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Abstract. Thread-modular verification is a promising approach for the
verification of concurrent programs. Its high efficiency is achieved by
abstracting the interaction between threads. The resulting polynomial
complexity (in the number of threads) has its price: many interest-
ing concurrent programs cannot be handled due to the imprecision of
the abstraction. We propose a new abstraction algorithm for thread-
modular verification that offers both high degree precision and polyno-
mial complexity. Our algorithm is based on a new abstraction domain
that combines Cartesian abstraction with exception sets, which allow
one to handle particular thread interactions precisely. Our experimental
results demonstrate the practical applicability of the algorithm.

1 Introduction

Many software systems are built from concurrent components. The development
of such systems is a difficult and error prone task, since the programmer needs to
write code that correctly handles all possible interactions between multiple con-
current threads. Verification of multi-threaded software is a hard problem [11].
The number of states of multi-threaded programs grows exponentially with the
number of threads, which is called the state-explosion problem. There exist a
variety of techniques and tools for the verification of multi-threaded programs,
see e.g. [1,2,6–8,14–16], which aim at reducing the number of states that needs
to be inspected to verify a property.

One promising approach to circumvent the state explosion problem is of-
fered by verification algorithms that reason about concurrent software modu-
larly. Modularity allows one to avoid the explicit construction of the global state
space by considering each thread in isolation, see e.g. [7, 9, 12]. The resulting
polynomial complexity (in the number of threads) has its price: many interesting
concurrent programs cannot be handled due to the imprecision of the abstrac-
tion [7]. For example, the existing thread-modular algorithms cannot prove the
mutual exclusion property of the following simple concurrent fragment, which
commonly appears in concurrent programs:

P1 ::





ℓ1 : acquire lck
ℓ2 : critical
ℓ3 : release lck



 ‖ P2 ::





m1 : acquire lck
m2 : critical
m3 : release lck





Here, acquire lck waits until the lock variable lck becomes false and subsequently
sets it to true. The call release lck sets the variable lck back to false. We observe



0 20 40 60 80

0

200

400

600 ∗∗
∗

# threads

sec.

Fig. 1. Non-modular (∗) vs. thread-modular (∗∗) verification with exception set. We
consider the example program given in Section 1 scaled w.r.t. the number of concur-
rent threads. Our algorithm retains polynomial complexity while gaining additional
precision.

that the root of the imprecision lies in the fact that the thread-modular reasoning
abstracts away crucial dependencies between local states of different threads,
which are necessary to establish the property.

We propose a new abstraction algorithm for thread-modular verification that
offers improved precision still within polynomial complexity. Our algorithm ex-
ploits the insight that we can prevent the undesired precision loss by preserving
dependencies between certain sets of local states. These dependencies would oth-
erwise be lost due to thread-modular abstraction. Stated in terms of abstraction,
we exclude some a priori fixed set of program states from the abstraction process,
and always treat them concretely. We refer to such sets as exception sets.

We formalize the notion of exception sets and their application in thread-
modular verification in the framework of abstract interpretation [3], where we
define a pair of abstraction and concretization functions that implement the
application of exception sets. Now, we can combine any existing abstract inter-
pretation with our exception set-based algorithm in a modular way, following [4].
In this paper, we study the combination of exception sets and Cartesian abstrac-
tion. Our interest in this combination is naturally motivated by the fact that
thread-modular verification algorithms implement Cartesian abstraction [12]. We
provide efficient algorithms for abstract interpretation in the combined abstrac-
tion, which retain the polynomial run time of the reachability computation with
Cartesian abstraction while gaining precision from the exception sets. We iden-
tify an interesting class of concurrent programs for which our algorithm is precise
and efficient. This class is obtained by parameterizing the fragment above with
respect to the number of concurrent threads and the number of critical sections
per thread.

We implemented our algorithm for precise thread-modular verification, and
applied it on a series of benchmarks. The scalability of our implementation is
promising: by using exception sets we were able to increase the number of con-
current threads that can be handled by our implementation by an order of mag-
nitude, see Figure 1 and Section 6.

