
Checking App User Interfaces against App Descriptions

Konstantin Kuznetsov

Saarland University

Saarbrücken, Germany

kuznetsov@cs.uni-saarland.de

Vitalii Avdiienko

Saarland University

Saarbrücken, Germany

avdiienko@cs.uni-saarland.de

Alessandra Gorla

IMDEA Software Institute

Madrid, Spain

alessandra.gorla@imdea.org

Andreas Zeller

Saarland University

Saarbrücken, Germany

zeller@cs.uni-saarland.de

ABSTRACT
Does the advertised behavior of apps correlate with what a user sees
on a screen? In this paper, we introduce a technique to statically ex-
tract the text from the user interface definitions of an Android app.
We use this technique to compare the natural language topics of an
app’s user interface against the topics from its app store descrip-
tion. A mismatch indicates that some feature is exposed by the
user interface, but is not present in the description, or vice versa.
The popular Twitter app, for instance, spots UI elements that al-
low to make purchases; however, this feature is not mentioned in
its description. Likewise, we identified a number of apps whose
user interface asks users to access or supply sensitive data; but this
“feature” is not mentioned in the description. In the long run, an-
alyzing user interface topics and comparing them against external
descriptions opens the way for checking general mismatches be-
tween requirements and implementation.

CCS Concepts
•Human-centered computing ! HCI design and evaluation
methods; •Software and its engineering ! Software libraries
and repositories; •Information systems ! Document topic mod-
els; •Computing methodologies ! Anomaly detection;

Keywords
Android; App mining; Topic models; UI Anomalies;

1. INTRODUCTION
When a user decides whether to install an Android application

or not, she does not know much about its actual behavior. A brief
description and a set of screenshots give a high level intuition of
features that the app has. However, a description that does not fully
represent an advertised functionality can confuse a user.

The description of a well-known TWITTER1 application offers a
full range of services: stay informed with breaking news, share
1https://play.google.com/store/apps/details?id=com.twitter.android

Figure 1: Order history screen from TWITTER

them with friends and even communicate via direct messages. In-
deed, when a user launches the app and logs-in a list of TWITTER
posts (“tweets”) appears on the screen. The user interface (UI)
prompts to discover new events, find friends, or send a private mes-
sage exactly as advertised. However, a curious user while exploring
the app may stumble across a “Orders and payments” menu item,
which leads to a surprising “Order history” screen (Figure 1). Is it
really possible to buy goods or functionality with the TWITTER app?
Unfortunately, its description does not mention this functionality at
all.

We found that for many apps, developers fail to provide detailed
information on what an application is doing [3, 5]; over time, a
description also may no longer comprise the latest evolution of the
app’s functionality. Even worse, a user might open an app’s page
and find only a few words. As an example, the popular “Snapchat”2

app has just one line in its description “Life’s more fun when you
live in the moment :) Happy Snapping!” which is not that helpful.
Only the later note “Snapchatters can always capture or save your
messages, such as by taking a screenshot or using a camera. Be
mindful of what you Snap!” gives a little idea of what the app is
actually doing.

In this work, we attempt to check whether the advertised behav-
ior of apps from the market correlates with what users see on the
screen and, if not, suggest changes to improve the matching of a de-
scription against the user interface. To the best of our knowledge,
this is the first fully automated approach to detect mismatches be-
tween descriptions and user interfaces; a technique only made pos-
sible by the ability to automatically mine both the user interfaces
of apps as well as their market meta data.

Our work starts by mining the TOP100 applications of each cate-
gory from the Google Play Store, as well as all available apps from
the F-Droid open source repository (more than 1800+ apps). For
each app, we collect both the user interface data (as part of its APK

2https://play.google.com/store/apps/details?id=com.snapchat.-
android

package), as well as the description data (as part of its app market
metadata). We then apply topic modeling to the corpus of descrip-
tions, and later use the inferred topic model on the user interface
data. Thus, for each app we obtain two sets of probabilities of it
belonging to each inferred topic: the first set of probabilities refers
to its description, and the second one to its user interface. We fi-
nally compare, for each app, the description topic distribution with
the UI topic distribution, and we report mismatches.

