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Summary

In this thesis we implement different process calculi to model ad hoc wireless networks. Each of these calculi
considers different features of wireless systems, which are selected by focusing on the kind of applications or
protocols that need to be analysed.

In particular, we decided to take into account the following features:

local broadcast a wireless network is represented as a collection of agents, called nodes (or stations); each
node has the capability to broadcast messages and to wait for messages to be received. A graph is used
to describe the topology of the network; a message broadcast by a node can be detected by all, and only
all, its neighbours. All the neighbours because I wish to model ad hoc wireless networks, which employ
broadcast communication. Only all, because every node has a range of transmission; the neighbours of a
node, in the graph representing the network topology, are intuitively exactly those nodes which lie in its
range of transmission, and have therefore the chance to receive the message. In this scenario, I make the
assumption that communication is perfect; every time a message is broadcast by a node, all the nodes in
its range of transmission can detect it correctly. As I shall note later, this amounts to assume that perfect
communication is achieved by means of some protocol at the MAC sub-layer of the ISO/OSI reference

model [69].

probabilistic behaviour the calculus described above is extended so that nodes exhibit random behaviour.
There are several motivations for this extension. First, in the last decades there has been a growing
research interest in the use of probabilistic protocols in wireless networks, which have been applied in
different situations; see for example [14] or [59]. Second, ad hoc wireless networks are multi-agent
systems. For such systems, there exist problems of high relevance that cannot be solved by deterministic
protocols, but for which unbounded time probabilistic protocols have been exhibited and proved correct.
One of the most famous problems in this family is distributed consensus [6]

Time and collisions the calculi discussed above are suitable for the analysis of high level networks, specif-
ically for the description of protocols and applications which lie at the internet layer, or at a higher
one, in the ISO/OSI reference model. However, since the birth of wireless systems, protocols at lower
layers, such as the MAC sub-layer, have been defined and analysed in detail; see [40] for a survey. To
accomodate the needs of the research community, I decided to develop a process calculus in which the
requirement that communication is perfect is dropped. In this calculus, broadcast of messages is modeled
as a timed activity; they have a start phase and a end phase, during which time can pass. This constraint
allows the modelling of situations in which a broadcast is performed while another one is in progress,
causing a collision; that is, in this scenario a receiver detects a corrupted (noisy) message. I stress here
that in this calculus the communication topology is flat; a broadcast can be detected by every station in
the network. This is because the literature about collisions in wireless networks is relatively poor; in our
own opinion, it is best to analyse an easier framework in order to understand in depth the semantics of
broadcast processes subject to collision, rather than trying to accomplish the same task over frameworks
which are more complicated both to define and analyse.

For each of these calculi, the problem of defining a behavioural compositional theory is tackled. Compo-
sitional reasoning is very useful; in few words, it allows the analysis of the behaviour of complex (i.e. very
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large) networks by looking at the behaviour of two simpler networks, selected in a way that their composition
coincides with the former one.

However, it is important here to remark that the notion of composition of networks has to be stated precisely.
In process calculi, such as CCS and CSP, composing two processes is a simple problem, as it is sufficient to
define a set of structural operational semantics rules that state how two processes P and Q interact in their
parallel composition P | Q.

When dealing with networks the situation becomes more complicated. This is because networks are
equipped with a topological structure by definition; processes are associated to nodes (or locations), and a
notion of neighborhood between nodes is provided by a digraph. When composing two networks, we want at
the same time to ensure that the topological structure of them is both preserved and non-corrupted. Preser-
vation of the topological structure corresponds to requiring that two neighbouring nodes in a network are still
neighbours when the latter is composed with another network; also, the process associated with a location
has to be preserved. Non-corruption (or integrity) corresponds to requiring that no additional neighbours are
introduced for any node in a network when it is composed with another one.

In order to ensure these two properties, network composition has to be defined as a partial operator. For
example, it is not possible to compose two networks which have different processes associated with the same
location, as code preservation would not be ensured.

While it is possible to define an operator that ensures preservation and integrity of networks, this approach
has a severe limitation. Behavioural compositional preorders induced by this operator (such as the testing
preorders [17]) turn out to be degenerate. That is, networks cannot be distinguished from each other.

An alternative approach is that of weakening the constraints required by composition operator; given two
networksM andN , we allow the structure of the latter to be corrupted in their compositionM‖>N . The main
drawback of this weakening is that the composition operator is not symmetric anymore, so that compositional
reasoning becomes more complex; however, the behavioural preorders it induces do not lead to a degenerate
theory, and relating networks with different topological structure is possible.

The study of behavioural preorders for networks constitutes the main contribution of this thesis. Testing
behavioural preorders in the style of Hennessy and de Nicola are defined and analysed for each of the calculi
above, and proof techniques for them are exhibited. This allows to demonstrate whether two networks cannot
be distinguished by any test. Also, it is possible to check if a network satisfies a specification. This is done
by exhibiting a simple network, for which it is straightforward to prove that it satisfies a desired (extensional)
property; then, for any other network, it is sufficient to show that it is equivalent to the former one in order to
ensure that it also satisfies the required property.

We provide a wide range of applications that show how the proof techniques can be used to analyse practical
situations and problems of interest. In this case, we decided to follow two different strands:

Wireless Networks problems which are particular to (wireless) systems are taken into account; specifically
we take into account the analysis of as routing protocols and connection protocols.

Distributed Systems in this case both theoretical and practical problems in distributed systems are analysed;
examples include the implementation of a virtual shared memory and the problem of consensus.
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Chapter 1

Introduction

In this thesis we develop a formal approach to the analysis and verification of ad-hoc wireless networks and
distributed systems. We propose different process calculi to describe in a rigorous way the behaviour of wireless
systems. These calculi differ both in the computational power we grant to wireless stations and in the level of
abstraction used to model wireless communication between stations.

For each of these calculi we propose different notions of behavioural equivalences, based on the idea that
two networks are deemed to be equivalent whenever they cannot be distinguished by any agent which is able
to observe their behaviour and to interact with them. Here much depends both on the notion of observation
performed by an agent over a wireless system as well as on the power that we grant to agents for interacting
with a network. These two parameters lead to a wide variety of behavioural equivalences; most of them are
described in [67, 68].

For each notion of behavioural equivalence we propose we exhibit illuminating examples of networks which
are equivalent, aiming to convince the reader that such behavioural equivalences capture the intuitive notion of
two wireless networks having the same behaviour.

We also develop proof methodologies to check with mathematical rigour if two networks are deemed equiv-
alent with respect to the proposed notions of behavioural equivalence. Such proof techniques can be used to
analyse rather complicated situations, such as proving that a network protocol behaves correctly with respect
to a specification.

The rest of this Chapter is organised as follows: in Section 1.1 we first describe, at a very high level, how
wireless systems work; then we focus on how wireless networks can interconnect by giving a brief overview of
the TCP/IP reference model. This can be thought of as a stack of layers organised in a hierarchical way. Each
of these layers contain protocols to accomplish a dedicated task; here the main idea is that a protocol contained
in a given layer provides services to protocols at the upper level layer, and requests services from protocols at
the lower level layer. Most of the time we refer to [65] to illustrate the role of each layer in the TCP/IP protocol

stack.

In Section 1.2 we emphasise the need for formal methods in the analysis of wireless systems. As we will
see, wireless networks are rather complicated systems, mainly due to broadcast communication and the fact that
wireless stations are spatially distributed, giving rise to the concept of a network topology. The development
of mathematical tools for the analysis of wireless networks greatly helps in the verification of the behaviour of
network protocols.

Section 1.3 contains a literature review of related work. We describe what research has already been carried
out for the formal analysis of wireless and distributed systems, and we emphasise the most important results
that have been achieved in the last decade.

In Section 1.4 we describe in more details the contents of this thesis. We give a brief overview of the
contents of each chapter of the thesis, specifying both its topic and the results it contains.
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6 CHAPTER 1. INTRODUCTION

1.1 Wireless Networks and the TCP/IP standard

Since the first experiments on wireless systems, in the 18th century, lots of progress have been made. Nowadays
wireless stations are able to interconnect with each other in a network, providing services to users such as
connections to the internet and mobile telephony.

At the very basic level, the operations that can be performed by a wireless station can be summarised as
broadcasting a message, in the form of an electromagnetic wave, and detecting a message and using an antenna
to convert it to electric current via the use of an antenna.

Messages, or electromagnetic waves, broadcast by a network propagate through a unique medium of com-
munication, the ether. Since the signal broadcast by a network is an electromagnetic wave, it has a frequency,
an amplitude and a power; the last determines the range of transmission of the signal 1.

Once a message has been broadcast by a wireless station with a given power, it can be detected by other
stations in the sender’s transmission range; communication is broadcast, in the sense that a message sent from
a station can be detected by any other station in the transmission range of the former.

The broadcast nature of wireless communication gives rise to technical problems; for example, it is possible
for a wireless station to be exposed to signals coming from different stations at the same time. Since these
signals are electromagnetic waves, the receiving station will detect the sum (or superposition) of the two waves
originated by each of the broadcasting stations. Unless some multiple access mechanism is used, it would not
be possible for the station to reconstruct the two different signals which have been broadcast. In this case we
say that a collision has happened.

Another feature of wireless network is that communication is half-duplex. At any given time, a wireless
station can either transmit or receive some message, but it cannot receive and transmit messages at the same
instant of time. However, recent research has shown that it is possible to obtain full-duplex communication in
wireless stations [12].

In order to allow wireless stations to interconnect with each other in a network, providing remote services
to users, a series of protocols which enable them to accomplish more and more complicated tasks have to be
defined; these include how to represent a bit as an electromagnetic wave, how to avoid stations being exposed
to different transmissions at any given instant of time, and how to establish a connection between two stations
which are not in each other’s range of transmission.

We describe the protocol suite known as the TCP/IP standard, or TCP/IP reference model. It consists of
a description of a series of protocols linked to each other in a hierarchical fashion, and it is the basis of the
internet; a protocol implemented in the n-th layer in this hierarchical structure provides services for protocols
implemented at the n+1-th layer, often exploiting the services made available by protocols implemented at the
n−1-th layer. The protocol stack of the TCP/IP standard is depicted in Figure 1.1.

Starting from the first level, the physical layer, in which the only task that a wireless station can perform is
that of sending and receiving electromagnetic waves, the protocols at each layer solve more and more difficult
problems. At the end of the protocol hierarchy there is the application layer, which provides the primitives to
the end-user to access remote services, such as checking its own e-mail account or browsing the world-wide
web.

We remark that the TCP/IP protocol stack does not contain the description of services to be implemented in
wireless stations; rather, they contain the guidelines, expressed in terms of primitives that protocols at a given
layer should provide to protocols at the upper layer (or to the end user, in the case of the application layer),
that should be followed by any group of (either wired or wireless) stations to be able to interconnect each other
in a network. The description of how services offered by the lowest layers of the TCP/IP reference model in a
wireless network are described in either the IEEE 802.11 standard or one of its more modern extensions.

We also point out that the TCP/IP standard is not the only practical possibility which is available to es-
tablish a connection between two or more wireless stations. For example, in the GSM standard protocols to

1Other factors, such as the diffraction index of the ambiental environment, also play a significant role in determining the range of
transmission of a signal
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Establishing connections between hosts

Application protocols available to the end user

Figure 1.1: The TCP/IP Protocol Stack

be used by mobile phones to connect to each other to communicate with an Access Point are defined, as well
as protocols to be used by access points to establish a connection between two different mobile phones or to
provide multimedia services to a mobile phone. See [31] for details.

In the rest of this Section we briefly describe the services provided by protocols implemented at a given
level of the TCP/IP standard. This description is taken from [65].

The Physical Layer The physical layer is concerned with transmitting raw bits over a communication chan-

nel. The design issues have to do with making sure that when one side sends a 1 bit, it is received by the other

side as a 1 bit, not as a 0 bit. [..] The design issues here largely deal with mechanical, electrical, and timing

interfaces, and the physical transmission medium, which lies below the physical layer. We remark that, in the
case of wireless stations, the physical transmission medium is the ether.

The Datalink Layer The main task of the data link layer is to transform a raw transmission facility into

a line that appears free of undetected transmission errors to the network layer. It accomplishes this task by

having the sender break up the input data into data frames [..] and transmit the frames sequentially. If the

service is reliable, the receiver confirms correct receipt of each frame by sending back an acknowledgement

frame. [..] Broadcast networks have an additional issue in the data link layer: how to control access to the

shared channel. A special sublayer of the data link layer, the medium access control sublayer, deals with this

problem.

We recall here that wireless stations are indeed broadcast stations, that is the transmission of a wireless
station can be detected by all the stations in the sender’s range of transmission. The most important task that
the Medium access control sublayer (or MAC sublayer) has to accomplish is that of avoiding a collision to
happen; that is, a wireless station should not be exposed to different transmissions at any given time. While
collision avoidance is in general an unsolvable task, techniques such as collision detection have been developed
to reduce the amount of collisions that can take place in a wireless station [40].

The Internet Layer The internet layer defines an official packet format and protocol called IP (Internet

Protocol). The job of the internet layer is to deliver IP packets where they are supposed to go. Packet routing
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is clearly the major issue here, as is avoiding congestion.

The Transport Layer The layer above the internet layer in the TCP/IP model is now usually called the

transport layer. It is designed to allow peer entities on the source and destination hosts to carry on a conver-

sation, just as in the OSI transport layer. Two end-to-end transport protocols have been defined here. The first

one, TCP (Transmission Control Protocol), is a reliable connection-oriented protocol that allows a byte stream

originating on one machine to be delivered without error on any other machine in the internet. It fragments the

incoming byte stream into discrete messages and passes each one on to the internet layer. At the destination,

the receiving TCP process reassembles the received messages into the output stream. TCP also handles flow

control to make sure a fast sender cannot swamp a slow receiver with more messages than it can handle.

The second protocol in this layer, UDP (User Datagram Protocol), is an unreliable, connectionless protocol

for applications that do not want TCP’s sequencing or flow control and wish to provide their own. It is also

widely used for one-shot, client-server-type request-reply queries and applications in which prompt delivery is

more important than accurate delivery, such as transmitting speech or video.

The Application Layer On top of the transport layer is the application layer. It contains all the higher-

level protocols. The early ones included virtual terminal (TELNET), file transfer (FTP), and electronic mail

(SMTP).[..] Many other protocols have been added to these over the years: the Domain Name System (DNS)

for mapping host names onto their network addresses, NNTP, the protocol for moving USENET news articles

around, and HTTP, the protocol for fetching pages on the World Wide Web, and many others.

1.2 The Need for Formal Methods

Wireless networks are complicated systems. Starting from the broadcast of an electromagnetic wave, there
are lots of technical details to be considered, and protocols to be implemented, before wireless stations can
interconnect to each other in a network and provide services to end users.

One of the most important questions that needs to be addressed is to establish if the behaviour of a wireless
network accomplishes the task for which it was designed; in other words, we want to check whether the
behaviour of a wireless network is consistent with respect to a specification. For example, we want to check if
in a wireless network any two stations can connect each other to exchange data, and if such data are delivered
correctly from the source to the destination.

Due to the complicated nature of wireless networks, in which communication is broadcast and the range
of transmission of a station is limited, an informal analysis of their behaviour often leads to neglect errors in
protocols which compromise the correct functioning of the overall network.

For example, imagine that we want to analyse a network in which two different nodes, n1 and n2, are not in
each other’s range of transmission. However, node n1 can broadcast messages to other two nodes n3,n4, and the
latter nodes can broadcast messages to node n2. Imagine also that we have the following informal specification,
in terms of pseudo-code, of the behaviour of each of the nodes.

• Node n1:
broadcast a stream of frames f1, · · · f j

• Node n2:
upon receiving a frame f :

Broadcast the frame f

• Node n3:
upon receiving a frame f :

Broadcast the frame f
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• Node n4:
upon receiving a frame f : Do Nothing

The behaviour of this rather simple network is very intuitive. Nodes n3,n4 act as forwarders of the frames
sent by n1, making them available at node n4. However, the question is n2 able to detect all the frames sent

by the station n1? has not an easy answer. In our naive design of the network, several technical details were
neglected. Among others, we emphasise the following:

• Is the communication reliable? Whenever a node broadcasts a frame f , are we sure that the same frame
will be detected by the stations in the sender’s range of transmission?

• Is the communication subject to collisions? If both n3 and n4 broadcast a frame at the same time, what
will be detected at node n2?

• What happens if node n1 broadcasts a second frame before the first one has not been forwarded by
either n3 or n4? In other words, do we wait for the code being run by such nodes to be executed before
processing another request (and in which case, are these nodes equipped with an internal memory to store
the received frames which have not yet been forwarded), or does the broadcast of the second frame take
place immediately after it has been received?

As it is easy to see, the informal pseudo-code we have provided for the nodes in the network we want to
analyse does not allow us to infer any information about the behaviour of the network; this is because several
technical details have been neglected.

In the example above the design of the network is very naive; in general, it is often the case that the
behaviour of stations in a network is well-known, even at an informal level. For example, in the analysis of
protocols at the MAC sub-layer it is assumed that stations are subject to collisions, while this assumption is
dropped in protocols running either at the Internet Layer or above.

However, in many cases protocols consist of several thousands lines of codes, and many assumptions have
to be made on the network topology in order to ensure their correct behaviour. Techniques such as testing and
simulation of the protocol in different network environments do not provide a definite proof of its correctness.
In fact, it is often the case that pathological situations which cause the malfunctioning of the protocol are
discovered. In these cases there is the possibility that the error in the protocol is not discovered for years after
its first implementation.

On the other hand, formal methods have been often used to verify, with mathematical rigour, the correct
behaviour of large programs and complicated system. During the last years the research community of formal
methods has also become interested in wireless systems [47, 46, 48, 52].

The main idea lying at the basis of formal methods for the analysis of (wireless) systems is that of defining
a language (or calculus) for describing, at some level of abstraction, the behaviour of the components of the
system to be modelled. The language usually includes a syntax, in which the primitives that can be used by the
system are defined, and an operational semantics, which describes how the system evolves after performing an
action, such as executing a primitive. This approach enables the possibility to analyse formally the behaviour
of a system being modelled.

In the case of wireless networks, there are many questions to be addressed for defining a formal language
for describing their behaviour. These include the following:

• Which kind of mathematical structure do we use to represent a wireless network? Since wireless stations
are spatially distributed, there is the need to include the topology of a network in its formal description.
Graphs and metric spaces have been often used to solve this problem [52, 48].

• What is the expressive power of a wireless station, and what are the primitives that such a station can
use? For example, we could limit the capacity of a wireless station to broadcast and receive messages,
or we could also add other features like storing received messages in the internal memory of the node, or
allowing the code running at a wireless station to behave probabilistically.
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• How is communication between stations in a wireless network modelled? This question is very impor-
tant, for it establishes the level of abstraction (in the TCP/IP reference layer) which we use to define the
formal behaviour of wireless stations. For example, we can assume broadcast and receive primitives to
be reliable, meaning that errors cannot occur during a transmission. Intuitively speaking, this assumption
corresponds to modelling wireless networks at a level of abstraction corresponding to the Internet Layer

of the TCP/IP model. Another possibility would that of assuming communication to be unreliable and
collision prone, in which case the calculus is modelled at the level of abstraction of the MAC Sublayer.

Different answers to such questions lead to different process calculi, each of which has its own strengths
and weaknesses. For example, it would not be possible to formalise the behaviour of a protocol at the MAC

sublayer if the calculus is designed by assuming that communication between nodes is reliable; however, we
point out that it would be extremely difficult to check the correct behaviour of routing protocols in a setting
where communication is assumed to be collision-prone, while the same task could be accomplished rather
easily in a calculus where communication between different stations is assumed to be reliable.

Note that if we define a calculus to model protocols at the n-th layer of the ISO/OSI reference model and
we provide an implementation of its transmission primitives in a calculus defined for modelling protocols at
a lower level of the protocol stack (e.g. at the n− 1-th layer), then we can encode any implementation P of a
protocol in the former calculus to an implementation Q in the latter; in fact Q can be defined by substituting
any occurrence of a transmission primitive in P with its implementation defined in the lower level calculus.

Once a process calculus has been chosen to define wireless network, the main question to be addressed
is how to determine if its behaviour is correct with respect to a given specification. This task is not easy to
accomplish, for specification of services are usually given in an informal way.

One of the possibilities, which is the one we follow in this thesis, is that of establishing a notion of be-

havioural equivalence between networks. As the name suggests, two networks are behaviourally equivalent if
they exhibit the same behaviour. However, there are different notions of behavioural equivalence which have
been proposed in the literature for process calculi, such as bisimulation, testing equivalences and failure mod-

els; changing the notion of behavioural equivalence we use in our calculus also change the underlying theory.
For example, two networks could be deemed to be equivalent with respect to some notion of behavioural equiv-
alence, but they could be distinguished if a different behavioural equivalence is used. See [67] for a detailed
description.

Having a process calculus and a notion of behavioural equivalence to relate its terms, we can check whether
the behaviour of a network is consistent with an informal specification as follows:

• As the very first step, we define a network as a model of the informal specification of the required
behaviour. The behaviour of the model should be consistent with such an informal specification. For it
is not possible to prove formally this statement, the model should be as simple as possible. In this way it
can be easily checked that, at least informally, its behaviour is consistent with the informal specification.

• We can now check whether the behaviour of a (usually complicated) network, formalised as a term of our
process calculus, is consistent with the informal specification by checking if it is behaviourally equivalent
to the network we have defined as a model of the specification.

The last step in the procedure above is a mathematical proof that the network behaves (in the established
framework) as the model used to represent an informal specification. That is, it is a proof that the behaviour of
the network is correct with respect to its informal specification, under the assumption that the model has been
defined correctly.

Since wireless networks often contain thousands of wireless stations, each of which run a protocol consist-
ing of several thousands lines of code, it would be rather complicated, if not impossible, to certify its correct
behaviour without using formal methods. Quoting Edsger W. Dijkstra, program testing can be used to show

the presence of bugs, but never to show their absence. Formal methods, on the other hand, can be used both
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to prove mathematically that a network behaves as expected, or they can help to discover errors in ill-behaved
networks.

1.3 Literature Review

In this Section we describe briefly the papers that inspired our research, as well as other papers reporting recent
results in the area of formal methods for broadcast systems and formal methods. To avoid any confusion, we
grouped the works that we describe into three different strands; the first one describes techniques and results
for the formal analysis of concurrent systems. The second strand focuses on the work that has been carried out
by the research community in the area of probabilistic concurrent systems, while the last one focuses entirely
on the results that have been obtained for broadcast calculi, with particular emphasis on calculi for describing
wireless network.

1.3.1 Behavioural Equivalences

In this thesis we develop behavioural equivalences for relating wireless networks. As we have already men-
tioned, different notions of behavioural equivalences for concurrent systems have been developed in the litera-
ture. Here we describe some of the most important works that inspired the contents of this thesis.

A technical report from Van Glabbeek [67] provides a very detailed description of such behavioural equiv-
alences by putting emphasis on the difference between linear time and branching time theories; the author also
provides a detailed comparison between the various notions of behavioural equivalences described in the paper
in terms of their distinguishing power. In a sequel to the paper [68] the introduced behavioural equivalence are
analysed in a setting in which processes can perform silent moves; intuitively, these are moves which cannot
be detected from an agent which observes a system from an outside point of view.

The notions of behavioural equivalences we will need in this thesis correspond to the testing preorders of
de Nicola and Hennessy and to the reduction barbed congruence of Milner and Sangiorgi.

Testing preorders were first introduced in [17], and their theory is developed in a more detailed fashion
in [33]. The main idea is that of allowing an external agent called test, equipped with a success predicate ω,
to interact with a concurrent system (or process) to check whether the latter satisfies a property for which the
test was designed for; in this case the test reaches a successful configuration, that is one in which the success
predicate ω is satisfied. Due to the non-deterministic nature of processes, two different notions of passing a

test are developed; the first one, process P may-pass the test T , if the experiment obtained by letting P interact
with T leads to a successful configuration. The second one, P must-pass T , holds whenever every computation
of the interaction between P and T leads to a successful configuration. Each of these relations induces a testing

preorder for relating processes. Process P is may-related to process Q, written P vmay Q if whenever P may-
pass T for some test T , then Q may-pass T ; the preorder vmust is defined similarly, using the must-pass testing
relation. Each of the developed preorder induces a behavioural equivalence in the standard way. The authors
provide a characterisation result for each of the proposed testing preorders; specifically, they prove that the
may-testing preorder is captured by trace inclusion, while the must-testing preorder is captured by acceptance
sets.

The other notion of behavioural equivalence we will use in this thesis corresponds to reduction barbed
congruence. This has been proposed for the first time in [49] with respect to the process calculus CCS. The
main idea is that two processes are equivalent if they have the same observations under all possible reductions
in all possible contexts. Here much depends from the notion of observation which is provided; in the paper an
observation on a channel corresponds to a CCS process which can synchronise along such a channel. In this
paper it is proved that reduction barbed congruence is compositional with respect to all the CCS operators, with
the only exception being the non-deterministic choice operator +.

Other works focusing on concurrency theory that have been proved useful while developing this thesis are
[1, 16]. The first work presents the basic notions for the analysis of concurrent systems, putting particular
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emphasis on the process calculus CCS and its timed variant, and introducing the reader to both strong and
weak bisimulation and their modal characterisation. The second work introduces the reader to bisimulation
and concurrent techniques; a survey of other behavioural equivalences, such as the testing equivalences, is also
given in a dedicated chapter.

1.3.2 Probabilistic Concurrent Systems

Probabilistic concurrent systems have been widely analysed in the last two decades, and several models have
been proposed in the literature to describe them formally.

In [61] probabilistic automata are introduced; these can be viewed as input/output automaton in which the
transitions performed by a state are described as probability distributions over couples of actions and states.
Different notions of (both weak and strong) probabilistic simulations and bisimulations are introduced as exten-
sions of their non-probabilistic counterparts, and a comparison between a probabilistic version of the temporal
logic CTL is made.

In [60] an extension of the testing preorders of de Nicola and Hennessy to probabilistic automata is defined;
the author prove a characterisation result for each preorder, although he remarks that for their approach to
work it is necessary to include multiple success predicates in the testing framework. They note that, due to the
both non-deterministic and probabilistic nature of their model, each computation of a probabilistic automaton
interacting with a test gives rise to a success probability; automata are then compared in terms of the different
probabilities with which they pass a test. Another approach for extending the testing preorders to probabilistic
automata is proposed in [39].

In [13] a different, generative model for formalising probabilistic processes is considered, and a testing
preorder in the style of Hennessy and de Nicola for such processes is defined defined. In the proposed model,
for any given state s of a process and an action α, either s can perform the action α, in which case the resulting
state is chosen according to some probability distribution, or it cannot perform the action at all. The authors
provide a characterisation result in terms of probabilistic traces.

In [38] a third model, probabilistic labelled transition system (pLTSs) are used to model probabilistic pro-
cesses; in this case a transition maps a state into a distribution of states, thus distinguishing completely proba-
bilistic choices from non-deterministic ones. The authors extend the definition of the may-testing preorder to
pLTSs, by comparing processes according to the maximal probabilities of success they induce when composed
with a test. Probabilistic simulations are defined for states of pLTSs; the authors show that these are sound and
complete with respect to the proposed testing preorder.

In [20, 19] testing theories for pLTSs are also considered; here the authors define the may-testing preorder
by comparing the set of all the possible success probabilities that are generated by a process interacting with a
test; they also define the must-testing preorder accordingly. In the papers a mathematical theory for describing
the behaviour of a pLTS in the long run is developed; this is done by lifting in a monadic fashion the transition
relations of states in a pLTS to distribution of states. The paper focuses on the characterisation of both the may
and must testing preorders, respectively in terms of simulations and probabilistic simulations.

The theory developed in [20, 19] has been widely used in the last years for reasoning over pLTSs. Among
other works, we cite [21, 18, 22, 35]. Further, pLTSs have been also employed to define wireless networks
which exhibit both non-deterministic and probabilistic behaviour [44, 9, 8]. We defer the description of the
contents of these works to the next Section.

1.3.3 Broadcast Calculi and Wireless Networks

In this Section we describe the work that has been performed in the field of formal methods for wireless
networks and broadcast communication. Most of the papers described in this section have been proved to be
very useful in establishing a basis for the research carried out in this thesis.

The first paper describing a process calculus for broadcast systems, CBS, is [55]. In this paper the author
presents a simple process calculus in which a synchronisation between a sender and a receiver is modelled
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as an output action, rather than an internal activity as in standard process calculi such as CCS. This allows
multiple receivers to detect a message sent by a sender, thus implementing broadcast communication. In [32]
different notions of barbed congruence for a variant of CBS are introduced; these correspond to strong barbed
congruence and weak barbed congruence. For each of them, a characterisation result in terms of strong and
weak bisimulation, respectively, is proved.

Another calculus to model broadcast systems known as the bπ-calculus, inspired by both CBS and the π-
calculus [58], is introduced in [23]; as the author points out, broadcast communication is modelled in the same
style of CBS. In this paper the authors define three different behavioural equivalences, corresponding to barbed
congruence, step equivalence and labelled bisimilarity. The author proves that such behavioural equivalences
coincide.

In [24] the authors define both the may and must testing preorders for processes of the bπ-calculus, and they
prove a characterisation result for each of them. The main contribution here lies in the characterisation of the
must-testing preorder; as the authors point out, in fact, broadcast communication leads to a non-standard char-
acterisation of the latter. In particular, the non-blocking nature of broadcast actions does not allow acceptance
sets to be used in their characterisation result.

In the last decade, broadcast calculi have been modified in several ways by equipping processes with a
topological structure, thus modelling wireless networks; the idea is that of representing a process as a set of
locations, running different code for broadcasting and receiving messages; the topology defined for a process
establishes how communication is modelled, for example by letting only some locations being able to detect
the messages broadcast at another one.

In [53] the authors propose to model the topological structure of a network by using a connectivity graph;
a process is viewed as a set of locations running code, while a graph whose vertices are locations is used to
determine how communication is carried out. Intuitively, a transmission originated at a given location can only
be detected by those vertices which are connected to the former. The transition relation of processes is defined
as parametric in a connectivity graph. This framework has been proposed by the authors as a basis for the
analysis of security protocols in wireless networks.

In [52] an allocation environment is used to represent the topological structure of a wireless networks. A
wireless network is intended as a parallel composition of processes, each of which is associated with a set
of locations to which the process belongs and a probability distribution over locations; intuitively, the latter
describes the probability with which a message broadcast by the process is detected at a given location.

In [26] the authors propose a restricted broadcast process theory to model wireless networks. Here a
network consists of a parallel composition of different processes; each process is associated with a location
name, and a function between locations to sets of locations is used to represent the network topology. The
author propose the standard notion of weak bisimulation as the behavioural equivalence to be used to relate
networks and they show a case study in which they prove the correctness of a routing protocol.

In [27] an extension of the restricted broadcast process theory, the Computed Network Theory, is proposed;
here the expressive power of a network is augmented through different operators. For the resulting calculus,
a variant of strong bisimulation is defined and proved to be a congruence. The main result in the paper is
a sound axiomatisation of the strong bisimulation, thus enabling equational reasoning for wireless networks.
The authors also show that the proposed axiomatisation is complete in a setting where only non-recursive
networks are considered. The Computer Network Theory framework is also used in [28] to check properties of
mobile networks; the author show how both the equational theory and model checking can be used to verify
the correctness of a routing protocol.

In [62] the authors view a network as a collection of processes, each of which is associated with one or
more groups. Processes which belong to the same group are assumed to be neighbours; as a consequence, a
broadcast performed by a process can be detected by all the processes which belong to at least one group of
the broadcaster. The authors show that in their framework state reachability is a decidable problem; further,
they introduce different notions of behavioural equivalences, based on late bisimilarity and its weak variant,
and they show that such equivalences are in fact congruences. Finally, they apply their calculus by formalising
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and analysing the behaviour of a leader election protocol and a routing protocol.

In [48, 43] the authors describe wireless networks by using metric spaces; they assume that a network
consists of a set of processes, each of which has an associated location and a radius of transmission; a metric
distance over the set of locations is assumed to determine how communication is modelled. The authors
describe the behaviour of a wireless network in terms of both a reduction semantics and a labelled transition
semantics. These two semantics are proved to be equivalent up-to a notion of structural congruence. We remark
that in their paper the authors assume that a communication between two stations consists of two phases, one
for the beginning and one for termination. These allows the authors to model collision-prone communication.

Another calculus for wireless networks in which collision-prone behaviour is taken into account is described
in [47]. In their work, the authors describe a network as a set of processes running in parallel, each of which
has a location name and a semantic tag associated with it; the latter consists of a set of locations names and it
corresponds to the set of locations which can detect messages broadcast by the process. The calculus includes
a notion of discrete-time, in the style of [36], and broadcasts of messages start and end at different time slots.
The authors develop a notion of barbed congruence for wireless systems and they propose a sound, but not
complete, characterisation result in terms of weak bisimulation.

In recent years, a particular effort has been made to formalise probabilistic wireless systems. In [63] the
authors propose a model in which the topological structure of a network is represented as a graph whose vertices
are locations; further, they assign to each edge in the graph a (possibly unknown) probability as a likelihood
estimate of whether a message broadcast by a location at the starting end-point of an edge will be delivered
to the location at the terminal end-point of the same. The proposed model also allows the network topology
of a system to evolve according to a probabilistic mobility function. The authors prove that, in the proposed
calculus, the logical equivalence defined over a variant of PCTL coincides with weak bisimulation.

In [44] the authors define a language for wireless networks in which the code running at network locations
contains both non-probabilistic and non-deterministic behaviour. The topological structure of a network is
defined in the same way of [47]; the authors introduce a notion of simulation, parametrised in a probability
value, in order to capture the concept of two networks exhibiting the same behaviour up-to such a probability.
The model used to represent wireless networks and define their formal behaviour is that of a pLTS.

In [29] a different approach is made to formalise a wireless network. The authors identify a network as a
set of processes associated with a location address and a queue, representing the data at the datalink layer that a
station has not yet broadcast. The calculus they use is a probabilistic generalisation of the restricted broadcast
process theory of [27]; here the sending primitive consists of a message to be broadcast and a probability rate,
representing the likelihood that such a message will be sent. The model used to describe the behaviour of a
system is that of Continuous Time Markov Automata.

In [8, 9] the authors define a network in terms of a connectivity graph, whose vertices are wireless nodes,
in a style similar to [53], and the code running at any node contains both non-deterministic and probabilistic
behaviour; the model used to describe the behaviour of a network is again that of a pLTS. The authors suggest
that some nodes have no code associated, for they can be used by external agents to interact with the network.
They define both the may and must testing preorder and they exhibit sound, but not complete, proof techniques
for both of them. The contents covered in [8, 9] are analysed in detail in Part II of this thesis.

1.4 Overview of The thesis

In this thesis we develop different process calculi for wireless networks; each of them differs from the other in
either the level of abstraction at which communication primitives in broadcast systems are defined, or in the
computational power granted to wireless stations. The thesis is divided in three parts, one for each of the calculi
we develop. We give a brief summary of the contents of each part.
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1.4.1 Part I - High level Wireless Networks

The first calculus we develop is very simple, and it can be used to model networks at a high level. The
calculus relies on the assumption that communication is perfect; whenever a node broadcasts a message and
a neighbouring node is waiting for a message to be received, then it is ensured that the latter will receive the
message originally broadcast by the sending node. In practice, this corresponds to assuming that nodes use
some protocol at both the Datalink and MAC layers to achieve point-to-point reliable communication.

Also, when developing the calculus, we assume an enumerable set of channels that nodes can use to transmit
a value. This could seem in contrast with the fact that the communication medium is unique in wireless
networks. However, there are several multiple access techniques that can be used to create virtual channels,
such as FDMA, TDMA and CDMA [40]. Introducing multiple channels corresponds to assuming that the
nodes agree on some multiple access mechanism.

The development of this calculus is carried out in Chapter 2 - A simple language for networks. Here we
define the mathematical structures that will be used to represent wireless networks; also, we define how such
structures evolve after performing some activity (such as broadcasting a message or receiving one) through
SOS inference rules.

In Chapter 3 - Behavioural theories for networks we address the topic of composing wireless networks;
this task is not easy to accomplish. Due to the presence of a topological structure in wireless networks, it is
necessary to impose some constraints to be satisfied by networks which are being composed; for example, we
do not want to compose two networks which have both code running at a given wireless station, for it would
not be clear which would be the code running at such station in the composed network. Further, the way in
which the topological structure of a composed network has to be be inferred from its components also has to
be defined.

As we will see, we solve the problem of compositionality by using interfaces. These are stations which run
no code, connected to other stations in the network (i.e. they can either receive or send messages to a subset of
the stations which do run code in the network) and which can be used by external agents to join the network.

The proposed compositional theory is then exploited to define a testing framework in the style of Hennessy
and de Nicola [17] and the induced may and must testing preorders. Testing preorders and their induced
equivalences constitute the observational theories we use to relate networks in this part of the thesis. To the
best of our knowledge, testing theories have never been defined for wireless networks.

In Chapter 4 - Characterisation of the testing preorders we focus on full abstraction results for the
testing preorders introduced in Chapter 3. This amounts to elucidating a set of activities performed by a
network which can be detected by its external environment; that is, we define an extensional semantics for
networks, together with its weak variation. We provide a characterisation for both the may and must testing
preorder, respectively in terms of traces and deadlock traces. We remark here that the proof methods we present
are sound and complete; however, completeness comes at the price of introducing a non-standard version of
weak transitions in the extensional semantics. Further, our results hold only for finitary networks and, in the
case of the must-testing preorder, the additional hypothesis that a network is strongly convergent has to be
included.

In Chapter 5 - Applications we show how the developed theory can be applied to the study of practical
situations. We consider different problems which are particular to wireless networks and distributed systems;
starting from an informal specification, we build a simple network for which it is easy to check that its behaviour
is consistent with such a specification. Then we consider more complicated networks and we prove that their
behaviour is correct with respect to the informal specification considered by showing its testing equivalence
with the network we proposed as a model. In other words, the proposed networks constitute an implementation
of the model.

The practical situations we consider in Chapter 4, include

• Connection-less routing, for which an implementation at the Internet layer of the TCP/IP is proposed
and proved correct
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• Connection-oriented communication, for which two different implementations are proposed and proved
correct; the first one is an implementation at the Internet Layer which abstracts from distance-vector
routing protocols, while the second one is an implementation at the Transport Layer which can be seen
as an abstraction of the TCP protocol.

• Multicast communication, for which a very simple implementation is proposed and proved correct

• Virtual Shared Memory in a distributed system with two users. This is probably the most complicated
application we propose; again, an implementation is proposed and proved correct.

In all the cases, the implementation we propose for a given model is parametric, in the sense that we define
the properties to be satisfied by a network for our equivalence result to hold rather than defining the network as
a term of our language.

1.4.2 Part II - Probabilistic Wireless Networks

In this part of the thesis we extend the calculus developed in Part I to allow nodes to exhibit probabilistic
behaviour. Again, we define behavioural theories based on testing and we provide proof techniques to compare
networks with respect to the defined behavioural preorders. The contents of this Part are an extension of the
results presented in [8, 9].

In Chapter 6 - Probabilistic Wireless Networks, we first provide the mathematical basis needed to model
systems which exhibit probabilistic behaviour. The formal model used is that of probabilistic Labelled Transi-

tion Systems (pLTSs), and the theory presented is just a review of the contents discussed in [19, 20]. Then we
focus on the probabilistic extension of the calculus for wireless networks. In the final part of the Chapter we
introduce the testing framework and the induced testing preorders in the probabilistic setting.

In Chapter 7 - Proof Methods for Probabilistic Networks, we develop proof techniques to establish
whether two networks are related with respect to one of the testing preorders. In particular, we show that
probabilistic simulations are sound with respect to the may-testing preorder, and deadlock simulations are
sound with respect to the must-testing preorder. Again, for our results to hold it is necessary to restrict our
attention to a finitary setting.

We also show that our proof techniques are not complete. This result is rather surprising; we put particular
emphasis on the reasons that cause the introduced proof techniques to fail being complete, and we prove that
the current state of the art in the theory of probabilistic system is inadequate to provide a characterisation of
the two testing preorders. In particular, simulations can not be revised to obtain a complete characterisation of
the testing preorders.

In Chapter 8 - Applications for Probabilistic Networks we address the same topics as in Chapter 5 in the
probabilistic setting. Specifically, probabilistic routing and probabilistic reliable connections analysed; in these
cases, we relate (via the developed proof techniques) probabilistic networks to the respective model defined in
Chapter 5.

1.4.3 Part III - Time and Collisions

In the last part of the thesis we develop a simple timed calculus which deals with unreliable communications;
in this calculus, communication is timed; each transmission begins and ends at different time instants. While
communication along a channel is in progress, we say that the channel is exposed. A station which is exposed
to more than one transmission in a given instant of time is not able to infer the message associated with such
transmissions. In few words, the calculus introduces the possibility for collisions to happen as the result of
multiple broadcasts along the same channel.

In Chapter 9 - A Timed Calculus for Collisions we first develop the calculus, putting an emphasis on the
behaviour of collisions in practice to provide evidence that the semantics of the calculus reflects the practical
behaviour of wireless networks.
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In Chapter Chapter 10 - Barbed Equivalence and Full Abstraction we define a behavioural equivalence
based on the notion of reduction barbed congruence [49] and we provide a full abstraction result for it in terms
of weak bisimulation. Finally, we provide some simple applications in which we employ our full abstraction
results to show that two networks are barbed congruent.

In Chapter 11 - Conclusions we give a brief description of the future directions of research and of possible
applications of the theory developed in this thesis.
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Part I

High level Wireless Networks
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Chapter 2

A Simple Language for Networks

In this chapter we present a basic process language for modelling wireless networks. The topology of a wireless
network is assumed to be static; that is, it never changes as the consequence of some activity of the network.
A connectivity graph is used to represent the topology of the network; intuitively speaking, vertices of a con-
nectivity graph represent nodes (or locations) of wireless networks, while a directed edge from one vertex to
another models the possibility for the latter to detect messages transmitted by the former. The idea of using
mathematical structures to represent the topology of wireless networks has been already used, among others,
in [52, 53, 48, 47, 46, 30].

Communication in our calculus is broadcast. The transmission of a message is a non-blocking action, and a
message broadcast by a node can be detected only by those nodes which are connected to it in the connectivity
graph. Broadcast communication has been first introduced in [55], and it has been studied in deeper detail in
[23].

In this chapter we first define formally the concept of wireless networks on which our calculus is based.
This is done in Section 2.1. Here we first present a grammar whose terms define the code that nodes in a
wireless networks are running; then we integrate the information provided by such terms with the connectivity
graph of the network. As we already mentioned, this is needed to model how nodes communicate each other in
our calculus. As we will see, we impose some natural requirements on the structure of terms and connectivity
graphs, which correspond to our intuition of what a wireless network is. For example, we do not focus on
networks in which a node has some code associated to it, but it is not defined as a vertex in the connectivity
graph of the network.

In Section 2.2 we present a reduction semantics for wireless networks. This defines the dynamics of wireless
networks in our calculus. In Section 2.3 we present a labelled transition semantics for wireless networks; then
we show in Section 2.4 that there is a close relationship between these two semantics.

The Chapter ends with a brief comparison with related work in Section 2.5.

All the topics presented in this chapter are analysed thoroughly, often by providing simple examples to
illustrate the intuitive meaning of our definitions and the importance of our results.

2.1 The Calculus

The calculus we present is designed to model broadcast systems, particularly wireless networks, at a high level.
We do not deal with low level issues, such as collisions of broadcast messages or multiplexing mechanisms
[65]; instead, we assume that network nodes use protocols to achieve both perfect and dedicated communication
between nodes [40, 56].
Basically, the language will contain both primitives for sending and receiving messages, and it will enjoy the
following features:

(i) communication can be obtained through the use of different channels; though the physical medium for
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M, N ::= Systems
n~P� Nodes
M |N Composition
0 Identity

P, Q ::= Processes
c!〈e〉 .P broadcast
c?(x) .P receive
P + Q choice
if b then P else Q branch
τ.P pre-emption
A(x̃) definitions
ω Success
0 terminate

Figure 2.1: Syntax

exchanging messages in wireless networks is unique, it is reasonable to assume that network nodes use
some multiple access technique, such as TDMA or FDMA [65], to setup and communicate through virtual
channels,

(ii) communication is broadcast; whenever a node of a given network sends a message, it will be detected by
all the nodes in its range,

(iii) communication is perfect: whenever a node broadcasts a message and a neighbouring node (that is, a
node in the sender’s range) is waiting to receive a message on the same channel, then the message will
be delivered to the receiver. This is not ensured if low level issues are considered, for problems such as
message collisions [40] and nodes synchronisation [56] arise .

The language for system terms, ranged over by M, N, L, · · · is given in Figure 2.1. Basically a system term
consists of a collection of named nodes, ranged over m,n, l, · · · , at each of which there is some running code (or
process) . The syntax for this code is a straightforward instance of a standard process calculus.

Process c?(x) waits to receive some value along channel c; when a value v is received, the process evolves
in {v/x}P; the latter is defined as process P, where all the free occurrences of variable x have been replaced
by value v. Therefore, the input operator c?(x) acts as a binding operator for the variable x. This induces the
standard notions of closed system terms, closed expressions and α-conversion [37].

Process c!〈e〉 .P first evaluates a closed expression e to some value v; then this value is sent along channel
c, and the process above evolves in P. Here e is some expression from a decidable theory. We assume an
evaluation function ~·� which maps closed expressions to values.

Process τ.P performs some internal activity, thus evolving in P.
Process A(x̃) corresponds to process definition. Here x̃ is a list of formal parameters for the process defini-

tion A. We use the notation A(x̃)⇐ P to associate the definition A(x̃) with process P. A list of expressions ẽ can
be used to instantiate this process definition, provided that ẽ and ṽ have the same length. If ẽ = 〈e1, · · · ,en〉 for
some n > 0, and ṽ = 〈~e1�, · · ·~en�〉 is the list of values obtained by evaluating each of the expressions in ẽ, then
we can define the process A〈ẽ〉 to be equal to {ṽ/x̃}P. With an abuse of notation, in the following we use ~ẽ� to
denote the lifting of ~·� to lists of expressions. One could think of a process definition A(x̃)⇐ P as a function
declaration whose formal parameters are the variables contained in x̃; similarly, the construct A(ṽ) used for
processes corresponds to a call to the defined function A, where ẽ corresponds to the list of actual parameters
used for invoking such a function. Note that we stated that the actual parameters have to be evaluated to values
when invoking a function call, thus giving rise to an eager evaluation of process invocation. On the other
hand, we could have required expressions not to be evaluated, thus implementing a lazy evaluation strategy for
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process invocation. In practice, whether eager or lazy evaluation is used for invoking a process definition does
not influence any of the topics which we cover in this thesis.

The construct if b then P else Q is the standard if-then-else construct; again, b is a boolean statement, and
we assume that there exists an evaluation function ~·� which maps them in the set {true, false}. Note that, with
an abuse of notation, we used the symbol ~·� to evaluate both expressions and boolean statements. However,
this does not cause any confusion, as it will always be clear from the environment which of these functions is
being considered.

Finally, we have a clause in the Grammar of Figure 2.1 which states that ω is a process; such processes are
not used in this chapter, and the discussion about the role it plays in the calculus is deferred until Chapter 3.

We assume that the constructors c!〈v〉 and c?(x) bind stronger than non-deterministic choice; also, the latter
binds stronger than the matching construct. As an example, process if x = v then c!〈x〉 else c?(x) .P + d?(x) .Q
stands for if x = v then c!〈x〉 else ((c?(x) .P) + d?(x).Q) .

We assume the following countable sets: a set Nodes for node names, a set Ch for channels, a set Val for
values, and a set Var for variables. The parallel composition operator (· | ·) is used to compose different nodes
running some code;

We only consider the sub-language of well-formed system terms in which all node names have at most
one occurrence. We use sSys to range over all closed well-formed terms. A well-formed system term can be
viewed as a mapping that assigns to node names the code they are executing. A subterm n~P� appearing in a
system term M represents node n running code P. We define the set nodes(M) to contain exactly those nodes
which have some code associated in the system term M; formally, this set can be defined by the following
inductive definition

nodes(0) = ∅

nodes(n~P�) = {n}

nodes(M |N) = nodes(M)∪nodes(N)

Additional information such as the connections between nodes of a network is needed to formalise commu-
nications between nodes. The network connectivity is represented by a directed graph Γ = 〈ΓV , ΓE 〉; here ΓV

is a finite set of nodes and ΓE ⊆ (ΓV ×ΓV ). Henceforth we use the term connectivity graph in lieu of directed
graph, and the term connection for edges of directed graphs.

We use the more graphic notation Γ `m in lieu of v ∈ ΓV and Γ `m→ n for (m,n) ∈ ΓE . Intuitively Γ `m→ n

means that messages broadcast from node m can be received by node n1. Similarly, we use Γ ` n← m for
Γ ` m→ n, and Γ ` m↔ n if both Γ ` m→ n and Γ ` m← n are true. Also, we define Γ ` m� n to be true if
either Γ ` m← n or Γ ` m→ n hold. Finally, we use Γ ` m9 n, Γ ` m8 n, Γ ` m= n and Γ ` m 6� n for the
negations of Γ ` m→ n, Γ ` m← n, Γ ` m↔ n and Γ ` m� n, respectively.

A network consists of a pair 〈Γ , M 〉, representing the system term M, from sSys, executing relative to the
connectivity graph Γ. Henceforth we will use the notation ΓBM to denote a network 〈Γ , M 〉.

Note that we assume that the topology of a network (i.e. its connectivity graph) is static; this is emphasised
in Section 2.2, where we will see that reductions for networks do not affect their topologies. However, we
point out that our framework can be extended to deal with mobile networks, that is networks whose topology
changes according to some mobility policy; this can be done by specifying a mobility relation that describes
how connectivity graphs can evolve in a computation; then, when defining the reduction semantics of networks
(see Section 2.2), it is sufficient to introduce a rule that allows the topology of a network to evolve according
to the considered mobility relation. Dealing with mobile networks is a topic outside the scope of this thesis;
throughout part I we will only deal with networks whose topology is assumed to be static; this is because our
goal is that of establishing a foundation theory for wireless networks, and in our own point of view we believe
it better to accomplish this task for a simple framework rather than trying to work directly with complicated

1Note that no information is given whether the opposite is also true. The notation Γ ` m→ n does not include any information on
whether Γ ` n→ m or not.
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cl
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o

cl s1
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s2

o

M = ΓM B i~Ai� |o~Ao� |m~Am� N = ΓN B i~Ai� |o~Bo� | s1~A1� | s2~A2�

Figure 2.2: Example networks

objects such as mobile networks.
Despite our definition of network being rather simple and intuitive, it is easy to provide examples of net-

works which are not consistent with the intuitive idea of what a wireless network is. For example, we can
exhibit a network ΓBM where an arbitrary node m has some code associated to it, but for which no connectiv-
ity information is provided in Γ; that is, there exists a node m such that m ∈ nodes(M), but Γ 0m. Therefore, we
restrict our attention only to a specific class of networks, whose instances we denote as well-formed networks.

Definition 2.1.1. The network ΓBM is well-formed if:

(i) M ∈ sSys

(ii) for any node name m, ΓE ` m= m

(iii) nodes(M) ⊆ ΓV

�

Requirement (i) says that each node in a system term can have only one code associated. Requirement
(ii) establishes that self loops are not allowed in connectivity graphs. This corresponds to the intuition that, in
wireless systems, a node cannot listen to its own transmission. In fact, in wireless networks, communication is
half-duplex [57]: at any given time, a node can only transmit or receive information. Requirement (iii) imposes
that, whenever a node appears in a system term, then information for it has to be provided in the connectivity
graph.

We use Nets to denote the set of well-formed networks, and in the sequel we will assume that networks
are well-formed. We use the symbols M,N ,L to range over arbitrary (well-formed) networks, and apply
operations such as nodes(M) in the obvious manner.

Note that in a network ΓBM there can be nodes which do not have any code associated. Intuitively, this
means that there is no knowledge about the code which is being run by such nodes. However, such information
can be provided by considering a (well-formed) network of the form ΓBM|N, where the system term N defines
the code for (not necessarily all) those nodes which do not appear in nodes(M). Given a network ΓBM, we use
the term external node to refer to a node which has no code associated. The set of all external nodes of ΓBM,
given by ΓV \nodes(M), is called the interface of the network, and it is denoted by Int(ΓBM). In contrast, all
the nodes included in a system term M take the name of internal nodes of the network ΓBM.

Example 2.1.2. Consider the network M described in Figure 2.2. Here and henceforth we use shading to
distinguish internal nodes from external nodes in a network. For the networkM, let

Ai ⇐ c?(x) .c!〈x〉 .Ai

Ao ⇐ c?(x) .d!〈h( f (x),g(x))〉 .Ao
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There are three nodes in this network: cl, i,o. However, only the code for two of them, i and o, is specified,
hence we have nodes(M) = {i,o} and Int(M) = {cl}. The connectivity graph ΓM specifies that node cl can send
values to i, and it can receive them from o. Further, node i can broadcast values to node o.

Intuitively, the behaviour of this network is as follows; node i waits to receive some value v from cl, then it
forwards it to node o; at this point, node o applies two different transformations to the received value, f (·) and
g(·), then it uses the values obtained to perform a binary operation h(·). The value obtained as a result of this
operation, which is h( f (v),g(v)) is then broadcast along channel d. The only node that can detect this broadcast
is cl, as specified by ΓM . However, no information about the code run by cl is given in the system term M, so
that we do not know if this node is actually waiting to receive some message along channel d.

Now, in Figure 2.2 consider the network N . Here let

A1 ⇐ c?(x) .c1!〈 f (x)〉 .d?(x) .A1

A2 ⇐ c?(x) .c2!〈g(x)〉 .d?(x) .A2

Bo ⇐ (c1?(x) .c2?(y) .d!〈h(x,y)〉 .Bo) + c2?〈y〉 .c1?〈x〉 .d!〈h(x,y)〉

In this network we have five nodes, of which only cl is external. In the connectivity graph ΓN we have that
node i can broadcast messages to both s1 and s2. Node o can receive messages from s1 and s2; further, it can
also broadcast messages to these nodes and to the external node cl.

The behaviour of N can be summarised as follows; node i waits to receive some value v from node cl,
then it forwards it along channel c. Such a value will be detected by both s1 and s2; the former applies the
transformation f (·) to value v, then it broadcasts it along a channel c1. Once the message has been broadcast,
node s1 waits to receive an input along channel d before evolving in its original configuration. The code in
node s2 is similar to the one of s1, but the transformation g(·) is applied to v, instead of f (·); also, a different
channel c2 is used to broadcast the value f (v) to node o.

Node o waits to receive two different messages, one along channel c1 and the other along channel c2, not
necessarily in this order. The former one is the value f (v) broadcast by s1, while the other one is the value g(v)
broadcast by s2. Once these values have been received, node o applies the binary operator h to them, then it
broadcasts the value h( f (v),g(v)) along channel d.

This value can be detected by the external node cl; further, nodes s1 and s2 detect the transmission of this
value too, after which they evolve in their original configurations, A1 and A2 respectively. �

We conclude this section by introducing a number of conventions that will be used in the following. Given
a finite index set I = {i1, · · · , ik}, a collection of nodes {mi}i∈I and a collection of processes {Pi}i∈I , the notation∏

i∈I mi~Pi� is used for the system term
(
mi1~Pi1� | · · · |mik~Pik�

)
. If the index set I is empty, then both {mi}i∈I

and {Pi}i∈I are equal to the empty set ∅, and
∏

i∈I ni~Pi� is defined to be exactly the system term 0. We assume
that the operator

∏
i∈I · binds stronger than parallel composition, so that

∏
i∈I mi~Pi� |M is actually the system

term
(∏

i∈I mi~Pi�
)
|M.

The terms c!〈e〉 and τ are used to denote c!〈e〉 .0 and τ.0, respectively.

Sometimes we will identify networks, system terms and processes modulo structural congruence. For pro-
cesses, structural congruence is the smallest equivalence relation which is a commutative monoid with respect
to the choice operator ·+ · and the empty process 0; further, it is preserved by unfolding process definitions
and by evaluating boolean statements in branching constructs. For system terms, structural congruence is the
smallest equivalence relation which is a commutative monoid with respect to the composition operator (· | ·) and
the empty system term 0, and which is preserved by (· | ·).

Definition 2.1.3 (Structural Congruence). 1. The binary relation ≡ between processes is defined to be the
smallest equivalence relation such that, for all processes P,Q,R, list of expressions ẽ and process defini-
tion A(x̃) for which x̃ and ẽ have the same length, it holds

(i) P ≡ P + 0,
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(R-BCAST)

~e� = v ∀i ∈ I.Γ ` m→ ni ¬rcv(M,c) ∀n ∈ nodes(N).Γ ` m9 n
m~c!〈e〉 .P + Q� |

∏
i∈I ni~(c?(x).Pi) + Qi� |M |N _ m~P� |

∏
i∈I ni~{v/x}Pi� |M |N

(R-TAU)

ΓBm~τ.P + Q�|M _ m~P�|M

(R-STRUCT)

M ≡ N ΓBN _ N′ N′ ≡ M′

ΓBM _ M′

Figure 2.3: Reduction Semantics for (high level) networks

(ii) P + Q ≡ Q + P

(iii) if ~b� = true, then if b then P else Q ≡ P

(iv) if ~b� = false, then if b then P else Q ≡ Q

(v) if A〈x̃〉 ⇐ P and ~ẽ� = ṽ, then A〈ẽ〉 ≡ {ṽ/x̃}P

2. The binary relation ≡ between system terms is defined to be the smallest equivalence relation such that,
for any node m, processes P,Q and system terms M,N,L

(i) if P ≡ Q then m~P� ≡ m~Q�

(ii) M ≡ M |0

(iii) M |N ≡ N |M

(iv) if M ≡ N then M |L ≡ N |L

Given two networksM = ΓM BM, N = ΓN BN, we say thatM≡N iff ΓM = ΓN and M ≡ N.

Finally, given a system term M and a channel c, the predicate rcv(M,c) is defined to be true if M ≡

m~c?(x) .P + Q�|N for some processes P,Q, node m and system term N; false otherwise. In few words, the
predicate rcv(·,c) is true only for those system terms which contain at least one node which is waiting to re-
ceive a value along channel c. We also define, with an abuse of notation, the predicate rcv(·,c) for processes,
by letting rcv(P,c) be true iff P ≡ c?(x) .P′ + Q for some P′,Q. In the future it will always be clear from the
context whether we are applying the predicate rcv(·,c) to system terms or to processes.

2.2 Reduction Semantics

In this Section we develop a reduction semantics for our calculus. In Concurrency Theory, reduction semantics
is a kind of operational semantics which is used to model the behaviour of a system which is isolated from
the external environment [58, 34]. This is in contrast with another kind of operational semantics, the labelled

transition semantics, which is discussed in Section 2.3.
The reduction semantics for networks is defined by focusing only on those nodes whose code has been

provided. In other words, external nodes do not affect the behaviour of a network. Judgements take the form
ΓBM _ N and can be inferred by using the rules provided in Figure 2.3, which are explained below.

Rule (R-BCAST) models local broadcast communication. When a node m broadcasts a value v along channel
c in a network ΓBM, then the only nodes which are affected by the communication are only those which

(i) are in the sender’s range and

(ii) are waiting to receive a value along channel c.

The code for such nodes has the form c?(x).P + Q for some processes P,Q. As each of these nodes can detect
that value v has been broadcast, the code they are running evolves to {v/x}P, meaning that value v has been
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received and all the free occurrences of variable x in P have been replaced with v. All the other nodes in the
network are not affected by the broadcast performed by node m. This is because either

(i) they are not waiting to detect a value along channel c, or

(ii) they are not in the sender’s transmission range

In particular, in Rule (R-BCAST) we identify the sub-system term referring to those nodes which cannot
detect a value along channel c as M, while N denotes the sub-system term which refers to those nodes which
are not in the sender’s range of transmission. Note that in general, for a given network of the form ΓBL, where
L ≡ m~c!〈e〉 .P� |L′, there are several ways to apply Rule (R-BCAST); in fact, nodes in nodes(L′) which are not
waiting to receive a value along channel c, and for which Γ ` m9 n, can be part of either the subsystem term
M or N in a derivation performed by using rule (R-BCAST). However, since the code running at such nodes is
not affected by the broadcast performed by node m, we are ensured that all these derivations lead to the same
reduction. Further, distinguishing between nodes that cannot detect a value along channel c and nodes which
are not in the sender’s transmission range will help in the proof of some statements, such as Proposition 2.4.9.

Rule (R-TAU) is trivial; it models the capability of a node to perform an internal action without affecting
any other node in the network.
Finally, rule (R-STRUCT) establishes that reductions are defined modulo structural equivalence.

Henceforth we will use the symbol _∗ to denote the reflexive transitive closure of _; thus ΓBM _∗ M′ if
the network ΓBM can evolve in network ΓBM′ after performing a finite number (including 0) of reductions.

Let us look at how our reduction semantics can be used to infer the behaviour of networks.

Example 2.2.1. Consider the network M of Example 2.1.2. It is straightforward to note that this network
cannot perform any reduction. This is because no node in the system term M can perform a broadcast nor an
internal activity. Instead, consider the network ΓM BM | L, where L = cl~c!〈v〉 .d?〈x〉�. It is straightforward to
show that

M|L ≡ cl~c!〈v〉 .d?〈x〉� | i~c?(x) .c!〈x〉 .Ai� |o~c?(x) .d!〈h( f (x),g(x))〉 .Ao� (2.1)

This can be proved by applying definitions 2.1.3(1) and 2.1.3(2).
Since we have ΓM ` cl→ i and ΓM ` cl9 o We can apply rule (R-BCAST) to the right hand side of Equation

(2.1) to infer

ΓM B cl~c!〈v〉 .d?〈x〉� | i~c?(x) .c!〈x〉 .Ai� |o~c?(x) .d!〈h( f (x),g(x))〉 .Ao�

_

cl~d?〈x〉� | i~c!〈v〉 .Ai� |o~c?(x) .d!〈h( f (x),g(x))〉 .Ao� (2.2)

The last system term is structurally equivalent to M′ |L′, where

M′ = i~c!〈v〉 .Ai� |o~c?(x) .d!〈h( f (x),g(x))〉 .Ao�

L′ = cl~d?〈x〉�

Now it is possible to apply rule (R-STRUCT) to the reduction inferred in (2.2) to obtain ΓM BM | L _ M′ | L′.
In a similar way we can show that ΓM BM′ |L′ _ M′′ |L′, where M′′ = i~Ai� |o~d!〈h( f (v),g(v))〉 .Ao�. Finally,
we also have ΓM BM′′|L′ _ M|L0; here L0 = cl~0�. Now it is easy to note that such a network has no possible
reduction; we reached a deadlocked state.

Consider now the network ΓN BN |L, where ΓN BN is defined in Example 2.1.2. For this network we have
ΓN BN |L _ ΓN BN′|L′, where

N′ = i~c!〈v〉 .Ai� | s1~c?(x) .c1!〈 f (x)〉 .d?(x) .A1� | s2~c?(x) .c2!〈g(x)〉 .d?(x) .A1� |o~Bo�

For ΓN BN′, note that we have both ΓN ` i→ s1 and ΓN ` i→ s2; as node i can broadcast message v in N′,
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we have that ΓN BN′|L′ _ N′′|L′, where

N′′ = i~Ai� | s1~c1!〈 f (v)〉 .d?(x) .A1� | s2~c2!〈g(v)〉 .d?(x) .A2�

| |o~(c1?(x) .c2?(y) .d!〈h(x,y)〉 .Ao) + (c2?〈y〉 .c1?〈x〉 .d!〈h(x,y)〉 .Ao)�

The network ΓN BN′′|L′ now has two possible reductions modulo structural equivalence. In fact

1. either node s1 broadcasts value f (v), or

2. node s2 broadcasts value g(v).

Both these derivations can be inferred by using rules (R-BCAST) and (R-STRUCT). In the first case we have
ΓN BN′′|L′ _ N′′1 |L

′, where

N′′1 = i~Ai� | s1~d?(x) .A1� | s2~c2!〈g(v)〉 .d?(x) .A2� |o~c2?(y) .d!〈h( f (v),y)〉 .Ao�

while in the second one we have ΓN BN′′|L′ _ N′′2 |L
′, where

N′′2 = i~Ai� | s1~c1!〈 f (v)〉 .d?(x) .A1� | s2~d?(x) .A2� |o~c1?(x) .d!〈h(x,g(v))〉 .Ao�

Both these networks have a single reduction; for j = 1,2, ΓN BN′′j |L
′ _ N′′′|L′; here

N′′′ = i~Ai� | s1~d?(x) .A1�s2~d?(x) .A2� |d!〈h( f (v),g(v))〉 .Aoo.

Finally, as ΓN ` o→ s1, ΓN ` o→ s2 and Γn ` o→ cl, we have the reduction ΓN BN′′′|L′ _ N|L0. Again,
this network is deadlocked, that is it has no possible reduction. �

2.3 Labelled Transition Semantics

As we pointed out in Section 2.2, reduction semantics for networks only models the interactions among nodes
for which the code has been provided. No information about how these nodes interact with the external envi-
ronment (that is, with nodes in the interface of the network they belong to) is given.

Another kind of operational semantics is the labelled transition semantics. This operational semantics
provides a more general description of the behaviour of a network, as it models how internal nodes interact with
both internal and external nodes. The labelled transition semantics strongly relies on the notion of Labelled

Transition System (LTS) [50], whose definition is provided below. In a process calculus, terms are interpreted
as states of an LTS, while the transitions that can be inferred in the labelled transition semantics coincide with
the actions performed by the state of the LTS in which such a term is interpreted.

Definition 2.3.1 (Labelled Transition System). An LTS is a triple 〈S ,Act,−→〉 where

1. S is a countable set of states,

2. Act is a countable set of actions

3. −→ ⊆ S ×Act×S is the transition relation.

Given an LTS 〈S ,Act,−→〉, two states s, t ∈ S and an action λ ∈ Act, we use the more classical notation
s

λ
−→ t in lieu of (s,λ, t) ∈ Act.

The LTS in which networks are interpreted is given by 〈Nets,Act,−→〉, where Act = {m.c!v,m.c?v,m.τ |m ∈

Nodes,c ∈ Ch,v ∈ Val}. Henceforth we will use λ to range over elements of Act. The action m.c!v corresponds
to node m broadcasting value v along channel c, m.c?v to a node (different from m) reacting to some input
broadcast by m along channel c, and m.τ to some internal activity performed by node m. The transition relation
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(B-BROAD)

P
c!v
−→Q

ΓBn~P�
n.c!v
−→n~Q�

(B-REC)

P
c?v
−→Q

ΓBn~P�
m.c?v
−→ n~Q�

Γ ` m→ n

(B-DEAF)

¬rcv(P,c)

ΓBn~P�
m.c?v
−→ n~P�

Γ ` m→ n

(B-DISC)

ΓBn~P�
m.c?v
−→ n~P�

Γ ` m9 n
m , n

(B-0)

0
m.c?v
−→ 0

(B-τ)

P
τ
−→Q

n~P�
n.τ
−→n~Q�

(B-τ.PROP−L)

ΓBM
n.τ
−→L

ΓBM |N
n.τ
−→L |M

(B-τ.PROP−R)

ΓBN
n.τ
−→L

ΓBM |N
n.τ
−→M |L

(B-PROP)

ΓBM
m.c?v
−→ M′, ΓBN

m.c?v
−→ N′

ΓBM |N
m.c?v
−→ M′ |N′

(B-SYNC−L)

ΓBM
m.c!v
−→ M′, ΓBN

m.c?v
−→ N′

ΓBM |N
m.c!v
−→ M′ |N′

(B-SYNC−R)

ΓBM
m.c?v
−→ M′, ΓBN

m.c!v
−→ N′

ΓBM |N
m.c!v
−→ M′ |N′

Figure 2.4: Labelled Transition Semantics for (high level) networks

for networks is the smallest relation generated by the inference rules of Figure 2.4; here we use the shortcut
notation ΓBM

λ
−→N instead of ΓBM

λ
−→ΓBN. These rules rely on a pre-semantics for processes, which is

presented later in this Section.

Let us comment the rules of Figure 2.4. Rule (B-BROAD) models the behaviour of a node which is willing
to broadcast some value v.

Rule (B-REC) says that, if a node n which is waiting to receive a value along channel c detects a transmission
(along the same channel) from another node m, and n is in the transmission range of m, then it receives the
value which has been broadcast by the latter correctly. On the other hand, if n is not waiting to receive a value
along channel c, or if n is not in the sender’s range of transmission, then it is not affected by the broadcast.
These situations are modelled by rules (B-DEAF) and (B-DISC), respectively.

Note that the rules for receiving a value being broadcast along a channel c model the fact that a value can
only be received by a node which is in the sender’s range of transmission, and which is waiting to detect a
value along channel c. Further, such nodes will always receive the value being broadcast, thus implementing
our concept of reliable communication. While assuming that communication may not be reliable (that is, a
node can always avoid to detect a message broadcast along a channel) would have led to a simpler operational
semantics for networks, many protocols defined at the network layer of the ISO/OSI reference model [65] and
in general protocols for distributed computing [2] rely on the assumption that communication primitives are
reliable. Further, in our framework it is always possible to model an unreliable receiver by introducing a τ-
prefix before a receiving primitive; that is, an unreliable receiver along channel c can be modelled with the code
τ.c?(x) .P. A node running this code is not waiting to receive any value along channel c; however, it can always
perform an internal activity (see Rule (B-τ)) to evolve to a perfect receiver.

Rule (B-τ) defines internal transitions for nodes, while rules (B-τ.PROP−L) and (B-τ.PROP−R) propagate
internal actions through parallel components.

Rule (B-PROP) propagates input actions through parallel components; here the transition is inferred by the
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(S-SND)

c!〈e〉 .P
c!v
−→P

v = ~e�

(S-RCV)

c?(x) .P
c?v
−→{v/x}P

(S-τ)

τ.P
τ
−→P

(S-SUM−L)

P
α
−→P′

P + Q
α
−→P′

(S-SUM−R)

Q
α
−→Q′

P + Q
α
−→Q′

(S-THEN)

P
α
−→P′

if b then P else Q
α
−→P′

~b� = true

(S-ELSE)

Q
α
−→Q′

if b then P else Q
α
−→Q′

~b� = false

(S-PDEF)

A(x̃)⇐ P {ṽ/x̃}P
α
−→Q

A〈̃e〉
α
−→Q

~̃e� = ṽ

Figure 2.5: Pre-semantics of states

i

m

n

l m

n

l

M = ΓM BM N = ΓN BN

Figure 2.6: Two networksM and N

input transitions performed by the two system terms which are composed.

Rules (B-SYNC−L) and (B-SYNC−R) model broadcast communication. Note that if a network ΓBM per-
forms a broadcast action of the form m.c!v, while a second network ΓBN receives such a value by performing a
m.c?v action, the action performed by the overall network ΓBM |N still has the form m.c!v. Informally speak-
ing, this means that the output action performed by node m is still available to other nodes, thus implementing
the behaviour of broadcast communication. See [55] for a detailed discussion.

Let us now turn our attention to the pre-semantics for the code. Judgements take the form

P
µ
−→Q

where P is a closed state, that is containing no free occurrences of any variable and α ranges over c!v, c?v or τ.
The deductive rules for inferring these judgements are given in Figure 2.5 and should be self-explanatory.

Later we will need the following useful definitions, which are standard in concurrency theory [50, 58, 34]:
we use the notation ΓBM

λ
−→ if there exists a system term M′ such that ΓBM

λ
−→M′ and ΓBM

λ
−→6 as the

negation of ΓBM
λ
−→. Similar definitions apply to processes.

Let us look at some examples that show how transitions can be derived in the labelled transition semantics.
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Example 2.3.2 (Input Actions). LetM be the network depicted in Figure 2.6, where

M = m~c?(x) .P� |n~d?(x) .Q� | l~c?(x) .P1 + d?(x) .P2�

This network has three internal nodes, m, n, and l. The first two of them can receive messages broadcast by an
external node i, while the last cannot.

If we use the reduction semantics defined in Section 2.2 we find that no reduction is possible for this
network; this is because none of the internal nodes can broadcast a value along a channel, or perform an
internal action. On the other hand, in the labelled transition semantics this network can receive inputs from the
external node i.

In fact, it is possible to show that, for any value v, ΓM BM
c?v
−→Mv

c , where

Mv
c = m~{v/x}P� |n~d?(x) .Q� | l~(c?(x) .P1) + d?(x) .Q1�

In this example we show how it is possible to derive this transition, by using the inference rules defined in
figures 2.4 and 2.5. To maintain the notation easier, let

Pn = d?(x) .Q

Pl = c?(x) .P1 + c?(x) .Q1

Let us first focus on the code in node m. By an application of Rule (S-RCV) we have that c?(x) .P
i.c?v
−→

{v/x}P, where v is an arbitrary value. As ΓM ` i→ m, we can apply Rule (B-REC) to the last transition to infer
ΓM Bm~c?(x) .P�

i.c?v
−→m~{v/x}P� for any value v ∈ Val.

Now let us focus on the other two internal nodes, n and l. For node n, note that the predicate rcv(Pn,c) is
false; thus, we can apply Rule (B-DEAF) to infer ΓM Bn~Pn�

i.c?v
−→n~Pn� for any value v.

For node l the predicate rcv(Pl,c) turns out to be true. However, in contrast with the case of node m, Rule
(B-REC) cannot be applied to the network ΓMB l~Pl�, for the side condition ΓM ` i→ l does not hold. Instead, as
ΓM ` i9 l, rule (B-DISC) can be applied; hence for any value v we can infer the transition ΓM B l~Pl�

i.c?v
−→ l~Pl�.

Finally, we put together the transitions derived for the three networks ΓM Bm~c?〈x〉 .P�, ΓM B n~Pn� and
ΓM B l~Pl� to infer the transitions ΓM BM

i.c?v
−→ΓM BMv

c , where v is an arbitrary value. This can be done by a
double application of Rule (B-PROP).

The proof of the Derivation ΓM BM
i.c?v
−→Mv

c is provided in Equation 2.3

c?〈x〉 .P
c?v
−→{v/x}P

ΓM ` i→ m
ΓM Bm~c?〈x〉 .P�

i.c?v
−→m~{v/x}P�

¬rcv(Pn,c)

ΓM Bn~Pn�
i.c?v
−→n~Pn�

ΓM ` i9 l
ΓM B l~Pl�

i.c?v
−→ l~Pl�

ΓM Bn~Pn� | l~Pl�
i.c?v
−→n~Pn� | l~Pl�

ΓM BM
i.c?v
−→Mv

c
(2.3)
�

Example 2.3.3 (Broadcast). Consider the network ΓN BN depicted in Figure 2.6 Here, let

N = m~c!〈v〉� |n~c?(x) .P� | l~c?(x) .P�

We show that this network can perform a broadcast action ΓN BN
m.c!v
−→ N′, where N′ = m~0� | n~{v/x}P� |

l~{v/x}Q�. That is, the broadcast of value v performed by node m affects both nodes n, l.

First, let us focus on the code run by node m in ΓN BN. By applying rule (S-SND), we infer the transition

c!〈v〉
c!v
−→0
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Now, it is sufficient to apply Rule (B-BROAD) to the transition above to obtain

ΓN Bm~c!〈v〉�
m.c!v
−→ m~0� (2.4)

Let us now turn our attention to node n. This node is running process c?(x) .P; by an application of Rule
(S-RCV) we have that

c?(x) .P
c?v
−→{v/x}P

Since ΓN ` m→ n we can apply this derivation to Rule (B-REC) to obtain infer

ΓN Bn~c?(x) .P�
m.c?v
−→ n~{v/x}P� (2.5)

In the same way we derived the Transition (2.5) we can prove that

ΓN B l~c?(x) .Q�
m.c?v
−→ l~{v/x}Q� (2.6)

Now, we can apply Rule (B-SYNC−L) to transitions (2.4) and (2.5), thus obtaining

ΓN Bm~c!〈v〉� |n~c?(x) .P�
m.c!v
−→ m~0� |n~{v/x}P� (2.7)

A final application of Rule (B-SYNC−L) to transitions (2.7) and (2.6) produces the desired transition ΓN B

N
m.c!v
−→ N′.

The full proof of the transition ΓN BN
m.c!v
−→ N′ is given in Equation (2.8). To maintain the notation simpler,

we define Nn = n~c?(x) .P�, N′n = n~{v/x}P�, Nl = l~c?(x) .Q� and N′l = l~{v/x}Q�.

~v� = v
c!〈v〉

c!v
−→0

ΓN Bm~c!〈v〉�
m.c!v
−→ m~0�

c?(x) .P
c?v
−→{v/x}P

Γn ` m→ n
ΓN BNn

m.c?v
−→ N′n

ΓN Bm~c!〈v〉� |Nn
m.c!v
−→ m~0� |N′n

c?(x) .Q
c?v
−→{v/x}Q

Γn ` m→ l
ΓN BNl

m.c?v
−→ N′l

ΓN BN
m.c!v
−→ N′

(2.8)

�

2.4 Properties of the Calculus

In this Section we prove several properties concerning the labelled transition semantics, defined in Section 2.3.
We focus mainly on the structure which is required by a network ΓBM to perform a transition ΓBM

λ
−→M′,

and how this transition affects the system term M (or, more specifically, how the syntactic structure of M′ can
be inferred from that of the system term M).

The properties we provide are very useful to prove that the labelled transition semantics coincides, up-to
input actions and modulo structural congruence, with the reduction semantics defined in Section 2.2. This
result is stated in Theorem 2.4.10 at the end of this Section.

The proofs of the results stated contain sometimes technical details, and are quite long to read. In order to
make the contents of this Section more readable, we decided to include the details of the proofs in Appendix
A, Section A.1.

Before proving any property about networks, we need some auxiliary lemmas concerning the pre-semantics
for processes. The first property we prove for processes says that transitions are preserved by structurally
congruent processes.
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Lemma 2.4.1. Let P,Q be two processes such that P ≡ Q. Then, for any process P and action α, P
α
−→R if and

only if Q
α
−→R

Proof. See the Appendix. �

Let us now turn our attention to the structure of processes which can perform an internal action.

Lemma 2.4.2 (Internal actions for processes). For any processes P,P′, P
τ
−→P′ if and only if P ≡ τ.P′+ Q for

some process Q.

Proof. See the Appendix. �

In a similar way, we can derive the structure of processes which can perform a broadcast or an input action.

Lemma 2.4.3 (Broadcast actions for processes). For all processes P,P′ we have that P
c!v
−→P′ iff there exist a

process Q and an expression e such that ~e� = v and P ≡ c!〈e〉 .P′+ Q.

Proof. The proof is analogous to that of Lemma 2.4.2. The if implication is proved by inferring the transition
c!〈e〉 .P′ + Q

c!v
−→P′, then by applying Lemma 2.4.1, while the only if implication is proved by Rule Induction

on the last rule applied in the proof of the transition P
c!v
−→P′. �

Lemma 2.4.4 (Input actions for processes). For all processes P,P′ we have that P
c?v
−→P′ iff there exist P1, Q

such that P ≡ c?(x) .P1 + Q and P′ ≡ {v/x}P1.

Proof. Analogous to those of Lemma 2.4.2 and Lemma 2.4.3 �

We now turn our attention to system terms. First, we want to show that the actions performed by a network
are preserved by structurally equivalent system terms. In order to prove this result, we need the following
Lemma, which deals with parallel components in system terms.

Lemma 2.4.5 (Parallel Components). Whenever ΓBM1 |M2
λ
−→N

(i) if λ = m.c?v, then there exist N1,N2 such that ΓBM1
m.c?v
−→ N1, ΓBM2

m.c?v
−→ N2 and N = N1 |N2

(ii) if λ = m.c!v, then either

(a) ΓBM1
m.c!v
−→ N1, ΓBM2

m.c?v
−→ N2 for some N1,N2 such that N = N1 |N2, or

(b) ΓBM1
m.c?v
−→ N1, ΓBM2

m.c!v
−→ N2 for some N1,N2 such that N = N1 |N2

(iii) if λ = m.τ, then either

(a) ΓBM1
m.τ
−→N1 for some N1 such that N = N1 |M2, or

(b) ΓBM2
m.τ
−→N2 for some N2 such that N = M1 |N2

Proof. See the Appendix. �

We are now ready to show that transitions for networks are preserved by structural congruence.

Proposition 2.4.6. Suppose ΓBM ≡ ΓBN, and ΓBM
λ
−→M′. Then there exists N′ ≡M′ such that ΓBN

λ
−→N′.

Proof. See the Appendix. �

The last proposition is very useful if we want to analyse the structure that is required by a network to
perform a given action.

Proposition 2.4.7 (Broadcast). Let m be a node, c a channel and v a value. For any system networks ΓBM,ΓBN

we have that ΓBM
m.c!v
−→ ΓBN iff M ≡ m~c!〈e〉 .P + Q� |M′ for some expression e, processes P,Q, system terms

M′,N′ such that ~e� = v, N ≡ m~P� |N′ and ΓBM′
m.c?v
−→ N′.
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Proof. See the Appendix. �

Proposition 2.4.8 (Internal actions). Let ΓBM, ΓBN be networks. Then ΓBM
m.τ
−→N iff M ≡m~τ.P+ Q� |M′

for some processes P,Q and M′ such that N ≡ m~P� |M′.

Proof. For the if implication it is easy to provide a derivation of ΓBm~τ.P + Q� |M′
m.τ
−→m~P� |M′. Then we

can use Lemma 2.4.6 to show that whenever M ≡ m~τ.P + Q� |M′, then ΓBM
m.τ
−→N, where N ≡ m~P� |M′.

The only if implication is proved by Rule Induction on the proof of the transition ΓBM
m.τ
−→N, using Lemma

2.4.2. �

The last kind of actions which can be performed by a network are input actions. These turn out to be the
most difficult to analyse.

Proposition 2.4.9 (Input actions). For any networks ΓBM,ΓBN, node m, channel c and value v, ΓBM
m.c?v
−→ N

iff there exist a finite index set I, a collection of nodes {ni}i∈I , two collections of processes {Pi}i∈I and {Qi}i∈I ,
and two networks M1 and M2 such that:

(i) M ≡
∏

i∈I ni~c?(x) .Pi + Qi� |M1 |M2

(ii) m < nodes(M)

(iii) for every i ∈ I, Γ ` m→ ni

(iv) ¬rcv(M,c)

(v) for any n ∈ nodes(M2),Γ ` m9 n

(vi) N ≡
∏

i∈I ni~{v/x}Pi� |M1 |M2

Proof. See the Appendix. �

The results we proved until now allow us to reason about parallel composition of system terms; also, given
a transition of the form ΓBM

λ
−→N, we are able to perform a case analysis on λ to infer the structure of both

the system terms M and N. These properties are very useful to prove that the labelled transition semantics for
our calculus is consistent with the reduction semantics. That is, we can show that the reduction relation _
coincides, up-to structural congruence, with the union of the transition relations

m.τ
−→ and

m.c!v
−→ , quantified over

all nodes m, channels c and values v. This is the main result of this Section; it is stated precisely and proved
below.

Theorem 2.4.10 (Harmony Theorem).

(i) Whenever ΓBM _ N, then either

(a) ΓBM
m.τ
−→N′ for some m and N′ such that N′ ≡ N, or

(b) ΓBM
m.c!v
−→ N′ for some m,c,v and N′ such that N′ ≡ N

(ii) If ΓBM
m.τ
−→N for some node m, then ΓBM _ N

(iii) If ΓBM
m.c!v
−→ N for some node m, channel c and value v, then ΓBM _ N.

Proof. The three statements are proved separately.

(i) We perform a rule induction on the proof of ΓBM _ N. If the last rule applied in such a proof is
(R-BCAST), then

M = m~c!〈e〉 .P + Q� |
∏
i∈I

ni~c?(x) .Pi + Qi� |M1 |M2

for some expression e, node m, finite index set I, collection of processes {Pi}i∈I , {Qi}i∈I , collection of
nodes {ni}i∈I , system terms M1,M2 and value v such that
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• ~e� = v,

• For any i ∈ I, Γ ` m→ ni,

• ¬rcv(M1,c),

• For any n ∈ nodes(M2), Γ ` m9 ni,

• N = m~P� |
∏

i∈I ni~{v/x}Pi� |M1 |M2

By an application of Proposition 2.4.9 we obtain that

ΓB
∏
i∈I

ni~c?(x) .Pi + Qi� |M1 |M2
m.c?v
−→

∏
i∈I

ni~{v/x}Pi� |M1 |M2

Finally, by applying Proposition 2.4.7 we can infer

ΓBm~c!〈e〉 .P + Q� |
∏
i∈I

ni~c?(x) .Pi + Qi� |M1 |M2
m.c!v
−→ m~P� |

∏
i∈I

ni~{v/x}Pi� |M1 |M2

If the last rule applied to infer ΓBM _ N is Rule (R-τ) then M = m~τ.P + Q� |M1 for some node m,
processes P,Q and system term M1 such that N = m~P� |M1. Here we obtain

ΓBm~τ.P + Q� |M1
m.τ
−→m~P� |M1

as a direct consequence of Lemma 2.4.8.

The last case to check is that in which the last rule applied in the proof of the reduction ΓBM _ N is Rule
(R-STRUCT). In this case we have that there exist M′,N′ such that M ≡ M′,N ≡ N′ and ΓBM′ _ N′.
By inductive hypothesis, we have that ΓBM′

λ
−→N′′ where λ has either the form m.τ or m.c!v, and N′′

is a system term such that N′′ ≡ N′. By transitivity of ≡, we have that N′′ ≡ N, so that we can apply
Proposition 2.4.6 to show that ΓBM′

λ
−→N′.

(ii) Suppose ΓBM
m.τ
−→N for an arbitrary node m. It follows from Proposition 2.4.8 that M ≡m~τ.P+ Q� |M′

and N ≡ m~P� |M′ for some processes P,Q and system term M′. Rule (R-τ) of the reduction semantics
ensures that

ΓBm~τ.P + Q� |M′ _ m~P� |M′

Then we can apply Rule (R-STRUCT) to the reduction above to infer ΓBM _ N.

(iii) Suppose ΓBM
m.c!v
−→N, where m is a node, c a channel and v a value. By Proposition 2.4.7 we have that there

exist an expression e, processes P,Q and a system term M′ such that ~e�= v and M ≡m~c!〈e〉 .P+Q� |M′,
with ΓBM′

m.c?v
−→ N′ for some N′ such that N ≡ m~P� |N′.

We can now apply Proposition 2.4.9 to the transition ΓBM′
m.c?v
−→ N′ to show that

M′ ≡
∏
i∈I

ni~c?(x) .Pi + Qi� |M1 |M2

for some finite index set I, collections {Pi}i∈I , {Qi}i∈I , {ni}i∈I and system terms M1,M2 such that

(a) For all i ∈ I, Γ ` m→ ni

(b) ¬rcv(M1,c)

(c) For all n ∈ nodes(M2), Γ ` m9 n

(d) N′ ≡
∏

i∈I ni~{v/x}.P + i� |M1 |M2
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Now it is not difficult to note that

M ≡ m~c!〈e〉 .P + Q� |
∏
i∈I

ni~c?(x) .Pi + Qi� |M1 |M2

N ≡ m~P� |
∏
i∈I

ni~{v/x}.Pi + Qi� |M1 |M2

Also, note that we can apply Rule (R-BCAST) to infer

ΓBm~c!〈e〉 .P + Q� |
∏

i∈I ni~c?(x) .Pi + Qi� |M1 |M2

_

m~P� |
∏

i∈I ni~{v/x}.P + i� |M1 |M2

In fact, all the requirements which are needed to derive the reduction above have already been proved to
be satisfied. Now a simple application of Rule (R-STRUCT) to the reduction above leads us to ΓBM _ N.

