
Characterising Testing Preorders for
Broadcasting Distributed Systems (Extended

Version)?

Andrea Cerone1 and Matthew Hennessy2

1IMDEA Software Institute, 2Trinity College Dublin
Andrea.Cerone@imdea.org, Matthew.Hennessy@scss.tcd.ie

Abstract. We present a process calculus for both specifying the desired
behaviour of distributed systems and for describing their actual imple-
mentation; the calculus is aimed at the internet layer of the TCP/IP
reference model. This allows us to define behavioural preorders in the
style of DeNicola and Hennessy, relating specifications and implementa-
tions for distributed systems at this level of abstraction. The main result
of the paper is a complete characterisation of these preorders, for a large
class of systems, in terms of traces of extensional actions. This result un-
derpins a sound and complete proof methodology which is demonstrated
by the verification of the correct behaviour of a virtual shared memory
protocol.

1 Introduction

Different approaches have been made to the problem of verifying the behaviour
of distributed systems. This includes model checking [11,5,14] and process calculi
[17,9,7,16,12]. In the latter a language, or calculus, is designed for both specify-
ing desired behaviour, for example of a distributed system, and describing the
proposed implementation. Verification then consists of formally proving that the
two descriptions are behaviourally equivalent. The success of this approach is de-
pendent not only on having a robust notion of behavioural equivalence, but also
a high-level characterisation of the equivalence which can be used for verification
purposes.

m

n

l

o1

o2

i

We define a process calculus for modelling
(distributed) systems at a high level of ab-
straction, roughly at the level of the Internet
Layer of the TCP/IP reference model [19].
We assume non-blocking broadcast commu-
nication between independent computational
entities, although the introduction of point-

to-point communication would not invalidate our results. A typical system may
be seen to the left. It consists of a number of nodes or stations at which code

? Supported by SFI project SFI 06 IN.1 1898.

2

is executed by independent processes, with an accessibility relation between the
nodes. So in this example only stations n and l are in the range of broadcasts
from station m while o2 is the only station which can pick up messages broadcast
from station l. Thus in general communication is multicast, in that messages can
be received by multiple entities simultaneously; for example messages transmit-
ted from m can be picked up at both n and l simultaneously. However either of
the nodes n, l, or indeed both, can choose to ignore messages, or more generally
may be in a state where broadcasts cannot currently be received. Thus broad-
casts are non-blocking in that messages can be transmitted from m regardless of
whether or not anybody is currently listening at n or l.

There are two kinds of nodes. The first, the internal nodes, are those at which
code is executing, broadcasting and receiving messages; in our example these
are m,n and l. Here, and throughout the rest of the paper, we use shadowing to
represent these internal nodes. The second are interface nodes, such as i, o1 and
o2, which are not executing any code, and which can be used either to test the
internal behaviour of the system by placing test code there, or more generally
combining smaller systems to construct larger ones.

More formally, a systemM is a pair of the form Γ�M , where Γ is a directed
graph describing the accessibility relation between nodes, or the system topology,
and M is a system term from a process calculus which describes the code running
at the internal nodes. In this paper we focus on a sub-calculus of that of [3,2] in
which the station code is non-probabilistic. From these papers we also borrow
the (non-trivial) partial operator M ‖> N for composing systems to form larger
ones. For our purposes, we focus on a relevant, large class of composable systems,
which do not allow connections between interface nodes. It can be shown that all
composable systems can be generated by atomic systems, which contain only one
node, using the operator ‖>. As explained in [3,2], the composite systemM ‖> N
may be viewed as N extending M by adding new stations and adding code to
execute at the interface nodes ofM; it may also be viewed as N blackbox testing
the system M by placing probing code at its interface.

This compositional view of systems leads in a natural way to an adaptation
of the standard testing based preorders [6] which we denote by Mvmay N and
Mvmust N . Intuitively the former means that if the application of any blackbox
test T , represented by the composite system M ‖> T , can lead to a success,
then so can the application to N ; the latter, Mvmust N , on the other hand is
determined by the tested processesM, N guaranteeing success when probed by
any testing system T .

Testing preorders can be used to capture the concept of refinement; a system
M corresponds to an implementation of a more abstract system N , known as
the specification, if M vmay N and M vmust N . However the usefulness of
this notion of refinement depends on our ability to reason about these preorders.
This is the topic of this paper.

In standard process calculi, such as CCS and CSP, testing preorders can be
characterised by the traces, that is sequences of actions, which processes can per-
form, together with so-called acceptances or failures. Here however the situation

3

is much more complicated. For example messages are broadcast asynchronously;
in this respect the approach in [7] is of help. But with distributed systems we
also have the problem of whether a multicast, that is the simultaneous broadcast
of a message to multiple nodes, can be distinguished from a series of individual
broadcasts to each of the nodes in turn. More importantly the ability of tests to
interrogate the behaviour of a system depends on the distribution of its nodes,
the accessibility between them and the accessibility to these internal nodes from
the interface.

In this paper we isolate a set of extensional actions for systems; their defini-
tion is independent of the distribution of the internal nodes in the system and
depends only on their accessibility from the interface nodes. They also take into
account the multicasts which systems can perform, represented by the set of
interface nodes which can receive the broadcast of a value at any point in time.

Traces of such extensional actions provide a sound proof method for the
preorder vmay.

Further, for those systems which do not exhibit non-terminating behaviour
when considered in isolation, so-called strongly-convergent systems, it is sufficient
to record deadlocks into traces to obtain a sound proof method for the preorder
vmust. As a further contribution, we show that our proof methods are complete;
specifically

(1) extensional traces are complete for vmay for arbitrary systems

(2) deadlock extensional traces are complete forvmust when restricted to strongly
convergent systems which are in addition finite spanning, meaning they can
reach a finite number of states by performing a transition.

In this extended abstract we concentrate on outlining the proof of (2) which relies
on exhibiting characteristic tests for (deadlock) traces of extensional actions. The
definition of such tests is non-trivial; one of the main challenges when defining
the characteristic test of a trace is that of coordinating the independent activities
of its nodes.

As a sample application of our proof techniques, we prove the correctness of
a simple virtual shared memory implementation.

The remainder of the paper is organised as follows. The calculus is presented
in §2. In §3 we recall the theory of composition for networks of [3], upon which we
define the testing preorders vmay,vmust. In §4 we explain the extensional seman-
tics, and define both the sets of traces and deadlock traces of systems. These are
used to determine our characterisations for both testing preorders in §5, where
we put an emphasis on the completeness result for vmust. An application of the
resulting proof techniques is given in §6, in which we prove the correctness of a
virtual shared memory. We end the paper with a brief comparison with related
work, in §7.

