
A Framework for
Transactional Consistency Models

with Atomic Visibility

Andrea Cerone, Giovanni Bernardi, Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

CONCUR - Madrid, September 1st 2015

Data is replicated
across multiple nodes

Data centres across the world

Disaster-tolerance, minimising latency

With thousands of machines inside

Fault-tolerance, load-balancing

• Serialisability: the system behaves like a serial
processor of transactions on a centralised
database

≈

• Requires synchronisation: expensive

Rethinking consistency in large-scale

The database gives weaker guarantees to programmers

Weak Consistency Models

Performance boost

• require less synchronisation between replicas

Anomalous behaviour

• executions which are not allowed by a  
serialisable database

Anomalies
start
write(x, post)
commit(t1)

start
read x : post
write(y,comment)
commit(t2)

Database: set of objects
Transactions: sequences of read/write operations

T1 T2

start
read x : empty
write(y,comment)
commit(t2)

T3

Non-serialisable execution  
Causality is violated

This talk:
• A framework for specifying  

transactional consistency models 

• A pseudo-implementation of  
such consistency models 

• Correctness of the implementation  
with respect to the specification  
(for any consistency model)  

• Consistency models: specified  
informally or using disparate formalism

Abstract Framework
Desired features:
• Abstract from implementation

dependent details 
(replicas, synchronisation events, …)

• Expressive enough to formalise 
practical consistency models

• Concise specifications

Abstract Framework

• An execution models the dependencies  
between transactions in a run of the system 
~ weak memory models 

• A consistency model is specified as the set  
of executions it allows

Abstract Framework
Transactions:

read x: 0 write(y,1)T

No DB events (start, abort, commit)
We record only committed transactions

T = (E, po)
po

value of read operations coincide
with the value of the last operation
on the same object

read x: 0 read x: 1
po

value of x changed
by external entity

Abstract Framework
Transactions:

read x: 0 write(y,1)T

T = (E, po)
po

read x: 0 write(x,1) read x: 1 write(x,2)po po po

Reads a value
written by the same
transaction

Reads an
external
value

S

S Read x: 0

No DB events (start, abort, commit)
We record only committed transactions

Abstract Framework
Transactions:

read x: 0 write(y,1)T

T = (E, po)
po

Last write to object:
can be observed by
other transactions

read x: 0 write(x,1) read x: 1 write(x,2)po po po

Gets overwritten
later: not observable
by other transactions

S

S Write x: 2

No DB events (start, abort, commit)
We record only committed transactions

Abstract Framework
Transactions:

read x: 0 write(y,1)T

T = (E, po)
po

Atomic Visibility:

read x: 0 write(x,1) read x: 1 write(x,2)po po poS

S Write x: 2S Read x: 0

No DB events (start, abort, commit)
We record only committed transactions

Abstract Framework
Executions: (H, VIS, AR)

H: Set of transactions {S,T, …}

S VIS T: T sees the updates of S
S AR T: keeps track of version order

read x: 0 write(x,1)

read x: 0 write(x,2)
po

po

read x: 2

VIS

VIS
AR

AR

AR

VIS AR✓ AR is total

AR is total

Abstract Framework
Executions: (H, VIS, AR)

H: Set of transactions {S,T, …}

S VIS T: T sees the updates of S
S AR

VIS AR✓

Read Atomic (RA): Baseline Consistency Model

T: keeps track of version order

Consistency Models

• Specification given by restraining VIS and AR  
 
 
 
 

• Different consistency models allow different  
anomalies 

Example: Serialisability  
VIS is a total order

Violation of Causality

read x: post write(y,comment)po

write(x, post)

read x: empty read y: commentpo

VIS

VIS

VIS

Causal Consistency:
VIS is transitive

Lost Update
read x: 0 write(x,1)

read x: 0 write(x,2)
po

po

read x: 2

VIS

VIS
AR

AR

AR
VIS VIS

Parallel Snapshot Isolation:

VIS is transitive + Write-write conflict detection:
if S Write x:_ , T Write x:_ and S T

then either S T, or T S

` ` 6=
VIS VIS

Consistency Models

• Specification given by restraining VIS and AR

Consistency Model Constraint

• Read Atomic None 

• Causal Consistency VIS is transitive  

• Parallel Snapshot VIS is transitive  
Isolation Write-write conflict detection

Consistency Models

• Specification given by restraining VIS and AR

Consistency Model Constraint

• Read Atomic None 

• Causal Consistency VIS is transitive  

• Parallel Snapshot VIS is transitive  
Isolation Write-write conflict detection

Why should you trust me?