�

2.5 Related Work

We end this chapter by comparing our calculus with others which can be found in the literature; we hope that
this comparison can help the reader to better understand the philosophy which inspired our framework.

The use of connectivity graphs in our calculus has been inspired by [53]; in contrast with this work, in
our calculus we assume that the network topology of a network is static, that is mobile networks are not
considered. On the other hand, in the paper the authors define the transition relation of the code run by a
network to be parametric in a connectivity graph. One of the main advantages of this approach is that of
using different connectivity graphs for different reductions in a computation, thus implementing the concept of
mobile networks. As we have already pointed out, we are not interested in modelling mobile networks, hence
we considered transitions parametrised in a connectivity graph as superfluous in our framework.

Below we discuss other alternatives that have been proposed in the literature to model wireless networks
formally. In [48, 43] metric spaces are used to define the topology of a network; locations running code are
equipped with a radius of transmission, and a distance function between locations is assumed to determine
whether a location is in another’s range of transmission. We believe that, despite the use of metric spaces
allows a very intuitive definition of wireless networks, the analysis of wireless networks is rather complicated
in this framework; further, developing compositional theories in such a framework seems to be a hard task to
accomplish. We will discuss this topic more in detail in Chapter 3, for compositionality in wireless networks is
discussed in such a chapter.

In [27, 28] the authors view a network as a collection of processes, each of which is associated with an
address; in the operational semantics transitions (and, more specifically, broadcasts) are parametrised in a set
of addresses which denote the processes which are influenced by the activity being performed. One of the
main advantages of this calculus is that of encoding the topology of a network in the syntax of the calculus.
This leads to the possibility of defining a wide range of operators for wireless networks, which have not been
introduced in our calculus; examples include non-deterministic choice and prefixing of networks (note that
these operations, in our framework, have been defined only at the process level).

In [47] a network is described as a collection of nodes running processes; each node has a semantic tag
associated, which denoted the neighbourhood of the former. In this calculus the topology of a network is
again embedded inside the syntax of the calculus, rather than relying on an additional mathematical structure.
However, we point out that a connectivity graph can be built by a set of nodes equipped with their semantic
tags, and vice versa.
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Finally, in [62] the authors define a network as a collection of processes, each of which belongs to one
or more groups. Processes having at least one group in common are considered to be in each other’s range of
transmission. This approach has the main advantage of abstracting from the concept of node location. However,
in our own point of view, this calculus can be used to model networks at the Transport Layer of the ISO/OSI

Reference Model; groups can be related to sub-networks [65], while the broadcast primitive corresponds to
broadcast routing along one or more sub-nets. In our framework, we decided to model networks at the Network

Layer, thus allowing the design of networks at a lower level.
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Chapter 3

Behavioural Theories for Networks

In this Chapter we develop behavioural theories for wireless networks. Our aim is to determine whether two
arbitrary networks, possibly with different connectivity graphs, exhibit the same behaviour.

The notion of behaviour of a network has to be stated precisely. Many of the works in Concurrency Theory
focus on observational theories; that is, the notion of equivalence between two system depends on the obser-

vations that an external agent can perform on a system [17, 49]. Here much depends on the power that the
external agent has over the system being observed. If this notion changes, the corresponding theory changes
as well. Many different notions of behavioural equivalences and behavioural preorders have been investigated;
see [67, 68] for a detailed discussion.

The most desirable property that we require from a behavioural theory is that of being compositional. In
few words, this means that two equivalent networks can be interchanged each other in a larger network, without
affecting the (observational) behaviour of the latter. Defining compositional theories in our framework requires
that we state precisely how networks are composed together. As we will see, there are many possibilities to
address this topic, each of which induce a different behavioural theory. As we have specific requirements for
our behavioural theories to be met, we choose our notion of network composition according to them. We
remark that compositional theories can be developed only if we restrict to a specific class of networks, which
take the name of composable networks.

The behavioural theories we decided to develop for networks are those based on may and must testing,
introduced by Hennessy and de Nicola [17]. This choice has been made for two reasons; first, to the best of
our knowledge there is no work in the literature which addresses the problem of developing testing preorders
for wireless networks. The second reason consists of the possibility of using the testing preorders to develop
refinement techniques for networks; informally speaking, we can see a (possibly complicated) network as the
refinement of another if we can show that the latter is testing related to the former.

Intuitively, in the testing framework a networkM interacts with another one T ; the network T is called a
test (or testing network). Through the interaction betweenM and T , the testing network checks whetherM
satisfies a desired property, for which T was designed to check. In order to report success, the test T reaches a
state in which the process ω is enabled.

Due to the non-deterministic nature of the calculus, this approach leads to two possible notions of whether
a network passes a test; one possibility is to say that M may-pass T , if the network resulting from the
interaction betweenM and T has at least a sequence of reductions in which a configuration where the process
ω is enabled can be reached. The other possibility is to say that the network M must-pass T , if all the
maximal sequences of reductions rooted in the network obtained by composingM with T have a configuration
in which the process ω is enabled. Based on these notions of passing a test, two different preorders are induced.
Both of them compare networks in terms of the tests that they pass, but they differ in the notion of passing a
test which is used.

This Chapter is organised as follows: In Section 3.1 we first give a general definition for network composi-
tion. We show that, if we want to enable compositional reasoning, we need to restrict our attention to a specific

39
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class of networks, which we call composable. We give two different examples of composition operators; a
symmetric one ‖, and an asymmetric one ‖>.

In Section 3.2 we study the algebraic structure of the set of composable networks, when equipped with the
operator ‖> defined in Section 3.1. We show that this algebraic structure is a partial monoid up-to structural
equivalence. Further, we exhibit a set of generators for it; this result allows us to define a principle of induction
for composable networks.

In Section 3.3 we first give a generic definition of the testing preorders; this definition is parametric in
a composition operator 9. Then we establish the requirements that we want our testing preorders to meet.
Finally, we show that the largest composition operator for which the induced introduced in Section 3.1.

We end the Chapter by providing a comparison between our approach to compositionality for networks and
other works that consider compositional theories for wireless systems; this is done in Section 3.4.

3.1 Composing Networks

In Section 2.1 we have developed a simple calculus for wireless networks. In this calculus, the syntax for
system terms is equipped with a composition operator. Given two system terms M and N, their composition
M |N is defined, provided that nodes(M)∩nodes(N) = ∅.

Note that this composition operator is defined at the level of system terms, and it has several limitations.
Given a network ΓBM and a system term N, we can define the network ΓBM |N, provided that the latter is
well-formed. By using this approach, it is evident that the only use of the operator (· | ·) is that of filling code
in nodes which were external in the original network ΓBM. However, it is not possible to merge two different
networks ΓM BM and ΓN BN together.

In this Section, we study the problem of composing networks. In general, the way two networks should be
composed together is rather intuitive; given two networks ΓMBM and ΓN BN, we want to define a new network
ΓBM |N, where the connectivity graph Γ is obtained by merging ΓM and ΓN together.

This leads to a generic definition of network composition.

Definition 3.1.1 (Generic network composition). Let ΓM BM, ΓN BN be two networks; let also P : Nets×

Nets→ {true, false} be a predicate over pairs of networks. The composition of ΓM BM and ΓN BN with respect
to the predicate P is defined as

(ΓM BM 9P ΓN BN) =

(ΓM ∪ΓN)B (M |N) if P(ΓM BM,ΓN BN) = true

undefined otherwise

Here ΓM ∪ΓN is defined by letting

(ΓM ∪ΓN)V = (ΓM)V ∪ (ΓN)V

(ΓM ∪ΓN)E = (ΓM)E ∪ (ΓN)E

Definition 3.1.1 states that network composition is a partial operator. A consistency predicate P is used
to establish whether the composition between two networks is defined. This is needed, for example, to ensure
that well-formedness of networks is preserved by a composition operator 9P . This can be done by requiring
that, for an arbitrary predicate P and networksM, N , if nodes(M)∩nodes(N) , ∅ then P(M,N) = false.

In practice we will focus on weaker predicates; that is, whenever M and N are two networks such that
nodes(M)∩nodes(N) = ∅, it is not ensured that P(M,N) is defined to be true.

Before presenting some particular instances of composition operator, let us recall that we want to enable
compositional reasoning over networks. Let 9P be a composition operator and ≤ be a preorder between
networks; we say that ≤ is compositional if, for anyM,N and T such thatM≤N andM9P T , N 9T are
both defined, thenM9P T ≤ N 9P T . If ≤ is a preorder that compares networks in terms of their behaviour,
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M = Γ1BM N = Γ2BM

Figure 3.1: Two behaviourally equivalent networks

this means that N can be used to replaceM in a larger network, without affecting the overall behaviour of the
composed networkM9P T .

The notion of compositional reasoning is parametric the definition of the composition operator 9P and
the preorder ≤. The first has been defined only in a general way, while the latter has not been defined at all.
However, we can already provide an illuminating example showing that, at least intuitively, we need to place
some limitations to the topological structure of networks in order to enable compositional reasoning.

Example 3.1.2. LetM,N be the two networks depicted in Figure 3.1; here M = m~c!〈v〉�. At least intuitively,
these two networks exhibit the same behaviour. In fact inM node m broadcasts a message v along channel c to
nodes n, l. The same happens in network N . However, consider now the network T = ΓT BT , where

T = n~c?(x) .c!〈v〉 .0� | l~c?(x) .c?(y) .c!〈v〉�

and ΓT is the connectivity graph depicted below

n

l o

Finally, suppose that 9P is a composition operator such that both M9P T and N 9P T are defined. In a
compositional setting, these two networks would exhibit the same behaviour. However, this is not the case; in
fact, inN 9P T , it is possible to reach a state in which node l can broadcast value v along channel c to node o,
while this is not possible in networkM9P T .

We will revisit this example again in Example 3.3.17 and Example 4.3.27. �

The main problem in Example 3.1.2 lies in the presence of the connection from node n to node l, which is
present in Γ2, but not in Γ1. This difference does not affect the behaviour of the two networksM and N of the
Example above, but it plays a significant role inM9P T and N 9P T .

A possible solution to the problem presented in Example 3.1.2 is that of focusing on a specific class of
networks; specifically, we restrict our setting to networks in which external nodes cannot be connected to each
other. This approach does not influence the expressive power of networks, as connections between external
nodes in a network do not affect the rules of the labelled transition semantics defined in Section 2.3.

Definition 3.1.3 (Composable Networks). A networkM = ΓM BM is composable if and only if

1. M is well-formed

2. Whenever ΓM ` m→ n, either m ∈ nodes(M) or n ∈ nodes(M)
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3. Whenever m ∈ Int(M) there exists a node n ∈ nodes(M) such that ΓM ` m� n.

The set of all composable networks is denoted by CNets.

A network is composable if and only if there are no external nodes which are directly connected one to
another; further, any external node should be connected to at least an internal node. While the last constraint is
not strictly necessary for our purposes, it can be used to help the proofs of some statements. However, all such
statements remain valid in the case that constraint (3) is dropped. Henceforth we assume that a networkM is
composable, unless otherwise stated.

Remark 3.1.4. The reader could argue why we did not include the constraints required by composable net-
works in the definition of well-formed networks (Definition 2.1.1). To this end, note that the labelled transition
semantics allows us to infer a transition for a composable network of the form ΓBM |N from those performed
by its components ΓBM and ΓBN. These two networks, however, are not composable.

Remark 3.1.5. The reader could also argue that our decision of focusing on composable networks is needed
for purely technical reasons. However, this is not the case.

One could think of a network ΓBM as a mathematical representation of a (broadcast) distributed system.
When designing such a system, one has to make some assumptions about the nodes which can communicate
with the external environment, or equivalently to equip the distributed system with terminals which can be used
by end users of the system to interact with it; these are exactly the interface nodes.

On the other hand, the designer of the distributed system should not assume any further knowledge of the
external environment but the interface nodes (and their connections to internal nodes). In fact, it is in the power
of the end user to take control of different terminals (interface nodes), possibly connecting them via another
network whose nodes are hidden to the distributed system. This philosophy is reflected in our definition of
composable network.

Later in this chapter we will present a composition operator for composable networks which implements
the idea that users of the distributed system have control over the topology of the external environment.

LetM = ΓM BM be a network. We define Input(M) = {m ∈ Int(M) | ΓM ` m→ n} and Output(M) = {m ∈

Int(M) | ΓM ` m← n}. If m ∈ Input(M) we say that it is an input node, while if it is included in Output(M) we
say that it is an output node. Finally, if m ∈ Input(M)∩Output(M), we say that it is fully connected.

Note that the sets Input(M) and Output(N) are not necessarily disjoint. For example, if M = ΓBM and
Γ ` m↔ n for some node m ∈ Int(M), then n ∈ Input(M)∩Output(N). Also, note that the definition of Input
and Output interface relies only on those connectivities which connect an external node with an internal one.
This is because the definition of both Input(M),Output(N) is given so that only external nodes can be included
in such sets, and such nodes can be connected only to internal nodes by the definition of composable networks.

It is easy to check that, for any networkM,
Int(M) = Input(M)∪Output(M). Note that, for any (well-formed) network ΓM BM,
we have (ΓM)V = nodes(M)∪ Int(ΓM BM) and nodes(M)∩ Int(ΓM BM) = ∅.

Henceforth we will use the more graphic notation Γ ` m→ M for m ∈ Input(ΓBM), Γ ` M → m for m ∈

Output(ΓBM) and Γ ` m� M for m ∈ Input(ΓBM)∩Output(ΓBM).
We conclude this Section by providing two instances of composition operators.

Definition 3.1.6 (Symmetric Composition). Let Ps : CNets×CNets→ {true, false} be the consistency predi-
cate such that P(ΓM BM,ΓN BN) = true if and only if

1. nodes(M)∩nodes(N) = ∅

2. for any m ∈ nodes(M) ΓN ` m→ n (ΓN ` m← n) implies ΓM ` m→ n (ΓM ` m← n)

3. for any n ∈ nodes(N) ΓM ` m→ n (ΓM ` m← n) implies ΓN ` m→ n (ΓN ` m← n)

We us the symbol ‖ to be the composition operator 9Ps .
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M = ΓM BM N = ΓN BN

Figure 3.2: Two networks differing in their inferface
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ΓT BT

Figure 3.3: A network T which can be composed withM in Figure 3.2

The main idea in the definition of the composition operator ‖ is that of allowing two the networksM and
N to be composed together only whenever the information of their connectivity graphs is preserved. That is,
the connections of internal nodes inM which appear in the composed networkM‖N have to be present in the
networkM itself; the same applies to network N . Example 3.1.7 shows a simple application of this operator.

Example 3.1.7 (Symmetric Composition). LetM,N be the networks depicted in Figure 3.2. Here M = m~Pm� |

n~Pn� for some Pm,Pn. Also, N = m~Qm� |n~Qn� for some Qm,Qn. Consider the network T = ΓT BT depicted
in Figure 3.3. It is trivial to note that M ‖ T is defined. In fact, we just need to note that the connection
ΓM `m→ o is defined in ΓT and vice versa, The same applies to the connection n← i, which is defined both in
ΓM and ΓT . Here we haveM ‖ T = (ΓM ∪ΓT )B (M |T ), where the connectivity graph (ΓM ∪ΓT ) is depicted in
Figure 3.4.

Now, consider the network N . It is immediate to note that N ‖ T is not defined. In fact, we have that
ΓT ` n← i, where n ∈ nodes(N). However, we do not have ΓN ` n← i, so that Ps(N ,T ) = false. In other
words, if the compositionN ‖ T were defined, then it would have a connection from node n to node i, which is
not present in network N . �

The name symmetric composition acquires meaning only in contrast with another composition operator,
which is defined below.

Definition 3.1.8 (Network Extension). Let Pe : CNets×CNets→ {true, false} be the consistency predicate
such that Pe(ΓM BM,ΓN BN) = true if and only if (ΓN)V ∩nodes(M) = ∅. The Network Extension Operator ,

m
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o

i

Figure 3.4: The result of the compositionM‖ T .
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M = ΓM BM N = ΓN BN

Figure 3.5: Network extension

denoted as ‖>, corresponds to the predicate 9Pe .

The operator ‖>, in contrast with ‖, is not symmetric; in few words M ‖> N is defined whenever the latter
network can be used to extend the former one. This amounts to require that no node in N , external or internal,
is also an internal node in ΓM . From the point of view of connectivities, this coincides with stating that the
connections of N do not affect the behaviour of the internal nodes in M in the extended network M ‖> N .
Example 3.1.9 provides a simple use of this operator.

Example 3.1.9 (Network Extension). LetM,N be the two networks defined in Figure 3.5. Here M = m~Pm�

for some Pm, while N = n~Pn� | l~Pl� for some Pn,Pl. It is easy to show thatM ‖>N is defined. In fact, it is
sufficient to note that ΓN 0 m. The networkM ‖> N is defined as (ΓM ∪ΓN)B (M |N), where the connectivity
graph (ΓM ∪ΓN) is depicted below.

m

n

l

o

However, the network N ‖>M is not defined. This is because ΓM ` n and n ∈ nodes(N).
In other words, the network N can be used to extend networkM, as the connectivity of the internal nodes

inM is not changed byN when these two networks are composed together; in contrast, the connectivity of the
internal nodes in N is affected by the connectivity graph ΓM when the composition of these two networks is
considered; therefore, the extension N ‖>M is not defined. �

Remark 3.1.10. Let us think again of a network M as the mathematical representation of a (broadcast) dis-
tributed system. We have already pointed out in Remark 3.1.5 that interface nodes can be viewed as the
terminals provided to end users to access such a system. However, we mentioned that the distributed system
has no further knowledge of the topology of the external environment, for its control has been granted to the
end user.

The extension operator ‖> reflects this philosophy. The way in which the end user interacts with a network
M consists of another network N , whose network topology is unspecified but for the fact that it contains no
internal nodes ofM. Then, the interaction between the networkM and the end user can be formalised as the
network extensionM‖>N .
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Despite being asymmetric, the extension operator ‖> can be used to enable compositional reasoning over
(composable) networks. This is the topic of Section 3.3.

3.2 Algebraic Properties of Composable Networks

In this Section we analyse the algebraic structure of CNets, when equipped with the extension operator ‖>.
The first property we prove concerns input nodes and output nodes of networks.

Lemma 3.2.1. LetM, N be two composable networks such thatM‖>N is defined. Then

(i) Input(M‖>N) = (Input(M)∪ Input(N)) \nodes(N)

(ii) Output(M‖>N) = (Output(N)∪Output(N)) \nodes(N)

(iii) Int(M‖>N) = (Int(M)∪ Int(N)) \nodes(N)

Proof. See Appendix A, Section A.2. �

Next we show that CNets is a closed set with respect to the operator ‖>.

Proposition 3.2.2 (Preservation of composable networks). Let M,N ∈ CNets; if M ‖> N is defined, then
M ‖>N ∈ CNets.

Proof. LetM = ΓM BM,N = ΓN BN, and suppose Pe(M,N) = true. We need to show that (ΓM ∪ΓN)B (M |N)
satisfies the requirements of Definition 3.1.3.

1. (ΓM ∪ΓN)B (M |N) is well formed.

We first check that nodes(M |N) ⊆ (ΓM ∪ΓN)V , then we prove that M |N ∈ sSys; finally, we show that
(ΓM ∪ΓN) does not contain any self-loop.

(a) SinceM,N are composable, hence well-formed, we have that nodes(M) ⊆ (ΓM)V and nodes(N) ⊆
(ΓN)V . Thus,

nodes(M |N) = nodes(M)∪nodes(N) ⊆ (ΓM)V ∪ (ΓN)V = (ΓM ∪ΓN)V

(b) By definition of Pe we have that nodes(M)∩ (ΓN)V = ∅. Since nodes(N) ⊆ (ΓN)V , we also have
nodes(M)∩nodes(N) = ∅. Since M ∈ sSys,N ∈ sSys, it follows that M |N ∈ sSys.

(c) Suppose (ΓM∪ΓN) `m→ n. We need to shown that m , n. It is easy to show that either ΓM `m→ n

or ΓN ` m→ n; we only consider the first case. SinceM is a well-formed network, it follows that
m , n.

2. for any m,n such that ΓM ∪ΓN ` m→ n, either m ∈ nodes(M |N) or m ∈ nodes(|N).

Let m,n be two nodes for which (ΓM ∪ΓN) ` m→ n, Then either ΓM ` m→ n or ΓN ` m→ n.

Without loss of generality, let ΓM ` m→ n. Since M ∈ CNets, we have that either m ∈ nodes(M) or
n ∈ nodes(N) If m ∈ nodes(M) then m ∈ nodes(M |N), while if n ∈ nodes(M), then n ∈ nodes(M |N). Thus,
either m ∈ nodes(M |N) or n ∈ nodes(M |N).

3. for any m ∈ Int(M‖>N) there exists n ∈ nodes(M |N) such that (ΓM ∪ΓN) `m→ n or (ΓM ∪ΓN) `m← n.

Let m ∈ Int(M ‖ N). Then m ∈ (ΓM ∪ΓN)V and m < nodes(M |N). In particular, either m ∈ (ΓM)V and
m < nodes(M) or m ∈ (ΓN)V and m < nodes(N), which is equivalent to state that either m ∈ Int(M) or
m ∈ Int(N). We only consider the former case; the proof for the latter one in analogous. Let m ∈ Int(M);
sinceM is composable, there exists n ∈ nodes(M) such that either ΓM ` m→ n or ΓM ` m← n. That is,
either (ΓM ∪ΓN) ` m→ n or (ΓM ∪ΓN) ` m← n, with n ∈ nodes(M |N).
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Proposition 3.2.2 establishes that the mathematical structure 〈CNets,‖>〉 is a closed algebra. Note that the
only properties of ‖> we needed to perform this proof are the requirement that the sets nodes(M) and nodes(N)
are disjoint whenever (ΓM BM) ‖> (ΓN BN) is defined, and that (ΓM BM) ‖> (ΓN BN) = (ΓM ∪ ΓN)B (M |N).
In fact, we could have proved a more general result which states that any operator 9P which preserves well-
formedness of networks induces a closed algebra over the set CNets.

We have already shown that the operator ‖> is non-commutative. Luckily, it enjoys other standard properties,
one of which is associativity.

Proposition 3.2.3. [Associativity of ‖>] Let M,N ,L ∈ CNets; then M ‖> (N ‖> L) ≈ (M ‖> N) ‖> L. Here ≈
represents Kleene’s equality [42]; that is, if M ‖> (N ‖> L) is defined then so is (M ‖> N) ‖> L, and M ‖> (N ‖>
L) = (M‖>N) ‖>L.

Proof. See Appendix A, Section A.2 �

Corollary 3.2.4. Let Γ0 be the empty graph, that is (Γ0)V = ∅, (Γ0)E = ∅. Let O = Γ0B0.
Then 〈CNets,‖>,O〉 is a partial monoid up-to structural congruence.

Proof. It is not difficult to show that the network O ∈ CNets; further, for anyM ∈ CNets we obtain that both
O ‖>M andM‖> O are defined and structurally congruent toM. Thus, O is an identity element for composable
networks with respect to the composition operator ‖> and up-to structural congruence.

Associativity follows directly from Proposition 3.2.3. �

In the future we will call the network O the identity network.
A pleasing property for the partial monoid 〈CNets,‖,O〉 is that it can be generated starting from a given

set of networks. That is, we can select a subset of networks such that its closure with respect to the operator ‖>
coincides, up-to structural congruence, with CNets \ {O}.

Definition 3.2.5 (Generating networks). Let M = ΓM BM ∈ CNets, with M = m~P� for some node m and
process P. Then we say thatM is a generating network.

We use the symbol G to denote the set of all generating networks.

Theorem 3.2.6. LetM = ΓM BM ∈ CNets such that |nodes(M)| ≥ 1. Then there exist a network N ∈ CNets

and a generating network G ∈ G such thatM≡N ‖> G.

Proof. LetM = ΓM BM ∈ CNets, |nodes(M)| ≥ 1. Then there exist a node m, a process P and a system term N

such that M ≡ m~P� |N.
We define G to be the network ΓG Bm~P�, where ΓG is defined by

(ΓG)V = {m}∪ {n ∈ Int(ΓM BM) | ΓM ` m� n}

(ΓG)E = {(m′,n) ∈ (ΓG)V | ΓM ` m′→ n}

Now let N be the network ΓN BN, where ΓN is defined below.

(ΓN)V = nodes(N)∪{n ΓM ` m′� n for some m′ ∈ nodes(N)}

(ΓN)E = (ΓM)E \ (ΓG)E

We need to show the following

1. G ∈ G

2. N ∈ CNets

3. Pe(N ,G) = true
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4. (ΓN ∪ΓG) = ΓM

5. N |m~P� ≡ M.

Statement (3) ensures thatN ‖> G is defined, while statements (4) and (5) establish that their composition is
a network which is structurally congruent toM.

Each of the statements above is proved separately. Statement (3) is an immediate consequence of how
(ΓG)V has been defined; in fact, it contains no nodes in nodes(N). Statement (5) follows by hypothesis; for all
the three remaining statements the proofs are quite technical, and are therefore relegated to the Appendix. �

Theorem 3.2.6 has deep consequences. In fact, it provides an inductive definition of networks modulo
structural congruence. This allows us to define an inductive proof principle for networks. However, since we
are working modulo structural congruence, we can only use this proof method for proving properties which are
preserved by structurally congruent networks.

Theorem 3.2.7 (Network Induction). Let P be a property over CNets. Suppose also that P is preserved by
structurally congruent networks; that is, for any composable networksM,N such thatM≡N , we have that
P(M)⇒P(N).

If

• P(O)

• ∀N ∈ CNets,G ∈ G.P(N)∧Pe(N ,G)⇒P(N ‖> G)

then ∀M ∈ CNets.P(M).

Proof. Let P be a property over CNets which is preserved by structurally congruent networks. Suppose that
P(O), and for all networks N and generating networks G, if P(N) and Pe(N ,G), then P(N ‖> G).

LetM = ΓM BM ∈ CNets. We show, by induction on |nodes(M)|, that P(M).

• |nodes(M)| = 0. SinceM∈ CNets, network, it is straightforward to show thatM≡O. Since P(O) and
P is preserved by structural congruent networks, we also have that P(M).

• |nodes(M)| > 0. By the inductive hypothesis, we assume that the property P holds for any network
Γ′MBM′ such that |nodes(M′)| = |nodes(M)|−1. By Theorem 3.2.6 there exist a networkN = ΓN BN and
a generating network G = ΓG BG, such thatM≡N ‖> G. Since the composition of N with G is defined,
we have that Pe(N ,G) = true. Further, it is straightforward to note that |nodes(N)| = |nodes(M)|−1; this
is because |nodes(G)| = 1, for G is a generating network and nodes(G)∩ nodes(M) = ∅. By inductive
hypothesis, we have that P(N) holds. Since P(N) and Pe(N ,G) are both true, we can apply the
hypothesis to infer that P(N ‖> G) is also true. It remains to note that P is preserved by structurally
congruent networks, andM≡N ‖ G. Thus, P(M) holds as well.

�

Henceforth we will always deal with properties which are preserved by structurally congruent networks.

3.3 Behavioural Preorders for Networks

In this Section we develop two testing preorders for composable networks, based on Hennessy’s and de Nicola’s
may-testing and must-testing preorders [17, 33].

First we show how these preorders can be defined, starting for a generic composition operator 9P. In
this case, the definition of the behavioural preorder is parametric in the composition operator that it is used
to compose networks. Then we place some properties that we want our preorders to enjoy; we show that the
largest composition operator whose induced testing preorders satisfy these properties is exactly ‖>.
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Roughly speaking, the testing framework is based on the idea that we can interact with a networkM, by
observing the values that its internal nodes send to output ones and by broadcasting values to the network from
input nodes. Formally, we can design a network T and compose it with the network M via a composition
operator 9P ; then we can define how these two networks interact with each other by looking at the behaviour
of the resulting networkM9P T , if it is defined. 1

Usually the network T is designed to determine if the componentM being tested satisfies a given property.
For example, we would like to check if networkM can eventually broadcast a value along channel c, which can
be detected by an external node o. To this end, we can define the network T to have a receiver along channel c

placed at node o, which guards the special process ω; the latter is used by T to report that the networkM has
performed the activity for which T was designed. This scenario is discussed formally in Example 3.3.4.

Definition 3.3.1 (Tests and Experiments). Sometimes we will use the term test, or testing network to denote
networks included in the set CNets.

Let 9P be a composition operator. Given two tests T1 and T2, the network T1 9PT2, if defined, is called
an experiment.

In the future, we will refer to networks in which the process ω does not appear in the code of any of its
nodes by using the term proper networks.

When testing the behaviour of an experimentM9P T , we assume that no other component can interact
with it. That is, the networkM9P T is isolated from the external environment. We have already developed
a semantics for networks that only consider the interactions between internal nodes of a network. This is the
Reduction Semantics, defined in Table 2.3. Computations for the experimentM9P T are maximal sequences
of reduction steps rooted in the network itself.

Definition 3.3.2 (Computations). Let T be a test. A computation fragment for it is a sequence

T _ T1 _ · · ·_ Tn _ · · ·

It can be either finite and infinite. A computation is a maximal computation fragment. Note that every infinite
computation fragment is also a computation.

When referring to a network which appears in a computation, we will sometimes use the term configuration.
It is possible that an experimentM9P T contains a configuration in which in the code of at least one node

the special process ω is enabled. In this case we say that the computation is successful.

Definition 3.3.3 (Successful Computations). A configuration ΓT BT is successful if T ≡ω+ P~m� |T ′ for some
node m, process P and system term T ′.

A computation fragment
T0 _ T1 _ · · ·_ Tn _ Tn+1 _ · · ·

is successful if there exists an index n ≥ 0 such that Tn is successful. . A computation is successful if it contains
a finite successful computation fragment.

Example 3.3.4 (Testing a Network). Consider the two networks M = ΓM Bm~c!〈v〉� and N = ΓM B n~0�,
where ΓM is depicted below.

m e

Let also T = ΓT B e~c?〈x〉 .ω�, where ΓT is defined by ΓT ` e and (ΓT )E = ∅. For this Example we consider the
extension operator ‖>.

1Note that the operator 9P is not necessarily commutative, so that there are actually two different ways in which these networks can
interact;M9PT and T 9T M.
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It is trivial to show thatM ‖> T is defined. In this network m can broadcast value v along channel c, and
node e (which is connected to m) is waiting to receive a value along the same channel, we have the reduction

(ΓM Bm~c!〈v〉�) ‖> ΓT B e~c?(x) .ω�_ (ΓM Bm~0�) ‖> (ΓT B e~ω�) (3.1)

No reductions are possible for the network in the right-hand side of this reduction; therefore, Equation
(3.1) is a maximal computation fragment, and therefore a computation. Further, the last configuration in this
computation is successful, and therefore Equation 3.1 is a successful computation.

Now consider the network N ‖> T , which is defined. It is straightforward to note that this network is
deadlocked. Thus, the only possible computation for this network consists of the network itself, with no
reduction steps. As the configuration N ‖> T is not successful, it follows that this network has no successful
computations. �

Due to the non-deterministic nature of the calculus, it is possible that an experiment M9P T contains
both computations which are successful and computations which are not successful. This leads to two different
scenarios.

Definition 3.3.5 (may-pass,must-pass). LetM,T be a two testing networks. Let also 9P be an arbitrary
composition operator, and supposeM9P T is defined.

We say that MP −may-pass T if the experiment M9P T has at least a successful computation, and
thatMP −must-pass T if all the computations of the experimentM9P T are successful.

Usually we will chooseM to be a proper network.

Note that the relations of Definition 3.3.5 are parametric in a consistency predicate P .

We are now ready to define how networks can be compared. This amounts to relate them according to the
tests they may (must) pass. Since a test interacts with a network through the external nodes of the latter, we
only compare networks which have the same input and output interfaces.

Definition 3.3.6 (Testing Preorders). Let M,N be two testing networks. Suppose also that Input(M) =

Input(N),Output(M) = Output(N). We say thatMvP
may N if, for any testing network T such thatM9P T

and N 9P T are both defined, thenMP −may-pass T implies N P −may-pass T . The preorder vP
must

is defined similarly, using the P −must-pass testing relation.

Remark 3.3.7. Note that Definition 3.3.6 states that two networksM,N may be related via one of the testing
preorder vmay,vmust only in the case that Input(M) = Input(N), Output(M) = Output(N). To explain why we
introduced this constraint, let us think again of a networkM as a (broadcast) distributed system. The nodes in
Input(M) correspond to terminals which can be used to provide requests to the distributed system, while nodes
in Output(M) can be seen as terminals which can be used to fetch messages forwarded from the distributed
system to the external environment. In our own point of view, an end user is always able to distinguish between
two distributed systems, mathematically represented as M,N if he notes a difference in the set of terminals
that she can use to interact with them, without even trying to interact with such systems.

Definition 3.3.6 is again parametric in a consistency predicate P . However, most of them are not of
interest for our goal. As we already mentioned, we want to enable compositional reasoning over networks.
Suppose that M,N are two networks such that M vP

may N (M vP
must N); also, let L be a testing network

such that both M9P L and N 9P L are defined. In this case, we would like to obtain the equivalence
(M9P)L vP

may (N 9P L) ((M9P L) vP
must (N 9P L)). As Example 3.3.8 shows, this requirement is not

satisfied by any arbitrary consistency predicate P . In particular, it is not satisfied by the consistency predicate
Ps, whose induced operator is the symmetric composition operator ‖.
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Figure 3.6: A simple connectivity graph Γ

Example 3.3.8 (Non Compositional Testing Preorder). Let ΓM ,ΓN be the connectivity graph depicted below

m

o

n

m

o

l

Let also M = m~P� | n~0�, N = m~P� | l~0�, and let us consider the testing preorders generated by the
consistency predicate Ps, introduced in Example 3.1.7.

The networksM = ΓM BM and N = ΓN BN can interact with the (only) external node o only via the node
m. This is because node n is deadlocked inM, while node l is not connected to any other node in N . Further,
they run the same code at node m. Therefore, it is immediate to note thatMvPs

may N andMvPs
must N .

Let now L = ΓBo~Q� be another network, where Q is an arbitrary process and Γ is the connectivity graph
depicted in Figure 3.6. It is easy to show thatM ‖ L and N ‖ L are defined. In the first case, it is sufficient to
check that the connections ΓM ` m→ o and ΓM ` n→ o are preserved by ΓL, while in the second one we only
need to check that the connectivity ΓN ` n→ o is preserved by ΓL.

We would expect thatM ‖ L vPs
may N ‖ L, andM ‖ L vPs

must N ‖ L. However, this is not true. In fact, note
that n ∈ nodes(M), while ΓN 0 n. Also, n < nodes(L). Thus, node n (which is included in the input interface
of L) is an internal node in the networkM ‖ L, but it is an external node in N ‖ L. As a result, we have that
Output(M‖L) , Output(N ‖ L), and by Definition 3.3.6 it holdsM‖L 6vPs

may N ‖ L,M‖L 6vPs
must N ‖ L. �

Example 3.3.8 shows that a necessary condition for a preorder vP
may to be compositional, then it is necessary

for the composition operator 9P to preserve input and output interface equivalences.

Definition 3.3.9. Interface Preservation A composition operator 9P is said to be interface preserving if, when-
ever Input(M) = Input(N), Output(M) = Output(N), and L is a network such that bothM9PL andN 9PL

are defined, then

• Input(M9P L) = Input(N 9P L),

• Output(M9P L) = Output(N 9P L).

Clearly we want our testing preorders to be generated by consistency predicates whose induced composition
operators are interface preserving. But this is not the only requirement we need.

Another issue that arises when testing networks concerns the internal nodes of a network. Intuitively,
external nodes of a network can only detect values being broadcast by a node, but they cannot detect the name
of the node that performed the broadcast. This is shown in Example 3.3.10
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Example 3.3.10. Consider again the connectivity graph Γ of Figure 3.6. Let M = ΓBm~P� | n~0� and N =

ΓBm~0� |n~P�, where P is an arbitrary process.
The networksM andN are the same, except that the names of the nodes m and n have been switched. Note

that the external node o in Γ can receive values which have been broadcast either by node m or n.
Now suppose that we place some code at node o. We expect this node to interact with the networksM and

N in the same way. This is because node o can only detect a value being broadcast, but it has no information
about the node which actually performed the broadcast. Therefore, we would expect networksM and N to be
equivalent. �

From the point of view of composition operators, we require that the truth of a consistency predicate, used
to define a composition operator, is preserved if we rename the internal nodes of a network.

Definition 3.3.11 (Renaming resistance). LetM = ΓM BM be a network; a composition operator 9P is said to
be renaming resistant if, for any testing networkN = ΓNBN such thatM9PN is defined, and any permutation
σ : Nodes→ Nodes such that

• if e ∈ Int(M) then σ(e) = e

• for any m ∈ nodes(M), ΓN 0 σ(m)

thenMσ9PN is defined as well.
Here Mσ is the network obtained by substituting all the nodes m occurring in M with σ(m). That is,

Mσ = (ΓM)σBMσ, where ((ΓM)σ)V = (ΓM)V , (ΓM)σ ` m→ n if and only if m = σ(m′),n = σ(n′) for some
m′,n′ such that ΓM `m′→ n′ and Mσ is defined by letting 0σ= 0, m~P�σ=σ(m)~P� and (M |N)σ= Mσ |Nσ.

In Definition 3.3.11 we placed some constraints on the permutation σ that we want to apply to a testing
networkN . Intuitively, the first one says that we are not allowed to change the name of the nodes at its interface;
this is because those are the nodes to be used to connectM to another network. The second constraints says
that we are not allowed to change the name of an internal node of M with one which is already being used
by the network with which M is being composed. This is needed to ensure that the well-formedness of the
composed network is preserved.

Remark 3.3.12. Let us discuss the intuition behind Definition 3.3.11; one could think of node names as IP

addresses in a network. Renaming resistance allows us to abstract from such addresses; at a very informal
level, we do not want to distinguish between two networks which differ only in the IP addresses associated
with wireless stations2.

The last property we require from a composition operator is that the preorders it induces allow us to distin-
guish networks with the same interface.

Definition 3.3.13 (Consistent Composition). A composition operator 9P is consistent if there exist two proper
networksM,N3 and a testing network L such that Int(M) = Int(N),M9P L and N 9P L are defined and

• MP −may-pass L holds

• N P −may-pass L does not hold

Now that we have placed all the properties that we require from a composition operator, we can show that
the largest operator that satisfies them is the extension operator ‖>.

Theorem 3.3.14. The operator ‖> is interface preserving, renaming resistant, consistent and which preserves
well-formedness of networks. Further, it is the largest operator that enjoys such properties.

2Note that in practice the IP address of a node is contained in all the packets it broadcasts. However, in our calculus we assume that a
node never encapsulates its name in the contents of the packet it broadcasts, unless it is explicitly programmed in the code it runs. This
enforces the concept that our testing preorders abstract from IP addresses of wireless stations.

3note that here we require such networks to be proper; they do not contain the success process ω in the code placed at their nodes
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Proof. We first show that ‖> satisfies the requirements of definitions 3.3.9, 3.3.11 and 3.3.13; we have already
shown that it preserves well-formedness of networks.

For interface preservation, supposeM,N are two testing networks such that Int(M) = Int(N) and. Let also
L = ΓL BL be a testing network such thatM‖>L and N ‖>L are defined. By Lemma 3.2.1 it follows that

Int(M‖>L) = (Int(M)∪ Int(L)) \nodes(L) = (Int(N)∪ Int(L)) \nodes(L) = Int(N ‖>L)

as we wanted to prove.
For renaming resistance, letM = ΓM BM,N = ΓN BN be testing networks such thatM‖>N is defined. Let

also σ be a permutation such that, for any e ∈ Int(M),σ(e) = e and for any m ∈ nodes(M),ΓN 0 σ(m). Then it is
immediate to show that nodes(Mσ)∩ (ΓN)V = ∅, and thereforeMσ ‖>N is defined.

It remains to check that the operator ‖> is consistent. To this end, it suffices to show two testing networks
which can be distinguished by a test, according to the ‖> −may-pass testing relation. However, we already
exhibited two testing networks which can be distinguished by a test in Example 3.3.4, so that in this case there
is nothing to prove.

Now we prove that ‖> is indeed the largest operator which is interface preserving, renaming resistant, con-
sistent and which preserves networks well-formedness. In this case, we just need to show that whenever a
composition operator 9P satisfies such properties then, ifM9P N , whereM = ΓM BM,N = ΓN BN is de-
fined, it holds (ΓN)V ∩nodes(M) = ∅.

The proof is by contradiction. Suppose that 9P is a composition operator which is interface preserving
and renaming resistant4. Let alsoM = ΓM BM, N = ΓN BN two networks such thatM9PN is defined, and
(ΓN)V ∩nodes(M) , ∅. Thus, there exists a node n such that n ∈ nodes(M) and ΓN ` n.

Consider now the permutation σ defined by σ(n) = l, where ΓM 0 l,ΓN 0 l, σ(l) = n and σ(m) = m for all
m such that m , l,n , l. That is, the permutation σ replaces the node name n with a fresh node name l. By
renaming resistance, we have thatMσ ‖>N is defined.

Further, we have that (ΓM)σ 0 n, ΓN ` n, so that it Since n ∈ nodes(M) andM9PN is well defined, it also
follows that n < nodes(N), hence n ∈ Int(N). This is because we are assuming that the operator 9P preserves
well-formed networks, that is whenever (ΓM BM)9P (ΓN BN) is defined we have nodes(M)∩nodes(N) = ∅.

Since (ΓM)σ 0 n, n ∈ Int(ΓM), it is straightforward to show that n ∈ Int(Mσ9PN). However, since n ∈

nodes(M), we have that n < Int(M9PN). Thus, Int(M9PN) , Int(Mσ9PN). By interface preservation, it
follows that Int(M) , Int(Mσ). This is not possible; in fact, if e ∈ Int(M), we have that σ(e) = e ∈ Int(Mσ).
Conversely, if e ∈ Int(Mσ), then there exists e′ ∈ Int(M) such that e = σ(e′). By definition of σ we have that
e′ = e, hence e ∈ Int(M). Thus e ∈ Int(M) iff e ∈ Int(Mσ), or equivalently Int(M) = Int(Mσ). Contradiction. �

Recall that the extension operator ‖> is the composition operator induced by the consistency predicate Pe.
In the following we use the notation M may-pass T and M vmay N in lieu of MPe −may-pass T and
Mv

Pe
may N , respectively. Also, we say thatM =may N when bothMvmay N andN vmayM hold. In a similar

way, we can define the predicatesM must-pass T ,Mvmust N andM =must N .
Finally, we define the testing preorder ⊆ to coincide with the intersection of the preorder vmay,vmust; that is

M⊆N wheneverMvmay N andMvmust N . The equivalence relation induced by the preorder ⊆ is denoted
as '.

We now show that the preorders vmay,vmust are compositional. This is needed, as interface preservation is
a necessary but not sufficient condition to ensure compositionality of a testing preorder.

Proposition 3.3.15. SupposeMvmay N (Mvmust N) and let L be a testing network such thatM‖>L,N ‖>L
are defined. ThenM‖>L vmay N ‖>L (M‖>L vmust N ‖>L).

Proof. We prove the statement only for the preorder vmay; the proof for vmust is analogous.
First note that ifMvmayN then Input(M) = Input(N). By interface preservation we have that Input(M‖>L)

= Input(N ‖>L). Similarly, we can prove that Output(M‖>L) = Output(N ‖>L).
4for this proof, we do not require 9P to be consistent
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Now let T be a test such that (M ‖> L) may-pass T and (N ‖> L) ‖> T is defined. We have to show that
(N ‖>L) may-pass T .

In this case we have that ((M ‖> L) ‖> T ) has a successful computation. By Associativity of ‖>, Proposition
3.2.3, it follows thatM ‖> (L ‖> T ) is defined, and equal to (M ‖>N) ‖> T . ThusM ‖> (L ‖> T ) has a successful
computation, or equivalentlyM may-pass (L ‖> T ). Note that, since (N ‖> L) ‖> T is defined, by associativity
we have that N ‖> (L ‖> T ) is defined and equal to (N ‖> L) ‖> T . ForMvmay N , and N ‖> (L ‖> T ) is defined,
it follows that N may-pass (L ‖> T ). In other words, the experiment N ‖> (L ‖> T ), which is equivalent to
(N ‖> L) ‖> T by associativity, has a successful computation. Hence (N ‖> L) may-pass T , as we wanted to
prove. �

By Proposition 3.3.14 and Proposition 3.3.15 we obtain that the extension operator ‖> is the largest compo-
sition operator whose induced testing preorders are compositional. However, we have already shown that it is
not commutative. The reader could argue that it would be better to choose another composition operator, which
despite being smaller than ‖> it enjoys the commutative property, to define the testing preorder. As we show
in Proposition 3.3.16 this is not possible, as in this case the induced preorder could not be used to distinguish
networks with the same interface.

Proposition 3.3.16. Let 9P be a composition operator such that, whenever (ΓM BM)9P (ΓN BN) is defined,
then (ΓN)V ∩nodes(M) = ∅. If 9P is commutative, then it is not consistent.

Outline. We only give an outline of the proof, as a complete argument would require a rather technical and
long proof.

Suppose that 9P is a composition operator as in the hypothesis of the proposition; also, assume it is
commutative.

Then, whenever (ΓM BM) 9P (ΓN BN) is defined, we have that (ΓN BN) 9P (ΓM BM) is defined too. By
hypothesis, it holds that (ΓN)V ∩nodes(M) = ∅, and (ΓM)V ∩nodes(M) = ∅.

That is, whenever m ∈ nodes(M), we have that ΓN ` N 6� m; similarly, for any n ∈ nodes(M) it holds that
ΓM ` M 6� n. An immediate consequence of these two statements is that for any m ∈ nodes(M), n ∈ nodes(N),
we have that ΓM ` m 6� n and ΓN ` m 6� n, hence (ΓM ∪ΓN)m 6� n.

Informally, the last statement establishes that wheneverM9PN is defined, thenM andN cannot interact
with each other in the composed network. This is because it is not possible to connect the internal nodes ofM
with those of N in the composed network.

Let nowM,N be two networks such that Int(M) = Int(N), and let T be a test such thatM9PT ,N 9P T

are defined. Suppose also thatMP −may-pass N . Since the special process ω cannot appear inM (recall
that we are assuming that it is a proper network), and the internal nodes of M and T cannot interact in the
composed networkM ‖> T , we have that the experimentM9P T has a successful computation if and only if
T has one as well. Thus, we have that T has a successful computation, hence (again since the internal nodes
of N and those of T are not connected to each other) N 9P T has a successful computation as well. Thus
N P −may-pass T .

Note that the proper networks M,N and the test T are arbitrary. By Definition 3.3.13 the composition
operator 9P is not consistent. �

We conclude this Chapter by providing another example that explains in further detail our choice of focusing
on composable networks for defining our testing preorders.

Example 3.3.17. Remarks on composable networks LetM,N be the networks of Example 3.1.2, and suppose
that the testing preorders vmay and vmust have been defined to compare well-formed networks.

We have already noticed that the only action that networks M and N can perform corresponds to letting
node m broadcast value v along channel c, and that this value can be detected by the output nodes n and l. From
the point of view of their behaviour, they do not present any difference; therefore, we would expectMvmay N ,
Mvmust N .
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However, the networksM andN can be distinguished by the test ΓT BT ′, where ΓT has been defined again
in Example 3.1.2, and T ′ is the process n~c?(x) .c!〈x〉 .0� | l~c?(x) .c?(y) .ω�. It is straightforward now to note
thatM may-pass T andM must-pass T , while N may-pass T and N must-pass T are not true. �

3.4 Related Work

In this chapter we analysed the problem of developing a compositional theory for the calculus defined in
Chapter 2. We successfully managed to adapt the well-known may-testing and must-testing preorders to our
framework. Below we compare our approach with other compositional theories for wireless networks that have
been investigated by the research community.

Our approach to compositionality has been mainly inspired by [47]; here each node in a wireless networks
is associated with a semantic tag, consisting of the set of its neighbours. A network M is composed with another
N, whose semantics tags are only partially defined. The composition M|N consists of the network M running in
parallel with a network N′, which is obtained by adding to the nodes contained in N the semantic tags needed to
make the connection of the latter network consistent with those contained in M. The authors adapt the notion of
reduction barbed congruence [49] to their framework. Given two networks M,N which are deemed equivalent
in their framework, and another network L, their behavioural equivalence allows to infer that M|L and N |L are
deemed to be equivalent. However, since the changes of the semantic tags in the sub-network L depends on
the networks M,N respectively, the network M|L can be seen as M running in parallel with a network L′, while
N |L can be seen as N running in parallel with another network L′′; since L′ and L′′ can be different networks,
for they can differ in the semantic tags associated with nodes, we do not regard this approach as compositional.

In [27] the authors define a notion of rooted branching bisimulation in their framework, and they prove
such a relation to be a congruence in their framework. Despite the main advantage that, in their framework the
network topology is embedded in the definition of processes, which avoids problems when defining network
composition, their behavioural equivalence is defined over the intensional activities of networks, rather than
taking into account their possible interactions with the external environment. In particular, it is the case that
their notion of bisimulation distinguishes between two different locations running the same code; as we have
already discussed in this chapter, our behavioural preorders abstract from names of locations.

The last paper which presents compositional theory for wireless networks, to the best of our knowledge,
is [62]. As we have already argued in Chapter 2 in our own point of view their ω-calculus models networks
at the Transport Layer, rather than at the Network Layer, of the ISO/OSI reference model. On the other hand,
the approach followed by the authors of abstracting from node names and grouping processes into subnets (or
groups) allows a nice approach of compositionality. As the authors point out in the paper, each network defined
via connectivity graphs can be encoded in their calculus; this can be done by partitioning the connectivity graph
of a network in maximal cliques, and defining a group for each of them. While it would be possible to adapt
the definition of testing preorders to the ω-calculus and give a translation L·M which encodes networks in our
calculus into networks in the ω-calculus, it turns out that the testing preorders would not be preserved.

That is, it is possible to exhibit two networks M,N such that M vmay N but LMM 6vmay LNM. In other
words, tests in the ω-calculus are more powerful than in our framework. Intuitively speaking, given a network
M = ΓBM with an input node i such that Γ ` i→ m, Γ ` i→ n (here we assume m,n ∈ nodes(M)) it is possible
to define a test in the ω-calculus which interacts with LMM by broadcasting a message only to the internal node
m. In our framework this is not possible, for whenever the input node i broadcasts a message, it can be detected
by both the internal nodes m,n. Since we assume that we are working with static networks, we prefer the latter
approach, for granting an input node to broadcast a message only to a part of its neighbour can be considered
as a form of mobility.



Chapter 4

Characterisation of the Testing Preorders

In Chapter 3 we managed to define testing preorders for composable networks. However, due to the quantifi-
cation over all possible tests, it is difficult to prove that two networksM andN with the same input and output
interface are may-testing (must-testing) related.

In this Chapter we develop proof methods that can be used for proving that two networks are may-testing
(must-testing) related. These are based on the idea that, to check whether two networks are related via some
testing preorder, we just need to know their observational behaviour; this corresponds to the activities that
a network can perform, and which can be verified by a test (according to the may-pass or must-pass testing
relation).

Also suitable relations, whose definitions are based solely on the observable behaviour of networks, have
to be defined in a way such that they characterise the testing preorders we have defined. For standard process
calculi, such as CCS and CSP, it is well known that the may-testing preorder is characterised by trace inclusion,
while the must-testing preorder is characterised by the Smith’s preorder induced by acceptance trees. See
[17, 33] for details.

We remark that these results hold in a setting where some limitations over terms of CCS (or CSP) are
placed; specifically, we require the LTS induced by a term to be finite state and finite branching, the latter
meaning that each state in the LTS such a term generates has a finite number of transitions.

Here we revisit the question for (composable) networks. We provide a characterisation for the vmay and
wmust inclusion, respectively in terms of traces and deadlock traces inclusion. These results however hold only
if we impose some limitations to the structure of networks, which are discussed later.

Intuitively, a trace of a network corresponds to a sequence of activities which can be detected by the external
environment, which can possibly end with a special mark ω denoting that a successful configuration has been
reached; deadlock traces are defined similarly, but the possibility of reaching a configuration which cannot
evolve, with respect to the reduction semantics (Figure 2.3), is also taken into account.

As we will point out, activities which can be observed by external nodes of a network differ from the actions
of the labelled transition semantics of Figure 2.4. Formally, we define the extensional behaviour of composable
networks by introducing an extensional LTS for them, whose transitions correspond to activities which can be
checked by the external environment.

Since internal transitions cannot be observed by a test, we expect to use their weak version [51, 33, 68] to
prove our results. However, the definition of weak transitions in our framework is non-standard; this is needed
to ensure that our proof methods for the testing preorders are complete.

Our first full abstraction result states that, in a finitary setting, trace inclusion coincides with the may-
testing preorder. For the must-testing preorder, however, we have to impose a further restriction to the structure
of networks. Specifically, we only focus on strongly convergent networks; these are networks whose generated
LTS does not include any state where the computation can proceed indefinitely. Under this assumption, we
prove that deadlock trace inclusion coincides with the inverse of the must-testing preorder, wmust.

The rest of the Chapter is organised as follows: in Section 4.1 we define formally the extensional behaviour
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m o n o

M = ΓM Bm~c!〈v〉� N = ΓN Bn~c!〈v〉�

Figure 4.1: Two networksM, N such thatM =may N andM =must N .

of networks. We provide illuminating example that show the need for a non-standard definition of weak exten-
sional actions.

In Section 4.2 we prove decomposition and composition results for weak extensional actions, which will
be needed to prove soundness of our proof principles. In Section 4.2.1 we show how we can infer the (weak
extensional) behaviour of two networksM,N if that ofM‖N is known. Note that here we use the symmetric
operator ‖; this cannot be helped, for we provide examples that show it is not possible in general to prove
decomposition results for the extension operator ‖>, due to its asymmetric nature. However, this does not cause
any major problems in the proofs of our characterisation results, as there is a close relationship between the
operators ‖ and ‖>. In Section 4.2.2 we prove composition properties for weak extensional actions. If the (weak)
behaviour of two networks M, G is known, then we are able to infer that of the composed network M ‖ G;
however, such results hold only if we assume that G is a generating network.

In Section 4.3 we provide a full abstraction result for the vmay testing preorder. The proof is split in two
parts; in Section 4.3.1 we show that trace inclusion for testing networks is sound with respect to the vmay testing
preorder, while in Section 4.3.2 we show that completeness also holds. The proofs of all the propositions are
discussed in deep detail. Finally, in Section 4.3.3 we provide some simple applications of our proof principle,
by focusing on networks which have already been discussed in the previous chapters.

In Section 4.4 we repeat the work for must-testing, this time using the acceptance-trees preorder. Again,
the proof is split in two parts; soundness is proved in Section 4.4.1, while completeness is proved in Section
4.4.2. In many cases we will omit the proofs of the technical propositions that we need to prove soundness and
completeness. This is because they are analogous in style to their respective statements presented when dealing
with the may-testing case. Section 4.4.3 contains a short discussion presenting a conjecture of a possible
characterisation of the vmust preorder in a non strongly-convergent setting. Finally, we provide some simple
applications of our proof principle in Section 4.4.4.

4.1 Extensional Behaviour of Networks

In this Section we define the observable activities of networks. This amount to defining an alternative LTS for
networks, whose actions can be detected by the external environment.

We first show that the actions of the labelled transition semantics, defined in Section 2.3 cannot be observed
by external agents, or tests; then we show how a different Labelled Transition System, called the extensional

LTS, can be defined starting from the LTS we have defined for networks. We conclude this Section by defining
the weak version of extensional actions. This definition is non-standard with respect to the majority of the
works which can be found in the literature [1, 34, 58]; however, our definition is justified by the fact that we
aim to develop complete proof methods for the testing preorders. In sections 4.3.3 and 4.4.4 we exhibit some
illuminating examples that show that completeness of our proof methods would not holds if we used a standard
definition of weak extensional transitions.

Before defining formally which extensional actions can be observed by the external environment, let us
provide a simple example that shows why the actions of the labelled transition semantics we have defined for
networks are not suitable to this purpose.
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M = ΓM Bm~c!〈v〉� |n~0� N = ΓN Bm~c!〈v〉� |n~0�

Figure 4.2: Two networksM, N with the same intensional behaviour but which are not testing equivalent.

Example 4.1.1. LetM,N be the networks depicted in Figure 4.1. Such networks can both perform a broadcast
action, which can be detected by the only output node o. However, the action that models this broadcast activity
is different inM and N , if we consider the Labelled Transition Semantics (or intensional semantics) defined
in Section 2.3. In fact,M

m.c!v
−→ ΓM Bn~0�, whileM

n.c!v
−→ΓN0~B�n. These two actions differ in the name of the

node that performed the broadcast.

On the other hand, we cannot test for the name of the node which performed the broadcast action. In fact, if
we place some code at o, it is straightforward to note that we can only detect the transmission of value v along
channel c, but no information about the name of the node which transmitted the value is known. Therefore,
we would expectM =may N , andM =must N . These two statements are proved formally in section 4.3.3 and
4.4.4, respectively. �

Example 4.1.1 shows that names of nodes performing a broadcast cannot be observed. On the other hand,
in Example 4.1.2 we show that the names of the output nodes which are affected by a broadcast transmission
play a significant role in modelling the extensional behaviour of networks.

Example 4.1.2. Consider the networksM,N depicted in Figure 4.2. These networks have the same intensional
behaviour; in both of them node m broadcasts value v along channel c in both of them, after which no further
actions are possible. Formally we haveM

m.c!v
−→ ΓM Bm~0� |n~0� and N

m.c!v
−→ ΓM Bm~0� |n~0�.

However, the names of the output nodes which can detect the broadcast performed by node m are different
inM andN . In fact, inM the broadcast performed by node m can be detected only by the output node o1, while
in N it can be detected by the external node o2. Now it is not difficult to show thatM 6vmay N (M 6vmust N),
and N 6vmay N (N 6vmustM).

Consider in fact the tests T1 = ΓT B o1~c?(x) .ω� | o2~0�, and T2 = ΓT B o1~0� | o2~c?(x) .ω�. It is easy to
note that, for i = 1,2, bothM‖> Ti andN ‖> Ti are defined. Further, we have thatM may-passT1, for we have
the reduction

(M‖> T1) _ ((ΓM Bm~0� |n~0�) ‖> (ΓT Bo1~ω� |o2~0�))

where the right hand side of the reduction is a successful configuration.

On the other hand, the only possible reduction for N ‖> T1 is given by

(N ‖> T1) _ ((ΓM Bm~0� |n~0�) ‖> (ΓT Bo1~c?(x) .ω� |o2~0�))

Since the configuration in the right hand side of the reduction above is deadlocked, this is also the only possible
computation for N ‖> T1, which is not successful.

ForM may-pass T1, but ¬(N may-pass T1), we have thatM 6vmay T1. A similar argument shows that
N may-pass T2 and ¬(M may-pass T2); hence N 6vmayM.

The tests T1,T2 can be used to show thatM 6vmust N and N 6vmustM, respectively. �

We are now ready to define the extensional behaviour of networks. This amounts to defining a set of
extensional actions EActτ = EAct ∪ {τ}, τ < EAct and extensional transitions of the formM

µ
−→N , where µ ∈
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EActτ.
The set EActτ includes the following actions:

Internal actions An internal action is denoted by τ, and it corresponds to some activity that cannot be detected
by the external environment.

Broadcast actions A broadcast action is denoted by c!vBη, where η is a set of external node names.

Input actions An input action is denoted by i.c?v.

We now present the extensional semantics for networks; here the visible actions consist of activities which
can be detected (hence tested) by placing code at the interface of a network. In this semantics we have internal,
input and output actions.

Definition 4.1.3 (Extensional Transitions). The actions of the extensional semantics are defined as follows:

(1) internal,M
τ
7−−→ N ; some internal activity reduces the networkM to some network N . Here the internal

activity of a network coincides either with some node performing a silent move m.τ or broadcasting a value
which cannot be detected by any node in the interface of the network itself.

Formally, (ΓBM)
τ
7−−→ (ΓBN) whenever

(a) ΓM
m.τ
−→N

(b) or ΓBM
n.c!v
−→N for some value v, channel c and node name n satisfying Γ ` n→m implies m ∈ nodes(M)

(2) input, (ΓBM)
i.c?v
7−−−−−→ (ΓBN); an observer placed at the input node i can send the value v along the channel

c to the network (ΓBM). For node i to be able to affect the network ΓBM by broadcasting a value, we
must have i ∈ Input(ΓBM).

Formally (ΓBM)
i.c?v
7−−−−−→ (ΓBN) whenever

(a) ΓBM
i.c?v
−→N

(b) i ∈ Input(ΓBM)

(3) output, (ΓBM)
c!vBη
7−−−−−−→ (ΓBN), where η is a non-empty set of nodes; an observer placed at any node n ∈ η

can receive the value v along the channel c. For this to happen each node n ∈ η must be in Output(ΓBM),
and there must be some code running at some node in M which can broadcast along channel c to each such
n; that is, for any n ∈ η,Γ ` m→ n.

Formally, (ΓBM)
c!vBη
7−−−−−−→ (ΓBN) whenever

(i) (ΓBM)
m.c!v
−→ N for some node m

(ii) η = {n ∈ Output(ΓBM) | Γ ` m→ n } , ∅.

These extensional transitions endow the set of testing networks with the structure of a LTS. In the future we
will use the term strong extensional transition for them, in contrast with their weak variant, which is defined
later in this Section.

Later in this Chapter we will need the following definitions: if the set of states of the LTS generated by a
testing networkM (by using extensional actions for defining the transition relation) is finite, we say thatM is
finite state. If every state of the LTS generated by a testing networkM has a finite number of transitions we
say that the networkM is finite branching. Finally, a testing networkM is finitary if it is both finite state and
finite branching.

Next we show that there is a close relationship between the extensional actions of Definition 4.1.3 and the
reduction relation defined in Section 2.2.

Proposition 4.1.4. LetM,N be networks;
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1. IfM_N then either

• M
τ
7−−→N ′, for some N ′ such that N ′ ≡ N , or

• M
c!vBη
7−−−−−−→ N ′, for some channel c, value v, non-empty set of nodes η and networks N ′ such that

N ′ ≡ N

2. IfM
τ
7−−→N thenM_N

3. IfM
c!vBη
7−−−−−−→N for some channel c, value v and non-empty set of nodes η, thenM_N .

Proof. All the statements are a direct consequence of the Harmony Theorem, Theorem 2.4.10 and the definition
of the extensional transitions. Detailed proofs are provided in Appendix A, Section A.3 �

Now we turn our attention at the definition of weak extensional actions; as we have already mentioned,
these are needed to abstract from internal activities of networks, which cannot be detected by the external
environment. Weak extensional transitions have been employed in many process calculi, such as CCS [1], the
π-calculus [58] and many others; however, the definition of weak extensional transitions we provide for testing
networks is non-standard, in the sense that it differs from those provided in the works cited above.

Definition 4.1.5 (Weak Extensional Transitions). (1) M
τ
|===⇒N wheneverM

τ

7−−→∗ N

(2) M
n.c?v
|=====⇒N wheneverM

τ
|===⇒M′

n.c?v
7−−−−−→N ′

τ
|===⇒N for some networksM′,N ′

(3) LetM
c!vBη
|======⇒N be the least relation satisfying

(a) M
τ
|===⇒M′

c!vBη
7−−−−−−→N ′

τ
|===⇒N for some testing networksM′,N ′ impliesM

c!vBη
|======⇒N

(b) M
c!vBη1
|=======⇒M′,M′

c!vBη2
|=======⇒N , where η1∩η2 = ∅, impliesM

c!vB(η1∪η2)
|===========⇒N

These weak transitions endow the set of networks Nets with the structure of another LTS, called the extensional

LTS and denoted by LTSNets.
Some explanations are necessary for the non-standard definition of output actions in Definition 4.1.5(3b)

Informally speaking, the definition of weak extensional output transitions expresses the capability of simulating
broadcast through multicast; that is, a single (weak) broadcast transition detected by a set of nodes η can be
matched by a sequence of broadcast transitions (possibly interrupted by internal actions), detected respectively
by η1, · · · ,ηi ⊆ η, provided that the collection {η1, · · · ,ηi} is a partition of η. This constraint is needed to ensure
that

(i) every node in η will detect the transmitted value and

(ii) no node in η will detect the value more than once. This is ensured since, in our definition of weak

extensional outputs, a transitionM
c!vBη1∪η2
|==========⇒N can be derived from two (weak) transitionsM

c!vBη1
|=======⇒

M′ andM′
c!vBη2
|=======⇒N only in the case that η1∩η2 = ∅.

Example 4.1.6 (Broadcast versus Multicast). Consider the networkM in Figure 4.3. This network can perform
two different broadcasts of value v along channel c; the one performed by node m, can be detected by the output
node o1; the other, performed by node n, can be detected by the external node o2. From the point of view of
extensional transitions, we have the sequence

M
c!vB{o1}
7−−−−−−−−→M′′

c!vB{o2}
7−−−−−−−−→M′

whereM′′ = ΓM Bm~0� |n~c!〈v〉�,M′ = ΓM Bm~0� |n~0�.

This sequence of transitions ensures that, in the extensional semantics, we haveM
c!vB{o1,o2}

|==========⇒M′. Note
that, if weak extensional actions were defined in a standard way, the transition above for networkM could not
have been derived.
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Figure 4.3: Broadcast versus Multicast

Consider now the network N , again in Figure 4.3. For this network, we have a single broadcast of value v

along channel c, which can be detected by both the output nodes o1 and o2. Thus, in the extensional semantics,

we have the transition N
c!vB{o1,o2}
7−−−−−−−−−−→N ′, where N ′ = ΓN Bm~0�.

Intuitively speaking, the non-standard definition of extensional broadcast action ensures that the behaviour
of N can be replicated by network M. In fact, for any testing network T such that M ‖> T and N ‖> T are
defined, it is not difficult to show that if N ‖> T _∗ N ′ ‖> T ′, then there exists a test T ′′ such thatM ‖> T _∗

M′′ ‖> T ′′ _∗M′ ‖> T ′.
This argument leads to the intuition that N vmay M, which is proved formally in Section 4.3.3 where we

will revisit this Example. Further, we have thatMvmust N , which is proved formally in Section 4.4.4. �

Remark 4.1.7 (Inductive Principle For Weak Extensional Output Actions). Note that we are able to properties

for weak transitions of the formM
c!vBη
|======⇒N by proceeding by induction on the structure of the proof of its

derivation; specifically, if we want to prove that a property P holds for any transition of the formM
c!vBη
|======⇒N ,

where c,v are fixed, then it suffices to show that

• For any set of nodes η , ∅ and networks M,N , if M
c!vBη
|======⇒N because M

τ
|===⇒

c!vBη
7−−−−−−→

τ
|===⇒N , then

P(M
c!vBη
|======⇒N)

• if P(M
c!vBη1
|=======⇒L), P(L

c!vBη2
|=======⇒N), and η1∩η2 = ∅, then P(M

c!vB(η1∪η2)
|===========⇒N|)

�

The induction principle of Remark 4.1.7 allows us to prove that a weak extensional output transition is a
sequence of (strong) extensional outputs, possibly interleaved by internal transitions. This property will be
useful later.

Proposition 4.1.8. LetM,N be testing networks. ThenM
c!vBη
|======⇒N for some channel c, value v, and non-

empty set of nodes η if and only if there exist an index k ≥ 1 and a collection of pairwise disjoint, non-empty
sets of nodes {η j}

k
j=1, such that

•
⋃k

j=1 ηi = η

• M
τ
|===⇒

c!vBη1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N

Proof. See the Appendix. �

Another property that we will need later, and which can be proved by exploiting the induction principle of
Remark 4.1.7, is the following.

Proposition 4.1.9. LetM,N be two testing networks such thatM
c!vBη
|======⇒N . ThenM_? N .
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Figure 4.4: Two networksM and N ; here the extensional behaviour of the networkM ‖>N cannot be inferred
by those of its individual components.

Proof. We first remark that if M
τ
|===⇒M′ for some network M′, then M_∗ M′. This can be proved by

performing a natural induction on the number of (strong) τ-transitions required to infer the transitionM
τ
|===⇒

M′, and by using Proposition 4.1.4.

Now we prove that ifM
c!vBη
|======⇒N thenM_? η by induction on the proof of this transition.

• M
τ
|===⇒

c!vBη
7−−−−−−→

τ
|===⇒N . By Proposition 4.1.4, and by the remark at the beginning of the proof, it follows

thatM_∗__∗ N , henceM_∗ N

• M
c!vBη1
|=======⇒

c!vBη2
|=======⇒N , for some sets of nodes η1,η2 such that η1∩η2 = ∅, η1∪η2 = η.

By the inductive hypothesis it follows thatM_∗_∗ N , henceM_? N .

�

4.2 Composition and Decomposition Results for Extensional Actions

We prove compositional and decompositional properties for extensional actions of testing networks.
Specifically, given two networksM,N and a composition operator 9P such thatM9PN is defined, we

want to be able to infer a transition of the form (M9PN)
µ
7−−→ (M′9PN

′), starting from transitions for the
individual networksM

µ1
7−−−→M′ and N

µ2
7−−−→N ′. Conversely, given a transition of the form (M9PN)

mu
7−−−−→

L, we want to determine two extensional transitions µ1 and µ2 such that M
µ1
7−−−→M′ and N

µ2
7−−−→ N ′, and

L =M′9PN
′.

Unfortunately, we are not able to solve this problem for the extension operator ‖>, as the following Example
shows.

Example 4.2.1. Consider the networks M,N depicted in Figure 4.4. Here it is easy to show that M ‖> N is
defined, and it is equipped with an extensional transition of the form (M ‖> N)

τ
7−−→ (M′ ‖> N ′), where M′ =

ΓM Bm~0� and N ′ = ΓN Bn~{v/x}P�.
However, this transition cannot be inferred by looking at the extensional behaviour of the individual net-

worksM,N . In particular, there is no possible (extensional) transition for the network N , for there the only
node n it is waiting to receive some value along channel c, which is not connected to any other node. �

The problem discussed in Example 4.2.1 has its roots in the asymmetric definition of the extension operator
‖>. This operator, in fact, only preserves the connections of the left hand side network in a composition. For
the network on the right hand side, however, new connections of its internal nodes can appear in the composed
network. For example, in Example 4.2.1 node n in network N is not connected to any node, but we have the
connection m→ n in the composed networkM‖>N .

Luckily, we are able to prove compositional and decompositional results for the symmetric composition
operator ‖, Definition 3.1.6. While we have already shown that this operator cannot be used to define com-
positional testing preorders, Example 3.3.8, it is strictly related to the extension operator ‖>; in particular, we
will see that it is always possible to rewrite a well-defined network of the form M ‖> N using the symmetric
composition operator ‖, that is (M ‖>N) = (M ‖ N ′) for some network N ′. Conversely, every network of the
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form (M ‖ N) can be rewritten using the extension operator, that is (M ‖ N) = (M ‖> N ′′) for some network
N ′′. Since the operator ‖ is commutative, it can be used to prove decomposition and composition results for
extensional transitions, which are stated formally in sections 4.2.1 and 4.2.2, respectively.

Now we present formally how it is possible to switch from using from the extension operator ‖> to the
composition operator ‖, and vice versa.

Definition 4.2.2. LetM = ΓM BM,N = ΓN BN two testing networks such that nodes(M)∩nodes(N) = ∅.
The symmetric counterpart of N with respect toM is the network symM(N), which is defined as Γ′N BN,

where

(Γ′N)V = (ΓN)V ∪{m : ΓM ` m� n for some n ∈ nodes(N)} (4.1)

(Γ′N)E = (ΓN)E ∪{(m,n) | n ∈ nodes(N),ΓM ` m→ n}∪ {(m,n) | m ∈ nodes(N),ΓM ` m→ n} (4.2)

The extension counterpart of N with respect to M is the network extM(N), which is defined as Γ′′N BN,
where

(Γ′′N)V = (ΓN)V \nodes(M) (4.3)

(Γ′′N)E = {(m,n) | (Γ′′N)V ` m,n,ΓN ` m→ n} (4.4)

�

Intuitively, for any network M,N , the network (M ‖> N) (if defined) is equal to (M ‖ symM(N)). Con-
versely, if (M ‖ N) is defined, then it is equal to (M ‖ extM(N)). Before proving this statement, we perform
some sanity checks for Definition 4.2.2. First we prove that, the operators symM(N) and extM(N) is closed
with respect to the set CNets, under the assumption that nodes(M)∩nodes(N) = ∅.

Proposition 4.2.3. LetM,N ∈ CNets be two networks such that that nodes(M)∩nodes(N) = ∅. Then

(i) symM(N) ∈ CNets

(ii) extM(N) ∈ CNets

Proof. See Appendix A, Section A.3. �

Next, we perform another sanity check for Definition 4.2.2. Informally speaking, the operations symM(N)
and extM(N) can be inverted.

Proposition 4.2.4.

(i) IfM= ΓMBM andN = ΓNBN are two networks such that (ΓN)V∩nodes(M) = ∅, then extM(symM(N)) =

N .

(ii) IfM = ΓM BM andN = ΓN BN are two networks such that Ps(M,N) = true then symM(extM(N)) =N .
Recall that Ps is the consistency predicate for the composition operator ‖, and it is defined in Definition
3.1.6.

Proof. See the Appendix. �

Now that we have performed some sanity checks on the operators of Definition 4.2.2, we can show that
they can be used to switch the composition operators used for composing networks.

Proposition 4.2.5. LetM,N be two testing networks. Then

(i) M ‖N ≈M ‖> extM(N),

(ii) M ‖>N ≈M ‖ symM(N).
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We recall that ≈ is Kleene’s equality.

Proof. The two statements are proved separately. In both the proofs, we letM = ΓM BM, N = ΓN BN.

1. By definition 4.2.2 we know that extM(N) = Γ′N BN, where Γ′N is defined by equations (4.3) and (4.4).

Suppose thatM ‖ N is defined; then we have that Ps(M,N) = true. Recall that Ps is the consistency
predicate for the composition operator ‖, Definition 3.1.6.

By Equation (4.3) we have that (Γ′N)V = (ΓN)V \nodes(M); hence it follows that (Γ′N)V ∩nodes(M) = ∅.
This ensures that (M‖> extM(N)) is defined.

For networks ΓM BM, ΓN B N and Γ′N B N we have that (ΓM BM) ‖ (ΓN B N) = (ΓM ∪ ΓN)B (M | N),
(ΓM BM) ‖> (Γ′N BN) = (ΓM ∪Γ′N)B (M |N). Thus, in order to prove that M ‖ N =M ‖> extM(N), it is
sufficient to prove that (ΓM ∪ΓN) = (ΓM ∪Γ′N).

Note that the inclusions (Γ′N)V ⊆ (ΓN)V and (Γ′N)E ⊆ (ΓN)E are an immediate consequence of equations
(4.3) and (4.4), respectively. Then it is straightforward to show that (ΓM ∪Γ′N)V ⊆ (ΓM ∪ΓN)V and (ΓM ∪

Γ′N)E ⊆ (ΓM ∪ΓN)E . It remains to prove that (ΓM ∪ΓN)V ⊆ (ΓM ∪Γ′N)V , and (ΓM ∪ΓN)E ⊆ (ΓM ∪Γ′N)E .
These two statements are proved separately.

• First, suppose that (ΓM ∪ΓN) ` m for some node m; we need to show that (ΓM ∪Γ′N) ` m. In this
case, either ΓM ` m, from which it is trivial to note that (ΓM ∪Γ′N) ` m, or ΓN ` m. In the last case
either m ∈ nodes(N) or m ∈ Int(ΓN BN).

If m ∈ nodes(N), we have that m < nodes(M). This is because we are assuming that Ps(M,N) =

true. By Equation (4.3) it follows that Γ′N `m, since ΓN `m and m < nodes(M). Now it is immediate
to show that (ΓM ∪Γ′N) ` m.

If m ∈ Int(ΓN BN), then there exists a node n ∈ nodes(N) such that ΓN ` m� n. This is because we
are assuming that ΓN BN ∈ CNets. We perform a case analysis on node m; for this node, in fact,
we have that either m ∈ nodes(M) or m < nodes(M).

If m ∈ nodes(M) then ΓM `m→ n. This is because Ps(M,N) = true by hypothesis, and by noticing
that ΓN ` m→ n with m ∈ nodes(M). Since ΓM ` m→ n, we have ΓM ` m, hence (ΓM ∪Γ′N) ` m.

If m < nodes(M), then by Equation (4.3) it follows that Γ′N ` m, hence (ΓM ∪Γ′N) ` m.

• Now suppose that (ΓM ∪ΓN) ` m→ n. We need to show that (ΓM ∪Γ′N) ` m→ n.

In this case either ΓM `m→ n, in which case the proof of (ΓM∪Γ′N) `m→ n is trivial, or ΓN `m→ n.

We have two possibilities; the first one is that m,n < nodes(M), in which case Equation (4.3) ensures
that Γ′N ` m,n, then we obtain Γ′N ` m → n from Equation (4.4). Now it is trivial to show that
(ΓM ∪Γ′N) ` m→ n.

The other possibility is that either m ∈ nodes(M) or n ∈ nodes(N). In both cases, the hypothesis
Ps(M,N) = true ensures that ΓM ` m→ n, hence (ΓM ∪Γ′N) ` m→ n.

2. By definition (4.2.2) we know that symM(N) = Γ′N BN, where Γ′N is defined from ΓN using equations
(4.1) and (4.2).

SupposeM‖>N is defined. Then it holds that (ΓN)V ∩nodes(M) = ∅. We first show that
Ps(M,symM(N)) = true, thus showing thatM ‖ symM(N) is defined as well. To this end, we need to
show the following:

• nodes(M)∩nodes(N) = ∅.

This is trivial; for N ∈ CNets, we have that nodes(N) ⊆ (ΓN)V , hence nodes(M)∩ nodes(N) = ∅

since we are assuming that nodes(M)∩ (ΓN)V = ∅.

• If ΓM `m→ n (ΓM `m← n) for some node m,n with m ∈ nodes(N), then Γ′N `m→ n (Γ′N `m← n).

This statement follows immediately from Equation (4.2).
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Figure 4.5: Three networksM,N and N ′, such that N = symM(N ′), N ′ = extM(N).

• Suppose that Γ′N ` m→ n (Γ′N ` m← n) for some m ∈ nodes(M). Then ΓM ` m→ n (ΓM ` m← n).

If m ∈ nodes(M), then we have that ΓN 0m. In fact, by hypothesis it holds that nodes(M)∩(ΓN)V = ∅.
Thus, it is not possible to have ΓN ` m → n (ΓN ` m ← n). Since Γ′N ` m → n (Γ′N ` m ← n),
ΓN ` m9 n (ΓN ` m8 n), Equation (4.2) ensures that ΓM ` m→ n (ΓM ` m← n), as we wanted to
prove.

It remains to show that (M ‖> N) = (M ‖ symM(N)). For this purpose, it is sufficient to prove that
(ΓM ∪ΓN) = (ΓM ∪Γ′N). Note that the inclusions (ΓM ∪ΓN)V ⊆ (ΓM ∪Γ′N)V and (ΓM ∪ΓN)E ⊆ (ΓM ∪Γ′N)E

are an immediate consequence of Equations (4.1) and (4.2), respectively. Thus we only need to prove
that (ΓM ∪Γ′N)V ⊆ (ΓM ∪ΓN)V , (ΓM ∪Γ′N)E ⊆ (ΓM ∪ΓN)E .

• Suppose (ΓM ∪Γ′N) ` m for some node m. We want to show that (ΓM ∪ΓN) ` m.

Since (ΓM ∪Γ′N) ` m, then either ΓM ` m, from which it follows immediately that (ΓM ∪ΓN) ` m, or
Γ′N ` m.

In this last case, Equation (4.1) ensures that either ΓN ` m, from which it follows (ΓM ∪ΓN) ` m, or
ΓM ` m→ n for some n ∈ nodes(N); here it follows that ΓM ` m, hence (ΓM ∪ΓN) ` m.

• Suppose (ΓM ∪Γ′N) ` m→ n for some nodes m,n. We show that (ΓM ∪ΓN) ` m→ n.

If (ΓM ∪Γ′N) ` m→ n because ΓM ` m→ n then the statement is trivial to prove. Otherwise, (ΓM ∪

Γ′N) ` m→ n because Γ′N ` m→ n.

In this last case, by Equation (4.2) either ΓN ` m→ n, from which (ΓM ∪ ΓN) ` m→ n follows
immediately, or ΓM ` m→ n where either m ∈ nodes(N) or n ∈ nodes(N); here again it is trivial to
prove that (ΓM ∪ΓN) ` m→ n.

�

Example 4.2.6 (Change of connectivity graphs). Consider the networksM,N and N ′ depicted in Figure 4.5.
Here it is easy to show that N ′ = extM(N); conversely, N = symM(N ′). In practice, symM(N ′) is defined

by adding toN the connections between internal nodes ofM and internal nodes ofN which are defined in the
former network. On the other hand, extM(N) is defined by removing inN all the nodes that are internal inM,
together with the associated connections.

This ensures that (M‖N) and (M‖>N ′) are defined; further, by Proposition 4.2.5 they are also equivalent.
�

Note that the definition of the operators symM(N),extM(N) depends on the connectivity graph and the
internal nodes ofM, but not on the code that its nodes are running. That is, we expect that ifM= ΓMBM,M′ =

ΓM BM′ and nodes(M) = nodes(M′), then symM(N) = symM′ (N), extM(N) = extM′ (N).
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In practice the only useful application of this fact is given by the following.

Fact 4.2.7. IfM
µ
7−−→M′, then for any network N it holds symM(N) = symM′ (N), extM(N) = extM′ (N).

If (M ‖>N)
µ
7−−→ (M′ ‖>N ′), then (M ‖ symM(N))

µ
7−−→ (M′ ‖ symM(N ′)). IfM ‖ N

µ
7−−→ (M′ ‖ N ′) then

(M ‖> extM(N))
µ
7−−→ (M‖> extM(N ′)). �

Remark 4.2.8. LetM be a network and define the sets N = {N | M ‖>N is defined },
L = {L |M ‖L is defined }. It is possible to prove, by straightforward calculations, that the operator symM(·) is
an homomorphism from 〈N ,‖>〉 to 〈L ,‖>〉. That is, whenever symM(N ‖>N ′) is defined, then so are symM(N),
symM(N ′); further we have that symM(N ‖>N ′) = symM(N) ‖> symM(N) ‖> symM(N ′). Similarly, we can
show that extM(·) is an homomorphism from 〈L ,‖>〉 to 〈N ,‖>〉.

Now define a partial order (modulo structural equivalence) over networks by letting N ≤N ′ if there exists
a network N ′′ such that N ‖> N ′′ ≡ N ′. Let N ∈ N , L ∈ L be two networks such that symM(N) ≤ L.
Note that symM(N) ∈ L because of Proposition 4.2.5. By definition there exists a network N ′ such that
symM(N) ‖>N ′ ≈ L; by straightworward calculations we obtain that

symM(N) ‖>N ′ ≈ L

extM(symM(N) ‖>N ′) ≈ extM(L)

extM(symM(N)) ‖> extM(N ′) ≈ extM(L)

N ‖> extM(N ′) ≈ extM(L)

Therefore, by definition, we have proved thatN ≤ extM(L). Similarly, we can show that if N ≤ extM(L), then
symM(N) ≤ L.

In practice, we have proved that there is a Galois connection [15] between the spaces N ,L , where symM(·)
is the lower adjoint and extM(·) is the upper adjoint.

4.2.1 Decompositional Results

In this Section we solve one of the questions addressed at the beginning of Section 4.2 for the symmetric
operator ‖. Specifically, given two testing networks M,N such that M ‖ N is defined, we show how it is
possible to decompose an extensional transition of the form M ‖ N

µ
7−−→ L in extensional transitions for its

individual components.

Before proving these decompositional results, we need a technical lemma concerning the labelled transition
semantics, defined in Figure 2.4.

Lemma 4.2.9 (Strengthening). Let ΓBM be a (well-formed) network, and Γ′ be a connectivity graph such that

• Γ′ ⊆ Γ, that is Γ′V ⊆ ΓV and ΓE ⊆ ΓE

• For any nodes(M) ⊆ Γ′V

• Whenever Γ ` m→ n for some nodes m,n with either m ∈ nodes(M) or n ∈ nodes(M), then Γ′ ` m→ n.

Then, whenever ΓBM
λ
−→M′, it also holds Γ′BM

λ
−→M′.

Proof. See the Appendix. �

Next we provide some definitions which, though they are not strictly necessary for the topic discussed in
this Section, can help in keeping the proofs of compositional and decompositional results readable.

Definition 4.2.10 (Affected Sets of Nodes). LetM = ΓM BM be a testing network.
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For any arbitrary node name m, we define its output interface as the set Outm(M) = Int(M)∩{n | ΓM `m→

n}. Intuitively the set Outm(M) contains all the output nodes ofM which are affected by broadcasts performed
by node m.

For any node m, its input set is the set of nodes Inm(M) = {n | ΓM ` m→ n}. Intuitively, this set contains all
the internal nodes ofM which are affected by broadcasts performed by node m.

Lemma 4.2.11. LetM,N be two networks such that (M‖N) is defined. Then, for any m ∈ nodes(M), it holds
that Inm(N) = Outm(M)∩nodes(N).

Proof. . Suppose thatM = ΓM BM, N = ΓN BN. SinceM‖N is defined, then Ps(M,N) = true.
Let m be an arbitrary node name in nodes(M), and let n ∈ Outm(M), n ∈ nodes(N). Then it holds that

ΓM ` m→ n; since n ∈ nodes(N), and Ps(M,N) = true, it also holds ΓN ` m→ n. Hence n ∈ Inm(N).
Now suppose that m ∈ Inm(N); by definition ΓN ` m→ n, hence ΓN ` m. Further, since m ∈ nodes(M),

we have m < nodes(N), from which it follows m ∈ Int(N). For network N is a testing network, it follows that
n ∈ nodes(N).

It remains to show that n ∈ Outm(M). However, this is straightforward. In fact, since ΓN ` m→ n, m ∈

nodes(M) and P(M,N) = true, it follows that ΓM ` m→ n. Finally, since n ∈ nodes(N), we have that n <

nodes(M), hence n ∈ Int(M). Since ΓM ` m→ n, n ∈ Int(M), by definition of output interface we obtain that
n ∈ Outm(M).

Thus we have shown that m ∈ Outm(M) if and only if m ∈ (Inm(M)∩nodes(N)), which is equivalent to
Outm(M) = Inm(M)∩nodes(N). �

We are ready to prove the decompositional properties of extensional transitions we will need throughout
this Chapter. We first analyse the case where a network of the form (M‖N) performs an (extensional) internal
transition. Intuitively, if (M ‖ N) can perform an internal transition, then either some internal activity is
performed by one of its individual components, or they interact through a broadcast communication which
cannot be detected by the external environment.

