D],then & * Fi[e ¢, A1[D].

The result again follows by typing for let dia.

159

4.5. STATE CHAPTER 4. EFFECTS

caseF = let dia x=dia[h;X ! E1; i;€elinf,whereX:B12 . By derivation,
;" Ei[e]:B1[D],and ; x:A1 f ¢ A[C4]. By rst induction hypothesis,

there exists B such that ; ~ e: B[D]. Also, if ¢ ° € : B[D], then

0 * E4[€9: B1[D]. Once again, the typing for let dia lead to the required
conclusion.

caseF = let dia x = dia [;E1] in f. By derivation, ; ~ Eq[€] : A1[C.], where

C: D,and ; x:A; ~ f ¢ A[C4]. By support weakening, ; ~ E;j[€]:

Ai[D]and ; x:A; " f ¢ A[D]. By rst induction hypothesis,there exists B

sudhthat ; e:B[D]. Also,if ¢ * e’:B[D], then ¢ * E4[e9:A{[D].

Finally, usethe typing rule for let dia againto concludethe proof.

For the induction hypothesis(3), the following casesmay appear.

caseF = []. In this case,obviously, pick B = A, and C; = C to nish the proof.

caseF = let dia x = dia Fq in f1. By derivation, ; Fi[f] co A%D], and
- x:A®” f1 ¢ A[CY. By third induction hypothesis, there exist B and C;
suth that ; ~ f ¢, B[D]. Also,if & ° f% o BI[Dy], then ©

Fif 9 coA%D;]. The result again follows by typing rules for let dia.

The Subject reduction lemma establishesthat primitiv e reductions presenetypes
and supports. Notice that in the calculusof state, the evaluation is always undertaken
relative to a global store : [C]) [], which provides de nitions for a certain set
of namesC that the evaluated expressionsand phrasesare allowed to dereference.
Notice that the evaluation of expressionanay only depend on the global store , but
the ewvaluation of phrasesmay change into somenew °:[C9) []. Of course,in
the typing of the new global store, COwill always be a well-formed support set, as
the lemma below postulates.

Lemma 53 (Sub ject reduction)

Let ; "~ hi:[C]) [] Then the following holds:
1.if ; ~e:A[Cland ;e ! %€l then OYextends and ©¢ ° &°:A[C]
2.if ; “f pA[Cland(;);f ! (% 9:f%then Cextends and ¢ °

h9:[Cq) [Jand & ~ 9 p A[CY for somesupport setC°® dom(9
Pro of: By caseanalysis of the possiblereductions. We presen the selectedcases.

casee = h Ge,. By derivation, ; "~ e :A[CY and; ~h%:[C9) [] By
explicit substitution principle, ; f %e; : A[]. By denition, 2= f gey,
which nishes the proof.

casee = X, where X:A 2 . By derivation, X 2 C, and thus by typing for

substitutions ; ° (X) : A[]. Furthermore, because is a value substitution,

(X) is a value, so by canonical forms lemma, its support can be arbitrarily
weakened;in particular ; ~ (X):A[C].

160

CHAPTER 4. EFFECTS 4.5. STATE

casef = let dia x = dia [1;€]in f;. By denition, °= and °= 1. By
derivation, ; ~ e:B[CY,and ; " h4i :[Cq) [C],and ; x:B " f; p
A[CY. By explicit substitution principle, ; ~ h 1i : [C9) []. Result

follows by typing rule for let dia.

casef = let dia x = dia [;v]in f1. By deniton, %= and °= andC;= C.

By derivation, ; v:B[Cq]forsomeC;v C,and ; x:B " f; p A[CY. By
canonicalformslemma, ; ~ v g []. By support weakening, ; x:B ~ f; p
A [C]. Finally, by the expressionsubstitution principle, ; ~ [v=x]f1 p A[C].

The Presenation lemma extendsthe result of Subject reduction, which wasvalid
only on primitiv e reductions, to the evaluation relation.

Lemma 54 (Preserv ation)

Let ; ;> hi:[C]) [] Then the following holds:
1.if ; "~ e:A[Cland ;e7! ©C€®then Yextends and ¢ ° €’:A[C]
2.if ; “f pA[Cland(;);f 7! (¢ 9:fCthen Cextends and © °

h9:[Cq) [Jand & ~ 9 p A[CY for somesupport setC° dom(9

Pro of: The proof of statemert (1), proceedsas follows. By evaluation rules, there
exists an evaluation cortext E such that e= E[r], ;r ! %r%ande®= E[r9.
By the replacemen lemma, there exists B such that ; ~ r : B [C]. By subject
reduction, %extends, and ¢ ° r%:B[C]. By replacemen again, ¢ * E[rq:
A [C]. Sincee’= E[r this provesstatemert (1).

To prove the statemert (2), obsene that by the ewaluation rules, it is either
f = F[r] for someclosurecontext F and term redexr, or f = F[c] for someclosure
redex c.

If f = F[r], then ;r ! ©%eandf®= F[e9,and °= and C; = C. By the
replacemen lemma, there exists B such that ; ~ r : B [C]. By subject reduction,

Oextends , and & ° €°:B[C]. By replacemen lemma, ¢ * F[e9:A[C].

On the other hand, if f = F[c],then (;);c ! (¢ 9:Pandf%= F[cY. By
replacemer lemma, there exists B and D1 such that ; ~ ¢ p, B [C]. By subject
reduction, %extends, and % ~ h49:[Cq) [],and ¢ & p, B[CY. By
replacemen lemmaagain, ¢ * F[cJ p A[CI.

Lemma 55 (Progress for !)
Let bean arbitrary value substitution. Then the following holds:

1.if ; ° r : A[C], then there exists a term €® and a cortext C suc that
r 1 0gl
2.if ; ¢ p AJ[C], then there exist a phrasef © a value substitution °and a

context O sudthat (;);c ! (% 9;f0

161

4.5. STATE CHAPTER 4. EFFECTS

Pro of: By caseanalysis over possibleredexes. For example, in the statemert (1),
whenr = X, for somename X, wecanpick °= ande= (X). The other cases
of statemert (1), aswell asthe statemert (2) are also easyto establish.

Lemma 56 (Unique decomp osition)
1. If eis aclosedexpression(i.e., e doesnot contain any free variables, but it may
contain free names),then either:

(a) eis avalue, or
(b) e= E]Jr] for a unique evaluation context E and a redexr.

2. If f is a closedphrase,then either:

(@) f = [;€] for somesubstitution and expressione, or
(b) f
(c) f

Pro of: Straightforward, by induction on the structure of eand f .

F[r] for a unique phraseconext F and term redexr, or

F[c] for a unique phrasecontext F and phraseredex c.

As customary by now, we proceedto prove that in the calculus of state, well-
typed closedexpressionsand phrasesdo not get stuck, and that reductions from one
and the sameexpressionor a phrasedier only in the choice of new names. These
claims are formalized by the Progressand Determinacy lemmasbelow.

Lemma 57 (Progress)
Let ; "~ hi:[C]) [] Then the following holds:

1.if ; ~ e:A][C], then either

(a) eis avalue, or
(b) there existsaterm e®and a context © such that ;e7! Ce&l

2.if ; ~ f p AJ[C], then either

(@) f = [;€] for somesubstitution and an expressione, or

(b) there exists a phrasef © a cortext © and a value substitution © such
that (;);f 70 (& 9:f0

Pro of: The proof of statemert (1) proceedsas follows. By unique decomposition
lemma, e is either a value, or there exists unique E and r suc that e = EJr]. If
e is not a value, by replacemen lemma, there exists B such that ; ~ r : B[C].
By progressfor ! , there exists %ande; suchthat ;r ! %e;. By ewaluation
rules, ;E[r]7! C®E[e]. Now, we can pick €°= E[e;], to nish the proof.

To prove statemert (2), notice that, by the unique decomposition lemma, f is
either equal to [;€], or there exists unique F and r such that f = F[r], or there
existsunique F and c such that f = F|[c]. In the secondcase,by replacemen lemma,
there exists B such that ; ° r :B[C]. By progressfor ! ,there exists °and e
sudhthat ;r ! %e;. Then we canpick f °= F[e(]. In the third case,by replace-
ment lemma, there exists a type B and support C; sucdh that ; ~ ¢ ¢, B[C]. By

162

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

progressfor ! , there exists a phrasef, a context %and a substitution © such
that (;:);c7! (¢ 9:f4. In this case,we can pick f 9= F[f4].

Lemma 58 (Determinacy) . .
1. If e e, & aretermssuch that ;e ! 1;egand ;e ! 2, 6, then there
exists a permutation of names :N ! N, xing the domain of , sud that

2= (1)ande = (&r).

2. If f,fq, f, arephrasessuch that (;);f 7! "(1; 1);frand(;);f 71 "
(2; 2);f2, then there exists a permutation of names : N ! N, xing the
domainof ,suchthat .= (1)and o= (1),andf,= (fj).

Pro of: The proof of the rst statemert is analogousto the proof of determinacy for
dynamic binding, sowe omit it here. The secondlemmastatemert is trivial, because
there are no primitiv e phrase constructors that intro duce fresh names.

4.6 Exceptions

Syntax and typing

Raising an exceptionis a cortrol- 0 w e ect { it causesthe execution of the program
to make a jump and cortinue from another point. Along the jump, the exception
passesa value, to be used by the program at the destination point of the jump.
Exactly where and how the execution of the program resumes,is determined by the
exeption handler. The handler takes as argumert the value that is passedby the
exception, and then proceedswith execution. Thus, a computation that may raise
an exceptionis, in a sense,partial. It must be executedin an environment in which
a handler for the exception is speci ed, or elseit may not produce a result. Notice,
howewer, that exceptionsare benign e ects. Unlike writing into memory, raising an
exception doesnot causea permanert changein the ervironment.

In this section we dewelop a calculus of exceptions, basedon the core fragmen
of the calculus for benign e ects from Section 4.3. The ideais to assigna name to
ead exception, which could then be propagated and tracked by the type system. To
be able to raise and handle exceptions, we need further constructs speci c only to
exceptions, so we extend the syntax of our languageas follows.

Exception handers jXz! e
Expressions e = :::jraisex ejehandle h i

Informally, the role of raisex e is to evaluate e and then raise the exception X,
passingthe value of e along. On the other hand, e handle h i evaluates e (which
may raise exceptions), sothat any exception possibly raised by e is handled by the
exception handler .

An exception handler is de ned asa nite set of exeption patterns. A pattern
Xz! eassaiatesthe exception X with the expressione; the variable z is bound in
the pattern. Whenewer X is raisedwith somevaluev, it will be handled by evaluating
the expression[v=z]e. Given a handler , its domain dom() is de ned asthe set

dom() =fX 2N jXz! e2 ¢

163

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

Every exception X 2 dom() must be assa@iated with a unique pattern of .
An exception handler denesauniquemap([]]:N ! Values! Expressions
as follows.

_ [v=ze if Xz! e2
[110)(v) = raisex v otherwise

We will frequertly identify the handler with the function []], and write (X)(Vv)
instead of [] J(X)(v). According to the above de nition, if X is an exception suc
that X 62lom(), then simply propagatesX further.

Example 37 Assuming X and Y are integer names,the following are well-formed
expressions.

1. (1 raisex raisey 10) handle Xx! x+ 2;Yy! y+ 3i
2. (1 raisex 0) handle hXx! (2 raisey x)i handle hyy! i
3. (1 raisex 0) handle hyy! (2 raisex y)i handle hXx! x+ 1i

The expressionsevaluate to 13, 0 and 1, respectively. Expression (1) raises the
exception Y, passing 10 along. This is handled by the pattern Yy ! y + 3, to
produce 13. Expression (2) raisesX with value 0, but while handling X it raisesY
with value 0, which is nally handled by the outside handler hyy ! i, to produce
0. Expression(3) raisesX with 0, which is propagated by the inside handler, and
then handled by the outside handler X x ! x + 1i, to return 1.

The type systemof the calculus of exceptionsconsistsof two judgments: one for
typing expressions,and another one for typing exception handlers. The judgment
for expressionshasthe form

: T e:AlC]

and it simply extendsthe judgment from the core fragmen presered in Section4.3
with the new rules for raise and handle . The speci ¢ characteristic of the calculus
is that the support C represerts sets, collecting the exceptionsthat e is allowed to
raise. Thus,Cv D isdened asC D whenC and D are viewed assets(i.e., when
the ordering and repetition of elemens in these supports are ignored). By support
weakening, e neednot raise all the exceptionsfrom its support C, but if an exception
can be raised, then it must be in C. The judgment for exception handlers has the
form

. “hi:c)) D]

and the handler will be given the type [C])A [D]if: (1) canhandle exceptions
from the support set C arising in a term of type A, and (2) during the handling,

is allowed to itself raise exceptionsonly from the support setD. The typing rules of
both judgmernts are presened below, and we briey commert on them.

164

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

Denition of ; ~ e:AJC].

;7 erA[C] X2cC X:A2

; " raisex e:BJ[C]

. " e:A[C] - “hi:c]) D]
X “ehandle h i:A[D]

A

De nition of ; “hi:[C]) [D]

Cv D
. hi:[c])f D]

- (:zA) e:B[D] ; " hi:[CnX]P D] X:A2

. WXz! e i:[C]P D]

An exception X can be raised only if it is accourted for in the support. Thus
the rule for raise requires X 2 C. The term raise x e changesthe ow of cortrol,
by passinge to the nearesthandler. Becauseof that, the cortext in which this term
is encourtered doesnot matter; we can type raise x e by any arbitrary type B. In
the rule for handle , the type and the support of the expressione must match the
type and the domain support of the handler . The empty exception handler hi
only propagateswhichever exceptionsit encourters. If it is supplied an expression
of support C it will produce an expressionof the samesupport. To maintain the
support wealkening property, we allow the rangesupport D of an empty handler to be
a supersetof C. Notice that the empty support handler may be assignedan arbitrary
type A. The rule for nonempty exception handlers simply inductively cheks eath
of the exception patterns in the handler. The type of ead pattern variable z must
match the type of the corresponding exception; this is the type of the value that the
exception will be raisedwith. The handling terms e must all have the sametype B,
which would also be the type assignedto the handler itself.

Example 38 The function tail belov computes a tail of the argumert integer
list, raising an exception EMPTY:unit if the argumert list is empty. The function
length usestail to compute the length of a list. Note that the rangetype of tail
is ewmpriitlist . This is required becausethe body of tail raisesan exception,
and, as explainedin Section4.3, all the e ects in function bodies must be boxed.

165

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

- let nameEMPTY:unit

fun tail (xs : intlist) : empTiAtlist =
(case xs

of nil => box (raise EMPTY())

| Xx:ixs => box xs)
fun length (xs : intlist) cint =

(1 + length (unbox (taill xs)))
handle <EMPTY -> 0>

in
length [1,2,3,4]
end;
val it = 4;

Beforewe proceedto describe the operational semariics of the exception calculus,
let us outline some of its properties and how they relate to other treatments of
exceptionsin functional languages.

First of all, exceptionsin our calculus are secondclass. They are not values
and cannot be bound to variables. Correspondingly, exceptions must be explicitly
raised; raising a variable exception is not possible. Aside from this fact, when local
exceptions are concerned (i.e., exceptions which do not originate from a function
call, but are raised and handled in the body of the one and the samefunction), our
calculus very much resenbles Standard ML [MTHM97]. In particular, exceptions
can be raised, and then handled, without forcing any changesto the type of the
function. It is only when we want the function to propagate an exception so that
it is handled by the caller, that we needto speci cally mark the range type of that
function with a -type.

It is also instructive to compare our calculus with the monadic formulation of
exceptionsfrom Section4.1.3. Tothat end, we recall Example 26, wherethe exception
monad provides for a unique exception of type E. The de nition of the monad

and its related term constructors is given as follows.