The main contributions of the paper consist of:

– an abstraction method with exception sets, which allows one to treat some
part of the state space without abstraction;
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global x = y = turn = 0

P1 ::













A : x := 1;
B : turn := 1;
C : while(y and turn);

critical

D : x := 0; goto A;













‖ P2 ::













A : y := 1;
B : turn := 0;
C : while(x and not turn);

critical

D : y := 0; goto A;













Fig. 2. Peterson’s mutual exclusion algorithm.

– an implementation of the exception set-based abstraction with polynomial
complexity in the number of threads and in the description of the exception
set;

– an identification of a class of programs that allow verification in fully poly-
nomial time;

– an experimental evaluation of a set of benchmarks that provides practical
evidence for scalability of a prototype implementation.

The rest of the paper is organized as follows. First, we illustrate our approach
for precise thread-modular verification with exception sets on a simple example.
Section 3 formalizes abstraction and concretization with exception sets. In Sec-
tion 4, we formally describe the verification algorithm. We present the class of
programs on which our algorithm is precise and efficient in Section 5. Section 6
describes our experimental evaluation. We discuss the related work and conclude
in Section 7. Some proofs are omitted due to the lack of space, and can be found
in [13].

2 Example: Peterson’s Algorithm

We illustrate our algorithm for the precise thread-modular verification on Pe-
terson’s mutual exclusion algorithm shown in Fig. 2. We wish to verify that at
most one thread is in its critical section at location D.

First let us compute an over-approximation of the reachable states by apply-
ing a thread-modular verification algorithm, e.g. [7]. The result is represented
by the following union of Cartesian products:

{000} ×{A} ×{A}
∪ {001} ×{A} ×{A}
∪ {010} ×{A} ×{A,B,C,D}
∪ {011} ×{A} ×{A,B,C,D}
∪ {100} ×{B,C,D} ×{A}
∪ {101} ×{B,C,D} ×{A}
∪ {110} ×{B,C,D} ×{A,B,C,D}
∪ {111} ×{B,C,D} ×{A,B,C,D} ,

3



where abc (e.g. 011) denotes the shared part x = a ∧ y = b ∧ turn = c (e.g.
x = 0 ∧ y = 1 ∧ turn = 1). This over-approximation is too coarse. It contains
some states where both the first and the second thread are at their locations D,
namely (111, D,D) and (110, D,D) (i.e. x = y = turn = 1 ∧ pc1 = pc2 = D and
x = y = 1 ∧ turn = 0 ∧ pc1 = pc2 = D).

Now we apply our algorithm instead. It iteratively computes an over-
approximation of the reachable states, without losing the dependencies be-
tween the successors of the states contained in a given exception set. Let
E = {(110, B,D), (110, C, C), (111, D,B)} be the exception set.

We start the iteration with the initial state set X0 = {(000, A,A)}. We
compute the over-approximation of the set of states that are reachable from
it in one step, as follows. First, we take the smallest Cartesian product that
contains (000, A,A). This is again

{000} × {A} × {A} .

Then we make a step which is specific to our algorithm. We extend this set by
adding the elements of the exception set, which yields

X1 = {(000, A,A), (110, B,D), (110, C, C), (111, D,B)} .

For this set, we compute the image under the one-step reachability under post,
which is induced by the program, and add the initial element, which is in X0.
The resulting set is {(000, A,A), (010, A,B), (011, A,B), (100, B,A), (110, C, C),
(110, D,C), (111, C,D)}. Before over-approximating this set, we perform an-
other step that is specific to our algorithm. We subtract the exception set from
the result, which yields the set {(000, A,A), (010, A,B), (011, A,B), (100, B,A),
(110, D,C), (111, C,D)}. Then, for each shared part, we take the smallest Carte-
sian product that contains the local parts. This gives again the same set

{000} ×{A} ×{A}
∪ {010} ×{A} ×{B}
∪ {011} ×{A} ×{B}
∪ {100} ×{B} ×{A}
∪ {110} ×{D} ×{C}
∪ {111} ×{C} ×{D} .