Proposition 4.2.12 (Decomposition of Internal Transitions). LetM,N ,L be three networks such thatM ‖N
is defined, andM‖N

τ
7−−→ L. Then either one of the following is true:

(i) M
τ
7−−→M′, and L ≡M′ ‖ N 1,

(ii) or N
τ
7−−→N ′, and L ≡M ‖ N ′,

(iii) orM
c!vBη
7−−−−−−→ for some channel c, value v and set of nodes η such that η ⊆ nodes(N). Also,N

m.c?v
−→ N ′ for

some network N ′, node m such that Inm(N) = η and L ≡M′ ‖ N ′,

(iv) orN
c!vBη
7−−−−−−→N ′ for some channel c, value v and set of nodes η,M

m.c?v
7−−−−−−→M′ for some node m such that

Inm(M) = η, and L ≡M′ ‖ N ′.

Proof. See the Appendix. �

Let us turn our attention to broadcast actions. When a network of the form (M‖N) can perform a broadcast
transition, which can be detected by an external set of nodes η, then we expect one of its individual components
to perform a broadcast; this affects both the nodes of η and some of the internal nodes of the other network
being composed.

Proposition 4.2.13 (Decomposition of Broadcast Transitions). LetM,N ,L be three networks such that

M ‖ N is defined, andM ‖ N
c!vBη
7−−−−−−→ L for some channel c, value v and non-empty set of nodes η. Then

either one of the following holds:

(i) M
c!vBη
7−−−−−−→M′ for some networkM′, and L ≡M′ ‖ N ,

1In practice, we obtain L =M′ ‖ N ; however, proving this equality is more complex than proving L ≡M′ ‖ N , and it is not needed for
our purposes.
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(ii) or N
c!vBη
7−−−−−−→N ′ for some network N ′, and L ≡M ‖ N ′,

(iii) or M
c!vB(η∪η′)
7−−−−−−−−−−→ M′, for some set of nodes η′ such that η′ ⊆ nodes(N); further N

m.c?v
−→ N ′ for some

network N ′ and node m such that Inm(N) = η′ and L ≡M′ ‖ N ′,

(iv) or N
c!vB(η∪η′)
7−−−−−−−−−−→ N ′, where η′ ⊆ nodes(M). Further, M

n.c?v
7−−−−−→M′ for some networkM′ and N ′ such

that Inm(M) = η′, L ≡M′ ‖ N ′.

Proof. The proof is very similar in details to that of Proposition (4.2.12), in the case where the extensional
transitionM‖N

τ
7−−→L has been caused by a broadcast which cannot be detected by the external environment.

�

Finally, we show how input transitions can be decomposed. If a network of the form (M ‖N) can perform
an extensional input transition, then it is induced by at least one of its components.

Proposition 4.2.14 (Decomposition of Input Transitions). Let M,N be two networks such that M ‖ N is
defined. Also, let L be a network such thatM‖N

m.c?v
7−−−−−−→L. Then either one of the following is true:

(i) m < Input(N); in this case we have that m ∈ Input(M); further,M
m.c?v
7−−−−−−→M′ for some networkM′ such

that L =M′ ‖ N ,

(ii) or m < Int(M), from which it follows m ∈ Int(N); in this case N
m.c?v
7−−−−−−→ N ′ for some network N ′, and

L =M‖N ′,

(iii) or m ∈ Int(M),m ∈ Int(N); here there exist two networksM′,N ′ such thatM
m.c?v
7−−−−−−→M′, N

m.c?v
7−−−−−−→N ′

and L =M′ ‖ N ′.

Proof. See the Appendix. �

4.2.2 Compositional Results

In this section we turn our attention to compositional results for extensional transitions, with respect to the
symmetric composition operator ‖.

In general, given two networksM,N such thatM
µ1
7−−−→M′ for some extensional action µ1, networkM′,

N
µ2
7−−−→ N ′ for some extensional action µ2 and network N ′, our aim is to find an extensional action µ, if

possible, such that (M‖N)
µ
7−−→ (M′ ‖ N ′).

First we prove some lemmas which will be very useful in the proofs of compositional properties for exten-
sional transitions. The first one is a weakening property for the labelled transition semantics, whose rules are
defined in Figure 2.4.

Lemma 4.2.15 (Weakening). Let ΓMBM be a network; also, let ΓN be a connectivity graph such that, whenever
ΓN `m→ n for some nodes m,n such that either m ∈ nodes(M) or n ∈ nodes(N), then it follows that ΓM `m→ n.

If ΓM BM
λ
−→M′ for some λ, then (ΓM ∪ΓN)BM

λ
−→M′. Note that (ΓM ∪ΓN BM) is not necessarily an

element of CNets.

Proof. See the Appendix. �

The other lemma we need concerns the output interface of nodes in composed networks.

Lemma 4.2.16. LetM,N be two testing networks such thatM‖N is defined.
Then, for any node m ∈ nodes(M), it holds Outm(M‖N) ⊆ Outm(M).

Proof. LetM = ΓM BM, N = ΓN BN be two testing networks; supposeM ‖N is defined, that is Ps(M,N) =

true.
Let m be a node in nodes(M) and consider another node n ∈ Outm(M‖N). We need to show that n ∈

Outm(M).
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For n ∈ Outm(M‖N), we have that (ΓM ∪ ΓN) ` m→ n, and n ∈ Int(M ‖ N), from which it follows n <

nodes(M |N). More specifically, m < nodes(N). Since we are assuming that m < nodes(N), note that we have
ΓN ` m9 n, since ΓN BN is a testing network by hypothesis.

Thus we have that (ΓM∪ΓN) `m→ n and ΓN `m9 n; this leads to ΓMm→ n. Now, since n < nodes(M |N),
we also have n < nodes(M), and hence n ∈ Int(ΓM BM) (in fact, ΓM ` n, for ΓM ` m→ n).

By definition, m ∈ nodes(M), ΓM ` m→ n and n ∈ Int(ΓM BM) is equivalent to n ∈ Outm(ΓM BM), as we
wanted to prove. �

Corollary 4.2.17. LetM,N be two testing networks such thatM ‖N is defined. Let also m ∈ nodes(M) be a
node such that Outm(M) ⊆ nodes(N); then Outm(M‖N) = ∅.

Proof. LetM = ΓM BM, N = ΓN BN be two testing networks such thatM ‖N is defined. If m ∈ nodes(M) is
a node such that Outm(M) ⊆ nodes(N), then by Lemma 4.2.16 we have that Outm(M‖N) ⊆ nodes(N).

However, for any arbitrary node n ∈ Outm(M‖N) it holds that n ∈ Int(M ‖ N), from which it follows
that n < nodes(M | N), and specifically n < nodes(N). Therefore, Outm(M‖N)∩nodes(N) = ∅, and since
Outm(M ‖N) ⊆ nodes(N), it also follows Outm(M‖N) = ∅. �

We are now ready to prove the compositional properties we will need in the following of this Chapter. Un-
surprisingly, these are the dual of the decomposition properties of Section 4.2.1. We first focus on (extensional)
internal transitions of networks.

Proposition 4.2.18. LetM,N be two networks such thatM‖N is defined. Then the following results hold:

(i) IfM
τ
7−−→M′ for some networkM′, thenM‖N

τ
7−−→M′ ‖ N ,

(ii) If N
τ
7−−→N ′ for some network N ′, thenM‖N

τ
7−−→M ‖ N ,

(iii) IfM
c!vBη
7−−−−−−→M′ for some networkM′, channel c, value v and set of nodes η such that η⊆ nodes(N), then

there exists a node m ∈ Int(N) such that Inm(N) = η. Further, whenever N
m.c?v
7−−−−−−→ N ′ thenM ‖ N

τ
7−−→

M′ ‖ N ′,

(iv) IfN
c!vBη
7−−−−−−→N ′ for some networkN ′, channel c, value v and set of nodes η such that η ⊆ nodes(M), then

there exists a node m ∈ Int(M) such that Inm(M) = η. Further, wheneverM
m.c?v
7−−−−−−→M′ thenM ‖N

τ
7−−→

M′ ‖ N ′.

Proof. See the Appendix. �

Let us now turn our attention to broadcast actions. Again, different cases are possible, depending on whether
a broadcast performed by a networkM can affect the internal nodes of N in the composed networkM ‖ N ,
and vice-versa.

Proposition 4.2.19. LetM,N be two networks such that (M‖N) is defined.

(i) If M
c!vBη
7−−−−−−→ M′ for some channel c, value v, network M′ and non-empty set of nodes η such that

η∩nodes(N) = ∅, thenM‖N
c!vBη
7−−−−−−→M′ ‖ N ,

(ii) If N
c!vBη
7−−−−−−→ N ′ for some channel c, value v, network N ′ and non-empty set of nodes η, where η∩

nodes(M) = ∅, thenM‖N
c!vBη
7−−−−−−→M ‖N ′

(iii) Suppose M
c!vBη
7−−−−−−→M′ for some channel c, value v and non-empty set of nodes η. Also, suppose that

η = η1∪η2, where η1∩nodes(N) = ∅,η2 ⊆ nodes(N).

Then there exists a node m ∈ nodes(M) such that Inm(N) = η2. Further, whenever N
m.c!v
7−−−−−→ N ′, then

M ‖N
c!vBη1
7−−−−−−−→M′ ‖ N ′
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(iv) Suppose N
c!vBη
7−−−−−−→ N ′ for some channel c, value v and non-empty set of nodes η, η1, η2 such that

η = η1∪η2. Also, assume that η1∩nodes(N) = ∅,η2 ⊆ nodes(N).

Then there exists a node m ∈ nodes(N) such that Inm(M) = η2. Further, whenever M
m.c!v
7−−−−−→M′, then

M‖N
c!vBη1
7−−−−−−−→M′ ‖ N ′

Proof. The proofs of statements (i) and (ii) are similar in style to those of propositions 4.2.18(i) and 4.2.18(ii),
respectively; moreover, the proofs for statements (iii) and (iv) are analogous to those of propositions 4.2.18(iii)
and 4.2.18(iv), respectively. �

The last kind of extensional transitions we need to consider are those related to input actions.

Proposition 4.2.20. LetM,N be two networks such that (M‖N) is defined.

(i) IfM
m.c?v
7−−−−−−→M′, and n < Input(N), thenM‖N

m.c?v
7−−−−−−→M′ ‖ N

(ii) If N
m.c?v
7−−−−−−→N ′, and n < Input(M), thenM‖N

m.c?v
7−−−−−−→M ‖N ′

(iii) IfM
m.c?v
7−−−−−−→M′ and N

m.c?v
7−−−−−−→M′, thenM‖N

m.c?v
7−−−−−−→M′ ‖ N ′.

Proof. See the Appendix. �

As we will see in sections 4.3.1 and 4.4.1, in the following we will also need to compose weak extensional
transitions. In general, this problem cannot be solved due to the non-standard definition of weak extensional
output transitions, Definition 4.1.5(3b). In fact, it is possible that a weak extensional output is obtained as the
result of multiple strong extensional outputs, each of which has to be composed with a weak input action.

Luckily, for our purposes we only need to compose weak transitions of the formM
µ1
|===⇒M′ with transi-

tions of the form G
µ2
|===⇒G′, where G ∈ G (see Definition 3.2.5). In this case we are able to provide composi-

tional results for weak extensional transitions.
The main result we need to accomplish this task is stated in the following Lemma.

Lemma 4.2.21. LetM be a network and G be a generating network such thatM‖ G is defined.

IfM
τ
|===⇒M′ for some networkM′, thenM‖ G

τ
|===⇒M′ ‖ G.

Conversely, if G
τ
|===⇒G′ for some network G′, thenM‖ G

τ
|===⇒M ‖ G′.

Proof. We only prove the first statement, for the proof for the second one can be obtained symmetrically.

IfM
τ
|===⇒M′, then by Definition 4.1.5 (1) we have that

M0
τ
7−−→M1

τ
7−−→ · · ·

τ
7−−→ Mk

whereM0 =M,Mk =M′ and k ≥ 0. The proof is performed by induction on k.

If k = 0, thenM =M′, henceM‖ G
τ
|===⇒M′ ‖ G trivially holds.

Let then k > 0, and suppose that ifM0
τ
7−−→ · · ·

τ
7−−→Mk−1 thenM‖ G

τ
|===⇒Mk−1 ‖ G. SinceMk−1

τ
7−−→Mk,

by Proposition (4.2.18)(i) it holds thatMk−1 ‖ G
τ
7−−→Mk ‖ G. Therefore, we have that

M0 ‖ G
τ
|===⇒Mk−1 ‖ G

τ
7−−→Mk ‖ G

For M =M0, Mk =M′ and
τ
|===⇒ is the transitive, reflexive closure of

τ
7−−→ (see Definition 4.1.5(1)), it

follows thatM‖ G
τ
|===⇒M′ ‖ G, as we wanted to prove. �

We will also need the following Lemma.

Lemma 4.2.22 (Single Node Inputs). Let G = ΓG B l~P�, G′ = Γ′G B l~P� be generating networks, and suppose

that G
m.c?v
7−−−−−−→ ΓG B l~Q� for some node m, channel c, value v and process Q.

Then, for any n ∈ Input(G′), it holds that G′
n.c?v
7−−−−−→ Γ′G B l~Q�.
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.

Proof. Let n be an arbitrary node in Input(G′). By definition we have that Γ′G ` n→ l.

If G
m.c?v
7−−−−−−→ ΓG B l~Q� for some node m, then by Definition (4.1.3)(2) it follows that m ∈ Input(G). Thus,

ΓGm→ l. Also, G
m.c?v
−→ ΓG B l~Q�. The last transition can be derived in the intensional semantics (Figure 2.4)

only via rules (B-DEAF) and (B-REC). In the first case we have that P
c?v
−→Q (recall that G = ΓG B l~P�), while

in the last one it follows that ¬rcv(P,c), and P = Q.

If P
c?v
−→Q, since Γ′G ` n→ l, by an application of Rule (B-REC) we can derive the transition Γ′G B l~P�

n.c?v
−→

l~Q�, which is exactly the transition G′
n.c?v
−→ Γ′G B l~Q�. For n ∈ Input(G), by Definition 4.1.3(2) it follows that

G
n.c?v
7−−−−−→G′.

If ¬rcv(P,c), by an application of Rule (B-DEAF) we obtain the transition ΓG Bn~P�
n.c?v
−→ n~P�, and since in

this case P = Q it follows that this transition can be rewritten as G
n.c?v
−→ ΓG B l~Q�. Again, since n ∈ Input(G′)

by hypothesis, it follows that G′
n.c?v
7−−−−−→ Γ′G B l~Q�. �

Note that in Lemma 4.2.22 the networks G and G′ do not have necessarily the same connectivity graph.

Composition of weak extensional transitions can now be obtained as a simple consequence of Lemma
4.2.21 and of the composition results we have already proved for strong extensional transitions.

Proposition 4.2.23 (Weak Composition). LetM be a network, G be a generating network such that (M ‖ G)
is defined. Suppose that G = ΓG Bn~P� for some connectivity graph ΓG, process P and node n. Then, for any
testing networkM′ and generating network G′ the following statements hold.

(i) IfM
τ
|===⇒M′ and G

τ
|===⇒G′, thenM‖ G

τ
|===⇒M′ ‖ G′

(ii) IfM
c!vB{n}
|=======⇒M′ and whenever G

m.c?v
|======⇒G′ for some m ∈ Input(G), thenM‖ G

τ
|===⇒M′ ‖ G′

(iii) IfG
c!vBη
|======⇒G′ for some channel c, value v and set of nodes η such that η⊆ nodes(M), andM

n.c?v
|=====⇒M′,

thenM ‖ G
τ
|===⇒M′ ‖ G′

(iv) IfM
c!vBη
|======⇒M′ for some value v, channel c and set of nodes η such that n < η, thenM‖G

c!vBη
|======⇒M′ ‖ G

(v) If G
c!vBη
|======⇒ G′ for some value v, channel c and set of nodes η such that η∩ nodes(M) = ∅, then M ‖

G
c!vBη
|======⇒M ‖ G′

(vi) If M
c!vBη
|======⇒M′, where n ∈ η, and G

m.c?v
7−−−−−−→ G′ for some node m ∈ Input(G), then M ‖ G

c!vBη\{n}
|=========⇒

M′ ‖ G′

(vii) Suppose G
c!vBη
|======⇒G′, where η = η1 ∪ η2 for some η1,η2 such that η1 ∩ nodes(M) = ∅, η2 ⊆ nodes(M).

Then, wheneverM
n.c?v
|=====⇒M′, it follows thatM‖ G

c!vBη1
|=======⇒M′ ‖ G′.

(viii) IfM
m.c?v
|======⇒M′ and m < Input(G), thenM‖ G

m.c?v
|======⇒M′ ‖ G

(ix) If G
m.c?v
|======⇒G′, and m < Input(M), thenM‖ G

m.c?v
|======⇒M′ ‖ G

(x) IfM
m.c?v
|======⇒M′ and G

m.c?v
7−−−−−−→G′, thenM‖ G

m.c?v
|======⇒M′ ‖ G′.

Proof. Most of these proofs are easy to perform. However, some of them present some technical details,
which arise as a consequence of the non-standard definition of output actions. See the Appendix for detailed
proofs. �
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4.3 Full Abstraction for May-testing

In this Section we provide a characterisation result for the may-testing preorder vmay. Specifically, we show
that this relation coincides with the inclusion over the set of extensional traces, which are defined later in this
Section.

Correspondences between the may-testing preorder and the set of traces have already been proved, in a
finitary setting, for well known process calculi [33, 17]. Here, the proofs of the full-abstraction results rely on
composition and decomposition results for weak transitions.

The proof of the equivalence between traces inclusion and the may-testing preorder is split in two parts:
Soundness and Completeness. Soundness, which states that the trace inclusion relation is included in the may-
testing preorder, is proved by showing that the former is compositional. Completeness, which states that the
may-testing preorder is a subset of traces inclusion, is proved by exhibiting a characteristic test for each trace.

In this Section we follow the same approach. First we give the formal definition of the set of traces for
networks. Then we show that, if we focus on finitary networks, trace inclusion coincides with the may-testing
preorder.

Given an alphabet of symbols A, we use the standard notation A∗ to denote the set of finite words (or lists)
whose occurrences are elements of A. Traces are elements of the set (EActω)∗, where EActω = EAct ∪{ω}. In
other words, a trace is a finite sequence of symbols, each of which is either a visible extensional action (where
visible means that it can be detected by the external environment of some network), or a success mark ω. In the
following we use ε to denote the empty trace in the set (EActω)∗ and t, t′ to range over traces. For any µ ∈ EAct,
t, t′ ∈ EAct∗, we use the notation µ::t to represent the trace constituted by the symbol µ followed by the trace t,
and t::t′ as the concatenation of t and t′.

Next we define the set of traces for a networkM; the idea is that a trace µ1:: · · · ::µk ( k ≥ 0) is a trace ofM
if the latter is equipped with a sequence of (weak) extensional transitions

M
µ1
|===⇒M1

µ2
|===⇒ ·· ·

µk
|===⇒Mk

Further, we have that µ1:: · · · ::µk::ω is a trace ofM if, in the sequence of weak extensional transition above, the
configurationMk is successful.

Definition 4.3.1 (Traces of a Network). The set of traces of a testing networkM is denoted by traces(M), and
it is defined as the least set such that

(i) ε ∈ traces(M)

(ii) IfM
τ
|===⇒N , where N is a successful configuration, then ω ∈ traces(M)

(iii) IfM
m.c?v
|======⇒N for some node m, channel c, value v and networkN such that t ∈ traces(N), then m.c?v t ∈

traces(M)

(iv) If M
c!vBη
|======⇒ N for some channel c, value v, non-empty set of nodes η and network N such that t ∈

traces(N), then c!vBη::t ∈ traces(M)

Remark 4.3.2. Note that there are elements of (EActω)∗ which can never appear in the set of traces of a
network. For example, the trace ω::c!vB η2 does not belong to the set of traces traces(M) for any arbitrary
networkM, as it can be quickly noted by looking at Definition 4.3.1.

In general, no trace of the form t::ω::t′, where t′ , ε, can appear in traces(M) for an any networkM.

It is straightforward to observe that traces are strictly related to the may-pass testing relation. Intuitively, a
trace which does not contain any occurrence of input actions corresponds to a computation fragment (recall that,
by Proposition 4.1.4, a reduction coincides up-to structural equivalence with either a τ-extensional transition or

2Formally, this is a shortcut for the trace ω::c!vBη::ε.
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a broadcast extensional transition). Thus, it is easy to note that a successful computation fragment corresponds
to a trace which contains a sequence of output extensional actions, followed by the special symbol ω. In the
following, we use the term output trace when referring to a trace of the form µ1::µk, k ≥ 0, where µi = ci!viBηi

for some ci ∈ Ch, vi ∈ Val and non-empty set of nodes ηi; note that if k = 0, then the trace t is exactly ε. The
term successful trace is used to refer to traces of the form t::ω, where t is an output trace.

Proposition 4.3.3. Any arbitrary networkM has a successful computation if and only if there exists a success
trace t = c1!v1Bη1:: · · ·ck!vk B ::ηk::ω such that t ∈ traces(M).

In practice, the proof of this statement becomes easier if we reason over (strong) extensional transitions,
rather than over their weak counter-part. To this end, the following definition turns out to be very useful.

Definition 4.3.4 (Simple Sets of Traces). For any networkM, we define its simple set of traces, tracess(M),
as the smallest set such that

(i) ε ∈ tracess(M)

(ii) IfM is a successful configuration, then ω ∈ tracess(M)

(iii) IfM
τ
7−−→N and t ∈ tracess(N), then t ∈ tracess(M)

(iv) If M
m.c?v
7−−−−−−→ N and t ∈ tracess(N) for some node m, channel c, value v and trace t, then m.c?v :: t ∈

tracess(M)

(v) IfM
c!vBη
7−−−−−−→N and t ∈ tracess(M) for some channel c, value v, non-empty set of nodes η and trace t, then

c!vBη :: t ∈ tracess(M)

(vi) IfM
c!vBη1
7−−−−−−−→N , and c!vBη2 :: t ∈ tracess(N) for some non-empty set of nodes η2 such that η1∩η2 = ∅,

then c!vB (η1∪η2) :: t ∈ tracess(M)

For any arbitrary networkM, its set of traces traces(M) and its simple sets of traces tracess(M) coincide.
This can be proved by using the following Lemma.

Lemma 4.3.5. LetM, N be testing networks such thatM
τ
|===⇒N . Then, for any trace t ∈ tracess(N) it holds

t ∈ tracess(M).

Proof. See the Appendix. �

Proposition 4.3.6. For any networkM, traces(M) = tracess(M).

Proof. See the Appendix. �

Proof of Proposition 4.3.3 For the only if implication, we actually prove that a networkM has a successful
computation only if there exists an output trace t such that t = c1!v1 Bη1:: · · · ::c j!v j Bη j and t::ω ∈ tracess(M).
Then the result follows from Proposition 4.3.6.

Suppose that M has a successful computation fragment. We show that there exists a trace t = c1!v1 B

:: · · · ::c j!v j B η j such that t::ω ∈ tracess(M) by induction on the minimal length k of a successful computation
forM.

k = 0 Then M is a successful configuration. Further ω ∈ tracess(M) by Definition 4.3.4 (ii). In this case it
suffices to let j = 0, hence t = ε, to obtain t::ω ∈ tracess(M).

k > 0 Suppose the statement is true for k−1. In this case we have thatM_N for some networkN which has
a successful computation fragment of length k− 1. By inductive hypothesis, there exists an index j ≥ 0
and a trace t = c1!v1 Bη1:: · · · ::c j!v j Bη j::ω such that t :: ω ∈ tracess(N). SinceM_N , by Proposition
4.1.4 we have two possible cases.
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(a) M
τ
7−−→N ′, for some network N ′ ≡ N .

It is not difficult to note that traces are preserved by structurally congruent networks3. Therefore,
t::ω ∈ traces(N ′). Now it follows from Definition 4.3.4(iii) that t::ω ∈ tracess(M).

(b) M
c0!v0Bη0
7−−−−−−−−→N ′ for some channel c0, value v0,set of nodes η0 and networkN ′ such thatN ′ ≡N . In

this case we have that t::ω ∈ tracess(N ′), and by Definition 4.3.4(v) it follows that c0!v0Bη0::t::ω ∈
tracess(M).

It remains to note that the trace c0!v0Bη0::t is exactly c0!v0Bη0:: · · · ::c j!v jBη j, which is an output
trace.

For the if implication, suppose that there exists a (possibly empty) output trace t = c1!v1Bη1 :: · · · :: c j!v jBη j

for some j ≥ 0 (the case j = 0 corresponds to the empty trace ε) and t::ω ∈ traces(M). Then, it is not difficult to

show thatM
c1!v1Bη1
|========⇒

c j!v jBη j

|========⇒N , with N being a successful configuration. By Proposition 4.1.9 we have
thatM_∗ N , henceM has a successful computation fragment. �

We have defined traces formally and proved some of their properties. The rest of this Section is devoted to
prove the following result.

Theorem 4.3.7 (Characterisation of May-Testing). LetM,N be two finitary composable networks; suppose
that Input(M) = Input(N) and Output(M) = Output(N).

ThenMvmay N if and only if traces(M) ⊆ traces(N).

Proof. The proof of Theorem 4.3.7 is split in two parts; Soundness (Theorem 4.3.8) and Completeness (Theo-
rem 4.3.19).

LetM,N be two finitary networks such that Input(M) = Input(N), Output(M) = Output(N); if traces(M)⊆
traces(N), thenMvmayN as a consequence of Theorem 4.3.8. Conversely, ifMvmayN , then Theorem 4.3.19
ensures that traces(M) ⊆ traces(N). �

4.3.1 Soundness

This Section is devoted to the proof of the following Theorem:

Theorem 4.3.8 (Soundness for May-Testing). LetM,N be two testing networks such that Input(M) = Input(N),
Output(M) = Output(N). ThenMvmay N .

Before looking at the technical details needed to perform the proof of Theorem 4.3.8, let us look briefly how
this result can be proved in simpler process calculi [33]; In this case the proof of soundness for the may-testing
equivalence can be performed by showing that, in a finitary setting, trace inclusion is preserved by the parallel
composition operator |, proper of the CCS calculus.

The proof of compositionality for this operator is provided by first defining how, for any two arbitrary
processes P,Q, it is possible to infer a trace for the composite processes P |Q from the traces of its individual
components. This operation is known as zipping.

Conversely, if a trace for the composite process P |Q is known, then it is possible to infer a set of couples of
traces, 〈 t , t′ 〉, which contains at least an element whose left and right projections are traces of P, Q, respectively.
This operation is known as unzipping.

Compositionality of trace inclusion is then obtained by showing that, if we unzip a trace t to obtain a set of
couples of traces 〈 t , t′ 〉, and then we zip the two traces contained in one of these, we obtain the original trace t.

Specifically, suppose that P,Q,R are CCS processes, and the traces of P are included in the traces of Q;
further, let t be an arbitrary trace of the composite process P |R. By unzipping t, we obtain a set {〈 ti , t′i 〉}i∈I of
couples of traces, where I is an index set. Now, we are ensured that, for at least one index i ∈ I ti is a trace of P

3This follows because extensional transitions are preserved by structurally congruent networks, which is itself a consequence of inten-
sional transitions to be preserved by structurally congruent networks; see Proposition 2.4.6.
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and t′i is a trace of R. Further, for any index i ∈ I with such a property it holds that ti is also a trace of Q. Now,
by zipping ti and t′i we obtain that t is a trace of the process Q |R.

In our calculus of networks, however, zipping and unzipping properties for traces are not enough to prove
the compositionality of trace set inclusion, with respect to the extension operator ‖>. This is because the re-
sults concerning zipping and unzipping of traces rely on the compositional and decompositional properties of
extensional transitions, which have been proved only for the symmetric composition operator ‖.

In practice, when considering three networksM,N ,T such thatM‖>T ,N ‖>T are defined and traces(M)⊆
traces(N), we have first to perform a change of the composition operator used in order to be able to use zipping
and unzipping properties. The operators symM(·) and symN (·) serve to this purpose, as shown in Proposition
4.2.4. However, by applying these operators we obtain the networksM ‖ symM(T ) and N ‖ symN (T ); now
note that symM(T ) and symN (T ) could be different networks, with different sets of traces4

In order to be able to prove Theorem 4.3.8, we need to be able to infer the traces of symN (T ) from those
of symM(T ), whereM,N and T are the three networks considered above; we call this operation switching.

Now we proceed by presenting how traces can be zipped for networks. In our case zipping of traces is
defined as a set of traces, and the definition of zipping is parametric in two networks. For the moment, we
assume that the right hand side of a composition of the form (M ‖ G), is a generating network (Definition
3.2.5).

Definition 4.3.9 (Zipping). LetM = ΓM BM,G = ΓGBn~P� be respectively a testing network and a generating
network. For any two traces t, t′, we define the set of traces zipG

M
(t, t′) as the least set such that

(i) ε ∈ zipG
M

(ε,ε)

(ii) ω ∈ zipG
M

(ω, t′)

(iii) ω ∈ zipG
M

(t,ω)

(iv) s ∈ zipG
M

(t1, t2) implies s ∈ zipG
M

(c!vB {n}::t1,m.c?v::t2)

(v) If η ⊆ nodes(M) and s ∈ zipG
M

(t1, t2), then s ∈ zipG
M

(n.c?v::t1,c!vBη::t2)

(vi) If s ∈ zipG
M

(t1, t′), and η is a non-empty set of nodes such that n < η, then c!vBη::t ∈ zipG
M

(c!vBη::t1, t′)

(vii) Let η be a non-empty set of nodes such that η∩nodes(M) = ∅;
if s ∈ zipG

M
(t, t2) then c!vBη::s ∈ zipG

M
(t,c!vBη::t2)

(viii) If n ∈ η, η \ {n} , ∅ and s ∈ zipG
M

(t1, t2), then c!vB (η \ {n})::s ∈ zipG
M

(c!vBη::t1,m.c?v::t2)

(ix) Let η = η1 ∪ η2, where η1 ∩ nodes(M) = ∅,∅ ⊂ η2 ⊆ nodes(M); if s ∈ zipG
M

(t1, t2) then c!v B η1::s ∈
zipG
M

(n.c?v::t1,c!vBη::t2)

(x) if m < Input(G) and s ∈ zipG
M

(t1, t′), then m.c?v::s ∈ zipG
M

(m.c?v :: t1, t′)

(xi) if m < Int(M) and s ∈ zipG
M

(t, t2), then m.c?v::s ∈ zipG
M

(t,m.c?v::t2)

(xii) if s ∈ zipG
M

(t1, t2), then m.c?v::s ∈ zipG
M

(m.c?v :: t1,m.c?v :: t2)

The main property of the function zipG
M

(·, ·) that we are interested in, as we have already pointed out, is
stated in Proposition 4.3.10.

Proposition 4.3.10 (Zipping). LetM∈ CNets,G ∈ G be two networks such thatM ‖ G is defined. Then, for
any traces t ∈ traces(M), t′ ∈ traces(G) and s ∈ zipG

M
(t, t′) it holds s ∈ traces(M‖ G).

Proof. This statement follows directly from the weak/strong composition properties we have proved in Section
4.2.2. See the Appendix for a detailed proof. �

4Specifically, the input and output interface of these two networks can be different. This difference affects directly the sets of traces of
the two networks.
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Next we focus on the definition of unzipping.

Definition 4.3.11 (Unzipping). LetM,G be respectively a testing network and a generating network such that
M ‖ G is defined. Further, letM = ΓM BM, G = ΓG Bn~P�.

For any trace s, unzipG
M

(s) is the least set of pairs of traces 〈 t , t′ 〉 which satisfies the following constraints:

(i) 〈ε , ε 〉 ∈ unzipG
M

(ε)

(ii) for any trace t′, 〈ω, t′ 〉 ∈ unzipG
M

(ω)

(iii) for any trace t, 〈 t , ω 〉 ∈ unzipG
M

(ω)

(iv) For any non-empty set of nodes η ⊆ Output(M) and node m ∈ Input(G), if 〈 t1 , t2 〉 ∈ unzipG
M

(s), then
〈c!vBη∪{n} :: t1 , m.c?v :: t2 〉 ∈ unzipG

M
(c!vBη :: s), for any node m ∈ Input(G)

(v) For any set of nodes η and 〈 t , t2 〉 ∈ unzipG
M

(s), then 〈n.c?v :: t , c!vB η∪η′ :: t2 〉 ∈ unzipG
M

(c!vBη :: s),
provided that ∅ ⊂ η′ ⊆ nodes(M)

(vi) For any set of nodes η, if 〈 t1 , t2 〉 ∈ unzipG
M

(s), then 〈c!vBη :: t1 , t2 〉 ∈ unzipG
M

(c!vBη :: s)

(vii) For any set of nodes η, if 〈 t1 , t2 〉 ∈ unzipG
M

(s), then 〈 t1 , c!vBη :: t2 〉 ∈ unzipG
M

(c!vBη :: s)

(viii) If m < Input(G) and 〈 t1 , t′ 〉 ∈ unzipG
M

(s), then 〈m.c?v :: t1 , t′ 〉 ∈ unzipG
M

(m.c?v :: s)

(ix) If m < Input(M) and 〈 t , t2 〉 ∈ unzipG
M

(s), then 〈 t , m.c?v :: t2 〉 ∈ unzipN
M

(m.c?v :: s)

(x) If 〈 t1 , t2 〉 ∈ unzipG
M

(s), then 〈m.c?v :: t1 , m.c?v :: t2 〉 ∈ unzipG
M

(m.c?v :: s)

(xi) If 〈 t1 , t2 〉 ∈ unzipG
M

(c!vBη1 :: c!vBη2 :: s), and η1∩η2 = ∅, then 〈 t1 , t2 〉 ∈ unzipG
M

(c!vB (η1∪η2) :: s).

(xii) If 〈 t1 , t2 〉 ∈ unzipG
M

(s), then for any node m ∈ Input(G), 〈c!vB {n} :: t1 , m.c?v :: t2 〉 ∈ unzipG
M

(s)

(xiii) If 〈 t1 , t2 〉 ∈ unzipG
M

(s), then for any η ⊆ nodes(M), 〈n.c?v :: t1 , c!vBη :: t2 〉 ∈ unzipG
M

(s).

Our aim for unzipping is to prove that, given a trace s ∈ traces(M ‖ G), for some testing network M
and generating network G for which M ‖ G is defined, there exists a pair 〈 t , t′ 〉 ∈ unzipG

M
(s) such that t ∈

traces(M), t′ ∈ traces(G). The proof of this statement relies on the following Lemma.

Lemma 4.3.12. Let M,G be respectively a testing network and a generating network such that M ‖ G is

defined. Also, suppose thatM‖ G
τ
|===⇒ (M′ ‖ G′) for some networksM′, G′.

If s ∈ traces(M′ ‖ G′), and 〈 t1 , t2 〉 ∈ unzipG
M

(s) is a pair of traces such that t1 ∈ traces(M′), t2 ∈ traces(G′),
then there exists a pair of traces 〈 t , t′ 〉 ∈ unzipG

M
(s) such that t ∈ traces(M), t′ ∈ traces(G).

Proof. See the Appendix. �

Proposition 4.3.13 (Unzipping). Let M,G be respectively a testing network and a generating network such
thatM‖ G is defined.

Then, for any trace s ∈ traces(M ‖ G) there exists a pair 〈 t , t′ 〉 ∈ unzipG
M

(s) such that t ∈ traces(M), t′ ∈
traces(G).

Proof. See the Appendix. �

As we have already discussed, in our calculus zipping and unzipping properties alone are not sufficient to
show that trace inclusion is compositional with respect to the extension operator ‖>. To accomplish this goal,
we need another definition, which is provided below.

Definition 4.3.14 (Switching). Let Γ1,Γ2 be two connectivity graphs, P be a process and n be a node such that
G = Γ1Bn~P�,H = Γ2Bn~P�

For any trace t, we define the set switchH (t) as the smallest set such that
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(i) ε ∈ switchH (ε)

(ii) ω ∈ switchH (ω)

(iii) c!vBη′ :: switchH (t) ∈ switchH (c!vBη :: t), where η′ = Output(H)

(iv) for any m′ ∈ Input(H) and t′ ∈ switchH (t), m′.c?v :: t′ ∈ switchH (m.c?v :: t)

For switching we will need the properties stated below.

Lemma 4.3.15. Let G = Γ1Bn~P�,H = Γ2Bn~P� be two networks such that

• Input(G) = ∅ implies Input(H) = ∅,

• Output(G) = ∅ implies Output(H) = ∅.

Then, for any t ∈ traces(G) and t′ ∈ switchH (t′) it holds that t′ ∈ traces(H).

Proof. By induction on the trace t. We show the details only for the case t = c!vBη :: t1, for the cases ε,ω are
trivial, while the case m.c?v :: t1 can be handled similarly.

If t = c!vB η :: t1, then G
c!vBη
|======⇒ (Γ1 B n~Q�) for some process P, η = Output(G) is a non-empty set of

nodes and t1 ∈ traces(Γ1Bn~Q�).
By hypothesis we have that η′ = Output(H) is non-empty. Further, it is straightforward to note that in this

case we have thatH
c!vBη′

|=======⇒ Γ2Bn~Q�.
Since t1 ∈ traces(M), by inductive hypothesis every trace t′′ ∈ switchH (t1) enjoys the property t′′ ∈ traces(Γ2B

n~Q�) 5 Now note that, if t′ ∈ switchG(c!vBη :: t1), then t′ = c!vB η′ :: t′′ for some t′′ ∈ switchH (t1). Since

t′′ ∈ traces(Γ2Bn~Q�), andH
c!vBη′

|=======⇒ (Γ2Bn~Q�), it follows that t′ ∈ traces(H), as we wanted to prove. �

Proposition 4.3.16. [Switching] Let M,N be two networks such that Input(M) = Input(N),Output(M) =

Output(N). Suppose also that G is a generating network such that bothM‖> G and N ‖> G are defined.
Let H = symM(G), K = symN (G). Then, for any trace s and 〈 t , t′ 〉 ∈ unzipH

M
(s) such that t ∈ traces(M),

there exists a trace t′′ ∈ switchK (t′) such that s ∈ zipH
N

(t, t′′).

Proof. See the Appendix. �

We have set up all the tools we require to prove that trace inclusion is preserved by network composition
via the extension operator ‖>. We first prove this property under the assumption that the right hand side of a
composite network M ‖> G is a generating network; then we use the principle of network induction 3.2.7 to
extend the result to arbitrary networks.

Proposition 4.3.17 (Single Node Compositionality for Traces). Let M,N be two testing network such that
Input(M) = Input(N), Output(M) = Output(N) and traces(M) ⊆ traces(N). Then, for any generating network
G such thatM ‖> G and N ‖> G are defined.

Then traces(M‖> G) ⊆ traces(N ‖> G).

Proof. LetH = symM(G), K = symN (G). By Proposition 4.2.4 we have thatM‖> G =M‖H , whileN ‖> G =

N ‖ K .
Let s ∈ traces(M‖G). Then there exists a pair 〈 t , t′ 〉 ∈ unzipH

M
(s) such that t ∈ traces(M), t′ ∈ traces(G), as

stated in Proposition 4.3.13.
Further, we have that t ∈ traces(N) by hypothesis; moreover, by Lemma 4.3.15 there exists a trace t′′ ∈

switchK (t′) such that t′ ∈ traces(K). By Proposition 4.3.16 it also holds that s ∈ zipK
N

(t, t′′); finally, Proposition
4.3.10 ensures that s ∈ traces(N ‖ K).

SinceN ‖K =N ‖>G, we have proved that for any s ∈ traces(M‖>G) it also holds s ∈ traces(N ‖>G). Hence
traces(M‖> G) ⊆ traces(N ‖> G). �

5In practice, the inductive hypothesis holds for any trace t′′ ∈ switchH ′ (t1), where H ′ = Γ2 Bn~Q�. However, it is trivial to show that
the latter set coincides with switchH (t1).



4.3. FULL ABSTRACTION FOR MAY-TESTING 77

So far we have focused on the specific case in which networks are always extended with a generating
network. However, we want to prove that trace inclusion is preserved by the operator ‖> in the more general
case that an arbitrary network T ∈ CNets appears in the right hand side of a composition (M‖> T ).

Corollary 4.3.18. LetM,N be two networks such that traces(M) ⊆ traces(N).

Then, for any network T such that both M ‖> T and N ‖> T are defined, it holds that traces(M ‖> T ) ⊆
traces(N ‖> T ).

Proof. The proof is performed by network induction (Theorem 3.2.7) on the network T , noticing that trace
inclusion is preserved by structurally congruent networks. This is because we have already pointed out that
traces are preserved by structurally congruent networks.

If T is the identity network O, then M ‖> O ≡ M,N ‖> O ≡ N . Since traces(M) ⊆ traces(N), and trace
inclusion is preserved by structurally congruent networks, then traces(M‖> O) ⊆ traces(N ‖> O).

Otherwise, T ≡ T ′ ‖> G for some network T ′ and generating network G. By inductive hypothesis, we have
that traces(M‖>T ′) ⊆ traces(N ‖>T ′). By Proposition 4.3.17 it follows that traces((M‖>T ′) ‖>G) ⊆ traces((N ‖>
T ′) ‖> G).

Recall that the operator ‖> is associative (Proposition 3.2.3), thus we have that that (M ‖> T ′) ‖> G =M ‖>

(T ′ ‖> G) ≡M ‖> T . Similarly, we can prove that (N ‖> T ′) ‖> G ≡ N ‖> T . For trace inclusion is preserved by
structurally congruent networks, it is easy to note that traces(M‖> G) ⊆ traces(N ‖> G). �

Now that we have proved that trace inclusion is compositional with respect to the operator ‖>, we can finally
prove Theorem 4.3.8.

Proof of Theorem 4.3.8 LetM,N be two networks such that Input(M) = Input(N), Output(M) = Output(N)
and traces(M) ⊆ traces(N); in order to show thatMvmay N , it it sufficient to show that, for any arbitrary test
T such that (M‖> T ) and (N ‖> T ) are both defined,M may-pass T implies N may-pass T .

To this end, let T be a test such that it can be used to extend both the networksM,N ; further, suppose that
M may-pass T . By definitionM‖> T has a successful computation; then, by Proposition 4.3.3 there exists a
success trace t such that t ∈ traces(M‖> T ).

Since traces(M) ⊆ traces(N) by hypothesis, it follows from Corollary 4.3.18 that t ∈ traces(N ‖> T ). There-
fore we have that N ‖> T has a successful computation, from which we obtain N may-pass T . �

4.3.2 Completeness

This Section is devoted to prove the following Theorem.

Theorem 4.3.19 (Completeness of May-testing). Let M,N be two finitary, proper networks. If Mvmay N ,
then traces(M) ⊆ traces(N).

Remark 4.3.20. The reader could argue that the restriction to finitary networks in Theorem 4.3.2 could be a
serious limitation for our proof technique. However, we recall that trace inclusion can still be used to prove
whether two networks are may-testing related in an infinitary setting, for such a restriction was not used in the
assumptions of soundness, Theorem 4.3.8.

Further, it is often the case that wireless networks and distributed applications are designed following a
client/server model. Once a client sends a request to a distributed application, it waits to receive an answer; the
application should be designed such that such a request is answered in a finite amount of time. Representing
this kind of systems in our framework always leads to finitary networks.

The standard approach to prove Theorem 4.3.2 is to define a characteristic test Tt for each trace t, in a way
such that M may-pass Tt if and only if t ∈ M. Consider then any two arbitrary networks M,N such that
Input(M) = Input(N) and Output(M) = Output(N), and suppose thatMvmay N .



78 CHAPTER 4. CHARACTERISATION OF THE TESTING PREORDERS

e1

e2

...

ek−1

ek

cn

Figure 4.6: The connectivity graph ΓT used to test networks; here {e1, · · · ,en} = η, and cn is a fresh node name.

Then, for any trace t ∈ traces(M) it holds thatM may-pass Tt, therefore we also have that
N may-pass Tt. At this point it is straightforward to note that we also have t ∈ traces(N). Due to the
arbitrariness of the trace t, this line of reasoning leads to establish that traces(M) ⊆ traces(N).

Note that, in a finitary setting, then the set of channels Ch and the set of values Val need to be finite, for
otherwise every networkM such that Input(M) , ∅ there would exist a transition of the formM

m.c?v
7−−−−−−→M′,

where c is an arbitrary channel and v is an arbitrary value; thenM would have an infinite number of (strong)
extensional transitions, contradicting the hypothesis that such a network is finite branching.

The main topic of this section is that of providing a characteristic test for any possible trace. To this end,
we introduce some shortcut notation for processes; while this is not strictly necessary, it will help to keep the
definition of the tests clear.

Given a (possibly empty) list of variables x1, · · · , xn, we define the process c?(x1, · · · , xn) .P to be exactly P

if the list above is empty, c?(x1) .c?(x2, · · · , xn) .P otherwise. Further, we let the process LOCK to be exactly∑
c∈Ch c?(x) .0; that is, LOCK terminate whenever it receives an input on any given channel. We have already

noted that in a finitary setting the set Ch is finite, so that the process LOCK is well defined.

Similarly, we let ALLOW(c, x) .P = c?(x) .P +
∑

d∈Ch
d,c

d?(x) .0. This process allow a value to be received

along channel c, but it deadlocks if it detects a value being transmitted along a different channel.

We are now ready to define the networks that we use for testing traces. For the moment we assume that the
input and output interface of a network are fixed; given two sets of nodes ηin,ηout, we restrict our attention to
networksM such that Input(M) = ηin,Output(M) = ηout. Further, we let Int(M) = η1 ∪ η2 = {e1, · · ·ek} and we
assume that k > 0; that is, either ηin , ∅ or ηout , ∅.

First we define the network topology that we use for the characteristic tests of traces; then we provide a
definition of the code that each node is running in these networks. This definition is given inductively over
traces. Before proving that a test Tt we define is indeed a characteristic test for the trace t, we supply an
informal explanation of its behaviour.

The connectivity graph that we use for networks is depicted in Figure 4.6. Here the nodes e1, · · · ,en corre-
spond to the external nodes of the networkM being tested, while cn is a fresh node, which we call controller

node. Since the extensional behaviour ofM is being observed by multiple nodes, there is the need to coordinate
the way they interact with the external environment; this task is accomplished by the controller node cn.

Given a trace t, the network Tt = ΓT BTt which we use for testing whether t is a trace of a network is defined
as follows; the system term Tt has the form

∏k
i=1 ei~Pi

t� | cn~Pt�. For any node e1, · · · ,ek and for the node cn,
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the processes Pt
i, i = 1, · · ·k, as well as the process Pt, are defined inductively over the trace t. Note that, since

we are assuming that the networks being tested are proper, there is no need to test for traces which contain the
success symbol ω. In fact, the reason of this restriction is that the trace ω cannot be tested, for the success
process ω has no extensional action associated.

In order to present the code that each node of the testing network Tt runs, we use some process definitions
which make the analysis of the computations of experiments easier. Here we assume that i ranges over 1, · · ·k.

Pnext.Q = cc!〈PROCEED〉 .Q

Pcheck.Q = cc!〈CHECK〉 .cc?(x1, · · · , xk) .Q

P′next.Q = cc?(x) .Q + LOCK

P′check.Q = cc?(x) .(cc!〈CLEAR〉 .Q + LOCK) + LOCK

We can use these processes to define the code running at each node of a test; these are defined below.

(i) t = ε

Pi
ε = P′check.0

Pε = Pcheck.ω

(ii) t = d!vBη::t′;

Pi
t =


ALLOW(d, x) .if x = v then (cc!〈DETECTED〉 .(P′check.P

′next.Pi
t′ ) + LOCK) else 0 if ei ∈ η

P′check.P
′
next.P

i
t′ if e j < η

Pt = cc?
(
x1, · · · , x|η|

)
.Pcheck.Pnext.Pt′

(iii) e j.d?v::t′

Pi
t =


(d!〈v〉 .cc!〈SENT〉 .(P′check.P

′
next.P

i
t′ + LOCK)) + LOCK if i = j,e j ∈ ηin

P′check.P
′
next.P

i
t′ otherwise

Pt = cc?(x) .cc!〈CHECK〉 .Pcheck.Pnext.Pt′

Let us explain, at least informally, how the tests we have defined work. The test for the trace ε is trivial; this
always can reach a successful configuration after a sequence of τ-extensional transitions, in which each of the
nodes e1, · · · ,ek send an acknowledgement message to the controller node. Upon receiving the acknowledge-
ment message from each of the nodes above, the controller node cn reports success. While the coordination
between nodes e1, · · · ,ek and the controller node is not strictly necessary in this case, it reveals to be helpful
when dealing with the proofs of technical statements concerning the behaviour of characteristic tests.

In all the other cases we need to check whether the tested network can perform a sequence of weak exten-
sional transitions which induces the trace being tested. To accomplish this task, the test checks each of these
transitions in sequence. That is, a characteristic test of the form Tµ::t first checks whether the testee M can

perform a weak extensional actionM
µ

|===⇒M′, for some networkM′; if this is the case, then the test proceeds
by checking whether the derivative ofM,M′, is equipped with the trace t.

Since the nodes e1, · · · ,ek can only interact with the tested network partially, the test Tt implements a co-
ordination protocol in which the controller node cn collects the information about the extensional behaviour
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observed by all the nodes above; such a coordination allows the node cn to infer the extensional activity per-
formed by the tested network.

The protocol which the test uses for detecting a weak extensional action is composed of three stages,
controlled by the node cn; in this protocol the nodes of a test use a fresh coordination channel cc for information
exchange. The different stages of the coordination protocol are described below. Further, the protocol is
designed to fail whenever an arbitrary node interacts with the tested network while coordination is in progress.

Detect In this stage only nodes which appear in the action at the head of the trace being tested can broadcast
messages to the controller node. If the head of the trace has the form c!vBη, these are exactly the nodes
included in η, while if the action being considered has the form m.c?v then the only node which is able
to broadcast messages to cn is exactly m. Such nodes interact with the tested network to ensure that its
behaviour is consistent with the weak transition being tested, then they inform the controller node that it
can start the next stage of the protocol,

Once the controller node has received a request to proceed from each of these nodes, it broadcasts a value
to all the nodes in the testing network, notifying them that the protocol has entered in the second stage

Check In this stage the controller nodes waits to receive a feedback from all the nodes in {e1, ·,ek}. Nodes
which had an active role in the Detect stage reply to this request only in the case they observed no
activity performed by the tested network since they sent the acknowledgement message to the controller
node in the first stage. All the other nodes, instead, reply only if they detected that the part of the tested
network with which they can interact has exhibited no observational behaviour also in the detect stage.
If the controller node receives a reply from all the nodes e1, · · · ,ek, then it enters in the final stage of the
protocol,

Proceed If the protocol enters in this stage, then it is ensured that the tested network has performed the (weak)
extensional action which the test Tt was designed for; thus, it notifies the nodes e1, · · · ,ek that the test
can start detecting another extensional action.

In this stage the message broadcast by node cn is received by every node in {e1, · · · ,ek} only if the tested
network has exhibited no observational behaviour after the Check stage had finished. If this is the case,
the protocol terminates and the network start to check for the tail of the trace being tested.

Let us illustrate in deeper detail the behaviour of a characteristic test Tt; here we assume that t = d!vBη::t′,
where η is an arbitrary set of nodes included in {e1, · · · ,ek}. Recall that cc is a fresh channel, which is not used
by the tested network.

Detect Stage When the test starts its computation, each node e in the set η waits to receive a value along
channel d, then it compares it with v. If this comparison is successful, then it sends an acknowledgement
message to cc, informing it that the correct value has been detected at node e. If the comparison is not
successful, or if the node e detects some other activity before sending the acknowledgement message, it
deadlocks.

All the other nodes different from cn will not be able to perform any broadcast; further, if these nodes
detect some activity performed by the network being tested they deadlock. Node cn, on the other hand,
waits to receive exactly |η| acknowledgements value; if this happens, then every node in η has received
value v exactly once; this is ensured because only nodes in η are able to broadcast an action when the test
Tt starts its computation.

Check Note that in the detect stage of the experimentM ‖> Tt, node cn has received no feedback from those
nodes which are not included in η. However, such nodes could have been detected some activity per-
formed by the testee; this could mean that the tested network has broadcast some value to some node
e′ < η while some of the nodes in η where still waiting to detect the value v to node c.
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In this case the network would have performed a sequence of extensional transitions

M
d!vBη′

|=======⇒
d′!wBη×

|========⇒
d!vBη′′

|=======⇒M′, where η× \η , ∅. It is easy to check that this sequence of transitions

does not correspond to an extensional transition of the formM
d!vBη
|======⇒M′.

To be sure that the scenario above did not happen in the computation, node cn broadcasts a message to
all the other nodes in nodes(Tt), requesting a feedback from them.

At this stage of the computation the following holds:

• A node in η is not deadlocked only if it has only detected value v along channel d exactly once,
while all the other nodes are not deadlocked if they detected no activity at all

• Each of the nodes in the network (excluded cn) which is still active replies to the controller node
with another acknowledgement message. The latter then waits to receive exactly k acknowledge-
ment messages, one for each external node inM.

Note that the controller node cn receives exactly k acknowledgement messages if and only if the tested

network M has performed a sequence of weak extensional transitions M
d!vBη1

|=======⇒ ·· ·M
d!vBη j

|=======⇒M′,
where the sets η1, · · · ,η j are pairwise disjoint and their union corresponds to η. Our non-standard
definition of weak extensional actions ensures that this corresponds to the weak extensional transition

M
d!vBη
|======⇒.

Proceed Stage At this point the controller node cn decrees that the transition which the test was designed to
check has been performed by the tested network. The final step performed by the controller node in the
experimentM ‖> Tt is that of broadcasting a message to all the nodes e1, · · · ,ek, notifying them that they
can start testing for the trace t′.

Note that in this stage nodes in {e1, · · · ,ek} deadlock if they detect that the tested network has exhibited
some observational behaviour. This is needed to ensure that no activity can be performed by a network
whilst the test has finished detecting for an extensional transition, but it has not started to detect another
yet.

The reader should now have a clear idea of the behaviour of characteristic tests of traces. In the remainder
of this Section we give a formal proof that each of the tests Tt captures the associated trace t. First we prove
that if t ∈ traces(M) thenM‖> Tt has a successful computation, then we prove the converse implication.

Before proving these statements, we will need some technical lemmas which are very useful when perform-
ing the proofs. First, let i range over 1, · · · ,k, t be a trace and η be a set of nodes such that ∅ ⊂ η ⊂ {e1, · · · ,ek}.
We define the following networks:

T t
next = ΓT B

k∏
i=1

ei~P′next.P
i
t� | cn~Pnext.Pt�

T t
η = ΓT

∏
i∈η

ei~P′next.P
i
t�

∏
i<η

ei~(cc!〈CLEAR〉 .P′next.P
i
t) + LOCK�

|cn~cc?
(
x|η|+1, · · · , xk

)
.Pnext.Pt�

T t
check = ΓT B

k∏
i=1

ei~P′check.P
′

check.P
i
t� | cn~Pcheck.Pnext.Pt�

For any trace t, let Testst be the set of networks

Testst = {T t
next,T

t
η,T

t
check | ∅ ⊂ η ⊂ {e1, · · · ,ek} }

Intuitively, the tests in Testst correspond to the different configurations that can be obtained while coordina-
tion between nodes is in progress in an experiment. For each of these configurations there are three possibilities:
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• proceed to the next step of the coordination progress, which is a test in Testst,

• or complete the coordination activity, in which case the resulting test is Tt

• or fail at some node ei; this can happen only if in an experimentM‖> T ′, where T ′ ∈ Testst, the network
M broadcasts some value which can be detected by some of the nodes e1, · · · ,ek, which are affected by
the computation by making the code they are running evolve in the deadlocked process 0.

Note that, if the coordination protocol fails at some step of a computation, then this cannot correspond
to a successful computation. Intuitively speaking, this is because, when testing for a trace, the code running
at node cn is deterministic; since this is the only node that can enable the success process ω, in a successful
computation for an experimentM ‖> T ′, T ′ ∈ Testst, we have that node cn has to eventually run the code Pt.
Further, for any trace t code Pt first waits to receive a value from each of the nodes in {e1, · · · ,ek}. However,
this is possible only if the code running at this node is not the deadlocked process 0, that is the protocol has
completed the coordination process without errors.

Formally, the following statements hold.

Lemma 4.3.21 (Coordination). Let t be a trace, M0 = ΓM BM0 be a composable network, and consider an
experiment of the formM‖> T0, where T0 ∈ Testst.

Let alsoM0 ‖> T0 _ · · ·_Mn ‖> Tn be a successful computation of minimal length forM‖> T ′.

Then there exists an index j such that T j = Tt, withM0
τ
|===⇒M j.

Proof. The proof of this statement is very technical in its details. See the Appendix for a detailed outline. �

Corollary 4.3.22. Let t be a trace, M0 = ΓM BM0 be a proper network, and consider the experiment M ‖>
T t

check. Let alsoM0 ‖> T0 _ · · ·_Mn ‖> Tn be a successful computation of minimal length forM ‖> T t
check;

here we assume that T0 = T t
check.

Then there exists an index j such that T j = Tt, withM0
τ
|===⇒M j.

Proof. This statement is an instance of Lemma 4.3.21, where T0 is chosen to be exactly T t
check. �

Lemma 4.3.21 has deep consequences. It says that coordination between nodes in a testing network suc-
ceeds only in the case that none of the nodes in the testee has performed some activity which can be detected
by the external environment. When this happens, a computation of an experiment can no longer be successful.

Next we show that, when in an experiment of the formM ‖> Tt with t , ε the testing component is in the
detecting stage, then the coordination protocol can advance to the next stage without having the code at some
of its nodes failing (that is, reaching a deadlocked configuration) only if the tested componentM can perform
the weak extensional action corresponding to the head of the trace.

First we focus on the case in which the trace being tested has the form c!vB η::t′; in this case, let η×, η↓

be three (possibly empty) sets of nodes which constitute a partition of η; for each possible choice of these sets
define the test

T t
η×,η�,η↓

= ΓT B
∏

i:ei∈η×

ei~Pt� |
∏

i:ei∈η�

ei~cc!〈DETECTED〉 .P′next.P
′

check.P
′
t′� |∏

i:ei∈η�

ei~P′next.P
′

check.P
′
t′� | cn~cc?

(
x1, · · · , x|η×∪η� |

)
.Pnext.Pcheck.Pt′�

We let DTestsc!vBη::t′ be the collection of tests defined according to all the possible choices of η×,η� and
η↓.

Intuitively, these are the configurations that can be encountered in the testing component of a successful
computation of an experiment of the formM ‖> Tc!vBη::t′ . Here the set η× contains the nodes in η that are still
waiting to detect value v along channel c, nodes in η� are exactly those nodes which have detected the value,
but still haven’t sent any acknowledgement to the coordinating node cn, while nodes in η↓ are those nodes
which have detected the value and sent the acknowledgement message to cn.



4.3. FULL ABSTRACTION FOR MAY-TESTING 83

We can define a well-founded relation ≺ between elements of DTestst
c!vBη, based on the contents of the sets

η×,η� and η↓. This relation is defined as the least transitive relation such that if ei ∈ η
× for some i = 1, · · · ,k,

then 〈η×,η�,η↓〉 ≺ 〈η× \ {ei},η
�∪{ei},η

↓〉, while if ei ∈ η
� then 〈η×,η�,η↓〉 ≺ 〈η×,η� \ {ei},η

↓∪{ei}〉.

The relation ≺, defined for triples of sets of nodes, can be now lifted to tests in DTestsc!vBη::t′ in the obvious
manner. Intuitively, whenever T ≺ T ′ for two tests in DTestsc!vBη::t′ , then if both T and T ′ appear in a
successful computation of an experiment M ‖> Tc!vBη::t′ , then T precedes T ′ in the considered computation.
Note that the relation ≺ is well-founded. Also, it contains a bottom element, which is the test T t′

η,∅,∅
and a top

element, which is the test T∅,∅,η. Further, it is straightforward to note that the last test is structurally congruent
to T t′

check.

We prove the following useful Lemma for this collection of tests.

Lemma 4.3.23 (Detection). Let t be a trace such that t = c!vBη :: t′ for some trace t′ and set of nodes η such
that ∅ ⊂ η ⊆ {e1, · · · ,ek}.

LetM0 = ΓMBM0 be a proper network and T0 =Tη×,η�,η↓ be a test in DTestst. Suppose that the experiment
M0 ‖> T0 has a successful computation of the form

M0 ‖> T0 _ · · ·_Mn ‖> Tn

Then there exists an index j > 0 such that T j = T t
check, andM

µ

|===⇒M j, where µ = τ if |η×| = ∅, c!vB η×

otherwise.

Proof. The proof of this statement is similar in style to that of Lemma 4.3.21. However, it contains a significant
amount of technical details. See the Appendix for a detailed outline of the proof. �

Corollary 4.3.24. Let t be a trace such that t = c!vBη :: t′ for some trace t′, where ∅ ⊂ η ⊆ {e1, · · · ,ek}.

Let M0 = ΓM BM0 be a proper network and T0 = Tc!vBη::t′ . Suppose that the experiment M0 ‖> T0 has a
successful computation of the form

M0 ‖> T0 _ · · ·_Mn ‖> Tn

Then there exists an index j > 0 such that T j = T t
check, andM

µ

|===⇒M j, where µ = τ if |η×| = ∅, c!vB η×

otherwise.

Proof. Note that we have that Tc!vBη::t′ ≡ Tη,∅,∅ ∈ DTestc!vBη::t′ .

Then the corollary is an instance of Lemma 4.3.23, when applied to the test Tc!vBη::t′ . �

We perform a last check for the family of tests we defined, this time dealing with input actions.

Lemma 4.3.25 (Sending). Let t be a trace such that t = m.c!v :: t′ for some trace t′, value v, channel c and node
m.

Let M0 = ΓM BM0 be a proper network and T0 = Tm.c!v::t′ . Suppose that the experiment M0 ‖> T0 has a
successful computation of the form

M0 ‖> T0 _ · · ·_Mn ‖> Tn

Then there exists an index j > 0 such that T j = T t
check, andM

m.c?v
|======⇒M j.

Proof. The proof of this statement is similar in style to that of lemmas 4.3.21 and 4.3.23, and contains a
significant less amount of technical details; therefore, it is skipped. �

We are now ready to show that each of the tests Tt we have defined captures the corresponding trace t. This
is stated formally in Proposition 4.3.26

Proposition 4.3.26. LetM be a proper, finitary network such that Input(M) = ηin, Output(M) = ηout.

Then t ∈ traces(M) if and onlyM may-pass Tt.
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Proof. Suppose that t ∈ traces(M). We show that there exists a successful computation of (M‖>Tt) by induction
on the trace t.

• t = ε. We have to show that Tε has a successful computation; recall that Tε =
∏k

i=1 ei~P′ε� |cn~Pε�, where

P′ε = P′check.0

Pε = Pcheck.0

Recall that, by Lemma 4.2.5, (M ‖> Tε) =M ‖ (T ′ε ), where T ′ε = symM(Tε) = Γ′T B Tε. Note that,

for any node e j, j = 1, · · · ,k, we have that T ′ε
µ
7−−→ T ′1 , where T ′1 ≡ Γ′T B

∏k
i=1i, j ei~P′check.0� | e j~0� |

cn~cc?(x2, · · · , xk) .ω�, where µ = τ if Oute j (T
′
ε ) = ∅, c!vBη if ∅ , η = Oute j (T

′
ε ).

In the first case we have thatM‖T ′ε
τ
7−−→M‖T ′1 as a consequence of Proposition 4.2.18, while in the last

case we have thatM
ei.cc?v
7−−−−−−→M, since the coordination channel cc is not used byM; then by Proposition

4.2.18 it follows thatM‖ T ′ε
τ
7−−→M ‖ T ′ε .

Thus we have proved that M ‖ T ′ε
τ
7−−→M ‖ T ′ε . We can iterate this procedure for the remaining k− 1

nodes in {e1, · · · ,ek}, leading toM‖ T ′ε
τ
7−−→ T ′ω, where T ′ω ≡ Γ′T B

∏k
i=1 ei~0� | cn~ω�.

Since T ′ω is a successful configuration, it follows that M ‖> Tε has a successful configuration, that is
M may-pass Tε.

• t = c!vBη :: t′.

Since c!vBη :: t′ ∈ traces(M), then there exists a networkM′ such thatM
c!vBη
|======⇒M′, and t′ ∈ traces(M′).

By inductive hypothesis we have thatM′ may-pass Tt′ .

We show that, for any test T t′

η×,η�,η↓
∈ DTestst and network N , if N

c!vBη×

|=======⇒N ′, then

N ‖>T t′
η×,η�,ηDone

τ
|===⇒N ′ ‖>Tt′ . Since Tt ≡T

t′
η,∅,∅

and due to the arbitrariness of the networkN , it follows

thatM ‖> Tt
τ
|===⇒M′ ‖> Tt′ . ForM′ may-pass Tt′ , then it also holds thatM may-pass Tt.

Let us then prove the statement above; this can be done by performing an induction on the proof of the

transition N
c!vBη×

|=======⇒N ′.

– N
τ
|===⇒N1

c!vBη×
7−−−−−−−→N2

τ
|===⇒N ′.

In this case we have thatN ‖> Tη×,η�,η↓
t′

τ
|===⇒N1 ‖> Tt; note that in the testing component the nodes

contained in η× are waiting to detect value v along channel c; further, node cn is waiting to receive
an acknowledgement value from both the nodes in η× and the nodes in η�.

It is easy to show that we have the extensional transition N1 ‖> T
t′

η×,η�,η↓

τ
7−−→ N2 ‖> T

t′

∅,(η×∪η�),η↓
; in

the latter network no node in η is waiting to detect the value v along channel c. Further, the nodes in
both the sets η× and η� can send an acknowledgement value (along channel cc) to the coordination
node cn.

Since broadcasts along channel cc do not affect the network N2, it is straightforward to infer the

weak transition N2 ‖> T∅,(η×∪η�),η↓
t′

τ
|===⇒N2 ‖> T∅,∅,η. In the latter network the testing component is

exactly T t′

check.

At this point we can show that N2 ‖> T
t′

check

τ
|===⇒N ′ ‖> T t′

check; now it remains to show that N ′ ‖>

T t′

check

τ
|===⇒N ′ ‖> Tt′ . This step is actually easy, and it can be proved by simply letting T ′t run the

coordination protocol.

– N
c!vBη1
|=======⇒ N ′′

c!vBη2
|=======⇒ N ′, where η1 ∩ η2 = ∅, η1 ∪ η2 = η×. In this case we can provide an

argument similar to the previous case to show thatN ‖>T t′

η×,η�,η↓

τ
|===⇒N ′′ ‖>T t′

(η×\η1),(η�∪η1),η↓
. Note
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that η× \η1 = η2; thus, we can apply the inductive hypothesis to infer that N ′′ ‖> T t′

η′′,(η�∪η1),η↓

τ
|===⇒

N ′ ‖> Tt.

Therefore we have that N ‖> Tη×,η�,η↓

τ
|===⇒N ′ ‖> Tt.

• t = m.c?v::t′. In this case we have that M
τ
|===⇒M′ for some M′ such that t ∈ traces(M′). Further, by

inductive hypothesis we have thatM′ may-pass Tt′ .

In this case it is rather simple to show thatM ‖> Tt
τ
|===⇒M′ ‖> Tt; the style of the proof of this statement

is similar to the previous cases, and details are therefore omitted.

It remains to prove the converse implication; that is, ifM may-pass Tt, then t ∈ traces(M). This can be
proved by induction on the trace t.

• t = ε. This case is trivial, for ε ∈ traces(M) for any networkM.

• t = c!vBη::t′.

Recall that we are assuming thatM may-pass Tt.

By Corollary 4.3.24 it holds thatM‖> Tt
τ
|===⇒M′ ‖> T t′

check, withM
c!vBη
|======⇒M′ and

M′ may-pass T t′

check. Further, by Corollary 4.3.22 we also have thatM′ ‖> T t′

check

τ
|===⇒M′′ ‖> Tt′ , and

M′′ may-pass Tt′ .

By inductive hypothesis, we have that t′ ∈ traces(M′′). Further, sinceM
c!vBη
|======⇒M′′

τ
|===⇒M′, it follows

that t ∈ traces(M).

• t = m.c?v :: t′. This case is similar to the previous one, this time using Lemma 4.3.25 and Corollary
4.3.22.

�

So far we have focused on networks whose input and output interface are fixed; further, we have assumed
that the interface of a network Int(M) is not empty. However, even with these restriction we are now in a
situation in which we can prove Theorem 4.3.19.

Proof of Theorem 4.3.19 First consider the case in which Int(M) = ∅. That is, Input(M) = ∅ and Output(M) =

∅.

Since M vmay N , it follows from Definition 3.3.6 that Input(N) = ∅, Output(M) = ∅. In this case it is
easy to show that traces(M) = traces(N) = {ε}; this is because, in order for the network M to perform an
extensional action of the form m.c?v, then there should exist a node m ∈ Input(M); conversely, if the network

M
c!vBη
|======⇒M′ for some channel c, value v and non-empty set of nodes η, then η ⊆ Output(M).

Now suppose that Int(M) , ∅. Let Input(M) = ηin, Output(M) = ηout. For this particular choice of input
and output interface we can associate to each trace t the test Tt defined in this Section. Further, by Definition
3.3.6 and the assumption thatMvmay N , we have that Input(N) = ηin, Output(N) = ηout.

Let t be a trace such that t ∈ traces(M). Then by Proposition 4.3.26 it follows thatM may-pass Tt. Since
MvmayN , we also have thatN may-pass Tt

6. A final application of Proposition 4.3.26 leads to t ∈ traces(N).

We have proved that, for any trace t, if t ∈ traces(M) then t ∈ traces(N), under the assumption thatMvmay

N ; that is, traces(M) ⊆ traces(N). �

6Note that bothM‖> Tt and N ‖> Tt are defined
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4.3.3 Simple Applications of Trace Inclusion

This Section contains simple applications of our proof technique for relating networks via the may-testing pre-
order. Before presenting them, we show that the restriction we imposed on composable networks is mandatory
for trace inclusion to be sound with respect to the vmay preorder.

Example 4.3.27 (Violation of Soundness in Non Composable Networks). Consider again the networksM,N

of Example 3.1.2. Note that we have N < CNets. Recall that M = Γ1 Bm~c!v�,N = Γ2 B n~c!v�; further,
Input(M) = Input(N) = ∅, Output(M) = Output(N) = {n, l}.

For network M, it is easy to show that traces(M) = {ε,c!v B {n, l}}; on the other hand, we also have
traces(N) = {ε,c!vB {n, l}}. Therefore, if Theorem 4.3.8 were true for well-formed networks in general, we
would expect that M =may N . This is not the case, for we have already exhibited in Example 3.1.2 a test T
such thatM may-pass T , whereas ¬(N may-pass T ).

Therefore, if we dropped the assumption that we are working with composable networks, Theorem 4.3.8
would not holds anymore. �

We have already mentioned that, in order to ensure completeness, our definition of weak extensional actions
has to be non standard. The following example shows that if we used the standard definition of weak extensional
actions it would be possible to exhibit two networksM,N such thatMvmay N , but traces(M) * traces(N).

Example 4.3.28 (Broadcast versus Multicast Revisited). Consider again the networksM,N of Example 4.1.6.
Recall that there network N can broadcast value v along channel c to both the external nodes o1,o2; on the
other hand, networkM can perform two different broadcasts of the same value along channel c; one of them
can be detected by node o1, the other by node o2.

We have already supplied details that lead to the intuition thatN vmayM in Example 4.1.6. Here we prove
formally this statement.

For network N , it holds traces(N) = {ε,c!vB {o1,o2}; on the other hand, we have that traces(M) = {ε,c!vB
{o1},c!vB {o2},c!vB {o1,o2}}. Therefore, we have traces(N) ⊆ traces(M); it follows from Soundness (Theorem
4.3.8) that N vmayM.

Note that the trace c!vB {o1,o2} in traces(M) can be derived because M
c!vB{o1,o2}

|==========⇒M0, where M0 =

ΓM Bm~0� | n~0�. The above transition can be only inferred by using our non-standard definition of weak
extensional outputs.

In fact, suppose that we employed the standard definition of weak extensional transitions; that is,

M
c!vBη
|======⇒M′ iffM

τ
|===⇒

c!vBη
7−−−−−−→

τ
|===⇒M′, and that the definition of traces(M) had been changed accordingly.

In this case it would not be difficult to show that traces(M) = {ε,c!vB {o1},c!vB {o2}}, traces(N) = {ε,c!vB
{o1,o2}}. Here we have that c!vB {o1,o2} ∈ traces(N), but c!vB {o1,o2} < traces(M); equivalently, traces(N) *
traces(M).

Since we already proved the inequalityN vmayM, it follows that in a framework where a standard definition
of weak extensional transitions had been employed Completeness, Theorem 4.3.19, would not hold anymore.
�

4.4 Full Abstraction for Must-testing

In this Section we provide a characterisation result for the must-testing preorder. It is well known that, in
standard process calculi like CCS, in a finitary setting this preorder is characterised by the Smith preorder over
acceptance sets, quantified over all traces. Roughly speaking, an acceptance set for a process P consists is a
collection of (possibly empty) sets of actions; each of such sets take the name of weak ready set. Intuitively,
a ready set is defined only for those processes which cannot perform any internal action, and it coincides with
the set of visible actions that such a set can perform. Intuitively speaking, when the process P is tested via a
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m n

Figure 4.7: A connectivity graph Γ

test T , a computation for P|T can proceed only if the testee can synchronise with the test via a visible action.
See [17, 33] for a detailed discussion of the definition of ready sets and acceptance sets.

However, in broadcast calculi, acceptance sets cannot be used to characterise the must-testing preorder. This
has already been shown in [24]; here the authors note that, in process-calculi with broadcast communication,
it is not necessary for a process which can output a value along a channel to synchronise with a receiver to
guarantee that the computation can proceed. This is because, as we have already mentioned in Chapter 2,
broadcast is a non-blocking action.

What needs to be taken into account, when providing a characterisation for the must-testing preorder in
broadcast process calculi, is the set of processes which cannot evolve autonomously; in our calculus of net-
works, these are exactly those networks in which no internal activities and no visible broadcasts can be per-
formed. We call them deadlock networks.

Another issue that we need to consider, when focusing on must testing, is that of divergent networks;
these are networks in which the computation can progress indefinitely. Note that, as we have already shown
in Proposition 4.1.4, in our framework computations coincide (up-to structural congruence) with maximal
sequences of transitions whose individual actions can correspond to either internal activities or outputs to the
external environment. This remark leads to a slightly non-standard definition of diverging networks, which has
already been introduced for broadcast calculi in [24].

Using these intuitions, we provide a characterisation of the must-testing preorder in terms of deadlock
traces; basically, these are traces in which the possibility of reaching a deadlock network is taken into account.
However, our characterisation result holds only for strongly convergent networks, which are defined later in
this Section; intuitively a network is strongly convergent if the extensional pLTS it generates does not contain
any diverging state.

Before stating the definition of deadlock traces, it is necessary to provide some definitions. First, throughout
this Section we only focus on proper transitions; a strong transitionM

τ
7−−→N is said to be proper ifM is not

successful; a weak transitionM
τ
|===⇒N is proper if and only if we can provide a proof of its derivation by only

using strong proper transitions7.
Next we define the notion of convergence for networks.

Definition 4.4.1 (Convergent Networks). A network M is convergent if there exists no infinite sequence of
reductions

M0 _M1 _ · · ·_Mn _Mn+1 _ · · ·

whereM =M0, and for every index i ≥ 0 the networkMi is not successful.
We writeM↓ to denote that a networkM is convergent; if the networkM is not convergent we say that it

is a divergent network, writtenM↑.

Remark 4.4.2. Note that our definition of divergence uses the reduction relation _. In other process calculi
divergence is defined as an infinite sequence of silent transitions in the labelled transition semantics; for ex-
ample, in CCS a process P is said to be divergent if an only if there exists an infinite sequence of the form
P

τ
−→P0

τ
−→P1

τ
−→·· · . However, in such process calculi a silent action corresponds, modulo structural congru-

ence, to a reduction _. This is not true in our framework; since broadcast is a non-blocking action, a reduction
corresponds to either an extensional τ-transition or to an extensional broadcast.

7That is, the sequence of strong transitionsM
µ1
7−−−→ ·· ·

µk
7−−−→N corresponding to the weak transitionM

µ

|===⇒N is made only of proper
transitions.
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At least intuitively, a network is divergent if it has a computation (in which inputs received from the external
environment are not involved) which can procede indefinitely, that is it has an infinite sequence of reductions.
Again, since broadcast is a non-blocking action in our framework, and firing a broadcast does not require to
involve the external environment, it should be included in the set of possible transitions that can be used to
obtain a divergent computation.

Remark 4.4.3 (Distinguishing diverging networks). It is well known that, in CCS and CSP, for any diverging
process P and test T it holds that P must-pass T if and only if T is successful. Thus, for any process P′

it holds that P′ must-pass T . As a consequence, for any diverging process P and process Q it holds that
P vmust Q.

This statement is not true in our calculus of networks. In fact, consider the networksM = ΓBm~c!v.P� and
N = m~0�, where Γ is the connectivity graph depicted in Figure 4.7 and P is the diverging process P⇐ τ.P.
By Definition 4.4.1 it follows thatM↑. However, we have thatM 6vmust N .

In fact, let Γn be the least connectivity graph such that Γn ` n, and (Γn)E = ∅; consider the network
T = Γn B n~c?(x) .ω�. It is straightforward to prove that, despite M ↑ and T is not successful, it holds that
M must-pass T . On the other hand, we also have that ¬(N must-pass T ), for N ‖> T is unsuccessful and
it has no possible reduction.

A slight modification of the Example above shows that in our calculus of networks it is possible to distin-
guish two diverging networks via the must-pass testing relation. For example, letM be the network above, and
N ′ = ΓBm~P�; it is easy to note that bothM↑ and N ′ ↑. However N ′ vmustM, whereasM 6vmust N

′.
�

The remark above states that not all kind of divergences are equivalent in our must-testing framework.
Therefore, if we want to provide a general characterisation result for the preorder vmust via a relation R, we
need to define the latter so that it distinguishes between diverging networks according to some criteria; for
example, Remark 4.4.3 shows that the pair 〈M ,N ′ 〉 has to be included in R, but 〈N ′ ,M〉 has not.

At the current state of the art, it remains to be found a relation R which characterises the must-testing
preorder; while we managed to identify a preorder ≤ for networks for which a difference with the testing
preorder vmust has not yet been found, we still lack a definitive proof that the two relations coincide. The
definition of such a relation and the intuitions which lie behind it are defined in Section 4.4.3.

However, we are able to provide a characterisation result for the vmust preorder if we focus on strongly
convergent networks; these are defined below.

Definition 4.4.4 (Strongly Convergent Networks). LetM be a testing network; we say that

(i) M⇓ε ifM↓,

(ii) M⇓µ::t, where µ ∈ EAct, ifM↓ and wheneverM
µ

|===⇒N it holds that N ⇓t.

We writeM⇑t forM 6⇓t. We say that a testing network is strongly convergent if, for any finite sequence of
extensional actions t, it holds thatM⇓t.

The next notion we need to provide a characterisation of must-testing for networks is that of deadlock
networks.

Definition 4.4.5 (Deadlock Networks). A networkM is a deadlock Network (or deadlocked) if it is not suc-
cessful andM 6_.

In other words, a network is deadlocked if it cannot perform any internal activity, nor it can broadcast a
value to an arbitrary, non-empty set of external nodes. As we will see, deadlock networks have a crucial role in
our characterisation result for the must-testing preorder.

We are now ready to define deadlock traces for networks; this definition is similar in style to Definition
4.3.1, except for the fact that we include the possibility for a network to be unable to evolve autonomously;
these are exactly deadlock networks.
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Definition 4.4.6 (Deadlock traces of a network). A Deadlock trace is an element in the set (EActδ)∗, where
EActδ = EAct∪{δ} and δ is a fresh symbol.

For any networkM, its set of deadlock traces DTraces(M) is defined to be the least set such that

1. ε ∈ DTraces(M),

2. IfM↓, andM
τ
|===⇒M′ for some deadlock configurationM′, then δ ∈ DTraces(M)

3. IfM↓, andM
c!vBη
|======⇒M′, for someM′ such that t ∈ DTraces(M′), then c!vBη::t ∈ DTraces(M)

4. IfM↓, andM
m.c?v
|======⇒M′ for someM′ such that t ∈ DTraces(M′), then m.c?v::t ∈ DTraces(M)

As we already did for traces, we can give a simpler definition of the deadlock traces of a network.

Definition 4.4.7 (Simple deadlock traces of a network). The set of simple deadlock traces of a testing network
M, denoted as DTracess(M), is the least set such that

(i) ε ∈ DTracess(M),

(ii) IfM is deadlocked, then δ ∈ DTracess(M)

(iii) IfM↓ andM
τ
7−−→M′ for someM′ such that t ∈ DTracess(M′), then t ∈ DTracess(M)

(iv) IfM↓ andM
m.c?v
7−−−−−−→M′ for someM′ such that t ∈ DTracess(M′), then m.c?v::t ∈ DTracess(M).

(v) IfM↓ andM
c!vBη
7−−−−−−→M′ with t ∈ DTracess(M′), then c!vBη::t ∈ DTracess(M)

(vi) IfM↓ andM
c!vBη1
7−−−−−−−→M′ for some networkM′, non-empty set of nodes η2 and simple deadlock trace t

such that η1∩η2 = ∅ and c!vBη2::t ∈ DTracess(M′), then c!vB (η1∪η2)::t ∈ DTracess(M)

As it could be expected, the definition of deadlock traces and simple deadlock traces coincide.

Proposition 4.4.8. For any testing networkM, DTraces(M) = DTracess(M).

Outline. The proof is analogous to that of Proposition 4.3.6. �

Deadlock traces are closely connected with must-testing. In the may-testing scenario, we have proved that
an experiment has a successful computation if and only if it is equipped with a trace of the form t :: ω, where
t is an output trace. Similarly, we can relate unsuccessful computations of experiments with either divergent
behaviour or with some failure trace. In the following Proposition the notion of output deadlock trace is
straightforward; these are exactly those output traces whose all occurrences coincide with broadcast actions.
Also, an unsuccessful deadlock trace is a trace of the form t::δ, where t is an output trace.

Proposition 4.4.9 (Unsuccessful computation). Any testing network M has an unsuccessful computation iff
eitherM↑ or there exists an unsuccessful trace t ∈ DTraces(M).

Outline. The proof of this proposition is similar in style to that of Proposition 4.3.3. Here we only provide
high-level details of the complete proof.

LetM0 be a network with an unsuccessful computation

M0 _M1 · · ·_Mn _Mn+1 _ · · ·

There are two possible cases:

• The computation above has infinite length. Further, since we are assuming that it is an unsuccessful
computation, we have that for any index i ≥ 0,Mi is not successful. By Definition 4.4.1, it follows that
M0 ↑.
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• The length of the computation above is finite; that is, we can rewrite it as

M0 _ · · ·Mk

for some index k ≥ 0. Since a computation is a maximal computation fragment, we have that Mk 6_;
further, since by hypothesis the computation above is not successful, we have that Mk is not a suc-
cessful configuration. It follows from Definition 4.4.5 that Mk is a deadlock configuration, hence
δ ∈ DTraces(Mk). Now we can proceed as in the proof of Proposition 4.3.3 to show that there exists
an output deadlock trace t′ such that t′::δ ∈ DTraces(M0)

For the converse implication, suppose first that M0 is a diverging network. By Definition 4.4.1 we have
that there exists an infinite computation

M0 _ · · ·Mn _Mn+1 _ · · ·

such that, for any index i ≥ 0,Mi is not successful. This is obviously an unsuccessful computation.

Now suppose that there exists an output deadlock trace t′ such that t′::δ ∈ DTraces(M0). Recall also that
deadlock traces are defined by using only proper transitions. We can proceed as in the proof of Proposition
4.3.3 to show that the trace t′::δ is associated with a computation fragment

M0 _ · · ·_Mk

such that Mk is a deadlock configuration. Since we are only considering proper transitions, it follows that
for any index i such that 0 ≤ i < k then Mi is not successful. Further, Mk is not successful by definition of
deadlock configuration. It remains to note that this computation fragment is maximal, forMk 6_, hence it is an
unsuccessful computation. �

Note that we have related deadlock traces with unsuccessful computations. Further, Proposition 4.4.9
also remarks that a divergent network always has an unsuccessful computation. These two facts have deep
consequences on our characterisation result for the vmust preorder; in fact, the presence of divergence or of a
trace of the form t::δ in an experimentM‖>T coincide with the the predicate ¬(M must-pass T ), rather than
with M must-pass T . Therefore, when focusing on finitary, strongly convergent networks, we expect that
deadlock traces inclusion characterise the inverse of the may-testing preorder, which we denote as wmust, or
equivalently that the preorder vmust is characterised by the relation ⊇ over deadlock traces.

Theorem 4.4.10 (Characterisation of Must-Testing). Let M,N be two finitary, strongly convergent proper
networks such that Input(M) = Input(N) and Output(M) = Output(N).

ThenMvmust N if and only if DTraces(M) ⊇ DTraces(N).

Proof. We actually prove that DTraces(M) ⊇ DTraces(N) if and only ifMwmust N . As we already did in the
may-testing case, the proof of the Theorem is split in two parts; Soundness, Theorem 4.4.1 and Completeness,
Theorem 4.4.2. �

4.4.1 Soundness

The aim of this Section is to prove the following Proposition.

Theorem 4.4.11 (Soundness for Must-testing). For any two finitary, strongly convergent networksM,N such
that Input(M) = Input(N),Output(M) = Output(N) and DTraces(M) ⊆ DTraces(N), thenMwmust N .

The proof of this result is similar in style to that of soundness for the may-testing preorder, Theorem 4.3.8.
We prove that in a strongly convergent setting deadlock trace inclusion is compositional with respect to the
extension operator ‖> by exploiting the compositional and decompositional results for extensional actions to



4.4. FULL ABSTRACTION FOR MUST-TESTING 91

define zipping, unzipping and switching results for the symmetric operator ‖; however, some complications
arise for strong convergence of networks is not preserved by the testing operator ‖>, as Example 4.4.12 shows.

Example 4.4.12 (Non-compositionality of Strong Convergent Networks). Let Γ be the least connectivity graph
such that Γ ` m,n and Γ ` m↔ n. Consider the network M = ΓBm~P�, where P is the recursive process
P⇐ c?(x) .c!〈v〉 .P. It is immediate to notice thatM is a strongly convergent network.

Consider also the network T = ΓT Bn~c!〈v〉 .P�, where ΓT is the connectivity graph consisting of the sole
node n; again, this network is strongly convergent. Further, the composite networkM‖> T is defined.

However, the latter network is not strongly convergent, for (M ‖> T ) ↑; in fact, it is possible to derive the
infinite sequence of transitions

(M‖> T )
τ
|===⇒ (M′ ‖> T ′)

τ
|===⇒ (M‖> T )

τ
|===⇒ (M′ ‖> T ′)

τ
|===⇒ ·· ·

whereM′ = ΓBm~c!〈v〉 .P� and T ′ = ΓT Bn~P�. �

Though strong convergence is not preserved by the extension operator ‖>, we can rely on an auxiliary result
to prove Theorem 4.4.11.

Proposition 4.4.13. LetM,N be two finitary, strongly convergent networks such that
DTraces(M) ⊇ DTraces(N); also, assume that T is a finitary, testing network such that (N ‖> T ) ↑.

Then, if (N ‖> T ) is defined, it also holds (N ‖> T ) ↑.

The assumptions that networksM,N and T are finitary is necessary in Proposition 4.4.13.

In order to prove Proposition 4.4.13, we need some technical lemmas. The first one is a result from Graph
Theory; this is König’s Lemma, which is stated below.

