Analysing Snapshot Isolation

Andrea Cerone
joint work with Alexey Gotsman

IMDEA Software Institute - Madrid, Spain

PaPoC - 2016, April 18th - Imperial College London

Snapshot Isolation

* Performs better than serialisability...

e ...while still prohibiting several anomalies

e Provided by most commercial DBSs
Oracle, Microsoft SQL server, postgreSQL, etc...

This talk

» Original Specification of Snapshot Isolation
* Alternative Specitication

using Adyas dependency graphs
makes It easier to reason about program behaviour

* Transaction Chopping for Snapshot |solation

Snapshot Isolation

* [ransactions read data from a
snapshot of the DB, taken at the
moment they start

 Updates become visible to other
transactions after commit

x=0
start read(x,0) write(x,|)

[/—\) . 2 @ @ -
| 4 X
- = i

[
o

Snapshot Isolation

* [ransactions read data from a
snapshot of the DB, taken at the
moment they start

 Updates become visible to other
transactions after commit

v =0 Not visible to
start read(x,0) write(x,l) — S

[/—\) @ @ @

} J S v =0 Stil’t

S

Snapshot Isolation

* [ransactions read data from a
snapshot of the DB, taken at the
moment they start

 Updates become visible to other
transactions after commit

x =0 \X=|

—

ﬁ T (2 -@ o o
S

. =0 Start read(x,0) commit

L_/‘ o ® °

Snapshot Isolation

* [ransactions read data from a
snapshot of the DB, taken at the
moment they start

* Updates become visible to other start | write(x, 1) commit
transactions after commit o -- ® ’ ®
start - write(x,2) abort

3 - ®-- ®

Write Conflict Detection

* Concurrent transactions write to one
same object: at most one commits

Write Skew Anomaly

Transaction mutual _withdraw | (int n) {
if (acctl + acct2 >=n)
acctl = acctl - n;

Transaction mutual _withdraw2(int n) {
if (acctl + acct2 >=n)
acct2 = acct2 - n;

J

: acctl = acct2 =50

start read(acctl,50) read(acct2,50) write(acctl,-10) commit

9 ® ®

@ ®

start read(acctl,50) read(acct2,50) write(acct2,-10) commit

Q- @

‘

7

\ acctl =acct2 =-10

Alternative Specification

Transactions

read(x,0) write(y,l)

Committed Transaction

read(x, 0): value fetched from the snapshot

write(y, |): final value written for the object

S
| WR

T

read(x, |)

write(x, |) ——

S

| write(x, |) —

N WW(

\.

T

write(x, 2)

Run-time Dependencies (Adya, 1999)

T reads the value
of x from S

~ T overwrites the

value of x written
oy S

Run-time Anti-Dependencies

T
’ "WWV (
write(x, old) ——— write(x, new)

- \ RW
S | read(x, old)

S reads a value for x which
IS later updated by T

A well Known Result

Theorem (Fekete et al. 2005):

A is an execution is in SI —>
All cycles in DependencyGraph(.A)

have two adjacent RW edges

Application: Static Analysis for Robustness

A well Known Result

[

_

read(acctl, 50)

read(acct?, 50) write(acctl,-10)

~

/

A

! 4
|
|
|
|
|
s
s

) S
s
)

| |
1
|
|
’

K

/

_

read(acctl, 50)

read(acct?, 50) write(acct2,-10)

~

/

Our Contribution

Theorem (Fekete et al. 2005):

A is an execution is in SI ——>
All cycles in DependencyGraph(.A)
have two adjacent RW edges

Our Contribution

Theorem (Fekete et al. 2005):

A is an execution is in SI @

All cycles in DependencyGraph(.A
have two adjacent RW edges

Application: Transaction Chopping for Sl

write(x, |)

RW

write(y,)

| WR

—

VR

Our Contribution

read(x, |)

read(y,0) |

RW

| read(x, 0)

read(y, |)

Transaction Chopping

Transaction Chopping

* Long Transactions are more likely to cause contlicts

Transaction transfer(int acctl, int acct2, int n) {

—

if (acctl >= n) {
acctl = acctl - n; acct?2 = acct2 + n;
}

Transaction Chopping

* Long Transactions are more likely to cause contlicts

* IDEA: chop transactions into chains of smaller ones

e Chopping transactions can introduce new
observable behaviour

Transaction withdraw(int acctl, int n) { Transaction deposit(int acct2, int n) {

1f (acctl >= n) acct2 = acct2 + n;
acctl = acctl - n; !