At last, we restore the states which get excluded before over-approximations,
obtaining

X2 = {(000, A,A), (010, A,B), (011, A,B), (100, B,A), (110, B,D),
(110, C, C), (110, D,C), (111, C,D), (111, D,B)} .

We continue the fixpoint computation by applying the standard steps inter-
leaved with the specific steps. The standard steps are taking one-step-successors
and adding the initial states. The specific steps are subtracting the exception set
away, applying the over-approximation and adding the exception set back.

The fixpoint of the described procedure is

4



X4 = {000} ×{A} ×{A}
∪ {001} ×{A} ×{A}
∪ {010} ×{A} ×{B,C,D}
∪ {011} ×{A} ×{B}
∪ {100} ×{B} ×{A}
∪ {101} ×{B,C,D} ×{A}
∪ {110} ×{B,D} ×{B,C}
∪ {111} ×{B,C} ×{B,C,D}
∪ {(110, B,D), (110, C, C), (111, D,B)} .

It is an inductive invariant of the program. Note that this over-approximation
doesn’t contain a state of the form ( , D,D), so mutual exclusion is proven.

3 Abstraction with Exception

In this section, we formalize the notion of exception set in the framework of
abstract interpretation [3]. In this setting, an exception set corresponds to an
element E, called exception element, of the concrete domain D such that E is ex-
cluded from the abstraction. Additionally, we also exclude all concrete elements
that are smaller than E from the abstraction, which follows the intuition that
any subset of the exception set should also be excluded from the abstraction.

Let (D,⊆) be a complete Boolean lattice and (D#,⊑) be a complete lattice.
Let E be an exception element, and Ec be its complement. We define “excep-
tional abstraction” and “exceptional concretization” maps

αE : D → D , αE(X) = X ∩ Ec ,

and

γE : D → D , γE(X) = X ∪ E .

Proposition 1. The pair (αE , γE) is a Galois Connection. Formally:

∀X,Y ∈ D : αE(X) ⊆ Y ⇔ X ⊆ γE(Y ) .

Let (α, γ) be a Galois Connection with α : D → D# and γ : D# → D

such that γ maps the bottom of D# to the bottom of D. The composition
(α ◦ αE , γE ◦ γ) of the Galois Connections is again a Galois Connection. Let
init ∈ D be any element, and F be a monotone function. We obtain an abstract
interpretation algorithm that combines the abstraction (α, γ) with exception sets
by computing the least fixpoint

lfp (λY. α ◦ αE(init ∪ F ◦ γE ◦ γ(Y ))).

The concretization of this least fixpoint computed by applying γE ◦ γ over-
approximates the least fixpoint of λx. init∪Fx. Choosing E as its postfixed point
(i.e. init ⊆ E and FE ⊆ E) makes this concretization equal to this postfixed
fixpoint. So it is even possible to get exactly the least fixpoint of λx. init ∪ Fx.
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4 Precise Thread-Modular Verification

In this section, we formally present our method for thread-modular verification
of multi-threaded programs, which uses exception sets for preserving dependen-
cies between local states of different threads. We first describe multi-threaded
programs. Then we provide necessary details on Cartesian abstraction, which
is a basis for thread-modular verification. Finally, we describe how Cartesian
abstraction can be efficiently combined with exception sets.

4.1 Multi-threaded Programs

A multi-threaded program is a tuple

(Glob,Loc, (→i)
n
i=1, init),

where Glob and Loc are any sets, each →i is a subset of (Glob × Loc)2 (for
1 ≤ i ≤ n) and init ⊆ Glob× Locn.
The meaning of different components of the multi-threaded program is the fol-
lowing:
– Loc contains valuations of local variables (including the program counter) of

any thread, we call it the local store of the thread (without loss of generality
we assume that all threads have equal local stores);

– Glob contains valuations of shared variables, we call it the global store;
– the elements of States = Glob×Locn are called program states, the elements

of Q = Glob×Loc are called thread states, the projection on the global store
and the ith local store is the map

π{0,i} : 2States → 2Q, S 7→ {(g, li) | (g, l) ∈ S} ;

– the relation →i is a transition relation of the ith thread (1 ≤ i ≤ n);
– init is a set of initial states.