A = A+E
comp e = inl e
let comp x=e;ine = case e of inl xX) ejinry) inry
raise : E) A
raise e = inr e
handle : A) (E) B)) B
handle eh = case eof inl v) vjinr exn) hexn

In this de nition, the operational semarics given to all the constructs relies on the
standard operational semariics assaiated with disjoint sums. For example, is we
assumethat f :int) int, then the following program addsthe results of f 1 and
f 2. If the evaluation of any of the two function applications raisesan exception, the
overall computed result is zero.

166

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

handle (let compxl =

f 1
compx2 =f 2

in
comp(x1 + x2)
end) (exn. 0)

In our calculus of exceptions,the equivalert of the above program may be written
in seweral ways, depending on the evaluation order that the programmer may wish
to specify. For example, let us assumethat X :E is an exception name, and that
f:int! x Int. Then the operational behavior of the previous monadic program
is exhibited by the following program in the calculus of exceptions.

(let wval x1 = unbox (f 1)
val x2 = unbox (f 2)
in
x1 + x2

end) handle <X exn -> 0>

Howewer, becauseexceptions are benign e ects, the computations internalized
by f 1 andf 2 are independert of ead other. There is no needto rst evaluate
and unbox f 1 and then ewaluate and unbox f 2. For example, we could write the
following program that computesthe sameresults.

let box ul =f 1

box u2 =f 2
in

(ul + u2) handle <X exn -> 0>
end

The rst two let box branches of this program evaluate the expressionsf 1 and
f 2in that order to obtain boxed computations box e; and box e, but they do
not evaluatee; and e,. The computations e; and e, are substituted for u; and up,
and only then is the execution of (e; +) attempted, in the order speci ed by the
operational sematrtics of addition. Following a similar idea, an even more compact
way to compute the sumoff 1landf 2 is given simply as

(unbox (f 1) + unbox (f 2)) handle <X exn -> 0>

As a conclusion, the calculus of exceptions{ and more generally the calculus
of benign e ects basedon modal necessiy { allows programsthat are uncommitted
about the ewaluation order of its e ects. The evaluation order is evertually deter-
mined by the operational sematriics, but it is not necessaryto make this order explicit
in the program. This is the major di erence betweenthe treatment of benign e ects
and persistert e ects. It is alsothe major di erence betweenthe modal operator
on one hand, and the monad and the modal operator 3 on the other hand.

Note that this distinction may potentially have consequence$or the e ciency of
exceptional programs. In the monadic case,an expressione: A either evaluatesto
a value, or raisesan exception. The outcome of the evaluation of e hasto be taggel

167

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

(with inl orinr) in order to distinguish betweenthe two cases.and this tag hasto be
checked at run time wheneer e is used. In the modal case,the e ectful computation

boxed in the expressione : x A will only be evaluated within the scope of some
handler for X . This evaluation can only produce a value, and cannot result with an
unhandled exception. In the modal case,there cannot exists a raised exceptionsthat

is not handled, so there is no needfor tagging and tag cheding.

Op erational semantics

The operational semartics of the exception calculus is a simple extension of the
semartics of the core fragmert. The evaluation judgment hasthe sameform

o7l 00

We only needto extend the syntactic categoriesof evaluation cortexts and redexes,
and de ne primitiv e reductions for the new redexes. First, we de ne new evaluation
cortexts.

Evaluation contexts E = :::jraisex E jE handle h i

We have already explainedthat ead exceptionhandler canhandle all exceptions. It is

only that someexceptionsare handledin a speci ed way, while others are handled by

simple propagation. This will simplify the operational semartics somewhat, because
in order to nd the handler capable of handling a particular raise we only needto

nd the nearest, or inner-most handler enclosingthis raise. For that purpose,we

de ne a special subclassof evaluation corntexts, called pure evaluation contexts

De nition 59 (Pure evaluation contexts)

An ewaluation cortext E is pure if it doesnot contain any exception-handling con-
structs acting on the hole of the cortext. In other words, the syntactic category of
pure evaluation cortexts is de ned as

Purecontexts P 1= []jPeijviPjlet boxu= Pin ej
choose P jraisex P

The idea of this de nition is to identify, within ead evaluation cortext E, the han-
dling construct (if any) that is closestto the hole of E, as stated by the following
lemma.

Lemma 60 (Ev aluation context decomp osition)
If E is an evaluation cortext, then either:

1. E is a pure conext, or

2. there exist unique evaluation cortext E%and pure cortext P°suc that
E = E9P%handle h i].

Pro of: By induction on the structure of E. We presen selectedcases.

caseE = raisex E;. By induction hypothesis,E; is either pure, in which casepick
E is pure aswell, or E; = EJ[P%handle] in which casepick E°= raisex EY.

168

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

caseE = E; handle . By induction hypothesis, E is either pure, in which case
pick E= [] and P®= E4, or E; = ES[P{ handle 7], in which casepick
E%= EJhandle and P°= P2

This de nition and lemma provide us with enough notions to de ne the new
redexesand the primitiv e reductions on them.

Redexes r := :::jvhandle h ijPJ[raisex v] handle h i

;v handle h i ! Y ;P[raisex v] handle h i ! ; (X)(V)

The rst reduction exploits the fact that values are exception free, and therefore
simply fall through any handler. The secondreduction choosesthe closesthandler
for any particular raise. It also requiresthat only valuesbe passedalong with the
exceptions;the operational semarics demandsthat beforean exceptionis raised, its
argumert must be evaluated. If it so happensthat the evaluation of the argument
raisesanother exception, this later one will take precedenceand actually be raised.
This is already illustrated in the rst term from Example 37, whereit is the exception
Y which is raised and evertually handled.

Structural prop erties and typ e soundness

Before proceedingto prove the basic properties of the calculus of exceptions,we rst
summarizeits basic syntactic constructs.

Expressions e = ujx:Aejerejbox ejlet box u= e in ej
X:A: ejchoose ejraisex ejehandle h i

Exception handlers = j Xzl e

Values v = Xx:Aejboxej X:Ae

Evaluation contexts E = []jEeijviEjlet box u= E in ejchoose E j
raisex E j E handle h i

Pure contexts P == []jPejviPjlet boxu= P in ejchooseP j
raisex P

Redexes r = (x: evjlet box u= box ein ej

choose (X:e)jvhandle h i]j
Plraisex v] handle h i

The Expressionsubstitution principle for the exception calculusis similar to the
Expression substitution principle from the calculus of dynamic binding and state,
except that it now includes a statemert about exception handlers, rather than a
statemert about explicit substitutions.

Lemma 61 (Expression substitution principle)
If ; * e : A[C], then the following holds:

1.if ; (;uA[C]) " e :B[D], then ; " [er1=ule; : B [D]

169

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

2.if : (;wA[C]) " hi:[D9)F D], then ; " Hei=du i:[D9) [D]
Pro of: By simultaneousinduction on the structure of eand . Wejust presen the
casesthat are specic to exceptions.

casee, = raiseyx € whereX:B°%2 , and X 2 D. By derivation, ; (;u:A[C])"
e?: BO[D]. By induction hypothesis, ; ° [e1=u]e’: B?[D]. The result follows
by the typing for raise.

casee;, = e’ handle . By derivation, we have ; (;u:A[C]) ~ €°: B[D9, and
. (;wA[CD S hi ;D9)B [D]. By rst induction hypothesis, ;
[e1=ule’: B [DY. By secondinduction hypothesis, ; ° He;=u] i : [D9 F

[D]. The caseis now proved, by using the typing rules for handle .
case = (). Obvious.

case = (Xz! e; 9, whereX:B°2 . By derivation, ; (;uwA[C];z:B9Y "
e:B[D], and ; (;wA[C]) " h G :[D°X]) [D]. By the rst induction
hypothesis, ; (;z:B9 " [e;=ule: B [D]. By the secondinduction hypothesis,
. " Hei=u] 9 :[D°X]) [D]. The result follows by the typing rule for
composite handlers.

The replacemen lemma now hasto account for both pure and impure cortexts.
Becausepure contexts do not allow a handler acting on the hole of the conext,
placing an expressionwithin a pure context presenesthe expression'ssupport. That
is not necessarilythe casewith ordinary evaluation conexts.

Lemma 62 (Replacemen t)

1. If ; ° PJlegl: A[C], then there exist a type B suc that
(@ ; "~ e:BJC],and
(b) if %extends ,and ¢ * e2:B[C],then ¢ " P[e9:A[C]

2. If ; ~ E[€]: A[C], then there exist atype B and a support D suc that
(@ ; "~ e:BJ[D], and

(b) if %extends and ©¢ ° &:B[D], then ¢ " E[e9:A[C]

Pro of: The rst statemert is proved by induction on the structure of the pure
context P. For an example, considerthe casewhen P = raise x P, for X ‘B22 |
and X 2 C. In this case by derivation, ; ~ P1[e] : B°[C]. By induction hypothesis,
there exist B such that ; ° e: B [C]. Again by induction hypothesis, for every e°
sudhthat ¢ ° €:B[C],wehave & * P{[e]:BC]. Now the conclusionfollows
by the typing rule for raise.

To prove the secondstatemert, by Evaluation conext decomposition lemma

(Lemma 60, we needonly considertwo cases.

caseE = P. This casefollows from the already proved replacemen for pure con-
texts.

170

CHAPTER 4. EFFECTS 4.6. EXCEPTIONS

caseE = E4[P handle]. In this case,by induction hypothesis,there exist B °and

DOsuch that ; ° P[e] handle :BODY. By typing, ; P[e]: BOD%,
0

and ; "~ hi: [D“ﬂ3 [D9. By replacemen for pure cortexts, there exists B

sudh that ; ~ e:B[D%. Also, for every e9such that ¢ ° €°: B [D], we

have ¢ ° P[e9:BOD%. The result now follows by typing for handle .

Lemma 63 (Canonical forms)
Let v beavaluesuch that ; ; ~ v:A[C]. Then the following holds:

LifA=A;! Ap thenv= x:Aj:eand ; XA e:Aq[]
2.ifA= pB,thenv=Dbox eand ; " e:B][D]
3.ifA=A19 Ay thenv= X:Apeand(;X:A1); " e:As[]
As a consequencethe support of v is empty, and can be weakened arbitrarily .

Pro of: By caseanalysison the structure of values.

The next step of the developmert is the Subject reduction lemma. Notice that
the subject reduction for exceptionsdi ers from the subject reduction of dynamic
binding. The semarics of dynamic binding only reducesexpressionsof empty sup-
port, while with exceptionswe needto reduce under an exception handler. This is
re ected in the subject reduction lemma, where we now allow arbitrary supports C.

Lemma 64 (Sub ject reduction)
If ; ~e:A[Cland ;e ! ©e&%then Cextends and ¢ ° €°:AJ[C].

Pro of: By simple caseanalysis over possibleredexes. We consider two casesin
detail.

casee= v handle . By derivation, ; "~ v:A[C9 and ; " hi:[C9) [C].
By canonicalforms lemma, the support of v can be arbitrary, and in particular
;T V:IAIC]

casee= P[raisex v]handle , whereX:B%2 . By derivation, ; PJ[raisex V]:
A[CY and ; " hi:[C9) [C]. By replacemen lemma, there exists a
type B such that ; = raisex v : B[CY. By typing rules, there must be
X 2C%and; ° v:BOCY9. By canonicalformslemma, support of a value
is empty, i.e., ; v : B9]. Now, by the well-typing of the handler |,
i (X)(v) : A[C]. Since ;e ! ; (X)(v), this nishes the proof.

The Presenation lemma now generalizesSubject reduction to the evaluation
judgment. For purposesof generality, we follow the statemert of the Subject reduc-
tion, and allow arbitrary supports C in the statemert of Presenation.

171

4.6. EXCEPTIONS CHAPTER 4. EFFECTS

Lemma 65 (Preserv ation)
If ; ~e:A[Cland ;e7! ©¢&°then Cextends ,and ¢ €°: A[C].

Pro of: By evaluation rules, there existsan evaluation cortext E such that e= E[r],

r 1 %r%nde’= E[r9. By replacemen lemma, there exist B and D sud that
. : " r:BI[D]. By subject reduction, °extends, and ¢ :; ° r%:B][D]. By
replacemen lemma, ¢ ° E[r9: A[C]. Sincee’= E[rQ, this provesthe lemma.
Notice how the proof appealsin an essetial way to the subject reduction lemma
with non-empty supports.

The following lemma shows that a closedwell typed redex can always be reduced.
Again, asin the caseof Subject reduction and Presenation, we considerredexeswith
a general (not necessarilyempty) support C. This will be usedin an essetal way
in the proof of the Progresslemma belowv (Lemma 68).

Lemma 66 (Progress for !)

If ; ° r:A[C], then there exists a term €’ and a context © such that ;r !
0 a0
, €.

Pro of: By straightforward caseanalysis. We only presern two cases.

caser = v handle . By reduction rules, ;v handle ! 'v. Pick 0=
and = v.

caser = PJlraisex v]handle , whereX:B 2 . By derivation, ; °~ P[raisex V] :

A[CY, and ; " hi:[CI) [C]. By replacemen lemma, there exists B °such
that ; ° raisex v :B9[CY. By typing rules, it must be X 2 C° and thus
(X)(v) is well-de ned. Now pick °= ande’= (X)(v).

The unique decomposition lemma is standard.

Lemma 67 (Unique decomp osition)
For every expressione, either:

1. eis avalue, or
2. e= PJ[raise x V], for a unique pure cortext P, or
3. e= E[r] for a unique evaluation context E and a redexr.

Pro of: By induction on the structure of the expressione.

Finally, we can establish the Progressand Determinacy lemmasbelow.

Lemma 68 (Progress)
If ; ~ e:A[], then either

1. eis avalue, or

2. there existsa term e®and a context 9 such that ;e7! ©¢&°

172

CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

Pro of: Becausee has empty support, by unique decomposition lemma, e is ei-

ther a value, or there exists unique E and r suc that e = E[r]. If eis not a

value, by replacemen lemma, there exists B and C such that ; ~ r : B[C]. By

progressfor ! ,thereexists %ande; sudhthat ;r ! Ce;. By ewaluation rules,
'E[r]7! ©E[e. Now, we can pick e°= E[e;], to complete the proof.

Lemma 69 (Determinacy)
If ;e7!' " q;epand ;e 7! " 5 e, then there exists a permutation of names
:N! N, xing the domainof ,suchthat .= (1)ande = (e1).

Pro of: The most important caseis whenn = 1, the rest follows by induction on n,
using the property that if :e7! ™ %elthen () ; (& 7! " (9; (9. In case
n = 1, we analysethe possiblereduction cases.

1.Ifr=(x: e v,orr = let box u= box e; in e, orr = v handle , or
r = Plraisex v] handle , the reducts are unique, i.e. € = €, and thus
€ = e, sothe identity permutation satis es the conditions.

2. If r = choose X:A: g thenit mustbeel = [X1=X]e, & = [X,=X]e,and ;=
(;1 X1:A), 2= (;X2:A), where X; and X, are fresh names. Obviously, the
involution (X1 X»2) which swaps thesetwo nameshas the required properties.

4.7 Catch and throw

Syntax and typing

The catch-and-throw calculus is a simpli cation of the calculus of exceptions. We
considerit herein its own right in order to illustrate a di erent notion of handling.
It will also provide some intuition for the calculus of composable cortinuation in
Section 4.8. In the catch-and-throw calculus, namesare assaiated with labels to
which the program can jump. Informally, catch establishesa destination point for
a jump and assignsa nameto it, and thro w jumps to the establishedpoint.

Expressions e = :::jthrowyx ejcatchyx e

The thro w and catch can be viewed as restrictions of raise and handle ; catch
handlesa thro w by immediately returning the value assaiated with the throw.
Becausethe notion of handling in the catch-and-throw calculusis sosimple when
comparedto exceptions,we only needthe typing judgment for expressions; e
A[C]. It is not necessaryto de ne the judgment for handlers ; “hi:[C])A [D].
The meaning of ; " e:A[C]isthat e hastype A and may throw to destination
points whosenamesare listed in the support C. The supports are sets, just like in
the calculus of exceptions. The typing rules of the calculus are preserted below.