In the remainder of this paper, we present each step of our tech-
nique in detail. In Section 2 we discuss how to collect text from
app’s UI; to the best of our knowledge, this is the first work sys-
tematically exploiting and summarizing this data source on a large
scale. After describing how we access app descriptions (Section 3),
we continue with Section 4 and describe the construction of the
topic model. In Section 5 we explain how we identify mismatches
in topics, the main novel contribution of this work. In Section 6
we report examples of mismatches between descriptions and UI ar-
tifacts. After an analysis of related work (Section 7). we close with
conclusion and future work (Section 8).

2. MINING ANDROID USER INTERFACES
The user interface of an app is everything that the user can see

and interact with. For this reason, user interface elements such as
buttons and menus usually rely on self-explanatory text labels to
describe their functionalities.

We thus analyze, as a first step of our technique, the text that
the user interface contains, and we use it as a proxy to describe the
underlying functionalities that UI elements would trigger.

The user interface in Android apps is a hierarchy of View and
ViewGroup objects organized in a composite pattern:

Views. A View is a base object for all UI elements in Android. A
View is an object that draws something on the screen that the
user can interact with.

ViewGroups. A ViewGroup is a View that is responsible for hold-
ing other View or ViewGroup objects and defines the struc-
ture of the layout.

Developers can define the layout of the screen in two ways:

1. They can declare the UI elements and their layout within an
XML file. As an example, consider Figure 2, which shows
how the UI elements of the TWITTER app shown in Figure 1
are arranged in a vertical linear layout. These XML files come
as part of the ANDROID app resources, and are part of the
app’s APK package file.

2. Alternatively, they can programmatically declare the hierar-
chy of UI elements in the Java code of the app. This is rarely
done, however, because the XML alternative is easier and pro-
vides a separation of concerns.

Regardless of how they define layouts, developers usually pro-
vide some text to describe UI elements. They can bind text to UI
elements either by using the android:text attribute in the XML
layout file or programmatically at runtime. The text, in turn, can be
either a reference to the app’s resources or can be the string that will
be displayed directly. However, the last approach is not very used
in practice, because it makes localization hard to deal with. Text
resources are thus typically specified in strings.xml files—one
default and other ones for each desired language.

As an example, consider Figure 3, showing the strings.xml
file related to the XML layout file in Figure 2. The XML layout
file includes a TypefacesTextView widget whose android:text

<?xml version="1.0" encoding="utf -8"?>
<LinearLayout >
<com.twitter.ui.widget.TypefacesTextView
android:id=
"@id/commerce_payment_shipping_loading"

android:text=
"@string/commerce_history_no_history"/>

<com.twitter.ui.widget.TypefacesTextView
android:text=
"@string/commerce_history_no_history_subtitle"/>

</LinearLayout >

Figure 2: TWITTERXML layout file (excerpt) defining the UI of
Figure 1.

<?xml version="1.0" encoding="utf -8"?>
<resources >
<string name="commerce_history_no_history">

No purchases made yet
</string >
<string name="commerce_history_no_history_subtitle">

Your future orders will be displayed here
</string >

</resources >

Figure 3: Localized text in the TWITTER app (excerpt) defining
strings used in Figure 2.

feature is "@string/commerce_history_no_history". The file
strings.xml then defines this string as "No purchases made
yet", the default string to be shown (as seen on Figure 1), unless
the localization provides a language-specific replacement.

In this work we assume that most of the apps follow guidelines
and use resource files to store text.

