
Synthesis of Equivalent Method Calls in Guava

Andrea Mattavelli1, Alberto Goffi1 and Alessandra Gorla2

1 Università della Svizzera italiana (USI), Lugano, Switzerland
{andrea.mattavelli,alberto.goffi}@usi.ch
2 IMDEA Software Institute, Madrid, Spain

alessandra.gorla@imdea.org

Abstract. We developed a search-based technique to automatically syn-
thesize sequences of method calls that are functionally equivalent to a
given target method. This paper presents challenges and results of apply-
ing our technique to Google Guava. Guava heavily uses Java generics, and
the large number of classes, methods and parameter values required us to
tune our technique to deal with a search space that is much larger than
what we originally envisioned. We modified our technique to cope with
such challenges. The evaluation of the improved version of our technique
shows that we can synthesize 188 equivalent method calls for relevant
components of Guava, outperforming by 86% the original version.

1 Introduction

Reusable software libraries frequently offer distinct functionally equivalent API
methods in order to meet different client components’ needs. This form of in-
trinsic redundancy in software [3] has been successfully exploited in the past for
various purposes, such as to automatically produce test oracles [1] and to in-
crease the reliability of software systems [2]. Even when completely automated
in their internals, these techniques require developers to manually identify func-
tionally equivalent sequences of method calls within the system. This activity
can be tedious and error prone, and may thus be a showstopper for a widespread
adoption of these techniques.

To support developers in this manual task, we developed a search-based tech-
nique that can automatically synthesize and validate sequences of method calls
that are test-equivalent to a given target method [7]. This paper reports the
results of using our prototype implementation SBES to automatically synthe-
size functionally equivalent method calls for the Google Guava library, and more
precisely for its extensive set of collections. Guava collections heavily use Java
generics, a language feature that was not supported in our original work. More-
over, the high number of classes, methods and parameter values made the search
space large, and as a consequence more challenging for our search-based tech-
nique. We cope with such challenge by means of memetic algorithms.

We evaluated SBES on 220 methods belonging to 16 classes of the Google
Guava collections library. Compared to the old version of our prototype, the
support of Java generics and the use of memetic algorithms allow to find 86%
more true functionally equivalent method sequences.

2 Synthesis of Equivalent Sequences of Method Calls

Our search-based technique aims to automatically synthesize a sequence of meth-
od invocations whose functional behavior is equivalent to a target method. For
example, given the method put(key,value), which inserts a new key-value pair in
a Guava Multimap instance, our technique may be able to synthesize Multimap
m=new Multimap(); m.putAll(key, new List().add(value)) as a possible equiva-
lence. Producing solutions that would be equivalent for all possibly infinite in-
puts and states, is a well-known undecidable problem. The problem becomes
tractable, though, by reducing the number of potential executions to a finite set.
Therefore, our technique deems as equivalent two sequences of method calls that
produce identical results and lead to identical states on a given set of test inputs,
which we refer to as execution scenarios. This definition of equivalence is based
on the testing equivalence notion defined by De Nicola and Hennessy [4].

We implemented our technique in a tool for Java called SBES (Search-Based
Equivalent Synthesis) that manipulates source code. SBES employs an iterative
two-phase algorithm to generate sequences of method calls that are equivalent to
a given input method m. In the first phase—the Synthesis phase—it generates
a candidate sequence eq whose behavior is equivalent to m on the existing set
of execution scenarios. In order to do that, SBES generates a stub class that ex-
tends the class declaring m, and encloses all execution scenarios and an artificial
method method under test, which acts as the main driver for the synthesis:

1 public void method under test() {
2 if (distance(exp s[0], act s[0])==0 && distance(exp s[1], act s[1])==0 &&
3 distance(exp r[0], act r[0])==0 && distance(exp r[1], act r[1])==0)
4 ; // target
5 }

SBES aims to generate a sequence of method calls eq that covers the true branch
of this artificial method. The condition evaluates whether the return value and
the state reached by executing eq in each execution scenarios are test-equivalent
to executing m. Arrays act r and exp r store the return values of eq and m
respectively. Similarly, act s and exp s store the corresponding reached states.
The synthesis phase may lead to spurious results, since it considers only a finite
set of execution scenarios. Therefore, in the second phase of the algorithm—
the Validation phase—SBES aims to remove spurious results by looking for
counterexamples (that is, previously unknown scenarios for which eq and m
are not test-equivalent). In this phase, SBES automatically generates a slightly
different stub class with the following artificial method:

1 public void method under test(Integer key, String value) {
2 ArrayListMultimap clone = deepClone(this);
3 boolean expect = this.put(key, value);
4 boolean actual = clone.putAll(key, new ArrayList().put(value));
5 if (distance(this,clone)>0 || distance(expect,actual)>0)
6 ; // target
7 }

SBES aims once again to generate a sequence of method calls that can cover
the true branch. In this case, though, the condition asserts the non equivalence
between m and eq. The code shows the stub based on the example of the Guava

Multimap class, the target method put(key,value), and the candidate equivalence
putAll(key, new List().add(value)). If this phase produces a counterexample, the
algorithm iterates, adding the counterexample to the initial set of scenarios.
Otherwise, SBES returns eq as the final result.

