A Framework for
Transactional Consistency Models
with Atomic Visibility

Andrea Cerone, Giovanni Bernardi, Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

CONCUR - Madrid, September Ist 2015

Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

@ Amazon.couk: Low Prices in Ele

a www.amazon.co.uk & | (2§~ Google Q
amazon‘CO.Uk Your Amazon.couk Today'sDeals Gift Cards Help January Deals
Shop by Al - Hello. S 0 Wish
Department ~ Search n Your Account v -\.-.,Basket v List ~

;Compras desde Espaina? s Ysua
Shopping from Spain? -~ amazoﬂ»}eu%muo January Deals .

Amazon MP3 Cloud Player) LOVEFILM Appstore for Android Audible

e 0 0
<4

Data is replicated
across multiple nodes

me logged |

Sign Up
Connect with friends and the It’s free and alw:
Qotentee | |Infeceinw world around you on Facebook.

See phOtOS and updates from friends in News Feed.

Share what’s new in your life on your Timeline.

Birthday

ing latency

, minimis

),
@
c
(4]
.
v
O
)
<
),
)
(V)
(qv]
D
A

With thousands of machines inside

-
i

‘ Fault-tolerance, load-balancing l

U

® Serialisability: the system behaves like a serial
processor of transactions on a centralised
database

® Requires synchronisation: expensive

Rethinking consistency in large-scale

i ansactions
mic Visibility with RAMP Tr \

gcalable AtO =
¢ Ali Ghodsl, Joseph M. Hellerstein;
Pete - a1an Fekete', _a Tiiniversity of Sydney 7

. -cate d Systems ‘lon Stoica

:~nal storad i " (|
TranSactlona \arcos K. Agu'\\eraT Jinyand L
| : arc - Qjlicon Va”?-y———-!!!"‘"""

Eventually Consistent Transactiong

/ Sebastian Burckhardy!

, Daan Lejjon! F 2
yen”, Manuye] dhndrich! and Mooly Sagiv- ’
' agiv

' Mi
. Crosoft Research

o i Tc-:IjAyiv University
— ‘\\ — |

The database gives weaker guarantees to programmers

Weak Consistency Models

@ Performance boost

® require less synchronisation between replicas

Q Anomalous behaviour

® executions which are not allowed by a
serialisable database

Anomalies

\.

start
write(x, post)

commit(t|) “’/"*ﬁ

start
read x : post

write(y,comment)

commit(tz)

pr
Q|

Database: set of objects
Transactions: sequences of read/write operations

Non-serialisable execution

Causality is violated

start
read x : empty

write(y,comment)

commit(t)

J

T3

® Consistency models: specified
informally or using disparate formalism

This talk:

® A framework for specifying
transactional consistency models

® A pseudo-implementation of
such consistency models

® Correctness of the implementation
with respect to the specification
(for any consistency model)

Abstract Framework
Desired features: :

|
‘ ‘ . ,

® Abstract from implementation

dependent details 7
(replicas, synchronisation events, ...)

g =i Fekete', AT orsity of SYS
Highly Available Transactions: Virt

® Expressive enough to formalise — =27

3 Davidson, Alan Feketet ali~
— fc;‘igeo.rep\icated systems o sioca
ctional storagé inyang LI
Transa Marcos K. Aguilera’ Jinyang
- arc ~w ailicon Valley

practical consistency models

® Concise specifications

Abstract Framework

® An execution models the dependencies

between transactions in a run of the system
~ weak memory models

® A consistency model is specified as the set
of executions it allows

Abstract Framework

Transactions:

T — (E’ PO) No DB events (start, abort, commit)

We record only committed transactions

T [read x: 0—P2 »write(y,I)J

po value of read operations coincide
read x: 0 »read x: | with the value of the last operation
A on the same object

K_value of x changed

by external entity

Abstract Framework

Transactions:

T — (E) PO) No DB events (start, abort, commit)
We record only committed transactions

