
Thread-Modular Counterexample-Guided

Abstraction Refinement⋆

Alexander Malkis1, Andreas Podelski2, and Andrey Rybalchenko3

1 IMDEA Software
2 University of Freiburg

3 TU München

Abstract. We consider the refinement of a static analysis method called
thread-modular verification. It was an open question whether such a
refinement can be done automatically. We present a counterexample-
guided abstraction refinement algorithm for thread-modular verification
and demonstrate its potential, both theoretically and practically.

1 Introduction

Verification of multi-threaded programs is both important and challenging. State
space explosion is a fundamental problem for any complete verification method:
the state space of a program increases exponentially in the number of its threads.
As a consequence, no static analysis method both always scales (i.e., is polyno-
mial) in the number of threads and always provides a conclusive answer (i.e.
never says ”don’t know”).

Abstraction is the key approach to deal with the state space explosion. Multi-
threaded Cartesian abstraction, also known as thread-modular reasoning [22] and
as the Owicki-Gries method without auxiliary variables [19], is a prominent ap-
proach: it scales polynomially in the number of threads. However, the precision
loss caused by multi-threaded Cartesian abstraction often leads to inconclusive
results. In [23], we presented a method for refining multi-threaded Cartesian
abstraction that is based on the so-called exception sets. An exception set is,
roughly, a set of states that is excluded from the approximation of an abstrac-
tion. The refined method scaled in the number of threads. The refined method
was also always able to return a conclusive answer, but the main ingredients
were requested from the user. The user had to provide a parameter (namely, an
exception set) which was not obvious to find.

In this paper we present an algorithm for finding and using exception sets
automatically. The algorithm is complete, i.e. it can prove all properties of all
programs. Moreover, the algorithm is polynomial not only for all programs that
are provable by thread-modular reasoning, but also on a specific class of programs
that are not amenable to thread-modular reasoning. We have implemented this

⋆ Supported by DFG-Graduiertenkolleg GRK 806/2 ”Mathematische Logik und An-
wendungen” and by Transregional Collaborative Research Center 14 AVACS.

global x = y = turn = 0

A: x := 1; A: y := 1;
B: turn := 1; B: turn := 0;
C: while(y and turn); C: while(x and not turn);

critical critical

D: x := 0; goto A; D: y := 0; goto A;

Fig. 1: Peterson’s mutual exclusion algorithm.

algorithm and tested its performance. The evaluation indicates that the theoreti-
cal complexity guarantees can be realized in practice. In summary, the algorithm
solves a new class of instances of the state explosion problem.

2 Illustration

In this section we provide a high-level illustration of our abstraction refinement
algorithm. Using the Peterson’s protocol [29] for mutual exclusion and a spurious
counterexample produced by thread-modular verification approach we show the
refinement computed by our procedure.

See Fig. 1 for a program implementing the protocol. We want to prove the
mutually exclusive access to the location labeled D, i.e., that D is not simulta-
neously reachable by both processes.

The thread-modular approach interleaves the computation of reachable pro-
gram states for each thread with the application of Cartesian abstraction among
the computed sets. For our program the reachability computation traverses the
following executions of the first and second thread, respectively (where each
tuple represents a valuation of the program variables x, y, turn, pc1, and pc2):

(0, 0, 0, A,A), (0, 1, 0, A,B), (0, 1, 0, A, C), (0, 1, 0, A,D), (1, 1, 0, B,D) ,

(0, 0, 0, A,A), (1, 0, 0, B,A), (1, 0, 1, C,A), (1, 1, 1, C,B), (1, 1, 0, C, C) .

The last states of the executions above, i.e., the states (1, 1, 0, B,D) and
(1, 1, 0, C, C), have equal valuations of the global variables and hence are subject
to Cartesian abstraction, which weakens the relation between the valuations of
local variables of individual threads. The application of Cartesian abstraction
on this pair produces the following set of states:

{(1, 1, 0)} × {B,C} × {D,C} = {(1, 1, 0, B,D), (1, 1, 0, B,C),
(1, 1, 0, C,D), (1, 1, 0, C, C)} .

The subsequent continuation of the reachability computation discovers that the
first thread can reach an error state (1, 1, 0, D,D) by making a step from the
state (1, 1, 0, C,D). That is, the thread-modular approach discovers a possibly
spurious counterexample to the mutual exclusion property of our program.

The feasibility of the counterexample candidate is checked by a
standard backwards traversal procedure starting from the reached error

2

state (1, 1, 0, D,D). This check discovers that (1, 1, 0, C,D) is the only state
that can be reached backwards from (1, 1, 0, D,D). That is, the counterexample
is spurious and needs to be eliminated.

Now we apply our refinement procedure to refine the thread-modular ap-
proach. First, our procedure discovers that the application of Cartesian abstrac-
tion on the pair of states (1, 1, 0, B,D) and (1, 1, 0, C, C) produced the state
(1, 1, 0, C,D), since

(1, 1, 0, C,D) ∈ {(1, 1, 0)} × {B,C} × {D,C} ,

and identifies it as a reason for the discovery of the spurious counterexample. Sec-
ond, the Cartesian abstraction used by the thread-modular approach is refined
by adding (1, 1, 0, B,D) (or, alternatively (1, 1, 0, C, C)) to the so-called excep-

tion set [23]. The states in the exception set are excluded from the Cartesian
abstraction, thus refining it. As a result, the discovered spurious counterexam-
ple is eliminated since (1, 1, 0, C,D) becomes unreachable. As in the existing
counterexample guided abstraction refinement schemes, we proceed by apply-
ing the thread-modular approach, however now it is refined by the exception
set {(1, 1, 0, B,D)}.

