Analysing Snapshot Isolation Andrea Cerone joint work with Alexey Gotsman IMDEA Software Institute - Madrid, Spain PaPoC - 2016, April 18th - Imperial College London

Performs better than serialisability...

• ... while still prohibiting several anomalies

 Provided by most commercial DBs Oracle, Microsoft SQL server, postgreSQL, etc...

This talk

- Original Specification of Snapshot Isolation
- Alternative Specification using Adya's dependency graphs
- Transaction Chopping for Snapshot Isolation

makes it easier to reason about program behaviour

- Transactions read data from a snapshot of the DB, taken at the moment they start
- Updates become visible to other transactions after commit

- Transactions read data from a snapshot of the DB, taken at the moment they start
- Updates become visible to other transactions after commit

- Transactions read data from a snapshot of the DB, taken at the moment they start
- Updates become visible to other transactions after commit

- Transactions read data from a snapshot of the DB, taken at the moment they start
- Updates become visible to other transactions after commit

Write Conflict Detection

 Concurrent transactions write to one same object: at most one commits

Write Skew Anomaly

	Transaction mutual_withdraw2(int n) - if (acct1 + acct2 >= n)
	acct2 = acct2 - n;
ac	ct2 = 50
ct2,50) write(acct1,-10) comm	
:t2	2,50) write(acct2,-10) commit
100	ct2 = -10

Alternative Specification

Transactions

Committed Transaction read(x, 0): value fetched from the snapshot write(y, I): final value written for the object

read($\mathbf{x}, \mathbf{0}$) write(\mathbf{y}, \mathbf{I})

Run-time Dependencies (Adya, 1999)

read(x, I) T reads the value of x from S

T overwrites the value of x written by S

Run-time Anti-Dependencies write(x, old) write(x, new) WR RW

S reads a value for x which is later updated by T

A well Known Result

Theorem (Fekete et al. 2005): \mathcal{A} is an execution is in SI == All cycles in DependencyGraph(\mathcal{A}) have two adjacent **RW** edges

Application: Static Analysis for Robustness

A well Known Result

read(acct1, 50) read(acct2, 50) write(acct1,-10)

read(acct1, 50) read(acct2, 50) write(acct2, -10)

Our Contribution

Theorem (Fekete et al. 2005): \mathcal{A} is an execution is in **SI** All cycles in DependencyGraph(\mathcal{A}) have two adjacent **RW** edges

Our Contribution

Theorem (Fekete et al. 2005): \mathcal{A} is an execution is in SI \langle All cycles in DependencyGraph(\mathcal{A}) have two adjacent **RW** edges

Application: Transaction Chopping for SI

Our Contribution

Long Transactions are more likely to cause conflicts

Transaction transfer(int acctl, int acct2, int n) { if (acct1 >= n) { acct1 = acct1 - n; acct2 = acct2 + n;

- Chopping transactions can introduce new observable behaviour

Transaction withdraw(int acctl, int n) { if (acct1 >= n)acct1 = acct1 - n;

Long Transactions are more likely to cause conflicts

• **DEA**: chop transactions into chains of smaller ones

Transaction deposit(int acct2, int n) { acct2 = acct2 + n;

Transaction lookup { return acct1 + acct2;

Transaction lookup { return acct1 + acct2;

Transaction Chopping for Snapshot Isolation

Theorem: a transactional application can be chopped correctly under SI if its chopping graph has no simple cycle with at least one P edge, one WR/WW/RW edge and where RW edges are always separated by WR edges or WW edges

A Positive Example

Chain transfer(int n) {

Transaction withdraw(n) {
 if (acct1 >= n)
 acct1 = acct1 - n;
}

Transaction deposit(n) {
 acct2 = acct2 + n;

Transaction lookup1 { return acct1; }

Transaction lookup2 { return acct2;

A Positive Example

Proof Strategy

Fekete's Criterion: Only cycles with adjacent RW edges

Proof Strategy

Proof Strategy

Transaction lookup2 { return acct2;

Our Contribution

What to take away

- Dependency Graph Characterisation of SI
- Useful for reasoning about applications Transaction Chopping, Robustness, etc.
- Can be generalised to weaker consistency models