RAW: Runtime Automatic Workarounds-

Antonio Carzaniga’, Alessandra Gorlaf, Nicold Perinot, and Mauro Pezzei*
{antonio.carzanigalgorlaalperinon|mauro.pezze}@usi.ch

fUniversity of Lugano *University of Milano-Bicocca

Lugano, Switzerland

ABSTRACT

Faults in Web APIs may escape the testing process, and
therefore affect thousands of Web applications. As a conse-
quence, users of these applications might suffer from related
failures for a long time until proper fixes are released by the
Web API developers. In this paper we present RAW, a tool
that tries to find workarounds automatically and at runtime,
thereby reducing the negative impact of faults in Web appli-
cations. Runtime and automatically deployed workarounds
serve as a temporary relief for application users while proper
fixes are developed and released.

1. INTRODUCTION

Popular Web APIs, like Google Maps, YouTube and Face-
book, are used in a myriad of combinations of browsers, op-
erating systems and contexts, and evolve over time to meet
new user needs. Testing all combinations of browsers and
operating systems for all evolving versions and in the con-
text of all possible applications is impossible. Faults that
escape testing can persist for a long time, and may cause
runtime failures that can affect many users. While waiting
for permanent fixes, application and API developers often
look for workarounds to temporary solve or at least mitigate
the runtime problems. Finding workarounds manually and
sharing them through forums is slow and inefficient. Appli-
cation and API developers may not share workarounds im-
mediately, and may not identify suitable workarounds right
away. Thus, applications may fail repeatedly and for a long
time before benefiting from proper workarounds.

In a recent paper, we presented a technique that exploits
the implicit redundancy that can be found in many soft-
ware applications, to automatically generate workarounds
for software libraries [1]. In this paper, we present RAW,
a tool that applies the technique to Javascript Web APIs.
RAW relies on a repository of equivalent sequences of API
operations, and generates candidate workarounds by choos-

*This work has been partially funded by the Swiss National
Fund with the project WASH.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

Milan, Italy

ing an alternative sequence equivalent to the failing one.
Equivalent sequences are sequences of API operations that
should produce the same or compatible effects from the end-
users viewpoint. To generate effective workarounds auto-
matically, we observed that many workarounds that solve
known problems follow some common patters. We then
framed such patterns in a set of classes that we use to iden-
tify equivalent sequences. RAW chooses candidate work-
arounds by prioritizing sequences equivalent to the failing
one according to their estimated likelihood of solving the
problem at hand.

2. AUTOMATIC WORKAROUNDS

RAW implements a layer that mediates the interactions
between clients and Web servers. This layer acts as a proxy,
intercepting the pages requested by the clients and enabling
the failure reporting system. The reporting system consists
of a simple button through which users can signal a fail-
ure. This signal triggers the automatic generation of work-
arounds. Specifically, when a user reports a page failure,
the automatic workaround system looks for alternative se-
quences of invocations corresponding to sequences observed
within the application code, which is part of the intercepted
page. The system then deploys a candidate workaround by
returning a new page in which the application code is appro-
priately rewritten to incorporate the chosen equivalent se-
quences. If the new page does not incur the previous failure
or otherwise meets the user’s expectations, the user can con-
tinue the interactive session as if the failure never occurred.
Otherwise the user may reiterate the process by signaling
another failure. In this second case, the automatic worka-
round system looks for a different sequence. The search for
an effective workaround is ultimately controlled by the user
who may decide to give up at any moment.

The search for workarounds relies on a repository of equiv-
alent sequences and a priority mechanism. Equivalent se-
quences belong to three categories: functionally null, in-
variant, and alternative operations. Functionally null op-
erations are operations with no functional effects. This is
the case, for example, of operations that affect only timing
or scheduling. Inwvariant operations are sets of operations
whose combination has a functionally null effect. Alterna-
tive operations are two or more sequences of operations that
produce the same results.

The repository of equivalent sequences is populated by
Web API and application developers, who can derive a first
set of equivalent sequences from templates, and incremen-
tally add equivalent sequences while fixing new faults. The

Google Maps

() &) (@ & ™ e\ . (e
w @, @ X W v ¥ ([heep/research v) = (G Q)
Back Forward Reload Stop Home Fixme Approvefix Giveup ~— -
ies O jes O C ication Sciences O
o -
5 §
© o
- £
Via iy, K
Y12 Madion gucMetta E;‘
g
19
H
=)

i
Faulty page: The page shows the polygons corresponding to
the buildings with no selected checkboxes

Figure 1: Issue n.

priority mechanism weights equivalent sequences according
to their success rate as workarounds, and indicates the se-
quences that are more likely to solve the problem.