Lemma 4.4.14 (König’s Lemma). Let G be a connected graph with infinitely many vertices, each of which has
finite degree. Then G contains an infinite simple path.

Proof. See [41], Lemma (2.3). �

In particular, we are interested in the more specific case in which the graph G is a directed tree rooted in
some vertex v.

Corollary 4.4.15. Let G be a connected tree with infinitely many vertices, each of which has finite degree, and
let v be the root of such a tree; then G has an infinite simple path rooted in v.

Proof. In this case König’s Lemma ensures that the directed tree G contains an infinite simple path p rooted in
some vertex v′; since G is a connected tree, there exists also a finite path p′ from its root v to the vertex v′; now
it is possible to concatenate the paths p′ and p to obtain an infinite simple path of G rooted in v. �

The main use of Corollary 4.4.15 lies in the following Lemma.

Lemma 4.4.16. LetM be a network; for any extensional action µ ∈EActτ we define the length of an extensional

transition of the form M
µ

|===⇒M′ as the number of strong extensional transitions used in its derivation, and

we denote it as length(M
µ

|===⇒M′). A similar definition is given for sequences of reductions of the form
M_∗M′.

(i) ifM is finitary and strongly convergent, for any extensional action µ the quantity

sup {length(M
µ

|===⇒M′) for someM′} is defined and finite

(ii) ifM is finitary and convergent, the quantity sup {length(M_∗M′) for someM′} is defined and finite
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Proof. The main idea used to prove the Lemma is that of building the transition tree for the network M;
in the case of a weak τ-transition, this is a directed tree whose vertices are weak extensional transitions for
the network M, and an edge from a transition M

τ
|===⇒M′ and M

τ
|===⇒M1 is defined if M′

τ
7−−→M1. Then

the statement follows from a direct application of Corollary 4.4.15; note that the application of this corollary
require that each of the vertices in the tree that we have defined has finite degree. This is true, for we are
focusing on finitary networks. See Appendix A, Section A.5 for details. �

The second technical statement we need to prove Proposition 4.4.13 concerns finite sequences of exten-
sional transitions.

Lemma 4.4.17. Let M be a finitary, strongly convergent network, and {N j} j∈J be a finite collection of fini-
tary, strongly convergent networks such that, for any j, j′ ∈ J, N j = ΓN BN j, N j′ = ΓN BN j′ and nodes(N j) =

nodes(N j′ ). Assume that for any j ∈ J, Input(M) = Input(N j), Output(M) = Output(N j); further, assume
that DTraces(M) ⊆

⋃
j∈J DTraces(N j). Finally, suppose that G = ΓG B n~P� is generating network such that

(M ‖> T ) is defined and N j ‖> T is defined for any j ∈ J.
Then, if there exists a sequence of extensional transitions of the form

(M‖> T )
µ1
7−−−→ (M1 ‖> T1)

µ2
7−−−→ ·· ·

µk
7−−−→ (Mk ‖> T k)

there also exists an index j ∈ J such that N j ‖> T such that

(N j ‖> T )
µ1
|===⇒ (N1

j ‖> T1)
µ2
|===⇒ ·· ·

µn
|===⇒ (Nk

j ‖> T
k)

Proof. The proof of this statement can be obtained by performing an induction over the length n of the compu-
tation fragment of the networkMi ‖> T , by using the (strong) decomposition, (weak) composition and connec-
tivity change results proved in Section 4.2. However, some complications arise for we are considering finite
collections of networks. See the Appendix for a detailed outline of the proof. �

Corollary 4.4.18. Let M,N be two finitary, strongly convergent networks such that Input(M) = Input(N),
Output(M) = Output(N), and let T be a finitary network such that (M‖> T ) and (N ‖> T ) are defined.

If there exists a sequence of extensional transitions of the form

(M‖> T )
µ1
7−−−→ (M1 ‖> T1)

µ2
7−−−→ ·· ·

µk
7−−−→ (Mk ‖> T k)

of length nM, then there also exists a sequence of weak extensional transitions of the form

(N ‖> T )
µ1
|===⇒ (N1 ‖> T1)

µ2
|===⇒ ·· ·

µn
|===⇒ (Nk ‖> T k)

whose length is nN .

Proof. First, suppose that T is a generating network. In this case the statement is a specific case of Lemma
4.4.17, where the collection of networks {N j} j∈J is the singleton set {N}.

In the case where T is not a generating network, the proof is performed by using the network induction
principle, Theorem 3.2.7. �

Remark 4.4.19. The reader could argue that Corollary 4.4.18 could have been proved directly, rather than
relying on the more complicated Lemma 4.4.17. However, the proof of the latter statement is performed
by induction on the length of the sequence of extensional transitions for the network M, and we need the
assumption that DTraces(M) ⊆

⋃
j∈J DTraces(N j) to apply the inductive hypothesis.

If we tried to prove directly Corollary 4.4.18, we should have proved that, wheneverM
µ

|===⇒M1 then there

exists a network N1 such that N
µ

|===⇒N1 and DTraces(M1) ⊆ DTraces(N1). This statement, however, is not
true.
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Let in fact Γ be the least connectivity graph such that Γ ` m,n and Γ ` m→ n, and consider the networks
M = ΓBm~c!v.(c!w + c!u)�, N = ΓBm~c!v.c!w + c!v.c!u�. Fur such networks it holds that DTraces(M) ⊆
DTraces(N), and the only possible transition for M is given by M

c!vBn
7−−−−−−→ M′, where M′ = ΓBm~c!w +

c!u�. For network N , there are two possible transitions: N
c!vBn
7−−−−−−→ N ′ and N

c!vBn
7−−−−−−→ N ′′, where N ′ = ΓB

m~c!w� and N ′′ = ΓBm~c!w�. Now it is trivial to note that DTraces(M′) * DTraces(N ′) and DTraces(M′) *
DTraces(N ′′). However, DTraces(M′) ⊆ (DTraces(N ′)∪DTraces(N ′′)).

Proof of Proposition 4.4.13 Let M,N be two finitary, strongly convergent networks; let T be a finitary
network such that (M‖>T ) and (N ‖>T ) are defined, and (M‖>T ) ↑. Suppose that DTraces(M) ⊆DTraces(N).

Consider a diverging computation of the form

(M‖> T ) _ (M1 ‖> T1) _ · · ·

which exists by hypothesis. Since a reduction coincides (up-to structural congruence) with either an extensional
τ-transition or an output transition, we can employ both propositions 4.1.4 and 4.4.18 to infer that, for any
fragment of the above computation

(M‖> T ) _ (M1 ‖> T1) _ · · ·_ (Mk ‖> Tk)

there exists a computation fragment of the form

(N ‖> T ) _∗ (N1 ‖> T1) _∗ · · ·_∗ (Nk ‖> Tk) (4.5)

For each index k, choose a computation fragment ck as in Equation 4.5; note that it is easy to show that
such ck can be chosen in a way such that the sequence {length(ck)}k≥0 is increasing monotone. This is because
it is always possible to choose ck+1 is a way such that ck is a prefix for it. Next we show that such a sequence
is strictly increasing monotone. In fact, let k ≥ 0, and consider the computation fragment

(M‖> T ) _ (M1 ‖> T1) _ · · ·_ (Mk ‖> Tk)

It follows that there exists an index k′ ≥ k such that

(M‖> T ) _ (M1 ‖> T1) _ · · ·_ (Mk ‖> Tk) _ · · ·_ (Mk′ ‖> Tk′ )

such that, for some index k′′ with k ≤ k′′ < k′ it holds thatMk′′
m.c?v
7−−−−−−→Mk′ . If this were not the case we would

have that for any k′ ≥ k eitherMk′
τ
7−−→Mk′+1 orMk′

c!vBη
7−−−−−−→Mk′+1, which leads toMk′ ↑, thus contradicting

the assumption thatM is strongly convergent. Thus, in the computation fragment

(N ‖> T ) _∗ (N1 ‖>N1) _∗ · · ·_∗ (Nk ‖> Tk) _∗ · · ·_∗ (Nk′ ‖> Tk′ )

we have that Nk′′
m.c?v
|======⇒Nk′′+1; informally speaking, in the computation fragment above the network Nk′′

performs at least one transition before reaching the state Nk′ . That is, length(ck) < length(ck′ ).

Thus we have shown that the sequence {length(ck)}k≥0 is unbounded, that is sup {length(ck)}k≥0 =∞. Now
it follows from Corollary 4.4.16 that (N ‖> T ) ↑. �

In the following we focus on compositional properties of deadlock traces in the case that the composition
of two finitary, strongly convergent network gives rise to a network which is again both finitary and strongly
convergent. In particular, we show that in this case deadlock trace inclusion is preserved by the testing operator
‖>.

Proposition 4.4.20 (Preservation of Deadlock Traces Inclusion). LetM,N be two finitary, strongly convergent
networks; suppose thatM‖>T andN ‖>T are defined for some finitary, strongly convergent networkT . Finally,
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assume that Input(M) = Input(N),Output(M) = Output(N) and DTraces(M) ⊆ DTraces(N).

Then it follows that DTraces(M‖> T ) ⊆ DTraces(N ‖> T )

The proof of this statement requires the definition of zipping, unzipping and switching functions for dead-
lock traces. These are similar to the respective functions defined for traces 4.3.1; indeed, they can be seen
as an extension of such functions, where the cases for handling the element δ, which is not present in traces,
are introduced. Further, all the constraints dealing with the symbol ω, which can appear in traces but not in
deadlock traces, are dropped. For each of these function we prove the same results we have stated for their
respective definition of Section 4.3.1; as we could expect, these allow us to prove Proposition 4.4.20. In the
following we always assume that networks are both finitary and strongly convergent; further, we also assume
that the composition of two networks lead to a finitary, strongly convergent network.

First we provide the definition of zipping for deadlock traces; as we did in Section 4.3.1, for the moment
we focus on the case where only generating networks are composed with a networkM via the ‖ operator.

Definition 4.4.21 (Zipping of Deadlock Traces). LetM be a testing network, G be a generating network such
thatM ‖ G is defined. For any deadlock traces t, t′, the function zipG

M
(t, t′) is defined by letting

(i) δ ∈ zipG
M

(δ,δ)

(ii) in all the other cases, zipG
M

(t, t′) is defined as in Definition 4.3.9

Proposition 4.4.22 (Zipping). Let M be a strongly convergent, finitary network, G be a finitary, gener-
ating network. Suppose that M ‖ G is defined and strongly convergent. Then, for any deadlock traces
t ∈ DTraces(M), t′ ∈ DTraces(G), and s ∈ zipG

M
(t, t′), it holds s ∈ DTraces(M‖ G).

Outline. The proof of this statement is similar to that of Proposition 4.3.10. We only provide the details for the
symbol δ, which is not included in the alphabet used for traces.

Suppose that δ ∈DTraces(M), δ ∈DTraces(G). We need to show that δ ∈DTraces(M‖ G). By definition, it

follows thatM
τ
|===⇒M′ for some deadlock configurationM′, and G

τ
|===⇒G′ for some deadlock configuration

G′. We can employ Lemma 4.2.21 twice to obtain the transitionM‖ G
τ
|===⇒M′ ‖ G

τ
|===⇒M′ ‖ G′.

It remains to note that M′ ‖ G′ is a deadlock configuration, from which it follows by definition that δ ∈
DTraces(M ‖ G). To this end, note that if M′ ‖ G′

τ
7−−→ N for some network N , we would be able to apply

Proposition 4.2.12 to infer one of the following: M′
τ
7−−→, G′

τ
7−−→, M′

c!vBη
7−−−−−−→ or G′

c!vBη
7−−−−−−→. Each of the

statements above contradicts the hypothesis that bothM′ and G′ are deadlock configurations; hence it is not
possible thatM′ ‖ G′

τ
7−−→ L for some network L. Similarly, it can be proved thatM′ ‖ G′ cannot perform an

extensional output action. �

Next we turn our attention to the unzipping function. Again, we have only to supply the details to handle
the new element δ introduced for failure traces

Definition 4.4.23 (Unzipping of Deadlock Traces). Let M be a network, G be a generating network, and
suppose (M‖G) is defined. For any deadlock trace t, we define the set of pairs of deadlock traces unzipG

M
(t) to

be the least set which satisfies the following conditions:

(i) 〈δ , δ 〉 ∈ unzipG
M

(δ),

(ii) all the other cases are defined as in Definition 4.3.11

Proposition 4.4.24 (Unzipping). Let M,G be respectively a testing network and a generating network such
thatM ‖ G is defined.

Then, for any trace s ∈ traces(M ‖ G) there exists a pair 〈 t , t′ 〉 ∈ unzipG
M

(s) such that t ∈ traces(M), t′ ∈
traces(G).
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Proof. Practically analogous to that of Proposition 4.3.13, where it has to be noted that ifM ‖ G is a deadlock
configuration then bothM and G are deadlocked.

In fact, if it were M
τ
7−−→, it would be easy to infer M ‖ G

τ
7−−→; similarly, if G

τ
7−−→ it would follows

M ‖ G
τ
7−−→; in both cases the hypothesis thatM‖ G is deadlocked is contradicted.

Further, if we assume that M
c!vBη
7−−−−−−→, it would be possible to show that (M ‖ G)

τ
7−−→ (in the case η =

nodes(G) = {n}) or M ‖ G
c!vB(η\{n})
7−−−−−−−−−−→ (in the case η , {n}). See Proposition 4.2.19 for details. A similar

analysis can be applied if we assume that G
c!vBη
7−−−−−−→. Again, both these statements contradict the hypothesis

thatM‖ G is a deadlock configuration. �

The last function that we need to define to prove Proposition 4.4.20 is switching.

Definition 4.4.25. Let Γ1,Γ2 be two connectivity graphs, P be a process and n be a node such that G = Γ1 B

n~P�,H = Γ2Bn~P�

For any trace t, we define the set switchH (t) as the smallest set such that:

(i) δ ∈ switchH (δ)

(ii) in all the other cases, the function is defined as in Definition 4.3.14

Proposition 4.4.26. [Switching] Let M,N be two networks such that Input(M) = Input(N),Output(M) =

Output(N). Suppose also that G be a generating network such that bothM‖> G and N ‖> G are defined.

LetH = symM(G), K = symN (G). Then, for any trace s and 〈 t , t′ 〉 ∈ unzipH
M

(s) such that t ∈DTraces(M),
there exists a trace t′′ ∈ switchK (t′) such that s ∈ zipH

N
(t, t′′).

Proof. Identical to that of Proposition 4.4.26 �

We have concluded the list of definitions, together with their properties, that we need to prove Proposition
4.4.20.

Proof of Proposition 4.4.20 The proof of this statement is identical to that of Corollary 4.3.18. �

The two propositions that we have proved in this Section, namely Proposition 4.4.13 and Proposition 4.4.20,
enable us to prove Soundness of deadlock traces inclusion with respect to the opposite of the testing preorder
vmust.

Proof of Theorem 4.4.11 LetM,N be two finitary, strongly convergent networks, and suppose that
DTraces(N) ⊆ DTraces(M). Let also T be a finitary, strongly convergent network such that both M ‖> T ,
N ‖> T are defined.

Finally, suppose that N ‖> T has an unsuccessful computation. By Proposition 4.4.9 there are two possible
cases

(i) (N ‖> T ) ↑; it follows from Proposition 4.4.13 that (M‖> T ) ↑. Again, by Proposition 4.4.9 it follows that
M‖> T has an unsuccessful computation.

(ii) there exists an output deadlock trace t such that t :: δ ∈DTraces(N). By Assumption, t :: δ ∈DTraces(M);
it follows from Proposition 4.4.9 that (M‖> T ) has an unsuccessful computation.

Thus we have proved that if ¬(N must-pass T ) it also holds ¬(M must-pass T ). By quantifying over
all tests we obtain that N wmustM.

Therefore we have proved that DTraces(N) ⊆DTraces(M) impliesN wmustN ; by taking the contrapositive
statement, we obtain that DTraces(M) ⊇ DTraces(N) impliesMvmust N . �
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4.4.2 Completeness

In this Section we prove that, in a strongly convergent, finitary setting, failure inclusion is complete with respect
to the wmust preorder. To be precise, the statement of the Theorem we prove is provided below.

Theorem 4.4.27 (Completeness for the Must-testing Preorder). LetM,N be two finitary, strongly convergent,
composable networks such thatMvmust N ; then DTraces(M) ⊇ DTraces(N).

The proof of Theorem 4.4.27 can be obtained by exhibiting, for every deadlock trace t, a test Tt such that
for any network M it holds ¬(M must-pass Tt) if and only if t ∈ DTraces(M). Such tests are parametric in
both the input and output interface of a network; this does not constitute a problem, for two networks can be
compared via the preorder vmust only in the case that they share the same input and output interface.

Given a networkM, the collection of testsTt which can be used to test whether a deadlock trace t is included
in DTraces(M) (with respect to the must-pass testing relation) can be obtained by dualising the tests we have
provided in Section 4.3.2. Specifically, the dualisation of these tests consist in replacing each deadlocked
configuration with a successful one, and vice versa; we will see shortly how this task can be accomplished.
Further, we have to define a test Tδ that can be used to check whether a network M can reach a deadlock
configuration.

We only present the characteristic tests for any deadlock traces t, together with the statement of the main
results that are needed to prove Theorem 4.4.27. The proof of such statements is analogous in style to their
corresponding result for the may-testing preorder, stated in Section 4.3.2, and are therefore omitted.

For the moment we assume that the input and output interface of a networkM are fixed and possibly empty;
specifically, we assume that Input(M) = ηi and Output(M) = ηo for some finite sets of nodes ηi,ηo; for the sake
of simplicity, we assume that Int(M) = {η1, · · · ,η j}. For every deadlock trace t, we define the testing network
Tt = ΓT BTt, where ΓT is the connectivity graph depicted in Figure 4.6 and Tt =

∏k
i=1 ei~Pi

t� | cn~Pt�; for each
node ei, i = 1, · · · ,k, the process Pi

t is defined inductively over t; the same applies for the code Pt running at
node cn in Tt.

Let us turn our attention to the inductive definition for such processes. First, for any finite list of variables
x1, · · · , xk we define the process c?(x1, · · · , xk)ω .P to be exactly P in the case the list x1, · · · , xk is empty, and
c?(x1, · · · , xk)ω .P = c?(x1) .(c?(x2, · · · , xk) .P) + τ.ω otherwise. This new construct can be used to define the
following process, which makes the definition of the code running at node.

Pωcheck.Q = cc!〈CHECK〉 .cc?(x1, · · · , xk)ω .Q

When providing the definition of the code running at each node of a test Tt, we also make use of the
processes LOCK,ALLOW(c, x),Pnext.Q,P′next.Q and P′check.Q, defined in Section 4.3.2. We are now ready
to define the processes Pt

i, i = 1, · · ·k, and Pt. We assume that cc is a fresh channel, not contained in the set Ch.

(i) t = ε

Pi
ε ⇐ P′check.0

Pε ⇐ Pωcheck.0

(ii) t = δ

Pi
δ ⇐

∑
c∈Ch c?(x) .cc!〈DETECTED〉

Pδ ⇐ cc?(x)ω .0
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(iii) t = d!vBη::t′;

Pi
t ⇐



ALLOW(d, x) .if x , v then 0 else

(cc!〈DETECTED〉 .(P′check.P
′next.Pi

t′ ) + LOCK) if ei ∈ η

P′check.P
′
next.P

i
t′ if e j < ηi

Pt ⇐ ccω?
(
x1, · · · , x|η|

)
.Pωcheck.Pnext.Pt′

(iv) e j.d?v::t′

Pi
t ⇐


(d!〈v〉 .cc!〈SENT〉 .(P′check.P

′
next.P

i
t′ + LOCK)) + LOCK if i = j,e j ∈ ηin

P′check.P
′
next.P

i
t′ otherwise

Pt ⇐ ccω?(x) .cc!〈CHECK〉 .Pωcheck.Pnext.Pt′

This definition is similar in style to that of the processes Pt
i, i = 1, · · · ,k and Pt given in Section 4.3.2.

However, there are three main differences.

(i) in the process Pε, run at the controller node cn, the successful state ω is replaced with the deadlocked
process 0

(ii) whenever the controller node cn is waiting for an input to be received along the channel cc, then it can
non-deterministically choose to evolve in a successful state; this ensures that if one of the external nodes
deadlock then the coordination protocol is forced to enter in a successful configuration

(iii) a new test for handling the case t = δ is introduced; intuitively, in this test each node ei, i = 1, · · · ,k waits
to detect a value along an arbitrary channel. In this case, it notifies the controller node, whose code
immediately evolves in a non-successful configuration. If the controller node is never notified, then it can
only reach a successful state.

In other words, the processes Pi
t, i = 1, · · · ,k and Pt have been defined by dualising those provided in Section

4.3.2. Thus, for the collection of processes Tt we have the following result.

Proposition 4.4.28. LetM be a composable, finitary and strongly convergent network such that Input(M) = ηi,
Output(M) = ηo.

Then t ∈ DTraces(M) if and only ¬(M must-pass Tt).

Proof. The proof is analogous to that of Proposition 4.3.26; the assumption thatM is strongly convergent is
necessary for ensuring that Proposition 4.4.28 is valid. In fact, if it heldM↑, it would not be difficult to show
that for any deadlock trace t , ε we would have t <DTraces(M). (M‖> Tt) ↑, leading to ¬(M must-pass Tt).

�

Proof of Theorem 4.4.27 LetM,N be two finitary, strongly convergent networks such thatMvmust N . It
follows from Definition 3.3.6 that Input(N) = Input(M), Output(M) = Output(M).

Let t be a trace such that t ∈ DTraces(M). Then by Proposition 4.4.28 it follows that ¬M must-pass Tt.
Since M vmust N , we also have that ¬M must-pass Tt. A final application of Proposition 4.3.26 leads to
t ∈ DTraces(M).

We have proved that, for any trace t, if t ∈ DTraces(N) then t ∈ DTraces(M), under the assumption that
Mvmust N ; that is, DTraces(M) ⊇ traces(N). �
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4.4.3 Towards a Characterisation for Non Strongly Convergent Networks

We have already mentioned in Section 4.4 that our characterisation result for the Must-testing preorder holds
only for strongly convergent networks. In fact, we have pointed out in Remark 4.4.3 that, in contrast with
standard process calculi, there are cases in which diverging networks can be distinguished by a test via the
must-pass testing relation. This is due to the non-blocking nature of broadcast transitions.

In practice, we have shown that a networkM that diverges only after a broadcast transition has been per-
formed can be distinguished from another network N which diverges via an infinite sequence of τ-extensional
transitions. However, for such networks, it holds N vmust N . Remark 4.4.3 suggests that the output transitions
that a network must perform in a divergent computation should be taken into account when providing a char-
acterisation of the must-testing preorder in the general case; in particular, we believe that the following result
is true.

Conjecture 4.4.29. Let M,N be two finitary networks such that Input(M) = Input(N) and Output(M) =

Output(N)

Then

(i) ifM⇑t for some sequence t of extensional output actions, and N ⇑t′::t′ , where t′ is another sequence of
extensional output actions, thenMvmust N

(ii) ifM⇑ε, then for any network N it holdsMvmust N .

This conjecture suggests that, to characterise the Must-testing preorder, we need a modified version of
deadlock traces which takes into account the sequences of actions that have to be performed by a network
before reaching a diverging state. Specifically, we define the set of divergence traces Div(M) for an arbitrary
networkM as follows:

• ifM⇑ε then ↑∈ Div(M),

• ifM⇑t then t ::↑∈ Div(M)

The enhanced traces of a networkM, denoted by eTraces(M), is defined as DTraces(M)∪Div(M). This
set can be equipped with a partial order ≤, which basically reflects the implications of the Conjecture above.
Specifically, for any deadlock trace t we let ↑≤ t, and for any sequence of (possibly empty) extensional actions
t we let t ::↑≤ t′ ::↑, where t′ is a suffix of t. We believe that the Smith’s preorder induced by the partial order
≤ over enhanced traces can be used to characterise the must-testing preorder. Specifically, our Conjecture is
stated below.

Conjecture 4.4.30. LetM,N be two finitary, composable networks. ThenMvmust N if and only if

• Input(M) = Input(N),Output(M) = Output(N),

• for any enhanced trace t′ ∈ eTraces(N) there exists an enhanced trace t ∈ eTraces(M) such that t′ ≤ t.

Note that, if two networkM,N are strongly convergent, then the conjecture above reduces to showing that
DTraces(M) ⊇DTraces(N). We suspect the conjecture above to be true; however, at the current state of the art
we are not able to provide a proof of its statement.

4.4.4 Simple Applications of Deadlock Trace Inclusion

In this Section we prove some simple results related to failure trace inclusion and we show some simple appli-
cation of our proof principle.

For the calculus CCS it is well known [16] that, in a strongly convergent setting, the behavioural equiva-
lences =must and ' coincide. Here we prove that the same result holds for our calculus of networks.
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m n

Figure 4.8: A connectivity graph Γ consisting of a fully connected node m and an external node n

Theorem 4.4.31 (Equivalence of =must and '). LetM,N be two strongly convergent, proper, finitary networks.
ThenM =must N iffM'N .

The proof of Theorem 4.4.31 is rather simple, as it is a simple consequence of the following, rather trivial,
statement.

Proposition 4.4.32. LetM be a finitary, proper, strongly convergent networks. For any trace t ∈ EAct∗ it holds
t ∈ traces(M) iff t ∈ DTraces(M).

Proof. Note that the hypothesis t ∈EAct∗ implies that both the special symbolsω,δ (used in traces and deadlock
traces, respectively), do not occur in t.

The proof of the statement is then a trivial consequence of definitions 4.3.1 and 4.4.6, recalling that in a
finitary network the predicateM′ ↓ is satisfied for any networkM′. �

Corollary 4.4.33. LetM,N be two finitary, strongly convergent, proper networks. IfMvmustN , thenN vmay

M.

Proof. Let t ∈ traces(N); sinceN is a proper network, it holds that t ∈ EAct∗ (that is, ω does not occur in t). By
Proposition 4.4.32 it follows that t ∈DTraces(N). ForMvmustN , Theorem 4.4.11 ensures that t ∈DTraces(M).
A final application of Proposition 4.4.32 (recall that t ∈ EAct∗) leads to t ∈ traces(M).

Therefore, for any trace t ∈ traces(N) it holds t ∈ traces(M); equivalently, traces(N) ⊆ traces(M), hence
N vmayM as a consequence of Theorem 4.3.8. �

Proof of Theorem 4.4.31 The if implication is trivial. For the only if implication, supposeM =must N . By
definition it holds thatMvmustN andN vmustM. We can apply Corollary 4.4.33 to the two inequalities above
to prove that N vmayM,Mvmay N , respectively.

Thus we have that, Mvmust N , Mvmay N , from which it followsM⊆N . Similarly, we can prove that
N ⊆M. The last two inequalities imply thatM'N . �

Theorem 4.4.31 will be very useful in Chapter 5. In fact, to check whether two networks are testing
equivalent, we will need to check the equivalence between their sets of deadlock traces, without any need to
prove that their sets of traces coincide.

As one could expect, the converse of Corollary 4.4.33 does not hold, as the following Example shows.

Example 4.4.34. Let Γ be the connectivity graph of Figure 4.8. Consider the networksM = ΓBm~c!〈v〉� and
N = ΓBm~c?(x) .c!〈v〉�.

It is straightforward to note that N vmayM. In fact, note that t is a trace included in traces(N) if and only
if it has the form

n.d1?v1:: · · · ::n.di?vi::n.c?w::n.ci+1?vi+1:: · · · ::n.ci+ j?vi+ j:: · · ·c!vB {n}::n.ci+ j+1?vi+ j+1:: · · · ::n.ci+ j+k?vi+ j+k

where the channels d1, · · · · · · ,di+ j+k and the values v1, · · · ,vi+ j+k,w are arbitrary. It is easy to check that such

a trace is also included in traces(M); to this end, note that M
n.d?w
|======⇒M for any channel d ∈ Ch and value

w ∈ Val.

On the other hand, we have that M 6vmust N . In fact, it suffices to note that N is deadlocked, hence
δ ∈ DTraces(N). On the other hand,M can only reach a deadlock configuration only after it has broadcast the
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value v along channel c; such a broadcast can be detected by the external node n, hence it does not correspond
to an internal activity in the reduction semantics. Thus we have that δ < DTraces(M).

We have proved that DTraces(N) * DTraces(M); it follows from Theorem 4.4.27 that M 6vmust N . We
could have proved the statement above also by exhibiting a test T such that M must-pass T , whereas
¬(N must-pass T ). To this end, it suffices to consider the test which places the code c?(x) .0+τ.ω at the
external node n. �

The last example to which we apply our proof principle takes into account the non-standard definition of
extensional actions.

Example 4.4.35. Consider again the networksM,N of Figure 4.3. We have already proved in Section 4.3.3
the inequality N vmayM. Here we show that the stronger resultMvmust N also holds.

The proof of the statement above is rather trivial. It suffices to note that DTraces(N) = {ε,c!vB {o1,o2},c!vB
{o1,o2}::δ}}, while DTraces(M) = {ε,c!vB {o1},c!vB {o2},c!vB {o1,o2},c!vB {o1,o2}::δ}. Now it is trivial to note
that DTraces(M) ⊇ DTraces(N), hence it follows from Theorem 4.4.11 thatMvmust N . �



Chapter 5

Applications

In this Chapter we analyse case studies in which we apply the theory developed through chapters 2-4.

First we focus on rather simple networks, showing how our characterisation results for the testing preorders
can be used to prove that two networks are either may or must testing equivalent. In this case we consider the
non-trivial case in which the extensional LTS generated by a network contains recursive states. This topic is
covered in Section 5.1.

Then we move to more practical case studies; we focus on desired behaviours of both wired and wireless
networks which have been widely addressed in the literature. Given an informal description of the behaviour
that we require from a network, or specification, we define a formal model for it. A model corresponds to a
(usually simple) network for which it is easy, if not trivial, to check that its behaviour is consistent with the
specification being considered. Having a model which captures the behaviour we require from a network, we
can check whether an arbitrary network is consistent with it by proving that it is testing equivalent to the model
we have defined.

We recall that any verification using model-based techniques is only as good as the model of the system [3].
In other words, in order to ensure that the behaviour of a network is consistent with its informal specification, we
rely on the fact that the model provided to formalise such a specification is not faulty. In general, it is common
practice to define a model for a specification to be very simple, so that it is easy to provide an informal argument
for stating that the behaviour of the model is consistent with the considered specification.

Sometimes we will work with partially defined networks. That is, we only define a set of formal properties
that we assume a network satisfies. Such properties concern both the code that internal nodes of a network are
running as well as the connectivity graph of the network. Intuitively, one could see the code run by the internal
nodes of a partially defined network as a formal description of a protocol, while the constraints imposed on the
network topology can be seen as assumptions that needs to be satisfied to ensure that such a protocol behaves
as required.

The first application we consider concerns connectionless routing of values between from a node to another
in a network. Here the term connectionless means that no assumption is made on the order in which values
broadcast by a source are delivered at the receiver. First, we define a model for routing, then we provide an
implementation for it; the latter can be seen as an abstraction of a network whose internal nodes are running a
distance vector routing protocol. This case study is analysed in Section 5.2.

In Section 5.3 we consider a more challenging situation, in which we consider the policy of connection-

oriented routing. In contrast with connectionless routing, here we require that values are delivered at a des-
tination node in the same order they have been originally broadcast by the source. We show two different
implementations of the proposed model; the first one consists of an abstraction of connection-oriented rout-
ing protocols at the internet layer, while the second one can be seen as an abstraction of connection-oriented
protocols running at the transport layer of the TCP/IP standard.

The case studies considered in sections 5.2 and 5.3 use point-to-point communication between nodes. Thus,
the networks we will model in such sections could have been defined using simpler process calculi, such as

101
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m n

Figure 5.1: A connectivity graph for two recursive networks

CCS; however, one of the advantages that we have by using our framework for networks is that we are able to
state explicitly the assumptions that we need to make over network topologies in order to ensure the correct
behaviour of a protocol.

Next we move to providing case studies in which protocols use broadcast communication; in Section 5.4
we consider the problem in which a source node wants to multicast a message from a source node to a group
of receivers. This problem has been widely studied in the literature, for realizations of multicast protocols are
at the basis of data streaming applications [11, 25, 4, 45].

Finally, in Section 5.5 we consider networks that implement a Virtual Shared Memory protocol. These kind
of protocols are widely used in distributed systems to simulate a random access memory of a computer in a
setting where data can be distributed over different machines [64].

5.1 Relating Networks: Dealing with Recursion

This section contains a simple application of the theory developed in chapters 2- 4. Our aim here is that of
showing how our characterisation results of the testing preorders can be used to prove the equivalence of two
networks; in particular, we deal with recursive networks, that is networks whose generated extensional LTS
have states containing loops.

In this Section we consider the networksM = ΓBM,N = ΓBN, where the connectivity graph Γ is depicted
in Figure 5.1 and

P ⇐ c!〈v〉 .(d!〈w〉 .P + d′!
〈
w′

〉
.P)

Q ⇐ (c!〈v〉 .d!〈w〉 .Q) + (c!〈v〉 .d′!
〈
w′

〉
.Q)

M = m~P�

N = m~Q�

Note that the networksM,N are divergent; since our characterisation results for the must-testing preorder
are valid only in a strongly convergent setting, for this example we only consider the may-testing preorder and
trace inclusion. However, the proof strategy we apply in this Section can also be used when dealing with the
must-testing preorder and deadlock traces inclusion.

Our aim is to prove thatM =may N . To this end, we first give a graphical representation of the extensional
LTS generated by these two networks; these are depicted in Figure 5.2. Here we have
M′ = ΓBm~d!〈w〉 .P + d′!〈w′〉 .P�, N ′ = ΓBm~d!〈w〉 .Q� and N ′′ = ΓBm~d′!〈w′〉 .Q�.

Note that inM,N node n is fully connected. That is, in every state of the extensional LTSs generated by
such networks the transition n.c′?v′ is enabled for any channel c′ and value v′. With an abuse of notation, in
Figure 5.2 we used the label n? to denote an arbitrary input transition performed by a state.

By looking at the LTSs of Definition 5.2, it is easy to note that an application of Definition 4.3.1 allows us
to calculate the set traces(M); this is the smallest set such that

• ε ∈ traces(M)

• if t ∈ traces(M) then n.c′?v′::t ∈ traces(M) for any channel c′ and value v′.
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Extensional LTS generated byM Extensional LTS generated by N

Figure 5.2: The extensional LTSs generated byM, N

• if t ∈ traces(M′) then c!vB {n} ∈ traces(M′)

The definition of the set traces(M) depends on that of the set traces(M′), which is defined as the smallest
set such that

• ε ∈ traces(M′)

• If t ∈ traces(M′) then n.c′?v′::t ∈ traces(M′) for any channel c′ and value v′

• If t ∈ traces(M), then d!wB {n}::t ∈ traces(M′)

• If t ∈ traces(M), then d′!w′B {n}::t ∈ traces(M′)

Let us turn our attention to the set of traces for the networks N ,N ′,N ′′; these are the smallest sets such
that

• ε ∈ traces(N), ε ∈ traces(N ′), ε ∈ traces(N ′′)

• for any L ∈ {N ,N ′,N ′′}, channel c′ and value v′, if t ∈ traces(N) then n.c′?v′::t ∈ traces(L)

• If t ∈ traces(N ′) then c!vB {n}::t ∈ traces(N)

• If t ∈ traces(N ′′) then c!vB {n}::t ∈ traces(N)

• If t ∈ traces(N) then d!wB {n}::t ∈ traces(N ′)

• If t ∈ traces(N) then d′!w′B {n}::t ∈ traces(N ′′)

We are now ready to prove that the two networks are may-testing equivalent.

Proposition 5.1.1. M =may N .

Proof. We prove the statementsMvmay N and N vmayM separately.

Proving that M vmay N amounts to showing that traces(M) ⊆ traces(N). Then the result follows from
Theorem 4.3.8. To this end, we prove a more general statement; specifically, we show that

1. If t ∈ traces(M), then t ∈ traces(N)

2. If t ∈ traces(M′), then either t ∈ traces(N ′) or t ∈ traces(N ′′)

The two statements above are proved simultaneously by performing an induction on the trace t.
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• The case t = ε is trivial.

• Suppose t = n.c′?v′::t′ for some channel c′, value v′ and trace t′. If t ∈ traces(M), then the only possi-
bility is that t′ ∈ traces(M), for wheneverM performs an extensional input transition, then the resulting
configuration is againM. By inductive hypothesis it holds that t′ ∈ traces(N); now it is not difficult to
show that n.c′?v′::t′ ∈ traces(N).

A similar argument can be used to prove that, in this case, if t ∈ traces(M′) then either t ∈ traces(N ′) or
t ∈ traces(N ′′)

• If t = c!vB {n}::t′, then we only have to consider the case t ∈ traces(M). This is because the network
M′ has no (weak) extensional output transition of value v along channel c. In this case it is not difficult
to show that the only possibility is that t′ ∈ traces(M′). By inductive hypothesis, we have that either
t′ ∈ traces(N ′) or t′ ∈ traces(N ′′). If t′ ∈ traces(N ′), it follows by definition that c!vB {n}::t′ ∈ traces(N);
a similar argument can be used in the case t′ ∈ traces(N ′′).

• If t = d!wB {n}::t′, then the only interesting case we have to check is given by t′ ∈ traces(M′). In this
case it is not difficult to show that t′ ∈ traces(M), hence by inductive hypothesis t′ ∈ traces(N). Now it is
easy to note that d!wB {n}::t′ ∈ traces(N ′).

• If t = d′!w′ B {n}::t′ then the only interesting case is that in which t ∈ traces(M′). In this case it holds
t′ ∈ traces(M), hence by inductive hypothesis t′ ∈ traces(N). Now it is not difficult to note that d′!w′ B
{n}::t′ ∈ traces(N ′′).

• The only case which it remains to check is that in which t is a trace whose head is an arbitrary extensional
output action different from those already considered. However, this case is vacuous, for such a trace
does not belong to traces(M), nor to traces(N).

Let us prove now that N vmayM. In this case it suffices to show that

• If t ∈ traces(N) then t ∈ traces(M),

• If t ∈ traces(N ′) then t ∈ traces(M′),

• If t ∈ traces(N ′′) then t ∈ traces(M′).

The three statements above are proved simultaneously by induction over a trace t; the proof is virtually
identical to the inclusion above. �

Note that, when proving Proposition 5.1.1 we related the traces of the network M′ with those of two
different networks, namely N ′,N ′′. More formally, we proved the equivalence traces(M′) = traces(N ′)∪
traces(N ′′). This is not surprising, for testing preorders lead to a linear theory rather than to a branching one.

5.2 Connectionless Routing

In this Section we consider the task of delivering messages from one source node to a destination one in a
network. This problem is well-known in the literature of networks as routing.

Routing is the central task that has to be accomplished at the internet layer of the TCP/IP Standard in
both wired and wireless networks. The services that are provided at the network layer in the protocol suite of
the TCP/IP standard are well described in [65]: The internet layer is concerned with getting packets from the

source all the way to the destination. Getting to the destination may require making many hops at intermediate

routers along the way. [..] The internet layer is the lowest layer that deals with end-to-end transmission. Here
the term router corresponds to a node in our framework.
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Figure 5.3: The connectivity graph of the model we use to define our routing model

5.2.1 A Faulty Attempt

Given the description above, the behaviour that we require from a network in this Section can be summarised
as follows:

Specification 5.2.1 (Connection-less Routing). Given an input node i and an output node o, messages broadcast
from the former along a fixed channel c are eventually detected by the latter along the same channel. �

Note that we have made some assumptions in Specification 5.2.1; first, we assumed that the sender and
receiver nodes are fixed, as well as the channel used by them to broadcast/detect a message. Second, we have
placed no constraints regarding the order in which messages broadcast by the source node i are received at the
destination o.

In few words, the last constraints means that the behaviour we wish to model corresponds to connectionless

routing, which is best described in [65]: the Internet community argues that the routers’ job is moving packets

around and nothing else. [..] This viewpoint leads quickly to the conclusion that the network service should be

connectionless, with primitives SEND PACKET and RECEIVE PACKET and little else. In particular, no packet

ordering and flow control should be done.

Now that we have given an informal description of the behaviour we wish to model, let us turn our attention
at the task of defining a formal model for it. Recall that, when accomplishing this task, we want our model to be
as simple as possible. A first attempt to define a model for connectionless routing could be that of considering
the networkM0 = ΓM BM, where ΓM is the connectivity graph of Figure 5.3, M is the system term m~P� and
P is the process definition P⇐ c?(x) .c!〈x〉 .P.

However, it is rather easy to show that this model is not consistent with Specification 5.2.1. To this end,
note that the network M0, upon receiving a message v along channel c broadcast by node i, evolves into the
networkMv

0 = ΓM Bm~c!〈v〉 .P�. Such a network is not waiting to receive any value anymore; if a second value
w is broadcast by node i, node m in networkMv

0 will ignore it and therefore it will never be able to forward it
to node m; this behaviour for the networkM0 is obviously inconsistent with the informal specification we are
considering.

A second attempt to define a model for Specification 5.2.1 requires modifying the networkM0 so that, at
any given time, the internal node m can either receive a value from the input node i or forward one of the values
it has previously detected to the external node o. In order for this to be possible, node m has to be able to keep
store all the values broadcast by node i which have not yet been forwarded to node o in an internal buffer.

This task can be accomplished by using multisets; a multiset is a set which can contain multiple occurrences
of an element [5]. In the following we use the symbols M ,N , · · · to range over multisets. Further, we use the
notation {|v1,v2, · · ·|} to denote the multiset containing the (not necessarily distinct) elements v1,v2, · · · .

The number of occurrences of an element v in a multiset M is called the multiplicity of v in M and we
denote it as mult(v,M ). We use the notation ∅ for the empty multi set, that is the multiset such that for any
element v it holds mult(v,∅) = 0. If mult(v,M ) > 0 for some element v and multiset M , we say that v ∈M ,
while if mult(v,M ) = mult(v,N ) for any value v and two given multisets M ,N , we say that M = N .

The union of two multisets M ,N is the multiset M ∪N such that for any value v mult(v, (M ∪N )) =

mult(v,M )+mult(v,N ). The difference of two multisets M ,N is the multiset M \N such that, for any
element v, mult(v, (M \N )) = min {0, (mult(v,M )−mult(v,N ))}.

Intuitively, we can use multisets of values to let a node m in a network whose connectivity graph is the same
as in Figure 5.3 keep track of the messages it has received from the input node i, but it has not forwarded to the
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output node o; more specifically, multisets can be used to associate a (unsorted) memory buffer to the node m.
Note that we needed to use multisets for there is the possibilities that more copies of a given value have to be
stored in the buffer associated with the node m.

In fact, given a finite set of values Val we can assume, for any finite multiset of values M , the process
definition

PM ⇐ (c?(x) .P(M∪{|x|})) +

∑
v∈M

c!〈v〉 .P(M\{|v|})


Then we could consider the network M′ = ΓM Bm~P∅� as a possible model for Specification 5.2.1. The
behaviour of such a network is described informally below.

• Initially, the buffer of node m is empty; that is, there is no value that has to be forwarded to the output
node o. The only activity that node m can perform consists in receiving a message broadcast by the input
node i along channel c. Upon receiving a message v, the code of node m evolves in P{|v|}, meaning that
the value v has been stored in the internal buffer of node m.

• At any given time, node m can either receive a value w broadcast by node i, or it can decide to broadcast
one of the values (if any) w′ which are stored in its buffer. In the first case, the value w is stored in the
buffer of node m, while in the latter the value w′ is removed from it.

Despite node m never ignores values broadcast by the input node i in network M′, its behaviour is still
inconsistent with Specification 5.2.1. In fact, it is easy to note that the code of node m suffers from starvation,
meaning that there exists at least a sequence of transitions in which a value broadcast by node i is never delivered
to node o. In fact, the networkM′ = ΓM Bm~P∅� is equipped with the sequence of extensional transitions

(ΓM Bm~P∅�)
i.c?v0
7−−−−−−→ (ΓM Bm~P{|v0 |}�)

i.c?v1
7−−−−−−→ (ΓM Bm~P{|v0,v1 |}�)

i.c?v2
7−−−−−−→ ·· ·

Further, it is straightforward to check that the extensional LTS induced by the networkM′ has an infinite
number of states; since the proof methods we have proved in Chapter 4 can only be used with finitary networks,
they cannot be applied to the networkM′.

5.2.2 A Second Attempt

In is very unlikely that we can find a finitary networkMwhose behaviour is consistent with Specification 5.2.1.
In fact we are explicitly assuming that node i is external, hence there is no way to control the rate at which it
broadcasts values to node m; for example, we cannot impose the constraint that node i always waits for node m

to forward a value before broadcasting another one.

In contrast, we can slightly modify our Specification.

Specification 5.2.2 (Finite Connection-less Routing). Given an input node i and an output node o and a positive
integer k, the first k messages broadcast from node i along a fixed channel c are eventually detected by node o

along the same channel. �

Specification 5.2.2 explicitly states that we only consider the first k values broadcast by the input node i,
while subsequent values can be ignored. Note that this specification is parametric in the number k of values
which have to be routed from node i to node o.

For any positive integer k, it is easy to define a network whose behaviour is consistent with Specification
5.2.2. In fact, it is sufficient to equip node m with a counter which keeps track of the number of values it still
needs to receive from the input node i.
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To this end, we assume the following process definitions, parametric in a multiset M and any integer l ≥ 0:

P0
M ⇐

∑
v∈M

c!〈v〉 .P0
(M\{|v|})

Pl+1
M ⇐ (c?(x) .Pl

M∪{|v|}) +

∑
v∈M

c!〈v〉 .Pl+1
(M\{|v|})


and let Mk = m~Pk

∅
�. Intuitively, network Mk starts ignoring inputs fired from node i after it has received

exactly k values, and it deadlocks after such values have been forwarded to the output node o. This network
constitutes a model for Specification 5.2.21.

Let us turn our attention to the formal behaviour of the network Mk. For the sake of simplicity, for any
integer l ≥ 0 and finite multiset of values M , we letMl

M be the network ΓM Bm~Pl
M �. Therefore,Mk =Mk

∅
.

Proposition 5.2.3. Let j ≥ 0, M be a finite multiset of values and v ∈ Val be a value.

• For any channel d ∈ Ch (possibly equal to c)M0
M

i.d?v
7−−−−−→M′ if and only ifM′ ≡M0

M
,

• Ml+1
M

i.c?v
7−−−−−→M′ if and only ifM′ ≡Ml

(M∪{|v|}).

• Let d ∈ Ch,d , c; thenMl+1
M

i.d?v
7−−−−−→M′ if and only ifM′ ≡Ml+1

M .

• Ml
M

c!vB{o}
7−−−−−−−→M′ if and only if v ∈M andM′ ≡Ml

(M\{|v|}).

• Ml
M is deadlocked if and only if M = ∅.

Proof. The proof of this statement is straightforward. �

We can use Proposition 5.2.3 to calculate the set of deadlock traces for the networkMk and, more generally,
the set DTraces(Ml

M ) for any integer l ≥ 0 and finite multiset of values M .

Corollary 5.2.4. For any l ≥ 0, finite multiset of values M the set DTraces(Ml
M ) is the least set such that

• ε ∈ DTraces(Ml
M )

• If M = ∅ then δ ∈Ml
M

• For any channel d ∈ ch and value v ∈ Val, if t ∈M0
M

then i.d?v::t ∈M0
M

• For any value v ∈ Val, if v ∈M , and t ∈ DTraces(Ml
(M\{|v|})) then c!vB {o}::t ∈ DTraces(Ml

M )

• For any channel d ∈ Ch,d , c and value v ∈ Val, if t ∈ DTraces(Ml+1
M ) then i.d?v::t ∈ DTraces(Ml

M )

• For any value v ∈ Val, if t ∈ DTraces(Ml
(M∪{|v|})) implies i.c?v::t ∈ DTraces(Ml+1

M )

Proof. Trivial, by using Proposition 5.2.3 and Definition 4.4.7. �

5.2.3 The Implementation

So far we have described an informal specification for connection-less routing of a finite number k of messages
and exhibited a model, a network Mk, whose behaviour is consistent with such a specification. Our aim in
this Section is to exhibit an implementation of the networkMk, that is a finitary network Nk which is testing
equivalent to our model; in order to show the equivalenceMk 'Nk, it is sufficient to show that DTraces(Mk) =

DTraces(Nk), as stated in Theorem 4.4.31.
In practice, we work with partially defined networks; that is, given an integer k > 0, we state the proper-

ties that we require from a network Nk to satisfy in order to ensure that DTraces(Mk) = DTraces(Nk). As a
consequence, the equivalenceMk ' Nk will hold for any network Nk which satisfies such properties.

1To be very pedantic the networkMk still suffers from starvation; however, in this case starvation is caused by input transitions which
do not affect the internal node m ofMk , therefore they can be ignored
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i n1 ...
n2 o

n3

n j

Figure 5.4: The parametrised connectivity graph ΓN used in the Implementation of connectionless routing

Fixed an integer k ≥ 0, let us discuss the properties that we require from an implementation Nk of our
routing model; we assume that this network has the form ΓN BNk, where

• nodes(Nk) = {n1, · · · ,n j} for some index j ≥ 2

• Input(Nk) = {i},Output(Nk) = {o}; further, we assume that whenever ΓN ` i→ nh for the only index h = 1.
Similarly, if ΓN ` nh→ o for the only index h = 2

• ΓN ` n19 n2

• For any node in n ∈ nodes(Nk) there exists a directed path from the internal node n to the output node o;
further, for such nodes we let length(n,ΓN) be the length of the minimal path between the node n and the
output node o and next(h,ΓN) = {h′ | ΓN ` nh→ nh′ and length(nh′ ,ΓN) = length(nh,ΓN)−1}

• for any node h = 2, · · · , j it holds length(nh,ΓN) ≤ length(n1,ΓN),

• For any index h = 2, · · · , j, we assume the existence of a channel ch ∈ Ch, different from the channel c

used in the routing modelMk

• Let h, l be two indexes ranging over 3, · · · , j and 0, · · · ,k,respectively; further, let M be a finite multiset
of values. We make use of the following process definitions

Q2
M ⇐ c2?(x) .Q2

(M∪{|x|}) +

∑
v∈M

c!〈v〉 .Q2
(M\{|x|})


Qh

M ⇐ (ch?(x) .Qh
(M∪{|x|})) +

 ∑
h′∈∈next(h,ΓN )

∑
v∈M

ch′ !〈v〉 .Qh
(M\{|v|})




R0
M ⇐

 ∑
h∈next(1,ΓN )

∑
v∈M

ch!〈v〉 .R0
(M\{|v|})




Rl+1
M ⇐ (c?(x) .Rl

(M∪{|x|})) +

 ∑
h∈next(1,ΓN )

∑
v∈M

ch!〈v〉 .Rl+1
(M\{|v|})




to define the system term Nk as

Nk = n1~Rk
∅
� |

j∏
h=2

nh~Qh
∅
�

An informal description of the behaviour of the (parametric) networkNk is mandatory; its (partially defined)
connectivity graph ΓN is depicted in Figure 5.4.

Note that we assumed a channel ch for any internal node nh, where h = 2, · · · , j. By looking at the code of
the system term Nk, it is easy to note that the node nh is the only one that can detect values broadcast along the
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associated channel ch. That is, if a node in the network Nk broadcasts a value along a channel ch, then such
a value is intended to be received only by the node nh; further, at any given time the node nh is listening for
values incoming at channel ch, hence it is ensured that it will receive values broadcast along such a channel by
any node which is directly connected to it.

For any index h = 3, · · · , j, if the node nh detects a value, it will store it in its local buffer; this is represented
as a multiset M . At any given time, node nh can decide to non-deterministically select a value in its buffer (if
any) and an index h′ such that the node n′h can detect the broadcasts fired by nh (that is, ΓN ` nh → nh′ ) and
which is less distant to the output node o (that is, the minimal length of a path from node nh′ to the output
node o is strictly lower than the minimal length of a path from nh to o); once the index h′ and the value v have
been selected, node nh broadcasts value v along channel ch′ . Since the node nh′ is the only one that can receive
values broadcast along channel ch′ , it is ensured that it will be the only node that will detect such a broadcast.
In other words, at any given time node nh can either

• receive a message and store it in its buffer, or

• select a message stored in its own buffer, and forward it to one of its neighbouring node which is less
distant to the output node o. Note that such a neighbouring node exists, for we are assuming that any
internal node in Nk has a directed path from it to node o (therefore the minimal length of a path from
such a node to o is defined and finite).

It remains to describe the informal behaviour of the nodes n1,n2. This is similar to that of the other nodes
nh, h = 3, · · · , j. However, there are some crucial differences:

• node n1 can only receive messages broadcast along channel c; since the only internal node that can
broadcast values along such a channel is n2, and we are explicitly assuming that n1 is not in the range
of transmission of n2, we are ensured that whenever n1 receives a message along channel c then it is
because of a broadcast fired by the input node i,

• node n1 can only receive k messages along channel c; this is unsurprising, for we have placed the same
constraint in the modelMk,

• node n2 can only broadcast values along channel c; the only internal node that can receive messages
broadcast along channel c is n1; however, we are assuming that ΓN ` n29 n1. Therefore, the only node
that can detect values broadcast by node n2 is the output node o.

At this point the reader should have a clear idea of the behaviour of the network Nk. Next, we examine the
strong extensional transitions that can be performed by the states of the extensional LTS generated by Nk.

To this end, let buf be a function that maps elements in {1, · · · , j} to finite multisets of values, and l be an
index ranging over 0, · · · ,k. We define the network Nbuf

l as

Nbuf
l = ΓN Bn1~Rl

buf(1)� |

j∏
h=2

nh~Qh
buf(h)�

Note that we have Nk = Nk
buf0

, where buf0 is the function such that buf0(h) = ∅ for any h = 1, · · · , j. In the
following we use the standard notation buf[h 7→M ] to denote the function that associates the multiset M to
the index h and the value buf(h′) to any other index h′ , i.

We will also need some non-standard notation. The function (buf ↓ v) is defined as buf[1 7→ (buf(1)∪{|v|})];
intuitively the function (buf ↓ v) described how the contents of the local buffers of nodes in the implementation
Nk, represented by buf, evolve when a value v is received at the input node n1 and stored in its local buffer.
The function buf[h ⇑ v] = buf[h 7→ (buf(h) \ {|v|})] denotes how the local buffers of internal nodes in Nk evolve
when value v flows from node nh to the external node o; finally, buf[h

v
{ h′] = (buf[h 7→ (buf(h) \ {|v|})])[h′ 7→

(buf(h′)∪{|v|})] is used to describe a value flowing from the internal node nh to node nh′ .
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Proposition 5.2.5. Let buf be a mapping from the index set {1, · · · , j} to finite multisets of values, and let l ≥ 0.

1. For any value v ∈ Val and channel d ∈ Ch (possibly equal to c, N0
buf

i.d?v
7−−−−−→N ′ if and only if N ′ ≡ N0

buf

2. For any value v ∈ Val and channel d ∈ Ch, d , c, N l+1
buf

i.d?v
7−−−−−→N ′ if and only if N ′ ≡ N l

buf

3. For any value v ∈ Val N l+1 i.c?v
7−−−−−→N ′ if and only if N ′ ≡ N l

(buf↓v)

4. N l
buf

τ
7−−→ N ′ if and only if there exists an index h , 2 such that v ∈ f (h) for some value v and N ′ ≡

N l
buf[h

v
{h′

for some index h′ ∈ next(h,ΓN)

5. N l
buf

c!vB{o}
7−−−−−−−→N ′ if and only if v ∈ f (2) and N ′ ≡ N l

buf[2⇑v]

6. N l
buf is deadlocked if and only if

⋃ j
h=1 buf(h) = ∅

Proof. We only prove Statement 4. For the if implication, let h be an index in {1, · · · , j} such that h , 2, and
let v ∈ Val be a value such that v ∈ buf(h). Finally, let h′ be an index such that h′ ∈ next(h,ΓN). Such an index
exists since we are assuming that every node in the network Nk is connected to the output node o.

Without loss of generality, assume that h , 1 (the case h = 1 is similar), h < h′. By Definition we have that

N l
buf = ΓN Bn1~Rl

buf(1)� |n2~Q2
buf(2)� | · · ·nh~Qh

buf(h)� | · · · |nh′~Qh′
f (h′)� | · · ·n2~Q2

f (2)�

Qh
f (h) ⇐ (ch?(x) .Qh

(buf(h)∪{|x|})) +

 ∑
h′∈next(h,ΓN )

 ∑
v∈buf(h)

ch′ !〈v〉 .Qh
(buf(h)\{|v|})




Qh′
buf(h′) ⇐ (ch′?(x) .Qh′

(buf(h′′)∪{|x|})) +

 ∑
h′′∈next(h′,ΓN )

 ∑
v∈buf(h′)

ch′′ !〈v〉 .Qh′
(buf(h′)\{|v|})




from which it is not difficult to infer the following transitions in the intensional semantics:

ΓN Bn1~Rl
buf(1)�

nh.ch′ ?v
−→ n1~Rl

buf(1)�

ΓN Bnh′′~Qh′′
buf(h′′)�

nh.ch′ ?v
−→ nh′′~Qh′′

buf(h′′)�

ΓN Bnh′~Qh′
buf(h′)�

nh.ch′ ?v
−→ nh′~Qh′

(buf(h′)∪{|v|})�

ΓN Bnh~Qh
buf(h)�

nh.ch′ !v
−→ nh~Qh

(buf(h)\{|v|})�

here h′′ is an index different from 1,h,h′. Note that the first transition can be derived because h′ , 1; in fact,
recall that h′ ∈ next(h,ΓN); if if were h′ = 1, we would have length(nh,ΓN) > length(n1,ΓN), contradicting the
requirements that we placed over the connectivity graph ΓN . The third transition can also be derived because
we are assuming that h′ ∈ next(h,ΓN), from which it follows ΓN ` nh→ nh′ . By a repeated application of rules
(B-SYNC−L), (B-SYNC−R), (B-PROP) (see Figure 2.4) it is not difficult to obtain the transition

N l
buf

nh.ch′ !v
−→ N ′

where N ′ is the network

ΓN Bn1~Rl
buf(1)� |n2~Q2

f (2)� | · · ·nh~Qh
(buf(h)\{|v|})� | · · · |nh′~Qh′

(buf(h′)∪{|v|})� | · · ·n2~Q2
buf(2)�

which is exactly N l
buf[h

v
{h′]

.

It remains to show that the transition above induces a τ-extensional transition; this is immediate, for
Output(N l

buf) = {o} and if ΓN ` nh→ o then h = 2. Since we are assuming h , 2, it follows that
{n ∈ Output(N l

buf) | ΓN ` nh→ n} = ∅. It follows from Definition 4.1.3 that N l
f

τ
7−−→N l

buf[h
v
{h′]

.
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Now suppose that N l
buf

τ
7−−→ N ′ for some network N ′; it is immediate to note that such an extensional

transition corresponds to a broadcast performed by one of the nodes n1, · · · ,n j, for none of such nodes can

perform a (intensional) τ-transition in N l
buf. More specifically, we have that N l

buf

nh.ch′ !v
−→ N ′ for some indexes

h,h′ ranging over 1, · · · , j and value v.

By Proposition 2.4.7 it holds that N l
buf ≡ nh~ch′ !〈e〉 .P + Q� | N for some processes P,Q, system term N

and closed expression e such that ~e� = v. Further, N ′ ≡ nh~P� | N′; here N′ is a system term such that

ΓN BN
nh.ch′ ?v
−→ N′. At this point we have two possibilities:

• h = 1; in this case we have that ch!〈e〉 .P + Q ≡ Rl
f (1), from which it follows that v ∈ buf(h) and the index

h′ is such that h′ ∈ next(h,ΓN), or

• h > 22; in this case it follows that ch!〈e〉 .P + Q ≡ Qh
buf(h), hence v ∈ f (h) and h′ ∈ next(h,ΓN).

Let us consider the first case; the second one is analogous. In this case we have that N ≡
∏ j

h′′=2 nh′′~Qh′′
buf(h′′)�.

Since h′ ∈ next(1,ΓN), it follows that ΓN ` n1 → nh′ ; further, for any other index h′′ , 1,h′, it is easy to note
that rcv(Qh′′

buf(h′′),ch′ ) is not true. It follows from Proposition 2.4.9 that

N′ ≡ Qh′
buf(h′)∪{|v|}~�|

j∏
h′′=2

h′′,h′

nh′′~Qh′′
buf(h′′)�

Thus we have proved that the network N ′ is structurally equivalent to

ΓN Bn1~Rl
buf(1)\{|v|}� |nh′~Qh′

buf(h′)∪{|v|}� |

j∏
h′′=1

h′′,h′

nh′′~Qh′′
buf(h′′)�

which is exactly the network N l
buf[1

v
{h′

. �

It is immediate to observe from Proposition 5.2.5 that every state of the extensional LTS generated by the
network Nk corresponds to a network of the form N l

buf, where l ≤ k. Further, if we define the cardinality of a
multiset M as |M | =

∑
v∈M mult(v,M ), it is also easy to note that for such networks it holds

∑ j
h=1|buf(h)| ≤ k.

In other words, in any state of the LTS generated by the network Nk, there are no more than k values to be
collected by the node n1, and no more than k to be delivered at the output node o. At this point it is easy to note
that network Nk is both finitary and strongly convergent.

In Proposition 5.2.5 we have shown that there is the possibility for the networkNk to reach a configuration
which can perform τ-extensional transitions. Since our aim is to calculate the set of deadlock traces ofNk, it is
more practical to reason on weak extensional transitions.

To this end, we define the relation ≺ between mappings from the index set {1, · · · , j} and finite multisets of
values by letting buf ≺ buf′ whenever buf′ = buf[h

v
{ h′] for two indexes h,h′ such that h′ ∈ next(h,ΓN) and a

value v ∈ buf(h).

We let 4 be the transitive, reflexive closure of ≺. Consider two networksN l
buf andN l

buf′ such that buf4 buf′;
intuitively, the last constraint says that the network N l

buf′ can be obtained from the network N l
buf by letting the

values stored at some internal node flow until they reach a location which is closer to the destination node o3.
Further, the multisets of values stored in the overall networks N l

buf and N l
buf′ are the same. Formally, we have

the following statements:

Lemma 5.2.6. If buf,buf′ are two mappings such that buf 4 buf′, then
⋃ j

h=1 buf(h) =
⋃ j

h=1 buf′(h).

Proof. It is easy to note that the statement holds for the relation ≺, and therefore it holds for 4 which is the
reflexive, transitive closure of the former. �

2Note that the case h = 2 can never happen, for node n2 can only broadcast values along channel c.
3This includes the location in which the value was originally stored itself.
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Proposition 5.2.7. Let l ≤ k be a positive integer, and let buf be a mapping from the index set {1, · · · , j} to finite
multisets of values.

Then N l
buf

τ
|===⇒N ′ if and only if N ′ ≡ N l

buf′ for some mapping buf′ such that buf 4 buf′.

Proof. This statement follows directly from Proposition 5.2.5(4). Technical details are omitted. �

Propositions 5.2.5 and 5.2.7 allow us to list all the weak transitions that are defined for networks of the
form N l

buf.

Corollary 5.2.8. Let 0 ≤ l ≤ k, and let buf be a mapping from the index set {1, · · · , j} to finite multisets of
values. Then

• For any channel d ∈ Ch and value v ∈ Val, N0
buf

i.c?v
|=====⇒N ′ if and only if N ′ ≡ N0

buf′ for some mapping
buf′ such that buf 4 buf′

• For any channel d , c and value v ∈ Val, N l+1
buf

i.d?v
|=====⇒N ′ if and only if N ′ = N l+1

buf′ for some mapping
buf′ such that buf 4 buf′

• For any value v ∈ Val, N l+1
buf

i.c?v
|=====⇒N ′ if and only if N ′ ≡ N l

buf′ for some mapping buf′ such that (buf ↓
v) 4 buf′

• for any value v,N l
buf

c!vB{o}
|=======⇒N ′ if and only if there exists an index h = 1, · · · , j such that v ∈ buf(h) and

N ′ ≡ N l
buf′ for some mapping buf′ such that buf[h ⇑ v] 4 buf′

• N l
buf is deadlocked if and only if

⋃ j
h=1 buf(h) = ∅

Proof. All the statements can be proven by using propositions 5.2.5 and 5.2.7. For the last statement, it is also
necessary to note that for any value v and index h such that v ∈ buf(h) there exists a mapping buf′ such that
buf 4 buf′ and v ∈ buf(2). In other words, this means that every message which flows through the nodes of the
network Nk eventually reaches the node n2; this is true for n2 is the only node in Nk for which the minimal
length of a path between it and the external node o is exactly 1. �

At this point, we are ready to calculate the set of deadlock traces for the network Nk; in practice, we
compute the set of deadlock traces for any network of the form N l

buf.

Proposition 5.2.9. For any network of the form N l
buf, where l ≥ 0 and buf is a mapping from the index set

{1, · · · , j} to finite multisets of values, the set DTraces(N l
buf) is defined as the least set such that

• ε ∈ DTraces(N l
buf),

• If
⋃ j

h=1 buf(i) = ∅ then δ ∈ DTraces(N l
buf)

• If t ∈ DTraces(N0
buf′ ) and buf 4 buf′, then for any channel d and value v it holds i.d?v::t ∈ DTraces(N0

buf)

• If t ∈ DTraces(N l+1
buf′ ) for some mapping buf′ such that buf 4 buf′, then for any channel d , c and value

v ∈ Val it holds i.d?v::t ∈ DTraces(N l
buf)

• If t ∈ DTraces(N l
buf′ ) for some mapping buf′ such that (buf ↓ v) 4 buf′, then i.c?v::t ∈ DTraces(N l+1

buf )

• If there exist an index h and a value v such that v ∈ buf(h), and t ∈DTraces(N l
buf′ ) for some mapping buf′

such that
(buf[h ⇑ v]) 4 buf′

then c!vB {o}::t ∈ DTraces(N l
buf)

Proof. Immediate from Corollary 5.2.8 and Definition 4.4.6 �
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We are now ready to show that the network Nk is indeed an implementation of the routing model Mk,
defined in Section 5.2.2

Theorem 5.2.10. For any integer k ≥ 0 we haveMk ' Nk.

Proof. Let k ≥ 0; we prove that DTraces(Mk) = DTraces(Nk). By Theorem 4.4.11 we have thatMk =must Nk,
hence by Theorem 4.4.31 it follows thatMk ' Nk.

The proof is similar in style to that of Proposition 5.1.1. In this case we prove, by induction on a deadlock
trace t, that DTraces(Ml

M ) = DTraces(Ml
buf) for any multiset M and mapping buf such that M =

⋃ j
h=1 buf(h).

We only show the most interesting details.

• t = δ; suppose that δ ∈Ml
M ; it follows that M = ∅, hence

⋃ j
h=1 buf(h) = ∅. By Proposition 5.2.9 it follows

that δ ∈ N l
buf. The opposite implication is analogous.

• t = c!vB {o}::t′; suppose that t ∈Ml
M ; then we have that t′ ∈Ml

(M\{|v|}).

Since
⋃ j

h=1 buf(h) = M , there exists an index h′ such that v ∈ buf(h′), from which it follows that

N l
buf

c!vB{o}
|=======⇒N l

buf′ , where buf′ = buf[h ⇑ v].

By Hypothesis we have that buf(h′)∪
⋃ j

h=1
h,h′

buf(h) = M , and in particular

buf[h ⇑ v] = (buf(h′) \ {|v|})∪
j⋃

h=1
h,h′

buf(h) = M \ {|v|}

Therefore, by Lemma 5.2.6, we find that
⋃ j

h=1 buf′(h) = M \ {|v|}. For we have already shown that t′ ∈

Ml
M {|v|}, by inductive hypothesis we obtain that t′ ∈DTraces(N l

buf′ ). Finally, since we have already proved

that N l
buf

c!vB{o}
|=======⇒N l

buf′ , we obtain that c!vB {o}::t′ ∈ DTraces(N l
buf).

The proof of the opposite implication is similar in style, and it is therefore omitted.

�

5.3 Connection Oriented Routing

In this Section we analyse a slightly different situation in which packets that flow through a network to reach a
destination node are delivered in the same order in which they have been broadcast by the source node. In this
case, the informal specification can be summarised as follows:

Specification 5.3.1 (Connection-Oriented Routing). Give an input node i, an output node o and a channel c,
the first k values broadcast by node i are eventually delivered, in the same order they have been broadcast
by i, to the output node o. � �

5.3.1 The Model

Not surprisingly, a model for Specification 5.3.1 can be defined as a slight modification of the network Mk

as defined in Section 5.2.2. The multiset M which is used to represent the buffer of the unique internal node
of a network is replaced with a queue q. A queue is a list of values which can be accessed and manipulated
via the following functions: push(v,q, :)(Val×Val∗)→ Val∗, last(q) : Val∗⇀ Val, remLast(q) : Val∗→ Val∗ and
isEmpty(q) : Val∗→ {true, false}. Note that last(() ·) is a partial function. The definition of the functions we use
to access a queue q is given below.
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push(v,q) = v::q

last(ε) = undefined

last(v::ε) = v

last(v::w::q) = last(w::q)

remLast(ε) = ε

remLast(v::ε) = ε

remLast(v::w::q) = v:: remLast(w::q)

isEmpty(ε) = true

isEmpty(v::q) = false

For technical reasons we assume that the elements of the set of values Val are either message values, of
the form v, or ordered values of the form 〈 l , v 〉, where l is an integer in the set {0, · · · ,k− 1}. In the routing
model we allow only message values to be routed from the source node to the destination, while ordered values
broadcast by the input node i are ignored at the internal node of our model. Ordered values are not used in our
routing model; however, they will be useful when defining one of its implementations. We assume a predicate
isMessage(() ·) : Val→ {true, false}, defined as isMessage(()v) = true, isMessage(()〈 l , v 〉) = false.

For any queue of (message) values q and integer l ≥ 0, we assume the process definitions

P0
q ⇐ if isEmpty(q) then 0 else c!〈last(q)〉 .P0

remLast(q)

Pl+1
q ⇐ (c?(x) .if isMessage(x) then Pl

push(x,q)P
l+1
q else ) +

+ (if isEmpty(q) then 0 else c!〈last(q)〉 .Pl
remLast(q))

The routing modelMk for Specification 5.3.1 is defined as the network ΓM BMk, where ΓM is the connec-
tivity graph already used in the model of connectionless routing, depicted in Figure 5.3, and Mk = m~Pk

ε�.
Let us discuss informally the behaviour of the networkMk. At any given time, this network can perform

one of the following actions:

• receive a value broadcast by the input node i along channel c; if the received value is a message value,
and if the the network has not yet received k message values from the input node i, the value is stored as
the top element in the queue q representing the internal buffer of node m, otherwise it is ignored

• if the internal buffer of node m is not empty, forward the last value in the queue along channel c; this
value is detected by the output node o, which is in the range of transmission of node m.

Now we turn our attention to the formal behaviour of the routing modelMk we have defined. To this end,
for any positive integer l and queue of message values v, letMl

q be the network ΓM Bm~Pl
q�.

Proposition 5.3.2. Let l ≥ 0 and q be a queue of message values; then

1. If isEmpty(q) = true thenMl
q is deadlocked,

2. If isEmpty(q) = false, thenMl
q

c!vB{o}
7−−−−−−−→M′ if and only if last(q) = v andM′ ≡Ml

remLast(q),

3. For any channel d ∈ Ch and (either ordered or message) value v,M0
q

i.d?v
7−−−−−→M′ if and only ifM′ ≡M0

q,
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4. For any channel d , c, and (either ordered or message) value vMl+1
q

i.d?v
7−−−−−→M′ if and only ifM′ ≡Ml+1

q

5. If 〈 l′ , v 〉 is an ordered value, thenMl
q

i.c?〈 l′ ,v 〉
7−−−−−−−−→M′ if and only ifM′ ≡Ml+1

q

6. If v is a message value thenMl+1
q

i.c?v
7−−−−−→M′ if and only ifM′ ≡Ml

push(v,q) �

It is also easy to check that there are no further transitions for such networks. Since there are no τ-transitions
for any network of the formMl

q, it is easy to calculate its set of deadlock traces by exploiting proposition 5.3.2.

Corollary 5.3.3. For any integer l ≥ 0 and queue q, the set DTraces(Ml
q) is the least set such that

1. ε ∈ DTraces(Ml
q),

2. If isEmpty(q) = true then δ ∈ DTraces(Ml
q),

3. If isEmpty(q) = false, last(q) = v and t ∈ DTraces(Ml
remLast(q)), then c!vB {o}::t ∈ DTraces(Ml

q),

4. for any channel d and value v, if t ∈ DTraces(M0
q) then i.d?v::t ∈ DTraces(M0

q),

5. For any channel d ∈Ch,d , c and (either message or ordered) value v, it t ∈DTraces(Ml+1
q ) then i.d?v::t ∈

DTraces(Ml+1
q ),

6. For any ordered value 〈 l′ , v 〉, if t ∈ DTraces(Ml+1
q ) then i.d?〈 l′ , v 〉::t ∈ DTraces(Ml+1

q )

7. If v is a message value and t ∈ DTraces(Ml
push(v,q)), then i.c?v::t ∈ DTraces(Ml+1

q )

Proof. Straightforward from Proposition 5.3.2 and Definition 4.4.7. �

5.3.2 Two Different Implementations

Now that we have defined a model for connection oriented routing, let us turn our attention at its possible
implementations.

In the TCP/IP standard, protocols that ensure that the behaviour of a network is consistent with Specification
5.3.1 are implemented either at the internet layer or at the transport layer. In the first case, it is the responsibility
of a routing protocol to ensure that packets are delivered to the destination in the same order they have been
broadcast by the source. Here The idea [..] is to avoid having to choose a new route for every packet sent

[..]. Instead, when a connection is established, a route from the source machine to the destination machine is

chosen as part of the connection setup [65].
In the second case, it is assumed that users have no real control over the network layer [..]. The transport

code runs entirely on the users’ machines [65]. In other words, this means that it is the responsibility of the
source and destination nodes to ensure that packets are delivered to the latter in the same order they have
been broadcast by the former; as for the other nodes in the network, their only responsibility is only that of
forwarding each message they receive to the next hop in a routing path.

The fact that there exists different protocols that can be used to ensure that the behaviour of a network
implements connection-oriented routing leads to the intuition that we can provide different implementations
for the (connection-oriented) routing modelMk in our framework. In practice, we exhibit two of them. The
first one reflects the behaviour of routing protocols defined at the internet layer; the latter abstracts from the
behaviour of protocols defined at the transport layer of the TCP/IP standard. We remark that only this second
implementation makes use of ordered values, which are instead ignored in the first one.

Implementation at the Internet Layer

As we have already mentioned, the idea behind connection-oriented routing protocols is that of choosing a
route which will be used to make message values broadcast by the input node i to flow throughout a network,
before reaching the destination o.
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This amounts to discovering a path of minimal length in the connectivity graph we use in the implemen-
tation network; obviously, for this to be possible, we need to consider a connectivity graph in which the input
node i is connected to the output node o.

In the same fashion of Section 5.2.3 we give a parametric definition of the implementation network; specif-
ically, we consider a network Nk = ΓN BNk which satisfies the following properties:

• Input(Nk) = {i}, Output(Nk) = {o}; further, we assume that there is a single node n1 such that ΓN ` i→ n1,
a single node n2 for which ΓN ` n2→ o, and that nodes(Nk) = {n1, · · · ,n j} for some h ≥ 2

• there exists a path in ΓN from node n1 to node n2

• ΓN ` n18 n2

• for any index h = 1, · · · , j there exists a channel ch ∈ Ch

• for any integer l ≥ 0, queue q and indexes h = 3, · · · , j, h′ = 1, · · · , j we assume the following process
definitions:

R0
q,0 ⇐ if isEmpty(q) then 0 else

 ∑
h′∈next(1,ΓN )

ch′ !〈last(q)〉 .R0
remLast(q),h′


R0

q,h′ ⇐ if isEmpty(q) then 0 else ch′ !〈last(q)〉 .R0
remLast(q),h′

Rl+1
q,0 ⇐ (c?(x) .if isMessage(x) then Rl

push(x,q),0 else Rl+1
q,0 ) +

+

if isEmpty(q) then 0 else

 ∑
h′∈next(1,ΓN )

ch′ !〈last(q)〉 .Rl+1
remLast(q),h′




Rl+1
q,h′ ⇐ (c?(x) .if isMessage(x) then Rl

push(x,q),h′ else Rl+1
q,h′ ) +

+ (if isEmpty(q) then 0 else ch′ !〈last(q)〉 .Rl+1
remLast(q),h′ )

Qh
q,0 ⇐ (ch?(x) .Qh

push(x,q),0) +

+

if isEmpty(q) then 0 else

 ∑
h′∈next(h,ΓN )

ch′ !〈last(q)〉 .Qh
remLast(q),h′




Qh
q,h′ ⇐ (ch?(x) .Qh

push(x,v),h′ ) + (if isEmpty(q) then 0 else ch′ !〈last(q)〉 .Qh
remLast(q),h′ )

Q2
q,0 ⇐ (c2?(x) .Q2

push(x,q),0) + (if isEmpty(q) then 0 else c!〈last(q)〉 .Q2
remLast(q),0)

Q2
q,h′ ⇐ Q2

q,0

Recall that, for any index h = 1, · · · , j, next(h,ΓN) contains all the nodes n′connected to it in Nk whose
minimal length of a path from n′ to o is strictly less than the minimal length of a path from n to o. The
system term Nk is defined as

n1~Rk
ε,0� |

j∏
h=2

nh~Qh
ε,0�

Let us discuss informally the behaviour of the network Nk we have defined. We have already seen in
Section 5.2.3 that associating a channel ch to each internal node nh is useful to allow internal nodes to select
one of its neighbours as the next hop in a routing path.

Each internal node n ∈ nodes(Nk) is equipped with a queue q containing the messages it still has to forward
to the next hop in a routing path. These are stored in descending order with respect to the time they have been
detected by node n; in particular, the least recent received message is the last element of the queue, while the
most recent is stored at the top of queue q.

Further, each node n ∈ nodes(Nk) is equipped with a positive integer, which can be either 0 or be in the range
1, · · · , j. At least intuitively, such an integer corresponds to the next hop that the node has selected in a routing
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path. If it is 0, then the next hop has not yet been selected, and it will be chosen non-deterministically among
the neighbours of n; once such an index h = 1, ·, j has been selected, node n will always select its neighbour nh

as the next hop in a routing path. This choice is made whenever the node n decides to broadcast its first value.

As in Section 5.2.3 the code running at the nodes n1,n2 is slightly different from that running at other nodes;
we list briefly the main differences below:

• node n1 only receives values which have been broadcast along channel c; further, it ignores ordered
values, as well as message values broadcast after it has detected exactly k of them,

• node n2 always broadcasts the value stored at the bottom of its queue along channel c.

Our aim is to prove that, for any index k ≥ 0, it holdsMk ' Nk. This can be proved along the same lines
of the proof of Theorem 5.2.10. However, the proof contains a greater amount of technical details, due to the
more complicated structure of both the modelMk and the implementation Nk.

First, let buf : {1, · · · , j} → Val∗, nexthop : {1, · · · , j} → {0, · · · , j} be two functions. For any integer l > 0 we
define the network N l

buf,nexthop as the network

ΓN Bn1~Rl
buf(1),nexthop(1)� |

j∏
h=2

nh~Qh
buf(h),nexthop(h)�

It is easy to check that Nk =Nk
buf0,nexthop0

, where buf0(h) = ε, nexthop0(h) = 0 for any h = 1, · · · , j. We also
say that a network Nk

buf,nexthop is admissible if and only if, for any index h = 1, · · · , j if buf(h) , ε then there
exists a node nh′ such that nexthop(h′) = h, and whenever buf(h) , ε then it contains only message values.
Informally speaking, a node can have values stored in its buffer only if is has been selected as a hop in the
routing selected for the network Nk. Further, only message values can flow throughout the network. It is easy
enough to note that Nk =Nk

buf0,nexthop0
is admissible.

For any mapping buf : {1, · · · ,k} → Val∗ and indexes h,h′ = 1, · · · , j, we use the notation buf[h{ h′] as
a shortcut for (buf[h 7→ remLast(buf(h))])[h′ 7→ push(last(buf(h)),buf(h′))], meaning that a value v has flown
from the bottom of the queue of node nh to the top of the queue of node nh′ .

We also use the notation (buf ↓ v) as a shortcut for buf[1 7→ push(v,buf(1))], meaning that value v has been
pushed on the top of the queue of node n1. Similarly, we use the notation ( f ↑) for f [2 7→ remLast(buf(2))],
meaning that the last element in the queue of the node n2 has been removed from the network Nk.

We are now ready to list the properties of networks of the form N l
buf,nexthop that we need to prove that

Mk ' Nk.

Proposition 5.3.4. Let l ≥ 0, buf : [1, · · · , j]→ Val∗, nexthop : [1, · · · , j]→ [0, · · · , j].

1. For any channel d ∈ Ch, (either message or ordered) value v ∈ Val, N0
buf,nexthop

i.d?v
7−−−−−→N ′ if and only if

N ′ =N0
buf,nexthop,

2. For any channel d , c and value v ∈ Val, N l+1
buf,nexthop

i.d?v
7−−−−−→N ′ if and only if N ′ =N l+1

buf,nexthop,

3. For any ordered value 〈 l′ , v 〉 ∈ Val, N l+1
buf,nexthop

i.c?〈 l′ ,v 〉
7−−−−−−−−→N ′ if and only if N ′ =N l+1

buf,nexthop,

4. for any message value v ∈ Val, N l+1
buf,nexthop

i.c?v
7−−−−−→N ′ if and only if N ′ =N l

(buf↓v,nexthop,

5. N l
buf,nexthop

τ
7−−→N ′ if and only if there exists an index h , 2 such that buf(h) , ε and

(a) if nexthop(h) = 0 then N ′ =N l
(buf[h{h′]),(nexthop[h7→h′]) for some index h′ such that h′ ∈ next(h,ΓN)

(b) if nexthop(h) = h′, h′ , 0, then N ′ =N l
(buf[h{h′]),nexthop

6. N l
buf,nexthop

c!vB{o}
7−−−−−−−→N ′ if and only if last(buf(2)) = v and N ′ =N l

(buf↑),nexthop
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7. N l
buf,nexthop is deadlocked if and only if buf(h) = ε for any index h ranging over 1, · · · , j,

8. if N l
buf,nexthop is admissible, then whenever such that N l

buf,nexthop
λ
7−−→N ′ for some extensional action λ it

holds that N ′ is admissible.

Proof. Similar in style to that of Proposition 5.2.5. �

The last statement of Proposition 5.3.4 is particularly important; it says that admissible networks are invari-
ant by transitions. For our implementation Nk is itself an admissible network, it follows that any state of the
extensional LTS it generates corresponds to an admissible network as well. Further, the reader can check that
for any integer k ≥ 0, the network Nk is finitary and strongly convergent.

The next step is that of identifying the weak extensional transitions of an admissible network of the form
N l

buf,nexthop. To this end, it is first necessary to give some definitions.

Given two mappings buf : {1, · · · , j} → Val∗, nexthop : {1, · · · , j} → {0, · · · , j} and an index h = 1, · · · , j, we
define the the queue concat( f ,g,h) as

concat(buf,nexthop,2) = buf(2)
concat(buf,nexthop,h) = buf(h) if h , 2,nexthop(h) = 0
concat(buf,nexthop,h) = buf(h):: concat(buf,nexthop,nexthop(h)) if h , 2,nexthop(h) , 0

where q::q′ represents, with an abuse of notation, the concatenation of two queues q,q′. With an abuse of
notation, we use concat(buf,nexthop) in lieu of concat(buf,nexthop,1); it is easy to check that, if N l

buf,nexthop is
an admissible network, then concat(buf,nexthop) is well-defined, and it corresponds to the queue of messages
stored in the overall network N l

buf,nexthop, ordered according to the routing path described in nexthop.

We will also need to identify the index of the node in which the bottom element (if any) of concat(buf,nexthop)
is stored, respectively to the networkN l

buf,nexthop. To this end, we define a function gli(buf,nexthop,h) that maps
to every mapping buf,nexthop and index h either the value 0, in the case that concat(buf,nexthop,h) = ε, or the
index where the last value of concat(buf,nexthop,h) is stored in the network N l

buf,nexthop. Its formal definition
is provided below.

gli(buf,nexthop,0) = 0

gli(buf,nexthop,2) =

0 if buf(2) = ε

2 otherwise

gli(buf,nexthop,h) =


0 if buf(h) = ε,gli(buf,nexthop,nexthop(h)) = 0

h if buf(h) , ε,gli(buf,nexthop,nexthop(h)) = 0

gli(buf,nexthop,nexthop(h)) if gli(buf,nexthop,nexthop(h)) , 0

In the definition above h ranges over 1, · · · , j, and we assume that h, 2. We use the notation gli(buf,nexthop)
in lieu of gli(buf,nexthop,1); again, the latter function is well-defined if N l

buf,nexthop is an admissible network.
Given two mappings buf,nexthop as above, we use the notation (buf ⇑ nexthop) to denote the mapping from
the index set {1, · · · , j} to queues of values defined as

(buf f ⇑ nexthop) = buf[gli(buf,nexthop) 7→ remLast(buf(gli(buf,nexthop)))]

Intuitively, the mapping (buf ⇑ nexthop) corresponds to the mapping buf, in which the last element stored in
the overall network N l

buf,nexthop (according to the next-hop function nexthop), that is the bottom element of
concat(buf,nexthop), has been removed.

Finally, consider some mappings buf,buf′ : {1, · · · , j}Val∗,nexthop,nexthop′ : {1, · · · , j} → {0, · · · , j}; we say
that 〈buf , nexthop 〉 ≺ 〈buf′ , nexthop′ 〉 if and only if
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• for any index h such that nexthop(h) , 0 it holds nexthop(h) = nexthop(h′)

• if nexthop(h) = 0 and nexthop′(h) , 0, then buf′ = buf[h{ h′], where h′ = nexthop′(h),

• otherwise, nexthop = nexthop′ and there exists two indexes h,h′ such that nexthop(h) = h′ and buf′ =

buf[h{ h′]

We use 4 to denote the reflexive, transitive closure of ≺. Intuitively 〈buf , nexthop 〉 4 〈buf′ , nexthop′ 〉 if
and only if the routing path described by nexthop′ is an extension of that modelled by nexthop, and messages
stored at some node nh in a networkN l

buf,nexthop have flown along the established routing path and are stored in
a node n′h in the network N l

buf′nexthop′.
We have provided all the definitions that we need to identify the weak extensional transitions of admissi-

ble networks. First, we note that the relation 4 we have defined is closely connected to weak τ-extensional
transitions.

Proposition 5.3.5. LetN l
buf,nexthop be an admissible network. N l

buf,nexthop

τ
|===⇒N ′ if and only ifN ′ =N l

buf′,nexthop′

for some mappings buf′,nexthop′ such that N l
buf′,nexthop′ is admissible, and 〈buf,nexthop , 4 〉〈buf′ , nexthop′ 〉.

�

Proposition 5.3.5 allows us to identify the weak extensional transitions performed for both the network Nk

and the states of the extensional LTS it generates.

Corollary 5.3.6. Let l ≥ 0, h ∈ {1, · · · , j} and buf : {1, · · · , j} → Val∗, nexthop : {1, · · · , j} → {0, · · · , j}. Suppose
N l

buf,nexthop is an admissible network.