The topics treated in this paper have been extracted from [2], to which the
reader is referred for detailed proofs of the results and further applications of
the proof methods to real world scenarios.

4

2 A calculus for Distributed Systems

Syntax. A directed connectivity graph Γ = 〈ΓV , ΓE〉 consists of a set of vertices
ΓV , representing the set of nodes of a distributed system, and a relation ΓE ⊆
(ΓV × ΓV) containing the connections between nodes. If (m,n) ∈ ΓE then node
n can receive messages broadcast by m. Given Γ = 〈ΓV , ΓE〉, we use Γ ` m for
m ∈ ΓV , Γ ` m→ n for (m,n) ∈ ΓE and Γ ` m 6→ n for its negation.

A distributed system is modelled as a tuple Γ �M , where Γ is a connectivity
graph and M is a system term which associates processes to nodes, generated
by the grammar below.

M,N ::= 0 | nJP K | (M |N)

A (system) term M is a collection of sub-terms of the form mJP K, which binds
process P to node m; the term 0 corresponds to the system term in which no
nodes are executing processes. The code for processes will be presented shortly.
We will often use the metavariablesM,N , · · · when referring to a system Γ�M .

Let nodes(M) be the set of the node names appearing in M . We only consider
the sublanguage of well-formed systems Γ �M such that nodes(M) ⊆ ΓV , and
such that each node name occurs at most once in M . These constraints ensure
that in systems, nodes running code are part of the system topology, and no
node can be bound to multiple processes. It is possible for nodes appearing in
Γ not to occur in M . At least intuitively, such nodes represent the external
environment of a system and will be used to test its behaviour (§3). The set of
the external nodes of a system Γ �M , formally defined as ΓV \ nodes(M), is
called the interface of the system and denoted by Intf(Γ �M).

The syntax for processes, given below, is a straightforward instance of a
standard process calculus, and their constructs should be self explanatory. Here
we assume a (at most countable) set of process definitions of the form A⇐ P .

P, Q ::= 0 | c!〈e〉 .P | c?(x) .P | τ.P |ω | P +Q | if b then P else Q | A(x̃)

For processes we assume some language for Boolean expressions, b, b′, · · · which
includes variables, x, y, · · · and the Boolean values, {true, false}. In the standard
manner we assume an interpretation function J·K which maps all closed Boolean
expressions to some Boolean value. In a similar manner we assume another
language of (value) expressions, e, e′, · · · , which again may contain variables,
and values v, w, · · · from some finite value set; this language also comes equipped
with an interpretation function, mapping each closed expression into one of the
finite set of values.

We also assume a special clause ω which will be used for testing purposes in
§3. Any system which has no occurrence of the special clause is called proper.

Intensional Semantics. We define a collection of Structured Operational Se-

mantics rules, whose judgements take the form (Γ �M)
µ−→ (Γ �N), to define

the behaviour of systems. The action µ can have either the form (a) m.c!v, node

5

(b-broad)
P

c!v−→Q

Γ � nJP K n.c!v−→ Γ � nJQK
(b-rec)

P
c?v−→Q Γ ` m→ n

Γ � nJP K m.c?v−→ Γ � nJQK

(b-deaf)
P
c?v−→6

Γ � nJP K m.c?v−→ Γ � nJP K
(b-disc)

Γ ` m 6→ n

Γ � nJP K m.c?v−→ Γ � nJP K

(b- 0)

Γ � 0
m.c?v−→ Γ � 0

(b-τ)
P

τ−→Q

Γ � nJP K τ−→ Γ � nJQK

(b-τ.prop−L)
Γ �M

τ−→ Γ � L

Γ �M |N τ−→ Γ � L |N
(b-τ.prop−R)

Γ �N
τ−→ Γ � L

Γ �M |N τ−→ Γ �M | L

(b-Sync)
Γ �M

µ1−→ Γ �M ′ Γ �N
µ2−→ Γ �N ′

Γ �M |N (µ1◦µ2)−→ Γ �M ′ |N ′

µ1 ◦ µ2 m.c!v m.c?v

m.c!v m.c!v

m.c?v m.c!v m.c?v

Fig. 1. Labelled Transition Semantics for (high level) systems

(s-Snd)
JeK = v

c!〈e〉 .P c!v−→ P
(s-Rcv)

c?(x) .P
c?v−→ {v/x}P

(s-τ)

τ.P
τ−→ P

(s-Sum−L)
P

α−→ P ′

P +Q
α−→ P ′

(s-then)
P

α−→ P ′ JbK = true

if b then P else Q
α−→ P ′

(s-Pdef)
A(x̃)⇐ P {ẽ/x̃}P α−→Q

A〈ẽ〉 α−→Q

Fig. 2. Pre-semantics of processes

m broadcasts value v along channel c, (b) m.c?v, the system receives a broad-
cast of value v along channel c from the external node m, or (c) τ , some node
performs an internal activity.

The rules of the labelled transition semantics are depicted in Figure 1. They
are based on a pre-semantics for processes, whose rules are given in Figure 2 and
should be self-explanatory. Some symmetric rules have been omitted.

Rule (b-Broad) models a node which is willing to transmit a value v, while
the next four rules deal with how stations react to such a broadcast. When a
station is within the transmitter’s range and is waiting to detect a value along
channel c, it will receive it correctly (Rule (b-Rec)). On the other hand, if either
the station is not waiting to detect a value along channel c (Rule (b-Deaf)) or
is not in the sender’s transmission range (rule (b-Disc)), then the broadcast is

ignored. In rule (b-Deaf), P
c?v−→6 means that P

c?v−→Q for no process Q. Finally,
the 0 system term ignores all transmissions (Rule (b- 0)).

Rule (b-Sync) models how nodes interact. The action performed by a system
(Γ �M |N) is determined by the individual actions performed by Γ �M and

6

Γ �N , according to a (partial) binary operator for actions ◦ defined at the right
of Rule (b-Sync) in Figure 1. Here it is important to note that the action induced
by a transmission and a reception is again a transmission, thus implementing
broadcast communication; see [17] for a detailed discussion. The remaining rules,
modelling internal activity, are straightforward.