173

4.7. CATCH AND THROW CHAPTER 4. EFFECTS

Denition of ; ~ e:AJC].
;. T e:A[C] X2C X:A2 ; T e:A[C;X] X:AZ2
; throwyx e:B[C] ; catchy e: A[C]

A thro w to a destination point is allowed only if the destination point is presert in
the support set. A catch establishesa destination point by placing it in the support
against which the argumert expressionis chedked.

Example 39 The following terms (adapted from [KamOQOa]) are well-typed in our
catch-and-throw calculus.

choose (X:int.
(fint-> x int.
let box u=f 0
in
catchx (1 + u)
end) (y:int. box (throw x V)))

choose (Xint.
(fint-> x int.
let boxu=f0
in
1 + catchy u
end) (y:int. box (throw x V)))

The rst term evaluatesto 0, becausahe addition with 1 is skippedover by athro w.
In the secondterm, the catch is pushedfurther inside, to presene this addition, and
sothe term evaluatesto 1.

Example 40 The program segmem belowv de nes a recursive function for multiply-
ing elemerts of an integerlist. If an elemer is found to be equalto 0, then the whole
product will be 0, sorather than uselesslyperforming the remaining computation,
we terminate by an explicit thro w outside of the recursive function.

- let nameEXIT : int

fun mult (xs : intlist) . exTint =
case Xs
of nil =>box 1
| xiixs =>
if x = 0 then box (throw gx;t 0)
else
let box u = mult xs in box(x * u)
in
catch gyt (unbox(mult[3, 2, 1, 0]) * unbox(mult[l, 2, 3]))
end;

val it =0 : int

174

CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

Op erational semantics

The evaluation judgment of the catch-and-throw calculusis again a straightforward
extension of the evaluation judgment :e7! %e°of the core fragmert from Sec-
tion 4.3. We rst needto de ne the new redexes,corresponding to the new catch
and thro w constructs, and extend the syntactic category of evaluation corntexts of
the core calculus of benign e ects from Section4.3.

Redexes r (x: e)vjlet box u= box ein ej
choose (X:e€)jcatchy vjcatchyx E[thro wy V]
[l]JEeijviE jlet box u=E in ejchooseE |

thro wx E jcatchyx E

Evaluation contexts E

In the redexcatchyx E[thro wyx Vv]it is assumedthat the context E is X -pure, i.e., E
doesnot cortain a catchy construct acting on the hole of E, although E is allowed
to catch namesother than X . The relation of primitiv e reductions from Section 4.3
is extendedwith the following new cases.

;catchy v ! TV
;(catchy E[thro wx Vv]) ! ;v; E is X-pure

Similar to the exception calculus, values simply fall through the catch, and ewvery
thro w is caught by the closessurrounding catch with the appropriate nhame. The
operational semarics of catch-and-throw requiresthat only valuesbe passedalong
athro w. Thus, of possibly nestedthrows, only the last one will actually be subject
to catching.

Structural prop erties and typ e soundness

We start the exploration of the basicstructural properties of the catch and throw cal-
culus by consideringthe appropriate expressionsubstitution principle. The principle
is standard, and analogousto the expressionsubstitution principles already proved
for the calculi of dynamic binding and exceptions.

Lemma 70 (Expression substitution principle)
If ; "~ e :A[C]land ; (;uA[C]) e :B][D], then ; " [er1=ule; : B [D].

Pro of: By induction on the derivation of e,.

case e, = thro wyx €% whereX:B%2 |, and X 2 D. By derivation, ; (;u:A[C])"
e?: BO[D]. By induction hypothesis, ; ~ [e;=ule?: B°[D]. The conclusion
now follows by the typing rule for thro w.

casee, = catchx €% whereX:B 2 . By derivation, ; (;uA[C])" €°:B[D;X].
By induction hypothesis, ; * [e1=u]e’: B [D; X]. The last step of the proof
now appliesthe typing rule for catch.

The replacemen lemmaneedsto take into accourt that catc h expressiongnay be
acting on the hole of the context E, thus changing the support of enclosedexpression.

175

4.7. CATCH AND THROW CHAPTER 4. EFFECTS

Lemma 71 (Replacemen t)
If ; ~ E[€]:A[C], then there exist a type B and a support D such that

1. ; "~ e:B[D],and
2.if Oextends and ¢ "~ €2:B[D],then & * E[e9:A[C]

Pro of: By induction on the structure of E.

caseE = thro wx Ej, whereX:B%2 , and X 2 C. By derivation, ; ~ Ej[€]:
BO[C]. By induction hypothesis,there exist B and D sudhthat ; ~ e:B[D].
Again by induction hypothesis,for every e®such that ¢ ° €°: B [D], we have

¢~ Eq[é9: BO[C]. Now the conclusionfollows by the typing rules.

caseE = catchyx Ej;, and X:A 2 . By derivation, ; ~ Ej[e] : A[C;X]. By
induction hypothesis, there exist B and D such that ; ~ e: B[D]. Again

by induction hypothesis, for every €® such that ¢ ° €°: B [D], we have

O~ Eq[é9: A[C;X]. Concludethe proof by using the typing rule for catch.

Lemma 72 (Canonical forms)
Let v beavaluesudch that ; ~ v:AJ[C]. Then the following holds:

LifA=A;! Ap thenv= x:Ajieand ; XA e:Aq[]
2.ifA= pB,thenv=Dbox eand ; " e:B][D]
3.ifA=A19 Ay thenv= X:Apeand(;X:Aj1); " e:A;s[]
As a consequencethe support of v is empty and can be weakenedarbitrarily .

Pro of: By a straightforward analysis of the structure of values.

Similar to the calculus of exceptions,the catch and throw calculus considersfor
evaluation expressionsthat may appear within the scope of a number of catch con-
structs. Sincecatch shrinks the support set of an expression,the subject reduction
lemmafor catch and throw hasto considerprimitiv e reductions over expressionswith
arbitrary , non-empty, support C.

Lemma 73 (Sub ject reduction)
If ; ~e:A[Cland ;e ! ©e%then Cextends and ¢ €°:A[C].

Pro of: By caseanalysis over possibleredexes. We present belov somerepresena-
tive cases.

casee = catchy v, where X:A 2 . By derivation, ; ~ v : A[C;X]. By
canonical forms lemma, the support of v can be arbitrary, and in particular
;T VvIAIC].

176

CHAPTER 4. EFFECTS 4.7. CATCH AND THROW

casee= catchyx E[thro wy V], whereX:A 2 . By derivation, ; ~ E[thro wx v]:
A[C; X]. By replacemen lemma, there existB andD suchthat ; ~ throwy v:
B [D]. By typing rules,theremustbeX 2 D,and ; ~ v:A|[D]. By canonical
forms lemma, support of a value canbe arbitrary; in particular, ; ~ v:A|[C].
Since ;e ! ; v, this nishes the proof.

The Presenation lemma follows the samepatter as Subject reduction, and con-
sidersexpressionswith arbitrary support C.

Lemma 74 (Preserv ation)
If ; "~ e:A[Cland ;e7! ©e&°then Oextends ,and ¢ &°:AJ[C].

Pro of: By evaluation rules, there existsan evaluation cortext E such that e= E[r],
r 1 %r%nde’= E[r9. By replacemen lemma, there exist B and D sud that
: : " r:BI[D]. By subject reduction, °extends, and ¢ : ° r9:B][D]. By

replacemen lemma, ¢ ° E[r9:A[C]. Sincee®= E[r9 this provesthe lemma.

Lemma 75 (Progress for !)

If ; ° r:A[C], then there exists a term e’ and a context C such that ;r !
0 a0
, €.

Pro of: By caseanalysison the structure of redexes.

caser = catchx v, where X:A 2 . By reduction rules, ;catchx v ! V.
Then we can pick, %= and &= v.

caser = catchy E[thro wx V], where X:A 2 . By derivation, we have ;
E[thro wyx kei] : A[C; X]. By replacemen lemma, there exist B and D such
that ; ° thro wyx v:B[D]. By typing rules, it mustbeB = Aand X 2 D
and ; °~ v:A|[D]. By canonicalforms lemma, v has empty support, and can
be arbitrary weakened;in particular ; ° v:A[C]. We canthus pick °=
and = v.

The Unique decomposition lemma takesthe usual form, as do the Progressand
Determinacy lemmas.

Lemma 76 (Unique decomp osition)
For every closedexpressione, either:

1. eis avalue, or
2. e= E[thro wy V], for a unique context E which doesnot catch X, or
3. e= E[r] for a unique evaluation context E and a redexr.

Pro of: Straightforward, by induction on the structure of e.

177

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

Lemma 77 (Progress)
If ; ~ e:A[], then either

1. eis avalue, or
2. there existsa term e®and a context 9 such that ;e7! ©¢€°

Pro of: Becausee has empty support, by unique decomposition lemma, e is ei-

ther a value, or there exists unique E and r sudc that e = E[r]. If eis not a

value, by replacemen lemma, there exists B and C such that ; ~ r : B[C]. By

progressfor ! |, thereexists %ande; sudhthat ;r ! Ce;. By ewaluation rules,
"'E[r]7! ©E[ey. We can pick e°= E[e;], to complete the proof.

Lemma 78 (Determinacy)
If ;e7!' " q;epand ;e 7! " 5 e, then there exists a permutation of names
:N! N, xing the domainof ,suchthat .= (1)ande = (e1).

Pro of: Analogousto the proofsof Determinacy in the previously consideredcalculi.

4.8 Comp osable contin uations

Syntax and typing

Similar to the catch-and-throw calculus, composablecontin uations usenamesto label
destination points to which a program can jump. A destination point for a jump is
established with the construct mark which also assignsa name to it; thus, it is
similar to catch from the previous section. The jump itself is performed by recall ,
which corresponds to thro w from the catch-and-throw calculus. The exact syntax
of the calculusis de ned as follows.

Expressions e = :::jrecall x kiejmark x e

The di erences from the catch-and-throw calculus, howewer, arise from the following
property, which is characteristic for cortinuation calculi: unlike thro w, when the
construct recall x k: e is evaluated, it capturesinto the variable k the part of the
surrounding ervironment betweenthis recall and corresponding mark which pre-
cedesit; k may then be usedto compute the value of e that is passedalong with
the jump. It is important that the ewaluation of e is undertaken in the changed
environment from which the part captured in k hasbeenremovel. More speci cally,
e itself will not be able to recall to mark points which were de ned in the captured
and removed part.

The explained operational intuition is formalized by the following de nitions of
evaluation cortexts, redexesand primitiv ereductions. Becauseead recall is handled
by the nearest mark , we needto identify within ead evaluation context E that
mark (if any) that is closestto the hole of E. Thus, we de ne a speci ¢ subclass

178

CHAPTER 4. EFFECTS 4.8. CONTINUA TIONS

of evaluation cortexts that are pure, in the sensethat they do not contain a mark
acting on their hole.

Evaluation contexts E = :::jmark x E
Pure contexts P = []jPeijviPjlet box u= P in ejchooseP
Redexes r = ::jmark x vjmark x P[recall x k: €]
cmark x v ! TV
;(mark x Plrecall x k:€]) ! [K=K]e;

whereK = x: let box u= x in box P[u]

Example 41 In order to illustrate the calculus of composable cortinuations, we
presert he following well typed expressions(adapted from [DF89, Wad94]). Notice
that ead recall to a nameappearsin the scope of a corresponding mark . This kind
of programming discipline is enforcedby the type system, and will be explained in
the forthcoming dewvelopmert.

e = 1 +markgy (10 + recall x f. xint-> xint.
let box u=f (f (box 100))
in
marky U
end)
e =1+ markk (10 + recall x f. 100)
e3 =1 + marky (10 + recall x f.

let box ul =f (box 100)
box u2 = f (box 1000)
in
marky (ul + u2)
end)

The expressionsevaluate to 121, 101 and 1121, respectively. In ead of these ex-
amples, the corntinuation variable f : xint ! x int is bound to the expression
x: let box v = x in box (10+ v). It capturesand internalizes the evaluation en-
vironment (10+), which is enclosedbetweenmark and recall . Notice that upon
capturing of the ervironment into f , the delimiting mark is removel from the reduct,
as prescribed by the primitiv e reductions. In order for this semarics to be sound,
the type system must require that additional mark x constructs be introduced into
the expressions. We draw the attention to the the above example expressionse;
and ez, where the useof variablesu, u; and u, are pre xed by a seeminglyspurious
mark x . In general,however, this useof a mark around variablesis not spurious. If
some of the variables is substituted by a recalling expression,then the recall must
have a corresponding mark. Thus, we needto provide one, in order to ensurethe
progressof the evaluation.

As an illustration of the operational semartics, we shaw in full the evaluation of
€.

179

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

1 + marky (10 + recall x f.
let box u =1 (f (box 100))

in
markx U
end)
7! 1+ (let box u=f (f (box 100))
in
markx U
end); wheref = x. let box v = x in box (10 + v)

7! 1 + (let box u =f (box (10 + 100))

in
markx u
end)
7! 1 + (let box u = box (10 + (10 + 100))
in
markx u
end)
7! 1 + marky (10 + (10 + 100))
7! 1 + markk (10 + 110)
7' 1 + marky 120
7! 1+ 120
7! 121

It is the expressionbound to k that is actually referredto as a composablecon-
tinuation (and other namesin useare: partial continuation, delimited cortinuation
and subcontinuation). The ordinary calculus of cortinuations [Lan65, SW74, Rey72,
SF90h Fil89, Gri90, DHM91, FFKD86, Thi97] can be viewed asa calculusof compos-
able cortin uations in which all the jumps have a unique destination point, prede ned
to be at the beginning of the program. In both calculi, cortinuations are functions
whoserange type is equal to the type of the destination point. But, in the special
caseof ordinary cortinuations, this type is necessarily? , and that is why ordinary
corntinuations cannot be composedin any non-trivial way.

The typing judgment of the calculus for composablecortin uations is again

;e A[C]

It establishesthat the expressione hastype A and may recall the destination points
whosenamesare listed in the support C. The support C is an ordered setof names,
and e is allowed to recall to a nameonly it it is at the top of the support C. Thus, if
recallsto a name deeper down in the support C are required, this must be done by
rst successiely recalling to all the precedingnames.

In order to avoid the possibleconfusionlater, we emphasizeherethat the calculus
of composable cortinuation, obviously, deals with two dierent orderings: (1) the
ordering between supports, and (2) the ordering betweenthe namesof one and the

180

CHAPTER 4. EFFECTS 4.8. CONTINUA TIONS

samesupport. The reasonfor imposing the secondordering will becomeclear once
we discussthe the typing rules of the calculus.
The typing rules for composablecontin uations are preseried below.

De nition of ; T e A[C].

7 (skl cxB! cxA) e:A[C] X:A2
: " recall x k:e:B[C;X]

; "e:A[C;X] CvD X:A2
;. mark x e: A[D]

In the caseof composablecortinuations, it isarecall to a namethat is the notion
of e ect, and mark -ing a name as a destination point is the notion of handling.
Therefore, the type system should enable a recall to X only if X appearsat the
support C, placed there by a corresponding mark . The situation, howewer, is a
bit more involved. As already mentioned, recall x k: e ewvaluates e in a changed
environment from which the part enclosedbetween mark yx and recall x has been
removed. Correspondingly, e hasto be chedked against a support from which X has
beenremoved.