In addition to the above counterexample, the thread-modular approach also
discovers a spurious counterexample that reaches the error state (1, 1, 1, D,D).
Our refinement procedure detects that the application of Cartesian abstraction
on a state (1, 1, 1, D,B) leads to this counterexample. Thus, the abstraction is
refined by extending the exception set with the state (1, 1, 1, D,B).

Finally, the thread-modular approach refined with the resulting exception
set {(1, 1, 0, B,D), (1, 1, 1, D,B)} proves the program correct. In Section 5, we
present a detailed description of how our refinement method computes exception
sets.

3 Preliminaries

Now we define multi-threaded programs, multi-threaded Cartesian abstraction
and exception sets. We combat state space explosion in the number of threads,
so we keep the internal structure of a thread unspecified.

An n-threaded program is given by sets Glob, Loc, →i (for 1 ≤ i ≤ n), init,
where each→i is a subset of (Glob×Loc)2 (for 1 ≤ i ≤ n) and init ⊆ Glob×Locn.

The components of the multi-threaded program mean the following:
– The set of shared states Glob contains valuations of global variables
– The set of local states Loc contains valuations of local variables including

the program counter (without loss of generality let all threads have equal
sets of local states)

– →i is the transition relation of the ith thread (1 ≤ i ≤ n).
– init is the set of initial program states.

If the program size |Glob| + |Loc| +
∑n

i=1|→i| + |init| is finite, the program is
called finite-state.

3

The elements of States = Glob×Locn are called program states, the elements
of Glob× Loc are called thread states.

The program is equipped with the interleaving semantics: if a thread makes a
step, then it may change its own local variables and the global variables but may
not change the local variables of another thread; a step of the whole program is
a step of some of the threads. The post operator maps a set of states to the set
of their successors:

post : 2States → 2States ,

S 7→ {(g′, l′) | ∃ (g, l) ∈ S, i ∈ Nn : (g, li) →i (g
′, l′i) and ∀ j 6= i : lj = l′j} ,

where Nn is the set of first n positive integers and the lower indices denote
components of a vector. The verification goal is to show that any computation
that starts in an initial state stays within the set of safe states, formally:

⋃

k≥0

postk(init) ⊆ safe .

Thread-modular reasoning can prove the same properties as abstract fixpoint
checking in the following setup [21,22]:
D = P(States) is the concrete domain, ordered by inclusion,
D# = (P(Glob × Loc))n is the abstract domain, least upper bound ⊔ is the
componentwise union,

αmc : D → D# , S 7→ ({(g, li) | (g, l) ∈ S})ni=1 ,

γmc : D# → D , T 7→ {(g, l) | ∀ i ∈ Nn : (g, li) ∈ Ti} ,

are the abstraction and concretization maps which form the multi-threaded

Cartesian Galois connection. Interestingly, the Owicki-Gries proof method with-
out auxiliary variables [25] can prove exactly the same properties [19].

Given a set of states E ⊆ States, the exceptional Galois connection

αE : D → D, S 7→ S \ E ,

γE : D → D, S 7→ S ∪ E .

can be used to parameterize any abstract interpretation. In particular, the pa-

rameterized multi-threaded Cartesian Galois connection

(αmc,E , γmc,E) = (αmc ◦ αE , γE ◦ γmc)

allows arbitrarily precise polynomial-time analysis by a clever choice of the
exception set E [23].

How to find a suitable exception set in acceptable time automatically? The
remainder of the article deals with this question.

4

A := lfp check(E) (piv , B) := cex check(A,E)

E := extract(A,E, piv , B)

Fig. 2: TM-CEGAR: topmost level. The function lfp check tries to compute an
inductive invariant by generating the sequence A by abstract fixpoint iteration
where E tunes the interpretation of elements of A. In case an error state occurs
in A, the function cex check determines the reason for the error occurrence.
It determines the smallest iterate index piv such that the interpretation of Apiv

has erroneous descendants later in A. The function extract looks at the way
Apiv was constructed, at those states in the concretization of this iterate that
have erroneous successors, and tunes the parameters starting from Epiv .

4 Algorithm

Now we show TM-CEGAR, a thread-modular counterexample-guided
abstraction refinement loop, that, given a multi-threaded program and a set
of error states, proves or refutes nonreachability of error states from the initial
ones.

The computation of TM-CEGAR on a particular multi-threaded program
is a sequence of refinement phases, such that within each refinement phase,
previously derived exception sets are used for the fixpoint iteration and a new
exception set is computed. A refinement phase corresponds to one execution of
the CEGAR loop.

TM-CEGAR operates on two sequences A = (Ai)i≥1 ∈ D#ω
and E =

(Ei)i≥1 ∈ Dω. The sequence A is filled by the iterates of the abstract fixpoint
computation, where each iterate Ai has a different interpretation which depends
on Ei (i ≥ 1).