Example 1. Consider the system M = Γ �M , where Γ is the directed graph
depicted on page 1, M is mJAK |nJAK | lJAK and A⇐ c?(x) .c!〈x〉. All the internal
nodes m,n, l are waiting to receive a value via channel c inM; once any of these
nodes has received such a value, it will forward it along the same channel. One
possible behaviour of M can be summarised as follows; first node m detects a
broadcast of an arbitrary value v along channel c, performed by node i. Nodes n, l
are not affected by this broadcast, since they are not in the range of transmission
of i. Using Rules (b-Rec), (b-disc) and (b-Synch) we can infer the transition

M i.c?v−→M1, where M1 = Γ �mJPvK | nJAK | lJAK and Pv = c!〈v〉.
Next node m forwards value v to both nodes n and l, which are in its range

of transmission. This is formalised by the transition M1
m.c!v−→ M2, where M2 =

Γ �mJ0K | nJPvK | lJPvK, which is obtained using rules (b-Broad), (b-Rec) and
(b-Synch). Finally, we have a broadcast fired by n followed by one fired by l.
LetM3 = Γ �mJ0K |nJ0K | lJPvK andM4 = Γ �mJ0K |nJ0K | lJ0K; then we have

M2
n.c!v−→M3

l.c!v−→M4. ut

Reduction Semantics. In the following we will want to discuss the behaviour
of systems when isolated from its interface; that is, when input actions of inter-
face nodes are inhibited. To this end, we define a reduction relation _ by letting

M_ N if either M m.c!v−→ N or M τ−→N ; any maximal sequence of reductions
rooted in a system M is called a computation for M. Note that reductions _
can be defined directly via a reduction semantics; see [2], §2.2 and §2.4.

3 Testing Distributed Systems

Extension of Systems Following the approach of [3] we focus on a specific
class of systems and how they can be extended to obtain larger systems.

Definition 1 (Composable Systems). A system M = Γ �M is composable
if whenever Γ ` m→ n then either m ∈ nodes(M) or n ∈ nodes(M). ut
Henceforth we will always assume that systems are composable. Such systems
do not allow connections between nodes in their interface; from the point of view
of a system, the only visible information about its external environment consists
of the set of access points to the system. In our terminology its interface.

Focusing on composable systems is not restrictive, in that connections be-
tween external nodes do not affect the behaviour of systems, so that any system
M can be reduced to a composable one M′ without affecting the transitions it
can perform. Below we define an extension operator which allows us to infer a
larger system from a given one, in which nodes which were external in the latter
may now be connected.

7

o1

o3

o2

i m

n

l

o1

o2

o3

Fig. 3. Two systems N and L = (M ‖> N).

Definition 2 (Systems Extension). Let M = (ΓM � M),N = (ΓN � N)
be (composable) systems; the extension of M with N , (M ‖> N), is defined
whenever nodes(M) ∩ (ΓN)V = ∅, and it is equivalent to (ΓM ∪ ΓN) � (M |N),
where ΓM ∪ ΓN is defined as the pointwise union of their sets of vertices and
edges. ut

Intuitively, M ‖> N describes an extension of the system M, where the infor-
mation about its external environment is supplied by a second system N ; such
system can contain the code run by interface nodes of M, and the connections
between its interface nodes. But it can also contain new nodes, which did not
appear in M. Also, in the composite system, the topological structure of M is
left unchanged; this property is desirable, as we wish to use the operator ‖> to
implement blackbox testing. In [3] we proved that ‖> is associative and closed
with respect to the set of composable systems, and that it is the most expressive
operator which can be used to implement blackbox testing.

Example 2. LetM be the system of Example 1; its interface Intf(M) = {i, o1, o2}
represents its external environment. By using the extension operator ‖> we can
obtain a new system which contains M, and which also gives new information
about the connections of the nodes in the external environment of M.

For example, consider the system N = ΓN � o1JAK | o2JAK, depicted on the
left of Figure 3; here A is as defined in Example 1. This system specifies the code
nodes o1, o2 are running, together with their connections; it also has a fresh node
o3 in its own interface. The composite system L = (M ‖> N) is well-defined, and
it models the system obtained by extending M with the information regarding
its external environment provided by N . The system L is depicted to the right
of Figure 3. Here the sub-system N could be viewed as a black box tester for
the original systemM, placing probing code at two ofM’s interface nodes, and
having another node o3 where the results of this probing could be collected. ut

Testing Preorders. We say that a system M is successful if the clause ω ap-
pears unguarded in the code of one of its nodes, while a computation of a system
M is said to be successful if it contains a successful system. Given two systems
M, T we say thatMmay-pass T ifM ‖> T has a successful computation, while
Mmust-pass T if all its computations are successful.

8

Definition 3 (Testing Preorders). Let M,N be two systems; we say that
M vmay N if for any T which can be used to extend both M,N we have that
Mmay-pass T implies N may-pass T . Similarly, we define M vmust N in the
same way, this time using the must-pass testing relation. We say thatMv N if
both Mvmay N and Mvmust N are true; finally, we use the notation M' N
if both Mv N and N vM are true. ut

Example 3 (Deadlocks). Let Γ represent the system topology containing two
nodes m, e and having as its only connections Γ ` m → e, e → m. Let M =
Γ �mJP K, N = Γ �mJQK, where P = c!〈v〉, Q = c?(x) .c!〈v〉. Both systems have
the ability to broadcast value v along channel c; however, in N this broadcast
is enabled only after a broadcast along channel c has been performed by node
e. That is, N _ N ′ for no N ′.

These two systems can be distinguished via the must-pass testing relation by
the test T = Γe � eJc?(x) .ωK; here Γe is the graph with the single node e. Note
that Mmust-pass T , while N must-pass T is not true. Therefore M 6vmust N .

It is also possible to exhibit a test which N must-passes, but M does not.
To this end, let T ′ = Γe�eJc?(x) . 0+τ.ωK. It is easy to see thatM ‖> T ′ has an
unsuccessful computation; however, since N is deadlocked and cannot broadcast
a value, the only possibility for N ‖> T ′ is that the testing component performs
a τ action, thus entering a successful state. N must-pass T ′, hence N 6vmustM.

What distinguishes M from N is that the latter cannot broadcast value v
without first receiving a value from node e first, that is it is deadlocked. However
suppose that we add the possibility to N to directly broadcast value v, leading
to the system N ′ = Γ � mJQ′K, where Q′ = Q + c!〈v〉; as we will see, it is
impossible to distinguish N ′ from M. Note that N ′ is not deadlocked.