The above argumert explainswhy the ordering of namesin the support of a term
is important. Capture of a continuation remaovesmarks from the environment, sothe
type systemmust ensurethat theseare removed in the order in which they actually
appear. For example, the type system will allow a recall to a certain name only
if that name is at the end of the support. This is illustrated in the typing rule for
recall x k: e, wherewe demandthat X is the rightmost namein the support (C; X).
If arecallis requiredto a namewhich is deeper to the left in C, it canstill be doneby
performing a sequenceof nestedrecallsin a last-in- rst-out mannerto all the names
in between. In this sense,the supports of the calculus of composable cortinuations
may be seenas stacks where the top of the stad is at the rightmost end of the
support.

There are yet further important aspects of the typing rule for recall that needto
be explained. The expressione computesthe value to be passedalong with the jump,
soit must have the sametype asthe destination point X . Becausethe jump changes
the ow of control, the immediate ervironment of the recall doesnot matter; we can
type recall by an arbitrary type B. The domain and the range of the cortinuation
k must match the sourceand the destination points of the jump, which in this rule
have typesB and A, respectively. The recall appearsin the context of a support
(C;X) and that is why the domain type of k is ¢.xB. The range type of k is

c:x A, meaningthat the environment captured in k will not include the delimiting
mark x .

The typing rule for mark is much simpler. The construct mark x e establishes
a destination point X and allows the expressione to recall to X by placing X in
the support. If e is a value, it immediately falls through to the destination point X,
and thus e and X must have sametypes. We further allow an arbitrary weakening

181

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

of supports in the conclusionof this rule, in order to satisfy the support weakening
principle.

The partial ordering on the family of supports is the trivial partial ordering with
the empty set as the smallestelemeri: C v D holdsi C = () orC = D as
sequences.The rst de nitional clauseof the ordering allows weakening of C = ()
to an arbitrary support. Suc a weakening signi es that expressionsthat do not
recall to any names (i.e., expressionsthat are pure) may be placed in a scope of
an arbitrary corntext of marks, becausethe marks will essetially be ignored. The
secondde nitional clauseof the partial order prevens the weakening of hon-empty
supports into a properly larger support 2.

Example 42 The program below is a particularly cornvoluted way of reversing
a list, adapted from [DF89]. The program can be explained in terms of staged
computation as follows: it recursesover the argumert list | and generatesas an
output a boxed expressionconsisting of a sequenceof nestedmarks and recalls. The
generatedexpressionessetially builds the reverseof ead pre x of I, until the whole
list | is reversed.

fun reverse (I : intlist) ;. intlist =
let nameX : intlist
fun rev' (I : intlist) : xintlist =
case |
of nil => box nil
| (xixs) =>
let val y =rev' xs
in
box (recall x c: xintlist > yintlist.
marky X :: unbox (c Y))
end
box v = rev' |
in
marky Vv
end

To better understand reverse , it is instructiv e to view a particular evaluation of
the helper function rev' . For example, rev' [2, 1, 0] generatesthe following
specialized code:

box (recall x c3.
markx 2 :: unbox c3 (box recall x c2.
marky 1 :: unbox c2 (box recall x cl.
markx O :: unbox cl (box nil))))

When prepended by a marky , unboxed and evaluated, this code usesthe cortin-
uations ¢ to accumulate the reversed pre x of the list. For example, the vari-
able c3 is bound to x: let box u = x in box u correspnding to the initial

2We have decided on this ordering for reasonsof simplicity. A more natural de niton may have
been: Cv D if Cisasux of D. However, this ordering would complicate the support weakening
principle. The support C occurs in negative positions in the typing rule for recall , making it
problematic to prove support weakening by a simple inductiv e argument.

182

CHAPTER 4. EFFECTS 4.8. CONTINUA TIONS

empty prex; ¢y is boundto x: let box u = x in box (2 :: u); c; is bound to
X: let box u = xin box (1 :: 2: u), until nally the reversedlist [0,1,2] is
produced.

There is actually a bit of aleeway in de ning the static and dynamic semartics for
composablecontin uations, which hasto do with whether the cortinuation captured
by recall shouldinclude the delimiting mark and/or removeit from the ervironment.
The primitiv e reduction that we have usedin our formulation is

;(mark x Plrecall x k:€]) ! [K=K]e;
whereK = x: let box u= xin box P[u]

As can be seen,this reduction removes mark both from the captured cortinuation
K, and from the evaluation context of the reducedterm. But either of the following
rules is a possiblechoice, and we discussthem informally below.

;(mark x Plrecall x k:€]) ! ' [K=K]e; 4.1
whereK = x: let box u= x in box (mark x P[u])

;(mark x Plrecall x k:€]) ! ymark x [K=K]e; (4.2)
whereK = x: let box u= x in box P[u]

;(mark x Plrecall x k:€]) ! ymark x [K=K]e; (4.3)
whereK = x: let box u= xin box (mark x P[u])

The rule (4.1) capturesmark x into K, but removesit from the evaluation ernvi-
ronmert of e. The typing rule matching this operational semariics is

; (;ki cxB! cA) e:A[C] X:A2
: " recall x k:e:B[C;X]

Becausethe mark X is removed from the environment, it becomesmpossiblefor e to
recallto X . This iswhy X doesnot appearin the support of the premiseof this typing
rule. Becausethe mark X is captured into the cortinuation, the result of applying
the continuation doesnot require a mark for X in its evaluation ervironment, and
so X is also dropped from the rangetype of k.

The rule (4.2) omits the mark from the continuation K, but leavesit in the
evaluation environment of e. The corresponding typing rule leaves X in the support
of the premiseand in the range type of k.

; (ski cxB! cxA) e:A[C;X] X:A2
: " recall x k:e:B[C;X]

183

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

Becausethe mark is left in the evaluation environment, it becomesimpossible to
jump in sequenceto namesthat are further down in the support stadk. In this
setting, it becomesecessaryto considersemartics that allow jumps arbitrarily deep
into the support stadk. This is very related to the behavior of Felleisen'sF operator
[Fel8g. If we label by D the top of the support stad, up to but not including the
target mark, then a recall which would jump over the namesin D will be typed as
follows.

7 (ki cxpB! cxA) e:A[C;X] X:A2 X 62D
: “recall x kie:B[C;X;D]

Indeed, becausethe namesfrom D are captured into the cortinuation, they must be
removed from the range type of k. Support D is also removed from the evaluation
environment, and hencemust be omitted from the support of the premise.

The rule (4.3) leavesthe mark into both the continuation K and the evaluation
environment of e, and the typing rule for it is thus

; (;ki cxB! cA) e:A[C;X] X:A2
: " recall x k:e:B[C;X]

This choice of semartics correspondsto Danvy and Filinski's shift operator [DF89,
DF90].

Our choice of operational semartics for composable cortinuations is similar to
the one for the set/cupto operators of Gunter, Remy and Riecke [GRR95]. We
have decided on this choice of operational semarics for composable cortin uations
becauseall the other choices can be encaded within it. Obviously, if the mark is
discarded during reduction, it can always be placed bad; if it is retained, it can
never be eliminated. We do not know if the other operational semarics can match
this expressieness.

Example 43 Composable cortinuations have been used to corveniertly express
\nondeterministic computation”; that is, computation which canreturn many results
[DF89, DF90]. The following exampleis a program for nding all the partitions of
a natural number n, i.e. all the lists of natural numbers that add up to n. The
main function partition is very e ectiv ely phrasedin terms of a primitiv e function
choice . The ideais to usechoice to non-deterministically pick a number betweenl
and n, and not worry about backtracking and exploring other options. Backtracking
is automatically handled by choice .

fun partiton n =
if n =0 then box (nil)

else
box (let wval i = unbox (choice n)
box | = partiton (n - i)
in
@i::D
end)

184

CHAPTER 4. EFFECTS 4.8. CONTINUA TIONS

The important point is that choice itself can be implemened using composable
cortinuations. The way choice is implemented will determine the ordering in which
partition considersthe candidate lists for partitioning n.

The processof generatingpartitions for n may be seenasa traversal of a tree with
labeled nodes and edges{ a partition tree. Paths in the partition tree emanating
from a node labeled by n represen the partitions of n. An inductive de nition of
the partition tree for n is given as follows:

(i) if n = 0, then the tree consistsof a single node labeled 0.

(i) if n > 0, then the root of the tree is labeled with n, and edgeslabeled with
n;n 1;:::;1connectthe root to partition treesfor 0;1;:::;n 1, respectively.

An example partition tree for n = 4 is preseried below.

Ny
O @ R

1 2

b oh &d

1 1 2

® @@1@
®

[Eny
w

Of course,just aswith any tree, various traversal strategiesmay be employed to
generatethe partitions for n. For example,a depth- rst strategy may employ a stack
k to store the nodesthat remain to be traversed. After putting the root node on the
stadk, the depth- rst strategy repeatsthe following algorithm: remove the top node
t from k, and expand it, i.e. determine all the children of t (if any), and put them
onto the top of k; if k is empty, then exit.

On the other hand, a breadth- rst strategy may employ a queuek to store the
nodesthat remain to be traversed. After putting the root node on the queue,the
breadth- rst strategy repeats the following: remove the top node t from k, and
exmnd it, i.e. determine all the children of t (if any), and put them at the bottom of
k; if k is empty, then exit.

185

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

In our implementation of the partition algorithm, the partition tree for n is
never explicitly built, but is implicitly described by the execution of the partition
function. For example, we present belov a version of choice which facilitates a
depth- rst traversal of the tree. In this implementation, we assumethat a name X
of unit type has already beendeclaredand allocated.

(* choice : int -> yint *
fun choice n =

box (recall x t : xint -> xunit.
let fun loop (s : int) : unit =
if s =0 then ()
else
let box u =t (box s)
in
(marky u);
loop (s - 1)
end
in
loop (n)
end)

The program works by viewing the current global program cortinuation as an im-
plicit stadk k of nodesto be expandedin order. Each node hasits own composable
continuation, all of which composeto createk. The function choice simply captures
into t the composablecortinuation for the rst node in the sequence.The captured
node is removel, and t is applied to generateall of its children { one child for eah
possiblevalue of the variable s. The children nodesare addedin place of the parent
node at the top of the global program cortinuation k. Becausethe new nodes are
addedto the beginning, they will be the the rst to expandin the subsequeh exe-
cution. As a consequencethis implementation of choice usesa depth- rst traversal
strategy.

With this version of choice, partition hasthe typeint -> xintlist . To
compute the partitions for 4, we run markx print (unbox partition 4). The
result consistsof the lists [4], [3, 1], [2, 2], [2, 1, 1], [4, 3], [1, 2, 1], [1, 1, 2], [1, 1,
1, 1]. Becausedepth- rst traversalis employed, the lists are sorted in lexicographic
order.

In our calculus, it is also possibleto implement choice so that it facilitates
breadth- rst strategy. When generating the children of some node, we only need
to attach them at the end, rather than at the beginning of the queuek that the
global continuation represens. One possiblebreadth- rst implementation of choice
is given below.

186

CHAPTER 4. EFFECTS 4.8. CONTINUA TIONS

(* choice : int -> vyxint *)
fun choice n =
box (recall x t : vyxint -> vy.xunit.
recall v k: vyunit -> yunit
marky
let fun loop (s : int) : yunit =
if s =0 then box ()
else
let box u =t (box s)
box u' =loop (s - 1)

in
box (marky u; u)
end
box v = k (box markyx ()
box v' = loop n
in
VvV, V'
end)

How doesthis function work? First, we must assumethat the queueis marked by a
new nameY of unit type, sothat it can be captured into a cortinuation itself. The
function choice capturesthe topmost node into t, and then capturesthe rest of the
queueinto k. It is important that the continuation k will not contain the delimiting
mark y. Then choice expandsthe topmost nodet, addsthe obtained children nodes
to the bottom of k, and puts mark y bad, sothat its scope includes the children
nodes. Again, it is crucial for this application that the captured continuations omit
the target mark (unlik e, for example,in the calculi from [DF89, DF90Q]), asthis mark
will getin the way of adding new nodesat the bottom of k.

With this implementation of choice, the appropriate type for partition s
int-> y.xintlist . To compute the partitions for 4, we run

marky markyx print (unbox partition 4)

to obtain the lists [4], [3, 1], [2, 2], [1, 3], [2, 1, 1], [1, 2, 1], [, 1, 2], [1, 1, 1, 1].
Becausewe usedbreadth- rst traversal strategy, we rst explored all the partitions
of sizel, then all the partitions of size 2, etc. Thus, the lists will be sorted rst by
size,rather than lexicographically, as was the casewith depth-rst traversal.

187

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

Structural prop erties and typ e soundness

The table below preseris the summary of the syntactic categoriesthat we rely on in
this section.

Expressions e = ujx:Aejerejbox ejlet box u=e;in ej
X:A: ejchoose ejrecall x k:ejmark x e
Values v = X:Aejboxej XA e
Evaluation contexts E = []jEeijviEjlet box u= E in ejchoose E |
mark x E
Pure contexts P = []jPejviPjlet box u= P in ejchooseP
Redexes r = (x: evjlet box u= box ein ej

choose (X:e)jmark x Vj
mark x P[recall x k: €]

The rst property of interest establishesthat in eadh ewvaluation cortext E we can
identify the closesmark acting on the hole of E.

Lemma 79 (Ev aluation context decomp osition)
If E is an evaluation cortext, then either:

1. E is a pure conext, or

2. there exist unique evaluation cortext E°and pure cortext P°%such that E =
E9mark x P9

Pro of: Straightforward, by induction on the structure of E.

Next we proceedwith the basic substitution principle of the calculus, whose state-
mert is identical to the corresponding principles establishedin seweral previously
consideredcalculi.

Lemma 80 (Expression substitution principle)
If ; "~ e :A[C]land ; (;u:A[C]) e :B][D], then ; " [er=ule; : B [D].

Pro of: By induction on the structure of e,. We presen the characteristic cases
below.

casee, = recall x k: e whereX:B%2 , and D = (D%X).

By derivation, ; (;WA[C];k: poxB ! poxB9 €’:BODY. By induc-
tion hypothesis, ; (;ki poxB ! poxB9 * [e=ule’: B°[DY. Now the
result follows by the typing rules for recall .

casee, = mark x €’ whereX:B 2 . By derivation, ; (;wA[C])" €’:B[D®%X],
whereD%v D. By induction hypothesis, ; [e;=u]e’: B [D® X]. The result
now follows by the typing rules for mark .

Just as was the casewith exceptions,the Replacememn lemma for composablecon-
tinuation needsto distinguish between pure and ordinary contexts. Becausepure
contexts do not allow a mark acting on the hole of the context, placing an expression
within a pure corntext presenesthe expression'ssupport.

188

CHAPTER 4. EFFECTS 4.8. CONTINUA TIONS

Lemma 81 (Replacemen t)

1. If ; ° PJlegl: A[C], then there exists a type B suc that
(@ ; "~ e:BJC],and
(b) if Yextends and ¢ " e:B[C],then © ~ P[e9:A][C]

2. if ; " E[€]:A[C], then there exist a type B and a support D such that
(@ ; "~ e:BJ[D], and

(b) if %extend and ¢ * €:B[D], then ¢ * E[e]:A[C]

Pro of: By induction on the structure of P and E. The rst part of the lemma
is straightforward. To establish the secondpart, by the decomposition lemma for
evaluation cortexts, it is enoughto considerthe following two cases.

case E is pure. In this case,the result follows from the already establishedreplace-
ment property for pure contexts.

caseE = Eq[mark x P], where X:B%2 . By secondinduction hypothesis, there
exists By and D; such that ; ~ mark x PJle] : B1[D1]. By typing, it must
beB;=BC%and ; " P[e:B1[D%X], whereD® D;. By the rst induction
hypothesis, there exist B such that ; ~ e:B[D®%X]. Pick D = (D%X) for
the part (a). Also by the rst induction hypothesis,if ¢ * e: B[D®X]
then ¢ ° P[e9:B1[D%X]. By typing, ¢ * mark x P[e]: B;[D1]. By
induction hypothesis, ¢ * Ei[mark x P[e"]: A[C].