The topmost level of TM-CEGAR is given in Fig. 2 (variables printed in bold
face are sequences). Initially, the sequence of parameters E consists of empty
sets. Let’s fix a refinement phase, assuming that the sequence of parameters has
already been constructed previously. Using parameters from E, we construct
the sequence of iterates A in the function lfp check. Assuming abstract fixpoint
computation has found error states in some iterate of A, the function cex check

examines A to find the earliest states in A that are ancestors of the found
error states. In case these earliest states don’t contain initial ones, but lie in
the interpretation of some iterate Apiv , the interpretations of Apiv and of all
subsequent iterates are tuned by changing the parameters from Epiv onwards.

4.1 Abstract reachability analysis

The abstract fixpoint computation in Fig. 3 generates the sequence of iterates
A based on the sequence of parameters E.

5

In: E

A1 := αmc,E1(init); i := 1

Ai+1 := Ai ⊔ post#
E,i(Ai)

no error and
Ai or Ei still unstablei := i+ 1

“safe”
Ai and Ei stable and

no error

Out: A

error

Fig. 3: The lfp check function. The function post#
E,i is an abstract transformer

whose precision is tuned by particular elements fromE. An error state is detected
when γmc,Ei

(Ai) 6⊆ safe. Stability of Ai and Ei means that (Ei−1, Ai−1) =
(Ei, Ai).

The lfp check function generates the first element of A as an abstraction of
the initial states, parameterized by the first parameter: A1 = αmc,E1

(init). The
subsequent iterates are computed by taking the join of the current iterate with
an approximation of post, applied to the current iterate. The approximation of
post is tuned by E:

post#
E,i = αmc,Ei+1

◦ post ◦ γmc,Ei
.

The computation of iterates stops in two cases:

– Either the concretizations of the iterates remain in the safe states and no
more grow, which happens when the sequences A and E get stable after
some index;

– Or the concretization of some iterate contains an error state.

In the first case, TM-CEGAR has proven correctness of the program and
thus exits immediately.

In the second case both sequences A and E are analyzed.

To optimize lfp check, notice that the new and the old sequences of pa-
rameters share a common prefix (empty prefix in the worst case): say, E1 . . . Ej

remained the same for some j ≥ 1. Then A1 . . . Aj remain the same and don’t
have to be recomputed in the next refinement phase. This optimization doesn’t
have any influence on the asymptotic runtime, but is a great help in practice.

4.2 Checking counterexample for spuriousness

The cex check function assumes that error states are found in concretization of
the iterate Ai and determines the earliest ancestors of those error states in A.

To implement the high-level description of cex check in Fig. 4, we compute
the precise ancestors of the error states inside the concretizations of the iterates

6

In: A, E

piv := min{j ≤ i | posti−j (γmc,Ej
(Aj)) 6⊆ safe}

Out: (piv , γmc,Epiv
(Apiv) ∩ prei−piv (unsafe))

Spurious error trace

“unsafe”

Real error trace

Fig. 4: The high-level view of the cex check function. The set unsafe is States \
safe. A real error trace is detected when piv = 1∧posti−1(init) 6⊆ safe. A spurious
error is detected when (piv = 1 ∧ posti−1(init) ⊆ safe) ∨ piv > 1.

backwards. For that, we construct bad regions Badpiv , . . . ,Badi as follows:

Badi := γmc,Ei
(Ai) \ safe ,

Badj−1 := pre(Badj) ∩ γmc,Ej−1
(Aj−1) for j ≤ i

until the bad region gets empty. The smallest iterate number piv for which the
bad region is nonempty is called pivot. If pivot is 1 and there are initial states in
Bad1, the program has an error trace. Otherwise the error detection was due to
the coarseness of the abstraction; another abstraction has to be chosen for the
pivot iterate and subsequent iterates.

4.3 Refine: extract new exception set

Once a pivot iterate number piv is found, the exception set Epiv has to be
enlarged to exclude more states from approximation. It is not obvious how to
do that. We first specify requirements to the extract function, and then show
the best known way of satisfying those requirements. Implementation variants
of extract are discussed afterwards.

Requirements to extract. The precondition of extract is that ∅ 6= Badpiv ⊆
γmc,Epiv

(Apiv), and
– neither the interpretation of the previous iterate, namely, γmc,Epiv−1

(Apiv−1),
– nor the successors of that interpretation

intersect Badpiv . (Otherwise forward search would hit error states one iterate
earlier or Badpiv−1 were nonempty.)

The postconditions imposed on the output of Ẽ of extract are:
– γ

mc,Ẽpiv
(Apiv−1⊔α

mc,Ẽpiv
◦post◦γmc,Epiv−1

(Apiv−1)) doesn’t intersect Badpiv
and

– Epiv ⊆ Ẽpiv ⊆ Epiv ∪ post(γmc,Epiv−1
(Apiv−1)) and

– Ẽk = Ek for k < piv and
– Ẽk = Epiv for k > piv .