As a consequence of our assumption, we analyze all –but only–
UI resources files of apps to extract text that is associated with their
user interfaces. As an example, the analysis of the screen in Fig-
ure 1 produces the following bag of words:

Order history , no purchases made yet , your future
orders will be

displayed here

After removing duplicates, we process UI text –we follow the same
process for descriptions, as we describe in the following Section–
with the standard natural language processing techniques of filter-
ing, lemmatization and stemming as follows:

1. Given a bag of words, we first remove all non-text items such
as numerals, URL links and e-mail addresses.

2. Then, using the Language Detection Library for Java [8], we
detect the most likely language of each phrase and remove
all non-English words.

3. Next, we remove stop words, i.e., common words such as
“a”, “to”, “by”, which do not carry meaningful information.
We enriched the common stop word list for English language
with our own domain specific set of words. We created this
new list of terms by applying the baseline approach described
in [6] on the description and UI corpora separately, and taking
the top 100 stop words from the results.

4. To further reduce the words in the corpora, we also remove
rare words, which appear less then twice.

5. Finally, we apply lemmatization to reduce the inflectional
forms of a word to a common base form using a vocabulary
and morphological analysis. It is essential to make words
such as “send”, “sent”, and “sending” all match to the single
dictionary base form “send”.

Figure 4: Words from UI elements of TWITTER

6. We use stemming to additionally strip inflectional and deriva-
tional suffixes from terms. So, “sender” turns into “send”.
In essence, lemmatization and stemming help reducing the
number of words in the corpus, and consequently improve
the results of the following topic mining process.

Across all TWITTER screens, we thus obtain the set of words de-
picted in Figure 4. The most frequent words (“discard”, “cancel”)
are generic items that would be present in most user interfaces;
however “profile”, “follow”, and of course, “tweet”, are already
more specific to the TWITTER app.

3. MINING DESCRIPTIONS
Together with APK files we download the metadata details of

each app in our dataset [2]. Metadata include any public infor-
mation that the Google Play store displays (e.g., description, user
rating and category). We then parse the metadata information to
extract the app description, and we process the text with the same
natural language processing techniques for descriptions as we do
for user interface text—that is, filtering, lemmatization and stem-
ming. As a result, we again obtain a bag of words, together with
their frequency that represents the description of the app.

What do these descriptions look like? As an example, consider
Figure 5, showing the word cloud for the description of TWITTER. A
human can already spot some key differences by comparing words
in the description and the words in the user interface (represented
in Figure 4). However, in order to have an automated comparison
and report anomalies we first abstract them according to the topics
that they relate to.

4. TOPIC EXTRACTION
A careful look at the words used in the UI of TWITTER vs. the

ones used in its description (reported in the central part of Figure 4
and Figure 5 respectively) can highlight some mismatches. Instead
of directly comparing words, however, we compare description and
UI text according to the topics they belong to.

We leverage LDA to build a topic model of our corpus of apps.
Topic modeling provides a simple way to analyze large volumes
of unlabeled text. Using contextual information, topic modeling
can connect words with similar meanings as well as distinguish

&	
�
   videos

Figure 5: Words from TWITTER description

between uses of words with multiple meanings. The approach is
build on top of the concept of “topic”, which consists of a cluster
of words that frequently occur together. Each textual document in
the corpus can then be described with probabilities of belonging to
each topic.

We leverage topic modeling by first training the model on the
corpus of app descriptions. Table 1 shows the list of topics of our
model trained on all the descriptions of all analyzed apps. For each
topic we report the most representative words and a representative
name that we manually assigned. After building the topic model
on the description corpus, we use the same model to infer which
topics the UI text belongs to. Applied on the TWITTER application,
for instance, our technique would assign the textual description to
four topics (messaging, social, news & videos and other), while
the UI text would match five topics (messaging, social, account,
purchases and other). In Figure 4 and Figure 5 topics are listed in
the outer part, within quotes.

In order to identify topics we used the Mallet topic mining
tool [7]. Since it is necessary to specify the number of topics to
generate, we tried several values and manually evaluated the qual-
ity of the resulting topics. We found that 30 topics is a reasonable
value for our corpus.