The program is equipped with the usual interleaving semantics. This means that
if a thread makes a step, then it may change its own local variables and the global
variables but may not change the local variables of another thread; a step of the
whole program is a step of some of the threads. The successor operation maps a
set of program states to the set of their successors:

post : 2States → 2States

S 7→ {(g′, l′) ∈ States | ∃ (g, l) ∈ S, i ∈ {1, ..., n} : (g, li) →i (g
′, l′i)

and ∀ j 6= i : lj = l′j}.

We are interested in proving safety properties of multi-threaded programs. Each
safety property can be encoded as a reachability property and each reachability
property can be encoded as reachability between a pair of states. So we are
interested in whether there is a computation of any length k ≥ 0 that starts in
an initial state and ends in a single user-given error state f , formally:

∃ k ≥ 0 : f ∈ postk(init) .
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The state explosion problem in context of multi-threaded programs amounts
to the fact that the number of program states is exponentially large in the
number of threads n. We don’t address the problem of growing state space due
to the number of variables, which is also common to sequential programs.

4.2 Cartesian Abstract Interpretation

Thread-modular verification applies Cartesian abstraction to achieve polynomial
complexity [12]. We briefly describe the necessary definitions below.

We present a concrete and an abstract domain and a Galois Connection
between them that allows us to do abstract fixpoint checking. The definitions
below extend the standard notion of the dependence-free abstraction [5]:

D = 2States is the set underlying the concrete lattice,
D# = (2Glob×Loc)n is the set underlying the abstract lattice,
αcart : D → D#,

αcart(S) =
(

π{0,i}S
)n

i=1
is the abstraction map, which projects a set of program states to the tuple of
sets of thread states, so that the ith component of a tuple contains all states of
the ith thread that occur in the set of program states.
γcart : D# → D,

γcart(T ) = {(g, l) | ∀ i ∈ {1, ..., n} : (g, li) ∈ Ti}
is the concretization map that combines a tuple of sets of thread states to a
set of program of states by putting only those thread states together that have
equal global part.

The ordering on the concrete domain D is inclusion, the least upper bound
is the union ∪, the greatest lower bound is the intersection ∩, the complement
Xc of a set X.

The ordering on the abstract domain D# is the product ordering, i.e. T ⊑
T ′ if and only if Ti ⊆ T ′

i for all i ∈ {1, ..., n}. The least upper bound ⊔ is
componentwise union, the greatest lower bound ⊓ is componentwise intersection.
Thus the abstract lattice is complete. The bottom element is the tuple of empty
sets ⊥ = (∅)ni=1.

The pair of maps (αcart, γcart) is a Galois Connection, i.e. all S ∈ D,T ∈ D#

satisfy
αcart(S) ⊑ T iff S ⊆ γcart(T ) .

4.3 Exception Set as Union of Maximal Cartesian Products

Our implementation of Cartesian abstraction combined with exception sets re-
quires a suitable data structure for the representation of elements of the concrete
and abstract domains. We analyze the representation of sets of tuples by sets
of Cartesian products, which leads to a polynomial implementation, see Corol-
lary 11.

We proceed by introducing some auxiliary propositions. Let D be any com-
plete lattice with order ≤. Let us fix some “generating” subset of D so that
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each element of D can be written as a join of some elements of the generating
subset. Further let Y ⊆ D be any set that contains the generating set so that
the supremum of each chain in Y belongs to Y .

For a ∈ D, an element y ∈ D is called a-maximal, if it is in Y , is less than or
equal to a and there is no other greater element of Y that is less than or equal
to a, formally:

y ∈ Y and y ≤ a and ¬∃ y′ ∈ Y : y < y′ ≤ a .

A set M is called maximized, if

M ⊆ Y and (∀ y ∈ Y : y ≤
∨

M ⇒ ∃ y′ ∈ M : y ≤ y′) .