Also, note that P,Q′ are valid value-passing CCS processes, and that their
sets of acceptances are different. In fact, in value-passing CCS, P must-passes
the test c!〈v〉 + τ.ω, but the same is not true for Q′; also, Q′ must-passes the
test c!〈v〉 .ω, but this is not true for P . This example gives an intuition that
deadlocks, rather than acceptances, should be taken into account when giving a
characterisation of the preorder vmust. ut

4 Extensional Semantics

The extensional semantics of systems is defined in Figure 4; its transitions

M λ7−−→ N can be either (a) internal activities τ , (b) inputs i.c?v performed
by an input node i or (c) broadcast actions c!v � η, observable at a non-empty
set of output nodes η. Note that any node name mentioned in the action of
the transition occurs in the interface of the source configuration M. The set of
extensional actions is denoted by EActτ , while EAct = EActτ \ {τ}.

Rules (s-Tau) and (s-Shh) model unobservable activities. The first rule prop-
agates internal activities of nodes to systems, while the second rule states that
broadcasts which cannot be detected by any external node of a system cannot
be observed. Rule (s-In) propagates input actions to the extensional semantics;

9

(s-Tau)
M m.τ−→N
M τ7−−→ N

(s-Shh)
M m.c!v−→ N {n ∈ Intf(M) | M ` m→ n} = ∅
M τ7−−→ N

(s-In)
M i.c?v−→ N
M i.c?v7−−−−−→ N

(s-Out)
M m.c!v−→ N η := {n ∈ Intf(M) | M ` m→ n} 6= ∅
M c!v�η7−−−−−→ N

Fig. 4. Extensional Semantics

finally, Rule (s-Out) models outputs which can be observed by a set of external
nodes η.

The extensional semantics endows systems with the structure of a LTS [13],
which we call the extensional LTS of systems. Most of the terminology used for
LTSs in the literature can be then readapted to systems. However our definition
of weak extensional actions, taken from [3] needs to be non-standard.

Definition 4 (Weak Extensional Actions). For any systems M,N , we say

that M
τ

|==⇒ N if M τ7−−→
∗
N ; here

τ7−−→
∗

is the reflexive, transitive closure of

τ7−−→. Further, we say that M
i.c?v

|=====⇒ N if M
τ

|==⇒ i.c?v7−−−−−→
τ

|==⇒ N . Finally,

we say that M
c!v�η

|=====⇒ N if either M
τ

|==⇒ c!v�η7−−−−−→
τ

|==⇒ N , or if there exist
two non-empty sets of nodes η1, η2 such that η1 ∪ η2 = η, η1 ∩ η2 = ∅ and

M
c!v�η1

|======⇒
c!v�η2

|======⇒ N .

These single weak transitions are extended to sequences M
s

|==⇒ N , for
s ∈ EAct∗, in the obvious manner. ut

The complication in the definition of M
c!v�η

|=====⇒ N is necessary in order to be
able to simulate a multicast c!v�η, where the set η contains more than one node
name, by a sequence of single broadcasts; this is shown in the Example below.

Example 4. Let M = ΓM � mJc!vK, where ΓM ` m → o1,m → o2. Also, let
N = ΓN �mJc!vK | nJc!vK, where ΓN ` m → o1, n → o2. Both systems are able
to deliver value v, along channel c, to the interface nodes o1, o2. However, while
M does it with a single broadcast, N uses two broadcasts which can be detected
by nodes o1, o2 individually.

One could expect that there is a test that allows us to distinguish M from
N , in the sense of vmay. However, at least intuitively, the broadcast of M can
be simulated in system N , by firing the two broadcasts in sequence. That is, the

action M
c!v�{o1,o2}
|=========⇒ can be matched by another action N

c!v�{o1,o2}
|=========⇒,

where the latter can be inferred from N
c!v�{o1}
|=======⇒

c!v�{o2}
|=======⇒ using our non-

standard definition of weak extensional actions.
If a test T is used to test the system M, each configuration T ′ reached by

the test T after M has broadcast value v, can be also obtained when T is used

10

to test the system N , by letting the latter fire its two broadcasts in sequence.
That is, Mvmay N .

On the other hand, N 6vmay M. To prove this, it is sufficient to provide
a test T which N may-passes, but M does not. The reader can easily check
that ΓT � o1Jc?(x) .c!〈w〉K | o2Jc?(x) .c?(y) .if (x = y) then 0 else ωK, where
ΓT ` o1 → o2, is one such test.

A similar argument shows that N vmustM, while M 6vmust N . ut

5 Characterisation of the Testing preorders

Traces and Deadlock Traces. A systemM is finite spanning if any N in the
extensional LTS generated by M can reach a finite number of systems by per-
forming a transition. It is convergent if it has no infinite computation, strongly
convergent if every state in the extensional LTS it generates is convergent.

From Example 3 we know that must-testing preorder is sensitive to deadlocks;
this is the essential ingredient to the following definition:

Definition 5 (Traces, Deadlock Traces). Let δ /∈ EAct. For any M we let

Traces(M) = { s ∈ EAct∗ | M
s

|==⇒ N for some N }

Dtraces(M) = { s::δ | M
s

|==⇒ N for some N , s ∈ EAct∗such that N 6_ }

We used the symbol :: to separate occurrences of elements in lists. ut

Example 5. Consider again the system M,N of Example 3. We have already
noted that M 6vmust N , and N 6vmust M. Also, we have that δ ∈ Dtraces(N)
(note that N 6_), while δ /∈ Dtraces(M). Further, we have that c!v � {e}::δ ∈
Dtraces(M), but this trace is not in Dtraces(N); in fact, in the latter system
the broadcast of value v can happen only after a value has been received along
channel c. That is, c?w::c!v � {e}::δ ∈ Dtraces(M) for an arbitrary value w.

Now consider the systemN ′ of Example 3. Note that c!v�{e}::δ ∈ Dtraces(N ′),
and δ /∈ Dtraces(N ′). Even more, the two systems M, N ′ share the same set
of deadlock traces, the minimal fragment of which we are interested in being
{c!〈v〉 ::δ, c?(w) ::δ | w arbitrary value }. Theorem 1, coming up, implies thatM
and N ′ cannot be distinguished by the must-pass relation. ut

Full Abstraction. We can now state the main result of the paper:

Theorem 1 (Characterisation of the testing preorders). Let M,N , be
two proper systems. Then

(1) Mvmay N if and only if Traces(M) ⊆ Traces(N),

(2) ifM,N are finite spanning and strongly convergent thenMvmust N if and
only if Dtraces(M) ⊇ Dtraces(N).