Once we have both the description and UI of each application
assigned to different topics, we proceed to the next step, i.e. to
find and report anomalies. The UI labels in TWITTER, for instance,
reveal the purchases topic, which does not appear in the app de-
scription. This mismatch indicates that there are features in the UI
that are not mentioned in the description. In the next Section we
describe how we can automatically detect such anomalies and turn
them into recommendations to update the app description such that
it matches the functionalities in the app.

5. ANOMALY DETECTION
We define anomalies those applications whose UI topic distri-

bution significantly differs from the topic distribution of its corre-
sponding description on the market.

More precisely, for each application we compare the probability
of its description and UI to belonging to each topic. Topic prob-
abilities are values that range between 0 and 1. The sum of all
probabilities for an application equals to 1. If the UI is associated
with a high probability to some topic, whereas its description is not

Table 1: Topics mined from Android app descriptions
Id Assigned

Name

Most Representative Words (stemmed)

0 “photos” photo effect camera filter collag editor galleri frame pictur sticker share

1 “soccer” game play leagu score match player footbal challeng world team soccer win

build ball level puzzl

2 “funny

pictures”

draw anim funni face pictur eye share friend girl step fashion style hair char-

act paint

3 “settings” launcher sound alarm light theme turn bar press switch action clock lock full

flashlight

4 “subscriptions” access user subscript offer premium purchas term updat visit store polici

person content

5 “news &

videos”

news stori video content watch read channel articl broadcast top stream

world popular follow explor

6 “account” card scan contact password send read credit address store account per-

miss secur encrypt custom key import

7 “purchases” shop product card offer item order store price gift fashion buy reward find

deliveri amazon sale brand deal search earn

8 “audio” music play song player radio listen audio artist sound station album record

track lyric

9 “connection” server remot access system root sourc client user run send build medium

updat librari command project

10 “wallpapers” wallpap beauti background anim year amaz world christma beach waterfal

flower love decor man awesom pictur water friend heart lot

11 “pregnancy” period track babi fertil account pregnanc expens money ovul month tracker

market cycl

12 “readers” document read page print book browser share comic web format reader

offic search printer bookmark

13 “dictionaries” languag spanish french english portugues german chines russian italian

japanes translat turkish korean

14 “personalize” keyboard theme font galaxi launcher input layout smart wallpap key languag

predict style person

15 “games” play child talk charact game friend unlock tom life watch purchas privaci real

person magic item bubbl babi anim laser

16 “diet” weight food track calori diari health bodi diet healthi medic remind pill tracker

lose recip water counter fit goal drink

17 “weather” weather forecast clock locat temperatur hour condit max wind rain radar

local humid updat world citi skin report sunset sunris

18 “calendar” calendar event lock task mod remind unlock properti schedul pin birthday

idea assist access project week month organ pattern import

19 “synchronization” search job permiss access backup account store find storag sync send filter

share import multipl folder restor mail move extern

20 “workout” workout train fit exercis run person goal track sleep minut challeng heart

brain plan daili bodi progress muscl perform coach

21 “navigation” map locat track rout speed traffic alert find countri road warn tracker drive

street unit camera world cell friend record

22 “messaging” call messag friend contact chat group send share video famili record photo

block caller instant messeng convers peopl receiv sticker

23 “sensors” sensor measur pressur level system tool speed model star sound point engin

sky moon move realist touch virtual finger high

24 “calculations” calcul ski value fritz point resort line hour shift statist total report math graph

averag exampl oper unit amount snow

25 “learning

language”

learn languag word english german translat dictionari vocabulari cours

speak phrase pronunci spanish listen grammar studi audio practic quiz travel

26 “media” video camera record face music share audio watch photo medium movi

captur stream play pictur swap clip cam moment detect

27 “social” find friend peopl share love world user meet question million search follow

twitter chat communiti great dont alway join good

28 “travel” book travel car ticket map find bus citi hotel flight station vehicl transport

search trip rout berlin price train locat

29 “system” batteri secur protect clean memori speed power system safe privaci lock

antivirus boost space storag block privat charg scan perform

—or it is with a much lower probability— we infer that the de-
scription lacks some important details that can be described by this
topic, and we thus report this topic as missing. We used the value
0.2 as a threshold to report an anomaly.