Proposition 2. Let a ∈ D. Then any element of Y less than or equal to a is
less than or equal to some a-maximal element.

Proposition 3. Each element a of the lattice can be represented as a join of
a unique maximized antichain. This maximized antichain contains exactly the
a-maximal elements.

Proposition 4. Each maximized set contains the unique maximized antichain
with the same join. Formally:

∀ maximized A ⊆ Y ∃1M ⊆ A : M is a maximized antichain and
∨

M =
∨

A .

Now let us consider the Cartesian products. Recall that a function is a set
of pairs so that for each first component there is exactly one second component.
For an index set I, a Cartesian product of sets Ai (i ∈ I) is the set of maps
∏

i∈I Ai := {f : I → ∪i∈IAi | ∀ i ∈ I : f(i) ∈ Ai}. For a subset of indices
J ⊆ I the projection of a subset A ⊆

∏

i∈I Ai on the components J is πJA =
{f : J → ∪j∈JAj | ∃ g ∈ A : f ⊆ g}. A projection on a single index i ∈ I

is πiA = {a ∈ Ai | ∃ g ∈ A : (i, a) ∈ g}. For a natural number n, the set
An :=

∏n

i=1 A is the nth power of A.

Lemma 5. Let Ai, Bi be sets indexed by i ∈ I. Then

∏

i∈I

Ai ⊆
∏

i∈I

Bi ⇔ ((∀ i ∈ I : Ai ⊆ Bi) or ∃ i ∈ I : Ai = ∅) .

For the power setD = 2(Loc
n) of all tuples of length n, ordered by inclusion, Y

the set of all Cartesian products in D, and the set of singletons as a generating
subset, the assumption is satisfied: singletons are Cartesian products and the
union of a chain of Cartesian products is a Cartesian product.

By Proposition 3 every set of tuples can be represented as a union over
a set of Cartesian products, so that no two Cartesian products from this set
are comparable and this set is maximized. This is a crucial property for our
representation of the exception set.
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For a set of tuples A ⊆ Locn, i ∈ Nn and r ∈ Loc let us call

Ai,r = πNn\{i}{a ∈ A | ai = r}

a restriction of A (with parameters i, r). An (n− 1)-tuple lies in this set exactly
if, whenever r would be inserted at the ith position, the tuple would lie in A.
Since projection is monotonic, restrictions are monotonic also, i.e.

∀A ⊆ B ⊆ Locn, i ∈ Nn, r ∈ Loc : Ai,r ⊆ Bi,r .

Lemma 6. Let a set A ⊆ Locn be represented as a maximized antichain M of
Cartesian products. Then for each i ∈ Nn, r ∈ Loc, the restriction Ai,r has a
representation as a union of a maximized antichain M ′ of Cartesian products
with no greater cardinality than |M |. If Loc is finite and Cartesian products
are stored componentwise, the elements of the new maximized antichain can be
computed in polynomial time in n, |Loc| and |M |.

In the following, we reduce the problem of computing the abstract parame-
terized post to a simpler problem about the “standard” Cartesian abstraction
and concretization maps:

αc : 2
(Locn) → (2Loc)n, αc(S) = (πiS)

n
i=1 ,

γc : (2
Loc)n → 2(Loc

n), γc(T ) =

n
∏

i=1

Ti .

We call the elements of (2Loc)n Cartesian abstract elements. The set of Cartesian
products in Locn can be injected into the set of Cartesian abstract elements: a
nonempty Cartesian product is bijectively mapped to the tuple of its compo-
nents, the empty Cartesian product can be mapped to any tuple of sets among
which at least one set is empty (for n > 0).

For the rest of this section we assume that the local store is finite. Each
element of (2Loc)n is represented as a list of n entries, each entry is itself a list
of some elements from Loc.

Proposition 7. The question whether a Cartesian product is a subset of a set
of tuples can be solved in polynomial time.