T [read x: 0—P2 »write(y,I)J

S (r?ad x:OEwrite(x,l)P—owead X: IP—O>write(x,2) J
L.

k Reads an \ Reads a value
external S '— Re ad) & O written by the same

value transaction

Abstract Framework

Transactions:

T — (E) PO) No DB events (start, abort, commit)
We record only committed transactions

T [read x: 0—P2 »write(y,I)J

S (read xzoﬂwrife(X,I)P—owead x: | 22 write(x,2) J

< Last write to object:

S '_ Write X 2 can be observed by

other transactions

Gets overwritten
later: not observable
by other transactions

Abstract Framework

Transactions:

T — (E’ PO) No DB events (start, abort, commit)

We record only committed transactions

T [read x: 0—P2 »write(y,I)J

Atomic Visibility:

S [read x: 0-PZ.write(x, 1) P read x: | = write(x,2) J

SH Read x: 0 S F Write x: 2

Abstract Framework
Executions: (H,VIS,AR)

H: Set of transactions {S,T, ...}

S . T.T sees the updates of S

AR :
S— T: keeps track of version order

VIS g AR AR is total
(po 1 VIS

read x: 0 —— write(x,|)
) AR
lAR read x: 2 J
VIS
(read x:Oﬂwrite(X,Z) J

AR

Abstract Framework
Executions: (H,VIS,AR)

H: Set of transactions {S,T, ...}

S . T.T sees the updates of S

AR :
S— T: keeps track of version order

VIS C AR AR is total
VI'e H.Vx,n|T F Read z : n|—
(VISTH(T)N{S|SFWritex: _}=0An=0)V

\EaXAR‘(VIS_l(T) N{S | S+ Write z : _})|F Write x : n)

Read Atomic (RA): Baseline Consistency Model

Consistency Models

® Specification given by restraining VIS and AR

Example: Serialisability
VIS is a total order

® Different consistency models allow different
anomalies

Violation of Causality

Causal Consistency:
VIS is transitive

£ write(X, post)J

Vs, -7 VIS
o s ®tsonner
read x: post — write(y,comment)
e VIS
~ < _ . ¢

[read x: emptyﬂwead y: commentJ

Lost Update

[read x: 0 E»write(x,l)} VIS

- S AR

VIS X lAR X VIS read x: 2 J
< PO — VIS

[read x: 0 —— write(x,2) AR

Parallel Snapshot Isolation:

VIS is transitive + Write-write conflict detection:
if S Writex: , T FWritex: and S #T

then either SV—IS>T, or TV—IS>S

Consistency Models

® Specification given by restraining VIS and AR

Consistency Model Constraint
Read Atomic None
Causal Consistency VIS is transitive
Parallel Snapshot VIS is transitive

|solation Write-write conflict detection

Consistency Models

® Specification given by restraining VIS and AR

V(E,po) € H.Ve € E.Vx,n.(op(e) = read(xz,n) A
Cq (po~'(e) N HEvent, #))) == op(maxy.(po~ '(e) N HEvent.)) = _(x,n) (INT)

VT € HVxz.,n.TFRead z : n =
(VISTHT)N{S|SHWritex: _}=0An=0)V

° maxar(VIS™ ' (T)N{S | S+ Writex : _}) - Writex :) ° (EXT)
VIS is transitive (TRANSVIS) AR:;VIS C VIS (PREFIX) VIS is total (TOTALVIS)
P VILSeH. (T #SANTHFWritex: _ANSEFWritex:_) = (T B gv s Y, T') (NOCONFLICT)
7
® Parallel Snapshot VIS is transitive

|solation Write-write conflict detection

Why should you trust me!

Do the formal specifications really correspond to the
informal ones!?