The TWITTER description clearly puts this app into the social
topic, since it mentions that it allows people to connect with each
other (Figure 6). The UI text also supports this intuition, since there
are buttons with labels Sync contacts and Find friends as well as
other related textual hints. The probability of belonging to the so-
cial topic of its description and its UI text is thus quite high, and
since the difference in the probability values is less than the thresh-
old, we do not report TWITTER as anomalous with respect to this
topic.

Along with posting tweets on a public newsboard, TWITTER al-
lows to exchange private messages with friends. The user can open
a dedicated Messages screen, choose a recipient and create a new
message by typing it in a text field, which is labeled with a Start a
new message tag. The description mentions this feature, and as a
consequence we act as for the previous topic.

TWITTER also helps users staying informed with recent news
and events. Its description is thus also associated with the news
& videos topic. However, the text in the UI does not show this facil-
ity. Since all the tweets are dynamically generated at runtime, our
analysis does not find this information in its static resources. In this

0	

0.25	

0.5	

so
cia
l	

ne
ws
	

me
ssa
gin
g	

top
ic	2
	

ac
co
un
t	

pu
rch
ase
s	

pr
ob

ab
ili
ty
	

Descrip9ons	 UIs	

Figure 6: TWITTER topics distribution

Figure 7: The TWITTER purchase service.

case, though, we do not report this mismatch, since the “missing”
information is in the UI rather than in the description.

Our analysis, though, finds a significant mismatch in the proba-
bilities related to the purchases topic. This topic is predominant in
the UI, and it shows that there are some functionalities associated to
it, while the description completely lacks any information about it.
This is, thus, an anomaly that we report. The app developers could
thus take the result of our approach and enrich the app description
on the market to explain why and how these purchase features can
be used in the app.

6. SOME MISMATCHES
We performed our analysis on the TOP100 Android applications

on the Google Play Store in December 2015, and all the applica-
tions from F-Droid repository. After preprocessing and removing
improper descriptions (e.g., non english ones), the dataset boiled
down to 3735 apps. Here we report some of the interesting mis-
matches that we found thanks to our analysis.

Figure 8: The FilmOn Free Live TV subscriptions screen.

0	

0.25	

0.5	

ne
ws
	&
	vi
de
os
	

na
vig
a1
on
	

su
bs
cri
p1
on
s	

au
dio
	

ac
co
un
t	

me
dia
	

pr
ob

ab
ili
ty
	

Descrip1ons	 UIs	

Figure 9: The FilmOn Free Live TV topics distribution.

In-app Purchases
TWITTER is one of the examples that we found of hidden purchases
in the app. Actually, we found that its UI text has many more words
that are related to the “purchases” topic, even more than what the
average user can see. It turns out that these UI elements are related
to the In-Tweet purchase service, introduced by the TWITTER com-
pany in September of 2014. Verified users can purchase products
using TWITTER by tapping on the “Buy” button and by entering
billing information (Figure 7). Nevertheless, this option is abso-
lutely not mentioned in the app’s description.

Although rumors say that TWITTER discontinued this service in
May 2016 3, by now it is still possible to find a working “Buy”
button in rare tweets on the web-version of TWITTER. The TWITTER
app that we have analyzed is of 2015, when in-app service should
have been still available.

3https://www.buzzfeed.com/alexkantrowitz/twitter-disbands-
commerce-team-ceases-product-development-on

Figure 10: The Google maps log-in screen.

0	

0.25	

0.5	

na
vig
a+
on
	

so
cia
l	

syn
ch
ron
iza
+o
n	

se5
ng
s	

pr
ob

ab
ili
ty
	

Descrip+ons	 UIs	

Figure 11: The Google maps topics distribution.