Formally: there is an algorithm that computes the map

2(Loc
n) × (2Loc)n → Bool, (E,A) 7→ γcA

?
⊆ E

where E is represented as a set M of Cartesian abstract elements so that γcM
is a maximized antichain and E =

⋃

γcM , in polynomial time in |M |, n and
|Loc|.

Proposition 8. The smallest Cartesian product that contains another Carte-
sian product without an exception set can be computed in polynomial time.
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Formally: there is an algorithm that computes the map

2(Loc
n) × (2Loc)n → (2Loc)n, (E,A) 7→ αc(E

c ∩ γcA)

where E is represented as a set M of Cartesian abstract elements so that γcM
is a maximized antichain and E =

⋃

γcM , in polynomial time in |M |, n and
|Loc|.

Proof. Let E ⊆ Locn, A ∈ (2Loc)n. If γcA is empty (which holds iff Ai = ∅ for
some i ∈ Nn), then the return value is the tuple of empty sets. Otherwise all Ai

are nonempty.
Claim: All r ∈ Loc, i ∈ Nn satisfy the equivalence:

r ∈ (αc(E
c ∩ γcA))i ⇔ r ∈ Ai and

∏

j∈Nn\{i}

Aj 6⊆ Ei,r .

To prove the “⇒” direction, let r ∈ (αc(E
c ∩ γcA))i = πi(E

c ∩ γcA). So there
is an n-tuple a ∈ Ec ∩

∏n

i=1 Ai with ai = r, thus r ∈ Ai. Moreover a 6∈ E

and aj ∈ Aj (j ∈ Nn). So the (n − 1)-tuple a \ {(i, r)} ∈
∏

j∈Nn\{i}
Aj , but

a \ {(i, r)} 6∈ Ei,r.
To prove “⇐”, let r ∈ Ai and let a be an (n−1)-tuple with a ∈

∏

j∈Nn\{i}
Aj

and a 6∈ Ei,r. Then a ∪ {(i, r)} 6∈ E, but a ∪ {(i, r)} ∈
∏n

j=1 Aj = γcA. Thus
a ∪ {(i, r)} ∈ Ec ∩ γcA, hence r ∈ πi(E

c ∩ γcA) = (Ec ∩ γcA)i.
The claim is proven. By Lemma 6, for each i ∈ Nn, r ∈ Loc, there is a

maximized antichain M ′
i,r of Cartesian products with union Ei,r and compo-

nentwise representation of Cartesian products as Cartesian abstract elements,
computed in polynomial time. Since M ′

i,r is maximized, A′ ⊆ M ′
i,r if and only if

∃ C ∈ M ′
i,r : A′ ⊆ C for any Cartesian product A′, especially for

∏

j∈Nn\{i}
Aj .

So all r ∈ Loc, i ∈ Nn satisfy the equivalence:

r ∈ (αc(E
c ∩ γcA))i ⇔ r ∈ Ai and ∀ C ∈ M ′

i,r :
∏

j∈Nn\{i}

Aj 6⊆ C .

Since M ′
i,r is generated in polynomial time and inclusion of Cartesian products

is polynomial-time by Lemma 5, all the components of the abstract element
αc(E

c ∩ γcA) are computable in polynomial time. ⊓⊔

Now we go over to the domains used in program analysis, namely to D =
2States = 2Glob×Locn and D# = (2Glob×Loc)n.

Proposition 9. The smallest abstract element that is greater than or equal to
the concretization of another abstract element without an exception set can be
computed in polynomial time.

Formally: Assume that for E ∈ D, each {l | (g, l) ∈ E} (for g ∈ Glob) is
represented a set of Cartesian abstract elements whose concretizations form a
maximized antichain and have {l | (g, l) ∈ E} (for g ∈ Glob) as a union. Then
computing the map

D ×D# → D#, (E,A) 7→ αcart(E
c ∩ γcartA)
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needs polynomial time in n, |Loc|, |Glob| and the maximum cardinality of an
antichain.