11

The restriction to proper systems is natural, as the special action ω should
only appear in systems used for testing. The restriction to strongly convergent
systems in part (2) is needed because in our definition of deadlock traces we did
not take divergence into account. Doing so would be quite complicated as, due
to the non-blocking nature of broadcasts, it is possible to define two divergent
systems M,N which are not must-testing related. This is in contrast with the
standard theory of must-testing [6]. See [2], Remark 4.4.3, Page 88, for a detailed
discussion. See also §4.4.3, Page 98, for a potential solution to this problem.

In this extended abstract we only have space to give an outline of Theorem
1(2). This is split into two parts, soundness and completeness.

Theorem 2 (Soundness for vmust). If Dtraces(M) ⊇ Dtraces(N) then M
vmust N , for proper, finite spanning, strongly convergent systems.

Proof. It suffices to show that inclusion of deadlock traces is preserved when
extending systems by adding a new node. That is, if Dtraces(M) ⊇ Dtraces(N),
and T = ΓT � eJP K is a system such that M ‖> T and N ‖> T are defined, then
Dtraces(M ‖> T) ⊇ Dtraces(N ‖> T). See [2], §4.3.1 and §4.4.1, for a detailed
proof. ut

The standard approach to prove the converse to Theorem 2 is that of pro-
viding characteristic tests for deadlock traces.

Proposition 1 (Characteristic Tests). Let M be a proper, finite spanning,
strongly convergent system. Then for any set of nodes η such that Intf(M) ⊆ η
and trace t there exists a system T ηt such that t 6∈ Dtraces(M) if and only
if Mmust-pass T ηt . Such a system is called a characteristic tests for t, with
respect to η.

Proof. See §4.3.2 and §4.4.2 of [2]. ut

Characteristic tests are parameterised by a set of nodes η; in general the topol-
ogy of a test depends on the interface of the system being tested. The formal
definition of the characteristic tests T ηt is given in Appendix A, while here we
focus on an informal explanation of their behaviour.

A characteristic test T ηt contains all the nodes in η and a fresh node cn, called
controller node. The controller node is connected (in both directions) with each
of the nodes in η. The test T ηt tests whether a system does not exhibit the
deadlock trace t by testing sequentially for every action included in t (or for
deadlock when testing for δ), then declaring success whenever it determines that
the current action being tested cannot be performed by the tested system.

To achieve this, in T ηt the nodes in η constantly report (via a fresh channel)
the observed behaviour of the tested system to the controller node; these par-
tial information are then used by the latter to infer whether the (extensional)
action being tested has been performed by the tested system, in which case T ηt
proceeds by testing for the next action in t. In the process of inferring whether
an extensional action has been performed by the tested system, the controller

12

node also asks nodes in η to report the absence of observed behaviour. For ex-
ample, detecting an action of the form c!v � η′ requires that no node in η \ η′
observed a broadcast. Or, when testing for deadlock, no node in η should detect
a broadcast. Below we give a detailed explanation of the protocol used by T ηt to
detect an extensional action, with a particular emphasis to an output action of
the form c!v � η′; the protocol runs in three stages.

Detect: The controller node waits for a relevant subset of nodes in η, consist-
ing of those nodes mentioned in the action being tested, to report to the
controller node that their local contribution to the action being tested has
been performed. In the case of an action of the form c!v� η′, node cn awaits
a message from each of the nodes in cn. Each of such nodes broadcasts to
the cn only if it detects a broadcast of value v along channel c.

Check: The controller node requests to all the nodes in η whether they observed
any other additional activity from the tested system, and awaits a response
from each of such nodes; in contrast, the latter do not answer to such a
request if they observed some activity from the tested system. In the case of
an action of the form c!v � η′, nodes in η′ \ η do not answer whether they
detected a broadcast performed by the tested system.

Proceed: The controller node sends a request to all nodes in η that it is ready
to detect the next action in the trace being tested. If nodes in η observe
some activity performed by the testee, they deadlock, causing the execution
of T η to be eventually unable to proceed.

Failure: At any given point, the controller node can non-deterministically de-
clare success, exception made for when it detects that the entire trace being
tested has been performed by the testee. In this case T ηt deadlocks, thus
causing the test to fail.

Theorem 3 (Completeness for vmust). Mvmust N implies Dtraces(M) ⊇
Dtraces(N), assuming both are finite spanning, strongly convergent, proper sys-
tems.

Proof. Suppose M vmust N is true and t ∈ Dtraces(N); we need to show that
t ∈ Dtraces(M). This will follow from the previous proposition ifMmust-pass T ηt
is not true, where we choose η to be Intf(M) ∪ Intf(N).

But this follows form the assumptionMvmust N because again the previous
proposition gives that N must-pass T ηt is false. ut

6 Application: Virtual Shared Memory

To show the usefulness of our results and proof methodologies, we prove the
correctness of a Virtual Shared Memory (VSM) protocol without replicas. To
keep the discussion simple, we consider the case in which the VSM is accessed
by two users; however, our case study can be generalised to an arbitrary num-
ber of users. We only give an informal description of the specification and the
implementation we provide for VSMs, while we defer all formal definitions to
Appendix B.

13

The Specification. In a virtual shared memory protocol, a distributed system
provides to two or more users the ability to write and read memory locations
which are physically stored at different nodes, while giving them the illusion that
the whole memory is stored at a single node.

cl1

i1

o1

m

i2

o2

cl2

The system V specifying a
VSM is depicted on the left.
Nodes ij , oj , where j = 1, 2, regu-
late the flow of messages between
a client clj and the site where
the memory is actually stored, m.
Node ij discards any ill-formed re-
quest issued by client clj , while oj
ensures that the answer by m cor-

responds to a request originally performed by clj . More specifically, let j = 1, 2.
Upon receiving a message of the form read(x), or write(x, n), node ij will store
it in a local queue. At any given point, it will dequeue the next element stored
and will forward it through channel cj . Node m is equipped with two queues, q1
and q2; upon receiving a request from node ij , it will enqueue it in qj . At any
given point, node m can dequeue the next request from one of the queues qk,
k = 1, 2. If such a request has the form read x, then it will forward the value
stored at its memory location x along channel dk. If the request has the form
write(x,n), node m will update the content of variable x to n, then it will broad-
cast the new value of x along channel dk. Upon receiving a message along channel
dk, node ok stores it in a local queue. At any given point, it non-deterministically
dequeues the next stored element, and forwards it to client clk.

