
Analysing Snapshot Isolation

Andrea Cerone  
joint work with Alexey Gotsman

IMDEA Software Institute - Madrid, Spain

PaPoC - 2016, April 18th - Imperial College London

Snapshot Isolation

• Provided by most commercial DBs 
Oracle, Microsoft SQL server, postgreSQL, etc…

• Performs better than serialisability…

• …while still prohibiting several anomalies

This talk

• Original Specification of Snapshot Isolation

• Alternative Specification  
using Adya’s dependency graphs 
makes it easier to reason about program behaviour

• Transaction Chopping for Snapshot Isolation

Snapshot Isolation
• Transactions read data from a

snapshot of the DB, taken at the
moment they start

start
x = 0

T
x = 0

read(x,0) write(x,1)

• Updates become visible to other
transactions after commit

x = 0 Not visible to
S

x = 0

start read(x,0) write(x,1)

start
T

S

Snapshot Isolation
• Transactions read data from a

snapshot of the DB, taken at the
moment they start

• Updates become visible to other
transactions after commit

x = 0

x = 0

start read(x,0) write(x,1) commit

start read(x,0) commit

x = 1

T

S

Snapshot Isolation
• Transactions read data from a

snapshot of the DB, taken at the
moment they start

• Updates become visible to other
transactions after commit

Write Conflict Detection

• Concurrent transactions write to one
same object: at most one commits

start write(x,1) commit

start write(x,2) abort

Snapshot Isolation
• Transactions read data from a

snapshot of the DB, taken at the
moment they start

• Updates become visible to other
transactions after commit

Write Skew Anomaly

start commitread(acct1,50) write(acct1,-10)

Transaction mutual_withdraw1(int n) {  
 if (acct1 + acct2 >= n)
 acct1 = acct1 - n;
}

Transaction mutual_withdraw2(int n) {  
 if (acct1 + acct2 >= n)
 acct2 = acct2 - n;
}

read(acct2,50)

start commitread(acct1,50) write(acct2,-10)read(acct2,50)

acct1 = acct2 = 50

acct1 = acct2 = -10

Alternative Specification

Transactions

read(x, 0) write(y,1)

read(x, 0): value fetched from the snapshot

write(y,1): final value written for the object

Committed Transaction

Run-time Dependencies (Adya, 1999)

write(x, 1) read(x, 1)
WR

S T
T reads the value  
of x from S

write(x, 1) write(x, 2)
WW

S T T overwrites the
value of x written
by S

Run-time Anti-Dependencies

write(x, old) write(x, new)
WW

S

T

WR

read(x, old)

S reads a value for x which
is later updated by T

RW

A well Known Result

Theorem (Fekete et al. 2005): 
 is an execution is in SI  
All cycles in  
have two adjacent RW edges

A
DependencyGraph(A)

=)

Application: Static Analysis for Robustness

read(acct1, 50) read(acct2, 50) write(acct1,-10)

RW RW

A well Known Result

read(acct1, 50) read(acct2, 50) write(acct2,-10)

Our Contribution

Theorem (Fekete et al. 2005): 
 is an execution is in SI  
All cycles in  
have two adjacent RW edges

A
DependencyGraph(A)

=)

Theorem (Fekete et al. 2005): 
 is an execution is in SI  
All cycles in  
have two adjacent RW edges

()

Our Contribution

A
DependencyGraph(A)

Application: Transaction Chopping for SI

write(y,1) read(x, 0) read(y,1)

read(x, 1) read(y,0)write(x,1)
WR

WR

RW RW

Our Contribution

Transaction Chopping

Transaction Chopping

 Transaction transfer(int acct1, int acct2, int n) {
if (acct1 >= n) {
 acct1 = acct1 - n; acct2 = acct2 + n;  
}

• Long Transactions are more likely to cause conflicts

Transaction Chopping

 Transaction deposit(int acct2, int n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(int acct1, int n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

• Long Transactions are more likely to cause conflicts

• IDEA: chop transactions into chains of smaller ones
• Chopping transactions can introduce new

observable behaviour

acct1 = 100 acct2 = 0

transfer(50);

acct1 = 50 acct2 = 50

Transaction Chopping

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

 Transaction lookup {
 return acct1 + acct2;
 }

Chain transfer(int n) {

}

lookup : 100

lookup : 100

acct1 = 100 acct2 = 0

acct1 = 50 acct2 = 50

lookup: 50

Transaction Chopping

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

 Transaction lookup {
 return acct1 + acct2;
 }

Chain transfer(int n) {

}

withdraw(50);

deposit(50);

Chopping Graphs

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

Chain transfer(int n) {

}

N
 Transaction lookup {
 return acct1 + acct2;
 }

WR

WR

P RW

RW

Chopping Graphs

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

Chain transfer(int n) {

}

 Transaction lookup {
 return acct1 + acct2;
 }

WR

P RW

Chopping Graphs

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

Chain transfer(int n) {

}

 Transaction lookup {
 return acct1 + acct2;
 }

WR

P RW

Chopping Graphs

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

Chain transfer(int n) {

}

 Transaction lookup {
 return acct1 + acct2;
 }

WR

RW

Theorem: a transactional application  
can be chopped correctly under SI if its
chopping graph has no simple cycle with
at least one P edge, one WR/WW/RW
edge and where RW edges are always
separated by WR edges or WW edges

Transaction Chopping
for Snapshot Isolation

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

 Transaction lookup1 {
 return acct1;
 }

Chain transfer(int n) {

}

 Transaction lookup2 {
 return acct2;
 }

A Positive Example

 Transaction deposit(n) {
 acct2 = acct2 + n;
 }

 Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;

 }  

 Transaction lookup1 {
 return acct1;
 }

Chain transfer(int n) {

}

WR

N
 Transaction lookup2 {
 return acct2;
 }

RW

WR

RW

P

A Positive Example

Proof Strategy

Proof Strategy

Fekete’s Criterion:  
Only cycles with  

adjacent RW edges

Proof Strategy

Proof Strategy

Our Contribution

What to take away

• Dependency Graph Characterisation of SI

• Useful for reasoning about applications  
Transaction Chopping, Robustness, etc.

• Can be generalised to weaker consistency
models