Proof. Let A ∈ D# and E ∈ D. For each g ∈ Glob and i ∈ Nn let A
[g]
i :=

{l | (g, l) ∈ Ai} and A[g] :=
∏

i∈Nn

A
[g]
i . For all g ∈ Glob, l ∈ Locn we have:

((g, l) ∈ γcartA) iff (∀ i ∈ Nn : (g, li) ∈ Ai) iff (∀ i ∈ Nn : li ∈ A
[g]
i ) iff ((g, l) ∈

{g} ×
∏n

i=1 A
[g]
i = {g} ×A[g]). Thus

γcartA =
⋃

g∈Glob

(

{g} ×A[g]
)

. (1)

For g ∈ Glob, let E(g) = {l | (g, l) ∈ E}. Any g ∈ Glob and B ⊆ Locn satisfy
the equality:

({g} ×B) \ E = {g} ×
(

B \ E(g)
)

. (2)

The map

β : Glob×
(

2Loc
)n

→ D#, (g, (Bi)
n
i=1) 7→ ({g} ×Bi)

n
i=1

makes abstract elements from Cartesian abstract elements and is computable in
polynomial time. Any B ⊆ Locn satisfies the equation:

αcart({g} ×B) = ({(g, li) | l ∈ B})ni=1 = ({g} × πiB)
n

i=1 = β (g, αcB) . (3)

Now

αcart (E
c ∩ γcartA)

(1)
= αcart



Ec ∩
⋃

g∈Glob

(

{g} ×A[g]
)



 = [distributivity]

αcart





⋃

g∈Glob

((

{g} ×A[g]
)

\ E
)



 = [abstraction map is a join-morphism]

⊔

g∈Glob

αcart

((

{g} ×A[g]
)

\ E
)

(2)
=

⊔

g∈Glob

αcart

(

{g} ×
(

A[g] \ E(g)
))

(3)
=

⊔

g∈Glob

β
(

g, αc

((

γc

(

A
[g]
i

)n

i=1

)

\ E(g)
))

.

From Prop. 8 we know that αc

((

γc

(

A
[g]
i

)n

i=1

)

\ E(g)
)

is computable in poly-

nomial time in n and |Loc| and the maximum cardinality of an antichain; the
map β is also polynomial and the abstract join is also polynomial. ⊓⊔

Proposition 10. Computing the best abstract post with exceptions takes poly-
nomial time.

Formally: Assume that for E ∈ D, each {l | (g, l) ∈ E} (for g ∈ Glob) is
represented as a set of Cartesian abstract elements whose concretizations form
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P1 ::























ℓ11 : acquire lck
ℓ12 : critical
ℓ13 : release lck
...
ℓm1 : acquire lck
ℓm2 : critical
ℓm3 : release lck























‖ · · · ‖ Pn ::























ℓ11 : acquire lck
ℓ12 : critical
ℓ13 : release lck
...
ℓm1 : acquire lck
ℓm2 : critical
ℓm3 : release lck























Fig. 3. Schema for programs consisting of n concurrent threads with m critical sections
per thread, which admit efficient and precise thread-modular verification.

a maximized antichain and have {l | (g, l) ∈ E} as the union. Then computing
the map

D ×D# → D#, (E,A) 7→ postE,cartA

takes polynomial time in n, |Loc|, |Glob| and the maximum size of an antichain
from the representation of E.

Corollary 11. Computing the least abstract fixpoint with exceptional Cartesian
abstraction and representation of E so that each {l | (g, l) ∈ Loc} is a union of
Cartesian products needs polynomial time.

Formally: Assume that for E ∈ D, each {l | (g, l) ∈ E} (for g ∈ Glob) is
represented as a set of Cartesian abstract elements whose concretizations form
a maximized antichain and have {l | (g, l) ∈ E} as the union. Then computing
the map

D ×D → D#, (E, init) 7→ lfp (λX.αcartαE(init ∪ postγEγcartX))

needs polynomial time in n, |Loc|, |Glob|, in the cardinality of the largest an-
tichain and in |init|.

Note that if initial states are represented the same way as the exception set
then the run time is polynomial in the cardinality of the largest antichain from
the representation of init instead of |init|.