7

The first postcondition ensures that no error trace starting at position piv

and ending at position i would occur in lfp check in the next refinement round.
The second postcondition makes certain that previous spurious counterexamples
starting at the pivot position would not reappear and that no new overapprox-
imation is introduced. The third postcondition provides sufficient backtracking
information for the next refinement phases. The last postcondition saves future
computation time, intuitively, conveying the already derived knowledge to the
future refinement phases; it may be relaxed, as we will see when discussing algo-
rithm variants. The postconditions establish a monotonously growing sequence
of parameters, and guarantee that the next sequence of interpretations of iterates
is lexicographically smaller than the previous one, ensuring progress.

Implementation of extract. We gradually reduce the extraction problem to
simpler subproblems.

First, we choose a set ∆E ⊆ post(γmc,Epiv−1
(Apiv−1)) such that

γmc,∆E(Apiv−1 ⊔ αmc,∆E ◦ post ◦ γmc,Epiv−1
(Apiv−1)) doesn’t intersect Badpiv .

Then we let Ẽk = Ek for k < piv and Ẽk = ∆E ∪ Epiv for k ≥ piv .
To choose such ∆E, we divide Apiv−1, post(γmc,Epiv−1

(Apiv−1)) and Badpiv
into smaller elements of the abstract and concrete domains, such that the shared
state within each small element is constant g ∈ Glob:

A(g) = ({(g, l) ∈ (Apiv−1)i})
n
i=1 ,

P (g) = {(g, l) ∈ post(γmc,Epiv−1
(Apiv−1))} ,

B(g) = {(g, l) ∈ Badpiv} .

Then
Apiv−1 =

⊔
g∈Glob A

(g)
piv−1 ,

post(γmc,Epiv−1
(Apiv−1)) =

⋃
g∈Glob P

(g) ,

Badpiv =
⋃

g∈Glob B
(g) .

For each g ∈ Glob, we have to find an exception set ∆(g) ⊆ P (g) such that

γmc,∆E(g)(A
(g)
piv−1 ⊔ αmc,∆E(g)(P (g))) doesn’t intersect B(g). After having found

such sets, we let ∆E =
⋃

g∈Glob ∆E(g).

Assume we have fixed g ∈ Glob and want to find ∆(g) as above. To do that,
it suffices to solve a similar problem for the standard Cartesian abstraction:

αc : P(Locn) → (P(Loc))n , S 7→ (πi(S))
n
i=1 ,

γc : (P(Loc))n → P(Locn) , ((Ti)
n
i=1) 7→

∏n

i=1 Ti ,

where πi projects a set of tuples to the ith component and index c means Carte-
sian. Namely, we are given a tuple Ã ∈ (P(Loc))n and sets P̃ , B̃ ⊆ Locn

such that B̃ ∩ (γc(Ã) ∪ P̃) = ∅, and we want to find ∆Ẽ ⊆ P̃ such that
B̃ ∩ γc ◦ αc(γc(Ã) ∪ (P̃ \∆Ẽ)) = ∅.

To solve this problem, we take the representation of B̃ as a union of products,

say, B̃ =
⋃m

j=1 B̃
(j) where B̃(j) =

∏n

i=1 B̃
(j)
i (1 ≤ j ≤ m). Then we solve the

8

γc(Ã)

P̃

B̃

(a) Input

γc(Ã)

P̃

B̃

(b) Projection

γc(Ã)

P̃

B̃
∆Ẽ

(c) Result

Fig. 5: Internals of extract(A,E, piv , B).

problem for each B(j) instead of B̃ separately, and then take the union of the
results.

So now let j ∈ Nm be fixed and let B̃ =
∏n

i=1 B̃i be a Cartesian product

such that B̃ ∩ (γc(Ã) ∪ P̃) = ∅, as depicted on an example in Fig. 5a. We want
to find ∆Ẽ ⊆ P̃ such that B̃ ∩γc ◦αc(γc(Ã)∪ (P̃ \∆Ẽ)) = ∅. Since B̃ and γc(Ã)
are products that don’t intersect, there is a dimension i ∈ Nn such that B̃i and
Ãi are disjoint (where Ã = (Ãi)

n
i=1). In example on Fig. 5b, this is the vertical

dimension i = 2. We let ∆Ẽ = {p ∈ P̃ | pi ∈ Bi}, as in Fig. 5c.
Notice that P̃ \ ∆Ẽ has no points whose ith component occurs as the ith

component of a point of B̃. Thus the projections of two sets B̃ and of γc ◦
αc(γc(Ã) ∪ P̃ \∆Ẽ) onto the ith component are disjoint. Thus the two sets are
disjoint.

Variants of extract. Now we discuss another way of satisfying the stated
postcondition of extract as well as a variant of those postconditions.

It turns out that taking not just one dimension in which B̃i and Ãi are
disjoint, but all such dimensions (and solving the problem for each of the dimen-
sions, and taking the union of the results), creates slightly larger sets on many
examples, but saves future refinement phases in general. We call this variant of
extract the eager variant. The total runtime is decreased by a factor between
1 and 2, so we optionally use this variant in practice.

We may avoid more future refinement steps by creating exception sets not
only for the iterate number piv , but also for as many iterate numbers between piv

and i as possible, using, e.g., Badpiv till Badi for B. This optimization requires
a relaxed postcondition of extract. However, the effect of this optimization was
insignificant on all the examples.