3. USING RAW

We implemented RAW as a Firefox extension. The exten-
sion does not affect the normal Web browsing activity, since
it does not interfere with the browser until it is activated by
the user in reaction to a page failure.

RAW extends the Firefox interface by adding three but-
tons to the toolbar: Fix me, Approve fix and Give up, as
shown in the screenshots in Figure 1. We illustrate the func-
tionality of these buttons through an example that refers to
a known (and now fixed) problem of the Google Maps API,
reported as issue n. 1264 in the Google Maps bug-report
system.! Figure 1 presents two screenshots of a simple Web
application affected by this issue. The application shows the
map of the campus of the University of Lugano, and offers
a set of checkboxes to display the buildings of the faculties
as polygonal overlays. The Map and the polygons are cre-
ated with the Google Maps API. Initially, the page should
not display the polygons, which should become visible only
after selecting the checkboxes on top of the map. Moreover,
the polygons should scale according to the zoom level. As il-
lustrated by the screenshot on the left-hand side of Figure 1,
the initial page is not displayed correctly: all polygons are
visible with no selected checkbox. Zooming into the page
would also show that the polygons do not scale as expected.

With a standard browser interface, users who suffer from
these problems do not have any way to react immediately.
They can report the problem to the application developers
and hope for a fix sometime in the future. With RAW | users
experiencing the problem can ask for the help of the tool by
pressing the Fiz me button in the toolbar. The Fiz me
button activates RAW to look for a workaround. The appli-
cation of a (tentative) workaround modifies the JavaScript
code of the map, and reloads the page. If not satisfied by
the reloaded page, the user may insist in requesting a new
workaround by pressing the Fixz me button until satisfied by
the reloaded page, or they might give up. The screenshot on

. http://code.google.com/p/gmaps-api-issues/issues/detail?id=1264

Google Maps

@) @) G @) S
w . X W v X ([heepy/research v) = (G @
Back Forward Reload Stop Home Fixme Approve fix Give up -

ies O ics [C ication Sciences O
< 4 Ring0)
¢ ’
£ H 5
g < 9
s g g
&
Vi a M
2 Madionpqucoetta H
8
19
® =)
USlI-Universita
della Svizzera
Italiana
2
a g 8
“Se0pe Gury g
k4
——— -] <f»>
Done & 4

Page automatically corrected by RAW: The page does not
show the polygons when checkboxes are not selected

1264 in Google Maps

the right-hand side of Figure 1 shows the correct application
behavior as fixed by RAW. If satisfied by the reloaded page,
the user may signal the successful workaround by pressing
the Approve fiz button. If not satisfied, they can signal the
failure through the Give up button. These two buttons do
not affect the users immediately, but can help RAW generate
a successful workaround faster the next time the problem is
signaled.

4. ARCHITECTURE OF RAW

RAW includes a client- and a server-side subsystem. The
client-side subsystem is composed of the browser extension
that implements the user interface described in the previous
section. The server-side subsystem implements the main
functionality, and runs on a centralized server. Different
clients using different Web APIs and application servers may
share the same RAW server to automatically solve runtime
problems. The RAW server-side is composed of three main
components: ES Repository, JS Rewriter, WA Generator.

The ES Repository is the core of RAW and contains a set
of program-rewriting rules that specify equivalent sequences.
The JS Rewriter rewrites the Javascript code responsible for
a page failure by applying a rewriting rule. It relies on sed?
to implement the substitutions specified by the rule. The
ES Repository contains several rules, and each rule may be
applied in many ways to the same Javascript code, but only
a few applications of rules may generate valid workarounds.
The WA Generator is responsible for selecting the rules that
can be applied to the APIs in the original Javascript code,
and identify the ones more likely to generate valid worka-
rounds. It uses a priority scheme that depends on the suc-
cess rate of the rules to rank them.

5. REFERENCES

[1] A. Carzaniga, A. Gorla, and M. Pezze. Healing web
applications through automatic workarounds.
International Journal on Software Tools for Technology
Transfer, 10(6):493-502, December 2008.

2 http://www.gnu.org/software/sed