Operational Model

Used to define a pseudo-implementation of consistency
models

Modelled after real implementations

Implementation

Abstract Verification

C

[write(x, post))
VIS

[read x: postﬂ.write(y.comment)}

VIS

{ read x: emptyﬂ.read y: comment)

Operational Model - Replicas

r

§

\.

start
write(x,1)
read x :1
write(y,2)

~

J

\4

[x =0,ts:0

y=0,t:0

write (X,

1) -

® Replicas store a copy of the database

each object has a value and a timestamp

write(y, 2)

R ————

® Transactions:issued by clients and processed
sequentially by a replica
(a replica can be either idle or executing a transaction)

® Transaction log: keeps track of operations performed
by pending transaction

® Read from transaction log first

Operational Model - Replicas

s)
start = . — .
[/_\ write(x,1) [A 1’ ts: 1 Y 2’ ts:] J
L j read x :1
write(y,2)
B commit(1) v ——
_ Y,
upon commit: monotonically

generate timestamp
update state of the DB
clean transaction 1log
broadcast (timestamp: transaction 1log)

Increasing

Effects sent in a single message: ensures Atomic Visibility

Operational Model - Replicas

4 p
start — . —_ .
w [x=0m0 y=os0 |
J read x :1
| write(y,2)
abort v S—— M _ NS,
\ J

upon commit:

generate timestamp

update state of the DB

clean transaction 1log

broadcast (timestamp: transaction 1log)

upon abort:

clean transaction 1log

®
©)

Operational Model - Message Delivery

r N
start
D write(x,1)
I write(y,2) — | | ,
commit(l) @ === = T , & l:write(x,1) write(y,2) !
| —re
h g - 4 N
| x=0,ts:0
= A
y =5, ts:42
Asynchronous message propagation: _ Y,

unbounded time to deliver messages to replicas

Operational Model - Message Delivery

4)

start
D write(x,1)

write(y,2) — | | ;
commit(1) .’__T \ l:write(x,1) - write(y,2) !

h / ‘_\Kj 4 N
Lv)<<: x =1,ts: 1

y = 5,ts:42
Asynchronous message propagation: _ Y,
unbounded time to deliver messages to replicas

—

upon receive(ts: 109g)
for each write(obj,val) 1n 1log
1f (timestamp (obj) > ts)
obj := val
timestamp (obj) := ts

Operational Model - Message Delivery

4)

1 start
L write(x,1)
= p——

write(y,2) | | ;
commit(1) .’_&\/ \)\ l:write(x,1): write(y,2) !

X) _//——i—- / \

D< Xi 1, ts: 1
y = 5,ts:42

Asynchronous message propagation: _ Y,
unbounded time to deliver messages to replicas

CONSTRAINT:
no messages are delivered while transactions

are executing

Operational Model for Read Atomic

-
start = m\
G write(x, post) \ P
commit(t) - *ﬁ
: :

Consistency Models

start
read x : post

write(y,comment)

commit(tz)

Further requirements are imposed on the
communication protocol to capture other
consistency models

Causal Consistency:
Message delivery is Causal

!

A

start

read x : post
write(y,comment)
commit(t)

J

From operational to abstract

4)

start
D read x: 0
write(x, 1)

commit(1)e—

\. . J
= w
AR . start
read x: 2
commit(3)
read x: 0 /
write(x, 2)
commit(2)
\. J
O
[read x: 0 P—»write(x, I)J VIS
AR
lAR read x: 2 J

[read x: 02—+ write(x,2)

Theorem

For any consistency model (I)

® (7 is an execution in the operational model for (P

implies that || (] || is an abstract execution for b

o A is an abstract execution for (I)

implies that :C, C — A and

C is an execution in the operational model for (I)

Why should | care?

Reasoning techniques for programs running
on weak consistency models

In the paper:A simple application
aimed at optimising transaction executions

Robustness: Applications run on a given
consistency model without anomalies
(Giovanni Bernardi’s talk at YR-Concur)

Optimising transactional applications

via transaction chopping
(A. Cerone, A. Gotsman and H.Yang, DISC 2015)

THANK YOU!