5 Applying TM-CEGAR to Peterson’s protocol

In Section 2 we have sketched the main steps of TM-CEGAR on Peterson’s
protocol. Now we show the computation in more detail.

9

In the initial refinement phase, the sequence of exception sets E contains
empty sets only. The procedure lfp check starts with the iterate

A1 = ({(0, 0, 0, A)}, {(0, 0, 0, A)}) ,

where each tuple represents a valuation of program variables x , y , turn, pc. The
lfp check computation arrives at iterates (we skip A2, A3 as well as uninterest-
ing states not having shared parts (1, 1, 0) or (1, 1, 1))

A4 = ({(1, 1, 0)} × {B} ∪ {(1, 1, 1)} × {C} ∪ . . .,
{(1, 1, 0)} × {B,C} ∪ {(1, 1, 1)} × {B} ∪ . . .),

A5 = ({(1, 1, 0)} × {B,C} ∪ {(1, 1, 1)} × {C,D} ∪ . . . ,

{(1, 1, 0)} × {B,C,D} ∪ {(1, 1, 1)} × {B,C} ∪ . . .),
A6 = ({(1, 1, 0)} × {B,C,D} ∪ {(1, 1, 1)} × {C,D} ∪ . . . ,

{(1, 1, 0)} × {B,C,D} ∪ {(1, 1, 1)} ∪ {B,C,D} ∪ . . .).

The iterate A6 is the earliest one whose concretization γmc,E6
(A6) contains error

states, in this case (1, 1, 0, D,D) and (1, 1, 1, D,D). The forward computation
detects those error states and hands A over to cex check.

Notice that possible predecessors of the detected error states, namely,
(1, 1, 0, C,D) and (1, 1, 1, D,C), are in the concretization of A5. However, those
states have no predecessors at all, thus the pivot iterate is 5. So cex check re-
turns piv = 5 and B = {(1, 1, 0, C,D), (1, 1, 1, D,C)} and hands those values
over to extract.

Procedure extract considers shared states (1, 1, 0) and (1, 1, 1) separately.
For shared state (1, 1, 0), cex check is given the tuple Ã = ({B}, {B,C})

(obtained from A4) and sets P̃ = {B}×{B,C,D}∪{(C,C)} (obtained from the
successors of the concretization of A4), B̃ = {(C,D)} (obtained from B). Notice
that B̃ consists of one point only, which is trivially a product. Since Ã2∩π2(B̃) =
{B,C}∩{D} = ∅, extract can choose ∆Ẽ = {p ∈ P̃ | p2 ∈ π2(B̃)} = {(B,D)}.

For shared state (1, 1, 1), extract chooses ∆Ẽ = {(D,B)} analogously.
Thus the generated exception set is {(1, 1, 0, B,D), (1, 1, 1, D,B)}, which

extract assigns to E5, E6, E7, E8, The exceptions sets before the pivot,
namely, E1 till E4, remain empty.

The next forward computation proceeds as the previous one till and including
the iterate 4, and the iterate 5 is smaller than the previous one:
A5 = ({(1, 1, 0)} × {B,C} ∪ {(1, 1, 1)} × {C} ∪ . . .,

{(1, 1, 0)} × {B,C} ∪ {(1, 1, 1)} × {B,C} ∪ . . .).
The abstract fixpoint computation terminates at iterate 8 without finding an
error state:

A8 =({(0, 0, 0, A), (0, 0, 1, A), (0, 1, 0, A), (0, 1, 1, A), (1, 0, 0, B)}

∪ {(1, 0, 1), (1, 1, 0)} × {B,C,D} ∪ {(1, 1, 1)} × {B,C},

{(0, 0, 0, A), (0, 0, 1, A)} ∪ {(0, 1, 0)} × {B,C,D} ∪ {(0, 1, 1, B), (1, 0, 0, A)}

∪ {(1, 0, 1, A)} ∪ {(1, 1, 0)} × {B,C} ∪ {(1, 1, 1)} × {B,C,D})

Its concretization γmc,E8
(A8) is an inductive invariant that contains no state of

the form (, , , D,D), so mutual exclusion is proven.

10

6 Parallel mutex loop

Now we will describe a practically interesting infinite class of programs. We
show that TM-CEGAR can verify the programs of the class in polynomial time.
We also show that our implementation can cope with the class better than the
state-of-the-art tool SPIN.

The most basic synchronization primitive, namely, a binary lock, is widely
used in multi-threaded programming. For example, Mueller in Fig. 2 in [24]
presents a C function that uses binary locks from the standard Pthreads li-
brary [2,18], through calls to pthread mutex lock and pthread mutex unlock.
The first function waits until the lock gets free and acquires it in the same
transition, the second function releases the lock. Since we care about the state
explosion problem in the number of threads only, we abstract away the shared
data and replace the local operations by skip statements which change control
flow location only.

Our class is defined by programs in Fig. 6. In a program of the class, each of
n threads executes a big loop (a variant of the class in which threads have no
loops but are otherwise the same has the same nice properties), inside of a loop
a lock is acquired and released m times, allowing k − 1 local operations inside
each critical section. E.g. for the example of Mueller we have k = 3, m = 1, an
unspecified n. This class extends the class presented in [23] by allowing variably
long critical sections.