Premium Services
Many applications being free software allow users to use premium
services via paid subscriptions. For instance, despite the Free word
in its name, FilmOn Free Live TV provides access to paid channels,
as visible in Figure 8. This app has neither any word about pay-
ments nor a specific label “Offers in-app purchases” which can be
assigned by the Google Play Store. A user gets to know of this fea-
ture only by using the app. The topic distribution Figure 9 clearly
identifies this discrepancy between the advertised features and ac-
tual behavior. It should be noted that this app was wrongly as-
signed to the “navigation” topic because the description mentions
local TVs with a lot of destinations.

Account & Synchronization
In order to fully exploit an application and get access to all features,
sometimes users are required to create an account. We identified
many apps that ask users to set up an account and submit their pri-
vate data. This behavior is especially annoying if the type of the app
does not explicitly mention account creation in the description. For
example, the Google maps app is highly integrated with the Google
infrastructure. It can add places mentioned in e-mails, save favorite
locations, and synchronize points of interest between mobile and
web apps. Though, a user must be logged in with the Google ac-
count credentials in order to use all these features (Figure 10).

The mismatch in the UI description and the textual description is
clearly visible in Figure 11. The UI has a predominant “synchro-

Figure 12: The RainToday – HD Radar log-in screen.

0	

0.25	

0.5	

su
bs
cri
p-
on
	

we
ath
er	

so
cia
l	

syn
ch
ron
iza
-o
n	

ac
co
un
t	

pr
ob

ab
ili
ty
	

Descrip-ons	 UIs	

Figure 13: The RainToday – HD Radar topics distribution.

nization” topic, which clearly implies the necessity to log-in with
a valid account. This topic is missing in the textual description,
instead.

RainToday app is another example of this category of mis-
matches. It features real-time rain alerts and a high resolution radar.
In its description they advertise a lot of modern features like mod-
ern interface and high-resolution and animated graphs. There exists
a premium version, which offers ads-free functionalities.

The description of the app does not mention anything related to
the premium version, and the possibility to create an account to
upgrade. Even if the account is only used for linking premium
services to the user, this should be at least mentioned in the de-
scription. The mismatch can be clearly see in Figure 13 in the
“synchronization” topic as it was the case for Google Maps.

Location
User location is a sensitive information, and usually developers
tend to explain why their apps require GPS data. In our analysis
we found a wallpaper application that accesses the user’s location.
This immediately seemed to be dubious, if not malicious, behav-
ior. Christmas CM Locker Theme is a theme for the screen locker
application. With a thorough analysis, it turned out that it uses
the location service to provide weather forecast information to the
user. Nevertheless, this is not mentioned in its description. The de-
veloper should be careful as some users may provide a low rate to
this application because of this suspicious feature.

Figure 14: The Christmas CM Locker Theme screen.

0	

0.25	

0.5	

ca
len
da
r	

pe
rso
na
lize
	

wa
llp
ap
ers
	

we
ath
er	

pr
ob

ab
ili
ty
	

Descrip8ons	 UIs	

Figure 15: The Christmas CM Locker Theme topics distribu-
tion.

7. RELATED WORK
While this work may be the first to generally check app user

interfaces against app descriptions, it builds on a history of previous
work of mining app descriptions and mining app user interfaces.

Several techniques focus on detecting whether the claimed be-
havior matches the actual behavior of the application. Some of
these techniques use the textual description to understand what an
application should do. Gorla et al. [3, 5] mined apps for mis-
matches between textual description and used APIs while Pandita
et al. [9] and Qu et al. [10] measured a correspondence between a
textual description and declared permissions. Yu et al. [11] use pri-
vacy policies rather than descriptions for the same purpose, while
Al-Subaihin et al. [1] applied better clustering techniques to group
together similar applications in terms of their description. Huang
et al. [4], in turn, analyze specific labels associated to UI elements
and compare them to the invoked APIs.