• Do the formal specifications really correspond to the
informal ones?

Operational Model

• Used to define a pseudo-implementation of consistency  
models 

• Modelled after real implementations 

Implementation Abstract Verification

J·K

JCKC

write(x, 1). write(y,2)

Operational Model - Replicas

x = 0, ts: 0 y = 0, ts: 0start
write(x,1)
 
write(y,2)  

• Replicas store a copy of the database 
each object has a value and a timestamp

• Transactions: issued by clients and processed  
sequentially by a replica 
(a replica can be either idle or executing a transaction)

• Transaction log: keeps track of operations performed  
by pending transaction

• Read from transaction log first

read x :1

Operational Model - Replicas

upon commit:  
generate timestamp  
update state of the DB  
clean transaction log
broadcast(timestamp: transaction log)

—————

x = 1, ts: 1 y = 2, ts: 1

monotonically
increasing

start
write(x,1)
 
write(y,2)  
commit(1)

read x :1

Effects sent in a single message: ensures Atomic Visibility

Operational Model - Replicas

upon commit:  
generate timestamp  
update state of the DB  
clean transaction log
broadcast(timestamp: transaction log)

—————

x = 0, ts: 0 y = 0, ts: 0

upon abort:  
generate timestamp  
update state of the DB  
clean transaction log
broadcast(timestamp: transaction log)

start
write(x,1)
 
write(y,2)  
abort

read x :1

start
write(x,1)
write(y,2)
commit(1)

Operational Model - Message Delivery

x = 0, ts: 0
y = 5, ts: 42

Asynchronous message propagation:
unbounded time to deliver messages to replicas

1:write(x,1). write(y,2)

start
write(x,1)
write(y,2)
commit(1)

Operational Model - Message Delivery

1:write(x,1). write(y,2)

x = 1, ts: 1
y = 5, ts: 42

Asynchronous message propagation:
unbounded time to deliver messages to replicas

upon receive(ts: log)  
for each write(obj,val) in log  
 if (timestamp(obj) > ts)
 obj := val
 timestamp(obj) := ts  

start
write(x,1)
write(y,2)
commit(1)

Operational Model - Message Delivery

1:write(x,1). write(y,2)

x = 1, ts: 1
y = 5, ts: 42

Asynchronous message propagation:
unbounded time to deliver messages to replicas

CONSTRAINT:
 no messages are delivered while transactions
 are executing

Operational Model for Read Atomic

Consistency Models
start
write(x, post)
commit(t1)

start
read x : post
write(y,comment)
commit(t2)

Further requirements are imposed on the
communication protocol to capture other
consistency models

start
read x : post
write(y,comment)
commit(t2)

Causal Consistency: 
Message delivery is Causal

From operational to abstract
start
read x: 0
write(x, 1)
commit(1)

start
read x: 2
commit(3)start

read x: 0
write(x, 2)
commit(2)

VIS

VIS

AR
AR

AR

read x: 0 write(x,1)

read x: 0 write(x,2)
po

po

read x: 2

VIS

VIS
AR

AR

AR

Theorem
For any consistency model

• is an execution in the operational model for  
  
implies that is an abstract execution for  

�

�
JCK �

• is an abstract execution for  
  
implies that and

 is an execution in the operational model for

A �
9C.JCK= A

�

Why should I care?
• Reasoning techniques for programs running  

on weak consistency models 

• In the paper: A simple application  
aimed at optimising transaction executions 

• Robustness: Applications run on a given  
consistency model without anomalies 
(Giovanni Bernardi’s talk at YR-Concur)  

• Optimising transactional applications  
via transaction chopping 
(A. Cerone, A. Gotsman and H. Yang, DISC 2015)  

THANK YOU!