Since our proof methods are sound only for finite spanning systems, we can
assume that the size of the memory stored at node m is finite, since the nodes
clj , j = 1, 2 can only send a finite amount of requests to the system V.

The Implementation. Next we turn our attention to a possible distributed im-
plementation of our VSM. The idea is that of partitioning the memory stored at
node m of the specification, among different nodes, m1, · · · ,mk.

· · ·m1 mk

lock

unlock

o1 o2

i1 i2

cl1 cl2

Each node contains only a
subset of the locations stored
in the total memory, and no
memory location is stored in
more than one node. To en-
sure that requests are pro-
cessed in the same order in
which they have been issued
by a client, the access to
nodes m1, · · · ,mk is regu-
lated by two nodes, called
lock and unlock. These two

nodes ensure that nodes m1, · · · ,mk never handle two requests concurrently.

14

In the implementation I, the behaviour of nodes clj , ij and oj , where j = 1, 2,
is the same as in the specification V. Therefore we concentrate on describing the
behaviour of the other nodes. Node lock is equipped with two queues q1, q2. Upon
receiving a request along channel cj , j = 1, 2, it will store it in the queue qj .
Node lock is also equipped with a boolean flag l, initially set to true. At any
given time, node lock checks if l is set to true; in this case, it sets the flag to
false, then it selects a queue qk, k = 1, 2, dequeues the next message stored in it,
and broadcasts it along channel ck. Node lock will then wait to receive a message
along channel dk, before resetting the flag l to false. Any message broadcast by
node lock along channels dk will be received by all nodes m1, · · · ,mk. Such a
message contains either a request to read and write some memory location x,
which is stored in exactly one of such nodes, say mn. Node mn will reply to
this request, updating the contents of location x, if needed, by broadcasting a
message along channel dk, which will in turn received by node unlock. Upon
receiving a message along channel dk, node unlock immediately broadcasts it
along the same channel, causing both the message to be delivered at node ok,
and node lock to set its internal flag to true.

In Appendix B we give a formal description in our language of both the Spec-
ification, as the system V, and the distributed Implementation, as the system
term I. The proof that the Implementation satisfies the Specification consists in
establishing that I ' V. This is achieved by using the alternative characterisa-
tions of the preorders in terms of traces and Deadlock traces. A more detailed
explanation of both the specification and implementation of our virtual shared
memory can be found in [2], §5.5 at Page 124.

Theorem 4. Dtraces(I) = Dtraces(V) and Traces(I) = Traces(V). In particu-
lar, I ' V. ut

7 Conclusions

The achievements of this paper have been more theoretical than practical, al-
though we have also provided some evidence of applicability, via a case study.
Many other applications can be found in Chapter 5 of [2]; these include connec-
tionless and connection-oriented routing, for which implementations at different
levels of the TCP/IP reference model have been provided, and multicast routing.

To the best of our knowledge, this paper presents the first completeness re-
sult for testing preorders applied to distributed systems. The proof is non-trivial,
requiring the isolation of our extensional actions, and the detailed programming
of the characteristic testing contexts. These probe systems via the extensional
actions and then combine the results of these probes to elicit behavioural char-
acteristics. The ability to define these characteristic tests also depends on the
level of our abstraction of our system descriptions. It is far from clear if the
completeness result remains true at other levels of abstraction, or if more gen-
eral systems are considered. For example we already know from [3] that if we
add probabilistic behaviour to nodes then the natural generalisation to proba-
bilistic simulations no longer characterises the (probabilistic) testing preorders.

15

Indeed it was this surprising phenomenon which prompted the research reported
in the current paper. So it will be interesting to see what extra constructs can be
added to our current non-probabilistic calculus without invalidating our charac-
terisation results. Possibilities include introducing features which can be found
in wireless networks, such as node mobility [18,15,8], or introducing time and/or
collisions, as in [12,4,10,20,1].

References

1. M. Bugliesi, L. Gallina, A. Marin, S. Rossi, and S. Hamadou. Interference-sensitive
preorders for manets. In QEST, pages 189–198, 2012.

2. A. Cerone. Foundations of Ad Hoc Wireless Networks. PhD thesis, Trinity College
Dublin, 2012. http://software.imdea.org/~andrea.cerone/works/thesis.pdf.

3. A. Cerone and M. Hennessy. Modelling probabilistic wireless networks. LMCS,
9(3), 2013.

4. Andrea Cerone, Matthew Hennessy, and Massimo Merro. Modelling mac-layer
communications in wireless systems (extended abstract). In COORDINATION,
pages 16–30, 2013.

5. Conrado Daws, Marta Z. Kwiatkowska, and Gethin Norman. Automatic verifica-
tion of the ieee-1394 root contention protocol with kronos and prism. Electr. Notes
Theor. Comput. Sci., 66(2):104–119, 2002.

6. R. De Nicola and M. Hennessy. Testing equivalences for processes. TCS, 34:83–133,
1984.

7. C.F. Ene and T. Muntean. Testing theories for broadcasting processes. Sci. Ann.
Cuza Univ, 11:214–230, 2002.

8. F. Ghassemi, W. Fokkink, and A. Movaghar. Equational reasoning on mobile ad
hoc networks. Fund. Inf., 105(4):375–415, 2010.

9. M. Hennessy and J. Rathke. Bisimulations for a calculus of broadcasting systems.
TCS, 200, 1998.

10. I. Lanese and D. Sangiorgi. An operational semantics for a calculus for wireless
systems. TCS, 411(19):1928–1948, 2010.

11. Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with spin.
In SPIN, pages 22–39, 1999.

12. M. Merro, F. Ballardin, and E. Sibilio. A timed calculus for wireless systems. TCS,
412(47):6585–6611, 2011.

13. R. Milner. A calculus of communicating systems. LNCS, 92, 1980.
14. Madanlal Musuvathi and Dawson R. Engler. Model checking large network proto-

col implementations. In NSDI, pages 155–168, 2004.
15. S. Nanz and C. Hankin. A framework for security analysis of mobile wireless

networks. TCS, 367, 2006.
16. Sebastian Nanz and Chris Hankin. Static analysis of routing protocols for ad-hoc

networks, March 25 2004.
17. K. Prasad. A calculus of broadcasting systems. SCP, 25, 1995.
18. A. Singh, C.R. Ramakrishnan, and S.A. Smolka. A process calculus for mobile ad

hoc networks. SCP, 75(6):440–469, 2010.
19. Andrew S Tanenbaum. Computer Networks. 4th Ed. Prentice Hall PTR, 2002.
20. M. Wang and Y. Lu. A timed calculus for mobile ad hoc networks. arXiv preprint

arXiv:1301.0045, 2013.

http://software.imdea.org/~andrea.cerone/works/thesis.pdf

16

A Definition of the Characteristic Tests

e1 e2 · · · en−1 en−2

cn

Fig. 5. Topological structure of characteristic tests.