The whole algorithm can be viewed as a reduction to a polynomial number of
queries of the form “is a Cartesian product a subset of a fixed set” as in Prop. 7.
Each such query can be trivially answered given the representation of the fixed
set as a union of all maximal (w.r.t. inclusion) Cartesian products inside this
set.

5 Efficiently Handled Class

In this section, we describe a class of programs that can be efficiently verified by
our thread-modular verification algorithm with exception sets.
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Each program in the class is generated by instantiating the schema shown
in Figure 3 with a fixed number n of threads and a fixed number m of critical
sections per thread.

Let the sets of locations InCrit contain all local states at critical locations
and NotInCrit be its complement:

InCrit = {l ∈ Loc | ∃k : l(pc) ∈ {ℓk2 , ℓ
k
3}}

NotInCrit = Loc \ InCrit

Further for 1 ≤ i ≤ n let

C(i) = NotInCrit i−1 × InCrit × NotInCritn−i ,

and

M = {C(i) | i ∈ Nn} .

One can show that M is a maximized antichain. Now we choose

E =
⋃

g∈Glob,g(lck) 6=0,C∈M

{g} × C

as an exception set. Checking the abstract fixpoint computed by parameterized
thread-modular algorithm proves mutual exclusion. Moreover, all antichains in
the representation of E have linear cardinality in n, so our algorithm consumes
polynomial time and space. We conclude that no state explosion occurs during
the application of our thread-modular algorithm.

6 Experiments

In this section we describe our experimental evaluation. We implemented the
algorithm described in Section 4 in OCaml by using the ordered set data struc-
ture from the standard library to represent sets. We applied our implementation
on a set of benchmark programs that we obtained by instantiating the schema
shown in Figure 3. We experimented with the number of threads ranging from
10 to 100. For each thread size, we run our tool on programs with 1, 3, 5, 7, and
9 critical sections per thread. The resulting run times, which we obtained on 2.8
Ghz CPU, are shown in Figure 6.

We observe that our theoretical claims are supported by the experiments.
The run time grows polynomially in the number of threads and in the number
of critical sections. This allows us to verify instances of the program that are
far beyond the reach of the algorithm that performs reachability computation
without abstraction. Note that no existing thread-modular algorithm can handle
the benchmark programs, due to the lack of precision.
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10 20 30 40 50 60 70 80 90 100

1 0.1 1.2 5.6 19 45 88 163 249 452 650

3 0.2 2.8 13 40 90 184 370 570 920 1423

5 0.3 5 26 72 186 359 675 1192 1901 3022

7 0.6 8.7 36 131 335 642 1158 1907 3374 5170

9 0.9 13.9 60 210 498 1052 1889 3160 4836 7328

Fig. 4. Experimental evaluation for the number of identical concurrent threads rang-
ing between 10 and 100, and number of critical sections per thread from the
set {1, 3, 5, 7, 9}. The table contains the run times, in seconds, for different combi-
nations of number of critical sections/threads. The curve ∗ shows the run time for
the exhaustive state exploration without abstraction for a single critical section (per
thread), and puts the scale into perspective.

7 Related Work and Conclusion

Cartesian abstraction, which is also known as “independent attribute method”,
is a classical abstraction means in program analysis [10]. To the best of our
knowledge, our application of Cartesian abstraction for the analysis of multi-
threaded programs has not been known before.

The thread-modular verification algorithm of [7] serves as a starting point
of our research, with the goals of improving its precision while retaining the
polynomial complexity. The relationship between the thread-modular algorithm
[7] and Cartesian abstraction provided a basis for the integration of exception
sets into the abstraction framework.

In this paper, we presented a thread-modular verification algorithm that of-
fers the polynomial complexity of the existing thread-modular approaches and
increased precision. Such combination allows one to verify new classes of con-
current programs. Our experimental evaluation of the algorithm has shown its
promising applicability.

The proposed algorithm is parameterized by an exception set, which deter-
mines the set of states that are excluded from the abstraction. We are currently
developing an algorithm that computes an adequate exception set automatically.
One possible direction is shown in Section 5.
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