Lemma 82 (Canonical forms)
Let v beavaluesuch that ; ~ v:AJ[C]. Then the following holds:

LifA=A;! Ap thenv= x:Ajieand ; XA e:A1[]

2.ifA= pB,thenv=Dbox eand ; " e:B][D]

B.ifA=A19 Ay thenv= X:Apieand(;X:Ay); e:Az[]
As a consequencethe support of v can be wealenedarbitrarily .

Pro of: By simple caseanalysis.

Similar to the previous calculi, in the caseof composablecontin uations, we allow
evaluation within a context of one or more marks. Thus, the lemmas on Subject
reduction, Presenation and Progressfor ! , all have to consider arbitrary non-
empty supports C.

Lemma 83 (Sub ject reduction)
If ; ~e:A[Cland ;e ! ©e&%then %extends and ¢ €°:A[C].

Pro of: By caseanalysis of possiblereductions. The two characteristic casesare
presered below.

189

4.8. CONTINUA TIONS CHAPTER 4. EFFECTS

casee = mark x v, where X:A 2 . By derivation, ; = v : A[C%X], where
COv C. By canonical forms lemma, the support of v can be arbitrary, and in
particular ; " v:AJC].

casee= mark x P[recall x k: €9, whereX:A 2 .

1. By derivation, ; ° P[recall x k:€9:A[C%X], whereC®v C.

2. By replacemen lemma for pure contexts, there exists B suc that ;
recall x k:e%: B [C®X].

3. Also by replacemen lemma, ; u:B[C%X]" P[u]: A[C%X].

4. Thus ; ~ x: let box u= xin box P[u]: (coxB! cox A) []

5. From the typing (2), ; ki(coxB! coxA) €’:A[Cq.

6. From (4) and (5), if wesetK = x: let box u = x in box P[u], by sub-
stitution principle, we get ; = [K=K]e%: A[CT.

7. By support weakening, ; = [K=k]e’: A[C], becauseC®v C.

8. Sinceit is exactly ;e ! :[K =K]e® this provesthe case.

Lemma 84 (Preserv ation)
If ; "~ e:A[Cland ;e7! ©e&°then Oextends ,and ¢ &°:AJ[C].

Pro of: By evaluation rules, there existsan evaluation context E such that e= E[r],
r 1 %r%nde®= E[r9. By replacemen lemma, there exist B and D sud that

. " r:B[D]. By subject reduction lemma, C%extends, and ¢ " r%:B[D]. By

replacemen again, ¢ ° E[r9:A[C]. Sincee®= E[r{ this provesthe lemma.

Lemma 85 (Progress for !)
If ; ° r:A[C], then there exists a term e’ and a context C such that ;r !
0o

Pro of: By caseanalysis over the possible redexesr. The interesting casesare
preseried below.

casee= mark x v, whereX:A 2 . By reduction rules, ;mark x v ! (v, We
canpick %= and e’= v to prove the statemert of the lemma.

casee = mark x (P[recall x k: e1]), where X:A 2 . By derivation, ;
Plrecall x k: e;] : A[C%X], where COv C. By replacemen lemma, there
exists B such that ; =~ recall x k: e : B[CO,X]. By reduction rules,
;mark x (P[recall x k: e1]) ! [K=k]e;, where K abbreviates the ex-

pression x: let box u = x in box P[u]. Pick %= ande’= [K=K]e;.

Finally, the unique decomposition lemma takes the usual form, as do the Progress
and Determinacy lemmas.

190

CHAPTER 4. EFFECTS 4.9. NOTES

Lemma 86 (Unigue decomp osition)
For ewvery closedexpressione, either:

1. eis a value, or
2. e= PJ[recall x k: €9, for a unique pure cortext P, or
3. e= E[r] for a unique evaluation context E and a redexr.

Pro of: By straightforward caseanalysis.

Lemma 87 (Progress)
If ; ~ e:A[], then either

1. eis avalue, or
2. there existsa term e®and a context 9 such that ;e7! ©¢&°

Pro of: The proof is identical to the one presened in the previous calculi, so we
omit it here.

Lemma 88 (Determinacy)
If ;e7!' " 1;epand ;e7! " 5 ey, then there exists a permutation of names
:N ! N, xing the domainof ,sucththat ,= (1)ande = (e1).

Pro of: The proof is identical to the onespresened in the previous calculi.

4.9 Notes

Related work on type-and-e ect systems

Integrating e ects into typed functional calculi has quite a long history, and this
section is bound to be very incomplete. Numerous systems have been proposed,
treating various e ects and with various levels of precision and verbosity of typing.
As a represertativ e exampleof thesetype-and-e ect systems we simply list the works
of Giord, Lucassen,Jouvelot, Talpin and Tofte [GL86, LG88, JG89, JGI1, TJ92,
TJ94, TT97]. The approad usually taken by type-and-e ect systemsis to extend

the languagewith a type of e ectful functions A © B. Here, C is a set of e ects
that the evaluation of the function body may cause.

Coming from the sideof logic and typetheory, type-and-e ect systemsare directly
related to monads. A monad is atype constructor which is usedto di eren tiate be-
tweenvaluesand e ectful computations. In monadic calculi, the type A is ascribed
to expressionswhich may evaluate to a value of type A, but may causesomee ect
in the courseof evaluation. Monads were inverted for usein denotational sematrtics
by Moggi [Mog89, Mog91], and were later adopted for functional programming by
Wadler [Wad92, Wad95|.

The connection between monads and e ect systemsis described by Wadler in

[Wad9g. Briey, the e ectful function type A © B in the type-and-e ect systems

191

4.9. NOTES CHAPTER 4. EFFECTS

corresponds to the monadic type A ! cB. One advantage of monads over type-
and-e ect systemsis that monads enapsulate e ects, so that e ects can be added
to the languagein a modular way, without changing the already existing language
constructs. This is opposite to the type-and-e ect systems,which require that the

function typesA ! B be extendedinto e ectful function typesA © B.

The modal e ect calculi describedin this dissertation alsoencapsulatee ects and
add them to the languagein a modular way, without changingthe underlying function
types. Howewer, the modal framework allows more than onetype operator for e ects,
and thus allows more precisedistinctions betweendi erent e ectful computations.

Related work on dynamic binding

Dynamic binding has beenintroduced in the early versionsof LISP, and evertually
becamea standard, albeit cortroversial and often criticized feature.

Moreau in [Mor97] dewvelops an untyped calculus for dynamic binding with -
abstraction, application and a dynamic-let construct (which approximately corre-
spondsto our explicit substitutions). There are no additional constructs for encap-
sulation of computations with dynamic variables. The semarics of the language
is given by meansof an dynamic-environment passing translation into an ordinary

-calculus. The languagedi eren tiates betweenordinary variablesand dynamic vari-
ables. The later are replaced by the dynamic-ervironment passingtranslation into
lookups in the current dynamic ervironment. The paper proceedsto analyze the
interaction of dynamic binding with futures for the purposeof parallel evaluation,
and with rst-class corntinuations for the purposeof encaling exceptions.

A typed calculusfor dynamic binding, called N , is preseried by Dami in [Dam96,
Dam98]. The N -calculusis related to our systemin that both use names,but in
a slightly dierent way. The dynamic variables of N are introduced as ordinary

-bound variables, but are then indexed by namesto distinguish the various values
that can be assignedto them. The type system doesnot have a notion of support,
soit cannot prevert reading from uninitialized dynamic variables.

The calculus of Lewis et al. [LSML0OOQ] extends Haskell with dynamic binding. It
relies on implicit parameters which are essetially dynamically-scoped variables, or
namesin our calculus. The type systemrelies on the medanism of type schemesto
tracks the useof implicit parameters. Type schemesdescribe the typing of let-bound
variables in Hindley-Milner-style type systems. Here, type schemesare extended to
accourt for implicit parametersas well. It is interesting that the calculus does not
internalize the notion of implicitly parametrized computation in terms of a modality
or a monad. Thus, dynamic binding in Haskell is treated rather di erently from the
other notions of e ect. The absenceof such aninternalized notion of computation and
its corresponding type leadsto restrictions in the type systemin order to prevent the
inadvertent capture of implicit parametersthat may occur in a higher-order setting.
In particular, implicitly parametrized functions are not rst-class, and hencecannot
be passedto other functions.

The -calculus of Sato et al. [SSKO02], allows a simultaneous abstraction over
a set of variables. For example,the expression fCg: e abstracts the variables listed
in C from the expressione: A. The typeof fCg: eis A®, similar to our type cA.
There are many distinctions, howewver, between and our calculus of dynamic

192

CHAPTER 4. EFFECTS 4.9. NOTES

binding, arising mostly because is not basedon modal logic. For example, the
cortext in assaiates variables with types, but not with supports. This leads
to a somewhat complicated formulation, where ead variable must be assignedan
integer level, and the typing rules and the operation of substitution must perform
arithmetic over levels. The -calculus of Sato et al. [SSB01]is a precursor to
The -calculusprovidesexplicit substitution of terms for variables, but not dynamic
binding, asa variable may be usedonly if it is de ned by an explicit substitution.
Mason[Mas99 extendsthe untyped -calculuswith a primitiv e notion of context,
and the related operations for declaringand Iling context holes. Holesare similar to
our modal variables, in the sensethat ead hole is decoratedwith its corresponding
substitution, but abstraction over holesis not considered.Holesmay be lled using
strong or weak substitution, which approximately correspond to our modal substitu-
tion. Strong substitution propagatesdown to the holesand composeswith the holes'
substitutions. Weak substitution propagatesdown to the holes,but doesnot change
the domains of the holes'substitutions. In our calculusof dynamic binding (and also
in the modal -calculus), there is no needto split the conceptof modal substitution
into weak and strong, becausethe propagation of substitutions is controlled by the
modal term constructor (recall that substitution doesnot descendunder a box).
Hashimoto and Ohori [HOO1] presen a typed calculus of contexts. The calculus
doesnot internalize the notion of a computation in cortext, but provides a type of
functions from cortexts to values. Similarly to our modal -calculus, Hashimoto and
Ohori distinguish between ordinary variables and hole variables (corresponding to
our modal variables). The context of hole variables assaiates ead hole variable
u with its type A and an interface C (roughly corresponding to our support), but
also with an explicit substitution which speci es the bindings of the hole. The
explicit substitutions in this calculus only rename variables with other variables.
Storing the variable u and its substitution into the variable context, complicatesthe
systemsigni cantly and reducesits expressieness.For example, the typing rules for
constructs that bind ordinary variables must non-trivially manipulate the context
to accourt for the new bindings. Eadh hole variable u can be attached to only one
explicit substitution, becauseu is assigneda substitution upon its de nition, rather
than upon its use. In fact, the calculusimposeseven more se\ere restrictions. For
example, the context of hole variablesis linear, i.e., ead hole variable u can only
be usedonce, and ordinary variables can be referencedonly with an empty context

A more recert referenceon dynamic binding is the work by Bierman et al.
[BHS* 02], which applies dynamic binding to marshaling and dynamic software up-
date. The paper introducesa g-calculus with so-called destruct-time semarics,
where the idea is to postpone instantiation of a bound variable as long as possible
i.e., until the variable's value is required (essemially becauseit must be taken apart
by the computation). The valuesof the g-calculus comprisethe customary values
of the -calculus, but alsobound variables, and let de nitions.

Related work on exceptions

A treatment of exceptionsin Haskell is consideredoy Peyton Joneset al. in [PRH* 99.
It is interesting that this paper doesnot usethe exception monad in order to extend

193

4.9. NOTES CHAPTER 4. EFFECTS

the underlying language, but rather implements imprecise exceptions. With impre-
cise exceptions,the program is not guaranteed to always report the sameexception
that would be encouniered by a straightforward sequetial execution. In this calcu-
lus, an exceptional expressionevaluates to an exeptional valug which has a whole
set of possibleexceptionsassaiated with it. The assaiated exceptionsare the ones
that the expressionmay have potertially raised. Informally, this assaiated exception
set comparesto our notion of support.

At run time, of course,it is not a whole set of exceptionsthat an evaluation of an
expressionreturns. What is returned is the rst expressionout of this set, that got
raised. It is important, however, that the returned exceptionmay changein di erent
compilations and runs, becausehe optimizations performedat di erent compilations
may result with di erent order of evaluation. Obviously, the semariics of the calculus
cannot depend on optimizations, soit assumeghat the returned exceptionis chosen
non-deterministically out of the possibleset.

Another exception calculi is preseried by de Groote in [dG95]. It is a call-by-
value calculus which usesseparatebinding medanismsto intro duce exceptionsinto
the computation. Howewer, becauseof the lack of modal or monadic types, it has
to speci cally require that values of the language are e ect-free, in which caseit
implements the Standard ML exception mecanism. This paper also discusseshe
logical content of exceptions, and relationship with classicallogic. The exception
medanism of Java relatesto our calculus aswell, as Java methods must be labeled
by the exceptionsthey can raise [GJS97. The catch and throw calculus is a spe-
ci ¢ simpli cations of exceptions,and we refer to the following theoretical works on
catch and throw [Nak92, Kam00a, KS02]. Thesecalculi alsolack the type construc-
tor for exceptional computations, and thus have to restrict the way exceptionsare
intro duced, propagated and handled.

Related work on comp osable contin uations

Composablecortin uations were probably rst consideredby Felleisenin [Fel8§], in an
untyped setting and with recalling (or shifting) to only the nearestmark (or reset, or
prompt). A generalizationto a whole family of cortrol operators for recalling, ead of
which is indexed by a numeral proscribing how many closestmarks should be jump ed
over, appearedin [SF904. Also in untyped setting, Hieb, Dybvig and Anderson in
[HDA94] introduce labels instead of numeralsto describe the destination points for
a hierarchy of recalls.

In a typed setting, Danvy and Filinski in [DF89] develop a calculus for compos-
able cortinuations with a single recall operator. The marks are not labeled. In the
Appendix C, they also briey discussthe idea which we have employed here: upon
capturing, remove the marks from the ervironment, sothat jumps can be made to
the marks further down in the context stack. Danvy and Filinski further relate com-
posablecortinuations to the CPS transformation in [DF90, DF92]. Thesepapersalso
corntain extensive commertary on the related work regarding composable cortinua-
tions. Gunther, Remi and Riecke in [GRR95] dewelop a calculus whose operational
semartics is very similar to the one usedfor the calculus of composablecortin uation
in this dissertation. In particular, this calculus removes the delimiting mark upon
capture, from both the ervironment and the reduct. Most recertly, Kameyama in

194

CHAPTER 4. EFFECTS 4.9. NOTES

[Kam00a, KamO0O0b] works with labels instead of numeralsto provide a hierarchy of
recall operators. The mertioned typed calculi lack a type constructor for e ectful
computations, sothey must imposerestrictions on expressivenessand type safety in
order to avoid the extrusion of e ect scope.

Logical cortent of composable cortinuations is studied by Murthy in [Mur92].
This paper dewelops a type systemfor composablecorntinuation with a hierarchy of
recall operators, which is basedon monadsindexedby setsof types,but hasto restrict
the marks to only implication-free typesin order to preserne soundness.Wadler in
[Wad94] further analysesthe above type systemsfor composablecontin uations with
a single recall operator, and with a hierarchy of recall operators, and preserts them
in terms of indexed monads. All these calculi are characterized by the serialization
of e ects inherert in the monadic programming.

Monadic re ection and rei cation

One of the main features of the monadic calculi is the programming style in which
the program itself must specify a total ordering on the computational e ects. But
sometimes,most notably in the caseof benign e ects, e ectful computations may be
independent and therefore may be evaluated out of order.

This problemwith excessie serialization of monadic programshasbeenaddressed
previously by Filinski, using monadic re ection and rei cation [Fil94, Fil96, Fil99].
Re ection and rei cation are translations betweenan e ectful sourcelanguageand a
monadic -calculus. The e ectful sourcelanguageprovides the syntax for program-
ming (which avoids the burden of excessie serialization), while the monadic calculus
de nes the semarics for the program. The modal approadc to e ects addresseghe
same problem of excessie serialization, but it does so directly, using only natural
deduction, and without any translations.