The property to be proven is mutual exclusion: no execution should end in
a state in which some two threads are in their critical sections.

For a human, it might seem trivial that mutual exclusion holds. However,
given just the transition relation of the threads, verification algorithms do have
problems with the programs of the class. In fact, Flanagan and Qadeer [10] have
shown a very simple program of this class that cannot be proven by thread-
modular verification. Actually, it can be shown that no program of the class has
a thread-modular proof.

6.1 Polynomial runtime

Now we will show that our algorithm proves the correctness of mutex programs
in polynomial time.

Theorem 1. The runtime of TM-CEGAR on a program from the mutex class

is polynomial in the number of threads n, number of critical sections m and size

of the critical section k.

Proof. Let C = {Rj,l | j < m and l < k} be the critical local states, N = {Qj |
j < m} the noncritical local states and Loc = C ∪̇N the local states of a thread.
A state (g, l) is an error state iff

∃ i, j ∈ Nn : i 6= j and ai ∈ C and aj ∈ C .

For the proof of polynomial complexity we choose an eager version of
extract, which is simpler to present. The eager version creates symmetrical

11

bool lck=0

while(true) {
Q0 : acquire lck ;
R0,0 :
. . . critical

R0,k−2 :

R0,k−1 : release lck ;
Q1 : acquire lck ;
R1,0 :
. . . critical

R1,k−2 :

R1,k−1 : release lck ;
...
Qm−1 : acquire lck ;
Rm−1,0 :
. . . critical

Rm−1,k−2 :

Rm−1,k−1 : release lck ;
}

‖ · · · ‖

while(true) {
Q0 : acquire lck ;
R0,0 :
. . . critical

R0,k−2 :

R0,k−1 : release lck ;
Q1 : acquire lck ;
R1,0 :
. . . critical

R1,k−2 :

R1,k−1 : release lck ;
...
Qm−1 : acquire lck ;
Rm−1,0 :
. . . critical

Rm−1,k−2 :

Rm−1,k−1 : release lck ;
}

Fig. 6: Schema for programs consisting of n concurrent threads with m critical
sections per thread such that each critical section has k control locations. The
statement “acquire lck” waits until lck = 0 and sets it to 1. The statement
“release lck” sets lck to 0. This class admits polynomial, efficient, precise and
automatic thread-modular verification.

exception sets for symmetrical inputs of extract: if interchanging two threads
doesn’t change the input of extract, the output is also stable under thread
swapping.

The CEGAR algorithm needs mk + 1 refinement phases. In each phase, a
new critical location is discovered. More specifically, in phases jk (j < m), the
locations Qj and Rj,0 are discovered. In phases jk + r (j < m and 1 ≤ r <

k), the location Rj,r is discovered. In each phase at least one new location is
discovered because the set of error states has no predecessors and backtracking
is not necessary. At the same time, no more than one critical location per phase
is discovered: due to symmetry, when a new critical location of one thread is
discovered, so it happens for all the threads. Since this critical location is new, it
is not in the current exception set, thus it gets subjected to Cartesian abstraction,
which leads to tuples with n critical locations (because of symmetry). Then
the error states are hit and the exception set is enlarged. The eager version of
extract produces, simplifying, all tuples where one component is critical and
might include the new location (and the critical locations of the previous critical
sections) and the other components are noncritical. This new exception set turns
out to be equal to the current set of successors in their critical sections (if it were

12

not, the difference between the successors and the exception set had at least
one critical location, and, by symmetry, at least n, which would lead to error
states after approximation). Subtracting the exception set from the successor set
produces only tuples of noncritical locations, which get abstracted to a product
of noncritical locations.

We just provide the central computation result, namely the exception set for
each phase jk + r ((j < m and r < k) or (j = m and r = 0)); for details on
intermediate exception sets, see [20]. We are interested in asymptotic behavior
and thus show the derived exception set for large parameter values n ≥ 3, m ≥ 1
and k ≥ 2 (for smaller values the exception sets are simpler).

Let B(U, V) be the union over n-dimensional products in which exactly ex-
actly one component set is V and the remaining are U . Now
E1 = ∅ and
Ep(k+1)+2+l = {1} × (B({Qp′

| p′ < p}, {Rp′,l′ | p′ < p ∧ l′ < k}) ∪

B({Qp′

| p′ ≤ p}, {Rp′,l′ | p′ ≤ p ∧ l′ ≤ min{l, k − 1}})), whose maximized form
is
{1} × (B({Qp′

| p′ < p}, {Rp′,l′ | (p′ < p ∧ l′ < k) ∨ (p′ ≤ p ∧ l′ ≤
min{l, k − 1})}) ∪ B({Qp′

| p′ ≤ p}, {Rp′,l′ | p′ ≤ p ∧ l′ ≤ min{l, k − 1}})) for
p < j and l ≤ k as well as for p = j and l < r,
the ultimate exception set is Ej(k+1)+1+r.