Any characteristic tests T ηt for deadlock traces takes the form Γ η �T ηt ; here
Γ ηv = η ∪ {cn}, where cn is a fresh node name and Γ etav ` {e1, · · · , ek}. A
graphical representation of Γη is given in Figure 5.

The system term T ηt is defined as
(∏k

i=1 eiJP
t
i K
)
|cnJQtK, where the processes

P ti and Qt are defined inductively on the trace t. Before giving the definitions of
the processes P ti and Qi, we define some processes which will help maintaining
the notation easy. Let P = {P1, · · · , P2, · · · } be a set of processes. For any
k = 1, 2, · · · we let

INFSUMi
P ⇐ Pi + INFSUMi+1

P

With an abuse of notation, we define
∑∞
i=1 Pi = INFSUM1

P.

Next we give the following process definitions, assuming that the set of chan-
nels is {c1, c2, · · · }.

LOCK⇐
∞∑
i=1

ci?(x) . 0

ALLOW(ck, x)P ⇐

 ∞∑
i=1

i 6=k

ci?(x) . 0

+ ck?(x) .P

Finally, we adopt the following macros for processes, which encode the house-
keeping activities needed by the coordination protocol. First, for any finite list
of variables x1, · · · , xk we define the process c?(x1, · · · , xk)ω .P to be exactly P in
the case the list x1, · · · , xk is empty, and
c?(x1, · · · , xk)ω .P = c?(x1) .(c?(x2, · · · , xk) .P) + τ.ω otherwise. Then, let cc
be a fresh channel; the coordination protocol will use the processes defined be-
low; the first three processes will be used by nodes in η, while the remaining

17

three will be used by the controller node.

DETECT = (cc!〈ack〉 .P) + LOCK

CHECK.Q = cc?(x) .(cc!〈clear〉 .Q+ LOCK) + LOCK

PROCEED.Q = cc?(x) .Q+ LOCK

cnDETECT(k).Q = ccω?(x1, · · · , xk) .Q

cnCHECK.Q = cc!〈check〉 .cc?(x1, · · · , xk)ω .Q

cnPROCEED.Q = cc!〈proceed〉 .Q

We are now ready to define the processes P it , Qt for any trace t. As we have
already said, these are defined inductively on the structure of the trace t.

(i) t = ε

P iε ⇐ 0
Qε ⇐ 0

(ii) t = δ

P iδ =
∑∞
i=1 ci?(x) .DETECT

Qδ = cnDETECT(1). 0

(iii) t = d!v � η::t′;

P it =

ALLOW(d, x) if x 6= v then 0 else

DETECT.CHECK.PROCEED.Qit′) if ei ∈ η

CHECK.PROCEED.P it′ if ej /∈ ηi

Qt = cnDETECT(|η|).cnCHECK.cnPROCEED.Qt′

(iv) t = e.d?v::t′, i 6= ei for any i = 1, · · · k:

P ti = P t
′

i

Qti = Qt
′

i

(v) t = ej .d?v::t′

P it =

(d!〈v〉 .DETECT.CHECK.PROCEED.P it′ + LOCK) + LOCK if i = j

CHECK.PROCEED.P it′ otherwise

Qt = cnDETECT(1).cnCHECK.cnPROCEED.Qt′

18

B Virtual Shared Memory: Formal Definitions

In this Appendix we give the formal definitions needed to formalise both the
implementation, and the specification, of the VSM application presented in §6.

In the following we let Locs be a set of memory locations, ranged over by
x, y, · · · . Requests are messages of the form read(x) or write(x, n), ranged over
by r, r′, · · · . the set of requests is denoted as Reqs. Lists of requests are ranged
over by q, q′, with ε denoting the empty list and :: denoting concatenation of
symbols. Also, we assume a set of answers, ranged over a, a′, · · · , which are
messages of the form x = n. We let Answ be the set of answers and, with an
abuse of notation, we use q, q′, · · · to range over lists of answers. Finally, functions
of the form σ : Locs → N represent memories. We let σ0 be the initial memory,
where σ0(x) = 0 for any x ∈ Locs.

The Specification. The specification consists of the system V = ΓV � V ; the
connectivity graph ΓV is defined by letting ΓV ` clj → ij , ij → m,m→ oj , oj →
clj , for j = 1, 2. This is a formal description of the connectivity graph depicted
at Page 13. The system term V is defined as

V = i1JIn1K | o1JOutK |mJMemK | o2JOutK | i2JIn1K

The processes Inj, Outj, j = 1, 2, and Mem, will be defined shortly; at an intuitive
level, Inj describes how requests are forwarded from clj to node m, Outj how
requests are forwarded from node m to clj , while Mem gives the implementation
of a (centralised) memory, with a finite set of locations.

To handle the requests received by either node clj , the code for process Inj
needs to store the received requests in a internal queue. To achieve this, we
define a family of process definitions Inqj , parameterised by a list of requests q.
Intuitively this parameter captures the internal buffer of requests stored at some
node. We let Inj = Inεj , for j = 1, 2, since we assume that initially there are
no requests stored at nodes i1, i2. Let j = 1, 2; the process Inqj is defined as

Inqj ⇐ Recqj + Fwdqj , where

Reqqj ⇐ c?(r) .if (r ∈ Reqs) then Inr::qj else Inqj
Fwdεj ⇐ 0

Fwdq::rj ⇐ cj !〈r〉 .Inqj

Intuitively, process Reqqj provides the capability to node ij to parse messages,
storing requests into the internal queue of node ij , and ignoring all other mes-
sages. Process Fwdqj equips node ij with the capability of forwarding the oldest
stored request along channel cj .

The behaviour of process Outj is, in some sense, dual to the one of Inj . More
specifically, at any given point process Outj can receive an answer from node
n, along channel dj , or forward the next answer to node clj , along channel c.