1. For any channel d ∈ Ch and (either ordered or message) value v ∈ Val,N0
buf,nexthop

i.d?v
|=====⇒N ′ if and only

if N ′ =N0
buf′,nexthop′ for some mappings buf′,nexthop′ such that 〈buf , nexthop 〉 4 〈buf′ , nexthop′ 〉

2. For any channel d , c and (either ordered or message) value v ∈ Val,N l+1
buf,nexthop

i.d?v
|=====⇒N ′ if and only if

N ′ =N l+1
buf′,nexthop′ for some mappings buf′,nexthop′ such that 〈 f , g 〉 4 〈 f ′ , g′ 〉,

3. For any ordered value 〈 l′ , v 〉 ∈ Val, N l+1
buf,nexthop

i.c?〈 l′ ,v 〉
|=========⇒N ′ if and only if N ′ =N l+1

buf′,nexthop′ for some
mappings buf′,nexthop′ such that 〈buf , nexthop 〉 4 〈buf′ , nexthop′ 〉,

4. for any message value v ∈Val,N l+1
buf,nexthop

i.c?v
|=====⇒N ′ if and only ifN ′ =N l

(buf′,nexthop′ for some mappings
buf′,nexthop′ such that 〈 (buf ↓ v) , nexthop 〉 4 〈buf′ , nexthop′ 〉,

5. N l
buf,nexthop

c!vB{o}
|=======⇒N ′ if and only last(concat(buf,nexthop)) is defined and equal to some value v, and

N ′ =N l
buf′,nexthop′ for some mappings buf′,nexthop′ such that 〈 (buf ⇑ nexthop) , nexthop 〉 4

〈buf′ , nexthop′ 〉. �

We are now ready to calculate the set of deadlock traces for any admissible network of the formN l
buf,nexthop.

Proposition 5.3.7. Let l ≥ 0; for any admissible network of the form N l
buf,nexthop the set DTraces(N l

buf,nexthop)
is the least set such that

1. ε ∈ DTraces(N l
buf,nexthop),

2. If concat((,buf),nexthop) = ε then δ ∈ DTraces(N l
buf,nexthop),

3. For any channel d ∈ Ch and (either message or ordered) value v ∈ Val, if t ∈ DTraces(N0
buf′,nexthop′ ) for

some buf′,nexthop′ such that 〈buf , nexthop 〉 4 〈buf′ , nexthop′ 〉, then i.d?v::t ∈ DTraces(N0
buf,nexthop)

4. For any channel d ∈Ch such that d , c, and (either ordered or message) value v, if t ∈DTraces(N l+1
buf′,nexthop′ )

for some mappings buf′,nexthop′ such that 〈buf , nexthop 〉 4 〈buf′ , nexthop′ 〉, then
i.d?v::t ∈ DTraces(N l+1

buf,nexthop),
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5. For any channel d ∈ Ch and ordered value 〈 l′ , v 〉, if t ∈ DTraces(N l+1
buf′,nexthop′ ) for some mappings

buf′,nexthop′ such that 〈buf , nexthop 〉 4 〈buf′ , nexthop′ 〉, then i.d?〈 l′ , v 〉::t ∈ DTraces(N l+1
buf,nexthop),

6. Let v be a message value such that t ∈DTraces(N l
buf′,nexthop′ ) for some mappings buf′,nexthop′ for which

〈 (buf ↓ v) , nexthop 〉 4 〈buf′ , nexthop′ 〉 holds; then i.c?v::t ∈ DTraces(N l+1
buf,nexthop),

7. If t ∈ DTraces(N l
buf′,nexthop′ ) for some mappings buf′,nexthop′ such that 〈 (buf ⇑ nexthop) , nexthop 〉 4

〈buf′ , nexthop′ 〉 and last(concat(buf,nexthop)) = v, then c!vB {o}::t ∈ DTraces(N l
buf,nexthop). �

We have stated all the results that we need to prove that, for any positive integer k, the network Nk is an
implementation of the modelMk.

Theorem 5.3.8. For any network of the formMl
q and admissible network of the form N l

buf,nexthop, if
concat(buf,nexthop) = q then DTraces(Ml

q) = DTraces(N l
buf,nexthop).

In particular, since for any k ≥ 0 it holdsMk =Mk
ε and Nk = Nk

buf0,nexthop0
, we have that DTraces(Mk) =

DTraces(Nk). �

Implementation at the Transport Layer

In this Section we provide another implementation of the connection-oriented routing model defined in Section
5.3.1; this can be seen as an abstraction of protocols defined at the transport layer of the TCP/IP standard.

Specifically, we assume that it is the responsibility of the source node i and the destination node o to ensure
that values are delivered to the latter in the same order they have been broadcast by the former; instead, the role
of internal nodes in a network will be only that of forwarding the values they have received to the next hop in
a routing path, without performing any control on the order in which such values have been broadcast by the
input node i.

In this case, one problem arise. For we are assuming that the source node i and the destination node
o are external nodes in the routing model Mk, we are not allowed to insert any code at such nodes in our
implementation. In practice, this problem can be avoided by requiring that the input node i can broadcast
values to a unique (internal) node n1, while the output node can only detect values broadcast from a different
node n2; at this point we can insert some code at the internal nodes n1,n2 to ensure that messages broadcast by
node i are delivered to node o in the same order.

Roughly speaking, one could view the nodes i and n1 as a single (wireless) station; node n1 contains the
code that such a station run at the transport layer, while messages broadcast from the input node i as requests
that the protocol running at the higher level (that is, the application layer) of the station forwards to the transport
layer. The same can be thought for the nodes n2 and o. Node n2 provides services at the transport layer to the
output node o, by processing the data it receives by other nodes in the network.

Formally, we consider a network Lk = ΓL B Lk for which the connectivity graph ΓL satisfies the same
properties of ΓN defined in Section 5.3.1. Before defining the system term Lk we need to provide the following
process definitions:

R0,l′
M

⇐

∑
v∈M

 ∑
h∈next(1,ΓL)

ch!〈v〉 .S 0,l′
(M\{|v|})




R(l+1),l′
M

⇐
(
c?(x) .if isMessage(x) then

(
S l,(l′+1)

(M∪{|〈 l′ , x 〉|})

)
else S l+1l′M

)
+

+

∑
v∈M

 ∑
h∈next(1,ΓL)

ch!〈v〉 .S (l+1),l′

(M\{|v|})




Qh
M ⇐

(
ch?(x) .Qh

(M∪{|x|})

)
+

∑
v∈M

 ∑
h′∈next(h,ΓL)

c!〈v〉 .Qh
(M\{|x|})




S l′
M = ⇐ (c2?(x) .Rl′

M ) +

 ∑
〈 l′ ,v 〉∈M

c!〈v〉 .S l′+1
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Here we assume that M is a multiset, l, l′,h are positive integers. Then the system term Lk is defined as

n1~R
k,0
∅
� |n2~S 0

∅
� |

j∏
h=3

nh~Qh
∅
�

Informally speaking, the behaviour of the network Lk is similar to that of the implementation we have
provided for the connectionless routing model, Section 5.2.3. In fact, the only differences lie at the code
defined for the nodes n1,n2; let us illustrate them briefly.

• Suppose node n1 has not yet received k (message) values from the input node i. If n1 receives a (message)
value, broadcast from the input node i, it assigns to it a sequence number l′, and it stores the (ordered)
value 〈 l′ , v 〉 in its own buffer, represented by a multiset M .

Further, it increases the sequence number which will be assigned to the next message value it detects by
1. This behaviour ensures that sequence numbers are assigned to message values in increasing order with
respect to the order in which they have been broadcast by the input node i.

• If the last value that node n2 has forwarded to node o had assigned a sequence number l′, it will wait to
receive (along channel c2) an ordered value of the form 〈 l′ + 1 , v 〉. Whenever such a value is stored in
the local buffer of node n2, then such a node will remove the sequence number from it and the obtained
(message) value will be delivered to node o. After the latter has been broadcast, node n2 will update the
sequence number of the next value to be forwarded to node o to l′+ 2.

The user should be convinced that message values broadcast by node i will be eventually delivered to the
destination o. Further, node the code running at nodes n1 and n2 ensures that messages are delivered at the
destination in the same order they have been broadcast by the source node i. We only state the main result,
without providing any details.

Theorem 5.3.9. For any index k > 0,Mk ' Lk. �

5.4 Multicast Routing

In this Section we consider the problem of routing a fixed number of messages from a source node to a group
of destination nodes.

The problem of multicast routing can be summarised as follows: in some applications, hosts need to send

messages to many or all other hosts. For example, a service distributing weather reports, stock market updates,

or live radio programs might work best by broadcasting to all machines and letting those that are interested

read the data.[..] One broadcasting method [..] is for the source to simply send a distinct packet to each

destination. [65].

This description suggests a very simple Specification of the behaviour we wish to model.

Specification 5.4.1 (Multicast Routing). Let j,k be two positive integers. Given an input node i and a sequence
o1, · · · ,o j of output nodes, the first k messages broadcast by the input node i will eventually be detected by all
the output nodes o1, · · · ,ok. �

Finding a suitable model for the Specification above, however, is a non-trivial task. For example, given an
integer l ≥ 0 and a multiset M , assume that we have the process definitions

P0
M ⇐

∑
v∈M

c!〈v〉 .P0
(M\{|v|})

Pl+1
M ⇐ (c?(x) .Pl

(M∪{|x|})) +

∑
v∈M

c!〈v〉 .P0
(M\{|v|})
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i m

o1

...

o j

Figure 5.5: An ill-formed connectivity graph Γ′M for modelling multicast routing.

i

n1

...

n j

o1

...

o j

Figure 5.6: A correct connectivity graph ΓM for modelling multicast routing.

Consider the networkM′k = Γ′M BM′k, where M′k = m~Pk
∅
�.

Intuitively, node m in networkM′k can receive at most k values broadcast by the input node i, and each of
such values is stored in the local buffer of the unique internal node. Whenever such a buffer is not empty, node
m can decide to broadcast one of the values stored in it to all the output nodes o1, · · · ,o j.

The behaviour of the networkM′k is indeed consistent with Specification 5.4.1; that is, the first k messages
broadcast by node i will eventually be detected by each of the output nodes o1, · · · ,o j. However, the behaviour
ofM′k is too much specific. In fact, it is straightforward to note that any of the first k values broadcast by the
input node i is detected by each of the output nodes o1, · · · ,ok at the same time. The constraint that each values
should be received simultaneously at all output nodes is not included in the specification we have provided.

Another alternative would be that of using the networkMk = ΓM BMk, where ΓM is the connectivity graph
depicted in Figure 5.6 and

Mk =

j∏
i=1

n j~Pk
∅
�

In this network the first k values broadcast by node i are stored at j independent internal nodes n1, · · · ,n j; each
of these nodes nh,h = 1, · · · , j will eventually forward the detected values to the corresponding output node oh.
Since the locations n1, · · · ,n j are independent each other, in this case it is straightforward to show that any value
broadcast by i can be detected by each of the output nodes o1, · · · ,o j at different times.

For the network Mk has a more general behaviour than that of the ill-formed model M′k, we expect the
latter to be a refinement of the former. In fact, it is easy to check that the inequivalenceMk vmustM

′
k holds for

any integer k ≥ 0. However, the inequivalenceMk vmayM
′
k does not hold. The proof of these two statements

is similar in style to those provided in examples 4.3.28 and 4.4.35.

Let us turn our attention to a possible implementation of the multicast modelMk. For the sake of simplicity,
we only consider the case in which the number of internal nodes in the model is j = 2 j′ for some index j′ ≥ 0;
however, the implementation we discuss can be easily generalised to any possible value of j.

Roughly speaking, our implementation is obtained by replacing the internal nodes n1, · · · ,n2 j′ in the model
Nk with a complete binary tree consisting of 2 j′+1−1 internal nodes. Formally, we assume that our implemen-
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Figure 5.7: An instance of the connectivity graph ΓN

tation is a network Nk = ΓN BNk which satisfies the following constraints:

• nodes(Nk) = {n1, · · · ,n j′+1−1},

• ΓN is the smallest connectivity graph such that ΓN ` i→ n1, for any index h : 0 ≤ h ≤ 2 j′ − 1 it holds
ΓN ` nh→ n2h,ΓN ` nh→ n2h+1 and for any index h : 0 ≤ h ≤ 2 j′ −1, ΓN ` n2 j′+h→ oh+1

• for any multiset of values M , assume the process definition

PM ⇐ (c?(x) .P(M∪{|x|})) +

∑
v∈M

c!〈v〉 .P(M\{|v|})


Then the system term Nk is defined as

Nk = n1~Pk
∅
� |

2 j′+1−1∏
h=2

nh~P∅�

An instance of the connectivity graph ΓN , in the case we assume j′ = 2, is provided in Figure 5.7.
Intuitively speaking, in the network Nk the node n1 is responsible to detect the first k values broadcast by

the input node i and store them in its local buffer, represented as a multiset M . Whenever the local buffer of
such a node is non-empty, it can non-deterministically decide to forward one of the values stored in it along
channel c; the children nodes of n1, that is nodes n2 and n3, detect the value broadcast by their father node and
store it in their local buffer.

This procedure is iterated until a value does not reach a leaf node n2 j′+h, where 0 ≤ h ≤ · · · ,2 j′ −1. In this
case, the latter node can non-deterministically decide to broadcast a value stored in its own local buffer (if any),
which will be detected only by the output node oh+1.

In order to show that the network Nk is an implementation of the multicast model Mk, it is necessary to
calculate both the sets DTraces(Mk),DTraces(Nk). This can be done in a way analogous to the one already
illustrated in the previous sections of this Chapter. We only state the main result.

Theorem 5.4.2. For any integer k ≥ 0, DTraces(Mk) = DTraces(Nk). Therefore,Mk ' Nk. �
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5.5 Virtual Shared Memory

Our last case study focuses on implementing a virtual shared memory in a distributed system.

A distributed system is a collection of independent computers that appears to its users as a single coherent

system.[..] The main goal of a distributed system is to make it easy for users to access remote resources, and

to share them with other users in a controlled way.[..] An important goal of a distributed system is to hide the

fact that its processes and resources are physically distributed across multiple computers [66].

In a distributed system, a virtual shared memory is a service that allows different machines, called clients,
to retrieve and edit data which are distributed among different computers. That is, a virtual shared memory can
be seen as an implementation in a distributed system of a shared memory service running on a single computer.

Our first goal in this Section is that of exhibiting a model for virtual shared memory; this can be done by
implementing a shared memory system in which all the data are stored on a single machine, to which clients
can send either reading or writing requests.

Then we provide an implementation by focusing on a more complicated network, in which data are parti-
tioned among different machines. For the sake of simplicity, we assume that the number of clients which can
access the (virtual) shared memory is fixed, and equal to 2.

Specification 5.5.1 (Virtual Shared Memory). Let cl1,cl2 be two client nodes, mVar be a finite set of memory
variables, σ : mVar→ Z be a memory and k be a positive integer.

A command request issued from a client is a value either of the form READ(x) (read requests) or
UPDATE(x,z) (write requests), where x ∈mVar and z ∈ Z.

A networkMσ
k is a (virtual) shared memory system if it processes the first k request commands broadcast

from client cl1 and the first k request commands broadcast from client cl2 as follows:

• the network eventually replies to any read request READ(x) performed by client cli, i = 1,2; the reply
consists of the value σ(x), and can be detected only by the client that performed the request,

• the network eventually updates the memory whenever a write request UPDATE(x,z) is broadcast by a
client. Upon receiving such a request, the memory of the network evolves by updating the value σ(x) to
be exactly z, and it replies to the client that has performed the request with the new value of σ(x).

• Requests performed by the node client cl1 are processed in the same order they have been broadcast; the
same holds for the node client c2.

�

Defining a model for Specification 5.5.1 is not an easy task. In fact, there are several details to be taken into
account. First, we want the requests performed by a client to be processed in the same order they have been
broadcast. We have already seen that, in order to ensure that values are processed in the same order they are
detected by the network, it is necessary to equip the network with a queue. In this case, there are two different
queues, one for each client node.

Second, we need to equip the network with a memory, that is a function σ that maps memory variables
into integer values. Finally, we need to perform a check whether a value broadcast by a client corresponds to a
command request.

In practice, the connectivity graph ΓM we use to define a model for Specification 5.5.1, depicted in Figure
5.8, consists of 5 internal nodes. The node mem is the one in which the memory is implemented. The node
i1 processes the requests broadcast by the client node cl1, selecting only those which are valid, while the node
o1 receives the replies from the memory node mem and forward them to the client node cl1. In a similar way,
nodes i2 and o2 handle the requests and the replies coming from and directed to the client node cl2, respectively.

Before defining the system term containing the code at the 5 internal nodes ofM, we need to provide some
definitions.
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cl1

ii

o1

mem

i2

o2

cl2

Figure 5.8: The connectivity graph of the Virtual Shared Memory model

Given a value v, we define the predicate Command(·) : Val→ {true, false} to be true for all values v ∈ Val

such that either v = READ(x) or v = UPDATE(x,z) for some memory value x ∈ mVar and integer z ∈ Z. Also,
we define isReadRequest(·) : Val→ {true, false} as the predicate which is true for all the values v such that
v = READ(x) for some memory value x ∈mVar. The predicate isWriteRequest(·) : Val→{true, false} is defined
to be true whenever v = UPDATE(x,z) for some memory value x and integer z.

We will also need the following partial functions. The function getVariable(v) : Val⇀mVar is defined only
in the case Command(v) = true, and we let getVariable(READ(x)) = x, getVariable(UPDATE(x,z)) = x. That
is, the (partial) function getVariable(·) returns the memory variable object of a command request. The function
getValue(v) : Val ⇀ Z is defined only in the case v = UPDATE(x,z), in which case it takes value z. Informally,
the partial function getValue(·) returns the value associated with a write request.

With an abuse of notation, we will sometime use the functions getVariable(q) and getValue(q), where q

is a queue; these are defined only in the case isEmpty(q) = false, and they correspond to getVariable(last(q)),
getValue(last(q)), respectively. That is, getVariable(q) returns the variable associated with the last element of
a queue of values, if such an element exists and corresponds to a command request. getValue(q) has a similar
definition. In a similar way, we can extend the predicates isReadRequest(·) and isWriteRequest(·) to non-empty
queues.

Finally, given a memory σ and a queue of values q such that isWriteRequest(last(q)) is defined and equal
to true, then the notation (q 7→ σ) is used to denote the memory σ[getVariable(()q) 7→ getValue(()q)].

In the following we let q,q1,q2 be queues, j = 1,2, σ be a memory and l, l1, l2 be positive integers. For
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j = 1,2, we assume a channel c j ∈ Ch. We also assume the process definitions below:

I j,0
q ⇐ if isEmpty(q) then 0 else c j!〈last(q)〉 .I j,0

remLast(q)

I j,l+1
q ⇐ (c?(x) .if Command(x) then I j,l

push(x,q) else I j,l+1
q ) +

+ (if isEmpty(q) then 0 else c j!〈last(q)〉 .I j,l+1
remLast(q))

O j
q ⇐ (c j?(x) .O j

push(x,q)) + (if isEmpty(q) then 0 else c!〈last(q)〉 .O j
remLast(q))

RAMσ
q1,q2

⇐ (c1?(x) .RAMσ
push(x,q1),q2

) +

+ (c2?(x) .RAMσ
q1,push(x,q2)) +

+ if isEmpty(q1) then {0} else {

if isReadRequest(q1) then {

c1!
〈
σ(getVariable(q1))

〉
.RAMσ

remLast(q1),q2

} else {

c1!
〈
getValue(q1)

〉
.RAM(q1 7→σ)

remLast(q1),q2

}

}+

+ if isEmpty(q2) then {0} else {

if isReadRequest(q2) then {

c2!
〈
σ(getVariable(q2))

〉
.RAMσ

q1,remLast(q2)

} else {

c2!
〈
getValue(q2)

〉
.RAM(q2 7→σ)

q1,remLast(q2)

}

}

Then the network

Mσ
k = ΓM B i1~I1,k

ε � | i2~I
2,k
ε � |mem~RAMσ

ε,ε� |o1~O1
ε� |o2~O2

ε�

where we recall that ΓM is the connectivity graph depicted in Figure 5.8, is a model for Specification 5.5.1.
Due to the complexity of network Mσ

k , a detailed discussion concerning its informal behaviour is necessary.
We only describe the behaviour of the nodes i1, o1 and mem. The behaviour of the nodes i2,o2 is in fact similar
to that of i1, o1.

• Node i1 acts as an input terminal for the client node cl1. It waits for k command requests to be broadcast
by the client node cl1; whenever a command request is detected, it is stored it the internal buffer of node
i1, represented as a queue q.

• Whenever the internal queue of node i1 is not empty, the latter can non-deterministically decide to for-
ward the command request stored at the bottom of its queue to the internal node mem. This is the node
where the memory σ is stored.

• Command requests forwarded by node i1 are always broadcast along channel c1; in contrast, values
stored in the node i2 are broadcast along channel c2. In this way the memory node mem can infer the
client node that fired a command request from the channel through which such a request was detected.

• Node mem is equipped with two different queues, one for the requests fired from client cl1 and one for
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those fired by client cl2. At any given time, the memory node can either receive a value (if any) being
sent either along channel c1 or c2, in which case the received value is stored in the respective queue
qh,h = 1,2 waiting to be processed, or it can process a command request stored in one of such queues.

• At any given time node mem can decide to process a command request (if any) fired from the client node
cl1; this can happen only in the case in which the queue q1 with which node mem has been equipped
is non-empty. In this case node mem can behave in two different ways, according to the content of the
command request v it has to process:

1. if v is a read request of the form READ(x), where x ∈mVar, then it will simply broadcast the value
σ(x) along channel c1,

2. if v is a write request of the form UPDATE(x,z), where x ∈mVar,z ∈ Z, then node mem broadcasts
the integer value z along channel c1 and it updates the contents of the memory variable x have been
updated to value z in the memory σ,

3. in any case, the command request which has been processed is removed from the queue q1.

• Node o1 acts as an output terminal for the client node cl1; it collects the values broadcast by the memory
node mem along channel c1, storing them in a queue. At any given time, if such a queue is non-empty, it
can remove its last element and broadcast it along channel c, thus providing a reply to a former request
fired from the client node cl1.

Note that request processing in node mem is an atomic operation, meaning that such an activity requires
a single strong extensional transition. For example, processing an update request requires a single intensional
broadcast transition, which induces a strong extensional τ-transition; node mem broadcast a value along either
channel c1 or c2, after which the code running at node mem in the virtual shared memory model consists of the
process RAM in which the memory σ has been updated, and the command request which has been processed
has been removed from the queue where it was stored.

Another important point in the design of Mσ
k is that we have used queues to store values in nodes; this

ensures that command requests performed by node cl1 are processed in the same order they have been broadcast;
the same applies for the client node cl2. However, note that networkMσ

k has no synchronisation mechanism to
coordinate the requests of clients cl1,cl2; that is, it is possible that a command request v1 is fired by cl1 before
a second command request v2 issued from cl2, but the latter is processed by node mem before the former.

Now the reader should have a clear idea of the intuitive behaviour of networkMσ
k . Let us turn our attention

at a possible implementation for it. The main idea is that of using different nodes to store a memory σ, in a
way such that different memory variables are stored at different locations (that is, replicas of memory variables
are not allowed).

The network model Nk
f we propose is the network ΓN BN f

k , where ΓN is the connectivity graph depicted

in Figure 5.9 and the system term N f
k is presented shortly; note that ΓN is parametric in a number of nodes

mem1, · · · ,mem j for some integer j ≥ 1. In the system term N f
k , f is a mapping from the set {1, · · · , j} to partial

memories, that is f (h) : mVar ⇀ Z for any h = 1, · · · , j.

Before defining the system term N f
k , we need some process definitions, for which we assume two channels

lock1 and lock2. In the following, we also let q1,q2 be queues of values, h be a positive integer ranging
over 1, · · · , j, l = 1,2 and σ : mVar ⇀ Z be a partial memory. Further, for any such partial memory, we let
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Figure 5.9: The connectivity graph for the implementation of Virtual Shared Memory

Dom(σ) = {x ∈mVar | σ(x) is defined } be its domain.

WAIT0,0
q1,q2

⇐ (c1?(x) .WAIT0,0
push(x,q1),q2

) +

+ c2?(x) .WAIT0,0
q1,push(x,q2) +

+ (if isEmpty(q1) then 0 else c1!〈last(q1)〉 .WAIT1,0
remLast(q1),q2

) +

+ (if isEmpty(q2) then 0 else c2!〈last(q2)〉 .WAIT0,1
q1,remLast(q2))

WAIT1,0
q1,q2

⇐ (c1?(x) .WAIT1,0
push(x,q1),q2

) +

+ c2?(x) .WAIT1,0
q1,push(x,q2) +

+ lock1?(x) .WAIT0,0
q1,q2

+

+ (if isEmpty(q2) then 0 else c2!〈last(q2)〉 .WAIT1,1
q1,remLast(q2))

WAIT0,1
q1,q2

⇐ (c1?(x) .WAIT0,1
push(x,q1),q2

) +

+ c2?(x) .WAIT0,1
q1,push(x,q2) +

+ (if isEmpty(q1) then 0 else c1!〈last(q1)〉 .WAIT1,1
remLast(q1),q2

) +

+ lock2?(x) .WAIT0,0
q1,q2

WAIT1,1
q1,q2

⇐ (c1?(x) .WAIT1,1
push(x,q1),q2

) +

+ c2?(x) .WAIT1,1
q1,push(x,q2) +

+ lock1?(x) .WAIT0,1
q1,q2

+

+ lock2?(x) .WAIT1,0
q1,q2
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PRAMσ
q1,q2

⇐ (c1?(x) .PRAMσ
push(x,q1),q2

) +

+ (c2?(x) .PRAMσ
q1,push(x,q2)) +

+ if isEmpty(q1) then 0 else {

if getVariable(q1) ∈ Dom(σ) then {

if isReadRequest(q1) then {

c1!
〈
σ(getVariable(()q1))

〉
.PRAMσ

remLast(q1),q2

} else {

c1!
〈
getValue(q1)

〉
.PRAM(q7→σ)

remLast(q1),q2

}

} else 0

}+

+ if isEmpty(q2) then 0 else {

if getVariable(q2) ∈ Dom(σ) then {

if isReadRequest(q2) then {

c1!
〈
σ(getVariable(()q2))

〉
.PRAMσ

q1,remLast(q2)

} else {

c1!
〈
getValue(q2)

〉
.PRAM(q 7→σ)

q1,remLast(q2)

}

} else 0

}

SIGNALq1,q2 ⇐ (c1?(x) .SIGNALpush(x,q1),q2 ) +

+ (c2?(x) .SIGNALq1,push(x,q2)) +

+ if isEmpty(q1) then 0 else unlock1!〈last(q1)〉 .SIGNALremLast(q1),q2 +

+ if isEmpty(q2) then 0 else unlock2!〈last(q2)〉 .SIGNALq1,remLast(q2)

Outlq ⇐ unlockl?(x) .Outlpush(x,q) +

+ if isEmpty(q) then 0 else c!〈last(q)〉 .OutlremLast(q)

Let f be a mapping from the index set {1, · · · , j} to partial memories such that whenever h , h′, h,h′ = 1, · · · , j

then Dom( f (h))∩Dom( f (h′)) = ∅ and
⋃ j

h=1 Dom( f (h)) = Var; then N f
k is defined as the system term

i1~I1,k
ε � | i2~I

2,k
ε � |o1~out1ε� |o2~Out2ε� | lock~WAIT0,0

ε,ε� |unlock~SIGNALε,ε� |
j∏

h=1

memh~PRAM f (h)
ε,ε �

As usual, we give an informal description of the network N f
k . We only describe how requests performed

by the client node cl1 are processed, for the behaviour of the network in the case cl2 broadcasts a command
request is similar.

• As in the modelMσ
k , node i1 acts as an input terminal for the client node cl1; it stores the first k command

requests in its own queue, and whenever such a queue is not empty it forwards the least recent request to
another node, lock, along channel c1,
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• Whenever node lock receives a message along channel c1, it stores it in its own queue used to handle the
requests performed by client c1. The way in which requests stored in this queue are forwarded to other
nodes, however, is slightly different from previous cases, as we have equipped node lock with a mutual
exclusion mechanism.

In fact, node lock is equipped with a bit flag b1, which is used to check whether the node is allowed to
broadcast a command request along channel c1; if such a bit is set to 0 then node lock is free to broadcast
the last value (if any) stored in q1 along channel c1. In this case the node updates the flag b1 to the value
1, meaning that the nodes mem1, · · · ,mem j are already processing a request broadcast by cl1.

If the flag b1 is set to 1, then node lock waits the request which is being processed to be completed before
it can broadcast another request (originally broadcast from c1 to the nodes mem1, · · · ,mem j. Node lock
is acknowledged that such a request has been completed by receiving an input along a channel lock1,
after which it restores the flag b1 to value 0; as we will see, it is the duty of another node, unlock, to
signal a value along channel lock1, thus making node lock restore its flag to value 0.

In the initial configuration N f
k the bit b1 of node lock is set to 0; that is, node lock can forward values

along channel c1. Such values are detected by j different nodes, mem1, · · · ,mem j.

• When a command request along channel c1 is received by the nodes mem1, · · · ,mem j, each of these
nodes will proceed to process the received request. However, exactly one of such nodes will be able to
process the request, while the others will just ignore it.

This is because each node memh, h = 1, · · · , j is equipped with a partial memory σh, and a command
request v received at node memh is processed only in the case the memory variable object of the request,
getVariable(v), is in the domain of σh. The constraint we imposed that

⋃ j
h=1 Dom(σh) = mVar ensures

that at least one of such nodes will process the received command request, while the constraint that if
h , h′ then Dom(σh)∩Dom(σh′ ) = ∅ states that such a command request will never be processed by
more than one of the nodes in {mem1, · · · ,mem j}.

When the only node which can process the request has accomplished its task, it forwards the reply to
such a command request along channel c1. The broadcast value will be received by node unlock.

• The role of node unlock is that of forwarding the values received along channel c1 from one of the nodes
mem1, · · · ,mem j. Again, this node uses a queue to store the received values and forward them in the
same order they have been received. Values received along channel c1 will be forwarded along channel
lock1. Both nodes o1 and lock will detect this value; we have already discussed that channel lock1 is used
at the latter node, together with a flag b1, to implement a semaphore for the requests to be processed by
nodes mem1, · · ·mem j. By broadcasting the value along channel lock1, node unlock notifies to node lock
that mem1, · · · ,mem j are ready to process another command request.

• Node o1 acts at an output terminal for the client node cl1. It simply forwards values received along
channel lock1 to the client cl1. As usual, we equipped this node with a queue in order to keep track of the
values that it has received and that have not yet been forwarded. Values are broadcast by node o1 along
channel c.

A formal analysis of the behaviour of the network N f
k would be extremely technical and complicated, and

is therefore omitted. We just state the result in which we are interested.

Theorem 5.5.2. Let k > 0, σ : mVar→ Z and f be a mapping from {1, · · · , j} to partial memories. Suppose that
for any h,h′ = 1, · · · , j such that h , h′ then Dom( f (h) , Dom( f (h′)) and let

⋃ j
h=1 Dom( f (h)) = mVar. Also,

assume that for any x ∈mVar there exists an index h = 1, · · · , j such that f (h)(x) is defined and equal to σ(x).
ThenMσ

k ' N
f

k .
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Chapter 6

Probabilistic Wireless Networks

In this Chapter we augment the extend calculus developed in Part I by allowing nodes to behave probabilisti-
cally; intuitively, a probabilistic process in this variant corresponds to a probability distribution over processes
as described in Figure 2.1 at page 22. More formally, a probabilistic process has the form

⊕
i∈I pi · S i, where

each S i is a process and P =
∑

i∈I pi = 1, meaning that the probabilistic process P behaves as process S i with
probability pi. The need for probabilistic behaviour arises for it is often the case that probabilistic protocols are
used in wireless systems to improve the performance of a network; see for example [59, 14, 54].

In this Chapter we address the same topics that we have already illustrated for the non-probabilistic setting
in chapters 2 and 3. Specifically, we define a reduction semantics and a labelled transition semantics for
networks, proving that they are consistent with each other. Further, we define a theory of composition for
networks; in practice the same theory we developed in Chapter 3 applies, for our approach to compositionality
is based on network topologies, rather than on the code run by processes. We also extend the testing preorders
vmay and vmust to the probabilistic case, in the same way it has been done for the probabilistic version of CSP

(pCSP) in [20, 19]; while the definition of the probabilistic testing preorders for probabilistic networks follows
well-trodden paths, we decided to include them in this thesis since them main topic of Chapter 7 is that of
exhibiting sound proof techniques for such preorders.

Defining a reduction semantics in our probabilistic calculus is not a difficult task; as we will see, the rules
we define are an immediate extension of those defined in Chapter 2, Table 2.3 at Page (2.3). The same applies
for the labelled transition semantics. Note that in Part I we used LTSs as a formal model for networks; each
network generates an LTS according to the rules of the extensional semantics; since we wish to model networks
which endow probabilistic behaviour, this model has to be extended to handle probability distributions. This
gives rise to the notion of probabilistic Labelled Transition System (pLTS) [20, 19, 35], which is a variant of
LTSs where the transition relation is defined between states and probability distribution of states.

Since in pLTSs the domain and the image of transitions do not coincide, it is not possible to define directly
sequences of actions; instead, using the approach used in [20, 19], we lift the transition relations to describe
how a distribution of states can perform a transition in another distribution. This enables us to reason with
sequences of transitions as well as to infer the behaviour of a network in the long run.

Let us turn our attention to testing theories in our probabilistic calculus of networks. Since the code placed at
nodes endows probabilistic behaviour, the qualitative property of being successful for computations is replaced
with a quantitative one, in which we establish that a computation is successful with some probability. Due to
the non-deterministic behaviour of networks, an experiment of the formM ‖> T is then equipped with a set of
success outcomes, each of which corresponds to the success probability associated with one of the computation
of the network.

The testing preorders are then defined by comparing the set of probabilities with which they pass a test.
If Mvmay N and M ‖> T has a computation whose success probability is p, then we require N ‖> T to have
a computation whose success probability is greater of p. Conversely, if whenever N ‖> T has a computation
whose success probability is p there exists a computation ofM ‖> T whose success probability is p′ ≤ p then

133
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we say thatMvmust N .
The rest of this Chapter is organised as follows. Section 6.1 contains the notions that are needed to model

probabilistic wireless networks.
In Section 6.2 we introduce our probabilistic calculus of networks and we provide a simple example of

probabilistic networks. In the same Section we also define the reduction semantics for networks, then we turn
our attention to the labelled transition semantics and we prove the Harmony Theorem for probabilistic networks.
We remark that this result holds only for transitions defined from networks to distribution of networks, but it is
not true in the case of the lifted transitions.

In Section 6.3 we show how the success probability of a computation in an experiment of the formM ‖> T
is computed, and we define the probabilistic extensions of the may and must testing preorders. We exhibit an
example that shows which are related in the non-probabilistic case, with respect to the the may-testing preorder,
are not related anymore in the probabilistic counterpart.

6.1 Background

In this Section we will summarise the mathematical concepts, taken from [19], that will be needed throughout
the paper. First we will introduce some basic concepts from probability theory; then we will show how these
can be used to model concurrent systems which exhibit both probabilistic and non-deterministic behaviour.

Let S be a set; a function ∆ : S → [0,1] is called a (probability) sub-distribution over S if
∑

s∈S ∆(s) ≤ 1.
This quantity,

∑
s∈S ∆(s), is called the mass of the sub-distribution, denoted as |∆|. If |∆| = 1, then we say that

∆ is a (full) distribution. The support of a distribution ∆, denoted d∆e, is the subset of S consisting of all those
elements which contribute to its mass, namely d∆e = {s ∈ S | ∆(s) > 0}.

For each s ∈ S , the point distribution s is defined to be the distribution which takes value 1 at s, and
0 elsewhere. The set of sub-distributions and distributions over a set S are denoted by Dsub(S ) and D(S ),
respectively.

Given a family of sub-distributions {∆k | k ∈ K},
∑

k∈K ∆k is the partial real-valued function in S →R defined
by (

∑
k∈K ∆k)(s) :=

∑
k∈K ∆k(s). This is a partial operation because for a given s ∈ S this sum might not exist; it

is also a partial operation on sub-distributions because even if the sum does exist it may be greater than 1.
Similarly, if p ≤ 1 and ∆ is a sub-distribution , then p ·∆ is the sub-distribution over S such that

(p ·∆)(s) = p ·∆(s).

It is not difficult to show that if {pk}k∈K is a sequence of positive real numbers such that
∑

k∈K pk ≤ 1, and
{∆k}k∈K is a family of sub-distributions over a set S , then

∑n
i=1 pi ·∆i always defines a sub-distribution over S .

Finally, if f : X→ Y and ∆ is a sub-distribution over X then we use f (∆) to be the sub-distribution over Y

defined by:

f (∆)(y) =
∑
x∈X

{∆(x) | f (x) = y }. (6.1)

This definition can be generalised to two arguments functions; if f : X1 × X2 → Y is a function, and ∆,Θ are
two sub-distributions respectively over X1 and X2, then f (∆,Θ) denotes the sub-distribution over Y defined as

f (∆,Θ)(y) =
∑

x1∈X1,x2∈X2

{∆(x1) ·Θ(x2) | f (x1, x2) = y }. (6.2)

Now we turn our attention to probabilistic concurrent systems. The formal model we use to represent them
is a generalisation to a probabilistic setting of Labelled Transition Systems (LTSs) [50].

Definition 6.1.1. A probabilistic labelled transition system (pLTS) is a 4-tuple 〈S ,Actτ,→,ω〉, where

(i) S is a set of states,
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(ii) Actτ is a set of transition labels with a distinguished label τ,

(iii) the relation→ is a subset of S ×Actτ×D(S ),

(iv) ω : S 7→ { true , false } is a (success) predicate over the states S .

As usual, we will write s
µ
−→∆ in lieu of (s,α,∆) ∈ −→. � �

Before discussing pLTSs, some definitions first: a pLTS whose state space is finite is said to be finite state;
further, we say that a pLTS 〈S ,Actτ,→,ω〉 is finite branching if, for every s ∈ S , the set {∆ | s

µ
−→∆ for some µ ∈

Actτ } is finite. Finally, a finitary pLTS is one which is both finite state and finite branching.
We have included in the definition of a pLTS a success predicate ω over states, which will be used when

testing processes. Apart from this, the only difference between LTSs and pLTSs is given by the definition of
the transition relation; in the latter this is defined to be a relation (parametric in some action µ) between states
and distribution of states, thus capturing the concept of probabilistic behaviour.

However, this modification introduces some difficulties when sequences of transitions performed by a given
pLTS have to be considered, as the domain and the image of the transition relation do not coincide. To avoid
this problem, we will focus only on distributions of states by defining transitions between distributions of states.
The following Definition serves to this purpose:

Definition 6.1.2 (Lifted Relations). Let R ⊆ S ×Dsub(S ) be a relation from states to sub-distributions. Then

R ⊆ Dsub(S )×Dsub(S ) is the smallest relation which satisfies

• sR∆ implies s R ∆

• If I is a finite index set and ∆i R Θi for each i ∈ I then (
∑

i∈I pi ·∆i) R (
∑

i∈I pi ·Θi) whenever
∑

i∈I pi ≤

1. �

Lifting of relations can also be defined for probability distributions, by simply requiring
∑

i∈I pi = 1 in the last
constraint of the definition above.

Example 6.1.3 (Lifted Relations). Let us illustrate an example that shows how the lifting of a relation from
states to distributions works. Imagine that a gambler has the chance to play at two different lotteries, but his
amount of money allows him to buy only one ticket. In the first lottery, which we call A, the winning amount
of the gambler is chosen probabilistically. With probability 0.6 the gambler does not win any money, with
probability 0.2 he wins 2 Euros, with probability 0.1 he wins 5 Euros and with probability 0.1 he wins 10
euros. In the second lottery, which we call B, the gambler loses with probability 0.8, while he wins 10 euros
with probability 0.2.

We can formalise this situation by defining an outcome relation R which associates to each lottery the
probability distribution of the winning outcomes. That is, we have ARΘA, BRΘB, where ΘA = 0.6 · 0 + 0.2 ·
2 + 0.1 · 5 + 0.1 · 1 and ΘB = 0.8 · 0 + 0.2 · 10. Here note that n,n ∈ N is a probability distribution over natural
numbers, which takes value n with probability 1.

Suppose now that the gambler, in order to choose the lottery that he wants to play, flips a fair coin. In the
case the outcome is head, he plays lottery A, otherwise he plays lottery B. Given this information, we can
represent the gambler as a probability distribution ∆ between lotteries, specifically ∆ = 0.5 ·A + 0.5 ·B. Again,
A,B are two pointed probability distributions over the set of lotteries.

In order to calculate the overall probability distribution of the winning outcomes for the gambler, we can
lift the outcome relation R to R, then we determine the distribution Θ for which ∆RΘ. Using definition 6.1.2
1 we obtain that ∆R0.5 ·ΘA + 0.5 ·ΘB; by performing the required substitutions, and solving the provided
calculations, it is easy to note that

0.5 ·ΘA + 0.5 ·ΘB = 0.7 ·0 + 0.1 ·2 + 0.05 ·5 + 0.15 ·10
1Note that here we committed a slight abuse of notation, since we defined lifting only for relations whose domain and image were the

same set. However, Definition 6.1.2 can be trivially extended to more general relations.
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�

In a pLTS 〈S ,Actτ,→,ω〉, each transition relation
µ
−→ ⊆ S ×D(S ) can be lifted to (

µ
−→) ⊆ D(S )×D(S ).

With an abuse of notation, the latter will still be denoted as
µ
−→.

Lifted transition relations allow us to reason about the behaviour of pLTSs in terms of sequences of tran-
sitions; here we are mainly interested in the behaviour of a pLTS in the long run; that is, given a pLTS
〈S ,Actτ,→,ω〉 and a distribution ∆ ⊆ D(S ), we are interested in distributions Θ ⊆ D(S ) which can be reached
by ∆ after an indefinite number of transitions.

For the moment we will focus only on internal actions of a pLTS, in which case the behaviour of a pLTS in
the long run is captured by the concept of hyper-derivation:

Definition 6.1.4. [Hyper-derivations] In a pLTS a hyper-derivation consists of a collection of sub-distributions
∆,∆→k ,∆

×
k , for k ≥ 0, with the following properties:

∆ = ∆→0 + ∆×0

∆→0
τ
−→ ∆→1 + ∆×1
...

∆→k
τ
−→ ∆→k+1 + ∆×k+1
...

If ω(s) = false for each s ∈ d∆→k e and k ≥ 0 we call ∆′ =
∑∞

k=0 ∆×k a hyper-derivative of ∆, and write ∆ =⇒

∆′. � �

Hyper-derivations can be viewed as the probabilistic counterpart of the weak
τ

=⇒ action in LTSs; see [19] for
a detailed discussion. Intuitively speaking, they represent fragments of computations obtained by performing
only internal actions. The last constraint in Definition 6.1.4 is needed since we introduced a success predicate
in our model; we require that a computation cannot proceed in the case that a state s such that ω(s) = true has
been reached; this is for we are only interested in detecting if such states can be reached in a computation.
States in which the predicate ω(·) is true are called ω-successful.

Further, we are mainly interested in maximal computations of distributions. That is, we require a com-
putation to proceed as long as some internal activity can be performed. To this end, we say that ∆ =⇒� ∆′

if

• ∆=⇒∆′,

• for every s ∈ d∆×k e, s
τ
−→ implies ω(s) = true. �

This is a mild generalisation of the notion of extreme derivative from [19]. Note that the last constraint models
exactly the requirement of performing some internal activity whenever it is possible; In other words extreme
derivatives correspond to a probabilistic version of maximal computations.

Theorem 6.1.5. In an arbitrary pLTS

(1) =⇒ is reflexive and transitive

(2) if ∆ =⇒∆′ and ∆′ =⇒� ∆′′, then ∆ =⇒� ∆′′; this is a direct consequence of the previous statement, and the
definition of extreme derivatives

(3) suppose ∆ =
∑

i∈I pi ·∆i, where I is an index set and
∑

i∈I pi ≤ 1. If for any i ∈ I,∆i =⇒Θi for some Θi, then
∆=⇒Θ, where Θ =

∑
i∈I pi ·Θi.

(4) for all distributions ∆, there exists a sub-distribution Θ such that ∆ =⇒� Θ

Proof. See [19] for detailed proofs. �
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M, N ::= Systems
n~S � Nodes
M |N Composition
0 Identity

P, Q ::= (probabilistic) Processes
S
P p⊕ Q probabilistic choice

S , T ::= States
c!〈e〉 .P broadcast
c?(x) .P receive
ω.0 success
S + T choice
if b then S else T branch
τ.P pre-emption
A(x̃) definitions
0 terminate

Figure 6.1: Syntax

6.2 Networks and Their Computations

In this Section we define our probabilistic calculus for networks. The main idea is that of introducing a proba-
bilistic choice operator P p⊕ Q; intuitively, this (probabilistic) process behaves as S with probability p, while it
behaves as R with probability 1− p.

The language for system terms, ranged over by M, N is given in Figure 6.1. Basically a system consists of
a collection of named nodes at each of which there is some running code. The syntax for this code is obtained
by the one illustrated in Part I, augmented by a probabilistic choice; code descriptions have the usual constructs
for channel based communication, with input c?(x) .p being the unique binder. We assume that definitions are
of the form A(x)⇐ S , that is a process definition is allowed only for state-based processes.

Note that the non-deterministic sum and the branching construct only use state based processes, rather
than probabilistic processes. This choice has been done for technical reasons, which we will explain when
presenting the intensional semantics of the calculus.

A probabilistic network is a pair ΓBM, where M is a term as in Figure 6.1 and Γ is a connectivity graph;
recall that connectivity graphs have already been introduced in Part I. The notation and the definitions we
have introduced for non-probabilistic networks is extended to its probabilistic extension we have defined. In
particular, the definition of the set nodes(M), Input(M), Output(M) and Int(M), as well as the definition of
well-defined and composed networks, are still valid in the probabilistic framework.

Let us illustrate the behaviour of probabilistic networks with an Example.

Example 6.2.1. ConsiderM described in Figure 6.2. There are six nodes, three occupied by code n, i and m,
and three in the interface Int(M) , e,o1 and o2. Suppose the code at nodes are given by

An⇐ c?(x) .d!〈x〉 .0 Ai⇐ d?(x) .d!〈 f (x)〉 .0 Am⇐ d?(x) .(d!〈x〉 .0 0.8⊕ 0)

ThenM can receive input from node e at its interface along the channel c; this is passed on to the internal node
i using channel d, where it is transformed in some way, described by the function f , and then forwarded to
node m, where 80% of the time it is broadcast to the external nodes o1 and o2. The remainder of the time the
message is lost.

The networkN has the same interface asM, but has an extra internal node k connected to o2, and m is only
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m

n

i

e

o1

o2

m

n

i

e

k

o1

o2

M = ΓM Bn~An� | i~Ai� |m~Am� N = ΓN Bn~An� | i~Ai� |m~Ak� | k~Am�

Figure 6.2: Example networks

connected to one interface node o1 and the internal node k. The nodes i and n have the same code running as in
M, while nodes m and k will run the code

Ak⇐ d?(x) .(d!〈x〉 .0 0.9⊕ 0)

Intuitively, the behaviour of N is more complex than that of M; indeed, there is the possibility for a
computation ofN to deliver a value only to one between the external nodes o1 and o2, while this is not possible
inM. However, 81% of the times this message will be delivered to both these nodes, and thus it is more reliable
thanM. Suppose now that we change the code at the intermediate code m inM,

M1 = ΓM B . . . |m~Bm� where Bm⇐ d?(x) .(τ.(d!〈x〉 .0 0.5⊕ 0) +τ.d!〈x〉 .0)

In M1 the behaviour at the node m is non-deterministic; it may act like a perfect forwarder, or one which is
only 50% reliable. Optimistically it could be more reliable thanM, or pessimistically it could be less reliable
than the latter. Further, there is no possibility for the networkM1 to forward the message to only one of the
external nodes o1, o2, so that its behaviour is somewhat less complex than that of N .

As a further variation letM2 be the result of replacing the code at m with

Cm⇐ d?(x) .D

D⇐ τ.(d!〈x〉 .0 0.5⊕ τ.D)

Here the behaviour is once more deterministic, with the probability that the message will be eventually trans-
mitted successfully through node k approaching 1 in the limit. Thus, this network is as reliable asM1, when
the latter is viewed optimistically. �

We now turn our attention to the reduction semantics for networks; following [20, 19], processes are in-
terpreted as probability distributions of states; such an interpretation is encoded by the function P(·) defined
below:

P(S ) = S

P(P1 p⊕ P2) = p ·P(P1) + (1− p ·P(P2)).

We can lift the interpretation function to system terms; in fact, it suffices to define P(n~P�) = n~P(P)� and
P(M1 |M2) = P(M1) |P(M2). Here the operators n~·� for distribution of processes and the operator (· | ·) for pairs
of distributions of system terms are instances of Equation 6.1.

The Rules of the reduction semantics are defined in Figure 6.3; these are the probabilistic variant of those
defined in Section 2.3 at Page 26; we used the notation ΓBM _ ∆ as a shortcut for ΓBM _ ΓB∆, where the
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(R-BCAST)

~e� = v ∀i ∈ I.Γ ` m→ ni ¬rcv(M,c) ∀n ∈ nodes(N).Γ ` m9 n
m~c!〈e〉 .P + Q� |

∏
i∈I ni~(c?(x).Pi) + Qi� |M |N _ P(m~P� |

∏
i∈I ni~{v/x}Pi� |M |N)

(R-TAU)

ΓBm~τ.P + Q�|M _ P(m~P�|M)

(R-STRUCT)

M ≡ M′ ΓBM′ _ Θ Θ ≡ ∆

ΓBM _ ∆

Figure 6.3: Reduction Semantics for (high level) networks

(B-BROAD)

s
c!v
−→ p

ΓBn~s�
c.n!v
−→n~∆�

P(p) = ∆

(B-REC)

s
c?v
−→ p

ΓBn~s�
c.m?v
−→ n~∆�

P(p) = ∆,Γ ` n↔ m

(B-DEAF)

s 6
c?v
−−→

ΓBn~s�
c.m?v
−→ n~s�

Γ ` m↔ n

(B-DISC)

ΓBn~s�
c.m?v
−→ n~s�

Γ ` n= m

(B-0)

0
c.m?v
−→0

(B-τ)

s
τ
−→ p

ΓBn~s�
n.τ
−→n~∆�

P(p) = ∆

(B-τ.PROP)

ΓBM
n.τ
−→∆

ΓBM |N
n.τ
−→∆ |N

(B-PROP)

ΓBM
c.m?v
−→ ∆, ΓBN

c.m?v
−→ Θ

ΓBM |N
c.m?v
−→ ∆ |Θ

(B-SYNC)

ΓBM
c.m!v
−→ ∆, ΓBN

c.m?v
−→ Θ

ΓBM |N
c.m!v
−→ ∆ |Θ

Figure 6.4: Intensional semantics of networks

latter is a probability distribution over networks obtained as an instantiation of Equation 6.1.
Note that Rule (R-STRUCT) uses a notion of structural congruence over distributions of system terms which

has not yet been defined. We say that ∆ ≡ Θ if ∆ =
∑

i∈I pi ·S i for some index set i ∈ I such that
∑

i∈I pi = 1 and
∆ =

∑
i∈I pi ·Ri for some collection of processes {Ri}i∈I such that Ri ≡ S i.

The second kind of semantics we want to present is the Labelled Transition Semantics. A pre semantics
for states is depicted in Figure 6.5; here a state evolves in a probability distribution. Note that in Figure 6.5
transitions are defined only for state based processes; this motivates our choice of not allowing probabilistic
processes in the non-deterministic and matching operators. If we had allowed a system of the form P + Q in
our framework, where P,Q are probabilistic processes, we could not have used the rules of Figure 6.5. The
reader could argue that we could have defined our presemantics directly for probabilistic processes, rather
than restricting our attention to state based processes. We remark that this approach would have led to a very
complicated semantics for processes.

The rules that define the semantics of networks are virtually identical to those defined in part I, though we
redefine them in Figure 6.4 for the sake of consistency of the notation.

Let us perform some sanity checks for the operational semantics of networks:

Proposition 6.2.2 (Sanity Check). (1) A distribution ∆ over sSys is called (node)-stable if ∆(N) > 0 and
∆(M) > 0 implies nodes(N) = nodes(M). If ΓBM

µ
−→∆ then ∆ is a stable distribution. Intuitively this
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(S-SND)

c!〈e〉 .P
c!~e�
−→ P(P)

(S-ω)

ω.0
ω
−→0

(S-RCV)

c?(x) .P
c?v
−→P(P{v/x})

(S-τ)

τ.P
τ
−→P(P)

(S-SUML)

S
α
−→∆

S + T
α
−→∆

(S-SUMR)

T
α
−→∆

S + T
α
−→∆

(S-THEN)

S
α
−→∆

if b then S else T
α
−→∆

~b� = true

(S-ELSE)

T
α
−→∆

if b then S else T
α
−→∆

~b� = false

(S-DEF)

A(x̃)⇐ S {ẽ/x̃}S
α
−→∆

A〈̃e〉
α
−→∆

Figure 6.5: Pre-semantics of states

means that probabilistic choices are only ever made at the level of processes, not systems.

(2) If ΓBM
µ
−→∆ then ∆ is a stable distribution

(3) ΓBM
c.m?v
−→ ∆ implies

(a) m < nodes(M),

(b) for every value w there exists some ∆′ such that ΓBM
c.m?w
−→ ∆′,

(c) if Γ 0 m, then ∆ is M.

(4) ΓBM
µ
−→∆, with µ being equal either to c.m!v or m.τ, implies m ∈ nodes(M) and therefore Γ ` m.

�

We conclude this Section by showing that the reduction semantics of Figure 6.3 and the labelled transition
semantics of Figure 6.4 coincide up-to structural congruence.

Theorem 6.2.3 (Harmony Theorem). 1. if ΓBM _ ∆ then either ΓBM
m.c!v
−→ Θ or ΓBM

m.τ
−→Θ for some

node m, channel c, value v and distribution Θ ≡ ∆,

2. if ΓBM
m.c!v
−→ ∆ then ΓBM _ ∆

3. if ΓBM
m.τ
−→∆ then ΓBM _ ∆.

Proof. The proof is virtually identical to the one of Theorem 2.4.10 at Page 34. The proof requires to prove the
probabilistic variant of all the structural properties proved in Section 2.4, which have been omitted for the sake
of simplicity. �

Remark 6.2.4. Theorem 6.2.3 does not hold for distributions of networks. Specifically, it is possible to exhibit
a network distribution ∆ such that ∆ _ Θ, but there exists no distribution Θ′ ≡ Θ such that either ∆

m.c!v
−→ Θ′ or

∆
m.τ
−→Θ′.

To this end, consider the least connectivity graph Γ such that Γ ` m for some node m (that is, Γ consists of
the sole node m) and let ∆ = P((ΓBm~m.c!〈v〉 0.5⊕ τ�)). It is straightforward to note that ∆ _ m~0�; however,
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we do not have ∆
m.c!v
−→ Θ, for some distribution Θ, for the state ΓBm~τ� cannot perform such a transition.

Similarly, we can show that there is no distribution such that ∆
m.τ
−→Θ.

6.3 Testing Networks

The aim of this Section is that of introducing a behavioural theory based on a probabilistic generalisation of the
Hennessy and De Nicola testing preorders [17]. In order to develop our testing framework, we will exploit the
mathematical tools introduced in Section 6.1.

Let us recall the intuitive idea behind testing; a network is composed with another one, which takes the name
of testing network. The composition of these two networks is then isolated from the external environment, in
the sense that no external agent (in our case nodes in the interface of the composed network) can interfere
with its behaviour; we will shortly present how such a task can be accomplished. The composition of the two
networks, isolated from the external environment, takes the name of experiment.

Once these two operations (composition with a test and isolation from the external environment) have been
performed, the behaviour of the resulting experiment is analysed to check whether there exists a computation
that yields to a state which is successful. This task can be accomplished by relying on testing structures, which
will be presented shortly.

At an informal level, successful states in our languages coincide with those associated with networks where
at least the code running in one node can perform the action ω. For network have probabilistic behaviour, each
computation will be associated with the probability of reaching a successful state; thus, every experiment will
be associated with a set of success probabilities, one for each of its computation.

Let us now look at how the procedure explained above can be formalised; the topic of composing networks
has already been addressed in detail in Chapter 3; since the composition operators we have introduced depend
only on the connectivity graph of networks, all the results established for them in chapters 3 and 4 still hold in
the probabilistic setting. We recall that composition operators are defined only for composable networks (see
Definition 3.1.3 at Page 41); the set of (probabilistic) composable networks is denoted by CNets.

To model experiments and their behaviour, we rely on the following mathematical structure.

Definition 6.3.1. A Testing structure (TS) is a triple 〈S ,→,ω〉 where

(i) S is a set of states,

(ii) the relation→ is a subset of S ×D(S ),

(iii) ω is a success predicate over S , that is ω : S → {true, false}. �

�

Testing structures can be seen as (degenerate) pLTSs where the only possible action corresponds to the internal
activity τ, and the transition

τ
−→ with→.

Conversely every pLTS automatically determines a testing structure, by concentrating on the relation
τ
−→.

Every network can be converted to a testing structure by defining the transition relation → to coincide
with the reduction transition _. Also, the success predicate ω is defined to be true for all, and only all, those
networks in which a node can perform the success action

ω
−→. Formally, we have the following:

Example 6.3.2. The main example of a TS is given by

〈Nets, 7−→,Ω〉

where

(i) (ΓBM) 7−→ (ΓB∆), with ΓBM being a state based network, whenever
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(a) ΓBM
m.τ
−→∆ for some m ∈ nodes(M)

(b) or, ΓBM
c.m!v
−→ ∆ for some value v, node name m and channel c

(ii)

ω(M) =

true, M = M′ |n~s�, s
ω
−→ for some n

false, otherwise

If ω(M) = true for some system term M, we say that a network ΓBM, where Γ is an arbitrary connectivity
graph, is ω-successful. Note that when recording an ω-success we do not take into account the node involved.
�

As TSs can be seen as pLTSs, we can use in an arbitrary TS the various constructions introduced in Section 6.1.
Thus the reduction relation 7−→ can be lifted to D(sSys)×D(sSys) and we can make use of the concepts of
hyper-derivatives and extreme-derivatives, introduced in Section 6.1, to model fragments of executions and
maximal executions of a testing structure, respectively. Below we provide two simple examples that show how
to reason about the behaviour of the testing structures presented in Example 6.3.2.

Example 6.3.3. Consider the testing structure associated with the network N = ΓN B k~q�, where ΓN consists
of the two nodes k,o and the only connection ΓN ` k → o. Assume the code q is given by the definition
q⇐ qτ.(0.5⊕ c!〈v〉 .0). We can show that, in the long run, this network will broadcast message v to the external
location o by exhibiting a hyper derivation for it which terminates in the pointed distribution ΓN B k~c!〈v〉 .0�.
If we let N1 denote the configuration ΓN BΓN B k~c!〈v〉 .0�, we have the following hyper-derivation:

N = 1
2 · N + 1

2 · N1
1
2 · N 7−→ 1

22 · N + 1
22 · N1

...
1
2n · N 7−→ 1

2n+1 · N + 1
2n+1 · N1

...

∆′ =
∑∞

n=1
1
2n · N1

Now it is straightforward to check that ∆′ =N1 and therefore we have the hyper-derivation N =⇒N1. �

An arbitrary network N can be tested by another (testing) network T provided N ‖> T is well-defined.
Executions of the resulting testing structure will then be checked to establish whether the networkM satisfies
a property the test was designed for; in such a case, the testing component of an experiment will reach a
ω-successful state.

Executions, or maximal computations, correspond to extreme derivatives of N ‖> T , as defined in Sec-
tion 6.1. Since the framework is probabilistic, each execution (that is extreme derivative) will be associated with
a probability value, representing the probability that it will lead to an ω-successful state. Since the framework
is also non deterministic the possible results of this test application is given by a non-empty set of probability
values.

Definition 6.3.4. [Tabulating results] The value of a sub-distribution in a TS is given by the function V :
Dsub(S ) → [0,1], defined by V(∆) =

∑
{∆(s) | ω(s) = true }. Then the set of possible results from a sub-

distribution ∆ is defined by R(∆) = {V(∆′) | ∆ =⇒� ∆′ }. � �

Example 6.3.5. Consider the testing network T = ΓT Bo~t�, where ΓT is the least connectivity graph such that
ΓT ` o↔ l and the code t is determined by t⇐ c?(x) .ω.0; further, letN as defined in Example 6.3.3. It is easy
to check that N ‖> T is well-defined, and is equal ΓB k~q� | o~t�. So consider the testing structure associated
with it; recall that we have the definition q⇐ q 0.5⊕ c!〈v〉 .0. For convenience let N1 = ΓN B k~c!〈v〉 .0� as in
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m n

Figure 6.6: A connectivity graph for two recursive networks

the previous example, N2 = ΓN B k~0� and Tω = ΓT B o~ω.0�. Then we have the following hyper-derivation
for N ‖> T :

N ‖> T 7−→ ( 1
2 ·N ‖> T + 1

2 ·N1 ‖> T ) + ε
1
2 ·N ‖> T + 1

2 ·N1 ‖> T 7−→ ( 1
22 ·N ‖> T + 1

22 ·N1 ‖> T ) + 1
2 ·N2 ‖> Tω

...
...

...
1
2n ·N ‖> T + 1

2n ·N1 ‖> T 7−→ ( 1
2n+1 ·N ‖> T + 1

2n+1 ·N1 ‖> T ) + 1
2n ·N2 ‖> Tω

...
...

...

were ε denotes the empty sub-distribution, that is the one with dεe = ∅. We have therefore the hyper-derivative

N ‖> T =⇒ε+

∞∑
n=1

1
2nN2 ‖> Tω =N2 ‖> Tω.

Further, the above hyper-derivation satisfies the constraints required by =⇒�, defined in Section 6.1, and there-
fore we have the extreme derivativeN ‖> T =⇒�N2 ‖> Tω. SinceV(N2 ‖> Tω) = 1 we can therefore deduce that
1 ∈ R(N ‖> T ). �

We are now ready to define the probabilistic variant of the testing preorders. We have seen how to associate
a non-empty set of probabilities, tabulating the possible outcomes from applying the test T to the network N .
As explained in [20] there are two natural ways to compare such sets, optimistically or pessimistically.

Definition 6.3.6. [Testing networks] ForM1,M2 ∈ CNets we writeM1 vmayM2 if

(i) Input(M1) = Input(M2) and Output(M1) = Output(M2),

(ii) for every network T ∈ Nets such that both M1 ‖> T and M2 ‖> T are defined, then for any outcome
p ∈ R(M1 ‖> T ) there exists p′ ≥ p such that p′ ∈ R(M2 ‖> T ).

ForM1,M2 ∈ CNets we writeM1 vmustM2 if

(i) Input(M1) = Input(M2) and Output(M1) = Output(M2),

(ii) for every network T ∈ Nets such that bothM1 ‖> T andM2 ‖> T are defined and for any outcome p′ ∈

R(M2 ‖> T ) there exists p′ ≤ p such that p′ ∈ R(M1 ‖> T ).

We useM1 =mayM2 as an abbreviation forM1 vmayM2 andM2 vmayM1. The equivalenceM1 =mustM2 is
defined similarly. � �

Let us exhibit an example that show how the probabilistic testing preorders can be used.

Example 6.3.7 (Distinguishing Probabilistic Networks). Consider the connectivity graph depicted in Figure
6.6, and consider the networksM= ΓBm~c!〈v〉 .(c!〈w〉+d!〈w′〉)� andN = ΓBm~(c!〈v〉 .c!〈w′〉)+c!〈v〉 .d!〈w′〉�.

Let T = ΓT Bo~c?(x) .(c?(x) .ω0.5⊕ d?(x) .ω)�, where ΓT is the connectivity graph consisting of the sole node
n. It is straightforward to note that 1 ∈ R(M‖> T ); intuitively, after node m has broadcast value v along channel
c, node n decides with probability 0.5 to detect a second value broadcast along channel c before reaching a
successful configuration, and with probability 0.5 to detect the value along another channel d. However, after
broadcasting a value along channel c, node m can non-deterministically decide to broadcast a second value
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m

n

k o

m k o

M = ΓM Bm~Am� |n~An� | k~Ak� N = ΓN Bm~Bm� | k~Ak�

Figure 6.7: Two networks with a common sub-network

m

n

k

m k k o

M1 = Γ1Bm~Am� |n~An� N1 = Γ2Bm~Bm� K = ΓK B k~Bk�

Figure 6.8: Decomposition of the networksM and N

along channel c or d, so that it is always able to perform a broadcast which allows the testing component to
reach a successful configuration.

This is not true for N ‖> T ; in fact, after node m has broadcast the first value, there is only one possible
channel (either c or d) along which the second value can be broadcast. Thus, half of the time the network N is
not able to make the testT evolve in a successful configuration. Formally, we have that whenever p ∈R(N ‖> T )
then p ≤ 0.5.

We have found a test which is able to distinguish N fromM, that is N vmayM. �

Example 6.3.7 shows that the probabilistic choice operator augmented the observational power of tests. In
fact, it is easy to show that in the non-probabilistic framework the equivalenceM =may N , whereM andN are
the networks as in Example 6.3.7, holds.

In contrast with the (non-probabilistic) framework, where a computation could either be unsuccessful or
successful, the probabilistic preorders vmay and vmust have been defined by comparing the probabilities of
reaching a successful computation in an experiment. As we could expect, the two introduced preorders are
compositional.

Proposition 6.3.8 (Compositionality). Let M1,M2 be two networks such that M1 vmay M2, and let N be

another network such that bothM1 ‖>N andM2 ‖>N are defined. ThenM1 ‖>N vmayM2 ‖>N .

A similar result holds for the preorder vmust.

Proof. A direct consequence of ‖> being both associative and interface preserving. �

An application of this Compositionality result is given by the following Example:

Example 6.3.9. Consider the networksM andN in Figure 6.7, where the codes at the various nodes are given
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by

Am ⇐ c!〈v〉 .0

An ⇐ c?(x) .d!〈w〉 .0

Ak ⇐ c?(x) .d?(y) .e!〈u〉 .0

Bn ⇐ c!〈v〉 .d!〈w〉 .0

It is possible to write both of them respectively asM1 ‖>K andN1 ‖>K , where the networksM1,N1 andK are
depicted in Figure 6.8. In order to prove thatMvmay N , it is therefore sufficient to focus on their respective
sub-networks M1 and N1, and prove M1 vmay N1. The equivalence of the two original networks will then
follow from a direct application of Proposition 6.3.8. �
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Chapter 7

Proof Methods for Probabilistic
Networks

In this chapter we exhibit sound proof methods to check whether two networks can be related via either the may-
testing or the must-testing preorder. In [20] it was shown that the may-testing preorder over the process calculus
pCSP can be characterised in terms of certain kinds of simulations over a probabilistic labelled transition
system, while the must-testing preorder is characterised by failure simulations.

Here we consider the simulation preorder which is induced by a non-standard definition of weak extensional
actions, which are defined in order to deal with the local broadcast features which characterize our calculus.
We show that our simulation preorder provides a sound proof methodology for checking whether two networks
can be compared with respect to the vmay preorder; however our simulations fail to be complete.

The notion of failure simulation, in which two distributions can be distinguished by looking at the transitions
they cannot perform, is not appropriate as a proof methodology for the must-testing preorder. We have already
shown in Chapter 4 that, due to the non-blocking nature of broadcast transitions, it is necessary to focus on
deadlock configurations. We propose a novel kind of simulations, called deadlock simulations, and we prove
that they are sound with respect to the must-testing preorder.

This Chapter is organised as follows; in Section 7.1 we define the activities of a network which can be
observed by nodes in their interface, thus defining both strong and weak extensional actions for a network. As
it is not surprising, these are the probabilistic variant of the transitions defined in Chapter 4. The extensional
semantics leads to the notion of (weak probabilistic) simulation between networks.

In Section 7.2 we show that simulations are indeed sound with respect to the may-testing preorder. In
Section 7.3 we explain why the proof methodology is not complete.

Finally, in Section 7.4 we introduce deadlock simulations and we show that they are sound with respect to
the must-testing preorder.

7.1 Extensional Semantics

Here the idea is to design a pLTS over the collection of networks Nets such that whenever two networks are
simulation related as defined in [20, 61], then they will also be testing related, M vmay N . The intensional
semantics in Section 6.2 already provides a pLTS and it is instructive to see why this is not appropriate.

Consider M = ΓM B l~p� and N = ΓN B k~p�, where ΓM , ΓN are the least connectivity graphs such that
ΓM ` l↔ o, ΓN ` k↔ o. Suppose that the code p and running at l and k inM,N , respectively is c!〈v〉 .0. Then
we would expect M and N to be behaviourally indistinguishable. However M will have an output action,
labelled c.l!v, which is not possible for N . So output actions cannot record their source node. What turns
out to be important is the target nodes. For example if inM we added a new node m to the interface, with a
connection to l then we would be able to distinguish M from N ; the required test would simply place some

147
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appropriate testing code at the new node m.
We now present an extensional semantics for networks; here the visible actions consist of activities which

can be detected (hence tested) by placing code at the interface of a network. In this semantics we have internal,
input and output actions.

Definition 7.1.1. [Extensional actions] The actions of the extensional semantics are defined as follows:

(1) internal, (ΓBM)
τ
−→ (ΓB∆); some internal activity reduces the system M, relative to the connectivity Γ,

to some system N, where N ∈ d∆e. Here the internal activity of a network coincides either with some node
performing a silent move m.τ or broadcasting a value which cannot be detected by any node in the interface
of the network itself.

Formally, (ΓBM)
τ
−→ (ΓB∆) whenever

(a) ΓBM
m.τ
−→∆

(b) or ΓBM
c.n!v
−→∆ for some value v, channel c and node name n satisfying Γ ` n↔m implies m ∈ nodes(M)

Note that we are using the notation given in Section 6.2 for defining distributions. Here ∆ is a distribution
over sSys and so (ΓB∆) is a distribution over networks; however all networks in its support use the same
network connectivity Γ.

(2) input, (ΓBM)
c.n?v
−→ (ΓB∆); an observer placed at node n can send the value v along the channel c to the

network (ΓBM). For the observer to be able to place the code at node n we must have n ∈ Int(ΓBM).

Formally (ΓBM)
c.n?v
−→ (ΓB∆) whenever

(a) ΓBM
c.n?v
−→∆

(b) n ∈ Int(ΓBM)

(3) output, (ΓBM)
c!vBη
−→ (ΓB∆), where η is a non-empty set of nodes; an observer placed at any node n ∈ η can

receive the value v along the channel c. For this to happen each node n ∈ η must be in Int(ΓBM), and there
must be some code running at some node in M which can broadcast along channel c to each such n.

Formally, (ΓBM)
c!vBη
−→ (ΓB∆) whenever

(i) (ΓBM)
c.m!v
−→ ∆ for some node m

(ii) η = {n ∈ Int(ΓBM) | Γ ` m→ n } , ∅. �

�

These extensional actions endow the set of networks with the structure of a pLTS. Thus the terminology
used for pLTSs is extended to networks, so that in the following we will use terms such as finitary networks or
finite branching networks. Also, there is a close relationship between extensional τ-actions and the reduction
relation of testing structures.

In the following we will need weak versions of extensional actions, which abstract from internal activity,
provided by the relation

τ
−→. Internal activity can be modelled by the hyper-derivation relation =⇒, which is a

probabilistic generalisation of the more standard weak internal relation
τ
−→∗.

Definition 7.1.2. [Weak extensional actions]

(1) LetM
τ

=⇒∆ whenever we have the hyper-derivationM=⇒∆

(2) M
c.n?v
=⇒∆ wheneverM=⇒

c.n?v
−→=⇒∆

(3) LetM
c!vBη
=⇒ N be the least relation satisfying:

(a) M=⇒
c!vBη
−→ =⇒∆ impliesM

c!vBη
=⇒ N
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k1 l1

k2 l2

l1

ol2

ΓBM T = ΓT BT

Figure 7.1: Ensuring soundness

(b) M
c!vBη1
=⇒ ∆′, ∆′

c!vBη2
=⇒ ∆, where η1∩η2 = ∅, impliesM

c!vB(η1∪η2)
=⇒ ∆ �

�

These weak actions endow the set of networks Nets with the structure of another pLTS, called the extensional

pLTS and denoted by pLTSNets. We can therefore use such weak actions to define a simulation preorder between
networks, as in [20].

Definition 7.1.3. [Simulation preorder] In pLTSNets we let Csim denote the largest relation in Nets×D(Nets)
such that if s Csim Θ then:

• if ω(s) = true, then Θ
τ

=⇒Θ′ such that for every t ∈ dΘ′e,ω(t) = true

• otherwise, whenever s
µ

=⇒∆′, for µ ∈ Actτ, then there is a Θ′ ∈ D(S ) with Θ
µ

=⇒Θ′ and ∆′ Csim Θ′.

We often use s1 Csim s2 in place of s1 Csim s2. � �

This is a mild generalisation of the corresponding definition in [20] where we factor in the presence of the
success predicate ω( ).

Let us recall why the definition of output actions in Definition 7.1.2(3) is non-standard. Informally speak-
ing, the definition of weak extensional output actions expresses the capability of simulating broadcast through
multicast; that is, a single broadcast action detected by a set of nodes η can be matched by a sequence of broad-
cast actions (possibly interrupted by internal actions), detected respectively by η1, · · · ,ηi ⊆ η, provided that the
collection {η1, · · · ,ηi} is a partition of η. This constraint is needed to ensure that

(i) every node in η will detect the transmitted value, and

(ii) no node in η will detect the value more than once.

As we will see, simulations can be used as a proof methodology for the may-testing preorder. To ensure
thatMvmay N for two networksM, N , it is sufficient to exhibit a simulation between themM Csim N . The
same result holds for deadlock simulations with respect to the must testing preorder.

We end this section with an example which reinforce the delicacy of the issues involved in achieving
soundness.

Example 7.1.4. Soundness requires that the extensional output actions records the set of target nodes, rather
than single nodes. ConsiderM = ΓB k1~0� | k2~c!〈1〉� and N = ΓB k1~c!〈1〉� | k2~0�, where the connectivity
is given in Figure 7.1. N 6vmay M because of the test T = ΓT BT , where T is the code l1~c?.c!� | l2~c?.c!� |
o~c?.c?.ω�. Moreover N 6Csim M because N can perform the output action labelled c!〈1〉B {l1, l2}, which can
not be matched byM.

However suppose we were to restrict η in the definition of extensional output actions, part (3) of Defini-
tion 7.1.1, to be singleton sets of node names. Then in the resulting pLTS it is easy to check thatM can simulate
N . In other words with this simplification the resulting simulations would not be sound; that is, Theorem 7.2.1
would no longer hold. �
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Figure 7.2: Ensuring soundness

7.2 Soundness for May-testing

In this Section we prove the following result:

Theorem 7.2.1. [Soundness for may-testing] Suppose N1,N2 are finitary networks such that Input(N1) =

Input(N2),Output(N1) = Output(N2). Then N1 Csim N2 in pLTSNets implies N1 vmay N2.

The proof of Soundness relies on an alternative characterisations of the simulation preorder in pLTSNets,
which is essentially a simplification of what it means to be a simulation. With simulations in pLTSNets weak
actions are matched against weak actions; an alternative would be simply to require that strong actions are
matched by weak actions.

Definition 7.2.2. [Simple simulations] In pLTSNets we let Cs denote the largest relation in Nets×D(Nets) such
that ifM Cs Θ then:

• if ω(M) = true for any ω ∈Ω then Θ
τ

=⇒Θ′ such that ω(Θ′) = true

• otherwise,

(i) wheneverM
µ
−→∆′ there is a Θ′ ∈ D(Nets) with Θ

µ
=⇒Θ′ and ∆′ Cs Θ′.

�

Theorem 7.2.3. [Alternative characterisation] In pLTSNets,M Csim Θ if and only ifM Cs Θ, provided thatM is
a finitary network, and Θ is a finitary distribution of networks (that is, every network in its support is finitary),

Proof. (Outline) Practically identical to the corresponding proof in [19]. The difficulty is to check that if
s Csim Θ and s =⇒� ∆′ then Θ =⇒� Θ′ such that ∆′ Cs Θ′; see Theorem 7.20 of [19]. �

Theorem 7.2.4. Suppose Input(M) = Input(N), Output(M) = Output(N) and bothM ‖> (ΓB n~p�) and N ‖>
(ΓBn~p�) are defined. ThenM Cs N impliesM‖> (ΓBn~p�) Cs N ‖> (ΓBn~p�).

The proof of this result is quite long and technical, and is therefore relegated to an independent subsection,
Section 7.2.1 below.

Corollary 7.2.5. [Compositionality] Suppose Input(M1) = Input(M2), Output(M1) = Output(N2). Then
M1 C

sM2 implies (M1 ‖>N) Csim (M1 ‖>N) whenever both these networks are defined.

Proof. By induction on the number of nodes in N , using the previous theorem, Theorem 7.2.3. �

We also need to relate the simulation preorder Csim to the valuation of distributions, as given in Defini-
tion 6.3.4. First an auxiliary result.

Lemma 7.2.6. Let ∆,Θ be distributions in pLTSNets such that ∆Csim Θ; then Θ =⇒�Θ′ such thatV(∆)≤V(Θ′).

Proof. There are two cases.
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(i) First suppose ∆ is a point distribution s. If the predicate ω(s) is equal to false,V(s) = 0. In this case, we
recall that Theorem 6.1.5 (4) ensures that there exists at least one extreme derivative Θ′ of Θ, for which
0 ≤V(Θ′) trivially holds.

Otherwise the predicate ω(s) is satisfied andV(s) has to be 1. Since s Csim Θ we know Θ=⇒Θ′ such that
for all s′ ∈ Θ′,ω(s′) = true . This means that V(Θ′) = 1; moreover, as every state in dΘ′e is a successful
state, we also have that Θ =⇒� Θ′

(ii) Otherwise Θ can be written as
∑

s∈d∆e∆(s) ·Θs where s Csim Θs for each s in the support of ∆. By part
(i) each Θs =⇒� Θ′s such thatV(s) ≤ V(Θ′s). As an extreme derivative is also a hyper-derivative, we can
combine these to obtain a hyper derivation for Θ, using Theorem 6.1.5 (3). This leads to

Θ =
∑
s∈d∆e

∆(s) ·Θs =⇒
∑
s∈d∆e

Θ′s = Θ′

As for every s ∈ d∆e, t ∈ dΘ′se we have that t
τ
−→ implies ωt = true , this condition is respected also by

all states in dΘ′e. Thus, the hyper derivation Θ =⇒Θ′ is also an extreme derivation. Finally, the quantity
V(∆) =

∑
{∆(s) | ω(s) = true } can be rewritten as

∑
s∈d∆eV(s), leading to

V(∆) =
∑
s∈d∆e

V(s) ≤
∑
s∈d∆e

V(Θ′s) =V(Θ′) .

�

Theorem 7.2.7. In pLTSNets, ∆ Csim Θ implies R(∆) vmay R(Θ).

Proof. Suppose ∆ =⇒� ∆′. We have to find a derivation Θ =⇒� Θ′ such that V(∆′) ≤ V(Θ′). We can use the
definition of Csim to find a derivation Θ =⇒Θ′′ such that ∆′ Csim Θ′′. Applying the previous lemma we obtain
Θ′′ =⇒� Θ′ such thatV(∆′) ≤V(Θ′). The result follows since Theorem 6.1.5 gives Θ =⇒� Θ′.

�

Proof of Theorem 7.2.1:

This is now a straightforward application of Compositionality and Theorem 7.2.7.

Let us assume that N1 Csim N2. To prove the conclusion, N1 vmay N2, we must show that R(N1 ‖> T ) vmay

R(N2 ‖> T ) for an arbitrary testing network T such that both N1 ‖> T and N2 ‖> T are defined. For such a T
Compositionality entails (N1 ‖> T ) Csim (N2 ‖> T ), and now we can apply Theorem 7.2.7. �

7.2.1 Single Node Compositionality

The aim of this section is to outline the proof of Theorem 7.2.4; it may be safely skipped by the reader unin-
terested in the detail. The standard approach to compositionality for a behavioural preorder involves proving
decomposition and composition results for the actions on which the pre-order depends. As an example decom-
position would involve showing that an action P1 9 P2

µ
−→∆1 9∆2 can be decomposed into two components

P1
µ1
−→∆1 P2

µ1
−→∆2

where µi are such that any other pairs of actions Q1
µ1
−→Θ1, Q2

µ1
−→Θ2 can be recomposed into Q1 9 Q2

µ
−→

Θ1 9Θ2.

Unfortunately such decomposition results do not hold in pLTSNets for our operator ‖>.

Example 7.2.8. LetM,N be defined by (ΓM Bm~c!〈0〉�), (ΓN Bn~c?.ω�), where ΓN is the trivial graph con-
taining only one node, and ΓM is determined by ΓM ` m↔ n.



152 CHAPTER 7. PROOF METHODS FOR PROBABILISTIC NETWORKS

Then in pLTSNets M‖>N
τ
−→ (ΓM Bm~0�) ‖> (ΓN Bn~ω�). But this move can not be decomposed into indi-

vidual actions in pLTSNets fromM and N respectively, as N cannot perform the transition N
c?v
−→ΓN Bn~ω�.

�

Luckily, because we are only considering composition on the right-hand side by single node networks,
we can work with the symmetric operator ‖; as we will see this operator will support the decomposition and
composition of actions in pLTSNets.

Proposition 7.2.9. Suppose M ‖> (Γn B n~p�) is well-defined. Then there exists a Γ such that (ΓB n~p�) is
well-defined, andM‖> (ΓnBn~p�) coincides withM‖ (ΓBn~p�).

Proof. Γ can be constructed by adding to Γn all nodes inM which are connected to n; also, we require all those
nodes to be connected to n in Γ. �

Proposition 7.2.10. [Strong decomposition in pLTSNets ]

(1) If (ΓM BM) ‖ (ΓnBn~s�)
τ
−→∆

then

• either (ΓM BM)
τ
−→ (ΓM B∆M) and ∆ = (ΓM B∆M) ‖ ΓnBn~s�

• or (ΓnBn~s�)
τ
−→ (ΓnBn~∆n�) and ∆ = (ΓM BM) ‖ (ΓnB∆n)

• or (ΓM BM)
c!vB{n}
−→ (ΓM B∆M), (Γn B n~s�)

c.m?v
−→ (Γn B n~∆n�), with Γn ` m↔ n and ∆ = (ΓM B∆M) ‖

ΓnBn~∆n�,

• or (ΓM BM)
c.n?v
−→ (ΓM B∆M), (Γn B n~s�)

c!vBη
−→ (Γn B n~∆n�), with η ⊆ nodes(M) and ∆ = (ΓM B∆M) ‖

ΓnBn~∆n�,

(2) If (ΓM BM) ‖ (ΓnBn~s�)
c.m?v
−→ ∆ then

• either (ΓM BM)
c.m?v
−→ (ΓM B∆M), and ∆ = (ΓM B∆M) ‖ ΓnBn~s�,

• or (ΓnBn~s�)
c.m?v
−→ (ΓnBn~∆n�) and ∆ = ΓM BM ‖ (ΓnBn~∆n�),

• or (ΓM BM)
c.m?v
−→ (ΓM B∆M), (ΓnBn~s�)

c.m?v
−→ (ΓnBn~∆M�) and ∆ = (ΓM B∆M) ‖ (ΓnBn~∆n�),

(3) If (ΓM BM) ‖ (ΓnBn~s�)
c!vBη
−→ ∆ then

• either ∆ = (ΓB∆M) ‖ (Γn B n~∆n�) where (Γn B n~s�)
c.m?v
−→ (Γn B n~∆n�) for some m ∈ Int(Γn B n~p�),

and (ΓM BM)
c!vBη∪{n}
−→ (ΓM B∆M)

• or ∆ = (ΓM B∆M) ‖ (ΓnBn~s�) where (ΓM BM)
c!vBη
−→ (ΓM B∆M) and n < η.

• or ∆ = (ΓM B∆M) ‖ (Γn B n~∆n�), where (ΓM BM)
c.n?v
−→ (ΓM B∆M) and (Γn B n~s�)

c!vBη′
−→ (ΓB n~∆n�),

and η = η′∩nodes(M).

Proof. See the appendix. �

Next we consider how the weak actions performed by a node-stable distribution of the form ΓM B∆ ‖

ΓnBn~Θ� can be inferred from those performed by ΓM B∆ and ΓnBn~Θ� respectively.

Proposition 7.2.11. [Weak composition in pLTSNets ] Suppose (ΓM B∆) ‖ (ΓnBn~Θ�) is well-defined.

(i) (ΓM B∆)
τ

=⇒ (ΓM B∆M),Γn Bn~Θ�
τ

=⇒Γn Bn~Θn� implies (ΓM B∆) ‖ (Γn Bn~Θ�)
τ

=⇒ (ΓM B∆M) ‖ (Γn B

n~Θn�),

(ii) (ΓM B∆)
c!vBη
=⇒ ΓM B∆M , n < η implies (ΓM B∆) ‖ (ΓnBn~Θ�)

c!vBη
=⇒ (ΓM B∆M) ‖ (ΓnBn~Θ�),

(iii) (ΓM B∆)
c!vBη
=⇒ (ΓM B∆M), n ∈ η and (Γn B n~Θ�)

c.m?v
=⇒ (Γn B n~Θn�) for some m ∈ Int(Γn B n~s�) implies

(ΓM B∆) ‖ (ΓnBn~Θ�)
c!vBη\{n}

=⇒ (ΓM B∆M) ‖ (ΓnBn~Θn�),
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(iv) (ΓMB∆)
c.n?v
=⇒ΓMB∆M and (ΓnBn~Θ�)

c!vBη
=⇒ implies (ΓMB∆) ‖ (ΓnBn~Θ�)

c!vBη′
=⇒ (ΓMB∆M) ‖ (ΓnBn~Θn�),

where η′ = η \nodes(∆).

(v) (ΓMB∆)
c.m?v
=⇒ (ΓMB∆M) and (ΓN Bn~s�)

c.m?v
=⇒ (ΓnB p~∆n�) implies (ΓMBM) ‖ (ΓnBn~s�)

c.m?v
=⇒ (ΓMB∆M) ‖

(ΓnBn~∆n�).

Proof. See the appendix. �

Before proving Theorem 7.2.4 we need another result that allows us to relate the actions performed by two
single node networks with different connectivities; this is because the fact that the operator ‖> being asymmetric
is reflected in the fact that the application of Proposition 7.2.9 to a network of the form (ΓM BM) ‖> (ΓnB p~n�)
leads to a change in the connectivity graph of the network appearing in the right hand side of the composition.

Formally, let (ΓMBM), (ΓNBN) and (ΓnBn~s�) be three state based networks, and suppose both (ΓMBM) ‖>
(ΓnBn~s�) and (ΓN BN) ‖> (ΓnBn~s�) are defined. Then

(ΓM BM) ‖> (ΓnBn~s�) = (ΓM BM) ‖ (Γ1Bn~s�)

(ΓN BN) ‖> (ΓnBn~s�) = (ΓN BN) ‖ (Γ2Bn~s�)

Since the definitions of the connectivity graphs Γ1 and Γ2 depend on those of ΓM and ΓN , respectively,
it is possible to obtain Γ1 , Γ2. Thus, when proving Theorem 7.2.4, we will need to deal with situations in
which the two networks ΓM BM and ΓN BN are composed (via the ‖ operator) with networks having different
connectivities. The following result, however, allows us to relate such networks:

Proposition 7.2.12 (Single node Inputs). Let n~s� ∈ sSys, and let Γ1,Γ2 be two connectivity graphs such that

both Γ1 B n~s� and Γ2 B n~s� are well formed. If (Γ1 B n~s�)
c.m?v
−→ (Γ1 B n~∆n�) with m ∈ Input(Γ1Bn~s�) then

(Γ2Bn~s�)
c.l?v
−→Γ2Bn~∆n� for every l ∈ Input(Γ2Bn~s�).