In both phases, SBES exploits a custom version of EvoSuite as a search-
based engine [5]. We modified EvoSuite such that it has the true branch of
method under test as the sole goal to cover. Since the condition of the artificial
method branch is a conjunction of atomic clauses, the fitness function evaluates
the branch distance of each clause separately, aiming to generate an individual
whose all clauses evaluate to true. The branch distance of each atomic clause
is computed using numeric, object or string distance functions depending on
the involved type. EvoSuite does not have a proper notion of object distance,
and as a consequence it is unable to effectively guide the evolution when a
branch condition evaluates an object. Using method equals to compare objects
would yet fail at providing any guidance, since this method returns a boolean
value, and thus flattens the fitness landscape [8]. To overcome this issue, we
implemented a notion of distance that quantifies the difference between two
objects. To calculate such distance, we compute the distance of all the object’s
fields. For non-primitive fields, we recursively call the object distance function
on them. As a result, the distance between two objects amounts to the sum of
the distance of all the inspected fields. Two objects are deemed as identical if
their distance is zero. We refer the interested reader to our previous paper for
further details on SBES [7].

3 Extending SBES to Deal with Google Guava

In our previous work we demonstrated the effectiveness of SBES on few, selected
Java classes such as Stack and a set of classes from the GraphStream library.
Using SBES on Google Guava was challenging for at least two reasons. First,
Guava contains more than 335 classes and 5,400 methods. The combinatorial
explosion of classes, parameters, and method calls only considering the library
itself is enormous. Second, most of the classes in the library are implemented us-
ing generic types. Generic types allow developers to abstract algorithms and data
structures, but their presence increases the complexity of the synthesis process.
Ignoring generic types exacerbates the combinatorial explosion mentioned be-
fore, since type erasure substitutes generics with the base class java.lang.Object.
Yet, by considering generic types we must concatenate method calls that both
satisfy and adhere to the generic types specified at class instantiation time, in-
creasing the complexity of the generation process.

To cope with Guava, we extended SBES along two lines. First, we added
generic-to-concrete type replacement to our prototype. In those cases where the
execution scenarios declare and use concrete classes rather than generic types,
we exploit such information. For example, suppose to synthesize equivalences for
method Multimap<K,V>.put(key,value), with the following initial execution sce-
nario: Multimap<Integer,String> m=new Multimap();m.put(15, “String”). Since

in the execution scenario the generic types K and V are replaced with Integer and
String respectively, we can safely replace all the occurrences of the generic types
with the concrete classes in the stub class. By resolving generic types, EvoSuite
obtains more information to guide the search towards better individuals, without
wasting time to find syntactically valid concrete classes. The second extension
tries to mitigate the combinatorial explosion of method calls and parameters. In
our previous evaluation we observed that in order to find valid solutions, it is
necessary to invoke methods either in a specific order or with specific parame-
ter values. To efficiently synthesize such sequences of method calls, we exploit
memetic algorithms. Memetic algorithms combine both global and local searches
to generate better individuals, thus accelerating the evolution towards a global
optimum. EvoSuite already supports memetic algorithms [6], in Section 4 we
briefly discuss how we found the optimal configuration of memetic search.

4 Experimental Evaluation

The purpose of evaluating SBES on the Google Guava library was twofold. First,
we wanted to show that many methods of the Guava API have equivalent se-
quences of method calls. Second, we wanted to demonstrate that SBES can
effectively synthesize such equivalent sequences. In particular, we wanted to as-
sess whether the improvements that we brought to SBES with respect to our
previous work could identify substantially more correct solutions.

Experimental Setup We limited our evaluation to the classes declared in
package collect, and in particular we selected a random set of concrete classes
for which we identified a list of equivalences in previous studies [1–3]. As a re-
sult, we selected 16 subject classes with a total of 220 methods under analysis.
These classes represented a challenge for SBES since they declare a high number
of methods, which strains the search process. Moreover, these classes make an
extensive use of generic types. For each target method we first evaluated the
effectiveness—measured in terms of true synthesized solutions—of the original
version of SBES. We then evaluated the effectiveness of SBES with generic-to-
concrete type replacement, which we refer to as SBESG. Finally, we evaluated the
effectiveness of combining the generic-to-concrete support and memetic search.
We refer to this version as SBESG,M. We ran the experiments by feeding the
prototype with the class under analysis, the target method, and an initial execu-
tion scenario, which consists of one test case that was either extracted from the
existing test suite, or generated automatically with EvoSuite. For each target
method, we iterated the entire synthesis process 20 times—regardless of the suc-
cess of the first phase—with a search budget of 180 seconds for both the first and
second phase. The search budgets were validated in our previous evaluation [7].