19

Formally we let Outj = Outεj , and for any list of answers q we define

Outqj ⇐ GetAnswq
j + Replyqj

GetAnswq
j ⇐ dj?(a) .Outa::qj

Replyεj ⇐ 0

Replyq::aj ⇐ c!〈a〉 .Outqj

The code Mem placed at node m needs to equip the latter with a central
memory σ. Further, it needs to define the code for processing requests forwarded
by nodes i1, i2, and how replies to such operations are broadcast to nodes o1, o2.
Formally, we define a family of processes Memq1,q2

σ , where σ is a memory and
q1, q2 are two lists of requests, as follows:

Memq1,q2
σ ⇐ GetReqσ,q1,q21 + GetReqσ,q1,q22 + Execσ,q1,q21 + Execσ,q1,q22

GetReqσ,q1,q21 ⇐ c1?(r) .Mem(r::q1),q2
σ

GetReqσ,q1,q22 ⇐ c2?(r) .Memq1,(r::q2)
σ

Execσ,ε,q21 ⇐ 0

Exec
σ,(q1::read(x)),q2
1 ⇐ d1!〈x = σ(x)〉 .Memq1,q2

σ

Exec
σ,(q1::update(x,n)),q2
1 ⇐ d1!〈x = n〉 .Memq1,q2

σ[x 7→n]

Execσ,q1,ε2 ⇐ 0

Exec
σ,q1,(q2::read(x))
2 ⇐ d2!〈x = σ(x)〉 .Memq1,q2

σ

Exec
σ,q1,(q2::update(x,n))
2 ⇐ d2!〈x = n〉 .Memq1,q2

σ[x 7→n]

We let Mem = Memε,ε
σ0

, meaning that we initially assume that all memory loca-
tions are initialised to 0, and node m has not received any request to execute
yet.

The Implementation. Here we assume an implementation of the VSM where a
memory σ is partitioned into k nodes, m1, · · · ,mk. Let Locs1, · · · , Locsn ⊆ Locs
such that

⋃k
i=1 Locsi = Locs, and for any i, j : 1 ≤ i, j ≤ k, Locsi ∩ Locsj 6= ∅

implies i = j. Intuitively, Locsj represent the set of locations stored at node mj .
We let σj range over (partial) memories with domain Locsj , that is σj : Locsj →
N.

The implementation of the VSM protocol consists of the system I = ΓI � I.
The connectivity graph ΓI is defined by letting

ΓI ` clj → ij , ij → lock, lock → mi,mi → unlock, unlock → lock, lock → oj , oj → clj

for any i = 1, · · · , k, j = 1, 2. This is a formal description of the connectivity
graph depicted at Page 13.

20

The system term I is defined by letting

I = i1JIn1K|i2JIn2K|lockJLockK|

(
k∏

i=1

miJMemiK

)
|unlockJUnlockK|o1JOut1K|o2JOut2K

where Inj,Outj, j = 1, 2 are the same processes used in the specification, while
Lock,Unlock and Memi, i = 1, · · · , k are defined presently.

Let b be a flag which can assume either the value true or false. For any value
of b, and list of requests q1, q2, we define the process Lockq1,q2b as follows:

Lockq1,q2b ⇐ GetReqImplb,q1,q21 + GetReqImplb,q1,q22 + LockFwdq1,q2b

GetReqImplb,q1,q21 ⇐ c1?(r) .Lock
(r::q1),q2
b

GetReqImplb,q1,q22 ⇐ c1?(r) .Lock
q1,(r::q2)
b

LockFwdtrue,q1,q2 ⇐ BroadReqq1,q21 + BroadReqq1,q22

LockFwdfalse,q1,q2 ⇐ d1?(a) .Lockq1,q2true d2?(a) .Lockq1,q2true

BroadReqε,q21 ⇐ 0

BroadReq
(q1::r),q2
1 ⇐ c1!〈r〉 .Lockq1,q2false

BroadReqq1,ε2 ⇐ 0

BroadReq
q1,(q2::r)
2 ⇐ c2!〈r〉 .Lockq1,q2false

At any given time process Lockq1,q2b can receive a request along either channel c1
or channel c2; requests received along different channels are stored in different
queues. The flag b regulated the capability of node lock to forward the requests
stored in such queues to the memory nodes m1, · · · ,mk. If b is set to true then a
request (either from the queue q1 or from the queue q2 can be broadcast, and b is
set to false. This means that the memory nodes are now processing the request,
and lock isl prevented from forwarding other requests until the current one has
been executed. As we will see, when this happens node unlock broadcasts an
answer along either channel d1 or channel d2. Upon receiving the answer, the
ability of node lock to broadcast requests to memory nodes is restored, by setting
value b to true. Initially we assume that lock can forward requests to the memory
nodes, though its internal queues are empty. That is, we let Lock = Lockε,εtrue.

The code for the nodes m1, · · · ,mk is relatively simple. Upon receiving a
request, each node mi, i = 1, · · · , k will check whether this corresponds to an
operation involving a memory location stored in its own memory, in which case it
will execute it and broadcast the answer to node unlock. Otherwise, the request
is simply ignored by node mi. Formally, for any request r, indexes i =, 1, · · · , k
and j = 1, 2, and memory σi : Locsi → N, we define the collection of processes

21

Memr,σi

i,j as follows:

Memr,σi

i,j ⇐ c1?(r′) .ExecImplr
′,σi

i,1 + c2?(r′) .ExecImplr
′,σi

i,2

ExecImpl
read(x),σi

i,j ⇐ if (x ∈ Locsi) then cj !〈x = σi(x)〉 .Memr,σi

i,j else Memr,σi

i,j

ExecImpl
write(x,n),σi

i,j ⇐ if (x ∈ Locsi) then cj !〈x = n〉 .Mem
r,σi[x7→n]
i,j else Memr,σi

i,j

Initially we assume that all locations in each memory node are initialised to 0,
while the values of r and j are irrelevant. For any i = 1, · · · , k, let (σi)0(x) = 0

for any x ∈ locsi; then Memi = Mem
−,(σi)0
i,− .

It remains to define process Unlock. This process only needs to forward the
received answer along the appropriate channel (that is, by changing cj to dj , for
j = 1, 2). That is,

Unlock⇐ (c1?(a) .d1!〈a〉 .Unlock) + c2?(a) .d2!〈a〉 .Unlock).

	Characterising Testing Preorders for Broadcasting Distributed Systems (Extended Version)
	Andrea Cerone (IMDEA Software Institute), Matthew Hennessy (Trinity College Dublin)