Proof. Straightforward from the definitions of both extensional and intensional input actions. �

Corollary 7.2.13 (Single node simulations). Let Γ1Bn~s� be a single node network with Input(Γ1Bn~s�) , ∅,
Output(Γ1Bn~s�), ∅, and suppose Γ1Bn~s�Csim Γ1Bn~Θ�; then, for any Γ2 such that Γ2Bn~s� is well formed

it holds Γ2Bn~s� Csim Γ2Bn~Θ�.

Proof. Follows directly from the definition of extensional and intensional actions and from Proposition 7.2.12.
The constraint that Int(Γ1 B n~s�) be non-empty is needed when considering the case (Γ2 B n~s�)

c.m?v
−→ Γ2 B

n~Θ�. �

With an abuse of notation, we write s Csim Θ whenever (ΓBn~s�) Csim (ΓBΘ~s�) for any Γ such that Int(ΓB
n~s�) , ∅.
We are now ready to prove the main result of this section.

Proof of Theorem 7.2.4: We actually prove a more general result. Recall that a distribution ∆ over sSys is
called node-stable if nodes(N) = nodes(M) whenever ∆(N) > 0 and ∆(M) > 0. For such a distribution it makes
sense to define Int(ΓB∆) to be Int(ΓBM) for any M such that ∆(M) > 0. Now let

Let R ⊆ Nets×D(Nets) be given by

(ΓM BM) ‖> (ΓnBn~s�) R (ΓB∆1) ‖> (ΓnBn~Θ1�)

whenever

(a) Θ1, a distribution over sSys, is node stable

(b) Int(ΓM BM) = Int(ΓB∆1)
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(c) (ΓM BM) Csim (ΓB∆1)

(d) s Csim Θ1; here Θ1 is a distribution over states, from the syntax in Figure 6.1.

Theorem 7.2.4 will follow if we can show that R is a simple simulation, in the sense of Definition 7.2.2.

The proof proceeds by considering a strong extensional action

(ΓM BM) ‖> (ΓnBn~s�)
µ
−→∆ (7.1)

We must find a corresponding weak extensional action

(ΓB∆1) ‖> (ΓnBn~Θ1�)
µ

=⇒Θ

such that ∆ R Θ.

The first step is to employ Proposition 7.2.9 so as to write (ΓM BM) ‖> (Γn B n~s�) in the form (ΓM B

M) ‖ (Γ1 B n~s�) for some network connectivity Γn. After this translation has been carried out, we may apply
Decomposition , Proposition 7.2.10, to the action (7.1) above. There are three cases, depending on µ. We only
consider the case µ = c!vBη.

Suppose then (ΓM BM) ‖ (Γ1 Bn~s�)
c!vBη
−→ (ΓM B∆M) ‖ (Γ1 Bn~Θn�). According to Proposition 7.2.10 we have

three different sub-cases to consider; again, we will consider only the most interesting one, namely

(ΓM BM)
c!vBη′
−→ (ΓM B∆M)

(Γ1Bn~s�)
c.m?v
−→ Γ1Bn~Θn�

η′ = η∪{n} m ∈ Int(Γ1Bn~Θn�)

We have that (ΓMBM)Csim (ΓB∆1) by hypothesis, so that (ΓB∆1)
c!vBη′
=⇒ (ΓB∆2) with (ΓMB∆M)Csim (ΓB∆2).

We can now rewrite (ΓB∆1) ‖> (ΓnBn~Θ1�) as (ΓB∆1) ‖ (Γ2Bn~Θ1�).
Notice also that, since n ∈ η′, there exists a node m in nodes(M) such that ΓM ` n↔ m. By the definition of ‖,
we obtain therefore that m ∈ Int(Γ1 B n~s�). Thus, we can apply both Proposition 7.2.12 and Corollary 7.2.13

to infer (Γ2Bn~Θ1�)
c.l?v
=⇒ (Γ2Bn~Θ2�) for some l ∈ Int(Γ2Bn~Θn�), and Θn Csim Θ2.

Thus we have proved

ΓB∆1
c!vBη′
=⇒ ΓB∆2,

Γ2Bn~Θ1�
c.l?v
=⇒ Γ2Bn~Θ2�, l ∈ Int(Γ2Bn~Θ2�),

ΓM B∆M Csim ΓB∆2,

Θn Csim Θ2.

The first two results can be used together with Decomposition to prove ΓB∆1 ‖ Γ2 B n~Θn�
c!vBη
=⇒ ΓB∆2 ‖

Γ2Bn~Θ2�, while the last two allow us to infer ΓM B∆M ‖ Γ1Bn~Θn� R ΓM B∆2 ‖ Γ2Bn~Θ2�. �

7.3 Simulation Preorder Fails to be Complete

Although the simulation preorder Csim provides a proof methodology for establishing that two networks are
related via the testing preorder vmay, it is not complete. That is, it is possible to find two networksM,N such
thatMvmay N holds, butM cannot be simulated by N . This is quite surprising, as simulation preorder has
been already proved to provide a characterisation of the may-testing preorder for more standard process calculi,
such as pCSP [19].

However, in our setting a problem arises; the mathematical basis of simulation preorders rely on (full)
probability distributions, which are a suitable tool in a framework where a weak action from a process term has
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∆ = ΓM B (0.81 ·m~c!〈v〉 .0�+ 0.19 ·m~0�) Θ = ΓN B (0.9 ·m~c!〈v〉 .0� |n~P�+ 0.1 ·m~0� |n~P�)

Figure 7.3: Two testing related networks

to be matched with the same action performed by a distribution of processes.

This is not true in our calculus; we have already shown that, due to the presence of local broadcast com-
munication, it is possible to match a weak broadcast action with a sequence of outputs whose sets of target
nodes are pairwise disjoint. This behaviour has been formalised by giving a non-standard definition of weak
extensional actions in Definition 7.1.2.

Such a definition captures the possibility of simulating a broadcast through a multicast only when the former
action is performed with probability 1.

However, when comparing distributions of networks we have to also match actions which are performed
with probabilities less than 1, at least informally; here the simulation of broadcast using multicast runs into
problems, as the following example shows.

Example 7.3.1. Consider the two network distributions ΓM B∆, ΓN BΘ depicted in Figure 7.3; let

∆ = 0.81 ·m~c!〈v〉 .0�+ 0.19 ·m~0�

Θ = 0.9 ·m~c!〈v〉 .0� |n~P�+ 0.1 ·m~0� |n~P�

where P is the process c?(x) .(c!〈x〉 .0 0.9⊕ 0) + c?(x) .P. In ΓM B∆ a message is broadcast to nodes o1,o2 with
probability 0.81, while in ΓN BΘ two different broadcasts happen in sequence (first to node o1, then to o2). Each
of these broadcasts happens with probability 0.9, so that the overall probability of message v to be detected by
both nodes o1,o2 is again 0.81.

We first show that ΓM B∆ vmay ΓN BΘ, then we prove that ΓM B∆ 6Csim ΓN BΘ.
For the first statement, we only supply informal details, as a complete proof would be rather long and technical.
Consider a test distribution ΓT BΛ, such that both ΓMB∆ ‖> ΓT BΛ and ΓNBΘ ‖> ΓT BΛ are defined. Without loss
of generality, suppose that both o1,o2 ∈ nodes(ΓT BΛ), thus every T ∈ dΛe can be written in o1~t1� |o2~t2� |T .
Also, we provide details only for the most interesting case, that is when the testing component reaches (with
some probability p) an ω-successful configuration after networkM broadcasts the message v. In this case, a
computation fragment of ΓM B∆ ‖> ΓT BΛ can be summarised as follows:

1. The testing component ΓT BΛ performs some internal activity, thus leading to ΓT BΛ
τ

=⇒ΓT Bo1~Λ1� |

o2~Λ2� |ΛT

2. At this point, the distribution ∆ will broadcast the message with probability 0.81, causing the testing
component to evolve in ΓT B o1~Λ

′
1� | o2~Λ

′
2� |ΛT

1. The tested component, at this point, will be in a
deadlocked configuration, that is it cannot perform any action.

Consider now the distribution ΓN BΘ ‖> ΓT BΛ. For such a network, a matching computation will proceed
as follows:

1Note that only nodes o1 and o2 are affected by the broadcast performed by node m
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1. The testing component ΓT BΛ performs the same sequence of internal activities as before, thus it will
end up in the distribution ΓT Bo1~Λ1� |o2~Λ2� |ΛT .

2. At this point, message v will be broadcast by Θ to node o1. This happens with probability 0.9, and it
causes the testing network to evolve in ΓT Bo1~Λ

′
1� |o2~Λ2� |ΘT . Here note that, since the broadcast can

not be heard by node o2, the probability distribution for such a node in the testing component has not
been affected.

3. Before allowing the testing component to perform any activity, we require the tested network to perform
the second broadcast, which will be heard by node o2; again, this will happen with probability 0.9 and it
will not affect the probability distribution of processes running at node o1. Thus, after the second message
has been broadcast by the tested network, the testing component will have the form ΓT Bo1~Λ

′
1� |o2~Λ

′
2� |

ΛT , which is exactly the same configuration obtained in the first experiment, after ΓM B∆ has broadcast
the message to both locations. Further, note that the overall probability of Θ delivering both messages is
again 0.81, and that the tested network is now in a deadlocked configuration.

Thus we have shown that, whenever the broadcast of message v by ΓMB∆ affects the testing network ΓT BΛ

in some way, then ΓN BΘ is able to multicast the message to both o1 and o2, causing ΓT BΛ to behave in the
same way. Note also that in ΓN BΘ we introduced a non-deterministic choice in process P; this choice has been
introduced because it is possible for node n to receive messages from the external node o2. Since in ΓM B∆

messages received from external nodes do not affect the behaviour of the network, we require ΓN BΘ to have at
least an extreme derivative in which this policy is respected. In fact, when ΓN BΘ receives a message from o2,
code P running at node n can decide to ignore the message by evolving to the process P itself. At this point,
the reader should be convinced that ΓM B∆ vmay ΓN BΘ.

Now we show that it is the case that ΓM B∆ cannot be simulated by ΓN BΘ. The proof is obtained by

contradiction. Suppose then that ΓMB∆Csim ΓN BΘ. Let M1 be the system term m~c!〈v〉�. As ΓMBM1
c!vB{o1,o2}
−→ ,

and ∆ = 0.81 ·ΓM BM1 + 0.19 ·ΓM Bm~0�, we can rewrite Θ as

Θ = 0.81 ·Θ1 + 0.19 ·Θ2

such that Θ1
c!vB{o1,o2}

=⇒ . Let now N1 and N2 be the state based terms m~c!〈v〉� | n~P�, and m~0� | n~P�, respec-
tively. These terms have been defined so that dΓN BΘe = {ΓN BN1,ΓN BN2}. Since ΓN BN2 is a deadlocked
network (hence it cannot perform any output action), the only network in the support of Θ1 has to be ΓN BN1,
for a distribution can perform an action only if all the networks in its support can perform the same action.

It is easy to show that the only possible action for ΓN BN1 is ΓN BN1
c!vB{o1}

=⇒ ΓN BΘ′′, where Θ′′ = m~0� |

ΘN and ΘN = 0.9 · n~c!〈v〉�+ 0.1 · n~0�. Since the latter is a deadlock state, we can conclude that the action

ΓN BΘ′′
c!vB{o2}

=⇒ is not possible, so neither is ΓN BN1
c!vB{o1,o2}

=⇒ . It follows that the broadcast action performed by
ΓM BM1 cannot be matched by ΓN BN1, and hence ΓM B∆ 6Csim ΓN BΘ. �

Remark 7.3.2 (About incompleteness). We end this section by discussing, at least informally, why our simu-
lation preorder fails to be complete.

The main problem lies in the non-standard definition of weak extensional actions. Intuitively, a test can
be defined to detect whether a message has been multicast to a set of output nodes η with a given probability
p. However, our current definition of weak extensional outputs does not capture multicasts performed with an

overall probability p. In fact, whenever ∆
c!vB(η1∪η2)
|===========⇒Θ because ∆

c!vBη1
|=======⇒Θ′,Θ′

c!vBη2
|=======⇒Θ and η1∩η2 = ∅,

note that we require the whole distribution Θ′ to perform an extensional output action. In other words, we only
capture the broadcast which can be detected to the notes in η2 if it happens with probability 1. Clearly, this
is not the only kind of multicast that we can test by placing code at the interface nodes of a network; as we
have pointed out above, we can define a test to check whether nodes in the set η2 detect the broadcast of value
v along channel c with probability less than one. As a consequence, our proof technique turns out not to be
complete. �
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7.4 Soundness for Must-testing

In this Section we turn our attention to achieving soundness for the must-testing preorder. We only state the
main results, without providing any proof. However, the proof of the following Theorem can be performed by
the interested reader by following the one contained in [19], Section 8.

We have already shown in Chapter 4 that, in a non-probabilistic setting, acceptance sets cannot be used to
characterise the (non-probabilistic) must testing preorder; this is because of the non-blocking nature of output
extensional transitions, and because since we are only comparing networks with the same input interface2 we
cannot infer any information from input transitions. What is really important in the must-testing framework is
the impossibility for a network to evolve autonomously.

This leads to the definition of deadlock configuration, which can be extended to probability (sub)distributions.

We say that a network M is deadlocked, denoted M9 whenever ω(M) = false and M
τ
−→ ,M

c!vBη
−→ for any

c,v,η. A sub-distribution ∆ overDsub(Nets) is deadlocked if any network in its support is deadlocked.
Then we can define another kind of simulation in which the possibility for a sub-distribution being dead-

locked is taken into account. For reasons explained in [19] it is more straightforward to express this form of
simulation as a relation from sub-distributions to sub-distributions.

Definition 7.4.1 (Deadlock Simulations). In pLTSNets we let wDS denote the largest relation in Dsub(Nets)×
Dsub(Nets) such that if ∆ wDS Θ then:

• ∆
µ

=⇒
∑

i∈I(pi ·∆
′
i ), with I being an index set such that

∑
i∈I pi ≤ 1, whenever there are Θ′i ∈ Dsub(Nets)

such that Θ
µ
−→

∑
i∈I(pi ·Θ

′
i ) and, for any i ∈ I, ∆′i wDS Θ′i

• ∆=⇒ 6−→ whenever Θ=⇒ 6−→. �

As it is not surprising, deadlock simulations are sound with respect to the must-testing preorder.

Theorem 7.4.2 (Soundness for Must-testing). LetM,N be finitary networks. IfMwDSN thenMvmustN . �

Remark 7.4.3. Note that the characterisation result in the non-probabilistic setting, Theorem 4.4.11 is valid
only for strongly convergent networks. This constraint is not necessary in the probabilistic setting.

The reason why we needed to focus on strongly convergent networks in Chapter 4 was because the non-
blocking nature of output transitions leads to different kinds of divergence. Specifically, a network which
immediately diverges (that is, divergence is obtained via an infinite sequence of τ-actions) can be distinguished
by one in which divergence can be obtained only after a broadcast transition.

For any networksM,N , in the non-probabilistic setting, we have that ifM diverges immediately (that is,
it has an infinite sequence of τ-transitions) andMvmust N then N diverges immediately. The same applies in
the probabilistic framework, where a sub-distribution ∆ diverges immediately if ∆ =⇒ε; we recall that ε is the
empty sub-distribution.

In Definition 7.4.1 we have that if M wDS N and M=⇒ ε, then N =⇒ ε. That is, deadlock simulations
capture the notion of immediate divergence; this is not true for the predicateM⇑ defined in Section 4.4, which
captured all possible kinds of divergence.

2Recall that any networkM can perform an extensional input transition of the form n.c?v, provided n ∈ Input(M).
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Chapter 8

Applications for Probabilistic Wireless
Networks

In this Chapter we provide some applications of our theory; first, we focus on a simple routing model to show
how networks can be related via the may testing preorder by providing a simulation between them. In this
model we require routing of messages to be sequential; that is, at any given time the network is routing at most
one message. We decided to focus on a simple model of routing in order to show how simulations can be used
to prove whether two networks are may-testing related. We first define a specification (or model) for routing
in terms of a networkM; then we consider a more complicated network N and we show that it is may testing
related to our model by exhibiting a simple simulation betweenM and N ; by Theorem 7.2.1, it follows that
Mvmay N . Finally, we generalize our result by focusing on a networkL which is only partially defined; again,
we prove thatM and L are testing related by showing thatM Cs L.

Then we focus on more practical applications; we consider the connectionless routing model and defined
in Chapter 5, and we exhibit a probabilistic implementation for it. We only consider the may-testing preorder,
though the reader can check that in both cases the proposed implementation is must-equivalent to the model.

8.1 Probabilistic Sequential Routing

8.1.1 The Specification

Routing is the central task that has to be accomplished in the network layer of (wireless) network protocols
[65]. The goal of a routing protocol is that of guaranteeing that a message, generated by a node of the network
and intended for a second, flows through the nodes of the network to eventually reach the desired destination.
The design of routing protocols relies on the assumption that the communication between two nodes is perfect;
in practice, this task is accomplished by the Datalink and MAC layers, while in our calculus this is guaranteed
by the intensional semantics that define network transitions.

Here we propose a basic network to model routing; as we will see, the way it is defined ensures it enjoys
the following features:

• Two external nodes o1,o2, are used as the endpoints of a communication; a message generated by node
o1 has to be forwarded to o2, and vice-versa. The constraint that o1,o2 are external nodes guarantees that
messages are generated non-deterministically,

• The network detects the messages generated by the external nodes only along a single channel; all the
messages generated via other channels are ignored,

• Routing is sequential; that is, only one packet at time can be routed.

159
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M ≡ m~P�

mo1 o2

Figure 8.1: A model for routing

M M′voi.d?v

oi.c?v
oi.c?w

oi.d?w

c!vB {o1,o2}

Figure 8.2: the pLTS induced by our routing model. Here d is an arbitrary channel different from c, v and w are
arbitrary messages and i ranges over 1,2.

Our model consists in the network M = ΓBM depicted in Figure 8.1. We define P to be the process
c?(x) .c!〈x〉 .P. The role of the internal node is that of repeatedly listening for incoming messages (either from
o1 or o2); once a message has been received, it will forward it to the destination by performing a broadcast.
In this case the message is heard by both the external nodes o1 and o2, thus we ensure that it will reach the
destination node. This is needed because it is impossible for node m, upon receiving a message, to detect if it
was originally sent by o1 or o2. Further, it is easy to check that the networkM satisfies the constraints above.
Finally, in order to ensure that the pLTS generated by networkM is finitary, we assume that the sets of both
channels and values are finite. This constraint is needed only because simulations are sound with respect to the
vmay preorder in a finitary setting. As we will see, only messages received along channel c from some external
node will be able to affect the behaviour of a network; therefore, the results that we prove are valid also in the
case the set of channels and values are assumed to be infinite.

The pLTS induced by networkM is depicted in Figure 8.2. Below we summarise the actions that network
M can perform:

1. M
d.oi?v
−→ M, provided channel d is different from c, i = 1,2,

2. M
c.oi?v
−→ M′v, i = 1,2, whereM′v = ΓBm~c!〈v〉 .P�.

We also list the possible actions that can be performed by the derivative ofM,M′v.

1. M′v
d.oi?v
−→ M′, where d is an arbitrary channel (including c),

2. M′v
c!vBη
−→M, where η = {o1,o2}.

8.1.2 A Simple Implementation

Now that we have provided a specification for routing, let us look at a possible implementation. In our frame-
work, for implementation ofM we mean a networkN = ΓN BN such thatMvmay N . The main idea here is to
build N by replacing node m inM with a rather simple network, consisting of different nodes. The main goal
we want to achieve for N consists in routing a message generated from o1 to o2, and vice versa. To this end,
we design N to have at least one computation in which the constraints imposed for M are satisfied, thereby
ensuring thatMvmay N will be true.

The network N we consider is depicted in Figure 8.3. Here N is defined to be

m1~Pm� |m2~Pm� |
4∏

i=1

ni~Pi�
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ΓN BN

o1 m1 n1

n3

n4

n2 m2 o2

Figure 8.3: A simple implementation ofM

where

Pm = c?(x) .c!〈x〉 .Pm + c?(x) .Pm

Pi = c?(x) .[(c3!〈x〉 .Pi 1
2
⊕ c4!〈x〉 .Pi)] + c?(x) .Pi

+ ci?(x) .[(c3!〈x〉 .Pi 1
2
⊕ c4!〈x〉 .Pi)] + ci?(x) .c!〈x〉 .Pi, i = 1,2 (8.1)

Pi = ci?(x) .(c1!〈x〉 1
2
⊕ c2!〈x〉) i = 3,4

Let us discuss the intuitive behaviour of each node in network N . The idea is that of implementing proba-
bilistic routing; once a message is received by a node in the network, it will perform a probabilistic choice to
select a node, among its neighbours, to which the message will be forwarded. For this purpose, each internal
node ni, i = 1, · · · ,4, has a channel ci associated to it; the code of network N is designed so that each of these
internal nodes ni waits for a message to be received along its associated channel ci. Further, it is the only
node in the network which can receive messages along this channel; this ensures that whenever a message is
broadcast along channel ci only node ni is able to actually receive it.

The behaviour of an internal nodes n3 or n4 is straightforward; if it receives a message, which may come
from either of its neighbours, it selects according to a fair probabilistic choice one of these neighbours to whom
the message is forwarded.

The behaviour of n1, n2 is more complicated. We describe that of n1; the behaviour of n2 is symmetric. If it
receives a message along channel c1, its associated channel, we know that it must come from one of its internal
neighbours n3 or n4. Non-deterministically, the message is either

• forwarded to the externally connected node m1 using the channel c

• or using a fair probabilistic choice it is rebroadcast back to one of its internal neighbours, along their
associated channels c j.

But n1 can also listen to messages broadcast along channel c; this allows it to receive messages from the
node m1, which in turn is connected to the interface. When such a message is received non-deterministically it
is either

• ignored

• or forwarded to one if the internal nodes n3,n4, using their associated channels c j; the destination node
is selected randomly, using a fair probabilistic choice.

The nodes m1, m2, being connected to the interface, are responsible for routing messages between the
external nodes o1, o2 and the internal ones n1, n2 respectively. This is achieved by mi forwarding every message
it receives along channel c; we have already seen that its neighbour ni is both broadcasting and listening on c.
However, node m1 can also decide non-deterministically to discard any of these messages.
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Note that the behaviour of networkN is decidedly more complicated of the routing modelM. For example,
it is possible in N that the task of routing a message fails before being completed; as nodes mi, ni, i = 1,2 can
non-deterministically ignore messages received along channel c, a message can be lost at one of these nodes
before the routing activity is completed.

Despite having a more complicated behaviour, network N simulates the routing modelM. However this
simulation is far from being trivial. For example in M when a message is received from o1 it is broadcast
simultaneously to both nodes in the interface o1 and o2. But inN there is no node directly connected to both o1

and o2 and so this behaviour can not be replicated. Moreover all communication between the individual nodes
in N is probabilistic, so that the multi-cast which simulates this broadcast is only achieved in the probabilistic

limit.
We show thatM Cs N . From Theorem 7.2.3 it will follow that thatM Csim N , and therefore by Soundness,

Theorem 7.2.1 we will haveMvmay N .
In order to show thatM Cs N , we have to exhibit a simulation between them; this is facilitated by introduc-

ing some suitable notation. We define the system term
Nm1 = m2~Pm� |

∏4
i=1 ni~Pi�. That is, Nm1 is the term obtained by removing from N the code from node

m1. Similar definitions apply for each node in nodes(N). For any message v, letN1
v = ΓN Bm1~c!〈v〉 .Pm� |Nm1 ,

N2
v = ΓN Bm2~c!〈v〉 .Pm� |Nm2 .

Now we show that the relation

S = {(M,N)}∪ {(M′v,N1
v ), (M′v,N2

v ) | v ∈ V}

satisfies the requirements of Definition 7.2.2.
Let us first look at the pair (M,N). Recall that networkM has only four possible actions (up to the choice

of a message v):

• M
d.o1?v
−→ M, where d , c. We need to match this action with a derivation of the form N

d.o1?v
=⇒ Θ for some

Θ such that (M,Θ) ∈S. It is not difficult to note that N
d.o1?v
−→ N , as none of the nodes m1 and m2 (which

are the only one which can detect messages broadcast from external nodes) is waiting to receive a value
on channel d. By Definition 6.1.2 we have (M,N) ∈S.

• M
d.o2?v
−→ M, where d , c. This case is analogous to the one above

• M
c.o1?v
−→ M′v. In this case it is easy to show that N

c.o1?v
−→ N1

v , and (M′v,N1
v ) ∈S.

• M
c.o2?v
−→ M′v. As above, one can check that N

c.o1?v
−→ N2

v , and (M′v,N2
v ) ∈ S.

It remains to check the pairs of the form (M′v,N1
v ) and (M′v,N2

v ). We only supply the details for the former
case, as the latter one is analogous.

• M′v
d.o1?v
−→ M′v, where d is an arbitrary channel, including c. Note that in N1

v the node m1 is not waiting to

receive a message along any channel. That is, we have N1
v

d.o1?v
−→ N1

v , and (M1
v ,N

1
v ) ∈S

• M′v
d.o2?v
−→ M′v, where d is an arbitrary channel, included c. If d , c, then this case is similar to the above

one. If d = c, note that node m2 is waiting to receive a message along channel c. However, we already
remarked that node m2 can non-deterministically choose to ignore messages broadcast along channel c,

so that it is easy to derive N1
v

c.o2?v
−→ N1

v . Now it suffices to note that (M1
v ,N

1
v ) ∈ S.

• M′v
c!vB{o1,o2}
−→ M. This is the most interesting case. In fact, it is not possible to match the strong extensional

output performed byM′v directly. Rather, we exhibit a weak derivation of the formN1
v

c!vB{o1,o2}
=⇒ N . This

is obtained by exploiting the non-standard definition of weak extensional outputs, given in Definition
7.1.2(3). Specifically, we show that that there exist ∆1 and ∆2 such that

N1
v

c!vB{o1}
−→ ∆1

τ
=⇒∆2

τ
−→N2

v
c!vB{o2}
−→ N . (8.2)
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At this point, since (M,N) ∈S the proof is finished.

In order to provide the sequence of derivations (8.2) above, we use

∆1 =
1
2
·ΓN Bn1~c3!〈v〉 .P1� |Nn1 +

1
2
·ΓN Bn1~c4!〈v〉 .P1� |Nn1 ,

∆2 = ΓN Bn2~c!〈v〉 .P2� |Nn2

The transitions N1
v

c!vB{o1}
−→ ∆1, ∆2

τ
−→N2

v and N2
v

c!vB{o2}
−→ N are easy to derive. In the latter, to obtain

the pointed distribution N as the result of the transition, we exploited the ability of node n2 to ignore
messages received along channel c. The only difficulty lies in exhibiting the hyper-derivation ∆1

τ
=⇒∆2.

First, note that each network in the support of ∆1 can perform a τ-action. Specifically, we have ΓN B

n1~c3!〈v〉 .P1� |Nn1

τ
−→ΓN B∆3, where

∆3 =
1
2
·ΓN Bn3~c1!〈v〉 .P3� |Nn3 +

1
2
·ΓN Bn1~c2!〈v〉 .P3� |Nn3

and ΓN Bn1~c4!〈v〉 .P1� |Nn1

τ
−→ΓN B∆4, where

∆4 =
1
2

ΓN Bn4~c1!〈v〉 .P4� |Nn4 +
1
2

ΓN Bn4~c2!〈v〉 .P4� |Nn4 .

The last two derivations ensure that ∆1
τ
−→ 1

2 ·∆3 + 1
2 ·∆4. In a similar way, we can derive the following

τ transitions for ∆3 and ∆4:

1. ∆3
τ
−→ 1

2 ·∆1 + 1
2 ·∆2,

2. ∆4
τ
−→ 1

2 ·∆1 + 1
2 ·∆2.

Putting together these derivations, we obtain the hyper-derivation

∆1
τ
−→ 1

2 ·∆3 + 1
2 ·∆4 + ε

1
2 ·∆3 + 1

2 ·∆4
τ
−→ 1

2 ·∆1 + 1
2 ·∆2

1
2 ·∆1

τ
−→ 1

4 ·∆3 + 1
4 ·∆4 + ε

1
4 ·∆3 + 1

4 ·∆4
τ
−→ 1

4 ·∆1 + 1
4 ·∆2

...
...

...
1
2n ·∆1

τ
−→ 1

2n+1 ·∆3 + 1
2n+1 ·∆4 + ε

1
2n+1 ·∆3 + 1

2n+1 ·∆4
τ
−→ 1

2n+1 ·∆1 + 1
2n+1 ·∆2

where we recall that ε is the empty sub-distribution. Thus we have ∆1
τ

=⇒
∑∞

i=1
1
2i ·∆2, which is exactly

∆2. This concludes the proof that N1
v

c!vB{o1,o2}
=⇒ N .

8.1.3 Implementation Using Paramaterised Networks

In this Section we provide another example of network L which implements the routing modelM. In this case
rather than a single instance of an implementation, we outline a set of properties of networks, and show that
any network satisfying these properties implements the routing modelM. The code for the various nodes will
be fixed and so the properties all concern the connectivity allowed between them.

Formally, we split L in two sub-networks, L′ and C, such that L = L′ ‖> C. Network L′ is completely
defined, and its representation is given in Figure 8.4. Here the process Pm is the same used for nodes m1, m2 in
networkN , defined in Section 8.1.2. In contrast, network C is specified only in terms of a list properties which
we assume it satisfies. These are as follows.
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L′ ≡ m1~Pm� |m2~Pm�

m1o1 n1 n2 m2 o2

Figure 8.4: The network L′ = Γ′L BL′

1. n1,n2 ∈ nodes(ΓCBC). For the sake of simplicity, we also assume that nodes(ΓCBC) = (ΓC)V = {n1, · · · ,nk}

for some k > 2. Note that if we assume k = 2, then the next constraint will force the connectivity graph ΓC

to have a connection between n1,n2. However, the same constraints specifically allow such a connection
not to be included in ΓC .

2. The connectivity graph ΓC contains a single connected component. Further, we assume that ΓC ` n1= n2.

3. Every node ni, i = 1, · · · ,k is associated with a channel ci and a probability distribution Λi : {1, · · · ,k} →
[0,1]. The latter are defined so that dΛie = { j | ΓC ` ni↔ n j}, for any i = 1, · · · ,k.

4. C =
∏

i∈I ni~Pi�, where

Pi = c?(x) .

 k⊕
j=1

Λi( j) · c j!〈x〉 .Pi

+ c?(x) .Pi

+ ci?(x) .

 k⊕
j=1

Λi( j) · c j!〈x〉 .Pi

+ ci?(x) .c!〈x〉 .Pn, i = 1,2

Pi = ci?(x) .(
k⊕

j=1

Λi( j) · c j!〈x〉 .Pi), i > 2

Here the construct
⊕

i∈I pi ·Pi is interpreted as the probability distribution P(
⊕

i∈I pi ·Pi) =
∑

i∈I pi ·P(Pi),
and is defined only whenever

∑
i∈I pi = 1.

Let us comment on these requirements. Requirement (2) is needed to ensure that, in L′ ‖> C, inputs received
by node m1 from node o1 can be routed to the external node o2, and vice-versa. The constraint that ΓC ` n1= n2

is needed to ensure that whenever node n1 receives a message along channel c, then it has been originally
broadcast by the external node o1.

For requirement (3), note that only node ni can listen to a message broadcast along channel ci. As we
already explained in Section 8.1.2, this allows a node ni to select one of its neighbour n j, j = 1, · · · ,k, as the
next hop in a routing path by simply forwarding a message along channel ci. This choice, by node ni uses the
probability distribution ∆i. Intuitively, the value Λi( j) corresponds to the probability for node ni to select n j as
the next hop in a routing path.

Finally, requirement (4) simply defines the structure of the system term C. Note that, with these require-
ments, the network C is determined completely by the connectivity graph ΓC and by the set of probability
distributions {Λi : 1 ≤ i ≤ k}.

Γ′C BC′

n1 n3 n2

Figure 8.5: A network C′
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Remark 8.1.1. We require that dΛie = { j : ΓC ` ni↔ n j}, that is every neighbour of node ni has some non-zero

probability of being selected as the next hop. This is needed to ensure that inputs received from node o1 in

L′ ‖> C can be routed until they eventually reach node the external node o2, and vice-versa.

In fact, suppose we drop the requirement above from those defined for network C; consider the network

C′ of Figure 8.5. Here we assume that the system term C′ is defined according to Requirement (4) above and

by letting Λ1 = 3, Λ3 = 1 and Λ2 = 3. It is easy to note that network C′ satisfies the constraints listed above.

However, notice that in network L′ ‖> C′, when an input is fired from node o1, it cannot flow to the external

node o2. This is because the message will never reach node n2, as node n3 always selects n1 as the next hop in

a routing path.

Thus L′ ‖> C′ can not be an implementation of the routing modelM. �

Γ′N BN′

n1

n3

n4

n2

Figure 8.6: A network N ′

Remark 8.1.2. The networkN , defined in Section 8.1.2, can be obtained as the network L′ ‖>N ′, whereN ′ is

defined in Figure 8.6, by letting

Λi =
1
2
·3 +

1
2
·4, i = 1,2

Λi =
1
2
·1 +

1
2
·2, i = 3,4.

It is easy to note thatN ′ satisfies the constraints required by the network C, so that it is actually an instantiation

of the paramaterised network L we are considering. Indeed many similar instances can be generated by

changing the probabilities used in the code in (8.1) of Section 8.1.2 to arbitrary non-zero values. �

Now we show that the specification for routingM and any network L satisfying the above constraints are
simulation related. For the sake of clarity let Lm1 = m2~Pm�|

∏k
i=1 ni~Pi�. That is, Lm1 is the system term

obtained by deleting node m1 from L. Similar definitions apply for every node in nodes(L).

Let L1
v = ΓL Bm2~c!〈v〉 .Pm�|Lm1 , L2

v = ΓL Bm2~c!〈v〉 .Pm�|Lm2 . We show that the relation

S = {(M,L)}∪ {(M′v,L1
v) | v ∈ Val}∪ {(M′v,L2

v) | v ∈ Val}

is a simple simulation.

Let us first look at the pair (M,L); recall that networkM has only four possible actions, for a given message
v.

• M
d.o1?v
−→ M, where d , c. We need to match this action with a derivation of the form L

d.o1?v
=⇒ Θ for some

Θ such that (M,Θ) ∈S. It is not difficult to note that L
d.o1?v
−→ L, as none of the nodes m1 and m2 (which

are the only one which can detect messages broadcast from external nodes) is waiting to receive a value
on channel d. Thus we have (M,L) ∈S
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• M
d.o2?v
−→ M, where d , c. This case is analogous to the one above

• M
c.o1?v
−→ M′v. In this case it is easy to show that L

c.o1?v
−→ L1

v , and (M′v,L1
v) ∈S

• M
c.o1?v
−→ M′v. Again this is straightforward.

It remains to check the pairs of the form {(M′v,L
1
v)} and {(M′v,L

2
v)}. We only supply the details for the

former case, as the latter is analogous.

• M′v
d.o1?v
−→ M′v, where d is an arbitrary channel, including c. Note that, in L1

v , node m1 is not waiting to

receive a message along any channel. That is, we have L1
v

d.o1?v
−→ L1

v , and (M1
v ,L

1
v) ∈S

• M′v
d.o2?v
−→ M′v, where d is an arbitrary channel, including c. If d , c, then this case is similar to the above

one. However, if d = c, note that node m2 is waiting to receive a message along channel c. We already
remarked that node m2 can non-deterministically choose to ignore messages broadcast along channel c,

so that it is easy to derive L1
v

c.o2?v
−→ L1

v . Now it suffices to note that (M1
v ,L

1
v) ∈ S

• M′v
c!vB{o1,o2}
−→ M. This is the most interesting case. Here we exhibit a weak derivation of the form

L1
v

c!vB{o1,o2}
=⇒ L. This is obtained by exploiting the non-standard definition of weak extensional outputs,

given in Definition 7.1.2(3). Specifically, we show that that there exists a distribution ∆1 such that

L1
v

c!vB{o1}
−→ ∆1

τ
=⇒L2

v
c!vB{o2}
−→ L. (8.3)

here we have that

∆1 =

k∑
j=1

Λi( j) ·ΓL Bni~c j!〈v〉 .Pi� |Lni

The result will follow because (M,L) ∈S.

The only difficult derivation to prove in Equation 8.3 is the hyper-derivation ∆1
τ

=⇒L2
v . All the other cases,

in fact, are analogous to those analysed in Section 8.1.2.
Here the main idea is to reduce the network, in which the code at nodes ni,mi, where i = 1,2, is non-

deterministic, to a deterministic one, in which the computation stops when the value v being routed is delivered
at node m2. For deterministic systems, in fact, we can rely on the useful result stated below.

Lemma 8.1.3. Let 〈S ,Act, τ,ω〉 be a deterministic pLTS, that is whenever ∆
τ
−→∆′ and ∆

τ
−→∆′′ it holds that

∆′ = ∆′′. Then, whenever ∆
τ
−→∆′ and ∆ =⇒� Θ it follows that ∆′ =⇒� Θ.

The resolution of our network to a deterministic one is very easy to define. Let P′2 = c2?(x) .c!〈v〉 .0, P′m =

c?(x) .0; the network (Lv
2)′ is defined by replacing, in any of the states of the pLTS generated by L, the code

at nodes ni, i = 1,2 with P′2 and the code at nodes mi, i = 1,2 with P′m. That is, we establish that once that a
message is received at node n2, it will broadcast to node m2, after which the computation of the network stops.
This transformation can be applied to the network distribution ∆1 defined above, leading to another network
distribution ∆′1.

It is trivial to note that if we prove that ∆′1 =⇒ (L2
v)′, then we also have that ∆1 =⇒L2

v . This is because
∆′1, (L

2
v)′ have been defined by removing the non-deterministic choices from ∆1,L

2
v respectively, and by im-

posing that the computation stops once a message is received at the node m2.
In practice, we show that ∆′1 =⇒� (L2

v)′. In the following, given a node m ∈ nodes(L) we use L′m for the
system term obtained from Lm by resolving the non-deterministic choices as described above, and by requiring
that nodes n2 and m2 do not perform any activity after n2 has broadcast a value along channel c. Further, we let

∆′i =

k∑
j=1

Λi( j) ·ΓL Bni~c j!〈v〉 .Pi� |L′ni , if i > 2

∆′2 = ΓL Bn2~c!〈v〉 .0� |L′n2
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be probability distributions. We prove that, for any i = 1, · · · ,k, we have the extreme derivative ∆′i =⇒� (L2
v)′;

to this end, we show that

• ∆′2 =⇒� (L2
v)′ and

• For any two indexes i, j are two nodes such that ΓL ` ni↔ n j, if ∆′i =⇒� (L2
v)′ then ∆′j =⇒� (L2

v)′.

Then it remains to note that the connectivity graph ΓL has a single connected component to infer that ∆′i =⇒�

(L2
v)′ for any i ranging over 1, · · · ,k.

The proof that ∆′2 =⇒� (L2
v)′ is straightforward. In fact, we have that ∆′2 = ΓL Bn2~c!〈v〉 .0� |L′n2

τ
−→ (L2

v)′’
since no node can perform a transition in (L2

v)′ (recall that we changed the code at nodes m2 so that, once it has
received the value broadcast from node n2 the network deadlocks), this transition can be easily transformed in
an extreme derivation.

For the second statement, consider now a distribution ∆′i , where i = 1, · · · ,k. This distribution in determinis-
tic, and therefore it has a unique τ-transition. It is not difficult to show that, for i , 2, then ∆′i

τ
−→

∑k
i=1 Λi( j) ·∆′j,

where Λi( j) > 0 if and only if ΓL ` ni↔ n j. This is because, any state based network (L j
i )′ = ΓLBni~c j!〈v〉 .Pi� |

L′ni
has the unique transition (L j

i )′
τ
−→∆′j.

Let then j , 2, and suppose that ΓL ` ni ↔ n j for some index i (possibly equal to 2). Also, suppose that
∆′i =⇒� (L2

v)′. We have already proved that ∆′i
τ
−→ p ·∆′j + (1− p) ·Θ for some distribution Θ and p ∈ [0,1] such

that p> 0. By Lemma 8.1.3 it follows that (p ·∆′j + (1− p) ·Θ) =⇒� (L2
v)′; since p> 0 this leads to ∆′j =⇒� (L2

v)′,
which is exactly what we wanted to prove.

Then, as we already observed, the assumption that the graph ΓL has a single connected component allows
us to infer that ∆′i =⇒� (L2

v)′ for any i = 1, · · · ,k. In particular, ∆′1 =⇒� (L2
v)′. We have also remarked that this

extreme derivative corresponds to ∆1 =⇒L2
v (recall that these distributions refer to the network in which the

nodes n2 and m2 have non-deterministic behaviour), which is exactly what we wanted to prove.

8.2 Probabilistic Connection-less Routing

In this Section we propose a probabilistic implementation for the connection-less routing modelMk, defined
in Section 5.2.2 at Page 106.

Specifically, we consider a parametrised network whose internal nodes can behave probabilistically; the
main idea is that, at any given time, the next hop in a routing path is chosen probabilistically. In practice,
this implementation is similar to the one proposed in Section 5.2.3. The only differences between such an
implementation and the one we proposed are listed below:

• Node n1 can now detect values along channel c1. When this happens, it stores the received value in its
local buffer, represented as a multiset M ,

• At any given time, a node can decide to broadcast one of the values in its buffer to one of its neighbour;
recall that the neighbour to which the value will be broadcast is chosen by a node by broadcasting the
value along a channel whose transmission can be detected by the intended next hop in a routing path.
The node n selects the next node in a routing path probabilistically among all the neighbour of node n.
This is in contrast with the implementation proposed in Section 5.2.3, where a node could only select the
next hop in a routing path among the nodes which were closer to the destination node o,

• We drop some of the constraints we impose on the network topology; specifically, we just require that
there is a path from the input node i to the input node o in the connectivity graph.

Formally, our probabilistic (parametrised) implementationNk = ΓN BNk for a routing modelMk is defined
as follows:

• nodes(Nk) = {n1, · · · ,n j} for some index j ≥ 2
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• Input(Nk) = {i},Output(Nk) = {o}; further, we assume that whenever ΓN ` i→ nh for the only index h = 1.
Similarly, if ΓN ` nh→ o for the only index h = 2

• ΓN ` n19 n2

• For any node in n ∈ nodes(Nk) there exists a directed path from the internal node n to the output node o;
further, for such nodes we let length(n,ΓN) be the length of the minimal path between the node n and the
output node o and next(h,ΓN) = {h′ | ΓN ` nh→ nh′ and length(nh′ ,ΓN) = length(nh,ΓN)−1}

• For any node h = 2, · · · , j it holds length(nh,ΓN) ≤ length(n1,ΓN),

• For any index h = 1, · · · , j we assume a probability distribution Λ(h) : {1, · · · , j} → [0,1] such that h′ ∈

dΛ(h)e if and only if ΓN ` nh→ nh′

• For any index h = 2, · · · , j, we assume the existence of a channel ch ∈ Ch, different from the channel c

used in the routing modelMk

• Let h, l be two indexes ranging over 3, · · · , j and 0, · · · ,k,respectively; further, let M be a finite multiset
of values. We make use of the following process definitions

Q2
M ⇐ c2?(x) .Q2

(M∪{|x|}) +

∑
v∈M

c!〈v〉 .Q2
(M\{|x|})


Qh

M ⇐
⊕

h′:ΓN`nh→n′h

Λh(h′) ·

(ch?(x) .Qh
(M∪{|x|})) +

∑
v∈M

ch′ !〈v〉 .Qh
(M\{|v|})




R0
M ⇐

⊕
h:ΓN`n1→nh

l

(c1?(x) .R0
(M∪{|x|})) +

∑
v∈M

ch!〈v〉 .R0
(M\{|v|})




Rl+1
M ⇐

⊕
h:ΓN`n1→nh

[(c?(x) .Rl
(M∪{|x|})) + (c1?(x) .Rl

(M∪{|x|})) +

+

∑
v∈M

ch!〈v〉 .Rl+1
(M\{|v|})

]
to define the system term Nk as

Nk = n1~Rk
∅
� |

j∏
h=2

nh~Qh
∅
�

Remark 8.2.1. Note that we used an abuse of notation in the definition of the network ΓN BNk; in fact, recall
that process definitions must be state-based networks; however, the process definitions Qh

M , h , 2 and Rl
M ,

l ≥ 0 violate this constraint.
In practice, we can always rewrite a process definition of the form P ⇐

⊕
i∈I pi · S i, by introducing a

collection of process definitions Ai⇐ {
⊕

i∈I pi ·Ai/P}S i; a system term of the form n~P� can then be rewritten
as n~

⊕
i∈I pi ·Ai�.

As it is not difficult to note, the behaviour of the network ΓN BN resembles that of the implementation
provided for sequential routing; however, multisets are used in internal nodes to equip them with a buffer.
As we already did for the sequential routing model and implementation, we can exhibit a (simple) simulation
between the connectionless routing model and the network Nk = ΓN BNk.

Theorem 8.2.2. For any k ≥ 0,Mk C
s Nk. As a consequence,Mk vmay Nk.
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Chapter 9

A Timed Calculus for Collisions

In this Chapter we study the behavioural semantics of a simple Calculus of Collision-prone Communicating
Processes (CCCP); the contents included in this Chapter and in Chapter 10 are an extension of the topics
covered in [10], which at the present date is still in preparation.

The calculus we present is designed around the following concepts:

• Value-passing broadcast (channels are not passed around)

• Time-consuming communication; each value has its own amount of time which is needed for it to be sent
along a channel.

• Communication collision; if more values are being transmitted over a channel, then receivers will not be
able to receive any of them correctly.

• Perfect receivers. A receiver will start receiving every time it detects the channel it is listening to is
busy (that is, some station is sending some value along that channel). However, a value can be received
correctly by a receiver only if the two entities involved in the communication synchronised are at the
beginning of the transmission; that is, the sender and the receiver start respectively to send and to receive
a value together.

• Flat communication topology

In this Chapter we cover the following topics:

• A syntax for terms of CCCP, together with some illumination examples; this topic is illustrated in Section
9.1

• A reduction semantics to describe the dynamics of systems, presented in Section 9.2

• Standard time properties, listed in Section 9.3 :

– time determinism

– maximal progress

• A LTS semantics, which is introduced in Section 9.4

• A comparison between the reduction semantics and the LTS semantics, Section 9.5

• A brief discussion of related work, in Section 9.6

171
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Processes:
W ::= P inactive process∣∣∣ c[x].P active receiver∣∣∣ W1|W2 parallel composition∣∣∣ νc : (n,v).W channel restriction

P,Q ::= nil termination∣∣∣ c !〈u〉.P broadcast∣∣∣ bc?(x).PcQ receiver with timeout∣∣∣ τ.P internal activity∣∣∣ P + Q choice∣∣∣ σ.P delay∣∣∣ [b]P,Q matching∣∣∣ 〈c〉P,Q exposure check∣∣∣ X process variable∣∣∣ fix X.P recursion

Channel Environments: Γ : C→ (N∪{∞})×V+

Configurations: ΓBW

Table 9.1: The Syntax

9.1 The calculus

In Table 9.1, we define the syntax of CCCP. We use letters c,d, . . . for channel names, belonging to the set Ch,
x,y,z for variables, u for values, and v for closed values, i.e. values that do not contain variables; we write Val

to denote the set of all possible closed values. Closed values actually represent messages that are transmitted
as TCP/IP packets. We extend the set of possible closed values with two special values x and err denoting
unknown and corrupted messages, respectively. The former value can not be used in syntax of our processes
but it will be useful in the semantics. Thus, we let Val+ = Val∪{x,err} and we use the letter w to range over
Val+. We write u to denote a tuple u1, . . . ,uk of values.

We associate a strictly positive integer δv to each closed value v, denoting the length of time slots required
for such a value to be transmitted along a channel. Upon successful reception the variable x of P is instantiated
with the transmitted message.

In our calculus, we distinguish between non-active and active processes. c[x].P is a process which is
currently receiving a value along a channel c; its computation cannot evolve until the transmission along such
a channel has terminated. The information on the length of a transmission and of the value which is being
received are stored in different data structures called channel environments and discussed later in this Section.

The symbol nil denotes the skip process. The construct σ.P models a sleeping process which after one time
interval evolves into P. We write σn.P for a process sleeping for the next n time intervals. The sender process
c !〈v〉.P allows to broadcast the value v along channel c; once the transmission starts the process will be busy
in transmitting v for the next δv instants time, evolving into the process σδv .P. A communication starts even if
there are no listeners: broadcasting is a non-blocking action. Actually, broadcasting is always enabled and it
can not be delayed: a broadcasting summand c !〈v〉.P can not be delayed to the next time interval (as we will
see in Section 9.3, this property is called maximal progress).

The process bc?(x).PcQ denotes a receiving process subject to timeout; if a value is detected as being
transmitted along channel c the process engages in the communication and starts receiving, in which case it
will evolve in the active receiver process c[x].P, otherwise it timeouts and evolves in process Q after an instant
of time has passed.

Process [b]P,Q is the standard “if then else” construct: here b is a boolean expression from some decid-
able Theory; we assume an evaluation function ~·� which maps boolean statements in elements of the set
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{true, false}.

The calculus is equipped with a second matching construct, 〈c〉P,Q. This process checks if there is some
process transmitting along channel c, in which case it waits a time slot before evolving in P; otherwise, it waits
an instant of time, then it evolves in Q. We always require that after an exposure check a time slot needs to
pass before the computation of a process can continue; this is because in practice exposure check requires a
station trying to detect a transmission over a channel; since communication in wireless systems is half-duplex,
we want to prevent activities in our calculus such as broadcasting a value in the same time slot in which an
exposure check has been performed.

The process fix X.P denotes guarded recursion. Finally, we write W1|W2 to denote standard parallel compo-
sition, and νc : (n,v).W for process W in which channel c is restricted. The restriction operator is parametrised
in a natural number n and a value v; intuitively, the latter correspond to the value being sent along the restricted
channel, while the former to the amount of times instants needed to finish the transmission of such a value.

Remark 9.1.1. The recursion construct allows us to define receivers which are not subject to timeout, specifi-
cally through the construct fix X.bc?(x).PcX; with an abuse of notation, the above term is denoted as c?(x).P.

In both terms c?(x).P and c[x].P the variable x is bound in P. Similarly, in process fix X.P the process
variable X is bound in P, while channel name c is bound in νc : (n,v).W. This gives rise to the standard notions
of free (process) variables and bound (process) variables, as well as free channel names and bound channel
names. The set of free channel names in a term W is denoted by fn(W). Also, we can introduce the standard
notion of α-conversion, and we identify processes and configurations up to α-conversion. A term is said to be
closed if it does not contain free (process) variables. We always work with closed configurations; the absence
of free variables is trivially maintained at run-time.

We write {w/x}W for the substitution of the variable x with the value w in the process W. Similarly, we write
{P/X}W for the substitution of the process variable X with the process P in W.

A channel environment Γ is a total function from the set of channel names C to the Cartesian product of
the natural numbers N and the set of closed values Val+. Intuitively, if Γ(c) = (k,w) then channel c is busy (or
exposed) for the next k intervals of time in transmitting w. If Γ(c) = (0,x) then channel c is free, i.e. no process
is currently transmitting. at c.

In the following we will need some definitions for channel environments. We say that Γ `t c : n if Γ(c) = (n,v)
for some values v ∈ Val+, and Γ `v c : v if Γ(c) = (n,v), for some element in N∞ =N∪∞. We also use Γ ` c : free
if Γ(c) = (0,x) and Γ ` c : exp if Γ(c) = (n,v) for some n > 0 and v ∈ Val+. The former notation means that
channel c is not exposed in Γ, while the latter is its negation. Finally, we write Γ ` c deliver v if Γ(c) = (1,v).
That is, the transmission of value v along channel c in environment Γ will end in the next time slot (unless some
other transmission along the same channel takes place before).

We also define some operations over channel environments; given an environment Γ, we define Γ	1 as the
channel environment such that

(Γ	1)(c) =

(n−1,v) if Γ(c) = (n,v) and n ≥ 2

(0,x) otherwise

At least intuitively, (Γ	1) is the environment obtained from Γ after a time slot has passed.

Let c be a channel, w be a value and suppose that Γ `t c : n for some n ∈ N∞; the environment updv
c(Γ) is

defined as Γ[c 7→ (n′,v′)], where

n′ = max {n, δv}

v′ =

w if n = 0

err otherwise

Informally speaking, updv
c(Γ) represents the environment obtained from Γ when a station broadcasts a value
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along channel c. If the channel is free, then it becomes busy transmitting value v for the next δv instants of
times. Otherwise, the channel will remain busy for as long as it requires to end both the current transmission
and the transmission of value v; further, since channel c is exposed to two different transmissions at the same
time, a collision has occurred, and the value that will be received by any station at the end of the transmission
is the error value err.

Definition 9.1.2. Structural congruence We introduce a structural congruence over CCCP, denoted by ≡; this
is defined as the smallest congruence relation which is a commutative monoid with respect to both parallel
composition and choice, and which satisfies the following equations:

• νc : (nc,vc).νd : (nd,vd).W ≡ νd : (nd,vd).νc : (nc,vc).W, provided c , d

• νc : (n1,v1).νc : (n2,v2).W ≡ νc : (n2,v2).W

• (νc : (n,v).W1)|W2 ≡ νc : (n,v).(W1|W2), provided c < fn(W2)

• [b]P,Q ≡ P if ~b� = true

• [b]P,Q ≡ Q if ~b� = false

• fix X..P ≡ {P/X}P

We write Γ1BW1 ≡ Γ2BW2, if Γ1 = Γ2 and W1 ≡W2. �

In the sequel we use a number of notational conventions. We often use the terms l, l′ to denote lists of
elements in Ch×N∞×Val+; such elements are represented in lists using the notation c : (n,v) already introduced
for restriction, while the operator :: denotes list concatenation. If l = c1 : (n1,v1):: · · · ::ck : (nk,vk), we use
the shortcut νl.W to denote the term νc1 : (n1,v1).νc2 : (n2,v2). · · · .νck : (nk,vk).W. If the list l is empty, the
term νl.W coincides with W. Given a list of the form c1 : (n1,v1):: · · ·ck : (nk,vk), ch(l) is defined to be equal
to c1:: · · · ,ck, while Val(l) is defined to be the list (n1,v1):: · · · ::(nk,vk). Given an environment Γ and a list
l = c1 : (n1,v1):: · · · ::ck : (nk,vk), the channel environment Γ[l] is defined to be Γ[c1 7→ (n1,v1)] · · · [ck 7→ (nk,vk)].

We write c!〈v〉 for c !〈v〉.nil, τ for τ.nil and σδ for σδ.nil. When we do not need the exposure information of
a restricted channel, we also use the shortcut νc.W for νc : (n,v).W

The following predicates will be useful later. For any configuration W and channel c, the boolean predicate
rcv(W,c) is defined to be true if W ≡ νl.(W′|(bc?(x).PcQ + R)) and c does not appear in ch(l); otherwise the
predicate is false. In other words, the predicate rcv(W,c) is true if W contains a process which is waiting to detect
a message along the unrestricted channel c. The predicate snd(W,c) returns true if W ≡ νl.(W′|c !〈v〉.P + Q),
provided that c does not appear in Ch(l). That is, snd(W,c) is true whenever W contains a process which is able
to broadcast some value along the unrestricted channel c. false otherwise.

in the following we will only focus with a subset of configurations, which we call well-formed; these are
those configurations ΓBW in which the information contained in Γ is consistent with the structure of process
W.

Definition 9.1.3. [Well-formedness] A configuration ΓBW is said to be well-formed if whenever
W ≡ νl.(W′|c[x].P) then Γ[l] ` c : exp. �

A well-formed configuration is one in which an active receiver along a (either restricted or unrestricted)
channel is allowed only whenever such a channel is exposed. Henceforth we will always assume that a config-
uration is well-formed, unless otherwise stated.

9.2 Reduction Semantics

The dynamics of the calculus is given in terms of a reduction relation.
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(R-NOCOLL)

¬rcv(W,c) Γ ` c : free
ΓB

(
c !〈v〉.P + Q

∣∣∣ ∏ j∈J bc?(x).P jcQ j + R j
∣∣∣ W

)
_u updv

c(Γ)B
(
σδv .P

∣∣∣ ∏ j∈J c[x].P j
∣∣∣ W

)

(R-COLL)

Γ ` c : exp
ΓB c !〈v〉.P + Q

∣∣∣ W _u updv
c(Γ)Bσδv .P

∣∣∣ W

(R-LATEWAKEUP)

Γ ` c : exp
ΓB bc?(x).PcQ + R

∣∣∣ W _u ΓB c[x].{err/x}P
∣∣∣ W

(R-INTERNAL)

ΓBτ.P + Q
∣∣∣ W _u ΓBP

∣∣∣ W

(R-TIME)

∀ j∈J∀r∈R.Γ ` cr j : free ∀k ∈ K. (Γ `t ck : nk),nk > 1 ∀l ∈ L.Γ ` cl deliver wl

ΓB
( ∏

j∈J
∑

r∈R bcr j?(x).Pr jcQr j +
∑

s∈S σ.Ps j
∣∣∣ ∏k∈K ck[x].Pk

∣∣∣ ∏l∈L cl[x].Pl
)
_σ

_σ Γ	1B
( ∏

j∈J
∑

r∈R Qr j +
∑

s∈S Ps j
∣∣∣ ∏k∈K ck[x].Pk

∣∣∣ ∏
l∈L {

wl/x}Pl
)

(R-IF)

Γ ` c : exp
ΓB 〈c〉P,Q|W _u ΓBσ.P|W

(R-ELSE)

Γ ` c : f ree
ΓB 〈c〉P,Q|W _u ΓBσ.Q|W

(R-RSTRTMD)

Γ[c 7→ (n,v)]BW _σ Γ′BW′

ΓB νc : (n,v).W _σ Γ	1B νc : Γ′(c).W′

(R-RSTRUNTMD)

Γ[c 7→ (n,v)]BW _u Γ′BW′

ΓB νc : (n,v).W _u Γ′[c 7→ Γ(c)]B νc : Γ′(c).W′

(R-STRUCT)

ΓBW1 ≡ ΓBW2 ΓBW2 _x Γ′BW′2 Γ′BW′1 ≡ Γ′BW′2 _x∈ {_u,_σ}

ΓBW1 _x Γ′BW′1

Table 9.2: Reduction Semantics

Definition 9.2.1 (Reduction Semantics). The reduction semantics of CCCP, denoted _, is defined as _ = _u

∪_σ, where relations _u and _σ are the smallest binary relations over configurations satisfying the rules in
Table 9.2.

Intuitively speaking, _u denotes untimed reduction, while _σ denotes timed reduction, which corresponds
to the passage of time.

Remark 9.2.2. We could have defined a single reduction relation for processes; however, having two differ-
ent forms of reduction, one associated with the passage of time and the other associated with instantaneous
activities, comes handful when discussing properties of processes which concern the passage of time.

We use _∗
u to denote the reflexive transitive closure of _u, while _∗

σ is defined to be equivalent to
_∗

u_σ_∗
u. Finally, _∗ denotes the reflexive transitive closure of _.

Let us discuss the rules of Table 9.2. Rules (R-COLL) and (R-NOCOLL) describe how systems evolve when
broadcasting a message on a channel c, with and without collisions, respectively. In both cases the station
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which performs the broadcast remains idle for the next δv instants of time, for during such a time interval it will
be busy transmitting the value v, and the channel environment is updated accordingly. If the channel c is free in
Γ (which case is described by Rule (R-COLL)) then every process which is waiting to detect a value along such
a channel begins the reception, evolving into an active receiver. All the other components will be unaffected
by the broadcast performed along channel c. In the case that Γ ` c : exp none of the parallel component, apart
from the one performing the broadcast, is affected.

Rule (R-RCVLATE) models a receiver that starts receiving when the channel is already in use. In this case
such a receiver starts the reception; however, since it missed part of the transmission, it is doomed to receive
the error value err. Rule (R-INTERNAL) models internal actions within nodes.

Rule (R-TIME) models the passage of time; this rule establishes that

• active receivers of values not being delivered will continue receive a value after time has passed

• active receivers along a channel which delivers a value v will end receiving such a value and will perform
the required substitutions

• all the other components, which are waiting for time to pass before continuing their computation, can
now continue performing some activities.

Rules (R-RSTRUNTMD) and (R-RSTRTMD) model the behaviour of restricted configurations. Here, the
idea is that of observing the behaviour of a configuration ΓBW, where Γ(c) = (n,v), to infer the behaviour
of a configuration Γ′ B νc : (n,v).W, provided that Γ(d) = Γ′(d) whenever d , c. The rules also establish that
untimed reductions only influence the exposure information of the restricted channel, while the value of c in
the channel environment Γ′ is not affected. Conversely, for timed reductions, both the exposure information of
the restricted channel and of the exposure channel Γ′ have to be updated.

As usual in process calculi, the reduction semantics relies on structural congruence, ≡, defined above.
Basically, ≡ brings the participants of a potential interaction into contiguous positions.

Note that we can model processes for which time cannot pass; one example is given by fix X.τ.P, which
can only perform an untimed reduction (this can be proved using rules (R-INTERNAL) and (R-STRUCT)), after
which it evolves in itself.

Definition 9.2.3. [Well-timedness] We say that a process ΓBW is well-timed if whenever ΓBW _∗ Γ′ BW′

there exists a configuration Γ′′BW′′ such that Γ′BW′ _∗
σ Γ′′BW′′. �

Before discussing various properties enjoyed by our calculus, let us prove that well-formedness is preserved
at run-time.

Theorem 9.2.4. [Well-formedness preservation] Let ΓBW be a well-formed configuration. If ΓBW _ Γ′BW′

then Γ′BW′ is well-formed as well.

Proof. The proof is performed by structural induction on the proof of the reduction ΓBW _ Γ′ BW′. See
Appendix C, Section C.1, Page 237, for an outline of the proof. �

9.3 Time Properties

In this Section we prove some desirable properties which are enjoyed by processes of our calculus.
Theorem 9.3.1 formalises the deterministic nature of time passing. Informally speaking, we do not allow

the passage of time to resolve non-deterministic choices.

Theorem 9.3.1 (Time Determinism). Let ΓBW be a well-formed configuration. If ΓBW _σ Γ1 BW1 and
ΓBW _σ Γ2BW2 then Γ1BW1 ≡ Γ2BW2.

Proof. Straightforward by the definition of rules (Time) and (RstrTmd). For a detailed outline see the Ap-
pendix, Page 237 �
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In [36, 55], the maximal progress property says that processes communicate as soon as a possibility of
communication arises. However, unlike [36, 55], in our calculus message transmission requires a positive
amount of time. So, we generalise the property saying that transmissions cannot be delayed.

Theorem 9.3.2 (Maximal Progress). Let ΓBW be a well-formed configuration. If there are Γ1 and W1 such
that ΓBW _u Γ1BW1, then ΓBW _σ Γ′BW′ for no configuration Γ′BW′.

Proof. An outline of the proof is included in the Appendix, Page 238 �

Remark 9.3.3. Although we have maximal progress, it is possible to explicitly model processes in which a
broadcast can be delayed. For example, in process

ΓBτ.c !〈v〉.nil +τ.σ.c !〈v〉.nil

there are two possible choices, as a consequence of some internal activity:

• value v will be broadcast along channel c, or

• no value will be broadcast, yet no activity will be performed in the first time instant. However, after time
has passed, the broadcast of value v along channel c is fired.

In general, it is possible to delay a broadcast indefinitely; this is modelled by process

fix X.τ.c !〈v〉.nil +τ.σ.X

Finally, the exposure time of a channel can be decremented only by timed reductions; this property guar-
antees that communication along a channel is flushed with time. This is modelled in our calculus by requiring
that untimed reductions may only increment the exposure time of a channel. To this end, given two channel
environments Γ1,Γ2 such that for any channel c it holds that Γ1 `t n1, Γ2 `t n2 implies n1 ≤ n2, then we say that
Γ1 ≤ Γ2.

Proposition 9.3.4 (Exposure Consistency). Let ΓBW be a well-formed configuration. If ΓBW _u Γ′ BW′,
then for any channel c it holds Γ(c)1 ≤ Γ′(c)1.

Proof. The proof of this Proposition can be obtained by noting that for any channel environment Γ, channel
c and value v it holds Γ ≤ (updv

c(Γ)), then by performing a structural induction on the proof of the reduction
ΓBW _u Γ′BW′. �

9.4 Labelled transition Semantics

In this Section we present another transition semantics for CCCP terms, the labelled transition semantics; their
SOS rules are split in different tables, according to the kind of activity they model.

Table 9.3 contains the rules governing transmission. Rule (Snd) indicates that broadcasts are non-blocking;
they can happen at any time, in particular independently of the state of the network; the notation σδv represents
the time delay operator σ iterated δv times. So when the process c !〈v〉.P broadcasts it has to wait δv time
units before the residual P is activated. On the other hand reception of a message, by a time-guarded listener
bc?(x).PcQ, depends on the state of the network. If the channel c is free then rule (B-RCV) indicates that
reception can start; the listener evolves into the active receiver c[x].P. On the other hand if the channel is
already exposed then by (B-RCVFAIL) the transmission is ignored and the reception is doomed to fail.

If the code W can not receive on channel c, ¬rcv(P,c), then the transmission is also ignored. The remaining
two rules in Table 9.3 (B-SYNC) and (B-RCVPAR) serves to synchronise parallel stations on the same transmis-
sion [32].
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(B-SND)

ΓB c !〈v〉.P
c!v
−→updv

c(Γ)Bσδv .P

(B-RCV)

Γ ` c : free

ΓB bc?(x).PcQ
c?v
−→updv

c(Γ)B c[x].P

(B-RCVFAIL)

Γ ` c : exp

ΓBW
c?v
−→updv

c(Γ)BW

(B-RCVIGN)

¬rcv(W,c)

ΓBW
c?v
−→updv

c(Γ)BW

(B-SYNC)

ΓBW1
c!v
−→Γ′BW′1 ΓBW2

c?v
−→Γ′BW′2

ΓBW1|W2
c!v
−→Γ′BW′1|W

′
2

(B-RCVPAR)

ΓBW1
c?v
−→Γ′BW′1 ΓBW2

c?v
−→Γ′BW′2

ΓBW1|W2
c?v
−→Γ′BW′1|W

′
2

Table 9.3: Intensional semantics: transmission

(B-TIMENIL)

ΓBnil
σ
−→Γ	1Bnil

(B-SLEEP)

ΓBσ.P
σ
−→Γ	1BP

(B-ACTRCV)

Γ `t c : n, n > 1

ΓB c[x].P
σ
−→Γ	1B c[x].P

(B-ENDRCV)

Γ `t c : 1, Γ `v c = w

ΓB c[x].P
σ
−→Γ	1B {w/x}P

(B-SUMTIME)

ΓBP
σ
−→Γ′BP′ ΓBQ

σ
−→Γ′BQ′

ΓBP + Q
σ
−→Γ′BP′+ Q′

(B-TIMEOUT)

Γ ` c : free

ΓB bc?(x).PcQ
σ
−→Γ	1BQ

Table 9.4: Intensional semantics: timed transitions

The rules for the passage of time, ΓBW
σ
−→ Γ′ BW′, are given in Table 9.4 and are straightforward. In

the rules (B-ACTREC) and (B-ENDRCV) we see that the active receiver c[x].P continues to wait for the trans-
mitted value to make its way through the network; when the allocated transmission time elapses the value is
then delivered and the receiver evolves to {w/x}P. Rule (B-SUMTIME) establishes that the passage of time is
deterministic. Finally (B-TIMEOUT) implements the idea that bc?(x).PcQ is a time-guarded receptor; when
time passes it evolves into the alternative Q. However this only happens if the channel c is not exposed. What
happens if it is exposed is explained in the Table 9.5.

This is devoted to internal transitions ΓBW
τ
−→Γ′BW′. Intuitively the process bc?(x).PcQ is ready to start

receiving a value on channel c. However if c is already exposed in the network this means that a transmission
is already taking place. Since the process has therefore missed the start of the transmission it will therefore
receive an error value; this is the import of (B-RCVLATE). The remaining rules are straightforward; note that
we have defined our rule in a way such that the evaluation of exposure checks require a τ-action.

The final set of rules, in Table 9.6, are structural. In particular (B-RESI) and (B-RESV) show how restricted
channels are handled. Intuitively moves from the configuration ΓB νc : (n,v).W are inherited from the config-
uration Γ[c 7→ (n,v)]BW; here the network Γ[c 7→ (n,v)] is the same as Γ except that c has associated with it
(temporarily) the information (n,v). However if this move mentions the restricted channel c then the inherited
move is rendered as an internal action τ, (B-RESI). Moreover the information associated with the restricted
channel in the residual is updated.
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(B-RCVLATE)

Γ ` c : exp

ΓB bc?(x).PcQ
τ
−→ΓB c[x].{err/x}P

(B-TAU)

ΓBτ.P
τ
−→ΓBP

(B-EXPTHEN)

Γ ` c : exp

ΓB 〈c〉P,Q
τ
−→ΓBσ.P

(B-EXPELSE)

Γ ` c : free

ΓB 〈c〉P,Q
τ
−→ΓBσ.Q

Table 9.5: Intensional semantics: - internal activity

We end this Section by performing some sanity check on the intensional semantics.
The first properties we prove is that, in the labelled transition semantics, the update of channel environments

is consistent with the action of the transition which is performed.

Proposition 9.4.1. [Properties of Channel Environments] Let ΓBW be a well-formed configuration.

1. Whenever ΓBW
c!v
−→Γ′BW′, then Γ′ = updv

c(Γ),

2. whenever ΓBW
c?v
−→Γ′BW′, then Γ′ = updv

c(Γ),

3. whenever ΓBW
τ
−→Γ′BW′, then Γ′ = Γ,

4. whenever ΓBW
σ
−→Γ′BW′, then Γ′ = Γ	1.

Proof. All the statements above can be proved by rule induction. Statement (1) is needed to prove (3) when
dealing with the case of Rule (B-SND− RESTR). An outline of the proof of Proposition 9.4.1(3) is provided in
the Appendix, Page 238 �

Next we prove that input transitions are always enabled in configurations.

Lemma 9.4.2 (Receive enabled). Let ΓBW be a well-formed configuration. Then

1. ¬rcv(W,c) implies ΓBW
c?v
−→Γ′BW′ and W′ = W

2. Γ ` c : exp implies ΓBW
c?v
−→Γ′BW′ and W′ = W

3. rcv(W,c) and Γ ` c : free iff there is W′, W′ ,W, such that ΓBW
c?v
−→Γ′BW′, for any v.

Proof. By transition induction and by inspection of the rules, (B-RCV), (B-RCVFAIL) and (B-RCVPAR). �

9.5 Properties of the Calculus

Below we report a number of basic properties of our labelled transition semantics. The first part of this Section
is technical in its content, and may be skipped by the reader uninterested in details. Here we first prove some
basic results about how channel environments affects, and are affected, by the execution of some action. Then
we turn our attention to system terms in configurations, by analysing the structure we require from them to
perform a given transition.

Finally, we apply the results developed in this Section to prove the Harmony Theorem, which states that the
labelled transition semantics of CCCP is consistent with its reduction semantics .

An important property of channel environments is that only those channels which have free occurrences in
a system term may affect the behaviour of a configuration.

Proposition 9.5.1. whenever ΓBW
λ
−→Γ′BW′ with λ , σ, then for any c,n,v such that c < fn(W) and λ , c?v

it holds
Γ[c 7→ (n,v)]BW

λ
−→Γ′[c 7→ (n,v)]BW′
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(B-TAUPAR)

ΓBW1
τ
−→Γ′BW′1

ΓBW1|W2
τ
−→Γ′BW′1|W2

(B-TIMEPAR)

ΓBW1
σ
−→Γ′BW′1 ΓBW2

σ
−→Γ′BW′2

ΓBW1|W2
σ
−→Γ′BW′1|W

′
2

(B-SUMRCV)

ΓBP
c?v
−→Γ′BP′ rcv(P,c) Γ ` c : free

ΓBP + Q
c?v
−→Γ′BP′

(B-SUM)

ΓBP
λ
−→Γ′BP′ λ ∈ {τ,c!v}

ΓBP + Q
λ
−→Γ′BP′

(B-THEN)

~b� = true ΓBP
λ
−→Γ′BP′

ΓB [b]P,Q
λ
−→Γ′BP′

(B-ELSE)

~b� = false ΓBQ
λ
−→Γ′BQ′

ΓB [b]P,Q
λ
−→Γ′BP′

(B-REC)

{fix X.P/X}P
λ
−→W

ΓBfix X.P
λ
−→W

(B-RESI)

Γ[c 7→ (n,v)]BW
c!v
−→Γ′BW′

ΓB νc : (n,v).W
τ
−→Γ′[c 7→ Γ(c)]B νc : Γ′(c).W

(B-RESV)

Γ[c 7→ (n,v)]BW
λ
−→Γ′BW′, c < λ

ΓB νc : (n,v).W
λ
−→Γ′[c 7→ Γ(c)]B νc : ((n,v)).W

Table 9.6: Intensional semantics: - structural rules

Proof. By rule induction on the proof of the transition ΓBW
λ
−→Γ′ BW′; see the Appendix, Page 239, for an

outline. �

We also prove another property regarding channel environments, which will be needed later in the paper.
Given two channel environments Γ1,Γ2, we say that they are exposure consistent (denoted as Γ1 'exp Γ2) if
Γ1 ` c : free iff Γ2 ` c : free for any channel c.

Proposition 9.5.2. Let Γ1, Γ2 be channel environments such that Γ1 'exp Γ2. Let also W be a term such that

Γ1 BW is well-formed. Then, whenever Γ1 BW
λ
−→Γ1 BW′, λ , σ, there exists Γ′2 such that Γ′1 'exp Γ′2 and

Γ2BW
λ
−→Γ′2BW′.

Proof. By Rule induction, considering that the rules for non-timed actions only check whether a channel is
exposed or not. �

Next we focus on configurations in which a given channel is restricted. Here we show that it is possible
to infer the actions of such a configuration by looking at the configuration obtained by removing the channel
restriction, and in which the contents of the channel environments have been updated to be consistent with the
exposure information of the restricted channel.

Proposition 9.5.3. Suppose ΓBνc : (n,v).W
λ
−→Γ′BW′; then W′ = νc : (n′,v′).W1 for some n′,v′,W1 such that

1. if λ = τ then either

• Γ[c 7→ (n,v)]BW
τ
−→Γ′[c 7→ (n′,v′)]BW1, with (n′,v′) = (n,v) or

• Γ[c 7→ (n,v)]BW
c!
−→Γ′[c 7→ (n′,v′)]BW1, where

(n′,v′) = updv
c(Γ[c 7→ (n,v)])(c)
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2. if λ = d?v, with d , c, then Γ[c 7→ (n,v)]BW
d?v
−→Γ′[c 7→ (n′,v′)]BW1; further (n′,v′) = (n,v)

3. if λ = c?v then W1 = W and (n′,v′) = (n,v),

4. if λ = d!w then Γ[c 7→ (n,v)]BW
d!w
−→Γ′[c 7→ (n′,v′)]BW1; further (n′,v′) = (n,v)

5. if λ = σ then Γ[c 7→ (n,v)]BW
σ
−→Γ′[c 7→ (n′,v′)]BW1; here (n′,v′) = (n,v)	11.

Proof. By case analysis on the last rule applied in the proof of the transition ΓB νc : (n,v).W
λ
−→Γ′BW′. �

This Proposition can be easily extended to configurations in which multiple channels are restricted.

Corollary 9.5.4. Suppose ΓB νl.W
λ
−→Γ′BW′; then W′ = νl′.W1 for some l′,W1 such that

1. if λ = τ then either

• Γ[l]BW
τ
−→Γ′[l′]BW1, with l′ = l or

• Γ[c 7→ (n,v)]BW
c!
−→Γ′[l′]BW1, with c appearing in ch(l). Further, if l = l1::c : (n,v)::l2, and c does

not appear in ch(l2), then l′ = l1::c : (updv
c([c 7→ (n,v)])(c))::l2

2. if λ = d?v, and d does not appear in ch(l), then Γ[l]BW
d?v
−→Γ′[l′]BW1; further l′ = l	12

3. if λ = c?v then W1 = W, l′ = l

4. if λ = d!w for some d < ch(l), then Γ[l]BW
d!w
−→Γ′[l′]BW1; further l′ = l

5. if λ = σ then Γ[l]BW
σ
−→Γ′[l′]BW1; here l′ = l−1

Proof. By induction on the length of l, the inductive step being a simple application of Proposition 9.5.3. �

Despite being very technical, all the Propositions above are very useful when analysing what is the structure
of a configuration that can perform a given action. We give an example by showing that whenever a configu-
ration performs a an output action along a channel c, then it has a sending component of the form c !〈v〉.P + Q,
where c appears as a free name. Formally:

Proposition 9.5.5. Whenever ΓBW
c!
−→Γ′BW′, then

• if Γ(c)1 = 0, then ΓBW ≡ ΓB νl.(c !〈v〉.P + Q|W1) for some l,P,Q,W1,W′1 such that

1. c does not appear in ch(l)

2. ΓB νl.W1
c?v
−→Γ′B νl.W′1

3. Γ′BW′ ≡ Γ′B νl.(σδv .P|W′1).

• otherwise ΓBW ≡ΓBνl.(c !〈v〉.P+Q|W1) for some l,c,v,P,Q, and W1 such that Γ′BW′ ≡Γ′Bνl.(σδv .P|W1)
and c does not appear in Ch(l).

Proof. See the Appendix, Page 240. �

Similar propositions can be proved in an analogous way when dealing with input actions and internal
actions.

Proposition 9.5.6. Let ΓBW
c?v
−→Γ′ BW′. Then ΓBW ≡ νl.W1, Γ′ BW′ ≡ Γ′ B νl.W′1 for some l, W1, W′1 such

that

1. if c does not appear in ch(l) and Γ(c)1 = 0 then ΓBW1 ≡ ΓB νl.(Π j∈J(bc?(x).P jcQ j + R j)|W2) for some l,
W1, a finite index set J and collections of processes
{P j} j∈J , {Q j} j∈J , {R j} j∈J such that

1here, with an abuse of notation, the operation 	 has been restricted from channel environments to elements of the form (n,v)
2Here we made another abuse of notation, by extending the operation 	 to list of elements of the form (n,v); however, defining how

such an operator affects such a list is straightforward.
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(a) ¬rcv(W2,c)

(b) Γ′BW′1 ≡ Γ′B νl.(Π j∈J(c[x].P j)|W2).

2. otherwise W′1 = W1.

Due to channel restrictions, τ-actions are the most difficult to deal with. Here we present the four different
scenarios that can cause a τ transition to happen.

Proposition 9.5.7. Let ΓBW
τ
−→Γ′BW′. Then, either one of the following is true:

1. ΓBW ≡ ΓB νl.(τ.P + Q|W1) for some l, P, Q, W1 such that Γ′BW′ ≡ Γ′B νl.(P|W)

2. ΓBW ≡ ΓB νl.(bc?(x).PcQ + R|W1), for some l, c, P, Q, R and W1 such that

• c does not appear in ch(l)

• Γ(c)1 > 0

• Γ′BW′ ≡ Γ′B νl.(c[x].{err/x}P|W1)

3. ΓBW ≡ ΓB νl.(bc?(x).PcQ + R|W1), for some l, c, P, Q, R and W1 such that

• l = l1::c : (n,v)::l2 for some l1, l2, n,v such that c does not appear in l2 and n > 0

• Γ′BW′ ≡ Γ′B νl(c[x].{err/x}P|W1)

4. ΓBW ≡ ΓB νl.(c !〈v〉.P + Q|W1) for some l, c, P, Q, l′, W1, W′1 and Γ′′ such that

• l = l1::c : (n,v)::l2 for some l1, l2 such that c does not appear in ch(l2)

• Γ[l]BW1
c?v
−→Γ′′BW′1

• l′ = l1::c : Γ′′(c)::l2

• Γ′BW′ ≡ Γ′B νl′.(σδv .P|W′1).

Let us now turn our attention to time delays. The following property is not used in this Section, but it will
be useful later.

Proposition 9.5.8. Let Γ1,Γ2 be two channel environments such that Γ1 'exp Γ2 and Γ1 ` c deliver v if and
only if Γ2 ` c deliver v. Then, whenever Γ1BW

σ
−→Γ′1BW1 and Γ2BW

σ
−→Γ′2BW2, it holds W1 = W2.

Proof. By rule induction on the proof of the transition Γ1BW
σ
−→Γ′1BW1. �

Next we deal with parallel components in non-restricted environments.

Proposition 9.5.9. [Parallel components] Let ΓBW1|W2 be well-formed configurations.

1. if ΓBW1|W2
τ
−→ΓBW if and only if either

• W = W′1|W2, with ΓBW1
τ
−→ΓBW′1 or

• W = W1|W′2, with ΓBW2
τ
−→ΓBW′2.

2. ΓBW1|W2
c?v
−→Γ′BW if and only if there are W′1 and W′2 such that ΓBW1

c?v
−→Γ′BW′1, ΓBW2

c?v
−→Γ′BW′2

and W = W′1|W
′
2.

3. ΓBW1|W2
c!
−→Γ′BW if and only if there are W′1 and W′2 such that

• ΓBW1
c!
−→Γ′BW′1, ΓBW2

c?v
−→Γ′BW′2 and W = W′1|W

′
2

• or ΓBW1
c?v
−→Γ′BW′1, ΓBW2

c!
−→Γ′BW′2 and W = W′1|W

′
2.

4. ΓBW1|W2
σ
−→Γ′BW if and only if there are W′1 and W′2 such that ΓBW1

σ
−→Γ′BW′1, ΓBW2

σ
−→Γ′BW′2

and W = W′1|W
′
2
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Proof. The proof can be performed by structural induction on the proof of a transition of the form ΓBW1|W2
λ
−→

W. The technical details are similar to those of all the other proofs in this Section. �

The last property we need establishes that transitions of the labelled transition semantics are preserved in
structurally congruent configurations.

Proposition 9.5.10. Suppose ΓBW1
λ
−→Γ′BW′1, and let ΓBW2 such that W1 ≡W2. Then there exists W′2 ≡W′1

such that ΓBW2
λ
−→Γ′BW′2.

Proof. By case analysis on the clauses defined for structural congruence, then by structural induction on the
derivation ΓBW1

λ
−→Γ′BW′1. �

We have proved all the results that we need to show that the reduction semantics is consistent with the
labelled transition semantics.

Theorem 9.5.11. [Harmony Theorem] Let ΓBW be a well-formed configuration.

1. If ΓBW _ Γ′BW′ then either ΓBW
τ
−→ ≡ Γ′BW′ or ΓBW

c!v
−→ ≡ Γ′BW′.

2. If ΓBW _σ Γ′BW′ then ΓBW
σ
−→ ≡ ΓBW′.

3. If either ΓBW
τ
−→ΓBW′ or ΓBW

c!v
−→ΓBW′ then ΓBW _ Γ′BW′.

4. If ΓBW
σ
−→Γ′BW′ then ΓBW _σ Γ′BW′.

Proof. Each of these Statement is proved separately. Statements (1) and (2) can be proved by performing a rule
induction on the length of the proof of the reduction ΓBW _ Γ′ BW′, and then using the rules of the labelled
transition semantics to build a transition of the form ΓBQ

λ
−→ ≡ Γ′BW′.

For Statement (3), we distinguish between the cases ΓBW
c!v
−→Γ′BW′ and ΓBW

τ
−→Γ′BW′. In the former

case, Proposition 9.5.5 ensures that ΓBW ≡ ΓB νl.(!〈c〉.vP + Q|W1). The proof is continued by performing an
induction on the length of l, using propositions 9.5.6 and 9.5.9(2). The case where ΓBW

τ
−→Γ′BW′ is treated

similarly.

Finally, Statement (4) is proved by performing a rule induction on the proof of the derivation ΓBW
σ
−→Γ′B

W′.

�

9.6 Related Work

The calculus that we have been developed in this Chapter has been mainly inspired by the Timed Calculus

for Wireless Systems (TCWS), defined in [47]. The main differences between our calculus and TCWS can be
summarised as follows:

• in our calculus the network topology has assumed to be flat, while in TCWS a network topology is
embedded in the syntax of a network. Having a flat topology allowed us to develop a reduction semantics
in our framework, which has not been provided for TCWS; another advantage of having a flat topology
concerns the proof techniques for behavioural theories. Since this is the topic of the next chapter, we
defer this discussion for the moment,

• we use channel environments to store the information of values stored inside a channel. As a conse-
quence, our syntax for describing a network is considerably simpler than the one of TCWS’s processes.
In particular, it is not necessarily longer to use active senders to model a station which is currently trans-
mitting a value; further, active receivers do not need to come with a semantic tag corresponding to the
value being received by a station.
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Other papers in which collisions in wireless communications are taken into account are [48, 43]. This
calculus is considerably different from ours; specifically, no concept of time is used by the authors. Instead,
they model the transmission of a value by defining two different actions; the first one corresponds to a starting
communication, while the second one models the end of a transmission which was already taking place.



Chapter 10

Barbed Equivalence and Full Abstraction

In this Chapter we define a behavioural equivalence for CCCP processes, and we prove a full-abstraction result
for it.

The notion of behavioural equivalence we propose is based on Milner and Sangiorgi’s reduction barbed
congruence [49]. The definition of barbed congruence strongly relies on two crucial concepts: a reduction
semantics to describe how a system evolves, which we already provided in Chapter 9 and a notion of observable
(or barb) which says what can be observed in a system. As we will see in this Chapter, an observation on a
channel c corresponds to detecting that such a channel is exposed.

At least intuitively, two terms are barbed congruent if they have the same observables in all the possible
evolutions under all possible contexts. In the case of CCCP, we only consider contextuality with respect to the
parallel operator |, so that the term barbed equivalence is more appropriate.

Due to the quantification over all contexts, it is often difficult to prove directly that two networks are barbed
equivalent; instead, we propose an extensional semantics for CCCP terms whose actions coincides with those
activities which can be observed by a context and we prove that, if we focus on well-timed processes, our
notion of barbed equivalence coincides with weak bisimulation in the proposed extensional semantics.

This Chapter is organised as follows; in Section 10.1 we define barbed equivalence for well-timed networks.
In Section 10.2 we present our extensional semantics and we define weak bisimulation.

In Section 10.3.1 we prove that our bisimulation relation is contextual with respect to the parallel opera-
tor; this result can be used to show that weak bisimulation is a sound proof technique for showing that two
configurations are barbed equivalent.

We show also that whenever two configurations are barbed equivalent it is possible to find a weak bisimu-
lation between them; this is done by showing that there exists a distinguishing context for each of the actions
of the extensional semantics. This topic is covered in Section 10.3.2.

Then we provide a simple application of our proof method for showing that two configurations are barbed
equivalent; this is done in Section 10.4.