Results Table 1 summarizes the results of our experiments.1 For the selected
target methods of Google Guava, SBES, SBESG, and SBESG,M could success-

1 A replication package is available at http://star.inf.usi.ch/sbes-challenge

Class Methods
SBES SBESG SBESG,M

TP FP TP FP TP FP

ArrayListMultimap 15 7 1 13 1 12 3
ConcurrentHashMultiset 16 5 0 9 1 6 2
HashBasedTable 16 3 6 3 8 2 8
HashMultimap 15 7 0 9 2 13 1
HashMultiset 16 6 0 15 3 19 5
ImmutableListMultimap 11 1 1 2 1 2 0
ImmutableMultiset 8 3 0 1 0 3 0
LinkedHashMultimap 15 6 1 9 1 12 3
LinkedHashMultiset 16 5 1 19 2 19 6
LinkedListMultimap 15 6 2 10 1 11 0
Lists 8 18 0 17 3 15 1
Maps 9 6 0 5 0 8 0
Sets 10 12 2 15 0 21 0
TreeBasedTable 15 0 8 4 8 3 10
TreeMultimap 14 4 1 9 3 8 2
TreeMultiset 20 12 5 32 13 34 10

Total 220 101 28 172 47 188 50
Table 1. Guava classes considered with their number of methods under evaluation and
equivalences synthesized by the three prototype versions SBES, SBESG, and SBESG,M

fully synthesize 101, 172 and 188 equivalent sequences of method calls respec-
tively. SBESG finds 70% more equivalences than the base version. Such result
confirms that generic-to-concrete type replacement can indeed reduce the search
space without reducing potential behaviors of the class, ultimately improving
the synthesis process. Similarly, memetic algorithms successfully improve the
synthesis process: SBESG,M can generate 9% more solutions than SBESG. How-
ever, the effectiveness of memetic algorithms largely depends on the frequency
at which EvoSuite performs the local search [6]. If the local search occurs too
often, it steals search budget from the global search. On the other hand, if the
local search occurs infrequently, it does not bring much benefits. To find the op-
timal configuration, we ran SBESG,M such that the local search was done once
every 10, 50, 75, 85, and 100 generations. As expected, a frequent local search
degrades the effectiveness of the approach. With 10 generations we obtained the
worst result (we synthesized 30 equivalences less than SBESG, i.e., −17%), and
obtained consistently better results for the other configurations up to the opti-
mal rate of once every 75 generations. After this threshold, local search seems
not to be frequent enough, since the effectiveness decreased again (−7% w.r.t.
the optimal configuration).

For all runs we manually validated the solutions. While on the one hand
SBESG and SBESG,M identify more truly equivalent solutions (reported as TP
in Table 1) than SBES, they also produce more false positives (FP in Table 1).
In some cases, as for HashBasedTable, TreeBasedTable, and TreeMultiset, this is
due to the inability of EvoSuite to generate a syntactically valid test case as a

counterexample. The validation phase, thus, fails in invalidating even the most
trivial spurious candidate. In the reminder of the cases, instead, false positives
are due to a major limitation of the technique: the behavior of the target branch
in the artificial method during the validation phase is comparable to a flag
variable. In fact, the object distance during the validation phase is zero for all
generated solutions, except for those corner cases in which the behavior of the
candidate is not equivalent. As a consequence, the evolution in the second phase
lacks any guidance. This is a limitation of our approach, and we are actively
working to overcome such issue.

5 Conclusion

This paper introduces significant improvements over our previous work on the
automatic synthesis of functionally equivalent sequences of method calls [7]. The
experiments on 220 methods belonging to 16 classes of the Google Guava library
show that generic-to-concrete type replacement and memetic algorithms allowed
the new prototype to outperform the previous version by 86% in terms of true
equivalences synthesized.

Acknowledgment This work was supported in part by the Swiss National
Science Foundation with projects SHADE (grant n. 200021-138006) and ReSpec
(grant n. 200021-146607). The authors would like to thank Mauro Pezzè and
Paolo Tonella for their contributions to the previous version of the technique.

References

1. Carzaniga, A., Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M.: Cross-Checking Ora-
cles From Intrinsic Software Redundancy. In: International Conference on Software
Engineering (ICSE). pp. 931–942. ACM (2014)

2. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.: Automatic recovery
from runtime failures. In: International Conference on Software Engineering (ICSE).
pp. 782–791. IEEE (2013)

3. Carzaniga, A., Mattavelli, A., Pezzè, M.: Measuring software redundancy. In: Inter-
national Conference on Software Engineering (ICSE). pp. 156–166. IEEE (2015)

4. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34(1-2), 83–133 (1984)

5. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Symposium on the Foundations of Software Engineering (FSE). pp.
416–419. ACM (2011)

6. Fraser, G., Arcuri, A., McMinn, P.: A memetic algorithm for whole test suite gen-
eration. Journal of Systems and Software 103(0), 311–327 (2015)

7. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-based synthesis
of equivalent method sequences. In: Symposium on the Foundations of Software
Engineering (FSE). pp. 366–376. ACM (2014)

8. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Transactions on Software Engineering (TSE)
30(1), 3–16 (2004)