This representation is maximized: if some product is a subset of restriction
of Ep(k+1)+2+l to shared part 0 (resp. to shared part 1), it is a subset of some
of the products in the above representation for shared part 0 (resp. for shared
part 1).

Since each exception set has a polynomial-size maximized form, each refine-
ment phase is polynomial-time by [23]. The number of refinement phases is also
polynomial, so the total runtime is polynomial. ⊓⊔

6.2 Experiments

We have implemented TM-CEGAR in OCAML and run tests on a 3MHz Intel
machine.

We compared TM-CEGAR to the existing state-of-the-art tool SPIN 5.2.4
[14]. For comparison, we fixed k = 1 locations per critical section and m = 3
critical sections per thread, then we measured the runtimes of TM-CEGAR
and SPIN in dependency on the number of threads n. We encoded the mutual
exclusion property for SPIN by a variable which is incremented on acquires
and decremented on releases, the property to be checked is that the value of this
variable never exceeds one. The runtimes of SPIN and TM-CEGAR are depicted
in Fig. 7 on a logarithmic scale.

SPIN fails at 15 threads, exceeding the 1 GB space bound, even if the most
space-conserving switches are used (if default switches are used, SPIN runs out of
space for 12 threads already after 12 seconds). Compared to that, TM-CEGAR
has a tiny runtime, requiring around a second for 14 threads.

13

e0
e1
e3
e4
e6

e-1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #threads

sec. SPIN

TM-CEGAR

Fig. 7: SPIN vs. TM-CEGAR for 3 critical sections with one location each. Here
e ≈ 2.7 is the basis of natural logarithms. SPIN ran in exponential time O(3.2n),
requiring 1892 seconds for 14 threads. TM-CEGAR needed only polynomial time
O(n5), requiring around a second for 14 threads.

m \ n 1 10 20 30 40 50 60 70

1 0 0.30 6.94 46.72 185.51 553.47 1363.07 2912.25

3 0 10.90 235.36 1571.93 6085.92 17778.27 42848.10 90483.99

5 0 35.64 790.79 5260.06 20744.28 60610.99 147084.53 310593.29

7 0 80.29 1820.60 12276.20 48708.02 142755.15 346740.45 736117.10

9 0.01 150.52 3455.05 23538.67 94063,06 276296.15 671723.67 1432164.26

Fig. 8: Runtimes on the locks class for critical sections of size k = 9, a variable
number of threads n and a variable number of critical sections m.

Fig. 8 demonstrates the behavior of TM-CEGAR on large examples. Of
course, it is infeasible to wait for the completion of the algorithm on very large
instances in practice. But we were astonished to see that TM-CEGAR requires
negligibly small space. For example, after running for 3.4 days on the instance
n = 100 threads, m = 9 critical sections of size k = 1, TM-CEGAR consumed
at most 100MB; while after running for half a month on the instance n = 80,
k = m = 7, it consumed only 150MB.

7 Related Work

The static analysis of multi-threaded programs has been and still is an active
research topic [1, 3–7, 9, 10, 12, 13, 15–17, 25–28, 30]. Our work builds upon the
thread-modular analysis to the verification of concurrent programs [10], which
is based on an adaptation on the Owicki-Gries proof method [26] to finite-state
systems.

In this paper we address the question of improving the precision of thread-
modular analysis automatically, thus overcoming the inherent limitation of [10]
to local proofs. We automate our previous work on exception sets [23] (which
requires user interaction) by exploiting spurious counterexamples.

An alternative approach to improve the precision of thread-modular analysis
introduces additional global variables that keep track of relations between valu-
ations of local variables of individual threads [5]. As in our case, this approach
is guided by spurious counterexamples. In contrast, our approach admits a com-
plexity result on a specific class of programs for which the analysis is polynomial

14

in the number of threads. Identifying a similar result for the technique in [5] is
an open problem.

Keeping track of particular correlations between particular threads of a pro-
gram can be dually seen as losing information about particular other threads
[8,11]. Formally connecting CEGAR-TM with locality-based abstractions as well
as the complexity analysis for the latter is an open problem.

Extensions for dealing with infinite-state systems (in rely-guarantee fashion)
are based on counterexample-guided schemes for data abstraction [12]. While
our method takes a finite-state program as input, we believe it can be combined
with predicate abstraction over data to deal with infinite-state systems.

8 Conclusion

In this paper, we have presented the following contributions.

– An algorithm that takes the spurious counterexample produced by thread-
modular abstraction and extracts the information needed for the subsequent
refinement. The algorithm exploits the regularities of data structures for
(unions of) Cartesian products and their operations.

– A thread-modular counterexample-guided abstraction refinement that auto-
mates the fine-tuning of an existing static analysis related to the thread-
modular proof method. Previously, this fine-tuning was done manually.

– A static analysis method for multi-threaded programs that scales polynomi-
ally in the number of threads, for a specific class of programs. To the best
of our knowledge, this is the first static analysis for which such a property
is known, besides the thread-modular proof method which, however, can
produce only local proofs.

– An implementation and an experimental evaluation indicating that the the-
oretical complexity guarantees can be realized in practice.