A further dierence between monadic and modal calculi was discussedin Sec-
tion 4.6 regarding the calculus of exceptions. Monadic formulation of exceptionsre-
quirestagging and run-time tag chedking of monadic values. Furthermore, re ection
and rei cation do not help avoid these operations; as concludedin [Fil94], re ection
and rei cation still incur the operational penalties of tag chedking. In cortrast, tag-
ging is not required in the modal calculus for exceptions. Rather, the operational
semartics of the modal calculus of exceptionscorresponds closelyto the customary
way in which exceptionsare handled in practical languages:by unwinding the stadk
until an appropriate handler is reached.

Kripk e semantics for lax logic

As described in Section4.1, the identi cation of truth and necessiy in CS4 leadsto
the formulation of lax logic, in the sensethat the modal operator 3 translates into
the lax operator . This identi cation is achieved by extending the CS4 logic with
the axiom A ! A.

In the Kripk e semariics of CS4, truth and necessiy are identi ed if the Kripk e
model satis es the following monotonicity property:

for every world w and proposition A, if wE A andw! wCthen wlE A.

195

4.9. NOTES CHAPTER 4. EFFECTS

Indeed, in this classof models,if A is true at the current world, then A is true at all
accessibleworlds, and is therefore necessary Then, as establishedby Alechina et al.
in [AMdPROL1], a Kripk e model for propositional lax logic consistsof a Kripk e model
for CS4that satis es the above monotonicity property.

Logical meaning of dynamic binding and exceptions

In this note we describe a possiblelogical interpretation for the calculi of dynamic
binding and exceptions (Sections 4.4 and 4.6). The main idea is to involve two
levels of interpretation. The judgment from the calculi of dynamic binding and
for exceptionsform the object level The meta level, or the meta logic, de nes the
reasoning alout the derivability in the calculi from the object level. The modal
operators may be seenas internalizing properties of the meta logic for reasoning
about categorical derivations from the object level. This note will necessarilybe very
informal, and making the presened intuition preciseis left for future work.

The propositions from the object level should be cortrasted to meta propositions,
which belongto the meta logic. For example, the atomic propositions of this meta
logic are of the form A where A is a proposition from the object level. At the
meta level, the truth of a proposition A may be derived by more expressie means
than those allowed for derivations at the object level. For ead object connective
on propositions, the meta logic ought to cortain a corresponding connective, and
appropriately relate the two. For example,in the meta logic we have

A B
whenewer we may derive A! B.
NamesX1:Aj;:::; Xn:Ap in the calculus of dynamic binding, may be treated as
labels for the meta propositions A1;::: ;A,. Then, we require that

if and only if the conclusionA may be derived in the meta logic from the hypotheses
X1, :::, Xn. In the calculus of dynamic binding, the re ection principle is realized
by meansof explicit substitutions, and it simply allows that metalogical derivations
be translated into the object logic.

The meta logic for dynamic binding rather closelyfollows the object calculus, in
the sensethat the meta logic only contains connectivesthat correspond to the object
level connectives. But this need not be the case. For example, the meta logic for
exceptionsshould contain a propositional operator : for negation, while negation is
not an operator on the object level.

Exceptions X 1:Aq;::: ; Xn:An may be consideredas labels for the meta logical
propositions : (A1), :::, : (Ah). Then we require that

if and only if the conclusionA may be derived in the meta logic from the hypotheses
X1 Xq.

For example, let us assumethat A can be proved in the meta logic, and let the
name X :A be a label for the proposition : (A). Then we can use X to reason by

196

CHAPTER 4. EFFECTS 4.9. NOTES

cortradiction and prove B, where B is an arbitrary object proposition. In other
words, given A (and thus also A), we can derive x B tr ue. This reasoningdirectly
correspondsto the following derivation in the calculus of exceptions:

if ~ e:Athen” box (raisex €): xB.

Howewer, we cannot directly conclude B true at the object level, becausethe
above derivation usesreasoningby cortradiction, which is available at the meta level,
but not at the object level. In order to derive B tr ue, we needto usethe re ection
principle to show that the reasoningby cortradiction can somehaev be avoided. In
the calculus of exceptions,the re ection principle correspondsto exception handling,
and it allows that metalogical derivations be coercedinto object logic. Let us assume
that we are given the object proposition x B tr ue and the metalogical proposition
A B. Because xB true correspndsto : (A) B, we can employ the law of
excluded middle and derive B. This reasoningdirectly correspondsto the following

derivation in the calculus of exceptions.
if e: yxBand® hi :[X])B [], then ™ (unbox €) handle :B.

From the standpoint of Kripk e sematrics, it seemsplausible that the indexed
modalities may be intro duced by the following rede nition of the [relation.

1. wEg cAi foralwwwandu® wl u’E C impliesulE A.
2. WE 3cA i for all wlw w there existsu® wOsuc that u’s C and u’g A

In this de nition, C is the set of namesC = fX;:::;X,g, where the name X;
hasthe type Ai. In the caseof dynamic binding, we setw | C if and only w F A4,
..., WE An. Onthe other hand, in the caseof exceptionswe setw F C if and only
if w6 Ag, :::, w6 Ap.

Recursiv ely dependent names and future work on dynamic binding and
State

It is a well known property of functional languagesthat in the presenceof state and
higher-order functions, recursion becomesadmissible. For example, we can de ne a
recursive function fact:int->int for computing factorials, without explicitly using
the constructs for recursion. Below is an examplein ML-lik e notation.

let val fact : int -> int =
let val F=ref (x. x) (* a dummwalue *)
val g = x. if x=0then 1
else x * (INHKX - 1)
in
(F:=29); 9
end

The admissibility of recursion is a slightly disconcerting property of stateful com-
putations, becauseit shows that state destroys the connection with logic, which is
otherwise enjoyed by the pure -calculus.

We may attempt to translate the above program into the calculus of dynamic
binding from Sections 4.4, by declaring F as a name of type int -> int . This

197

4.9. NOTES CHAPTER 4. EFFECTS

translation, however, will not result in a well-typed program. Indeed, the function g
must betypedasint -> fgint , becauseg referencesk in its body. But then, it is
not possibleto assigng to F becauseof atype mismatch. The type of F cannot simply
beint -> int , but rather must beint -> fgint . When the type of F dependson
Fitself, asit is the casehere,we say that F is arecursively degendentname. With an
explicit construct for recursively dependert names, the recursive factorial function
can be de ned in the calculus of dynamic binding.

let val fact : int -> int =
let recnameF : int -> gint (* no need for a dummwalue *)
val g = x. if x =0 then box 1
else box (x * unbox (F (x - 1))
in
n. <F -> g> unbox (g n)
end

Incidentally, the fact that recursion does not seempossibleunlessenabled by a
separate language construct, is a compelling reasonto conjecture that the modal
calculi for dynamic binding and state from Sections4.4 and 4.5 are actually strongly
normalizing. This conjectureis left for future work.

Many other features, in addition to recursively dependert names, needto be
consideredif the modal calculusis to be extendedinto a full- edged languagewith
state. It seemamportant, for example,to consider rst-class hames(as suggestedn
Section 2.3), support polymorphism (Section 3.3), explicit substitutions of variable
names, etc. The designspaceis rather large, and ead of these extensionsmay be
interesting in its own right. We also note here the similarity between recursively
dependert namesand recursively dependert signaturesfrom [CHP99].

Related work on the comonadic form ulation of e ects

In category theory, the operator of CS4 modal logic is usually modeled by a
comonad. That comonadsmay represen intensional computations have previously
beennoticed by Brookesand Geva [BG92], and that comonadsmay represen e ects
has beensuggestedoy Kieburtz [Kie99].

It is interesting that Brookesand Geva considera particular family of comonads,
called computational comonads The comonad is computational, if in addition

to the standard comonadic laws it admits a natural transformation : A ! A
(with certain commuting conditions, that we omit here). As evidert from its type,
correspondsto the extension of the modal CS4 calculus with the axiom A ! A,

and thus provides a way to coercevaluesinto computations.

Kieburtz in [Kie99] proposescomonadsfor those e ectful computations that may
depend on the run-time ernvironment, but do not changeit. It is interesting that
the comonadsin [Kie99] are not computational in the sensede ned by Brookesand
Geva, and do not readily admit the coercion of valuesinto computations.

Neither of the cited papers on comonadsmake the connection with handling of
e ects and with modal logic.

198

CHAPTER 4. EFFECTS 4.9. NOTES

Mo dal typ es for div erging computations

Consider a purely functional languagewith a xp oint construct, de ned by the fol-
lowing typing rule and operational semartics.

XA el A
X X:Ae:A
X X:Are 7! [Xx X:A: e=Xe

Expressionsin this languageeither evaluate to a value, or never terminate. Suc
expressiongare partial, becausehey may diverge. A typical exampleis the expression
X X:A: X, which reducesto itself. Notice howewer, that the ewaluation of a non-
terminating expressiondoesnot perform any changesto the run-time ernvironment.
Depending on the operational semartics of the language, divergencemay prevent
some expressionsfrom being evaluated, but it does not in uence the outcome of
those evaluations that do take place. Divergenceis a benign e ect.

In fact, divergenceis such a simple e ect, that non-terminating computations do
not even depend on the run-time ervironment; if the computation doesnot terminate
in oneernvironment, it will not terminate in any other environment either. This is in
fact one of the reasonsthat divergenceis frequertly not even consideredan e ect.

Howewer, if we do want to treat diverging computations as e ectful, the benign
nature of divergencesuggeststhat we should usethe type systemfor benign e ects
(Section 4.3). How? The idea comesfrom the operational semarics. Obsere that
the reduction of x Xx: e substitutes the variable x by x x: e. The fact that x
is substituted by an e ectful computation, should be made explicit in the variable
cortext.

With that in mind, we introduce a name N to serw as a marker for non-
termination. If an expressionis possibly diverging, its support will contain the name
N. In fact, becausewe assumedthat our languageis pure except for divergence,our
supports will either be empty, or contain the singlenameN. Giventhe nameN, we
may now rede ne the typing rule for x , asfollows.

i X:A[N] e:A[C]
X X:A:e:A[C]

Notice that the support set C of the expression x x: € may equal the singleton
fN g, but may also be empty, depending on how x is usedin e. Of course,if x X: e
has empty support, than by the support weakening principle, it may be considered
as having support TN g as well. As a consequencethe operational semartics that
substitutes x : A[N] by x x: e obeysthe prescribed supports, and will be type safe.

It is interesting that non-termination does not admit any obvious notions of
handling, by which we could remove the nameN from the support of a possibly non-
terminating computation, and therefore restorethe purity of such a computation. In
fact, it may be appropriate to view non-termination as an e ect that is handled by
someertit y outside of the language(e.g. the operating system). Of course,then we
should allow that expressionswith non-empty support be evaluated. This cortrasts
Chapter 4, where we only evaluate expressionswith empty support.

To illustrate the above ideas, we presern the code for a factorial function which
uses x-p oints and is therefore consenatively labeled as non-terminating.

199

4.9. NOTES CHAPTER 4. EFFECTS

- fix fact : int -> yint
nint. if n =0 then box 1
else box (n * unbox (fact (n - 1)));

val fact =[fn] : int -> yint

- unbox (fact 2) + unbox (fact 3);
val it =8 : int

Notice that the x-p oint expressionmay not be typed simply asint -> int , but
must be given a more complicated type int -> yint . Indeed, the recursive ref-
erenceto fact in the -abstraction must be boxed. Otherwise, the body of the

-abstraction would have had non-empty support, which is not allowed by the type
systemfor benign e ects (Section 4.3). In this example,the function fact hasempty
support, but the result 8 is obtained with support N. We may suppressthis infor-
mation, howewer, becauseexpressionswith both empty and non-empty supports are
admitted for evaluation.

200

Chapter 5

Conclusions

This dissertation considersa version of modal logic and the corresponding -calculus,
as a foundation for functional languagesin which the type system can represen se-
lected properties of the program's execution ervironment. Type systemswith this
property are interesting becausen programming practice it is almost always the case
that programs are not pure, but must interact with their execution ervironment in
someway. A languagewith a modal type systemmay facilitate an early detection of
programming errors resulting from the program/environment interaction. Further-
more, becausethe typesrestrict the kinds of ervironments that may be encouriered
during the ewaluation, the compiler may exploit this knowledge to perform more
aggressie program transformations and optimizations.

The modal logic consideredfor this purposeis a constructive version of S4, with
indexed families of modal operators. The indexeson the modal operators capture
the property of the execution ervironments that is important for the application of
interest.

In the particular examplesconsideredin the dissertation, programsinteract with:

Memory. This instantiation of the modal calculus gives rise to languagesfor
non-destructive state update (i.e. dynamic binding), and destructive state update.
The modal type cA classi es computations that read from memory, but do not
changeit, and the modal type 3 cA classi es computations that may alsowrite into
memory.

This separation of computations into two categoriesnaturally correspondsto the
two di erent kinds of quarti cation. The operator of modal logic is a universal
quanti er over possible environments. A computation that realizesthe type cA
can be executedin any state of memory that satis es the speci cation C. As a result
it producesa value of type A. This is exactly the behavior of a computation that
only reads.

Dually, a computation realizing the type 3 cA is a witness that there exists a
state satisfying the speci cation C, in which a value of type A can be computed.
Such a computation must exhibit how the state should be changed, and how a value
canbe computedin the changedstate. Becausethe operation of writing into memory
witnessesthe change of state, the modal type 3 ¢ A classi es writing computations.

Control- ow stack This instantiation of the modal calculus givesraise to lan-
guagesfor exceptions,catch and throw, and composablecortinuations. The impor-

201

CHAPTER 5. CONCLUSIONS

tant obsenation regarding cortrol e ects is that they do not changethe execution
environment of the program. A jump in the cortrol- 0 w may in uence whether a
certain program subterm is evaluated or not, but it doesnot in uence the values of
the evaluated subterms. This is di erent from, for example, writing into memory,
where a change of the content of somespeci c memory location may in uence the
subsequeh program execution.

As a consequencegontrol e ects shouldbe encapsulatedusingthe universalquan-
tier , rather than the existertial quantier 3. In this approad, the computations
with control e ects neednot be serialized,asis the casein the currently most widely
adopted logical treatment of control e ects basedon monads.

Contexts (i.e. program expressionswith a hole). In this instance, the notion of
interaction is variable capture of expressionsthat are substituted into the hole of
the context. Depending on whether the corntexts are treated as syntactic ertities or
as compiled code, the obtained calculi are suitable for intensional manipulation of
abstract syntax or for run-time code generation.

A lot more remains to be investigated. The framework of modal logic is very
general, and it may potentially capture and represenn many more ways in which
programsinteract with their environments. In terms of practicality of programming,
the future work needsto addressthe expressivenessand usability of modal calculi.
We outline belov sometargets for future investigations.

Decorated types

There are many applications which require that the program typesbe decoratedwith
someadditional information describingthe executionervironment. Examplesinclude
distributed computation, security and information o w, resourcebounds, ownership,
etc. The currently existing languagesfor thesekinds of applications typically do not
attempt to encapsulatethe environment-dependernt computations, which in turn may
lead to interference of languagefeatures. Perhaps a restructuring basedon modal
logic, and encapsulationsusing , 3 or someother modal operator, may improve
the modularity of design.

For example, the type x A may stand for: (a) expressionsexecutable on all
networked computersthat provide the resourceX, or are owned by the authority X;
(b) computations encrypted by the key X ; (¢) computations that may read from the
databaseof objects with the security level X (or lower). Dually, the type 3 x A may
stand for: (a) expressionsexecutableon somenetworked computerswith resourceX ;
(b) a key X and a computation encrypted by X ; (c) computations that may write
into the databaseof objects with the security level X (or higher).