We conclude the Chapter with a brief comparison between related works in Section 10.5.

10.1 Barbed Equivalence

In this Section we define our contextual behavioural equivalence; as we already mentioned, this is based on
the notion of barbed congruence [49]. In order to obtain a contextual behavioural equivalence by using their
approach we have to decide on an appropriate notion of barb, or observation on systems.

In the case of CCS a process has a barb over an action a if it can synchronise with the external environment
along such a channel. In CCCP, however, transmission is timed; at least intuitively the external environment
should be able to observe whether a process in a configuration is transmitting some value along a (free) channel
c; as we will see later, in fact, this task can be accomplished by simply performing an exposure check for the

185
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channel c; however, this result holds only for well-timed configurations. This intuition leads to a notion of barb
for CCCP configurations which is based on the exposure state of the channel environment, rather than on the
structure of the term of such a configuration.

Definition 10.1.1 (Barbs). Let ΓBW be a well-formed configuration. We say it has a strong barb on c, written
ΓBW ↓c, if Γ ` c : exp. One of the main advantages of Definition 10.1.1 is that it is independent from the Syntax
of CCCP terms; that is, changing the syntax of the terms does not require to change the definition of the barbs.

We write ΓBW ⇓c, a weak barb, if there exists a configuration Γ′ BW′ such that ΓBW _∗ Γ′ BW′ and
Γ′BW′ ↓c.

Once we have established a suitable notion of barb, we can define our behavioural equivalence by following
the approach of [49]. Here the authors define their behavioural equivalence to be the largest relation which is
symmetric, contextual, barb preserving and reduction closed.

Definition 10.1.2. Let R be a relation over well-formed configurations.

(1) R is said to be barb preserving if Γ1BW1 ⇓c implies Γ2BW2 ⇓c, whenever (Γ1BW1) R (Γ2BW2).

(2) It is (untimed) reduction-closed if (Γ1BW1)R (Γ2BW2) and Γ1BW1 _ Γ′1BW′1 imply there is some Γ′2BW′2
such that Γ2BW2 _∗ Γ′2BW′2 and (Γ′1BW′1) R (Γ′2BW′2).

(3) It is contextual if Γ1 BW1 R Γ2 BW2, implies Γ1 B (W1|W) R Γ2 B (W2|W) for all processes W such that
both Γ1BW1|W and Γ2BW2|W are well-formed. �

�

Note that contextuality is not defined for the restriction operator νc : n,v. When contextuality in a barbed
congruence relation is not defined for all the operators of the language the term barbed equivalence is used
instead of barbed congruence.

With these concepts we now have everything in place for the standard definition of contextual equivalence
between systems:

Definition 10.1.3. Reduction barbed equivalence, written ', is the largest symmetric relation over well-formed
configurations which is barb preserving, reduction-closed and contextual. �

In the following the notion of a fresh channel will be important; we say that c is fresh for the configuration
ΓBW if it does not occur free in W and Γ ` c : free. Note that if ΓBW is well-formed then we can always pick
some fresh channel for it.

Before showing some examples that illustrate how reduction barbed equivalence is applied to configura-
tions, let us show that barbs are indeed observables; that is, it is possible to define term T equipped with two
fresh channels fail,eureka such that any well-timed configuration C can reach (via a sequence of transitions) a
configuration C′ which has a strong (hence also a weak) barb on eureka, but it has no weak barb on fail.

Theorem 10.1.4 (Detecting Barbs). Let ΓBW be a well-timed configuration and consider the configuration
C|T , where

T = fix X.((〈c〉eureka!〈ok〉, fail!〈no〉+τ.X) + fail!〈no〉)

and δok = δno = 1. Then ΓBW ⇓c if and only if ΓBW |T _∗ C for some configuration C such that C ↓eureka,
C 6⇓fail.

Proof. The proof of this statement is very technical. See Appendix C, Section C.2, Page 240, for a detailed
outline. �

Remark 10.1.5. Note that Theorem 10.1.4 holds only for well-timed configurations. In fact the test T used in
the Theorem to detect a barb on a channel c is not valid if ill-timed processes are considered.
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For example, consider the process BAD = fix X.(τ.X); we have already shown in Chapter 9 that this process
is ill-timed; let also Γ be a configuration such that Γ ` c : exp. The configuration ΓBBAD|T has no weak
barb on channel eureka, for the testing component T requires time to pass before broadcasting a value along
such a channel (hence making it exposed) however, process BAD prevents time to pass. Since time can pass
in composed processes only if it passes in all of its components, it follows that time cannot pass for BAD|T ,
hence ΓBBAD|T can never reach a configuration in which channel eureka is exposed.

Henceforth we assume that a configuration is both well-formed and well-timed, unless otherwise stated.
An interesting property of barbed equivalent configuration is that they are exposure equivalent; this is

because we can always test for the exposure state of a (non-restricted) channel in a configuration.

Proposition 10.1.6. Suppose Γ1BW1 ' Γ2BW2. Then Γ1 'exp Γ2.

Proof. We prove that if Γ1 ` c : free then Γ2 ` c : free; the result follows from symmetry of '.
To this end, let fail and eureka be two fresh channels, and consider the testing station

T = 〈c〉nil,eureka!〈ok〉|σ.(fail!〈no〉+τ.nil)

where δok = δno = 1.
For this configuration, it is possible to prove that ΓBW |T _∗

u C for some configuration C = Γ′ BW′ such
that C ↓eureka,C 6⇓fail if and only if Γ′ ` c : free. Note that this is an untimed weak reduction; the proof of this
statement is similar in details (though less technical) to that of Theorem 10.1.4.

Now consider two configurations Γ1B' Γ2BW2, and suppose Γ1 ` c : free. For the configuration Γ1BW1, we
have that Γ1BW1|T _∗ C, where C ↓eureka,C 6⇓fail. For Γ1BW1 ' Γ2BW2 it follows that Γ2BW2|T _∗ C′, where
C′ ⇓eureka and C′ 6⇓fail. By unfolding the definition of barb, we obtain that C′ _∗ C′′ (hence Γ2 BW1|T _∗ C′′)
andC′′ ↓eureka,C

′′ 6⇓fail. By the statement above, we have that Γ2BW2 _∗
u Γ′2BW′2 for some channel environment

Γ′2 such that Γ′2 ` c : free.
Now note that if Γ′2 ` c : free then Γ′2(c) = (0,x). By a generalisation of Proposition 9.3.4 to weak untimed

reduction, whose proof is straightforward, we also have that Γ2(c) ≤ Γ′(c), hence Γ2(c) = (0,x), or equivalently
Γ ` c : free, as we wanted to prove.

�

In the remainder of this Section we explore via examples the implications of this definition.

Example 10.1.7. Let us assume that Γ ` c : free. Then it is easy to see that

ΓB c !〈vo〉.P ; ΓB c !〈v1〉.P (10.1)

under the assumption that vo and v1 are different values. For let T be the testing context

bc?(x).[x = vo]eureka!〈ok〉,nilcnil

where eureka is fresh, and ok is some arbitrary value. Then ΓBc !〈vo〉.P|T has a weak barb on eureka, for such
a channel eventually becomes exposed in the unique computation of configuration ΓB!〈c〉.voP|T ; in fact, the
only reduction (up-to structural congruence) defined for the network is given by

ΓB!〈c〉.voP|T _ Γ′Bσδvo .P|c[x].[x = vo]eurekaok!〈nil〉,nil

which can be derived by applying Rule (R-NOCOLL) of the reduction semantics. Here Γ′ = upd=
cv(Γ)Γ[c 7→

(δvo ,v0)]. We can now apply Rule (R-TIME) to the latter configuration, and iterate the procedure to the resulting
configuration for exactly δv

o times, to obtain the sequence of reductions

ΓB!〈c〉.voP|T _ Γ′Bσδvo .P|c[x].[x = vo]eurekaok!〈nil〉,nil _ · · ·_ Γ′	δo
v BP|[vo = vo]eurekaarb!〈nil〉,nil
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A final application of Rule (R-NOCOLL) and (R-STRUCT) leads to the reduction

Γ′	δo
v BP|[vo = vo]eurekaok!〈nil〉,nil _ Γ′′BP|σδok

where Γ′′ ` eureka : exp. We have proved that ΓB!〈c〉.voP|T _∗ Γ′′ BP|σδok and the latter configuration has a
strong barb on channel eureka; therefore ΓB!〈c〉.voP|T ⇓eureka.

In a similar way we can prove that ΓB!〈c〉.v1P|T has a unique computation in whose configurations channel
eureka is always free. Therefore the former configuration has no (weak) barb on channel eureka. Since ' is
contextual and barb preserving, (10.1) above follows. �

Example 10.1.8. Let again Γ be a channel environment such that Γ ` c : free, and let vo,v1 two values such that
δvo = δv

i .

The test we have used in Example 10.1.7 cannot be used to test to distinguish between the configurations
ΓBQ1 and ΓBQ2, where

Q1 = c!〈vo〉|c !〈v1〉.P and Q2 = c!〈v1〉|c !〈v0〉.P

In both these configurations a collision will occur on the channel c and a station such as T above will only ever
receive the error value err. So there is reason to hope that

ΓBQ1 ' ΓBQ2

However we must wait for the next section for proof techniques for establishing such equivalences. �

Examples 10.1.7 and 10.1.8 show that the broadcast the content of a value being broadcast along a free
channel is not important, for a context can only check the content of a transmission along a channel when the
latter switches from being exposed to being free (that is, the transmission has terminated).

A priori reductions ignore the passage of time, and therefore one might suspect that reduction barbed
congruence is impervious to the precise timing of activities. But the next example demonstrates that this is not
the case.

Example 10.1.9. [Observing the passage of time] Consider the two processes

Q1 = c!〈vo〉 Q2 = σ.Q1

and again let us assume that Γ ` c : free. There is very little difference between the behaviour of ΓBQ1 and
ΓBQ2; both will transmit (successfully) the value vo, although the latter is a little slower. However this slight
difference can be observed. Consider the test T defined by

〈c〉eureka!〈ok〉,nil

Then C2 = ΓB (Q1|T ) has a weak barb on eureka. To see this it just suffices to note that we have the reduction
step

ΓB (Q1|T ) _u ΓB (Q1|σ.eureka!〈ok〉)

However, the unique possible transition for C2 = ΓB (Q2|T ) is of the form C2 _ C′2 = Γ2 Bσ.nil|σ.nil in
which the transmission along c is initiated. This is inferred with the aid of Rule (B-()expElse)1 Now it is trivial
to note that C2 6⇓eureka, so that C1 ; C2.

For the test to work correctly it is essential that Γ ` c : exp. Indeed we will later see that if Γ′ ` c : exp then
Γ′BQ1 ' Γ′BQ2. �

1Recall that the reduction semantics and the Labelled transition Semantics coincide, as stated in the Harmony Theorem.
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(B-INPUT)

ΓBW
c?v
−→Γ′BW′

ΓBW
c?v
7−−−−→ Γ′BW′

(B-TIME)

ΓBW
σ
−→Γ′BW′

ΓBW
σ
7−−−→ Γ′BW′

(B-SHH)

ΓBW
c!v
−→Γ′BW′

ΓBW
τ
7−−→ Γ′BW′

(B-TAUEXT)

ΓBW
τ
−→Γ′BW′

ΓBW
τ
7−−→ Γ′BW′

(B-FREE)

Γ ` c : free

ΓBW
ι(c)
7−−−−→ ΓBW

(B-DELIVER)

Γ ` c deliver v ΓBW
σ
−→Γ′BW′

ΓBW
γ(c,v)
7−−−−−−→ ΓBW′

Table 10.1: Extensional actions

Behind this example is the general principle that reduction barbed congruence is actually sensitive to the
passage of time; see Proposition 10.3.8 in Section 10.3.2. This example also emphasises the power in the ability
to test for channel exposure.

However the precise transmission time associated with channels in a network is not preserved by contextual
equivalence.

10.2 Extensional Semantics

The intention here is to give an co-inductive characterisation of the contextual equivalence ' between (well-
formed and well-timed) configurations, in terms of a standard bisimulation equivalence over some extensional
LTS. We first discuss the extensional actions used to define this LTS, then we recall the standard definition of
(weak) bisimulation over an arbitrary LTS and then illustrate its application to the calculus CCCP via the LTS
induced by the extensional actions.

10.2.1 Extensional Actions

The question here is what activity of a wireless system is observable externally; Example 10.1.9 indicates
that the passage of time is observable. From Lemma 9.4.2, we know that all systems are always ready to
receive transmissions, but we will have to take into account the effect of these transmissions. In contrast the
discussion in Example 10.1.7 indicates that, due to the possibility of collisions, the treatment of transmissions,
the actions

c!v
−→ is more subtle. It turns out that the transmission itself is not important; instead we must take

into consideration the successful delivery of the transmitted value.

In Table 10.1 we give the rules defining the extensional actions, C
α
7−−−→C′, which can take one of the forms:

• Input: C
c?v
7−−−−→ C′. This is inherited directly from the intensional semantics.

• Time: C
σ
7−−−→ C′, also inherited from the intensional semantics.

• Internal: C
τ
7−−→ C′. Internal activities correspond (up-to structural congruence), to reduction steps; we

know from the Harmony Theorem (Theorem 9.5.11) that reductions are captured by both internal and
broadcast transitions in the labelled transition semantics.

• Delivery: C
γ(c,v)
7−−−−−−→C′. This corresponds to the successful delivery of the value v which was in transmis-

sion along the channel c.

• Free: C
ι(c)
7−−−−→ C, a predicate indicating that channel c is not exposed, and therefore ready to start a

potentially successful transmission.
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Remark 10.2.1. The reader could be surprised to know that output transitions are modelled in the extensional
semantics as internal activities. While this should not be surprising in the case in which a broadcast is performed
along a channel which is already exposed (recall that, in the labelled transition semantics, a value broadcast
along an already exposed channel does not affect the other parallel components in a term, but it only affects the
channel environment), there is still the case in which a broadcast is fired along a non-exposed channel. In this
case other stations can detect the broadcast and start receiving.

Indeed, a broadcast which is fired along a non-exposed channel consists of an activity which can be detected.
However, it can be modelled in our extensional semantics by using the novel action ι(c). In fact, whenever
Γ ` c : free and ΓBW

c!v
−→Γ′ BW′, it holds that Γ′ ` c : exp. The intensional transition above corresponds, in

the extensional semantics, to the sequence of transitions ΓBW
ι(c)
7−−−−→ ΓBW, ΓBW′

τ
7−−→ Γ′ BW′ for which

Γ′BW′
ι(c)
7−−−−→6 .

Conversely, if we have a sequence in the extensional semantics as the one above, then we are sure that the
transition ΓBW

τ
7−−→ Γ′ BW′ transition corresponds to a broadcast fired along a channel. In fact, if it were a

τ-action, it would hold Γ = Γ′ by Proposition 9.4.1(3). Since Γ ` c : free then we cannot have Γ ` c : exp.

10.2.2 Bisimulation Equivalence

Weak extensional actions are defined as usual, as C
τ
7−−→

∗ α
7−−−→

τ
7−−→

∗

C′, for α , τ, for which we use the notation

C
α̂
|===⇒C′. For α = τ, we abbreviate C

τ̂
|===⇒C′ with C |==⇒C′, to denote C

τ
7−−→

∗

C′. We now have the standard
definition of weak bisimulation equivalence in the resulting LTS which for convenience we recall.

Definition 10.2.2. Let R be a binary relation over configurations. We say that R is a bisimulation if for every
extensional action α, whenever C1 R C2

(i) C1
α
7−−−→ C′1 implies C2

α̂
|===⇒C′2, for some C′2, satisfying C′1 R C

′
2

(ii) conversely, C2
α
7−−−→ C′2 implies C1

α̂
|===⇒C′1, for some C′1, such that C′1 R C

′
2.

We write C1 ≈ C2, if there is a bisimulation R such that C1 R C2. �

We already pointed out that our aim is to show that in a well-timed setting weak bisimulation and weak
barbed equivalence coincide. Next we show that the actions we have introduced in the extensional semantics,
namely ι(c) and Γ(c,v), are necessary in order to show that weak bisimilarity is contextual.

Example 10.2.3. [On the rule (B-FREE)] Suppose that we drop the rule (B-FREE) in the extensional semantics;
consider the configurations

Γ1BW1 = τ.nil

Γ2BW2 = c!〈v〉

where Γ1(c) = (1,v), Γ2(c) = (0, ·).
It is straightforward to note that Γ1 BW1 ≈ Γ2 BW2; in fact, recall that an output action in the intensional

semantics always correspond to a τ action in its extensional counterpart2.
However, we also have that Γ1 BW1 ; Γ2 BW2; this can be proved by simply exhibiting a context that

distinguishes the two configurations above. To this end, consider the system T = [exp(c)]nil,eureka!〈ok〉. It is
immediate to note that Γ2BW2|T has a barb on the channel eureka, while Γ1BW1|T has not. �

Example 10.2.4. [On the rule (B-DELIVER)] Suppose that we drop rule (B-DELIVER) in the extensional se-
mantics. Let Γ2BW2 be the configuration of Example 10.2.3, and consider the configuration

Γ2BW3 = c!〈w〉.
2That is, the LTS generated by these two configurations, with respect to the extensional semantics, are isomorphic
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In this case it is easy to exhibit a bisimulation between Γ2 BW2 and Γ2 BW3; however, if we consider the
system T ′ = c(x).[x = v]eureka!〈ok〉,nil we find that Γ2BW2 has a barb on eureka, while Γ2BW3 has not. Thus,
in this case it holds that Γ2BW2 ≈ Γ2BW3, but Γ2BW2 ; Γ2BW3. �

10.3 Full Abstraction

In this section we show that the coinductive proof method based on the bisimulations of the previous section
are both sound and complete with respect to the contextual equivalence of Section 10.1. In this first sub-section
we give the non-trivial proof that bisimulation equivalence is contextual; this requires the development of some
auxiliary results on the composition of extensional actions. From this contextuality result the soundness of
bisimulations for contextual equivalence follows easily. The second section is devoted to the converse: if two
configurations are related by the contextual equivalence there is also some bisimulation which relates them.

10.3.1 Soundness

We begin this Section by showing that two bisimilar configurations are also exposure equivalent. This prop-
erty will be needed in the proof of soundness to distinguish whether an extensional τ-action corresponds to a
broadcast fired along a non-exposed channel.

Lemma 10.3.1. [Channel exposure wrt ≈] Whenever Γ1BW1 ≈ Γ2BW2 then Γ1 ` c : free if and only if Γ2 ` c :
free.

The proof of Lemma 10.3.1 relies on the following result:

Lemma 10.3.2. Whenever ΓBW
τ
|===⇒ Γ′BW′ it holds Γ1 ≤ Γ2.

Proof. First we note that whenever ΓBW
τ
|===⇒ Γ′BW′ then

ΓBW
λ1
−→Γ1BW1

λ2
−→·· ·

λn−1
−→Γn−1BWn−1

λn
−→Γ′BW′

for some integer n ≥ 0 and such that for any i = 1, · · · ,n it holds either λi = τ or λi = c!v. Recall that whenever
ΓBW

τ
−→Γ′BW′ then Γ = Γ′ (Proposition 9.4.1(3)), while whenever ΓBW

c!v
−→Γ′BW′ then ΓB ≤ Γ′ = updv

c(Γ).

Now it is possible to prove the statement by induction on the number n of intensional transitions that
constitute the weak extensional τ transition. �

Corollary 10.3.3. For any configuration ΓBW it holds ΓBW
ι(c)
7−−−−→ if and only if ΓBW

ι(c)
|====⇒.

Proof. If ΓBW
ι(c)
7−−−−→ then it follows trivially that ΓBW

ι(c)
|====⇒.

Conversely, suppose that ΓBW
ι(c)
|====⇒. In this case we have that ΓBW

τ
|===⇒ Γ′ BW′

ι(c)
7−−−−→ Γ′ BW′

τ
|===⇒

Γ′′ BW′′ for some configurations Γ′ BW′ and Γ′′ BW′′ such that Γ′ ` c : free. Therefore Γ′(c) = (0,x); by
Lemma 10.3.2 it follows that Γ ≤ Γ′, hence Γ(c) = (0,x), or equivalently Γ ` c : free.

Now it is possible to apply Rule (B-FREE) of the extensional semantics to obtain ΓBW
ι(c)
7−−−−→ ΓBW. �

Proof of Lemma 10.3.1 Suppose Γ1 BW1 ≈ Γ2 BW2. We prove that, for any channel c, Γ1 ` c : free implies
Γ2 ` c : free; then the result follows from the fact that ≈ is symmetric.

If Γ1 ` c : free for some channel c, then Γ1 BW1
ιc
7−−−→ Γ1 BW1, and since Γ1 BW1 ≈ Γ2 BW2 it follows that

Γ2BW2
ι(c)
|====⇒ Γ′2BW′2, where Γ1BW1 ≈ Γ′2BW′2.

By Corollary 10.3.3 it follows that Γ2BW2
ι(c)
7−−−−→ Γ2BW2, hence Γ2 ` c : free.

We are now ready to prove that weak bisimilarity is sound with respect to barbed congruence. This result
can be proved by showing that weak bisimilarity for configurations is preserved by the parallel operator |.
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Theorem 10.3.4. [≈ is contextual] Let Γ1 BW1 and Γ2 BW2 be two well-formed configurations such that
Γ1 BW1 ≈ Γ2 BW2. Then, Γ1 B (W1|W) ≈ Γ2 B (W2|W) for all systems W such that Γ1 BW1|W and Γ2 BW2|W

are well-formed.

Proof. We show that the relation S defined as follows

{
(
Γ1BW1|W , Γ2BW2|W) : Γ1BW1 ≈ Γ2BW2 ∧ ∀i∈[1..2]. ΓiBWi|W well-form.}

is a bisimulation. We proceed by case analysis on why Γ1BW1|W
α
−→ Γ̂1B Ŵ1.

1. Let Γ1BW1|W
τ
−→ Γ̂1B Ŵ1 by an application of rule (B-SHH) because Γ1BW1|W

c!v
−→ Ŵ1, for some c and

v. This transition can only be derived by an application of rule (B-SYNC), where, for instance,

• Γ1BW1
c!v
−→W′1

• Γ1BW
c?v
−→W′

• Ŵ1 = W′1|W
′

(the symmetric case is similar).

By an application of rule (B-SHH) it follows that Γ1 BW1
τ
7−−→ Γ′1 BW′1, with Γ′1 = updv

c(Γ1). Since Γ1 B

W1 ≈ Γ2BW2, there is Γ′2BW′2 such that Γ2BW2 |==⇒ Γ′2BW′2 and Γ′1BW′1 ≈ Γ′2BW′2. Now, there are two
possibilities.

(a) Let Γ1 ` c : exp. By Lemma 9.4.2(2), in the transition Γ1 BW
c?v
−→W′ it must be W′ = W. Since

Γ1BW1 ≈ Γ2BW2 and Γ′1BW′1 ≈ Γ′2BW′2, by two applications of Lemma 10.3.1 it follows that:

• for any channel d, Γ1 ` d : free iff Γ2 ` d : free

• for any channel d, Γ′1 ` d : free iff Γ′2 ` d : free.

We recall that Γ′1 = updv
c(Γ1), and hence Γ′1 and Γ1 may only differ for the entry at channel c. As a

consequence, also Γ2 and Γ′2 may only differ for the same entry.

Now, let us analyse the transitions which constitute the weak derivation

Γ2BW2 |==⇒ Γ′2BW′2 .

In particular, let
Γ2BW2 |==⇒ Γn

2BWn
2

τ
7−−→ Γn+1

2 BWn+1
2 |==⇒ Γ′2BW′2 .

There are two possibilities.

i. Γn
2BWn

2
τ
7−−→ Γn+1

2 BWn+1
2 is derived by an application of rule (B-TAUEXT) because Γn

2BWn
2

τ
−→

Wn+1
2 . This case is easy.

ii. Γn
2 BWn

2
τ
7−−→ Γn+1

2 BWn+1
2 is derived by an application of rule (B-SHH) because Γn

2 BWn
2

d!w
−→

Wn+1
2 , for some d and w. Since Γ2 and Γ′2 may only differ for the entry at channel c, also Γn

2

and Γn+1
2 may only differ for the same entry. This is because the derivation Γ2BW2 |==⇒ Γ′2BW′2

is untimed, and once a channel becomes exposed it remains so for the whole derivation. By
Lemma 10.3.1, Γ1 ` c : exp implies Γ2 ` c : exp. By definition of rule (B-SHH), Γn+1

2 ` d : exp.
Since only the entry at c may change during the derivation it follows that Γn

2 ` d : exp (also for

d = c). By Lemma 9.4.2(2), this implies Γn
2 BW

c?v
−→W. By an application of rule (B-SYNC)

and one application of rule (B-SHH) we can derive

Γn
2BWn

2 |W
τ
7−−→ Γn+1

2 BWn+1
2 |W .

As a consequence,
Γ2BW2|W |==⇒ Γ′2BW′2|W
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with
(
Γ′1BW′1|W , Γ′2BW′2|W

)
∈ S.

(b) Let Γ1 ` c : free. There are two sub-cases.

i. Let ¬rcv(W,c). This case is similar to case 1a. In fact, by Lemma 9.4.2(1) the system W is not
affected by the transmission at c. More precisely, the transition Γ1BW1|W

c!v
−→ Ŵ1 can only be

derived by an application of rule (B-SYNC) because

• Γ1BW1
c!v
−→W′1

• Γ1BW
c?v
−→W

• Ŵ1 = W′1|W.

ii. Let rcv(W,c). By Lemma 9.4.2(3) the transition Γ1 BW
c?v
−→W′ must have W′ , W. Since

Γ1 BW1 ≈ Γ2 BW2, by Lemma 10.3.1 it follows that Γ2 ` c : free. As Γ′1 = updv
c(Γ1), it follows

that Γ′1 ` c : exp. Since Γ′1 BW′1 ≈ Γ′2 BW′2, by Lemma 10.3.1 it follows that Γ′2 ` c : exp. As a
consequence, the derivation Γ2 BW2 |==⇒ Γ′2 BW′2 must contain a transition which changes the
exposure state of channel c. More precisely, the derivation must have the form

Γ2BW2 |==⇒ Γn
2BWn

2
τ
7−−→ Γn+1

2 BWn+1
2 |==⇒ Γ′2BW′2

where the transition Γn
2BWn

2
τ
7−−→ Γn+1

2 BWn+1
2 is due to an application of rule (B-SHH) because

Γn
2 BWn

2
c!w
−→Wn+1

2 , for some w, with Γn
2 ` c : free and Γn+1

2 ` c : exp. By Lemma 9.4.2(3) it

follows that Γn
2 BW

c?w
−→W′, for any w. By an application of rule (B-SYNC) and one of rule

(B-SHH), it follows that
Γn

2BWn
2 |W

τ
7−−→ Γn+1

2 BWn+1
2 |W′ .

For any other transition composing the derivation Γ2BW2 |==⇒ Γ′2BW′2 we can apply the same
reasoning of case 1a. In particular, for those transitions which are derived by an application of
rule (B-SHH) because of a transition labelled d!w′, the channel d must be exposed before and
(obviously) after the transition. So, by Lemma 9.4.2(2) the systems W and W′ can perform the
corresponding action d?w′ remaining unchanged. More precisely, we have

Γ2BW2|W |==⇒ Γn
2BWn

2 |W
τ
7−−→ Γn+1

2 BWn+1
2 |W′

τ
|===⇒ Γ′2BW′2|W

′

with
(
Γ′1BW′1|W

′ , Γ′2BW′2|W
′
)
∈ S.

�

Theorem 10.3.5. Bisimilarity implies reduction barbed equivalence.

Proof. It suffices to prove that bisimilarity is reduction-closed, barb preserving and contextual. Reduction
closure follows from the definition of extensional τ-actions and the Harmony Theorem, Theorem 9.5.11. The
preservations of barbs follows directly from Lemma 10.3.1. Contextuality follows from Theorem 10.3.4. �

10.3.2 Completeness

In this Section we prove that, whenever two configurations are barbed equivalent, then there exists a weak
bisimulation (in the extensional semantics) between them.

The idea here is to show that ' is a bisimulation in the extensional LTS. We address the various requirements
individually. First some technical results.

Lemma 10.3.6. Suppose Γ1 BW1|eureka!〈ok〉 ' Γ2 BW2|eureka!〈ok〉 where eureka is fresh to both configura-
tions. Then Γ1BW1 ' Γ2BW2.
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Outline. Let the relation R over configurations be defined by letting

Γ1BW1 R Γ2BW2

whenever Γ1BW1|fresh!〈ok〉 ' Γ2BW2|fresh!〈ok〉 for some fresh channel fresh.

One can check that R is reduction-closed, contextual and barb-preserving, from which the result follows.
�

Proposition 10.3.7. [Preserving extensional τs] Suppose Γ1 BW1 ' Γ2 BW2 and Γ1 BW1
τ
7−−→ Γ′1 BW′1. Then

Γ2BW2
τ
|===⇒ Γ′2BW′2 such that Γ′1BW′1 ' Γ′2BW′2.

Proof. There are two possible reasons why Γ1BW1
τ
7−−→ Γ′1BW′1:

(i) Γ1BW1
τ
−→W′1 and Γ′1 = Γ1

(ii) Γ1BW1
c!v
−→W′1 and Γ′1 = updv

c(Γ1) .

We consider the first case; the proof for the second is virtually identical.

Let eureka be a fresh channel; that is it must satisfy eureka < fn(W) and Γ1 ` eureka : free. Let ok be a
message which requires one time unit to be transmitted, i.e. δok = 1. By an application of rules (B-TAUPAR)
and (B-TAUEXT) we derive

Γ1BW1|eureka!〈ok〉
τ
7−−→ Γ′1BW′1|eureka!〈ok〉

with Γ′1 BW′1|eureka!〈ok〉 ⇓eureka and Γ′1 ` eureka : free. By Theorem 9.5.11 this transition corresponds in the
reduction semantics to

Γ1BW1|eureka!〈ok〉_ Γ′1BW′1|eureka!〈ok〉

Because Γ1BW1 ' Γ2BW2, this step must be matched by a sequence of reductions

Γ2BW2|eureka!〈ok〉_∗ C (10.2)

such that Γ′1BW′1|E ' C. Depending on whether the transmission at eureka is part of the sequence of reductions
or not, the configuration C must be one of the following:

C1 = Γ′2BW′2|eureka!〈ok〉 with Γ′2 ` eureka : free
C2 = Γ′2BW′2|σ.nil with Γ′2 ` eureka : exp
C3 = Γ′2BW′2|nil with Γ′2 ` eureka : free

As eureka is a fresh channel and C3 6⇓eureka, it follows that C cannot be C3. Since Γ′1BW′1|E 'C and Γ′1 ` eureka :
free, by Proposition 10.1.6 it follows that C cannot be C2. So, the only possibly is C = C1. By Lemma 10.3.6 it

follows that Γ′1BW′1 ' Γ′2BW′2. It remains to show that Γ2BW2
τ
|===⇒ Γ′2BW′2.

To this end we can extract out from the reduction sequence (10.2) above a reduction sequence

Γ2BW2 _∗ Γ′2BW′2

We show that each step in this sequence, say ΓBW _ Γ′BW′, is actually also a τ step in the extensional LTS,
ΓBW

τ
7−−→ Γ′BW′, from which the result follows.

Recall from Theorem 9.5.11 that there are three possibilities for the reduction step ΓBW _ Γ′ BW′. If
it is either (Internal), i.e. ΓBW

τ
−→W′, or a (Transmission), i.e. ΓBW

c!v
−→W′, then by definition ΓBW

τ
7−−→

Γ′BW′ follows. Condition (ii), (Time), is not possible because in the original sequence (10.2) above the testing
component eureka!〈ok〉 can not make a σ move. �
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Proposition 10.3.8. [Preserving extensional σs] Suppose Γ1BW1 ' Γ2BW2. Then Γ1BW1
σ
−→Γ′1BW′1 implies

Γ2BW2
σ
|===⇒ Γ′2BW′2 such that Γ′1BW′1 ' Γ′2BW′2.

Proof. We will use a testing context:

T = σ.(τ.eureka!〈ok〉+ fail!〈no〉)

where eureka and fail are fresh channels. Let Γ1 BW1|T _∗ Γ′1 BW′1|eureka!〈ok〉 (= C1). Since Γ1 BW1 '

Γ2BW2 we must have a series of reduction steps

Γ2BW2|T _∗ C2 (10.3)

such that C1 ' C2. Because C1 ⇓eureka and C1 6⇓fail (recall that fail is fresh) the same must be true of C2. As
Γ′1 ` eureka : free, it follows that C2 must take the form Γ′2 BW′2|eureka!〈ok〉. By Lemma 10.3.6 we have that

Γ′1BW′1 ' Γ′2BW′2. It remains to establish that Γ2BW2
σ
|===⇒ Γ′2BW′2.

We proceed as in the previous proposition, by extracting out of (10.3) the contributions from Γ2 BW2; we
know that because of the presence of the time delay in T , and by maximal progress (Theorem 9.3.2), exactly
one of the reduction steps involves the passage of time. So we have

Γ2BW2 _∗ ΓBW
σ
7−−−→ Γ′BW′ _∗ Γ′2BW′2

Then these reduction steps can be turned into extensional τ steps, giving the required

Γ2BW2 |==⇒ ΓBW
σ
7−−−→ Γ′BW′ |==⇒ Γ′2BW′2

�

Theorem 10.3.9. [Completeness] In CCCP, C1 ' C2 implies C1 ≈ C2.

Proof. It is sufficient to show that the relation

S {
(
Γ1BW1 , Γ2BW2

)
: Γ1BW1 ' Γ2BW2}

is a bisimulation. To do so we show that for each extensional action α, ' satisfies the corresponding transfer
property given in Definition 10.2.2. Cases α = σ and α = τ follow from the two previous propositions. The
proofs for the remaining cases follow in a similar manner, by using an appropriate testing context. Below we
provide these testing contexts:

(i) Tc?v[−]−
∣∣∣ c !〈v〉.eureka!〈ok〉|σδv−1.fail!〈no〉

(ii) Tι(c)[−]−
∣∣∣ [exp(c)]nil,eureka!〈ok〉|fail!〈no〉

(iii) Tγ(c,v)[−]−
∣∣∣ νd:(0,−).(c[x].[x=v]d!〈ok〉,nil|σ.[exp(d)]eureka!〈ok〉,nil|σ.fail!〈no〉) .

We just provide an outline of the proof for the most interesting case, which is given by γ(c,v).

First, suppose that ΓBW
γ(c,v)
|======⇒ Γ′ BW′. Since ΓBW

γ(c,v)
|======⇒ Γ′ BW′ there exist two configurations

Γ1BW1 and Γ2BW2 such that

ΓBW
τ
|===⇒ Γ1BW1

γ(c,v)
7−−−−−−→ Γ′BW′

τ
|===⇒ Γ′BW′

Note that Γ1 ` c deliver v, hence Γ(c) = (1,v). We assume that also Γ(c) = 1,v, so that ΓBTγ(c,v)[ΓBW] is
well defined. Since Γ ≤ Γ′ by Lemma 10.3.2 the only other possible alternative is that Γ ` c : free, in which
case the above configuration is not well-defined. However, we will not need to deal with this possibility when
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showing that the relation S is a weak bisimulation. Note also that Γ1 BW1
σ
−→Γ2 BW2, as defined by the Rule

(B-DELIVER).

We select a computation (that is, a sequence of reduction steps) Tγ(c,v)[ΓBW] _∗ C′ in a way such that
C′ ↓eureka,C

′ ↓eureka,C
′ 6⇓fail.

The reader can check that we have the following transition in the extensional semantics.

ΓBTγ(c,v)[ΓBW] = ΓBW |νd:(0,−).(c[x].[x=v]d!〈ok〉,nil|σ.[exp(d)]eureka!〈ok〉,nil|σ.fail!〈no〉)

_∗
u Γ1BW1|νd:(0,−).(c[x].[x=v]d!〈ok〉,nil|σ.[exp(d)]eureka!〈ok〉,nil|σ.fail!〈no〉)

_σ Γ2BW2|νd:(0,−).([v=v]d!〈ok〉,nil|[exp(d)]eureka!〈ok〉,nil|fail!〈no〉)

_∗
u Γ′BW′|νd :(0,v).([v=v]d!〈ok〉,nil|[exp(d)]eureka!〈ok〉,nil|fail!〈no〉)

_u Γ′BW′|νd :(1,ok).(σ.nil|[exp(d)]eureka!〈ok〉,nil|fail!〈no〉)

_∗
u Γ′′BW′′|νd :(1,ok).(σ.nil|σ.eureka!〈ok〉|fail)

_u Γ′′BW′′|νd :(1,ok).(σ.nil|σ.eureka!〈ok〉|fail!〈no〉)

_u Γ′′[fail 7→ (1,no)]BW′′|νd :(1,ok).(σ.nil|σ.eureka!〈ok〉|σ.nil

_u (Γ′′	1)BW′|νd :(0,−).(nil|eureka!〈ok〉|nil)

_u (Γ′′	1)[eureka 7→ (1,ok)BW′|νd :(0,−).(nil|σ.nil|nil)

Some of the transitions above can be derived for we assuming that eureka, fail < fn(W). Note that Γ′′ 	1 `
fail : free, so that the last configuration does not have a weak barb on fail. Further, Γ′′ 	1)[eureka 7→ (1,ok) `
eureka : exp, so that the last configuration has a strong barb on channel eureka.

Now suppose that Tγ(c,v)[ΓBW] _∗ C for some configuration C such that C ↓eureka, C 6⇓fail. In this case
the reader can check that it holds C = Γ1 BW1|νd : (0,−σ).(nil|σ.nil|nil) for some network W1 and channel
environment Γ1 for which Γ1 ` eureka : exp and Γ1 ` fail : free.

Informally speaking, in order to reach this configuration the testing component in Tγ(c,v)[ΓBW] should
have finished receiving a value in 1 time slot, after which the received value is compared with v; the match
had a positive outcome, then the station which performed the check has broadcast a value of length 1 along a
restricted channel d. Another parallel component of the test (which can detect transmissions over the restricted
channel d) has performed an exposure check on the restricted channel c. Since it has found such a channel to
be exposed, then it waited another slot of time before broadcasting along channel eureka.

The important part here resides in the fact that the test, at the end of the first time instant, terminates listening
to a transmission along channel c; this can happen only if the tested component ΓBW has delivered value v

along channel c in the first instant of time. That is, ΓBW
γ(c,v)
|======⇒ Γ′BW′ for some configuration Γ′BW′.

We can now show that, whenever ΓBW1 ' Γ2BW2 and ΓBW1
γ(c,v)
7−−−−−−→ Γ′BW′1, then Γ2BW2

γ(c,v)
|======⇒ Γ′2BW′2

for some Γ′2BW′2 such that Γ′1BW′1 ' Γ′2BW′2.

Suppose Γ1BW1
δc,v
7−−−−→ Γ′1BW′1; note that since Γ1BW1 ' Γ2BW2 it follows that Γ1 ` c : exp.

Then Tγ(c,v)[Γ1BW1] _∗ C1 for some C1 such that C1 ↓eureka and C1 6⇓fail.

By Definition of Barbed equivalence and the assumption Γ1BW1 ' Γ2BW2 it follows that Then Tγ(c,v)[Γ2B

W2] _∗ C2 for some C2 such thatC1 ' C2; in particular C2 ↓eureka and C2 6⇓fail, from which it follows that

Γ2 BW2
γ(c,v)
|======⇒ Γ′2 BW′2. The statement that Γ′1 BW′1 ' Γ′2 BW′2 follows from a generalisation lemmas 10.3.6,

propositions 10.3.7, 10.3.8 and the fact that, once the action γ(c,v) has been performed by a configuration in
Tγ(c,v)[Γ1 BW1] the testing parallel component evolves in a unique way which is independent from the tested
configuration.

�
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10.4 Simple Applications of The Proof Method

Below we report some examples of weakly bisimilar configurations. All the values have transmission length 1,
including the error value err.

Let Γ be such that Γ ` c : free. Then

ΓB νd : (0,x).(τ.d!〈noise〉+τ.d!〈deliver〉|bd?(x).[x = noise](c!〈noise〉),c!〈v〉cc!〈err〉|σ.c!〈v〉)

≈

ΓBτ.σ.c!〈v〉+τ.σ.c!〈err〉

A more interesting situation consider two networks with different channel environments. In the first one
the channel c is corrupted, that is Γ∞ `n c : ∞. This constraint is used for modelling a practical situation in
which there is too much interference (for example in a range of frequencies) for transmission of values to be
performed correctly.

In the second configuration, instead, we assume that channel c is initially exposed; however, two different
stations prevent the transmission occurring along such a channel to terminate.

Formally, let Γ,Γ∞ such that Γ ` c : exp and Γ∞(c) `n c :∞. Then

ΓBfix X.c !〈v〉.X|σ.fix X..c !〈v〉.X

≈

Γ∞Bnil

10.5 Related Work

We already mentioned that our calculus has been inspired in large part by TCWS, [47]. Here we compare our
notion of barbed congruence with that proposed in the same paper.

First, a big improvement in our framework lies in the definition of barb. Using channel environments allows
barbs to being easier than those defined for TCWS. Even better, our definition of barb depends solely on the
status of a channel environment, and it is completely unrelated to the syntax of a network.

Another improvement is that we managed to prove that, for a large class of networks, bisimulations over
the extensional LTS are not only sound, but also complete, with respect to our notion of barbed equivalence. In
[47] the bisimulation relation induced by their extensional LTS (which is referred to as augmented LTS in the
paper) has been proved to be sound, but not complete.

To the best of our knowledge there exist no other papers in the literature which consider behavioural equiv-
alences for networks in the presence of collisions.
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Chapter 11

Conclusions

In this Thesis we formalised wireless networks, at different levels of abstraction, and we studied different
notions of behavioural equivalences for them.

First we defined a calculus of wireless networks where communication between stations is assumed to be
reliable. We defined testing preorders in the style of Hennessy and de Nicola [17, 33] and we exhibited some
proof methodologies that have been proved to be sound and complete for them.

We also dedicated a chapter to the analysis of case studies, by modelling formally specifications which
are common to wireless and distributed systems in terms of a wireless network; then we exhibited parametric
implementations for such models. We exploited our proof techniques to show that the exhibited implementa-
tions are behaviourally equivalent to the proposed models. The proposed implementations are parametric in
properties that we require a network to satisfy, showing that our proof techniques can be used not only for the
analysis of a single wireless network, but also for the analysis of network protocols.

In a second part we extended the calculus to allow wireless stations to exhibit probabilistic behaviour.
The testing preorders have been extended in the same style as [20, 19], and sound proof techniques for them
have been developed. Surprisingly enough, such techniques fail to be complete. We have redesigned the
implementations of the models exhibited in the first part to allow probabilistic behaviour, and we have shown
that our proof techniques, despite not being complete, can be used to analyse interesting practical situations.

Finally, we focused on a collision prone timed calculus for broadcast system; here, in contrast with the
other calculi proposed in the Thesis, the concept of network topology has been abandoned, and the assumption
that the topological structure of a network is flat has been made. The notion of behavioural equivalence we
proposed for processes in this calculus is based on Milner and Sangiorgi’s barbed congruence [49]. We have
provided a characterisation result of such a behavioural equivalence in terms of weak bisimulation. We have
also shown that in our calculus transmission of a value itself is not an observable activity; rather, what can be
observed is the exposure status of a channel and the end of transmission. We also exhibited a rather simple case
study that shows how our bisimulation proof technique can be put into practice.

11.1 Future Research and Development

Our research, however, is far from being complete. While we have successfully managed to define a framework
in which compositional reasoning over wireless systems is possible, together with a probabilistic variant, we
believe that there are many questions that still have to be answered in order to claim that our calculi can be used
as a formal tool for the analysis of wireless networks and protocols.

The first task to be accomplished is that of expanding the number of practical situations in which our
calculus can be used. We believe that, in the non-probabilistic setting, more realistic implementations of
routing policies, in which the possibility of congestion of nodes and strategies for flow control are present,
can be analysed. Handling these situations requires to rethink the implementations of the models that we have
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developed in the thesis. For example, introducing the assumption that nodes are subject to congestions in a
network would consist of assuming that the process running at a node can be associated with a multiset whose
cardinality is bounded by some constant. In order to ensure that a network enforces a connectionless routing
policy in this framework would also lead to redefine the code running at each node.

We are also investigating applications in which we assume that stations have a limited power of energy, and
it would be nice to establish if our framework, when applied to model power-consuming wireless stations, can
be related with other works already existing in the literature, such as [7]. Note that modelling a network whose
nodes are subject to energy consumption in our framework is a relatively easy task. Informally speaking, it is
sufficient to assume that each value has an integer number associated, corresponding to the amount of energy
required by a node to broadcast that channel. Then each node can be equipped with an integer denoting its
quantity of residual energy, which has to be decreased every time it performs a broadcast of a value, according
to the amount of energy required for broadcasting the latter.

In the probabilistic setting, we believe that our proof techniques can be used to analyse virtually every
distributed algorithm which fits the Las Vegas model. We are not sure whether our proof techniques can be used
to handle protocols which are based on the Monte Carlo Model; this is because, as we have seen, our proof
techniques cannot be used in the case a network performs a multicast to the external environment with overall
probability strictly less than 1. Here the most important improvement would be that of finding a complete
characterisation for both the may and must testing preorders has not been answered in this thesis, and in future
we will work on revisiting our notions of simulation and deadlock simulations to obtain completeness.

In both the standard and probabilistic frameworks, we consider the task of developing variants of the cal-
culus which enjoy more features particular to wireless systems and process calculi to be interesting. Among
the features that we want to add to our calculus the ones we value most are higher order communication and
the introduction of mobility. Higher order communication would allow us to analyse situations in which the
external environment can broadcast a process to a network, which is then executed at some internal node of
the latter. This would allow us to model interesting situations, related in particular to the Grid Computing.
Also, we believe that introducing mobility in our framework would be very useful when trying to model sensor
wireless networks, which are widely gaining more and more interest from the research community.

Further, we remark that the analysis of the case studies that we have shown in this thesis has been rather
difficult, due to the large number of parameters that we defined for nodes in the implementation networks. In
order to ease the proof of the statements it should be necessary to develop an equational theory for showing
whether two networks are testing related each other. Having such an equational theory would reduce the
problem of checking whether two networks are equivalent to simple calculations. Further, in the future an
automated tool should be developed to help a user to prove the equivalence of two networks. To this end,
algorithms for checking deadlock trace equivalence (in the standard framework) and deadlock simulations (in
the probabilistic setting) should be investigated.

In the case of our calculus for collisions, we have encountered many problems when trying to exhibit some
case studies. This is mainly because of our restriction to a setting where the topology of a network is assumed
to be flat. However, we managed to model simple network topologies in our calculus by using broadcasts
along different channels and channel restrictions, leading to the definition of networks which implement a
routing protocol in a collision prone setting. A case study in which such networks are compared with a network
which implements TDMA multiple access technique is included in [10]. However, due to our assumption that
a network always has a flat topology, we believe that our calculus cannot be used to analyse a wide number of
practical applications. Rather, we believe that our framework can be extended to overcome the problem, mostly
by introducing a local broadcast feature for it. This would allow the analysis of problems of particular interest
in the literature of protocols at the MAC Sublayer, such as the hidden station and exposed station problems.

It remains to be see how our calculus can be extended to incorporate local broadcast communication, and
if our notions of barbed congruence and weak bisimulations can be extended to the novel calculus in an easy
manner.



Appendix A

Proofs of the Propositions in Part I

A.1 Structural properties of networks

Proof of Lemma 2.4.1 The best way to prove this lemma is that of building a proof system for checking
structural congruence between processes. First we check that two processes are structurally equivalent if and
only if a proof can be obtained in our proof system; then we prove that, for any processes P,Q,R such that
P ≡ Q and P

α
−→R, it also holds that Q

α
−→R. The Proof System we use to check that P ≡ Q for any processes

P,Q is depicted in Figure A.1; we write  P ≡ Q whenever there exists a proof of P ≡ Q in such a proof system.
Now we show that for any processes P,Q, it holds P ≡ Q iff  P ≡ Q. Let R = {(P,Q) |  P ≡ Q}. It is

immediate to note that R satisfies the requirements (1i)-(1v) of Definition 2.1.3(1), so that R is included in ≡.
As ≡ is the least equivalence relation between processes that satisfies such constraints, it is also immediate to
note that ≡ is included in R. Therefore the P ≡ Q iff PRQ iff  P ≡ Q.

Let now P,Q be two processes such that P ≡ Q. We show by structural induction on the proof that P ≡ Q

that P
α
−→R for some process R iff Q

α
−→R. We only show the most interesting cases.

Suppose the last rule applied in the proof of P ≡ Q is (S-P− PLUS). Then Q = P |0. If P
α
−→R, we can apply

Rule (S-SUML) to infer Q
α
−→R. Conversely, if Q

α
−→R, then the last rule applied in the proof of this derivation

is (S-SUM−L). This is because Q = P + 0, and the process 0 has no possible transitions. Consequently, PαR,
as required by the premise of Rule (S-SUM−L).

If the last rule applies in the proof of P ≡ Q is (S-P− COMM), then there exist P1,P2 such that P = P1 +

P2, and Q = P2 + P1. Suppose P1 + P2αR, then the last rule applied in the proof of this transition is either
(S-SUM−L) or (S-SUM−R). In the former case, we have that P1

α
−→ R, so that by an application of rule

(S-SUM−R) we have P2 + P1
α
−→ R. In the latter case, it holds P2

α
−→ R, so that it suffices to apply rule

(S-SUM−L) to infer P2 + P1
α
−→R.

Conversely, suppose P2
α
−→R. This case is analogous to the one above.

Let now (S-P− THEN) be the last rule applied in the proof of P ≡ Q. In this case we have that P =

if b then Q else P′ for some b,P′ such that ~b� = true. If P
α
−→R, the last rule applied in the proof of this

derivation is (S-THEN), so that we have Q
α
−→R. Conversely, if Q

α
−→R, we can apply rule (S-THEN) (recall

that ~b� = true) to infer if b then Q else P′
α
−→R.

The last case we analyse is that in which Rule (S-P−UNFOLD) is the last that has been applied in the proof
of P ≡ Q. Then we have P = A〈ẽ〉 for some process definition A(x̃) and list of expressions ẽ, while Q = {ṽ/x̃}P′

for some process P′ and list of values ṽ such that A(x̃)⇐ P′ and ~̃e� = ṽ. Suppose that P
α
−→R. Then the last

rule applied in the proof of such a transition is (S-PDEF). Hence we have {ṽ/x̃}P′
α
−→R. Conversely, suppose

Q
α
−→R. As Q = {ṽ/x̃}P′, ~̃e� = ṽ and A(x̃)⇐ P′, we can apply Rule (S-PDEF) to infer A(ẽ)

α
−→R.

Proof of Lemma 2.4.2 We prove the two implications separately. The only if implication is straightforward;
given any process P′,Q it is easy to show (by first applying Rule (S-τ), then (S-SUM−L)) that τ.P′+ Q

τ
−→P′.

Thus, we can apply Lemma 2.4.1 to show that, for any P such that P ≡ τ.P′+ Q, we have P
τ
−→P′.
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(S-P−REFL)

P ≡ Q
M = N

(S-P−SYMM)

P ≡ Q

Q ≡ P

(S-P−ZERO)

P ≡ P |0

(S-P−COMM)

P + Q ≡ Q + P

(S-P−THEN)

P ≡ if b then P else Q
~b� = true

(S-P−ELSE)

Q ≡ if b then P else Q
~b� = false

(S-P−UNFOLD)

A(x̃)⇐ P

A〈̃e〉 ≡ {̃v/x̃}P
~̃e� = ṽ

(S-P−TRANS)

P ≡ R R ≡ Q

P ≡ Q

Figure A.1: Proof system to check structural congruence between processes

For the if implication the proof is carried out by Rule Induction on the last rule applied in the proof of the
transition P

τ
−→Q. We perform a case analysis on the last rule applied in the derivation, then we exhibit a term

Q such that P ≡ τ.P′+ Q.

If the last rule applied is (S-τ), then P = τ.P′. If we let Q = 0, it follows that P ≡ τ.P′ + Q by Definition
2.1.3(1).

Now suppose the last rule applied is (S-SUM−L). Thus P = P1 + Q1 for some P1,Q1 such that P1
τ
−→P′.

By inductive hypothesis, there exists Q′ such that P1 ≡ τ.P1 + Q1; thus

P ≡ P1 + Q1 ≡ (τ.P′+ Q′) + Q1 ≡ τ.P′+ (Q′+ Q1)

so that Q = Q′+ Q′1.
If the last Rule applied is (S-SUM−R), then P = Q1 + P1 for some P1,Q1 such that P1

τ
−→ P′. By inductive

hypothesis, there exists Q′ such that P1 ≡ τ.P1 + Q1; therefore we have

P ≡ P1 + Q1 ≡ Q1 + (τ.P′+ Q′) ≡ (Q1 +τ.P′) + Q′ ≡ (τ.P′+ Q1) + Q′ ≡ τ.P′+ (Q1 + Q′)

Then Q = Q1 + Q′

If the last rule applied is (S-THEN), we have that P = if b then P else 1Q1 for some P1,Q1 and b such that
~b� = true, P1

τ
−→P′. By inductive hypothesis it holds P′ ≡ τ.P′+ Q, and by an application of Definition 2.1.3

(1) we have P ≡ P1 ≡ τ.P′+ Q. The case for rule (S-ELSE) is similar.

The last case to be checked is given by rule (S-PDEF) being the last rule applied in the derivation P
τ
−→P′.

In this case we have that P = A〈ṽ〉 for some process definition A(x̃) and list of values ṽ; also, A(x)⇐ P1 for
some process P1 such that {ṽ/x̃}P1

τ
−→ τ.P′ + Q, where Q is an arbitrary process. As P = A〈ṽ〉 and A(x)⇐ P1,

we can apply Definition 2.1.3(1) to obtain P ≡ {ṽ/x̃}P1 ≡ τ.P′+ Q.

Proof of Proposition 2.4.5 We prove the three statements separately. Each of them is proved by Rule Induc-
tion on the proof of the transition ΓBM1 |M2

λ
−→N.

(i) Suppose ΓBM1 |
m.c?v
−→N. Note that, if either Rule (B-REC), (B-DEAF) or (B-DISC) have been applied as the

last rule to infer ΓBM1 |M2
m.c?v
−→ N, then M1 |M2 = n~P� for some process P and node n. However, this

is not possible, so that these cases are vacuous. Let then Rule (B-PROP) be the last rule which has been
applied in the proof of ΓBM1 |M2

m.c?v
−→ N; in this case there exist M′,M′′,N′,N′′ such that ΓBM′

m.c?v
−→ N′,

ΓBM′′
m.c?v
−→ N′′ and M1 |M2 = M′ |M′′, N = N′ |N′′. Now we have three possible cases:
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• M′ = M1. In this case we have that M′′ = M2. Let N1 = N′, N2 = N′′. Then we have ΓBMi
m.c?v
−→ Ni,

i = 1,2 and N = N1 |N2.

• M′ = M1 |M3 for some M3. By inductive hypothesis we have that ΓBM1 |N1 and ΓBM3
m.c?v
−→ N3 for

some N1,N3 such that N′ = N1 |N3. Also, as M1 |M2 = M′ |M′′, we have that M1 |M2 = M1 |M3 |M′′,
therefore M2 = M3 |M′′. Since ΓBM3

m.c?v
−→ N3 and ΓBM′′

m.c?v
−→ N′′, by applying Rule (B-PROP) we

obtain ΓBM2
m.c?v
−→ N3 |N′′. Let then N2 = N3 |N′′. It remains to show that N = N1 |N2. However, we

already know that N = N′ |N′′, and N′ = N1 |N3. Thus N = N1 |N3 |N′′, which is exactly N = N1 |N2

• M1 = M′ |M3 for some M3. In this case we have that M′′ = M3 |M2, and by inductive hypothesis
there exist N3 and N2 such that ΓBM3

m.c?v
−→ N3, ΓBM2

m.c?v
−→ N2 and N′′ = N3 |N2. Now, by applying

rule (B-PROP) to the transitions ΓBM′
m.c?v
−→ N′ and ΓBM3

m.c?v
−→ N3, we obtain ΓBM1

m.c?v
−→ N′ |N3

(recall that M1 = M′ |M3). If we let N2 = N′ |N3, we obtain N = N′ |N′′ = N′ |N3 |N2 = N1 |N2.

(ii) Suppose ΓBM1 |M2
m.c!v
−→ N; the case in which the last rule applied in the proof of the transition is Rule

(B-BROAD) is vacuous. Otherwise, either Rule (B-SYNC−L) or (B-SYNC−R) has been applied as the
last rule in the proof of ΓBM1 |M2

m.c!v
−→ N. We only consider the case of (B-SYNC−L), as the other one is

symmetric. In this case we have that M1 |M2 = M′ |M′′ for some M′,M′′,N′,N′′ such that ΓBM′
m.c!v
−→ N′,

ΓBM′′
m.c?v
−→ N′′ and N = N′ |N′′. We have now three possible cases.

• M1 = M′; it follows M2 = M′′. Let N1 = N′, N2 = N′′; then we have ΓBM1
m.c!v
−→ M′, ΓBM2

m.c?v
−→ N2

and N = N1 |N2, as we wanted to prove

• M1 = M′ |M3 for some M3; it follows M′′ = M3 |M2. By Lemma hlnets.lem:par.comp(i), proved
above, we have that there exist N3, N2 such that ΓBM3

m.c?v
−→ N3, ΓBM2

m.c?v
−→ N2 and N′′ = N3 |N2. Now

let N1 = N′ |N3. We can apply Rule (B-SYNC−L) to the transitions ΓBM′
m.c!v
−→ N′ and ΓBM3

m.c?v
−→ N3

to infer ΓBM1 |N1 (recall M1 = M′ |M3,N1 = N′ |N3). It remains to show that N = N1 |N2. This is
trivial, as N = N′ |N′′ = N′ |N3 |N2 = N1 |N2.

• M′ = M1 |M3 for some M3; it follows that M2 = M3 |M′′. By inductive hypothesis, we have that
there exist N1,N3 such that N′ = N1 | N3 and either (a) ΓBM1

m.c!v
−→ N1 and ΓBM3

m.c?v
−→ N3 or (b)

ΓBM1
m.c?v
−→ N1 and ΓBM3

m.c!v
−→ N3. We only consider case (a), as (b) can be proved in a similar way.

In this case, let N2 = N3 |N′′. By an application of Rule (B-PROP) we obtain ΓBM2
m.c?v
−→ N2. Thus

we have ΓBM1
m.c!v
−→ N1, ΓBM2

m.c?v
−→ N2; it remains to check that N = N1 |N2. This is straightforward,

as N = N′ |N′′ = N1 |N3 |N′′ = N1 |N2.

(iii) Suppose ΓBM1 |M2
m.τ
−→N. This case is similar to the one in which ΓBM1 |M2

m.c!v
−→ N; details have been

omitted.

Proof of Proposition 2.4.6 The proof is similar to that of Lemma 2.4.1.
We define a proof system to check whether two system terms are structurally equivalent, and we prove that

it is sound and complete with respect to the relation ≡ for system terms. Then we show that, for any network,
ΓBM,ΓBM′, and ΓBN′ such that M ≡ N, we have that ΓBM

λ
−→M′ iff ΓBN

λ
−→N′ for some N′ such that

M′ ≡ N′.
The proof system we use to prove that M ≡ N is depicted in Figure A.2. Again, we write  M ≡ N if

the statement M ≡ N can be proved in such a proof system. It is straightforward to show that the relation
R = {(M,N) |  M ≡ N} and the structural congruence ≡ are the same relation.

Now we prove that ΓBM
λ
−→M′ and M ≡ N for some M,M′,N, if and only if ΓBN

λ
−→N′ for some N′

such that M′ ≡ N′. We proceed by structural induction on the derivation  M ≡ N; we check only the most
interesting cases.

Suppose the last rule that has been applied in the derivation  M ≡ N is (B-T−PROC). Then M = m~P�,
Nn~Q� for some node m and processes P,Q such that P ≡ Q. Suppose ΓBM

λ
−→M′. We perform a case

analysis on the last rule applied on the proof of this transition.
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(S-T−REFL)

M ≡ N
M = N

(S-T−SYMM)

M ≡ N

N ≡ M

(S-T−PROC)

P ≡ Q

m~P� ≡ m~Q�

(S-T−ZERO)

M ≡ M |0

(S-T−COMM)

M |N ≡ N |M

(S-T−PAR)

M ≡ N

M |L ≡ N |L

(S-T−TRANS)

M ≡ L L ≡ N

M ≡ N

Figure A.2: Proof system to check structural congruence between system terms

If Rule (B-BROAD) has been applied, then λ = m.c!v for some channel c and value v. Further, we have that
P

c!v
−→R for some process R and M′ = m~R�. By Lemma 2.4.1 we also have that Q

c!v
−→R; by an application of

Rule (B-BROAD) we can infer ΓBN
m.c!v
−→ m~R�.

If Rule (B-REC) has been applied, then λ = n.c?v for some channel c, value v and node n such that Γ ` m← n.
Further, P

c?v
−→R for some process R, and M′ = m~R�. By Lemma 2.4.1 we have that Q

c?v
−→R; now we can apply

Rule (B-REC) to the last transition to infer ΓBN
n.c?v
−→m~R�.

Let us look at the case in which the last rule applied in the proof of ΓBM
λ
−→M′ is Rule (B-DEAF). In this

case λ = n.c?v for some node n, channel c and value v. Further, the predicate rcv(M,c) is false, and M′ = M.
Also, as M R N, we have M ≡ N, so that the predicate rcv(N,c) Thus, we can apply Rule (B-DEAD) to obtain
ΓBN

n.c?v
−→ N. Now it remains to check that N ≡ M, which follows by hypothesis.

The last case we need to check is that in which the last rule applied in the proof of the transition ΓBM
λ
−→M′

is Rule (B-DISC). In this case, λ = n.c?v for some node n, channel c and value v such that Γ ` m8 n. Further,
M′ = M. Now we can apply Rule (B-DIST) to ΓBN to infer ΓBN

n.c?v
−→ N. Again, we have that M ≡ N by

hypothesis.

Suppose now that the last rule applied in the proof system of Figure A.2 to prove M ≡N is Rule (S-T−ZERO).
Then N = M |0. First suppose ΓBM

λ
−→M′; we prove that ΓBM |0

λ
−→M′ |0 by performing a case analysis on

λ. After we have proved this, it remains to show that M′ ≡ M′ |0, which is straightforward by Definition 2.1.3
(2). Consider then the case where λ = m.τ for some m. An immediate application of Rule (B-τ− PROP−L) to
the transition ΓBM

m.τ
−→M′allows us to infer ΓBM |0

m.τ
−→M′ |0. If λ= m.c?v, recall that ΓB0

m.c?v
−→ 0 for any node

m, channel c and value v. Thus, we can apply Rule (B-PROP) to the last transition and to ΓBM
m.c?v
−→ M′ to infer

ΓBM |0
m.c?v
−→ΓBM′ |0. Finally, consider the case in which λ = m.c!v. Here we can apply Rule (B-SYNC−L) to

the transitions ΓBM
m.c!v
−→ M′ and ΓB0

m.c?v
−→ 0 to obtain ΓBM |0

m.c!v
−→ΓBM′ |0.

Now, suppose ΓBM |0
λ
−→N′. We perform a case analysis on λ to show that N′ = M′ |0 for some M′ such that

ΓBM
λ
−→M′. Then it remains to notice that M′ ≡ M′ |M′ |0, which is straightforward from Definition 2.1.3(2).

Consider first the case λ = τ. By Lemma 2.4.5 (iii) we have that either (a) ΓBM
m.τ
−→M′ for some M′ such that

N′ = M′ |0, or (b) ΓB0
m.τ
−→M′′ for some M′′ such that N′ = M′ |M′′. Case (a) is trivial, while it is impossible

for (b) to hold; in fact, we have that ΓB0
m.τ
−→ for any node m. If λ = m.c!v, we can apply Lemma 2.4.5 (ii) to

find that ΓBM
m.c!v
−→M′ for some M′ such that N′ = M′ |0. Note that here, as for in the case λ = τ, the application

of Lemma 2.4.5(ii) leads to two alternatives; however, one of the two cases requires that ΓB0
m.c!v
−→N′′ for some

N′′, which is not possible. The last case to check is the one in which λ = m.c?v. In this case we can apply
Lemma 2.4.5(i) to infer ΓBM

m.c?v
−→ M′ for some M′ such that N′ = M′ |0.

The last case we check is that in which Rule (S-T− COMP) is the last rule applied in the derivation M ≡ N.
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In this case we have that M = M1 |L, N = N1 |L for some M1,N1,L such that M1 ≡ N1. Suppose ΓBM1 |L
λ
−→M′.

We show that ΓBN1 |L
λ
−→N′, for some N′ such that M′ ≡ N′, by performing a case analysis on λ.

If λ = m.τ for some m we obtain, by an application of Lemma 2.4.5(iii) that either

1. ΓBM1
m.τ
−→M′1 for some M1 such that M′ = M′1 |L, or

2. ΓBL
m.τ
−→L′ for some L′ such that M′ = M1 |L

Let us consider the first case. By inductive hypothesis we have that ΓBN1
m.τ
−→ΓBN′1 for some N′1 such that

M′1 ≡ N′1. By an application of rule (B-τ− PROP−L) we can infer ΓBN1 | L ≡ ΓBN′1 | L. As M′1 ≡ N′1, we can
apply Rule (S-T− COMP) to the derivation  M′1 ≡ N′1 to obtain M′1 |L ≡ N′1 |L.
We now turn our attention to the second case: here we have that Γ B L

m.τ
−→ L′. An application of Rule

(B-τ− PROP−R) allows us to infer ΓBN1 | L
m.τ
−→ ΓBN1 | L′. Now it suffices to apply Rule (S-T− COMP) to

the derivation  M1 ≡ N1 to obtain M1 |L′ ≡ N1 |L′.
Now we consider the case in which λ = m.c!v. Again, since ΓBM1 |L

m.c!v
−→ M′, we have two possible cases as a

consequence of Lemma 2.4.5 (ii)

1. ΓBM1
m.c!v
−→ M′1, ΓBL

m.c?v
−→ L′, and M′ = M′1 |L

′, or

2. ΓBM1
m.c?v
−→ M′1, ΓBL

m.c!v
−→ L′, and M′ = M′1 |L

′

These two cases have to be analysed separately; in a way similar to that for the case λ = m.τ, it can be proved
that ΓBN1 | L

m.c!v
−→ N′1 | L

′, from which it is trivial to show M′1 | L
′ ≡ N′1 | L

′ (recall that M′1 ≡ N′1). The last case

we need to consider is the one in which ΓBM1 |L
m.c?v
−→ M′; this case is analogous to the previous ones, this time

using Lemma 2.4.5(i).

Proof of Proposition 2.4.7 The only if implication is easy. For the if implication, we perform a Rule Induc-
tion on the proof of the transition ΓBM

m.c!v
−→ M′.

If the last rule applied to infer ΓBM
m.c!v
−→M′ is (B-BROAD), then M = m~P′� for some P′ such that P′

c!v
−→P′′.

By Lemma 2.4.3 there exist an expression e and a process Q′ such that ~e� = v and P′ ≡ c!〈e〉 .P′′ + Q′; thus,
if we let P = P′′, Q = Q′, we obtain M ≡ m~c!〈e〉 .P + Q� |0. This is done by first applying constraint (i), then
constraint (ii) of Definition 2.1.3 to ΓBm~P′�. (2). It remains to show that ΓBm~c!〈e〉 .P + Q� | 0

m.c!v
−→ΓB

m~P� |N′ for some N′. To this end, let N′ = 0. By lemma 2.4.3 we have that c!〈e〉 .P + Q
c!v
−→ P (recall that

~e� = v); thus, by an application of Rule (B-BROAD) we have m~c!〈e〉 .P + Q�
m.c!v
−→ m~P�; further, Γ0

m.c?v
−→ 0 by

Rule (B-0). Finally, we can apply (B-SYNC−L) to infer ΓBm~c!〈e〉 .P + Q� |0
m.c!v
−→m~P� |0.

Suppose now the last Rule applied in the proof of the transition Γ BM
m.c!v
−→ N is (B-SYNC−L). Thus

we have M = M1 |M2 for some M1,M2 such that ΓBM1
m.c!v
−→ N1 and ΓBM2

m.c?v
−→ N2 for some N1,N2 such

that N = N1 | N2. By inductive hypothesis, we have that M1 ≡ m~c!〈e〉 .P + Q� |M′ for some expression e,
processes P,Q and system terms M′,N′ such that ~e� = v, ΓBM′

m.c?v
−→ N′ and N1 ≡ ΓBm~P� |N′. It is easy

now to check that M ≡ m~c!〈e〉 .P + Q� | (M′ |M2). Also, we have N ≡ m~P� | (N′ |N2). It remains to show
that ΓBM′ |M2

m.c?v
−→ N′ |N2. This can be done by applying Rule (B-PROP) to the transitions ΓBM′

m.c?v
−→ N′ and

ΓBM2
m.c?v
−→ N2.

The last case to consider is that in which the last rule applied in the proof of the transition ΓBM
m.c!v
−→ N is

(B-SYNC−R). This case is analogous to the previous one.

Proof of Proposition 2.4.9 The only if implication is easy. For the if implication, we proceed by Rule
Induction on the proof of the transition ΓBM

m.c?v
−→ N. We show that, whenever ΓBM

m.c?v
−→ N, requirements

(i)-(vi) stated in Proposition 2.4.9 are satisfied.

Suppose the last rule applied in the proof of the transition above is Rule (B-REC). Then we have that
M = n~P�, N = n~P′� for some n,P,P′ such that Γ `m→ n and P

c?v
−→P′. By definition of well formed network

(Definition 2.1.1) we have that m , n, so that Requirement (ii) is met. By Lemma 2.4.4 we also have that
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P = c?v.P′′ + Q for some process Q such that P′ = {v/x}P′′. Further, let I be the index set {1} and let n1 = n,
P1 = P′′, Q1 = Q. Let also M1 = 0, M2 = 0. By Definition 2.1.3(2) we have that M ≡ n1~c?v.P1 + Q1� |M1 |M2,
so that Requirement (i) is met. Further, as Γ ` m→ n1 and I is the singleton set {1}, requirement (iii) is also
met. As M1 = 0, N1 = 0, it is trivial to show that requirements (iv) and (v) are also satisfied. It remains to
show that Requirement (vi) is satisfied, that is N ≡ n1~P1� |M1 |N1. As P1 = P′, n1 = n, we already know that
N = n1~P1�. Now a trivial application of Definition 2.1.3(2), together with the definitions M1 = 0, N1 = 0, leads
to N ≡ n1~{v/x}P1� |M1 |N1.

If the last rule applied to infer ΓBM
m.c?v
−→ N is Rule (B-DEAF), then we have M = N = n~P� for some process

P and node n such that ¬rcv(P,c). Also, we have Γ ` m→ n, so that by definition of well formed network it
follows m , n. This shows that Requirement (ii) is met. Let now I = ∅, M1 = M and M2 = 0. We already argued
that the predicate rcv(M1,c) is false, so that Requirement (iv) is satisfied. Also, as M2 = 0, it is straightforward
to check that Requirement (v) is met also. As the set {ni}i∈I is empty, it is trivial to show that, for any i ∈ ∅,
Γ ` m→ ni. Now, recall that we have

∏
i∈∅Ni = 0, where {Ni}i∈∅ is an empty collection of system terms. it is

straightforward to prove M ≡
∏

i∈I ni~c?〈x〉 .Pi + Qi� |M1 |M2, and N ≡
∏

i∈I ni~{v/x}Pi� |M1 |M2; these two
equivalences prove that requirements (i) and (vi) are also satisfied.

Suppose that the last rule applied in the proof of the transition ΓBM
m.c?v
−→ N is (B-DISC). Again, we have

that M = N = n~P� for some node n. Further, the side conditions of Rule (B-DISC) ensure that m , n, so that
Requirement (ii) is met, and that Γ ` m9 n. Let I = ∅, M1 = 0 and M2 = M. Note that nodes(M2) = {n},
and since Γ ` m 9 n requirement (v) is met. In a way similar as the case above, we can show that M ≡∏

i∈I ni~c?(x) .Pi + Qi� |M1 |M2 (as for in the case of Rule (B-DEAF), the collections {Pi}i∈I , {Qi}i∈I and {ni}i∈I

are empty), while N ≡
∏

i∈I ni~{v/x}Pi� |M1 |M2, and requirements (i) and (vi) are satisfied. Finally, it is trivial
to show that requirements (iii), (iv) and (v) are met.

The last case we need to check is that in which the last rule applied in the proof of ΓBM
m.c?v
−→ N is Rule

(B-PROP). In this case we have that M = M′ |M′ and N = N′ |N′′ for some M′,M′′,N′ and N′′ such that

ΓBM′
m.c?v
−→ N′

ΓBM′′
m.c?v
−→ N′′

By inductive hypothesis, we have that there exist two finite index sets J,K, collections of processes {P j} j∈J ,
{Q j} j∈J , {Pk}k∈K , {Qk}k∈K and system terms M′1,M

′′
1 ,M

′
2,M

′′
2 such that

1. M1 ≡
∏

j∈J n j~c?(x) .P j + Q j� |M′1 |M
′
2 and

M2 ≡
∏

k∈K nk~c?(x) .Pk + Qk� |M′′1 |M
′′
2

2. m < nodes(M′),m < nodes(M′)

3. for each j ∈ J Γ ` m→ n j, and for every k ∈ K, Γ ` m→ nk

4. ¬rcv(M′1,c), ¬rcv(M′2,c)

5. for any n ∈ nodes(M′′1 ),Γ ` m9 n, and for any n ∈ nodes(M′′2 ),Γ ` m9 n

6. N1 ≡
∏

j∈J n j~{v/x}P j� |M′1 |M
′
2, while

N2 ≡
∏

k∈K nk~{v/x}Pk� |M′2 |M
′′
2

Without loss of generality, we can assume that the sets J and K are disjoint. Let I = J ∪K, M1 = M′1 |M
′′
1 ,

M2 = M′2 |M
′′
2 Now, we show that requirements (i)-(vi) of the statement are met by M and N.

(i) M ≡
∏

i∈I ni~c?(x) .Pi + Qi� |M1 |M2: This follows from (1) above and Definition 2.1.3(2)

(ii) m < nodes(M). Recall that M = M′ |M′′; as m < nodes(M′) and m < nodes(M′′), we also have m <

nodes(M′)∪nodes(M′′) = nodes(M′ |M′′) = nodes(M)
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(iii) for any i ∈ I,Γ `m→ ni: let i ∈ I; then either i ∈ J or i ∈ K. If i ∈ J, then Γ `m→ ni is a direct consequence
of (3) above. Similarly, if i ∈ K, again by (3) above Γ ` m→ ni

(iv) , rcv(M1,c): suppose this statement is not true. Then, we have M1 ≡ n~c?(x) .P+Q� |L for some processes
P,Q, node n and system term L. Since M1 = M′1 |M

′′
1 , either M′1 ≡ n~c?(x) .P + Q� | L′ for some system

term L′ or M′′1 ≡ n~c?(x) .P + Q� | L′′ for some system term L′′. Suppose that the first case holds. Then
we have rcv(M′1,c) = true, which contradicts (4) above. In an analogous way, if the second case holds we
have rcv(M′′1 ,c) = true, which again contradicts (4) above. Therefore we have ¬rcv(M1,c)

(v) for any n ∈ nodes(M2),Γ ` m9 n: recall that M2 = M′2 |M
′′
2 , from which it follows

nodes(M2) = nodes(M′2)∪ nodes(M′′2 ). By (5) above, we have that whenever n ∈ nodes(M′2),Γ ` m9 n,
and whenever n ∈ nodes(M′′2 ), Γ ` m9 n. Thus, for any n ∈ nodes(M′2∪M′′2 ), we have Γ ` m9 n

(vi) N ≡ ni~{v/x}Pi� |M1 |M2: this follows again from Definition 2.1.3(2) and (6) above.

A.2 Algebraic properties of CNets

Proof of Lemma 3.2.1 We only prove the first statement, as the others are similar. LetM = ΓM BM, N =

ΓN BN, and suppose thatM‖>N is defined.

We prove the two inclusions separately; first we prove that

(Input(M)∪ Input(N)) \nodes(N) ⊆ Input(M‖>N)

To this end, let m ∈ (Input(M)∪ Input(N)) \ nodes(N). We need to show that m ∈ Input(M‖>N). As
M ‖>N = (ΓM ∪ΓN)B (M |N), this is equivalent to show that (ΓM ∪ΓN) ` M |N← m.

We have two possible cases:

(a) ΓM ` M← m and m < nodes(N). By definition (recall that a node in Input(M) is also included in Int(M))
m < nodes(M) and ΓM ` n← m for some n ∈ nodes(M). In particular, m < nodes(M |N), and (ΓM ∪ΓN) `
n← m, with n ∈ nodes(M |N). Therefore, (ΓM ∪ΓN) ` M |N← m

(b) ΓN ` N← m. By definition, m < nodes(N); further, there exists n ∈ nodes(N) such that ΓN ` n← m.

Since m ∈ (ΓN)V andM ‖>N is defined, it holds m < nodes(M). Thus, m < nodes(M |N) and (ΓM ∪ΓN) `
n← m; by definition (ΓM ∪ΓN) ` M |N← m.

Now we turn our attention to the opposite inclusion; that is, we want to show that

Input(M‖>N) ⊆ (Input(M)∪ Input(N)) \nodes(N)

Let then m be a node such that (ΓM ∪ΓN) ` M |N ← m. That is, m < nodes(M), m < nodes(N), and there
exists n ∈ nodes(M |N) such that (ΓM ∪ΓN) ` n← m. There are two possibilities:

(a) n ∈ nodes(M). SinceM ‖> N is defined, we have that ΓN 0 n. This implies that ΓN ` n8 m; since (ΓM ∪

ΓN) ` n← m, we have that Γm ` n← m. Since m < nodes(M), this leads to ΓM ` M← m, or equivalently
m ∈ Input(M); also, since m < nodes(N) we have that m ∈ Input(M)\nodes(N)

(b) n ∈ nodes(N). Since N is composable, and therefore well-formed, ΓN ` n. For M ‖> N is defined, we
have n < nodes(M). Hence, it has to be n ∈ nodes(N). Also, since m < nodes(M), n < nodes(M), we have
ΓM ` n8 m. This is because the network M is composable by hypothesis. Since (ΓM ∪ΓN) ` n← m, it
has necessarily to be ΓN ` n← m. By hypothesis n ∈ nodes(N), and we already noticed that m < nodes(N).
Therefore, m ∈ Input(N), from which it follows m ∈ (Input(M)∪ Input(N)) \nodes(N).
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Proof of Proposition 3.2.3 It is sufficient to check that Pe(M,N) = true and Pe((M ‖> N),L) = true, iff
Pe(N ,L) = true and Pe(M, (N ‖> L)) = true. To this end, letM = ΓM BM, N = ΓN BN and L = ΓL B L. We
prove the two implications separately.

Suppose Pe(M,N) = true and Pe((M‖>N),L) = true. By definition of Pe we have

(nodes(M)∩ (ΓN)V ) = ∅ (A.1)

(nodes(M |N)∩ (ΓL)V ) = ∅ (A.2)

We want to show that nodes(N)∩ (ΓL)V = ∅, and nodes(M)∩ (ΓN ∪ ΓL)V = ∅. The former statement is a
straightforward consequence of Equation (A.2). The latter can be proved as follows: let m ∈ nodes(M). By
Equation (A.1) we have that ΓN 0m, so that it remains to show ΓL 0m. This is a trivial consequence of Equation
(A.2); in fact, as m ∈ nodes(M), we also have m ∈ nodes(M |N), and therefore ΓL 0 m.

Now suppose that Pe(N ,L) = true and Pe(M, (N ‖>N)) = true. By definition we have

(nodes(N)∩ (ΓL)V ) = ∅ (A.3)

nodes(M)∩ (ΓN ∪ΓL)V = ∅ (A.4)

We need to show that nodes(M)∩ (ΓN)V = ∅, and nodes(M | N)∩ (ΓL)V = ∅. The first statement is an
immediate consequence of Equation (A.4), by noticing that (ΓN)V ⊆ (ΓN ∪ ΓL)V . For the second statement,
let m be a node such that ΓL ` m. By Equation (A.3) we have that m < nodes(M). Also, by Equation (A.4) it
holds that m < nodes(M); in fact, since ΓL ` m, we also have ΓN ∪ΓL ` m, and therefore m < nodes(M). Since
m < nodes(M) and m < nodes(N), we also have that m < nodes(M |N), as we wanted to prove.

Proof of Theorem 3.2.6(1) Let M = ΓM BM be a composable network such that M ≡ m~P� |N for some
node m, process P and system term N. We have to show that the network G = ΓG Bm~P�, where ΓG is defined
by

(ΓG)V = {m}∪ {n ∈ Int(ΓM BM) | ΓM ` m� n} (A.5)

(ΓG)E = {(m′,n) ∈ (ΓG)V | ΓM ` m′→ n} (A.6)

is a generating network. First note that |nodes(m~P�)| = 1, so that it suffices to show that G is composable. To
this end, we show that G satisfies all the requirements of Definition 3.1.3.

1. ΓG Bm~P� is well formed. This is trivial; in fact the system term m~P� ∈ sSys, as it has only one
node with code associated. Further, nodes(m~P�) = {m}, and ΓG ` m by Equation (A.5). It follows that
nodes(m~P�) ⊆ (ΓG)V .

2. Whenever ΓG ` n→ l for some nodes n, l, then either n ∈ nodes(m~P�) or l ∈ nodes(m~P�). Equivalently,
we prove that whenever ΓG ` n→ l for some nodes n, l, then either n = m or l = m.

By Equation (A.6) we have that, whenever ΓG ` n→ l, then (ΓG)V ` n and (ΓG)V ` l. By Equation A.5 we
have that either n = m or n ∈ Int(ΓM BM) and ΓM ` m� n. If n = m, there is nothing to prove.

Let then n ∈ Int(ΓM BM). By applying Equation A.5, this time to node l, we have that either l = m or
l ∈ Int(ΓM BM) with ΓM ` l� m. Again, in the former case there is nothing to prove, so suppose that
l ∈ Int(ΓM). By hypothesis we have that ΓG ` n→ l. By Equation (A.6) it follows that (ΓG)E ⊆ (ΓM)E , so
that we also know that ΓM ` n→ l. For ΓM BM is a composable network, then either n ∈ nodes(M) or
l ∈ nodes(M). Without loss of generality, let n ∈ nodes(M). We can show that n = m. In fact, recall that
ΓG ` n. Thus, either n = m, or n ∈ Int(ΓM BM); again, this follows from Equation (A.5). But we already
know that n ∈ nodes(M), so that the second case is not possible. Thus, the only possible case is n = m.

3. Whenever n ∈ Int(ΓG B P~)�m, then ΓG ` m� n. If n ∈ Int(ΓG B P~)�m, then n ∈ Int(ΓM BM); this is a
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direct consequence of Equation A.5 and the fact that n , m (note that n < nodes(m~P�)). We need to
show that ΓG ` m� n.

To this end, let l be a node such that ΓG ` n� l. We show that l = m. By Equation (A.6) we have that
ΓM ` n� l. Since n ∈ Int(ΓM BM), and ΓM BM is a composable network, we have that l ∈ nodes(M).
Since ΓG ` l, by Equation (A.5) we have that either l ∈ Int(ΓM BM) or l = m. The former case is not
possible, as we already proved that l ∈ nodes(M). Thus it has to be l = m.

Proof of Theorem 3.2.6(2) Let M = ΓM BM be a composable network such that M ≡ m~P� |N for some
process P, node m and system term N. Let now ΓN be defined by the equations below

(ΓN)V = nodes(N)∪{n ΓM ` m′� n for some m′ ∈ nodes(N)} (A.7)

(ΓN)E = (ΓM)E \ (ΓG)E (A.8)

where (ΓG)E has been defined in Equation A.6. We have to show that the network N = ΓN BN is com-
posable. To this end, it is sufficient to show that the network N satisfies all the requirements of Definition
(3.1.3).

1. ΓN BN is well-formed. First note that N ∈ sSys. In fact, by hypothesis we already know that M ∈ sSys,
and since M ≡ m~P� |N, it follows that no node name in N appears more than once.

It remains to show that nodes(N) ⊆ (ΓN)V . But this is a straight consequence of Equation (A.7).

2. Whenever ΓN ` n→ l for some nodes n and l, then either n ∈ nodes(N) or l ∈ nodes(N).

Let n, l be two nodes such that ΓN ` n→ l. By Equation (A.8) it follows that n, l ∈ (ΓN)V , and ΓM ` n→ l.
Since ΓM is a composable network, we have that either n ∈ nodes(M) or l ∈ nodes(M).

We only consider the case in which n ∈ nodes(M), as the case l ∈ nodes(M) is symmetric. Since M ≡

m~P� |N, we have that either n = m or n ∈ nodes(N). In the latter case there is nothing to prove, while in
the former we can perform a case analysis on node l.

For this node, in fact, we have either l ∈ nodes(M) or l ∈ Int(M). If l ∈ nodes(M), then l , m, since from
this it would follow ΓM ` m→ m, which is not allowed. Since l , m, l ∈ nodes(M) and M ≡ m~P� |N, it
has to be l ∈ nodes(N).

The case in which l ∈ Int(M) is not possible. In fact, in this case we would have ΓM ` m→ l, with
l ∈ Int(M). However, by Equation (A.6) it also follows ΓG ` m→ l. Now we have ΓN ` m→ l and
ΓG ` m→ l, which contradicts Equation (A.6).

Proof of Theorem 3.2.6(4) Let M = ΓM BM be a composable network such that M ≡ m~P� |N for some
process P, node m and system term N. Let alsoN = ΓN BN, G = ΓG Bm~P�, where ΓN is defined by equations
(A.7)- (A.8) and ΓG by equations (A.5)-(A.6).

We need to show that (ΓN)V ∪ (ΓG)V = (ΓM)V and (ΓN)E ∪ (ΓG)E = (ΓM)E . The second statement follows
directly from Equation (A.8).

For the first statement, it is trivial to prove that (ΓN)V ∪ (ΓG)V ⊆ (ΓM)V ; in fact, by Equation (A.7) we have
(ΓN)V ⊆ (ΓM)V , while by Equation (A.5) it follows (ΓG)V ⊆ (ΓM)V .

It remains to show that (ΓM)V ⊆ (ΓN)V ∪ (ΓG)V . To this end, suppose ΓM ` n. Then either n ∈ nodes(M) or
n ∈ Int(M). In the first case we perform a case analysis on n. If n = m then ΓG ` n by Equation (A.5); If n , m

then n ∈ nodes(N), and therefore ΓN ` n by Equation (A.6).
Consider now the case in which n ∈ Int(M). Since M is a composable network, there exists a node l ∈

nodes(M) such that ΓM ` n� l. In this case we perform a case analysis on l.
If l = m, then we have that ΓG ` n by Equation (A.5). If l , m, then l ∈ nodes(N). Thus, by Equation (A.7), we
obtain ΓN ` n.

We have proved that whenever ΓM ` n, then either ΓG ` N or ΓN ` n; therefore, (ΓM)V ⊆ (ΓG)V ∪ (ΓN)V .
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A.3 Properties of Extensional Actions

Proof of Proposition 4.1.4 LetM,N be networks, and supposeM = ΓBM for some network connectivity
Γ and M ∈ tSys.