So far, we have concentrated on the state-explosion problem for multi-threaded
programs, the concrete algorithms assume a finite-state program as an input.
The assumption is justified if, e.g., one abstracts each thread. Doing so in a
preliminary step may be too naive. Thus, an interesting topic for future work is
the interleaving of thread-modular abstraction refinement with other abstraction
refinement methods, here possibly building on the work of, e.g., [12, 13].

References

1. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. Int. J. Found. Comput. Sci., 14(4):551–,
2003.

2. J. P. F. Bradford Nichols, Dick Buttlar. Pthreads programming. O’Reilly & Asso-
ciates, Inc., 1996.

15

3. S. Chaki, E. M. Clarke, N. Kidd, T. W. Reps, and T. Touili. Verifying concurrent
message-passing C programs with recursive calls. In H. Hermanns and J. Palsberg,
editors, TACAS, volume 3920 of Lecture Notes in Computer Science, pages 334–
349. Springer, 2006.

4. E. M. Clarke, M. Talupur, and H. Veith. Environment abstraction for parame-
terized verification. In E. A. Emerson and K. S. Namjoshi, editors, VMCAI’06,
volume 3855 of Lecture Notes in Computer Science, pages 126–141. Springer, 2005.

5. A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. In
W. Damm and H. Hermanns, editors, CAV, volume 4590 of Lecture Notes in Com-

puter Science, pages 55–67. Springer, 2007.
6. P. Cousot and R. Cousot. Invariance proof methods andanalysis techniques for

parallel programs. In Automatic Program Construction Techniques, pages 243–
271. Macmillan, 1984.

7. W.-P. de Roever. A compositional approach to concurrency and its applications.
Manuscript, 2003.

8. J. Esparza, P. Ganty, and S. Schwoon. Locality-based abstractions. In C. Hankin
and I. Siveroni, editors, SAS, volume 3672 of Lecture Notes in Computer Science,
pages 118–134. Springer, 2005.

9. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of
multithreaded programs. Theor. Comput. Sci., 338(1-3):153–183, 2005.

10. C. Flanagan and S. Qadeer. Thread-modular model checking. In T. Ball and S. K.
Rajamani, editors, SPIN, volume 2648 of Lecture Notes in Computer Science, pages
213–224. Springer, 2003.

11. P. Ganty. The Fixpoint Checking Problem: An Abstraction Refinement Perspective.
PhD thesis, Université Libre de Bruxelles, 2007.

12. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In W. Pugh and C. Chambers, editors, PLDI, pages 1–13. ACM, 2004.

13. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstrac-
tion refinement. In W. A. H. Jr. and F. Somenzi, editors, CAV, volume 2725 of
Lecture Notes in Computer Science, pages 262–274. Springer, 2003.

14. G. Holzmann. The Spin model checker: Primer and reference manual. Addison-
Wesley, ISBN 0-321-22862-6, http://www.spinroot.com.

15. C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

16. V. Kahlon, S. Sankaranarayanan, and A. Gupta. Semantic reduction of thread
interleavings in concurrent programs. In S. Kowalewski and A. Philippou, edi-
tors, TACAS, volume 5505 of Lecture Notes in Computer Science, pages 124–138.
Springer, 2009.

17. A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. In A. Gupta and S. Malik, editors, CAV, volume 5123 of
Lecture Notes in Computer Science, pages 37–51. Springer, 2008.

18. X. Leroy. Pthreads linux manual pages. http://www.digipedia.pl/man/pthread_
mutex_init.3thr.html.

19. A. Malkis. Cartesian Abstraction and Verification of Multithreaded Programs. PhD
thesis, Albert-Ludwigs-Universität Freiburg, 2010.

20. A. Malkis and A. Podelski. Refinement with exceptions. Technical
report, http://software.imdea.org/~alexmalkis/refinementWithExceptions_

techrep.pdf, 2008.
21. A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification and

Cartesian abstraction. Presentation at TV’06, 2006.

16

22. A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification is Carte-
sian abstract interpretation. In K. Barkaoui, A. Cavalcanti, and A. Cerone, edi-
tors, ICTAC, volume 4281 of Lecture Notes in Computer Science, pages 183–197.
Springer, 2006.

23. A. Malkis, A. Podelski, and A. Rybalchenko. Precise thread-modular verification.
In H. R. Nielson and G. Filé, editors, SAS, volume 4634 of Lecture Notes in Com-

puter Science, pages 218–232. Springer, 2007.
24. F. Mueller. Implementing POSIX threads under UNIX: Description of work in

progress. In Proceedings of the 2nd Software Engineering Research Forum, Mel-
bourne, Florida, Nov 1992.

25. S. S. Owicki. Axiomatic Proof Techniques For Parallel Programs. PhD thesis,
Cornell University, Department of Computer Science, TR 75-251, July 1975.

26. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Inf., 6:319–340, 1976.

27. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS’2005, volume 3440 of LNCS, pages 93–107. Springer, 2005.

28. S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In PLDI’2004, pages
14–24. ACM, 2004.

29. A. U. Shankar. Peterson’s mutual exclusion algorithm. http://www.cs.umd.edu/

~shankar/712-S03/mutex-peterson.ps, note, 2003.
30. F. I. Vineet Kahlon and A. Gupta. Reasoning about threads communicating via

locks. In CAV’2005, 2005.

17