Other e ects and e ect combinations

There are many other notions of benign e ects which may benet from a modal
type system, the main examplebeing /0. Se\eral decisionsmust be made, howe\er,
beforel/O is cast into the modal framework. For example, should printing on the
screenbe seenas a computation that changesthe execution environment? In other
words, should printing computations be serialized or not? Information display is a
channel of comnmunication, which may changethe user'sperception of the world, and

202

CHAPTER 5. CONCLUSIONS

prompt certain reactions. In sud cases.the order in which information is displayed
is obviously important. But sometimesthis ordering does not matter, or at least
doesnot have to belinear. Such a behavior is frequertly encourtered in parallel and
distributed applications, where the order in which the display is acquired by various
processess not determined prior to program execution.

Thus, both approadesto the serialization of program output seemto make sense.
If the serialization is desired,it can be achieved by meansof the modal operator 3.
Otherwise, program output can be tracked by meansof , in a way similar to the
tracking of non-termination explainedin Section4.9. Indeed, a computation of type
A that prints on the screenmay be seenasa conditional: it producesa valueif access
to the screenis provided. Thus, we may type such a computation as sA, where S
is a new name denoting that accesdo the screenis required.

Program input may also o er possibilities for a modal treatment. It may be
advantageousto view the operation of reading from the le systemasa computation
that does not change the execution environment, and thus does not need to be
serialized. This is not quite straightforward, asreading from a le advancesthe le
pointer, and hencedoes changethe environment. Thus, perhapsa starting point in
the modal treatment of input is to reformulate the set of le operationsto separate
the reading of the current character in the le, from the advancemen of the le
pointer.

Obviously, it is desirableto be ableto combine all thesedi erent notions of e ects.
In fact, the problem of combination of e ects in the monadic setting have already
been encountered, and sewral solutions exist in the literature [KW92, GL02]. In
the modal setting, the question may be poseda bit di erently: how can we combine
di erent modal logics? This is much more generalthan combining monads, as we
do not needto restrict ourselvesto particular variants of constructive S4. Indeed,
we may be interested in adding exceptionsto a metaprogramming language,or to a
languagefor distributed computation or for security and information ow. Having
said that, whenthe Kripk e structure of the logic is xed, combining di erent e ectful
computations may amourt to combining the supports of their respective modal types.
This in turn correspondsto manipulating the independert piecesof the possibleworld
that the program ernvironment represerts.

Type and support polymorphism and inference

Type polymorphism and inference are necessaryingredients of every practical lan-
guage. In the setting of the modal -calculusand related e ect calculi, the additional
challengesare support polymorphism and support inference. Of course,conbination
of e ects with polymorphism and the type inferencein this combined setting have
beenstudied before[LG88, TJ92, BT01, LP00, GSSS02]and the existing approades
should generalizeto the modal calculus. In fact, it may alsobe possiblethat the en-
capsulation of e ects, and the underlying foundation in modal logic, may simplify
the processof type and support inference. For example, the current implementa-
tion of the modal calculi of e ects employs the standard algorithm for bi-directional
type cheding [PT98], thus eliminating the needfor all type and support annotations
except at the introduction languageforms.

Obviously, the extent to which the full type and support inferenceis possible

203

CHAPTER 5. CONCLUSIONS

will depend on the expressienessof the language. Should we consider recursively
dependert names from Section 4.9 (which add to the languagea avor of recur-
sive types), or not? Should we considerHindley-Milner or Girard-Reynolds style of
polymorphism in typesand support? As is well known, in the presenceof type poly-
morphism in Girard-Reynolds style, type chedking and typeinferenceare undecidable
[Wel99. Similarly, it is plausible that the modal calculuswith Girard-Reynolds style
support polymorphism from Section3.3 will have undecidableinference,but that the
inferenceis possiblein the Hindley-Milner variant.

First-class names

As already described in Section2.3, namesconsideredin this dissertation are second-
class,in the sensethat they cannot be passedas function argumerts. An important
direction for future work is to promote namesto rst class, and correspondingly
extend the described modal calculi.

First-class nameswill require a type constructor N : Type! Type, sothat func-
tions that take name argumerts, or return name results may be typed. The explicit
substitutions in the modal -calculus, and the exception handlersin the modal cal-
culus of exceptionswill have to allow assignmen of expression(resp. handlers) to
variable names.

Of course, rst-class namescan be generatedby arbitrary recursive functions, so
it becomesmpossibleto fully and statically track name generationand propagation.
Thus, name generation should be viewed as an e ect that changesthe state of the
world, and should thus be tracked by the 3 modality { unlike in the presern calculi,
wherethe e ects of namegenerationare localizedby meansof supports. The useof 3
modality for name generationwill leadto a semariics similar to that of the dynamic
allocation monad, recertly usedin another work on namesby Shinwell, Pitts and
Gabbay [SPG03.

In addition, support polymorphism, as discussedin the previous section will
becomevery important. With rst-class names, expressionsupports will become
unknown statically, so we will have to universally and existertially abstract over
them.

Mo dal typ e theory

Modal typeso er arich structure capableof capturing computational conceptsfrom
very diverseapplication domainsin a rather uniform way. The uniformity makes it
plausible that common formal methods for represeting, reasoningabout and veri-
fying modal programs could be identi ed and deweloped. A dependent modal type
theory [NPPO3] is a likely framework for such an investigation.

204

Bibliograph y

[AMO4]

[AMdPRO1]

[AS95]

[BBAP98]

[BAPOO]

[BES98]

[BG92]

[BHMO2]

[BHS* 02]

D. Ancona and E. Moggi. A fresh calculus for name managemen In
Proceedings of GPCE 2004 Vancouwer, Canada, 2004. To appeatr.

Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Rit-
ter. Categorical and Kripk e semartics for Constructive S4 modal logic.
In Laurent Frib ourg, editor, International Workshop on Computer Sci-
ence Logic, CSL'01, volume 21420f Lecture Notesin Computer Scienc,
pages292{307, Paris, 2001. Springer.

Giuseppe Attardi and Maria Simi. A formalization of viewpoints. Fun-
damenta Informatic ae, 23(3):149{173,1995.

P. N. Benton, G. M. Bierman, and V.C.V de Paiva. Computational
typesfrom a logical perspective. Journal of Functional Programming,
8(2):177{193, March 1998.

G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic.
Studia Logica, 65(3):383{416,2000.

Ulrich Berger, Matthias Eberl, and Helmut Sdwichtenberg. Normal-
ization by evaluation. In Bernhard Meller and John V. Tucker, editors,
Prospects for Hardware Foundations volume 1546 of Lecture Notes in
Computer Sciene, pages117{137. Springer, 1998.

StephenBrookes and Shai Geva. Computational comonadsand inten-
sional semartics. In M. P. Fourman, P. T. Johnstone,and A. M. Pitts,
editors, Application of Categories in Computer Scienc, volume 177 of
London Mathematical Scciety Lecture Notes, pages1{44. Cambridge
University Press,Cambridge, 1992.

Nick Benton, John Hughes, and Eugenio Moggi. Monads and e ects.
In Gilles Barthe, Peter Dybjer, Luis Pinto, and Joao Saraiva, editors,
Applied Semantics volume 23950f Lecture Notesin Computer Scienc,
pages42{122. Springer, 2002.

Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith
Wansbrough. Dynamic rebinding for marshaling and update, with
destruct-time . In International Conference on Functional Program-
ming, ICFP'2003, pages99{110, Uppsala, Sweden, 2002.

205

BIBLIOGRAPHY BIBLIOGRAPHY

[Bj 99]

[BS91]

[BTO1]

[CHP99]

[CMS03]

[CMTO0]

[Dam96]

[Dam9s]

[Dan96]

[Davos]

[DF89]

[DF90]

[DF92]

Nikolaj Bj rner. Type cheding meta programs. In Workshopon Logical
Frameworksand Meta-languages Paris, 1999.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evalua-
tion functional for typed lambda-calculus. In Sympsium on Logic in
Computer Sciene, LICS'91, pages203{211, Amsterdam, 1991.

Lars Birkedal and Mads Tofte. A constraint-based region inference
algorithm. Theoretical Computer Sciene, 258:299{392,2001.

Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module?
In Conference on Programming LanguageDesign and Implementation,
PLDI'99, pages50{63, Atlanta, Georgia, 1999.

Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3):545{571,2003.

Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closedtypesas
a simple approacd to safeimperative multi-stage programming. In Ugo
Montanari, Jose D. P. Rolim, and Emo Welzl, editors, Automata, Lan-
guagesand Programming, volume 1853 of Lecture Notes in Computer
Sciene, pages25{36. Springer, 2000.

Laurent Dami. Functional programming with dynamic binding. In
Dennis Tsichritzis, editor, Object Applications, pagesl55{172.Tednical
Report, University of Genew, 1996.

Laurent Dami. A lambda-calculus for dynamic binding. Theoretical
Computer Sciene, 192(2):201{231,1998.

Olivier Danvy. Type-directedpartial evaluation. In Symmsium on Prin-
ciples of Programming LanguagesPOPL'96, pages242{257, St. Peters-
burg Bead, Florida, 1996.

Rowan Davies. A temporal logic approac to binding-time analysis.
In Symposium on Logic in Computer Sciene, LICS'96, pages184{195,
New Brunswick, New Jersey 1996.

Olivier Danvy and Andrzej Filinski. A functional abstraction of typed
contexts. Tednical Report 89/12, DIKU - Computer ScienceDepart-
mert, University of Copenhagen,1989.

Olivier Danvy and Andrzej Filinski. Abstracting cortrol. In Conferenae
on LISP and Functional Programming, pages151{160, Nice, France,
1990.

O. Danvy and A. Filinski. Represeting Control: a Study of the
CPS Transformation. Mathematical Structures in Computer Scienc,
2(4):361{391,1992.

206

BIBLIOGRAPHY BIBLIOGRAPHY

[dG95]

[DHMO1]

[DPO1]

[dPO3]

[DPS97]

[Ers77]

[Fel8g]

[FFKD86]

[Fil89]

[Fil94]

[Fil96]

[Fil9g]

Philipp e de Groote. A simple calculus of exception handling. In Mari-
angiola Dezani-Ciancagliniand Gordon Plotkin, editors, Typed Lamlda
Calculi and Applications, volume 902 of Lecture Notes in Computer
Scien®, pages201{215. Springer, 1995.

Bruce F. Duba, Robert Harper, and David MacQueen. Typing rst-
classcontinuations in ML. In Sympsium on Principles of Programming
Languages,POPL'91, pages163{173, Orlando, Florida, 1991.

Rowan Davies and Frank Pfenning. A modal analysis of stagedcompu-
tation. Journal of the ACM, 48(3):555{604,2001.

Valeria de Paiva. Natural deduction and context as (constructive)
modality. In Patrick Blackburn, Chiara Ghidini, Roy M. Turner, and
Fausto Giunchiglia, editors, Modelling and Using Context, volume 2680
of Lecture Notesin Arti cial Inteligence, pages116{129. Springer, 2003.

Joelle Despeyroux, Frank Pfenning, and Carsten Schermann. Primi-
tive recursion for higher-order abstract syntax. In Philipp e de Groote
and J. Roger Hindley, editors, Typed Lamida Calculi and Applications,
volume 1210 of Lecture Notes in Computer Scien®, pages 147{163.
Springer, 1997.

A. P. Ershov. On the partial computation principle. Information Pro-
cessingLetters, 6(2):38{41, April 1977.

Matthias Felleisen. The theory and practice of rst-class prompts. In
Symposium on Principles of Programming Languages,POPL'88, pages
180{190, San Diego, California, 1988.

Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbeder, and
Bruce F. Duba. Reasoningwith cortinuations. In Sympsium on
Logic in Computer Sciene, LICS'86, pages131{141, Cambridge, Mas-
sadwusetts, 1986.

Andrzej Filinski. Declarative continuations and categorical duality.
Master's thesis, University of Copenhagen, Copenhagen, Denmark,
1989. DIKU Report 89/11.

Andrzej Filinski. Represeting monads. In Symmsium on Principles of
Programming Languages,POPL'94, pages446{457, Portland, Oregon,
1994.

Andrzej Filinski. Controlling E e cts. PhD thesis, Carnegie Mellon
University, 1996.

Andrzej Filinski. Represeting layered monads. In Symmsium on Prin-
ciples of Programming Languages,POPL'99, pages175{188, San Anto-
nio, Texas,1999.

207

BIBLIOGRAPHY BIBLIOGRAPHY

[Fio02]

[FM97]

[FM99]

[FPT99]

[Fut71]

[Gab00]

[Gir86]

[GJ95]

[GJ97]

[GJS97]

[GL86]

[GLO2]

[GP02]

[Gri90]

Marcelo Fiore. Semariic analysis of normalization by evaluation for
typed lambda calculus. In International Conference on Principles and
Practice of Declarative Programming, PPDP'02, pages26{37, Pitts-
burgh, Pennsyhania, 2002.

Matt Fairtlough and Michael Mendler. Propositional lax logic. Infor-
mation and Computation, 137(1):1{33, 1997.

Melvin Fitting and Richard L. Mendelsohn. First-Or der Modal Logic.
Kluwer, 1999.

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax
and variable binding. In Symposium on Logic in Computer Sciene,
LICS'99, pages193{202, Trento, Italy, 1999.

Yoshihiko Futamura. Partial evaluation of computation process- an ap-
proach to a compiler-compiler. Systems,Computers, Controls, 2(5):45{
50, 1971.

Murdoch J. Gabbay. A Theory of Inductive De nitions with -
Equivalene@. PhD thesis, Cambridge University, August 2000.

Jean-Yves Girard. The system F of variable types, fteen years later.
Theoretical Computer Sciene, 45(2):159{192,1986.

Robert Gluck and Jesper Jrgensen. E cien t multi-level generating
extensions for program specialization. In Manuel Hermenegildo and
S. Doaitse Swierstra, editors, Programming Languages: Implementa-
tions, Logics and Programs, volume 982 of Lecture Notes in Computer
Scien®, pages259{278. Springer, 1995.

Robert Gluck and Jesper Jrgensen. An automatic program gener-
ator for multi-level specialization. Lisp and Symiolic Computation,
10(2):113{158,1997.

JamesGosling, Bill Joy, and Guy Steele. The Java LanguageSgeci ¢ a-
tion. Addison-Wesley 1997.

David K. Giord and John M. Lucassen. Integrating functional and
imperative programming. In Conferenae on LISP and Functional Pro-
gramming, pages28{38, Cambridge, Massatwusetts, 1986.

Neil Ghani and Christoph Luth. Composing monadsusing coproducts.
In International Conferene on Functional Programming, ICFP'02,
pages133{144, Pittsburgh, Pennsyhania, 2002.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing, 13:341{
363, 2002.

Timothy G. Grin. A formulae-as-ypesnotion of cortrol. In Sympo-
sium on Principles of Programming LanguagesPOPL'90, pages47{58,
San Francisco, California, 1990.

208

BIBLIOGRAPHY BIBLIOGRAPHY

[GRR95]

[GSSS02]

[Har99]

[HDA94]

[HOO1]

[Hofog]

[JG89]

[JG91]

[JSS85]

[KamO0O0a]

[KamOO0b]

[Kie99]

Carl A. Gunter, Didier Remy, and Jon G. Riedke. A generalization of
exceptionsand cortrol in ML-lik e languages. In International Confer-
ence on Functional Programming Languagesand Computer Architec-
ture, FPCA'95, pages12{23, La Jolla, California, 1995.

Kevin Glynn, Peter J. Stuckey, Martin Sulzmann, and Harald
S ndergaard. Exception analysis for non-strict languages. In Interna-
tional Conferenae on Functional Programming, ICFP'02, pages98{109,
Pittsburgh, Pennsyhania, 2002.