The current work is orthogonal to all these techniques. It ab-
stracts away from the nature of Android applications, and works
only on the natural language processing level and measure mis-
matches in the claimed and the actual behavior based only on a
user’s experience.

8. CONCLUSION AND FUTURE WORK
The user interface of applications is a valuable and yet unex-

plored data source that can be used to augment the natural language
information about an app, but also to detect mismatches between a

description from the app market and the actual usable functionality.
At this point, we have just begun to exploit this new and exciting
data set, and our initial results are more than promising. We see
several opportunities where user interface data might become very
useful, and our future work will focus on these topics:

Exploiting apps with insufficient descriptions. If the descrip-
tion of an app is short or incomplete, the UI text can be help-
ful to obtain additional data. This is particularly interesting
for malware samples, which may not be obtained from an
app market, and which therefore lack appropriate metadata.

Detecting mismatches between advertised and actual behavior.
In earlier work, we had used app descriptions to detect mis-
matches between descriptions and API usage [3]. This work
could be extended to make use of UI text—either as an
addition or even an alternative to the app market text.

Programmatic UI construction. So far, we only extract user in-
terface text from APK resource files; however, we could also
apply static analysis tools to identify user interface construc-
tion code, as well as associated strings. This would be espe-
cially useful for user interface text created at runtime, such
as error messages.

Linking program and user interface text. By relating program
functions with the user interface elements that trigger their
execution, or by relating elements with the functions that cre-
ate them, we can associate program locations with natural
language items and descriptions. This could open an entirely
new way of reasoning about what a program function does,
and whether its behavior can be considered normal.

To learn more about our work on app mining, including the data
sets used in this paper, check out our Web site

https://www.st.cs.uni-saarland.de/appmining/

9. ACKNOWLEDGMENTS
This work was supported by the European Research Council,

project “SPECMATE”, the European Union FP7-PEOPLE-COFUND
project AMAROUT II (grant n. 291803), by the Spanish Ministry
of Economy project DEDETIS, by the Madrid Regional Government
project N-Greens Software (grant n. S2013/ICE-2731), and by the
EIT Digital project SMAPPER.

10. REFERENCES
[1] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman,

Y. Jia, and Y. Zhang. Clustering mobile apps based on mined
textual descriptions. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM), ESEM ’16, 2016.

[2] V. Avdiienko, K. Kuznetsov, P. Calciati, J. C. C. Román,
A. Gorla, and A. Zeller. CALAPPA: a toolchain for mining
android applications. In Proceedings of the 1st International
Workshop on App Market Analytics, WAMA 2016, pages –.
ACM, 11 2016.

[3] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app
behavior against app descriptions. In Proceedings of the 36th
International Conference on Software Engineering, ICSE
2014, pages 1025–1035, New York, NY, USA, 2014. ACM.

[4] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. AsDroid:
detecting stealthy behaviors in Android applications by user
interface and program behavior contradiction. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 1036–1046, New
York, NY, USA, 2014. ACM.

[5] K. Kuznetsov, A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Mining android apps for anomalies. In The Art and Science
of Analyzing Software Data, pages 257–281. Morgan
Kaufmann, 4 2015.

[6] R. T.-W. Lo, B. He, and I. Ounis. Automatically building a
stopword list for an information retrieval system. In
Information Retrieval Workshop, page 17. Citeseer, 2005.

[7] A. K. McCallum. Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu, 2002.

[8] S. Nakatani. Language detection library for Java, 2010.
[9] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie.

WHYPER: Towards automating risk assessment of mobile
applications. In USENIX Security Symposium, pages
527–542, 2013.

[10] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, , and Z. Chen.
AutoCog: Measuring the description-to-permission fidelity
in Android applications. In Proceedings of the 21st
Conference on Computer and Communications Security
(CCS), 2014.

[11] L. Yu, X. Luo, C. Qian, and S. Wang. Revisiting the
description-to-behavior fidelity in android applications. In
2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 415–426, March 2016.