Transaction Chopping

acctl = 100

Chain transfer(int n) {

lookup : 100
Transaction withdraw(n) {
1f (aCCtl >= n) transfer(SO);
acctl = acctl - n;

lookup : 100

acctl = 50 acct2

Transaction deposit(n) {
acct2 = acct2 + n; Transaction lookup {
} return acctl + acct2;

J

Transaction Chopping

acctl = 100 acct?2
Chain transfer(int n) {
withdraw/(50);
Transaction withdraw(n) {
1f (aCCtl >= n) IOOI(UP: 50
acctl = acctl - n;

deposit(50);
acctl = 50 acct2

Transaction deposit(n) {
acct2 = acct2 + n; Transaction lookup {
} return acctl + acct2;

J

Chopping Graphs

Chain transfer(int n) {

WR

Transaction withdraw(n) {
1f (acectl >= n) ‘
acctl = acctl - n; RW
Transaction lookup {

N return acctl + acct?;
RW |,

Transaction deposit(n) {

acct2 = acct2 + n;

J

WR

Chopping Graphs

Chain transfer(int n) {

WR

Transaction withdraw(n) {

—

1f (acctl >= n)
acctl = acctl - n;

] Transaction lookup {
return acctl + acct2;

J

Transaction deposit(n) {
acct?2 = acct2 + n;

J

Chopping Graphs

Chain transfer(int n) {

WR

Transaction withdraw(n) {

—

1f (acctl >= n)
acctl = acctl - n;

] Transaction lookup {
return acctl + acct2;

J

Transaction deposit(n) {
acct?2 = acct2 + n;

J

Chopping Graphs

Chain transfer(int n) {

1

—

acctl

Transaction withdraw(n) {
1L f (acctl >= n)

= acctl - n;

WR

J

acct2

Transaction deposit(n) {

= acct2 + n;

Transaction lookup {

J

return acctl + acct?;

Transaction Chopping

for Snapshot Isolation

Theorem: a transactional application
can be chopped correctly under Sl if its
chopping grapnh has no simple cycle with
at least one P edge, one WR/WW/RW
edge and where RW edges are always
separated by WR edges or WW edges

A Positive Example

Chain transfer(int n) {

Transaction withdraw(n) { Transaction lookup | {
1f (acctl >= n) return acctl;
acctl = acctl - n; }

Transaction deposit(n) {
acct2 = acctz2 n;

j)

Transaction lookup?2 {
return acct2;

A Positive Example

Chain transfer(int n) { WR
Transaction withdraw(n) { Transaction lookup | {
1f (acctl >= n) ‘ return acctl;
acctl = acctl - n; }
) RW

Transaction deposit(n) { Transaction lookup?2 {

return acct2;

J

acct2 = acct?2 n;

J

Chain transfer(int n) {

Transaction withdraw(n) {
if (acctl >= n)
acctl = acctl - n;

||
=J

WR

\ /

Transaction deposit(n) {
acct2 = acct2 + n;

}

RW
WR

__—

RW

Proof Strategy

Transaction lookup| {
return acctl;

}

[

Transaction lookup?2 {
return acct2;

}

ILI
=

[read(acctl, 100) write(acctI,SO)L

Proof Strategy

Transaction withdraw(n) { | Transaction lookup| {
if (acctl >= n) return acctl;
acctl = acctl - n; — } _
k}) RW ;
Transaction deposit(n) { WR Transaction lookup2 {
ac = acct2 + :

n; 1T ™ return acct2;

WR

v e

[read(acct2, 0) write(acct2, 50)]

\[read(acct |, 50) 1

Fekete’s Criterion:
Only cycles with
adjacent RVV edges

Chain transfer(int n) {

WR

Transaction withdraw(n) {
if (acctl >= n)
acctl = acctl - n;

11

RW

Transaction deposit(n) {
acct2 = acct2 + n;
}

WR

[read(acctl, 100) write(acctl, 50)

v e

[read(acct2, 0) write(acct?2, 50)}

\ /

Proof Strategy

}

Transaction lookup| {
return acctl;

[

}

Transaction lookup2 {
return acct2;

11
=

WR

read(acctl, 50) J ——

read(acctl, 100)

read(acct2, 0)

write(acctl, 50)

write(acct2, 50)

WR

‘wread(acct I, 50)]

Chain transfer(int n) {

Transaction withdraw(n) {
if (acctl >= n)
acctl = acctl - n;

Transaction deposit(n) {
acct2 = acct2 + n;

}

RW
WR

RW

Proof Strategy

Transaction lookup| {
return acctl;

}

||
]

Transaction lookup2 {
return acct?;

}

11
J

Transaction transfer(int n) {

1f (acctl >= n)
acctl = acctl - n;
acct2 = acct2 + n;

Transaction lookup| {
return acctl;

}

Our Contribution

[read(acctl, 100) write(acctl, 50)

N P

[read(acct2, 0) write(acct2, SO)J

\

WR

read(acctl, 50) } _>

Transaction lookup2 {
return acct2;

;

read(acct2, 0)

write(acct2, 50)

read(acctl, 100) write(acctl, 50) WR

‘\rread(acct I, 50) }

What to take away

* Dependency Graph Characterisation of Sl

e Useful for reasoning about applications
Transaction Chopping, Robustness, etc.

* Can be generalised to weaker consistency
moaels