Robert Harper. Proof-directed debugging. Journal of Functional Pro-
gramming, 9(4):463{470, 1999.

Robert Hieb, Kent Dybvig, and Claude W. Anderson |ll. Subcortinu-
ations. Lisp and Symholic Computation, 7(1):83{110, 1994.

Masatomo Hashimoto and Atsushi Ohori. A typed corntext calculus.
Theoretical Computer Sciene, 266(1{2):249{272,2001.

Martin Hofmann. Semairical analysis of higher-order abstract syntax.
In Symposium on Logic in Computer Sciene, LICS'99, pages204{213,
Trento, Italy, 1999.

Pierre Jouvelot and David K. Giord. Reasoningabout cortinuations
with cortrol e ects. In Conferene on Programming Language Design
and Implementation, PLDI'89 , pages218{226, Portland, Oregon, 1989.

Pierre Jouvelot and David Giord. Algebraic reconstruction of types
and e ects. In Symmsium on Principles of Programming Languages,
POPL'91, pages303{310, Orlando, Florida, 1991.

Neil D. Jones, Peter Sestoft, and Harald S ndergaard. An experiment
in partial evaluation: the generation of a compiler generator. In Jean-
Pierre Jouannaud, editor, Rewriting techniques and applications, vol-
ume 2020f Lecture Notesin Computer Sciene, pagesl24{140.Springer,
1985.

Yukiyoshi Kameyama. Towards logical understanding of delimited con-
tinuations. In Amr Sabry, editor, Proceadings of the Third ACM SIG-
PLAN Workshopon Continuations, CW'01, pages27{33, 2000. Tecni-
cal Report No. 545, Computer ScienceDepartment, Indiana University.

Yukiyoshi Kameyama. A type-theoretic study on partial cortinuations.
In J. van Leeunven, O. Watanabe, M. Hagiya, P. D. Mosses,and T. Ito,
editors, Theoretical Computer Sciene: Exploring New Frontiers of The-
oretical Informatics, volume 18720f Lecture Notesin Computer Scienc,
pages489{504. Springer, 2000.

Richard B. Kieburtz. Codata and comonadsin Haskell. Unpublished.
Available from http://www.cse.ogi.edu/~ dick , 1999.

209

BIBLIOGRAPHY BIBLIOGRAPHY

[Kob97]

[Kri63]

[Krig0]

[KS02]

[KW92]

[Lan65]

[LF96]

[LG8S]

[LLO6]

[LP95]

[LPOO]

[LSMLOO]

[Mas99]

[McC93]

Satoshi Kobayashi. Monad as modality. Theoretical Computer Science,
175(1):29{74,1997.

Saul Kripk e. Semariic analysis of modal logic |. Zeitschrift fur Mathe-
matische Logik und Grundlagen der Mathematik, 9:67{96, 1963.

Saul A. Kripk e. Naming and Necessity. Harvard University Press,1980.

Yukiyoshi Kameyama and Masahiko Sato. Strong normalizability of the
non-deterministic catch/thro w calculi. Theoretical Computer Sciene,
272(1{2):223{245, 2002.

David J. King and Philip Wadler. Combining monads. In Glasgow
Workshop on Functional Programming, pages134{143, Ayr, Scotland,
1992.

Peter J. Landin. A correspondencebetween ALGOL-60 and Church's
lambda notation. Communications of the ACM, 8:89{101, 1965.

Shinn-Der Lee and Daniel P. Friedman. Enriching the lambda calculus
with contexts: toward a theory of incremertal program construction. In
International Conference on Functional Programming, ICFP'96, pages
239{250, 1996.

John M. Lucassenand David K. Giord. Polymorphic e ect systems.In
Symposium on Principles of Programming Languages,POPL'88, pages
47{57, San Diego, California, 1988.

Peter Lee and Mark Leone. Optimizing ML with run-time code genera-
tion. In Conference on Programming LanguageDesign and Implemen-
tation, PLDI'96 , pages137{148, 1996.

John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp
and Symlolic Computation, 8(4):293{341, 1995.

Xavier Leroy and Francois Pessaux. Type-basedanalysis of uncaught
exceptions. ACM Transactions on Programming Languagesand Sys-
tems 22(2):340{377,2000.

Jerey R. Lewis, Mark B. Shields, Erik Meijer, and John Launchbury.
Implicit parameters: Dynamic scopingwith static types. In Sympsium
on Principles of Programming Languages, POPL'00, pages108{118,
Boston, Massadwsetts, 2000.

lan A. Mason. Computing with contexts. Higher-Order and Symlwolic
Computation, 12(2):171{201,1999.

John McCarthy. Notes on formalizing context. In International Joint
Conference on Arti cial Intelligence, IJCAI'93 , pages555{560, Cham-
bery, France, 1993.

210

BIBLIOGRAPHY BIBLIOGRAPHY

[Mil90]

[ML96]

[Mog89]

[Mog91]

[Mon63]

[Mor97]

[MTBS99]

[MTHMO7]

[Mur92]

[Nako2]

[Nan02a]

[Nan02b]

Dale Miller. An extensionto ML to handle bound variables in data
structures. In Proceedings of the First Esprit BRA Workshopon Logical
Frameworks pages323{335, Antib es, France, 1990.

Per Matrtin-Leof. On the meaningsof the logical constarts and the jus-
ti cations of the logical laws. Nordic Journal of Philosophial Logic,
1(1):11{60, 1996.

Eugenio Moggi. Computational lambda-calculusand monads. In Sym-
posium on Logic in Computer Sciene, LICS'89, pagesl4{23, Asilomar,
California, 1989.

Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55{92, 1991.

Richard Montague. Syntactical treatment of modalities, with corollaries
on re exion principles and nite axiomatizability. Acta Philosophia
Fennica, 16:153{167,1963.

Luc Moreau. A syntactic theory of dynamic binding. In Michel Bidoit
and Max Dauchet, editors, TAPSOFT'97: Theory and Practice of Soft-
ware Development volume 1214 of Lecture Notesin Computer Sciena,
pages727{741. Springer, 1997.

Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim
Sheard. An idealized MetaML: Simpler, and more expressie. In Euro-
pean Sympmsium on Programming, ESOP'99, pages193{207, Amster-
dam, 1999.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
De nition of Standad ML (Revisal). MIT Press,1997.

Chetan R. Murthy. Control operators, hierarchies, and pseudo-classical
type systems: A-translation at work. In Olivier Danvy and Carolyn

Talcott, editors, Proceedings of the ACM SIGPLAN Workshop on Con-

tinuations, CW'92, pages49{71, 1992. Tedhnical Report STAN-CS-92-

1426, Stanford University.

Hiroshi Nakano. A constructive formalization of the catch and throw
medhanism. In Sympsium on Logic in Computer Sciene, LICS'92,
pages82{89, Sarta Cruz, California, 1992.

Aleksandar Nanevski. Meta-programming with namesand necessiy. In
International Conferenae on Functional Programming, ICFP'02, pages
206{217, Pittsburgh, Pennsylania, 2002. A signi cant revision is avail-
able asa technical report CMU-CS-02-123R,Computer ScienceDepart-
mert, Carnegie Mellon University.

Aleksandar Nanevski. Meta-programming with names and neces-
sity. Tednical Report CMU-CS-02-123, School of Computer Science,
Carnegie Mellon University, April 2002.

211

BIBLIOGRAPHY BIBLIOGRAPHY

[Nan03a]

[Nan03b]

[Nan03c]

[NPO2]

[NPPO3]

[NTO3]

[Ode94]

[PDO1]

[PE8S]

[Pey03]

[PGOO]

[Pit01]

[Pra65]

Aleksandar Nanevski. From dynamic binding to state via modal possi-
bility. In International Conference on Principles and Practice of Declar-
ative Programming, PPDP'03, pages207{218, Uppsala, Sweden, 2003.

Aleksandar Nanevski. A modal calculus for e ect handling. Tednical
Report CMU-CS-03-149,Sdool of Computer Science,Carnegie Mellon
University, March 2003.

Aleksandar Nanevski. A modal calculus for namedcortrol e ects. Sub-
mitted, 2003.

Aleksandar Nanevski and Frank Pfenning. Staged computation with
namesand necessiy. Submitted, 2002.

Aleksandar Nanevski, Brigitte Pientka, and Frank Pfenning. A modal
foundation for meta variables. In Proceedings of MER IN 2003 Upp-
sala, Sweden, 2003.

Michael Florentin Nielsenand Walid Taha. Environment classi ers. In
Symposium on Principles of Programming Languages,POPL'03, pages
26{37, New Orleans, Louisiana, 2003.

Martin Odersky. A functional theory of local names. In Symposium on
Principles of Programming Languages,POPL'94, pages48{59, Port-
land, Oregon, 1994.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structuresin Computer Sciene, 11(4):511{
540, 2001.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Conferenee on Programming Language Design and Implementation,
PLDI'88 , pages199{208, Atlanta, Georgia, 1988.

Simon Peyton Jones, editor. Haskel 98 Languageand Libraries: The
Revisal Report. Cambridge University Press,April 2003.

Andrew M. Pitts and Murdoch J. Gabbay. A metalanguagefor pro-
gramming with bound namesmodulo renaming. In Roland Backhouse
and Jose Nuno Oliveira, editors, Mathematics of Program Construc-
tion, volume 18370f Lecture Notesin Computer Sciene, pages230{255.
Springer, 2000.

Andrew M. Pitts. Nominal logic: A rst order theory of namesand
binding. In Naoki Kobayashi and Benjamin C. Pierce, editors, Theo-
retical Aspects of Computer Software, volume 2215 of Lecture Notes in
Computer Sciene, pages219{242. Springer, 2001.

Dag Prawitz. Natural Deduction: a Proof-Theoretical Study. Number 3
in Stockholm Studiesin Philosophy. Almquist and Wiskell, 1965.

212

BIBLIOGRAPHY BIBLIOGRAPHY

[PRH* 99]

[PS93]

[PTO8]

[PWO5]

[Rey72]

[Rey83]

[Sch00]

[Sco70]

[Sco79]

[SF90a]

[SF90b]

[Sim94]

[Smo85]

Simon Peyton Jones, Alastair Reid, Tony Hoare, Simon Marlow, and
FergusHenderson.A semarics for impreciseexceptions. In Conferene
on Programming LanguageDesignand Implementation, PLDI'99 , pages
25{36, Atlanta, Georgia, 1999.

A. M. Pitts and I. D. B. Stark. Obsenable properties of higher order
functions that dynamically create local names, or: What's new? In
Mathematical Foundations of Computer Sciene, Proc. 18th Int. Symp.,
Gdansk, 1993 volume 711 of Lecture Notesin Computer Scien®, pages
122{141. Springer-Verlag, Berlin, 1993.

Benjamin C. Pierce and David N. Turner. Local type inference. In
Symposium on Principles of Programming Languages,POPL'98, pages
252{265, And Diego, California, 1998.

Frank Pfenning and Hao-Chi Wong. On a modal lambda-calculus for
S4. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors, Con-
ference on Mathematical Foundations of Programming Semantics vol-
ume 1 of Electronic Notes in Theoretical Computer Scien®, New Or-
leans, Louisiana, March 1995.

John C. Reynolds. De nitional interpreters for higher-order program-
ming languages. In 25th National ACM Conferene, pages717{740,
Boston, Massatwusetts, 1972.

John C. Reynolds. Types, abstraction and parametric polymorphism.
In R. E. A. Mason, editor, Information Processing'83, pages513{523.
Elsevier, 1983.

Carsten Scharmann. Automating the Meta-Theory of Deductive Sys-
tems PhD thesis, Carnegie Mellon University, 2000.

Dana Scott. Advice on modal logic. In Karel Lambert, editor, Philo-
sophial Problemsin Logic, pages143{173. Dordrecht: Reidel, 1970.

Dana Scott. ldentity and existencein intuitionistic logic. In Michael
Fourman, Chris Mulvey, and Dana Scott, editors, Applications of
Sheaves volume 753 of Lecture Notes in Mathematics, pages660{696.
Springer, 1979.

Dorai Sitaram and Matthias Felleisen. Control delimiters and their
hierarchies. Lisp and Symtwolic Computation, 3(1):67{99, 1990.

Dorai Sitaram and Matthias Felleisen. Reasoningwith cortinuations
I: Full abstraction for models of cortrol. In Conferene on LISP and
Functional Programming, pages161{175, Nice, France, 1990.

Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic
Modal Logic. PhD thesis, University of Edinburgh, 1994.

C. Smorynski. Self-Reference and Modal Logic. Springer, 1985.

213

BIBLIOGRAPHY BIBLIOGRAPHY

[SPGO3]

[SSBO1]

[SSK02]

[SW74]

[Tah9o]

[TahoO]

[Thi97]

[TJ92]

[TJ94]

[TS97]

[TT97]

[Wad92]

[Wad94]

[Wad9s]

Mark R. Shinwell, Andrew M. Pitts, and Murdo ch J. Gabbay. FreshML.:
Programming with binders madesimple. In International Conference on
Functional Programming, ICFP'2003, pages263{274,Uppsala, Sweden,
2003.ACM Press.

Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit environ-
mernts. Fundamenta Informatic ae, 45(1-2):79{115,2001.

Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A sim-
ply typed context calculus with rst-class ervironments. Journal of
Functional and Logic Programming, 2002(4), March 2002.

Christopher Strachey and Christopher Wadsworth. A mathematical se-
mantics for handling full jumps. Tednical Monograph PRG-11, Oxford
University Computing Laboratory, 1974.

Walid Taha. Multi-Stage Programming: Its Theory and Applications.
PhD thesis, OregonGraduate Institute of Scienceand Tednology, 1999.

Walid Taha. A sound reduction semartics for untyped CBN multi-
stage computation. Or, the theory of MetaML is non-trival. In Work-
shop on Partial Evaluation and Semantics-Basd Program Manipula-
tion, PEPM'00, pages34{43, Boston, Massadtwusetts, 2000.

Hayo Thielecke. Categorical Structure of Continuation Passing Style.
PhD thesis, University of Edinburgh, 1997.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and
e ect inference. Journal of Functional Programming, 2(3):245{271,
1992.

Jean-Pierre Talpin and Pierre Jouvelot. The type and e ect discipline.
Information and Computation, 111(2):245{296,1994.

Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In Workshop on Partial Evaluation and Semantics-Base
Program Manipulation, PEPM'97, pages203{217, Amsterdam, 1997.

Mads Tofte and Jean-Pierre Talpin. Region-basedmemory manage-
mert. Information and Computation, 132(2):109{176,1997.

Philip Wadler. The essenceof functional programming. In Symmsium
on Principles of Programming Languages,POPL'92, pages1{14, Alb e-
quergue, New Mexico, 1992.

Philip Wadler. Monads and composablecortinuations. Lisp and Sym-
bolic Computation, 7(1):39{56, 1994.

Philip Wadler. Monads for functional programming. In Johan Jeuring
and Erik Meijer, editors, Advaned Functional Programming, volume
925 of Lecture Notesin Computer Sciene, pages24{52. Springer, 1995.

214

BIBLIOGRAPHY BIBLIOGRAPHY

[Wadosg]

[Wel99]

[WF94]

[WLP98]

[WLPD98]

Philip Wadler. The marriage of e ects and monads. In International
Conference on Functional Programming, ICFP'98, pages63{74, Balti-
more, Maryland, 1998.

J. B. Wells. Typability and type cheding in SystemF are equivalent
and undecidable. Annals of Pure and Applied Logic, 98(1-3):111{156,
1999.

Andrew K. Wright and Matthias Felleisen. A syntactic approad to
type soundness.Information and Computation, 115(1):38{94, 1994.

Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code gener-
ation and Modal-ML. In Conferene on Programming LanguageDesign
and Implementation, PLDI'98 , pages224{235, Montreal, Canada, 1998.

Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal
typesasstaging speci cations for run-time code generation. ACM Com-
puting Surveys 30(3es),1998.

215