For the first statement, supposeM_N . By Theorem 2.4.10 we have that either

1. M
m.τ
−→N ′ for some node m and network N ′ such that N ′ ≡ N . By Definition 4.1.3(1) it follows that

M
τ
7−−→N ′.

2. M
m.c!v
−→N ′ for some node m, channel c, value v and networkN ′ such thatN ′ ≡N . We have two possible

sub-cases:

• {n ∈Output(ΓBM) | Γ `m→ n } = ∅; in this case we can apply Definition 4.1.3(1) to obtainM
τ
7−−→

N ′

• {n ∈ Output(ΓBM) | Γ ` m→ n } , ∅. Let the former set be denoted by η; in this case we have that

M
c!vBη
7−−−−−−→ as a direct consequence of Definition 4.1.3(3)

Let us prove the second statement; supposeM
τ
7−−→N ; by Definition 4.1.3(1) there are two possible cases.

1. M
m.τ
−→N for some node m; in this case the Harmony Theorem ensures thatM_N

2. M
m.c!v
−→N for some node m, channel c and value v such that {n ∈ Output(ΓBM) | Γ ` m→ n } = ∅. Since

we have the broadcast transitionM
m.c!v
−→N , it follows again from the Harmony Theorem thatM_N

It remains to prove the last statement; letM
c!vBη
7−−−−−−→N . In this case we have thatM

m.c!v
−→N for some node

m, channel c and value v such that {n ∈ Output(ΓBM) | Γ ` m→ n } , ∅. By an application of the Harmony
Theorem to the transitionM

m.c!v
−→N we obtainM_N , as we wanted to prove.

Proof of Proposition 4.1.8 The two implications are proved separately.

For the if implication, let c a channel, v a value, k be a strictly positive integer and η1, · · · ,ηk be non-empty
sets of nodes such that for any i, j : i , j,1 ≤ i, j ≤ k,ηi∩η j = ∅. Further, letM,N be two networks such that

M
τ
|===⇒

c!vBη1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N

We show thatM
c!vB

(⋃
j=1kη j

)
|=============⇒N by performing a natural induction on k.

k = 1 In this case we have thatM
τ
|===⇒

c!vBη1
7−−−−−−−→

τ
|===⇒N . By definition 4.1.5(3b) it follows thatM

c!vBη
|======⇒N .

k > 1 Suppose that the statement is true for any j : j ≥ 1, j < k. In particular, for an arbitrary index j < k there
exists a networkM′ such that

M
τ
|===⇒ c!vBη1

τ
|===⇒ ·· ·

τ
|===⇒

c!vBη j
7−−−−−−→

τ
|===⇒M′

M j
τ
7−−→ c!vBη j+1

τ
|===⇒ ·· ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N

By inductive hypothesis it holds thatM
c!vB

(⋃ j
i=1 ηi

)
|============⇒M′,M′

c!vB
(⋃k

i= j+1 ηi

)
|=============⇒N . We show that(⋃ j

i=1 ηi
)
∩

(⋃k
i= j+1 ηi

)
= ∅, from which it follows from Definition 4.1.5(3b) thatM

c!vB
(⋃k

i=1 ηi
)

|============⇒N .

Let m ∈
(⋃ j

i=1 ηi
)
,n ∈

(⋃
i= j+1 ηi

)
. Then there exist an index i′ ≤ j such that m ∈ ηi′ and an index i′′ : i′′ >

j, i ≤ k such that n ∈ ηi′′ . Since i′ , i′′, it follows that ηi′ ∩ηi′′ = ∅, hence m , n. For we chose the nodes
m,n arbitrarily, we obtain that

(⋃ j
i=1 ηi

)
∩

(⋃k
i= j+1 ηi

)
= ∅, as we wanted to prove.
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Now we prove the only if implication. Suppose thatM
c!vBη
|======⇒N for some non-empty set of nodes η. We

prove that

M
τ
|===⇒

c!vBη1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N

for some index k ≥ 1, and collection of pairwise disjoint, non-empty sets of nodes {ηi}
k
i=1 such that

⋃k
i=1 ηi = η;

this is done by performing an induction on the proof of the TransitionM
c!vBη
|======⇒N .

Base Case M
τ
|===⇒

c!vBη
7−−−−−−→

τ
|===⇒N .

In this case it is sufficient to choose k = 1, η1 = η; the statement follows from Definition 4.1.5(3b).

Inductive Step M
c!vBη′

|=======⇒M′
c!vBη′′

|=======⇒N for some network M′, non-empty set of nodes η′,η′′ such that
η′∩η′′ = ∅, η′∪η′′ = η.

By Inductive hypothesis there exist two indexes k′,k′′ and two collections of pairwise disjoint, non-empty
sets of nodes {η′i }

k′
i=1, {η′′i }

k′′
i=1 such that η′ =

⋃k′
i=1 η

′
i , η
′′ =

⋃k′′
i=1 η

′′
1 . Further,

M
τ
|===⇒

c!vBη′1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBη′k′
7−−−−−−−→

τ
|===⇒M′

M′
τ
|===⇒

c!vBη′′1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBη′′k′′
7−−−−−−−−→

τ
|===⇒N

Let k = k′+ k′′, for any i ≤ k′,ηi = η′i and for any i : k′ < i ≤ k′′,ηi = η′′i−k′ . Then we have that

k⋃
i=1

ηi =

⋃
i=1

k′ηi

∪
⋃

i=1

k′′ηi−k′


=

 k′⋃
i=1

η′

∪
 k′′⋃

i=1

η′′i


= η′∪η′′ = η

Further we also have that

M
τ
|===⇒

c!vBη1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N

It remains to show that all the sets in the collection {ηi}i=1,k are disjoint. To this end, let j, j′ be two indexes
such that 1 ≤ j′, j′′ ≤ k, j′ , j′′. If j′, j′′ ≤ k′, then it holds that η j′ = η′j′ , η j′′ = η′j′′ , and η′j′ ∩η

′
j′′ = ∅ by

inductive hypothesis. Similarly, if k′ < j′, j′′ ≤ k′′, then η j′ = η
′′
j′−k′ , η j′′ = η

′′
j′′−k′ , and since j′−k′ , j′′−k′

it follows by inductive hypothesis that η′′j′−k′ ∩η
′′
j′′−k′ = ∅.

The last case we need to check is the one in which j′ ≤ k′, k′ < j′′ < k′′. Then η j′ = η′j′ , η j′′ = η′′j′′−k′ .
For any nodes m ∈ η j′ ,n ∈ nodes(η j′′ ), we obtain that m ∈

⋃k′
i=1 η

′
i = η′, n ∈

⋃k′′
i=1 η

′′
i = η′′. For η′∩η′′ = ∅

by hypothesis, it follows that m , n. Since we chose the nodes m,n arbitrarily in the sets η j′ , η j′′ ,
respectively, it follows that η j′ ∩η j′′ = ∅, as we wanted to prove.

Proof of Proposition 4.2.3 The two statements are proved separately. Let M = ΓM BM,N = ΓN B N be
networks. We need to show the following:

(i) symM(N) is a network. To prove this statement, it suffices to show that symM(N) satisfies all the re-
quirements of composable networks, Definition 3.1.3, by showing that N ∈ tSys rather than N ∈ sSys. In
the proof below, recall that symM(N) = Γ′N BN, where Γ′N is defined according to the equations (4.1) and
(4.2).

• Γ′N BN is well-formed. We already know that N ∈ tSys, for ΓN BN is a network by hypothesis.
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Suppose that Γ′N `m→ n; we need to show that m, n. By Equation 4.2 we have that either ΓN `m, n

or ΓM `m , n. Since ΓM BM an ΓN BN are composable networks, in both cases it holds that m , n.

Finally, let n ∈ nodes(N); we need to show that Γ′N ` n. This is trivial; by Equation 4.1 it follows that
(ΓN)V ⊆ (Γ′N)V . Since ΓNBN is a composable network, if n ∈ nodes(N) then ΓN ` n, and consequently
Γ′N ` n.

• Suppose that Γ′N `m→ n. We need to show that either m ∈ nodes(N) or n ∈ nodes(N). According to
Equation 4.1 we have three possible cases:

– ΓN ` m→ n; since ΓN BN is a composable network, it holds that either m ∈ nodes(N) or n ∈

nodes(N)

– ΓM ` m→ n, with m ∈ nodes(N); in this case there is nothing to prove

– ΓM ` m→ n, with n ∈ nodes(N); again, in this case there is nothing to prove

• If m ∈ Int(Γ′N BN), then there exists n ∈ nodes(N) such that Γ′N ` m� n. Since m ∈ Int(Γ′N BN), we
have that m < nodes(N), and Γ′N ` m. By Equation 4.1 there are two possible scenarios:

– ΓN ` m. Then m ∈ Int(ΓN BN) (recall that m < nodes(N)). For ΓN BN is a composable network,
there exist n ∈ nodes(N) such that ΓN ` m� n. By Equation 4.2 it follows that (ΓN)E ⊆ (Γ′N)E ,
so that we also have Γ′N ` m� n.

– ΓM ` m� n for some n ∈ nodes(N). By Equation 4.2 it follows immediately that Γ′N ` m� n.

(ii) extM(N) is a composable network. Again, we need to check that this network satisfies the conditions
satisfied by composable networks, where the constraint N ∈ sSys is replaced with N ∈ tSys. Recall that
extM(N) = Γ′′N BN, where Γ′′N is defined by equations (4.3) and (4.4)

• Γ′′N is well-formed. We already know that N ∈ tSys, since ΓN BN is a composable network.

By Equation (4.4) it follows that (Γ′′N)E ⊆ (ΓN)E . Thus, if Γ′′N ` m→ n, we have that ΓN ` m→ n.
Since ΓN BN is a composable network, it follows that m , n.

It remains to prove that nodes(N) ⊆ (Γ′′N)V . Recall that we are assuming that nodes(N)∩nodes(M) =

∅. If m ∈ nodes(N), then ΓN `m. Again this is because ΓBN is a composable network by hypothesis.
For nodes(N)∩nodes(M) = ∅, we also have m ∈ (ΓN \nodes(M)), the latter set being exactly (Γ′′N)V

by Equation (4.3).

• Whenever Γ′′N ` m→ n, then either m ∈ nodes(N) or n ∈ nodes(N).

Suppose that Γ′′N ` m→ n for some nodes m,n. By Equation (4.4) it is immediate to notice that
(Γ′′N)E ⊆ (ΓN)E , so that ΓN `m→ n. Since ΓN BN is a composable network, then either m ∈ nodes(N)
or n ∈ nodes(N).

• If m ∈ Int(Γ′′N BN), then there exists n ∈ nodes(N) such that Γ′′N ` m� n.

Let m ∈ Int(Γ′′NBN). Then m < nodes(N) and Γ′′N `m. By Equation (4.3) it follows that (Γ′′N)V ⊆ (ΓN)V ,
hence ΓN ` N. Now we have that m ∈ Int(ΓN BN), since m < nodes(N). Since ΓN BN is a composable
network, there exists a node n ∈ nodes(N) such that ΓN ` m� n. We prove that Γ′′N ` m→ n. For
Γ′′N ` m, Γ′′N ` n (the latter being an immediate consequence of n ∈ nodes(N)), by Equation (4.4) it
follows Γ′′N ` m→ n, as we wanted to prove.

Proof of Proposition 4.2.4 The two statements are proved separately.

(i) Let M = ΓM BM, N = ΓN B N be two composable networks such that (ΓN)V ∩ nodes(M) = ∅. Then
symM(N) = Γ′N BN, where Γ′N is the connectivity graph defined according to equations (4.1) and (4.2).
Further, let extM(symM(N)) = extM(Γ′N BN) = Γ′′N BN, where Γ′′N is defined by equations (4.3) and (4.4).

To prove that ΓN BN = Γ′′N BN it is sufficient to show that (ΓN)V = (Γ′′N)V , and (ΓN)E = (Γ′′N)E . We proceed
by proving these two statements separately.
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• (ΓN)V = (Γ′′N)V . We first prove that (ΓN)V ⊆ (Γ′′N)V , then we show that (Γ′′N)V ⊆ (ΓN)V .

Let m be a node such that ΓN ` m. We show that Γ′′N ` m, Since we are assuming that (ΓN)V ∩

nodes(M) = ∅, it follows that m < nodes(M). By Equation (4.1) it holds that (ΓN)V ⊆ (Γ′N)V , hence
Γ′N ` m. For m < nodes(M), we also have that m ∈ (Γ′N) \ nodes(M); by Equation (4.3) the last set
is exactly Γ′′N , thus Γ′′N ` m. We have proved that, for any node m, if ΓN ` m then Γ′′N ` m; that is,
(ΓN)V ⊆ (Γ′′N)V .

Now suppose that m is a node such that Γ′′N ` m. We prove that ΓN ` m, thus showing that (Γ′′N)V ⊆

(ΓN)V . Since Γ′′N ` m, it follows by Equation 4.3 that Γ′N ` m and m < nodes(M). By Equation (4.1)
we obtain that either ΓN ` m, in which case there is nothing to prove, or ΓM ` m� n for some
n ∈ nodes(N). However, this last case is not possible.

Suppose in fact that ΓM ` m � n for some n ∈ nodes(N). Since we are assuming that (ΓN) ∩
nodes(M) = ∅, and n ∈ nodes(N), then we obtain than n < nodes(M) (recall that nodes(N) ⊆ (ΓN)V ,
since by hypothesis ΓN BN is a composable network, hence well-formed). Recall that we have al-
ready proved that m < nodes(M). Then, we would have that ΓM ` m� n, where m,n < nodes(M).
This last statement contradicts the assumption that ΓM BM is a composable network. In fact, it
violates Requirement (2) in Definition 3.1.3

• (ΓN)E = (Γ′′N)E . Again, we first show that (ΓN)E ⊆ (Γ′′N)E , then we prove that (Γ′′N)E ⊆ (ΓN)E .

Let m,n be two nodes such that ΓN `m→ n. To prove that (ΓN)E ⊆ (Γ′′N)E it is sufficient to show that
Γ′′N ` m→ n. Since ΓN ` m→ n, it follows that ΓN ` m,n. For (ΓN)V ∩ nodes(M) = ∅, it also holds
that m,n < nodes(M). Now, by Equation (4.2) we obtain that (ΓN)E ⊆ (Γ′N)E , hence Γ′N `m→ n. The
last statement induces that Γ′N ` m,n. For m,n < nodes(M), we have that Γ′′N ` m,n as an immediate
consequence of Equation (4.3). Finally, since Γ′N ` m→ n, Γ′′N ` m,n, Equation (4.4) ensures that
Γ′′N ` m→ n, as we wanted to prove.

Suppose now that Γ′′N ` m→ n for some nodes m,n. We show that ΓN ` m→ n. Since Γ′′N ` m→ n,
by Equation (4.4) it follows that Γ′N `m→ n; further Γ′′N `m,n, hence by Equation 4.3 it follows that
m,n < nodes(M). Since Γ′N ` m→ n, according to Equation 4.2 we have two possible scenarios.

– ΓN ` m→ n, in which case there is nothing to prove.

– ΓM ` m→ n for some n ∈ nodes(N); this case is not possible. In fact, we already proved that
m < nodes(M), n < nodes(M). This contradicts the hypothesis that ΓM BM is a composable
network.

(ii) LetM = ΓM BM,N = ΓN BN, and suppose that Ps(M,N) = true. Then we have that extM(N) = Γ′N BN,
where Γ′N is defined by equations (4.3) and (4.4). Also, we have that symM(extM(N)) = symM(Γ′N BN) =

Γ′′N BN, where Γ′′N is defined according to equations (4.1) and (4.2).

We want to prove that ΓN B N = Γ′′N B N. To this end, it is sufficient to show that (ΓN)V = (Γ′′N)V and
(ΓN)E = (Γ′′N)E . These two statements are proved individually.

• (ΓN)V = (Γ′′N)V . We first show that (ΓN)V ⊆ (Γ′′N)V , then we prove that (Γ′′N)V ⊆ (ΓN)V .

Let m be a node such that ΓN ` m. If we show that Γ′′N ` m, then we obtain as an immediate conse-
quence that (ΓN)V ⊆ (Γ′′N)V . For node m, we have two possible cases:

– m < nodes(M). Since we are assuming that ΓN ` m, it follows immediately from Equation (4.3)
that Γ′N ` m. Further, by Equation (4.1) we have that (Γ′N)V ⊆ (Γ′′N)V , so that Γ′′N ` m also holds.

– m ∈ nodes(M). Recall that, by hypothesis, we have that Ps(ΓNBM,ΓNBN) = true. By definition
of Ps, Definition 3.1.6, it follows that nodes(M)∩ nodes(N) = ∅. Therefore, m ∈ nodes(M)
implies that m < nodes(N).
On the other hand, we are assuming that ΓN ` m. Thus, if m < nodes(N), it has to be n ∈

Int(ΓNBN). Now notice that, in this case, there exists a node n ∈ nodes(N) such that ΓN `m→ n;
this is because, by hypothesis, ΓN BN is a composable network, hence it satisfies Requirement
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(2) in Definition (3.1.3). For we are assuming that Ps(ΓM BM,ΓN BN) = true, and ΓNm→ n

with m ∈ nodes(M), by Definition (3.1.6) it follows that ΓMm→ n. Not it remains to notice that
n ∈ nodes(N), so that by Equation (4.1) we obtain that Γ′′Mm→ n.

Let us prove now that (Γ′′N)V ⊆ (ΓN)V . In this case it is sufficient to prove that, for any node m, Γ′′N `m

implies ΓN ` m.

Let then m be a node such that Γ′′N ` m. By Equation (4.1) we have two possible cases:

– Γ′N ` m. For (ΓN)V ⊆ (Γ′N)V as a simple consequence of Equation (4.3), it follows that ΓN ` m.

– Otherwise there exists a node n ∈ nodes(N) such that ΓM `m→ n. Since Ps(ΓM BM,ΓN BN) =

true, we have that ΓN ` m→ n.

• (ΓN)E = (Γ′′N)E . Again, we first show that (ΓN)E ⊆ (Γ′′N)E , then we prove that (Γ′′N)E ⊆ (ΓN)E .

For the first inclusion, we need to show that whenever ΓN ` m→ n for some nodes m,n, then it also
holds Γ′′N ` m→ n. To this end, let m,n be two nodes such that ΓN ` m→ n. Since ΓN BN is a
composable network by hypothesis, in this case we have that either m ∈ nodes(N) or n ∈ nodes(N).
We consider only the case where n ∈ nodes(N), as the proof for the other case is similar.

Suppose then n ∈ nodes(N). We perform a case analysis on node m:

– m ∈ nodes(M). In this case, we have that ΓM ` m→ n; this is because we are assuming that
ΓN `m→ n and Ps(ΓM BM,ΓN BN) = true. Now it follows by Equation (4.2) that Γ′′N `m→ n.

– m < nodes(M). Recall that we are assuming that Ps(ΓM BM,ΓN B N) = true, from which it
follows nodes(M)∩nodes(N) = ∅. Then, since n ∈ nodes(N), we have n < nodes(M).
Thus, for nodes m,n we have ΓN ` m,n and m,n < nodes(M); by Equation (4.3) we obtain
that Γ′N ` m,n, and by Equation (4.4) it follows that Γ′N ` m→ n. Now it suffices to note that
(Γ′N)E ⊆ (Γ′′N)E as a simple consequence of Equation (4.2) to infer that Γ′′N ` m→ n.

Now we show that (Γ′′N)E ⊆ (ΓN)E . To this end, let m,n be two nodes such that Γ′′N ` m→ n. We
prove that ΓN ` m→ n. By Equation (4.2) we have two possible cases:

– Γ′N ` m→ n. Then, since (Γ′N)E ⊆ (ΓN)E by Equation (4.4), it follows that ΓN ` m→ n, as we
wanted to prove.

– ΓM `m→ n, where either m ∈ nodes(N) or n ∈ nodes(N). We only consider the last case, as the
proof for the first is similar.
If ΓM `m→ n, and n ∈ nodes(N), then it follows immediately that ΓN `m→ n. This is because,
by hypothesis, we have that Ps(ΓM BM,ΓN BN) = true.

Proof of Lemma 4.2.9 The proof is performed by Rule induction on the proof of the transition ΓBM
λ
−→M′.

We only consider the most interesting cases; in each of them, let Γ′ be a connectivity graph which satisfies the
hypothesis stated in the Lemma.

Suppose that the last rule applied in the proof of the transition ΓBM
λ
−→M′ is Rule (B-REC). Then λ= n.c?v

for some channel c, value v and node n. M = m~P� for some node m and processes P,P′ such that Γ ` m← n,
P

c?v
−→ P′; finally, M′ = m~P′�. Since m ∈ nodes(M), and Γ ` m→ n, we have that Γ′ ` m→ n. By a simple

application of Rule (B-REC) we obtain Γ′Bm~P�
n.c?v
−→M′~P�.

If the last rule applied in the proof of ΓBM
λ
−→M′ is Rule (B-DISC), then λ= n.c?v for some node n, channel

c and value v. Further, M = M′ = m~P� for some node m and process P. Further we have that Γ ` m8 n. For
Γ′ ⊆ Γ, then Γ′ ` m8 n; now, by an application of Rule (B-DISC), we obtain that Γ′ Bm~P� = m~P�, as we
wanted to prove.

Finally, suppose the last rule applied in the proof of ΓBM
λ
−→M′ is Rule (B-PROP). Then we have that

λ = n.c?v for some node n, channel c and value v; further, M = M1 |M2, for some system terms M1,M2,M′1 and

M′2 such that ΓBM1
n.c?v
−→M′1, ΓBM2

n.c?v
−→M′2 and M′ = M′1 |M

′
2.

Now let Γ′ be a connectivity graph such that graphs such that Γ′ ⊆ Γ, nodes(M) ⊆ (Γ′)V and whenever
Γ ` m→ n, with either m ∈ nodes(M) or n ∈ nodes(M), then Γ′ ` m→ n. In this case it is trivial to show that
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nodes(M1) ⊆ nodes(M) ⊆ (Γ1)V , and if Γ ` m→ n, with wither m ∈ nodes(M1) or n ∈ nodes(M1), then either
m ∈ nodes(M) or n ∈ nodes(N), hence Γ′ ` m→ n. The same properties can be shown for the network Γ′ BM2

as well.

Thus we can apply the inductive hypothesis to M1,N1, leading to Γ′ BM1
n.c?v
−→M′1, Γ′ BM2

n.c?v
−→M′2. Thus,

with an application of Rule (B-PROP), we can infer the transition Γ′BM1 |M2
n.c?v
−→M′1 |M

′
2.

Proof of Proposition 4.2.12 LetM = ΓM BM, N = ΓN BN and L = ΓL B L be three composable networks.
Assume also thatM‖N is defined, andM‖N

τ
7−−→ ΓL BL.

Further, by Definition 4.1.3(1) then either (ΓM ∪ΓN)B (M |N)
m.τ
−→ L for some node m, or (ΓM ∪ΓN)B (M |

N)
m.c!v
−→ L for some node m, channel c and value v such that Outm(M‖N) = ∅. In both cases we have that

ΓL = (ΓM ∪ΓN).

• If (ΓM ∪ ΓN)B (M | N)
m.τ
−→ L, then by Lemma 2.4.8 we have that (M | N) ≡ m~τ.P + Q� | L1 for some

processesP,Q and system term L1; further L ≡ m~P� | L1. For m ∈ nodes(M |N), either m ∈ nodes(M) or
m ∈ nodes(N).

If m ∈ nodes(M), then we have that M ≡ m~τ.P + Q� |M1 for some system term M1. Also, we have that
M |N ≡ m~τ.P + Q� |M1 |N and M |N ≡ |~τ.P + Q�L1. Thus, it is easy to show that L1 ≡ M1 |N, hence
L ≡ m~P� |M1 |N.

Since M ≡ |~τ.P+ Q�M1, by Lemma 2.4.8 there exists M′ such that ΓM BM
m.τ
−→M′ and M′ ≡m~P� |M1;

further, by Definition 4.1.3 (1) we obtain that ΓM BM
τ
7−−→ M′.

Also, we have that ΓL = (ΓM ∪ ΓN), and L ≡ (m~P� |M1 | N) ≡ M′ | N. That is, L ≡ M′ ‖ N , where
M′ = ΓM BM′.

The case m ∈ nodes(N) is similar to the previous one; in this case we obtain that N
τ
7−−→N ′ for some N ′

such that L ≡M ‖ N ′.

• Suppose now that (ΓM ∪ΓN)B (M |N)
m.c!v
−→ L for some node m, channel c and value v such that

Outm(M‖N) = ∅.

By Proposition 2.4.7 there exist a closed expression e, processes P,Q and system terms L1,L2 such that
~e� = v, M |N ≡ m~c!〈e〉 .P + Q� |L1, (ΓM ∪ΓN)BL1

m.c?v
−→ L2 and L ≡ m~P� |L2.

In this case we have that m ∈ nodes(M |N), hence either m ∈ nodes(M) or n ∈ nodes(N). We only consider
the case in which m ∈ nodes(M), for the case n ∈ nodes(N) is symmetric to the former one.

Let then m ∈ nodes(M). In this case we have that M ≡m~c!〈e〉 .P+ Q� |M1 for some system term m1; this
leads to M |N ≡ m~c!〈e〉 .P + Q� |M1 |N. Since we already known that M |N ≡ m~c!〈e〉 .P + Q� | L1, and
since M |N is a well-formed system term, it follows that L1 ≡ M1 |N.

Recall that (ΓM ∪ΓN)B L1
m.c?v
−→ L2. Since L1 ≡ M1 |N, by Proposition 2.4.6 it follows that (ΓM ∪ΓN)B

(M1 |N)
m.c?v
−→ L′2 for some L′2 such that L′2 ≡ L2. By Lemma 2.4.5(i) we obtain that (ΓM∪ΓN)BM1

m.c?v
−→ M′1,

(ΓM ∪ΓN)BN
m.c?v
−→ N′, for some M′1,N

′ such that M′1 |N
′ = L′2. Since L ≡ m~P� | L2, L2 ≡ L′2 and L′2 =

M′1 |N
′, by performing the appropriate substitutions it follows that L ≡ m~P� |M′1 |N

′

Let us focus on the transition (ΓM ∪ΓN)BM1
m.c?v
−→ M′1. We show that this implies ΓM BM

m.c?v
−→ M′1. To

this end, we need to show that ΓM BM1 satisfies the hypothesis of Lemma 4.2.9, Strengthening, relative
to the connectivity graph ΓM ∪ΓN . To this end, we need to show the following:

– nodes(M1) ⊆ (ΓM)V . Recall that M ≡ m~c!〈e〉 .P + Q� |M1; we obtain that nodes(M′1) ⊆ nodes(M).
Hence, since ΓM BM is a composable network, we also have that nodes(M′1) ⊆ nodes(M) ⊆ (ΓM)V .

– ΓM ⊆ (ΓM ∪ΓN). This statement is trivial.
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– whenever (ΓM∪ΓN) ` n→ l, where either n ∈ nodes(M1) or l ∈ nodes(M1), then ΓM ` n→ l. Without
loss of generality, let n ∈ nodes(M1) and (ΓM ∪ΓN) ` n→ l. Since nodes(M1) ⊆ nodes(M), we also
have n ∈ nodes(M).

Since we are assuming that (ΓM ∪ ΓN) ` n → l, then either ΓM ` n → l, in which case there is
nothing to prove, or ΓN ` n→ l. In the latter case, note that n ∈ nodes(M), and Ps(M,N) = true by
hypothesis. Thus it follows that ΓM ` n→ l.

We have shown that we can apply Strengthening, Lemma 4.2.9, to the transition (ΓM ∪ΓN)BM1
m.c?v
−→ M′1

to obtain ΓM BM1
m.c?v
−→ . In a similar way, it is possible to prove that Strengthening can also be applied to

the transition (ΓM ∪ΓN)BN
m.c?v
−→ N′ and the connectivity graph ΓN , leading to ΓN BN

m.c?v
−→ N′.

Since M ≡ m~c!〈e〉 .P + Q� |M1, ΓM BM1
m.c?v
−→ M′1, ~e� = v, it is easy to derive the transition ΓM B

m~c!〈e〉 .P + Q� |M1
m.c!v
−→ ΓM Bm~P� |M1; then, since M ≡ m~c!〈e〉 .P + Q� |M1, by Proposition 2.4.7

there exists a system term M′ such that ΓM BM
m.c!v
−→ M′, and M′ ≡ m~P� |M1. Finally, since we have

already shown that L ≡ m~P� |M′1 |N
′, it is easy to note that L ≡ M′ |N′.

So far we have proved the following:

(i) ΓM BM
m.c!v
−→ M′

(ii) ΓN BN
m.c?v
−→ N′

(iii) L ≡ M′ |N′

It remains to infer the extensional transitions which are induced by the transitions (i) and (ii) above. To
accomplish this task, we need to perform a case analysis on the set Outm(M).

– Outm(M) = ∅. By Definition 4.1.3(1) we have that ΓM BM
m.c!v
−→ M′ implies ΓM BM

τ
7−−→ M′. Also,

by Lemma 4.2.11 it follows that Inm(N) = ∅, so that m < Input(N). A simple structural induction
on the proof of the derivation ΓN BN

m.c?v
−→ N′ shows that, in this case, N′ = N.

In this case we have proved that, if (ΓM BM) ‖ (ΓN BN)
m.c!v
−→ (ΓL B L), where Outm(ΓM BM) = ∅,

then ΓM BM
τ
7−−→ M′, and (ΓL BL) ≡ (ΓM BM′) ‖ (ΓN BN).

– Outm(M) , ∅. Let then η = Outm(M). By Definition 4.1.3(3) it follows that ΓM BM
c!vBη
7−−−−−−→ M′.

Recall that Outm(M‖N) = ∅ by hypothesis; then it is straightforward to note that Outm(M) ⊆
nodes(N); in fact, if there had been a node n such that n ∈Outm(M) and n < nodes(N), then it would
have followed that n < nodes(M),n < nodes(M) and (ΓM∪ΓN) `m→ n, leading to n ∈Outm(M‖N),
which causes a contradiction.

Since Outm(M) ⊆ nodes(N), by Lemma 4.2.11 it follows that Outm(M) = Inm(N). Since such
sets are non-empty by hypothesis, it follows that m ∈ Input(N). For ΓN BN

m.c?v
−→ N′, by Definition

(4.1.3)(2) it follows that ΓN BN
m.c?v
7−−−−−−→ N′.

Therefore, in this case we have shown that ΓM BM
c!vBη
7−−−−−−→ M′ for some set of nodes η ⊆ nodes(N),

ΓN BN
m.c?v
7−−−−−−→ N′ for some node m such that Inm(ΓN BN) = η, and L ≡ M′ |N′.

Proof of Proposition 4.2.14 LetM = ΓM BM, N = ΓN BN and L = ΓL B L be three composable networks.
Assume thatM‖N is defined, andM‖N

m.c?v
7−−−−−−→L. Here it is immediate to note that ΓL = (ΓM ∪ΓN).

By Definition 4.1.3(2) it follows thatM ‖N
m.c?v
−→ L, where m ∈ Input(M‖N). That is, (ΓM ∪ΓN) ` m→ n

for some node n ∈ nodes(M |N).
By Lemma 2.4.5(i) it follows that there exist two system terms M′,N′ such that (ΓM ∪ ΓN)BM

m.c?v
−→ M′

and (ΓM ∪ ΓN)BN
m.c?v
−→ N′, with L = M′ |N′. Further, it is not difficult that the conditions required to apply

Strengthening, Lemma 4.2.9 to these transitions (relative to the connectivity graphs ΓM , ΓN , respectively) are
met; therefore it follows that ΓM BM

m.c?v
−→ M′, ΓN BN

m.c?v
−→ N′.

Note that, since m ∈ Input((ΓM BM) ‖ (ΓN BN)), then there exists a node n ∈ nodes(M |N) such that either
ΓM ` m→ n or ΓN ` m→ n.
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Note that we have m < nodes(M),m < nodes(N); therefore, if ΓM ` m→ n, then n ∈ nodes(M), from which
it follows by definition that m ∈ Input(ΓM BM). This is because GammaM BM is a composable network by
hypothesis. Similarly, if ΓN ` m→ n, we have that n ∈ nodes(N), hence n ∈ Input(ΓN BN).

We have proved that, whenever m ∈ Input((ΓM BM) ‖ (ΓN BN)) then either m ∈ Input(ΓM BM) or m ∈

Input(ΓN BN). Therefore, for node m we have three possible cases:

1. m ∈ Input(ΓM BM), but n < Input(ΓN BN). In this case it is possible to prove that N = N′, by performing
a simple structural induction on the proof of the transition ΓN BN

m.c?v
−→ N′.

Further, since ΓM BM
m.c?v
−→ M′, and m′ ∈ Input(ΓM BM), it follows from Definition 4.1.3(2) that ΓM B

M
m.c?v
7−−−−−−→ M′.

Let M′ = ΓM BM′. We have shown that, if m ∈ Input(M) and n ∈ Input(N), then M
m.c?v
7−−−−−−→M′, and

L = (ΓM ∪ΓN)BM′ |N, the latter network being exactlyM′ ‖ N ,

2. or m ∈ Input(ΓN BN), but n < Input(ΓM BM). This case is symmetric to the previous one. If we let
N ′ = ΓN BN′, it follows that N

m.c?v
7−−−−−−→N ′, and L =M‖N ′,

3. or m ∈ Input(ΓM BM),m ∈ Input(ΓN BN). Since ΓM BM
m.c?v
−→ M′, ΓN BN

m.c?v
−→ N′, it follows from Defini-

tion 4.1.3(2) that ΓM BM
m.c?v
7−−−−−−→ M′ and ΓN BN

m.c?v
7−−−−−−→ N′.

Let M′ = ΓM BM′, N ′ = ΓN BN′. We have shown that M
m.c?v
7−−−−−−→M′, N

m.c?v
7−−−−−−→ N ′, and ΓL B L =

(ΓM ∪ΓN)BM′ |N′, the latter network being exactlyM′ ‖ N ′.

Proof of Lemma 4.2.15 The proof is performed by Rule Induction on the proof of the derivation ΓBM
λ
−→

M′. We only show some of the most interesting cases.

Suppose that the last Rule applied in the proof of ΓBM
λ
−→M′ is Rule (B-REC). Then M = m~c?(x) .P�

for some process P, channel c and node m, while λ = n.c?v for some value v and node n such that ΓM ` n→ m.
Further, M′ = m~{v/x}P�. Now it is easy to show that (ΓM ∪ΓN) ` n→ m, so that we can apply Rule (B-REC)
to infer (ΓM ∪ΓN)Bm~c?(x) .P�

n.c?v
−→m~{v/x}P�.

Now assume that the last Rule applied to derive the transition ΓBM
λ
−→M′ is Rule (B-DISC). Then M =

M′ = m~P� for some process P and node m, while λ = n.c?v for some node n, channel c and value v such that
n , m, ΓM ` n9 m. By assumption, we also have that ΓN ` n9 m. Thus, (ΓM ∪ΓN) ` n9 m. Now we can
apply Rule (B-DISC) to infer (ΓM ∪ΓN)Bm~P�

n.c?v
−→m~P�.

The last case we consider is that in which Rule (B-SYNC−L) has been applied as the last rule in the proof
of ΓM BM

λ
−→M′. In this case we have that λ = m.c!v for some node m, channel c and node v. Further, we

have that M = M1 |M2 for some M1,M2,M′1 and M′2 such that ΓM BM1
m.c!v
−→ M′1, ΓM BM2

m.c?v
−→ M′2. By inductive

hypothesis, we have that (ΓM ∪ΓN)BM1
m.c!v
−→ M′1, and (ΓM ∪ΓN)BM2

m.c?v
−→ M′2, where M′ = M′1 |M

′
2. Finally,

we can apply Rule (B-SYNC−L) to derive (ΓM ∪ΓN)BM1 |M2
m.c!v
−→ M′1 |M

′
2.

Proof of Proposition 4.2.18 We only prove statements (i) and (iii), for the proofs of statements (ii) and (iv)
can be obtained symmetrically. To this end, letM = ΓM BM, N = ΓN BN be two composable networks, and
suppose thatM‖N is defined.

First we prove that, ifM
τ
7−−→M′, thenM ‖ N

τ
7−−→M′ ‖ N . Suppose then ΓM BM

τ
7−−→ M′, whereM′ =

ΓM BM′. By Definition 4.1.3(1) there are two possible cases.

(a) ΓM BM
m.τ
−→M′ for some node m ∈ nodes(M). Note that, since M ‖ N is defined, then Ps(M,N) = true.

Hence we have that, whenever ΓN ` n→ l, where either n ∈ nodes(M) or l ∈ nodes(M), then ΓM ` n→ l.
Therefore, we can apply Weakening, Lemma 4.2.15 to the transition ΓM BM

m.τ
−→M′ and the connectivity

graph ΓN , leading to (ΓM ∪ΓN)BM
m.τ
−→M′.

Now it is sufficient to apply rule (B-τ− PROP−L) to the transition above to infer (ΓM∪ΓN)B(M |N)
m.τ
−→M′.

By Definition 4.1.3(1) it follows that (ΓM ∪ΓN)B (M |N)
τ
7−−→ (M′ |N).
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For M′ = ΓM BM′, we have that (ΓM ∪ ΓN)B (M | N) =M ‖ N , while (ΓM ∪ ΓN)B (M′ | N) =M′ ‖ N .
Therefore we haveM‖N

τ
7−−→M′ ‖ N .

(b) ΓM BM
m.c!v
−→ M′ for some channel c, value v and node m such that Outm(M) = ∅. Note that, by Lemma

4.2.16 this leads to Outm(M‖N) = ∅.

In a way similar to the case above we can show that Weakening can be applied to the transition ΓM B

M
m.c!v
−→ M′ and the connectivity graph ΓN , leading to the transition (ΓM ∪ΓN)BM

m.c!v
−→ M′. Further, since

Outm(M) = ∅ and M ‖ N is defined, it follows from Lemma 4.2.11 that Inm(N) = ∅. In this case, it is
possible to show that ΓN BN

m.c?v
−→ N. It is easy to show that we can apply Weakening to the last transition

and the connectivity graph ΓM , leading to the transition (ΓM ∪ΓN)BN
m.c?v
−→ N.

We have shown that (ΓM ∪ΓN)M
m.c!v
−→ M′, and (ΓM ∪ΓN)BN

m.c?v
−→ N. Then it is easy to derive (ΓM ∪ΓN)B

(M |N)
m.c!v
−→ (M′ |N).

SinceM′ = ΓM BM′, we obtain that (ΓM ∪ΓN)B (M′ |N) =M′ ‖ N . SinceM ‖N = (ΓM ∪ΓN)B (M |N),
the Transition (ΓM ∪ΓN)B (M |N)

m.c!v
−→ M′ |N can be rewritten asM‖N

m.c!v
−→M′ ‖ N .

Now recall that Outm(M‖N) = ∅, so that by Definition 4.1.3(1) we obtain thenM‖N
τ
7−−→M′ ‖ N , as we

wanted to prove.

Now suppose that M
c!vBη
7−−−−−−→M′ for some channel c, value v, network M′ and set of nodes η for which

η ⊆ nodes(N) holds.

By Definition 4.1.3(3) we have that ΓM BM
m.c!v
−→ M′, where M′ = ΓM BM′, for some node m such that

Outm(M) = η. Since η ⊆ nodes(N), andM ‖N is defined by hypothesis, Lemma 4.2.11 ensures that Inm(N) =

Outm(M)∩nodes(N) = η∩nodes(N) = η.

It remains to prove that, if N
m.c?v
7−−−−−−→N ′, thenM ‖N

τ
7−−→M′ ‖ N ′. Suppose then that ΓN BN

m.c?v
−→ N′ for

some system term N′. Here N ′ = ΓN BN′.

It is easy to show that we can apply Weakening, Lemma 4.2.15, to the transitions ΓM BM
m.c!v
−→ M′ (relative

to the connectivity graph ΓN) and ΓN BN
m.c?v
−→ N′ (relative to the connectivity graph ΓM). This leads to the

transitions (ΓM ∪ΓN)BM
m.c!v
−→ M′ and (ΓM ∪ΓN)BN

m.c?v
−→ N′, from which (ΓM ∪ΓM)B (M |N)

m.c!v
−→ (M′ |N′) can

be easily derived through an application of Rule (B-SYNC−R).

Recall thatM = ΓM BM,M′ = ΓM BM′,N = ΓN BN andN ′ = ΓM BM′; for we have that Ps(M,N) = true
(recall that M ‖ N is defined by hypothesis), it is trivial to show that Ps(M′,N ′) = true, hence M′ ‖ N ′ is
defined. Thus the last transition can be rewritten asM‖N

m.c!v
−→M′ ‖ N ′.

It remains to note that, since Outm(M) ⊆ nodes(N), then Outm(M‖N) = ∅. This is an immediate conse-
quence of Corollary 4.2.17. By Definition 4.1.3(1) we obtain that the transitionM ‖ N

m.c!v
−→M′ ‖ N ′ induces

the extensional oneM‖N
τ
7−−→M′ ‖ N ′, as we wanted to prove.

Proof of Proposition 4.2.20 LetM = ΓM BM,N = ΓN BN,M′ = ΓM BM′ andN ′ = ΓN BN′ be composable
network. Suppose thatM‖N is defined.

We prove each of the statements in the Proposition individually.

(i) SupposeM
m.c?v
7−−−−−−→M′ for some node m, channel c and value v such that ΓN 0 m.

Then we have that ΓM BM
m.c?v
−→ M′ and ΓM ` m→ n for some node n ∈ nodes(M); further, it is easy to

prove that ΓN BN
m.c?v
−→ N. Now note that we can apply Weakening to these two transitions, relative to the

connectivity graphs ΓN and ΓM , respectively.

By Definition 4.1.3(2) we have that (ΓM ∪ΓN)BM
m.c?v
−→ M′, (ΓM ∪ΓN)BN

m.c?v
−→ N, from which it follows

(ΓM ∪ΓN)B (M |N)
m.c?v
−→ (M′ |N′) by a simple application of Rule (B-PROP), defined in Figure 2.4.

For ΓM ` m → n, we have that (ΓM ∪ ΓN) ` m → n. Also, n ∈ nodes(M), from which it follows that
m ∈ nodes(M |N). Finally, since m ∈ Input(ΓM BM), m < nodes(M). Since ΓN 0 m, we also have that m <

nodes(M). Thus (ΓM ∪ΓN) `m→ n, but m < nodes(M |N). It follows that m ∈ Input((ΓM ∪ΓN)B (M |N)).
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We have proved that (ΓM ∪ΓN)B (M |N)
m.c?v
−→ (M′ |N′), and m ∈ Input((ΓM ∪ΓN)B (M |N)). Therefore, by

Definition 4.1.3(2) it follows that (ΓM ∪ΓN)B (M |N)
m.c?
7−−−−−→ (M′ |N). Since (ΓM ∪ΓN)B (M |N) =M‖N ,

and (ΓM ∪ΓN)B (M′ |N) =M′ ‖ N , the last transition corresponds toM‖N
m.c?v
7−−−−−−→M′ |N .

(ii) We have to show that if N
m.c?v
7−−−−−−→ N ′, and ΓM 0 m, then M ‖ N

m.c?v
7−−−−−−→M ‖ N ′. The proof for this

statement is symmetric to the previous one, and it is therefore omitted.

(iii) Suppose that M
m.c?v
7−−−−−−→M′, N

m.c?v
7−−−−−−→ N ′. By Definition 4.1.3(2) we have that ΓM BM

m.c?v
−→ M′, and

ΓN BN
m.c?v
−→ N′. Further, m ∈ Input(ΓM) and n ∈ Input(ΓN).

Note that we can apply Weakening, Lemma 4.2.15 to these two transitions, leading to the transitions
(ΓM ∪ΓN)BM

m.c?v
−→ M′ and (ΓM ∪ΓN)BN

m.c?v
−→ N′. A simple application of Rule (B-PROP) can be used to

infer (ΓM ∪ΓN)B (M |N)
m.c?v
−→ (M′ |N′).

Therefore we have that m < nodes(M),m < nodes(N), or equivalently m < nodes(M | N). Since, m ∈

Input(ΓM BM), ΓM ` m→ n for some node n ∈ nodes(M), hence (ΓM ∪ΓN) ` m→ n. Now it is straight-
forward to show that m ∈ Input((ΓM ∪ΓN)B (M |N)).

Since (ΓM ∪ΓN)B (M |N)
m.c?v
−→ (M′ |N′) and m ∈ Input((ΓM ∪ΓN)B (M |N)), Definition 4.1.3(2) ensures

that (ΓM ∪ΓN)B (M |N)
m.c?v
7−−−−−−→ (M′ |N′). For (ΓM ∪ΓN)B (M |N) =M ‖N , and (ΓM ∪ΓN)B (M′ |N′) =

M′ ‖ N ′, the last transition can be rewritten asM‖N
m.c?v
7−−−−−−→M′ ‖ N ′.

Proof of Proposition 4.2.23 Each of this statement is proved individually. We only show the proof for the
most interesting of them.

In the following, we assume that M = ΓM BM, M′ = ΓM BM′ are composable networks composable
network, while G = ΓG Bn~P� and G′ = ΓG Bn~Q� are generating networks. Further, we suppose thatM ‖ G
is defined, from which it follows thatM′ ‖ G,M‖ G′ andM′ ‖ G′ are defined as well.

(a) Proof of Proposition 4.2.23(i).

Suppose thatM
τ
|===⇒M′, and G

τ
7−−→ G′. By Lemma 4.2.21 we obtain thatM ‖ G

τ
|===⇒M′ ‖ G, while by

Proposition 4.2.18(ii) it follows thatM′ ‖ G
τ
7−−→M′ ‖ G′.

Therefore we have that
M‖ G

τ
|===⇒M′ ‖ G

τ
7−−→M′ ‖ G′

from whichM‖ G
τ
|===⇒M ‖ G′ follows.

(b) Proof of Proposition 4.2.23(ii).

SupposeM
c!vB{n}
|=======⇒M′, and G

m.c?v
7−−−−−−→G′ for some node m ∈ Input(G). Note that, by Definition 4.1.5 (3b)

eitherM
τ
|===⇒M1

c!vB{n}
7−−−−−−−→M2

τ
|===⇒M′ for some networksM1,M2, orM

c!vBη1
|=======⇒M′′

c!vBη2
|=======⇒M′ for

some networkM′′ and non-empty sets of nodes η1,η2 such that η1∪η2 = {n}, η1∩η2 = ∅.

It is straightforward to note that the last case cannot happen, for η1 and η2 should be disjoint sets containing
at least an element; thus, for their union we obtain |η1∪η2| ≥ 2, where |{n}| = 1. Therefore, the only

possibility is thatM
τ
|===⇒M1

c!vB{n}
7−−−−−−−→M2

τ
|===⇒M′.

Lemma 4.2.21 ensures thatM‖ G
M

|====⇒1‖ G, andM2 ‖ G
′

τ
|===⇒M′ ‖ G′.

Now note that, by Lemma 4.2.22, ifG
m.c?v
7−−−−−−→G′, then for any node m′ ∈ Input(G) it holds thatG

m′.c?v
7−−−−−−→G.

Moreover, by Proposition 4.2.18(iii) there exists a node m′ ∈ Input(G). For in this case we have that

G
m′.c?v
7−−−−−−→G′, andM1

c!vB{n}
7−−−−−−−→M2, it follows from Proposition 4.2.18(iii) thatM1 ‖ G

τ
7−−→M2 ‖ G

′.

We have proved that

M‖ G
τ
|===⇒M1 ‖ GM2 ‖ G

′
τ
|===⇒M′ ‖ G′

hence, by definition,M‖ G
τ
|===⇒M′ ‖ G′.
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(c) Proof of Proposition 4.2.23(iv)

Suppose that M
c!vBη
|======⇒M′ for some channel c, value v and non-empty set of nodes η. We proceed by

induction on the proof of the derivation above (see Remark 4.1.7).

Base case M
τ
|===⇒M1

c!vBη
7−−−−−−→M2

τ
|===⇒M′ for some networksM1,M2. This case is trivial; by Lemma

4.2.21 we have thatM‖ G
τ
|===⇒M1 ‖ G, andM2 ‖ G

τ
|===⇒M2 ‖ G.

Further, by Proposition 4.2.19(i) it follows thatM1 ‖ G
c!vBη
7−−−−−−→M2 ‖ G; hence we have the sequence

of extensional transitions

M‖ G
τ
|===⇒M1 ‖ G

c!vBη
7−−−−−−→M2 ‖ G

τ
|===⇒M′ ‖ G

Inductive Step There exist a networkM′′ and two sets of nodes η1,η2 such that η1 ∩η2 = ∅, η1 ∪η2 = η,

andM
c!vBη1
|=======⇒M′′ andM′′

c!vBη2
|=======⇒M′.

Since n < η, it follows that n < η1,n < η2. It follows from the inductive hypothesis thatM‖G
c!vBη1
|=======⇒

M′′ ‖ G andM′′ ‖ G
c!vBη2
|=======⇒M′ ‖ G.

By definition 4.1.5(3b) it follows thatM‖ G
c!vBη
|======⇒M′ ‖ G.

(d) Proof of Proposition 4.2.23(vi)

Suppose thatM
c!vBη
|======⇒M′ for some set of nodes η such that n ∈ η. Also, suppose that G

m.c?v
7−−−−−−→ G′ for

some node m. In this case note that m ∈ Input(G). We proceed by induction on the proof of the derivation

M
c!vBη
|======⇒M′.

Base Case M
τ
|===⇒M1

c!vBη
7−−−−−−→M2

τ
|===⇒M′ for some networksM1,M2.

It follows from Lemma 4.2.21 thatM ‖ G
τ
|===⇒M1 ‖ G, andM2 ‖ G

′
τ
|===⇒M′ ‖ G′. Note that, since

m ∈ η, we have that η = (η \ {n} ∪ {n}). By Proposition 4.2.19(iii) there exists a node m′ ∈ Input(G)

such that, if G
m′.c?v
7−−−−−−→ G′′ for some network G′, then M1 ‖ G

c!vB(η\{n})
7−−−−−−−−−−→ M2 ‖ G

′. Further, for

M
m.c?v
7−−−−−−→M′, then by Lemma 4.2.22 we have thatG

m′.c?v
7−−−−−−→G′, henceM1 ‖ G

c!vB(η\{n})
|==========⇒M2 ‖ G

′.

Thus, we have shown that

M‖ G
τ
|===⇒M1 ‖ G

c!vB(η\{n})
7−−−−−−−−−−→M2 ‖ G

′
τ
|===⇒M′ ‖ G′

from which we obtain the weak extensional transitionM‖ G
c!vB(η\{n})
|==========⇒M′ ‖ G′.

Inductive Step M
c!vBη1
|=======⇒M′′

c!vBη2
|=======⇒M′ for some network M′′, non-empty sets of nodes η1 ∪ η2

such that η1∩η2 = ∅, η1∪η2 = η. Since m ∈ η, and η1∩η2 = ∅, we obtain that either n ∈ η1 or n ∈ η2.
Further, these two statements are mutually exclusive.

We only consider the case where n ∈ η1, for the other case can be proved similarly. If m ∈ η1, by

inductive hypothesis we have thatM ‖ G
c!vB(η1\{n})
|===========⇒M′′ ‖ G. Moreover, since m < η2, Proposition

4.2.23 (iv) ensures that M′′ ‖ G′
c!vBη2
|=======⇒M′ ‖ G′. Now we can combine these two transitions to

obtainM‖ G
c!vB(η1\{n})∪η2
|==============⇒M′ ‖ G′.

Since n < η2, we also have that (η1 \ {n})∪ η2 = (η1 ∪ η2) \ {n} = η \ {n}; thereforeM ‖ G
c!vB(η\{n})
|==========⇒

M′ ‖ G, as we wanted to prove.

A.4 Proofs of the Results Concerning the May-testing Preorder

Proof of Lemma 4.3.5 LetM,N be composable networks, and let t be a trace. Suppose thatM
τ
|===⇒N and

t ∈ tracess(N).
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By Definition 4.1.5(1) it holds that

M0
τ
7−−→M1

τ
7−−→ · · ·

τ
7−−→Mk

whereM0 =M,Mk =N for some k ≥ 0. We prove that t ∈ tracess(M) by performing a natural induction over
k.

k = 0 This case is trivial, forM =M0 =Mk =N , and t ∈ tracess(N) by hypothesis.

k > 0 Suppose that the statement is true for k−1. ForMk−1
τ
7−−→Mk, and t ∈ tracess(Mk) by hypothesis (recall

thatMk =N), Definition 4.3.4 ensures that t ∈Mk−1. Further, we have the sequence of transitions

M0
τ
7−−→M1

τ
7−−→ · · ·

τ
7−−→Mk−1

Since t ∈ tracess(Mk−1), it follows by inductive hypothesis that t ∈ tracess(M0). NowM0 =M, hence
t ∈ tracess(M).

Proof of Proposition 4.3.6 Let M be a composable network. We first show that tracess(M) ⊆ traces(M),
then we prove that traces(M) ⊆ tracess(M).

For the first inclusion, it is sufficient to show that the set traces(M) satisfies the requirements of Definition
4.3.4. In fact, for tracess(M) is the smallest set that satisfies such constraints, it follows that tracess(M) ⊆
traces(N).

We need to show the following:

(i) ε ∈ traces(M). This statement follows directly from Definition 4.3.1(i).

(ii) IfM is a successful configuration, then ω ∈ traces(M).

(iii) Suppose thatM is a successful configuration. TriviallyM
τ
|===⇒M, holds. Then, by Definition 4.3.1(ii) it

holds that ω ∈ traces(M).

(iv) Suppose thatM
τ
7−−→N , and let t be a trace such that t ∈ traces(N). Then t ∈ traces(M).

Let t be a trace in traces(N). We show that t ∈ traces(M) by performing an induction on the structure of t.

• t = ε. Then it is trivial to prove that ε ∈ traces(M)

• t = ω. Then M
τ
|===⇒ N ′ for some successful configuration N ′. Since M

τ
7−−→ N , we also have

M
τ
|===⇒N ′, hence ω ∈ traces(M) by Definition 4.3.1(ii).

• t = m.c?v :: t′. Then N
m.c?v
|======⇒N ′ for some network N ′ such that t′ ∈ traces(N ′). ForM

τ
7−−→N , it

is not difficult to show thatM
m.c?v
|======⇒N ′, hence m.c?v :: t′ ∈ traces(M).

• t = c!vBη :: t′. This case is similar to the previous ones.

(v) Suppose thatM
m.c?v
7−−−−−−→N , and let t be a trace such that t ∈ traces(N). Then t ∈ traces(M).

ForM
m.c?v
7−−−−−−→ N , we also haveM

m.c?v
|======⇒N ; hence, by Definition 4.3.1(iii) it follows that m.c?v :: t ∈

traces(M).

(vi) IfM
c!vBη
7−−−−−−→N , and t is a trace in traces(N), then c!vBη :: t ∈ traces(M).

This case is analogous to the previous one, this time using Definition 4.3.1(iv)

(vii) IfM
c!vBη1
7−−−−−−−→N , and c!vB η2 :: t ∈ traces(N) for some trace t and set of nodes η2 such that η1 ∩ η2 = ∅,

then c!vB (η1∪η2) :: t ∈ traces(M).

By Definition 4.3.1(iv) it follows that there exists a network N ′ such that N
c!vBη2
|=======⇒ N ′, and t ∈

traces(N ′). Since M
c!vBη1
7−−−−−−−→ N , it also holds that M

c!vBη1
|=======⇒ N . Now we have that M

c!vBη1
|=======⇒
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N
c!vBη2
|=======⇒N ′; for η1 ∩ η2 = ∅ by hypothesis, Definition 4.1.5(3b) leads to M

c!vB(η1∪η2)
|===========⇒N ′. Since

t ∈ traces(N ′), by Definition 4.3.1 (iv) it follows that c!vB (η1∪η2) :: t ∈ traces(M).

Now we show that, for any composable networkM, traces(M) ⊆ traces(N). In this case it is sufficient to
show that the set tracess(M) satisfies the requirements of Definition 4.3.1.

(i) ε ∈ tracess(M). This follows directly from Definition 4.3.4(i).

(ii) IfM
τ
7−−→N , and N is a successful configuration, then ω ∈ tracess(M).

If N is a successful configuration, then ω ∈ tracess(N) by Definition 4.3.4 (ii). Further, sinceM
τ
|===⇒N ,

Lemma 4.3.5 ensures that t ∈ tracess(M).

(iii) IfM
m.c?v
|======⇒N , and t ∈ tracess(N), then m.c.v :: t ∈ tracess(M).

Suppose that t ∈ tracess(N). SinceM
m.c?v
|======⇒N , by Definition 4.1.5(3) it follows that there exists two

networksM1,M2 such thatM
τ
|===⇒M1

m.c?v
|======⇒M2

τ
|===⇒N .

Since t ∈ tracess(N), by Lemma 4.3.5 we obtain that t ∈ tracess(M2). Further, by Definition 4.3.4(iv) it
follows that m.c.v :: t ∈ tracess(M1). Finally, we can apply again Lemma 4.3.4, leading to m.c.v :: t ∈

tracess(M).

(iv) Let t be a trace in tracess(N). IfM
c!vBη
|======⇒N then c!vBη :: t ∈ tracess(M).

In this case, by Proposition 4.1.8 there exists an index k ≥ 1 and a collection of non-empty sets of nodes
{ηi}

k
i=1 such that

• for all i, j : 1 ≤ i,≤ k, i , j implies ηi∩η j = ∅

•
⋃k

i=1 ηi = η

• M
τ
|===⇒

c!vBη1
7−−−−−−−→

τ
|===⇒ ·· ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N

we show that c!vBη :: t ∈ tracess(M) by performing a natural induction over the index k.

k = 1 In this caseM
τ
|===⇒M1

c!vBη
7−−−−−−→M2

τ
|===⇒N for some networksM1,M2.

By Lemma 4.3.5 it follows that t ∈ tracess(M2). By Definition v we have that c!vBη :: t ∈ tracess(M1).
A final application of Lemma 4.3.5 gives us that c!vBη :: t ∈ tracess(M).

k > 1 . Suppose that the statement is true for k−1. In this case, we have thatM
τ
|===⇒M′

c!vBη1
7−−−−−−−→M′′

τ
|===⇒

M1 for some networkM′,M′′,M1 such thatM1
τ
|===⇒

c!vBη2
|=======⇒

τ
7−−→ · · ·

τ
|===⇒

c!vBηk
7−−−−−−→

τ
|===⇒N .

Let η′ =
⋃k

i=2 ηi. By inductive hypothesis we have that c!vBη′ :: t ∈ tracess(M1). Further, by Lemma
4.3.5 it follows that t ∈ tracess(M′′).

Now note that η1∩η
′ = ∅. In fact, if m ∈ η′, then there exists an index i > 1 such that m ∈ ηi; however,

ηi∩η1 = ∅, hence m < η1. Further, η1∪η
′ = η1∪

(⋃k
i=2 ηi

)
=

⋃ j
i=1 ηi = η.

We can therefore apply Definition 4.3.4(vi) to obtain that c!vBη :: t ∈ tracess(M′). A final applica-
tion of Lemma 4.3.5 leads to c!vBη :: t ∈ tracess(M).

Proof of Proposition 4.3.10 We need to show that, for any t ∈ traces(M), t′ ∈ traces(G), zipG
M

(t, t′) ∈ traces(M‖
G), provided that the latter is defined.

The statement is proved by performing an induction on t, followed by an inner induction on t′. Throughout
the proof, we letM = ΓM BM and G = ΓG Bn~P�. In many of these cases it will be needed to perform a case
analysis on the topology of the networks M,G. We only show some of the cases that need to be considered
when performing the complete proof.
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• t =ω. In this case we have thatM
τ
|===⇒M′ for some successful configurationM′. Lemma 4.2.21 ensures

thatM‖G
τ
|===⇒M′ ‖ G. Now it is trivial to note that the latter is a successful configuration, sinceM′ has

at least one node in which the success process ω is enabled. Therefore ω ∈ traces(M ‖ G) by Definition
4.3.1 (ii). Now it remains to check that zipG

M
(ω, t′) = ω for any arbitrary trace t′ ∈ traces(G).

• t = c!vB {n}′t , t′ = m.c?v :: t2. In this case, by Definition 4.3.1(iv) we have thatM
c!vB{n}
|=======⇒M′ for some

M′ for which t1 ∈ traces(M′) holds. By Definition 4.3.1(iii), it is also the case that G
m.c?v
|======⇒ G′ for

some G′ such that t2 ∈ traces(G′).

Since t1 ∈ traces(M′), t2 ∈ traces(N ′), by inductive hypothesis it holds that zipG
M

(t1, t2) ∈ traces(M′ ‖ G′)1.

Since M
c!vB{n}
|=======⇒M′, G

m.c?v
|======⇒ G′, Proposition 4.2.23(ii) ensures that M ‖ G

τ
7−−→ M′ ‖ G′. Thus

zipG
M

(t1, t2) ∈ traces(M‖ G). Now it remains to note that the last trace is equal to
zipG
M

(c!vB {n} :: t1,m.c?v :: t2), as stated in Definition 4.3.9(iv).

• t = n.c?v :: t1, t′ = c!vBη1∪η2, where η1∩nodes(M) = ∅ and η2 ⊆ nodes(M).

As for in the previous case, it is easy to show thatM
n.c?v
|=====⇒M′ for someM′ such that t1 ∈ traces(M′),

while G
c!vBη
|======⇒G′ for some G′ such that t2 ∈ traces(G′).

By inductive hypothesis we have that zipG
M

(t1, t2) ∈ traces(M′ ‖ G′); further, by Proposition 4.2.23(vii)

we have thatM‖ G
c!vBη1
|=======⇒M′ ‖ G′.

Therefore, by Definition 4.3.1(iv) it follows that c!vB η1 :: zipG
M

(t1, t2) ∈ traces(M ‖ G). This trace is
exactly zipG

M
(n.c?v :: t1,c!vBη :: t2), as it can be seen from Definition 4.3.9(ix)

• t′ = m.c?v :: t2 and ΓM 0 m.

In this case we have that zipG
M

(ε,m.c?v :: t2) = m.c?v :: zipG
M

(ε, t2). Since m.c?v :: t2 ∈ traces(G), it follows

that G
m.c?v
|======⇒ G′ for some G′ such that t2 ∈ traces(G′). We can apply Proposition 4.2.23(ix) to the

transition G
m.c?v
|======⇒G′ to infer thatM‖ G

m.c?v
|======⇒M ‖ G′.

For ε ∈ traces(M), t2 ∈ traces(G′), by inductive hypothesis it holds that zipG
M

(ε, t2) ∈ traces(M‖ G′).

Since zipG
M

(ε, t2) ∈ traces(M ‖ G′), and M ‖ G
m.c?v
|======⇒M ‖ G′, it follows that m.c?v :: zipG

M
(ε, t2) ∈

traces(M‖ G). But the last trace is exactly zipG
M

(ε,m.c?v :: t2), as stated in Definition 4.3.9(xi).

• t = m.c?v :: t1, t′ = m.c?v :: t2. This is the last case we analyse. In this case we have thatM
m.c?v
|======⇒M′,

G
m.c?v
|======⇒G′, where t1 ∈ traces(M′), t2 ∈ traces(G′).

It follows from the inductive hypothesis that zipG
M

(t1, t2) ∈ traces(M′ ‖ G), and by Proposition 4.2.23 (x)

we can infer the transitionM‖ G
m.c?v
|======⇒M′ ‖ G′. Therefore, m.c?v :: zipG

M
(t1, t2) ∈ traces(M‖ G).

Then we have that zipG
M

(m.c?v :: t1,m.c?v :: t2) = m.c?v :: zipG
M

(t1, t2) ∈ traces(M ‖ G). The equality in
this case is obtained by using Definition 4.3.9(xii)

Proof of Lemma 4.3.12 IfM ‖ G
τ
|===⇒M′ ‖ G′ for some networksM′,G′, then there exists two sequences

M0, · · · ,Mk and G0, · · · ,Gk such thatM =M0,M
′ =Mk,G = G0,G

′ = Gk and

M0 ‖ G0
τ
7−−→ · · ·

τ
7−−→Mk ‖ Gk

Let 〈 t1 , t2 〉 ∈ unzipG
M

(s), and suppose that t1 ∈ traces(Mk), t2 ∈ traces(Gk).

1To be formal, the inductive hypothesis states that zipG
′

M′
(t1, t2) ∈ traces(M′ ‖ G′); however, since the topology ofM is the same of that

ofM′, and the topology of G is the same of that of G′, it is easy to note that zipG
M

(t1, t2) = zipG
′

M′
(t1, t2) for any traces t1, t2.
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We perform a natural induction on k to prove that there exists a pair 〈 t , t′ 〉 ∈ unzipG
M

(s) such that t ∈

traces(M0), t′ ∈ traces(G0).

• k = 0.

In this case the statement is trivial. Choose t = t1, t2 = t′. Since we have thatM0 =Mk, G0 =Gk, 〈 t1 , t2 〉 ∈

unzipN
M

(s), t1 ∈ traces(Mk) and t2 ∈ traces(Gk), it also follows that t ∈ traces(M0) and t′ ∈ traces(M0).

• k > 0.

Suppose that the statement is true for k−1.

Since M1 ‖ G1
τ
7−−→ · · ·

τ
7−−→Mk ‖ Gk, by inductive hypothesis we have that there exists a pair 〈 t′1, t

′
2 , ∈

〉unzipG
M

(s) such that t′1 ∈ traces(M′), t′2 ∈ traces(G1).

We also have thatM‖ G
τ
7−−→M1 ‖ G1. By Proposition 4.2.12 this leads to four possible cases.

1. M0
τ
7−−→M1, and G0 = G1. Let t = t′1, t

′ = t′2. We show that t ∈ traces(M0), t′ ∈ traces(G0).

The last statement is trivial to check, while for the first recall that the sets traces(M0) and tracess(M0)
are equivalent by Proposition 4.3.6. Since M0

τ
7−−→ M1, and t′1 ∈ tracess(M1), it follows that

t1 ∈ tracess(M0), hence t′1 ∈ traces(M0). This is a direct consequence of Definition iii. Thus we
have shown that the pair 〈 t , t′ 〉 = 〈 t′1 , t′2 〉 is in the set unzipG

M
(s), and t ∈ traces(M0), t′ ∈ traces(G0).

2. G0
τ
7−−→ G1 andM0 =M1. This case is symmetric to the previous one.

3. M0
c!vB{n}
7−−−−−−−→M1 and G0

m.c?v
7−−−−−−→M1.

By Definition 4.3.4(iv) it follows that c!vB {n} :: t′1 ∈ tracess(M0), while by Definition 4.3.4(vi) we
obtain that m.c?v :: t′2 ∈ tracess(G0).

Since we have the equivalences tracess(M0) = traces(M0), tracess(G0) = traces(G0), it follows that
c!vB {n} :: t′1 ∈ traces(M0) c!vB {n} :: t′2 ∈ traces(G0).

For it holds by inductive hypothesis that 〈 t′1 , t′2 〉 ∈ unzipG
M

(s), Definition 4.3.11 (xii) leads to 〈c!vB
{n} :: t′1 , m.c?v :: t′2 〉 ∈ unzipG

M
(s).

4. M0
n.c?v
7−−−−−→M1,G0

c!vBη
7−−−−−−→ G1, where η ⊆ nodes(M). The proof for this case is symmetric to the

previous case, this time using Definition 4.3.11 (xiii) instead of Definition 4.3.11 (xii)

Proof of Proposition 4.3.13 Let s be a trace in traces(M ‖ G). We show, by induction on s, that there exists
a pair 〈 t , t′ 〉 ∈ unzipG

M
(s) such that t ∈ traces(M), t′ ∈ traces(G).

Throughout the proof we will use several times the equivalence traces(M) = tracess(M) and traces(G) =

tracess(G), which hold by Proposition 4.3.6

• s = ε.

This case is trivial, for 〈ε , ε 〉 ∈ unzipG
M

(ε) by Definition 4.3.11(i). Further, we have that ε ∈ tracess(M), ε ∈
tracess(G).

• s = ω.

In this case we have that M ‖ G
τ
|===⇒M′ ‖ G′ for some M′,G′ such that M′ ‖ G′ is successful. It is

straightforward to note that in this case eitherM′, or G′ is successful. We only consider the first case,
for the second one is analogous.

Suppose that M′ is a successful configuration. Then we have that ω ∈ traces(M′). Also, we have that
ε ∈ traces(G′). Now note that the pair 〈ω, ε 〉 is in the set unzipG

M
(ω). Therefore, we can apply Lemma

4.3.12 to show that there exists a pair 〈 t , t′ 〉 such that t ∈ traces(M), t′ ∈ traces(G) and 〈 t , t′ 〉 ∈ unzipG
M

(ω).
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• t = c!vBη :: s′.

In this case we have thatM‖G
c!vBη
|======⇒M′ ‖ G′, for someM′ andG′ such that s′ ∈ traces(M′ ‖ G′). Thus,

by inductive hypothesis, there exists a pair 〈 t1 , t2 〉 ∈ unzipG
M

(s′) such that t1 ∈ traces(M′), t2 ∈ traces(G′).

We show that there exists a pair 〈 t , t′ 〉 ∈ unzipG
M

(c!vBη :: s′) such that t ∈ traces(M), t′ ∈ traces(G) by

performing an inner induction on the proof of the weak TransitionM‖ G
c!vBη
|======⇒M′ ‖ G′.

– M‖ G
τ
|===⇒M1 ‖ G1

c!vBη
7−−−−−−→M2 ‖ G2

τ
|===⇒M′ ‖ G′.

Since there exists a pair 〈 t1 , t2 〉 ∈ unzipG
M

(s) such that t1 ∈ traces(M′), t2 ∈ traces(G′), then by
Lemma 4.3.12 it follows that there also exists a pair 〈 t′′1 , t′′2 〉 ∈ unzipG

M
(s) such that

t′′1 ∈ traces(M2), t′′2 ∈ traces(G2).

ForM1 ‖ G1
c!vBη
7−−−−−−→M2 ‖ G2, by Proposition 4.2.13 there are four possible; we only provide the

details for the first of them, as the other three can be handled similarly.

In this case we have thatM1
c!vBη
7−−−−−−→M2, and G1 = G2. Therefore, we have that t′′2 ∈ traces(G1),

and c!vB η :: t′′1 ∈ traces(M1). Since 〈 t′′1 , t′′2 〉 ∈ unzipG
M

(s), by Definition 4.3.11(vi) it follows that
〈c!vBη :: t′′1 , t′′2 〉 ∈ unzipG

M
(c!vBη :: s).

Now it remains to apply again Lemma 4.3.12 to the transition M ‖ G
τ
|===⇒M1 ‖ G1 to infer that

there exist two traces t ∈ traces(M) and t′ ∈ traces(G) such that 〈 t , t′ 〉 ∈ unzipG
M

(c!vBη :: s).

– M‖ G
c!vBη1
|=======⇒M′′ ‖ G′′

c!vBη2
|=======⇒M′ ‖ G′, where η1∪η2 = η and η1∩η2 = ∅.

If pair 〈 t1, t2 , ∈〉unzipG
M

(s), and t1 ∈ traces(M′), t2 ∈ traces(G′), then by inductive hypothesis there
exists a pair 〈 t′′1 , t′′2 〉 such that t′′1 ∈ traces(M′′), t′′2 ∈ traces(G′′) and 〈 t′′1 , t

′′
2 , ∈〉unzipG

M
(c!vBη2 :: s).

By another application of the inductive hypothesis it follows that there exists a pair
〈 t , t′ 〉 ∈ unzipG

M
(c!vBη1 :: c!vBη2 :: s) such that t ∈ traces(M), t′ ∈ traces(G). Since η1 ∩ η2 = η,

η1∩η2 = ∅, it suffices to apply Definition 4.3.11 (xi) to obtain that 〈 t , t′ 〉 ∈ unzipG
M

(c!vBη :: s).

• s = m.c?v :: s′.

This case can be handled in a way similar as above, this time using Proposition 4.2.14; therefore we will
not provide any details for it.

Proof of Proposition 4.3.16 LetM,N ,G,H ,K be networks as defined in the statement of the Proposition.
Further, let G = ΓG Bn~P� for some node n, process P and connectivity graph ΓG.

We first show that, for any set of nodes η,η′ such that η∩ nodes(M) = ∅, η′ ⊆ nodes(M) and Input(H) =

η∪η′, then η∩nodes(N) = ∅. Further, there exists a set η′′ ⊆ nodes(N) such that Input(K) = η∪η′′.

Recall that M ‖> G is defined, and that H = symM(G). Let η = Input(G). It is trivial to show that η∩
nodes(M) = ∅, and that η∩ nodes(N) = ∅. Further, by Definition 4.2.2, Equation (4.1), it follows that for any
m ∈ η,m ∈ Input(H) (recall that nodes(G) = nodes(H)). Similarly, we can show that η ⊆ Input(K).

Let now η′ = Input(H)\η. We show that, for any m ∈ η′, m ∈ nodes(M). Since m < η, and m ∈ Input(H),
it follows from Equation 4.2 that ΓG ` m→ n, and m ∈ nodes(M). Thus we have that η′ ⊆ nodes(M); since
η′ = Input(H)\η, it follows that Input(H) = η∪η′, as we wanted to prove.

Let η′′ = Input(K)\η; in a way analogous to the one above, we can show that η′′ ⊆ nodes(K), and Int(K) =

η∪η′′.

Note also that, if η′ = ∅, then η′′ = ∅. In fact, if m ∈ η′′, then n ∈ Outm(N). This is because N ‖ K is
defined, hence PsN ,K = true (recall that Ps is defined formally in Definition 3.1.6), and m ∈ nodes(N). For
Input(N) = Input(M), there exists a node m′ ∈ nodes(M) such that n ∈ Outm(N). Since PsM,H = true, then
m′ ∈ Input(H).

With an analogous proof we can show that if Output(H) = η∪η′, where η∩nodes(M) = ∅, η′ ⊆ nodes(M),
then η∩nodes(N) = ∅ and Output(K) = η∪η′′ for some η′′ ⊆ nodes(N). Further, if η′ = ∅, then η′′ = ∅.
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Thus, for the networks H ,K we have that if Input(H) = ∅ then Input(K) = ∅; the same applies for
Output(H) and Output(K). Note that this statement allows us to infer that if m ∈ Int(H), and m < nodes(M),
then m ∈ Int(K).

It remains to prove the main statement. This can be done by proceeding by induction on s, followed by
an inner induction on t and t′. The proof for all these cases can be obtained by simple calculations. We just
provide the details for some cases.

• s = ω, t = c!{n}B : : t1, t′ = m.c?v :: t2.

In this case we have that 〈 t1 , t2 〉 ∈ unzipH
M

(ω). By inductive hypothesis, it follows that there exists a
trace t′′ ∈ switchK (t2) such that zipK

N
(t1, t′′) = ω.

By Definition 4.3.14(iv) we have that m′.c?v :: t′′ ∈ switchK (m.c?v :: t2), where m′ ∈ Input(K).

At this point we have that

zipK
N

(c!vB {n} :: t1,m′.c?v :: t′′) =

zipK
N

(t1, t′′)

= ω

• s = c!vBη :: s′, t = n.c?v :: t1, t′ = c!vB(η∪η′) :: t2, where ∅ ⊂ η′ ⊆M. Since c!vB(η∪η′) :: t2 ∈ traces(H)
by hypothesis, we have that Output(H) , ∅. Therefore, Output(K) , ∅. Further, we have already shown
that Output(K) = η∪η′′, where ∅ ⊂ η′′ ⊆ nodes(N).

In this case we have that, if 〈 t , t′ 〉 ∈ unzipH
M

(s), then 〈 t1 , t2 〉 ∈ unzipH
M

(s′), so that by inductive hypothesis
there exists a trace t′′ ∈ switchK (t2) such that zipK

N
(t1, t′′) = s′.

Note also that, if we let η1 = Input(K), then c!vB η1 :: t′′ ∈ switchK (c!vB (η∪η′) :: t2). In this case we
know that η1 = η∪η′′.

By calculations, it follows that

zipK
N

(n.c?v :: t1,c!vB (η∪η′′) :: t′′) = c!vBη :: zipK
N

(t1, t′′)

= c!vBη :: s′

= s

• s = m.c?v :: s′, t = m.c?v :: t1 and t′ = m.c?v :: t2.

In this case, if 〈 t , t′ 〉 ∈ unzipH
M

(s), then 〈 t1 , t2 〉 ∈ unzipH
M

(s′). Also, since m.c?v :: t1 ∈ traces(M), we
have that m ∈ Int(M), hence m < nodes(N).

By inductive hypothesis, it holds that there exists a trace t′′ ∈ switchK (t2) such that zipK
N

(t1, t′′) = s.

Also, we have that m ∈ Input(H) and m < nodes(M), which ensures that m ∈ Input(K). Thus we have
that m.c?v :: t′′ ∈ switchK (m.c?v :: t2). By calculations we obtain that

zipK
N

(m.c?v :: t1,m.c?v :: t′′) = m.c?v :: zipK
N

(t1, t′′) (A.9)

= m.c?v :: s′ (A.10)

= s (A.11)

Proof of Lemma 4.3.21 First note that every reduction of the computation listed in the hypothesis correspond
to a strong τ transition. In fact, recall that Int(M0) = {e1, · · · ,ek} by hypothesis, Int(T ) = ∅ and {e1, · · · ,ek} ⊆

nodes(T0). It follows from Lemma 3.2.1 that Int(M0 ‖> T0) = ∅. Now, by Proposition 4.1.4 we have that
wheneverM j ‖>T j _M j+1 ‖>T j+1, for some index j such that 0≤ j≤ k, then eitherM j ‖>T j

τ
7−−→≡M j+1 ‖>T j+1

or M j ‖> T j
c!vBη
7−−−−−−→≡M j+1 ‖> T j+1 for some channel c, value v and non-empty set of nodes η. However, the
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last case is not possible. In fact, in this case we would have that η ⊆ Int(M‖> T ) = ∅, contradicting the fact that
η , ∅. ThereforeM j ‖> T j

τ
7−−→≡M j+1 ‖> T j+1.

Since M0 is a composable network it cannot contain the success process ω at the code of some of its
nodes. Further, for any network T ′ ∈ Testst, only the code running at node cn can contain the process ω. It is
straightforward to note that in this case we have that Tn = ΓT B

∏k
i=1 0~ei� |ω~cn�.

Further, note that this is possible only if there exists two indexes h,0 ≤ h < j and i,0 ≤ i ≤ k such that
Th = ΓT B

∏k
i=1 ei~cc!〈CHECK〉� | cc~cc?(x1, · · · xk) .ω�. Therefore, for any index h it follows that the code

running at node ei in Th cannot be the empty process 0.
Since the code running at node cn in the network T0 is deterministic, we also have that there exists a

least index j such that T j = ΓT B
∏k

i=1 ei~P
j
i � | cn~Pt�. Consider now the sequence of extensional transitions

M0 ‖> T0
τ
7−−→M j ‖> Tt. Note that, for any index i : 0 ≤ i ≤ j, the code running at node ei in network T j cannot

be the deadlocked process 0.

We show, by performing a case analysis on T0, that T j = Tt, and that M0
τ
|===⇒M j. First, suppose that

T0 = T t
next, and consider the sequences of τ-extensional transitions M0 ‖> T0

τ
7−−→ · · ·

τ
7−−→ M j ‖> T j. As a

consequence of Proposition 4.2.5 we can rewrite this sequence of transitions asM0 ‖ T
′
0

τ
7−−→ · · ·

τ
7−−→M j ‖ T

′
j ,

where T ′i = symM(Ti) for any i = 0, · · · , j2.

Recall that T ′0 = symM(TMnext); We show that T ′j = symM(T ′t ) and that M0
τ
|===⇒M j by induction on j.

Note that we cannot have the case j = 0, for we have already shown that T ′j ≡ Γ′T B
∏k

i=1 ei~P
j
i � | cn~Pt�, while

T ′0 = Γ′T B
∏k

i=1~�|~cc?(x) .Pi
t + LOCK�cn~cc!〈PROCEED〉 .Pt�.

• j = 1. ThenM0 ‖ T0
τ
7−−→M1 ‖ T1, where T ′1 ≡ Γ′T B

∏k
i=1 ei~P

j
i � | cn~Pt�.

Since T ′0 = Γ′T BT
′
0 = Γ′T B

∏k
i=1~�|~cc?(x) .Pi

t + LOCK�cn~cc!〈PROCEED〉 .Pt� and
T ′1 ≡ Γ′T B

∏k
i=1 ei~P

j
i � |cn~Pt�, in this case we have that a broadcast along channel cc has been performed

by T ′0 , and T ′1 ≡ Γ′T B
∏k

i=1 |~P
i
t�ei~.Pi

t� | cn~Pt� = symM(Tt).

In other words, we have thatM0 ‖ T
′
0

τ
7−−→M1 ‖ symM(Tt), and T ′0

τ
7−−→ symM(Tt). This corresponds to

case (ii) of Proposition 4.2.12, from which it follows thatM0 =M1; henceM0
τ
|===⇒M1.

• j> 1. Suppose that the statement is true for j−1, and consider again the transitionM0 ‖ T
′
0

τ
7−−→M1 ‖ T

′
1 .

According to proposition 4.2.12 there are four possible cases; however, we show that only one can
actually happen.

– M0
τ
7−−→M1, and T ′1 = T ′0 = symM(T t

next). This is the only possible case.

– T ′0
τ
7−−→ T ′1 ; this is possible only if network T ′0 broadcasts a message along channel cc; however,

we have already seen that T1 = symM(Tt), henceM1 ‖ T
′
1 =M1 ‖> Tt. Since we have that j > 1,

this contradicts the hypothesis that j is the least index such that T j = Tt; therefore, this case is not
possible.

– M0
d!vBη′
7−−−−−−→M1 for some non-empty set of nodes η′, and T ′0

m.c?v
7−−−−−−→ T1 for some m ∈ Input(T ′0).

Note that in this case we have that d , cc, since cc does not appear in the code ofM0 by hypothesis.

Recall that Int(M) = {e1, · · · ,ek}. Thus, there exists at least an index i such that ei ∈ η
′. That is,

ΓM ` m′ → ei for some node ei, and m′ = m. Now, note that in T ′0 node ei reacts to a broadcast
from node m by making its code evolve in the deadlocked process 0. However, we have already
proved that for any index i′ = 0, · · · , j, none of the nodes ei, where i = 1, · · · ,k can run the code 0.
Therefore, this case is not possible.

– The last possible case is that in which T ′0
c!vBη′
7−−−−−−→ T ′1 for some channel c, value v and non-empty

set of nodes η. Note that this requires that the network T ′0 performs a broadcast. This is possible
only if the node that performs the broadcast is cn; that is, η′ = Outcn(T ′0).

2In practice, we have that T ′i = symMi
(Ti) = Γ′T BTi for any i = 0, · · · , j. However, this is the same as symM(Ti), forM has the same

topological structure ofMi.
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Since we are assuming that cn < (ΓV ), there exists no node m in ΓM such that ΓM ` m → cn.
Therefore, we have that Γ′T ` m→ cn for no m ∈ (ΓM)v. Since Outcn(T ′0) = ∅, it follows that also
Outcn(T ′0) = ∅, which contradicts the requirement that η′ is non-empty. Thus this case is not possi-
ble.

Therefore, the only possibility in this case is that M0
τ
7−−→M1 and T ′0 = T ′1 = symM(T t

next). Then we

can apply the inductive hypothesis to infer that T ′j = symM(Tt) andM1
τ
|===⇒M j, from which it follows

thatM0
τ
|===⇒M j.

The next case we need to consider is that in which T0 = T t
η for some set η such that |η| = k− 1. In a

way similar as the one above, we can prove that there exists an index j′ > 0 such that M0
τ
|===⇒M j′

and T j′ = T t
next; then, from the discussion above, we obtain that there exists an index j > j′ such that

M0
τ
|===⇒M j and T j = Tt.

We can iterate this procedure, first by looking at a network of the form T t
η where |η| = k−2, to show that

an index j′′ such that T ′′j = T t
η′

, where |η′| = k− 1 can be reached. At the end of this iteration we find
that the statements also holds if T0 = T t

check, which concludes the proof.

Proof of Lemma 4.3.23 Suppose that M0 ‖> T0 _ · · ·_Mn ‖> Tn, where Tn is a successful configuration.
We have already proved in Lemma 4.3.21 that each transition corresponds to a

τ
7−−→ transition; further, we have

that Tn ≡ Γn B
∏k

i=1 ei~0� | cn~ω� and, in order for the computation above to be successful, the code at some
node ei, i = 1, · · · ,k cannot be 0 throughout the computation. That is, for any h : 0 ≤ h < n and i : 1 ≤ i ≤ k, we
have that Th . ThB e j~0� |

∏k
j=1 j,i e j~P

j
h� | cn~Ph�.

Further, since the code running at node cn is deterministic, there exists a least index j ≤ n such that T j ≡∏k
i=1 ei~P

j
i � | cn~Pt′

check.P
t′
next.Pt�.

We prove, by well-founded induction over the relation ≺, that if T0 ∈ Dtestt then T j = T t′

check, and

M0
c!vBη×

|=======⇒M j.

• The base case is that in which η× = ∅,η� = ∅ and η↓ = η. We have already noticed that T0 = T t′
∅,∅,η

=

Tcheck, so that j = 0. Further, we have thatM0
τ
|===⇒M0, so that there is nothing to prove in this case.

• Let now η×,η�,η↓ be an arbitrary partition of η, and let T0 = T t′

η×,η�,η↓
. Since we are assuming that the

computationM0 ‖> T0
τ
7−−→ · · ·

τ
7−−→Mn ‖> Tn is successful, and T0 is not a successful configuration, there

exists a least index j′ ≤ j such that T j′ is not T0.

We perform an inner induction on j′ to show that T j′ = T t′

η×1 ,η
�
1 ,η↓1

for some sets η×1 ,η
�
1 ,η

↓

1 ∈ Dtestst such

that T0 ≺ T j′ . Further, if η′ = η× \η×1 is non-empty, thenM0
c!vBη′

|=======⇒M j′ , otherwiseM0
τ
|===⇒M j′ .

– j′ = 0. This case is vacuous, for we require that T j′ , T0.

– j′ > 0. Consider the transition M0 ‖> T0
τ
7−−→ M1 ‖> T1. We can rewrite this transition as M0 ‖

T ′0
τ
7−−→M1 ‖ T

′
1 , where T ′0 = symM(T0) and T ′1 = symM(T1) = Γ′T BT1, by applying Proposition

4.2.5. By Proposition 4.2.12 there are four possible cases.

∗ M0
τ
7−−→M1, and T ′0 = T ′1 . In this case the result follows by the inductive hypothesis.

∗ M0
d!wBη′′
7−−−−−−−→ M1. Further, there exists a node m ∈ Input(T ′0) such that Inm(T ′0) = η′′, and

T ′0
m.c?v
7−−−−−−→ T ′1 . In this case j′ = 1.

Now note that d has to be the channel c, for otherwise one the code running in the nodes in
η′′ would evolve in the deadlocked process 0; similarly, we have that w = v. Further, note
that η′′ ⊆ η′, for otherwise the nodes in η′′ \ η× would deadlock too. Let η×1 = η× \ η′′, η�

1 =

η�∪η×1 ,η
↓

1 = η↓.



A.5. PROOFS OF THE RESULTS CONCERNING THE MUST-TESTING PREORDER 229

We can check that in this case we have that T ′1 is the network

Γ′T B
∏

i:ei∈η× ei~Pt� |
∏

i:ei∈η� ei~cc!〈DETECTED〉 .P′next.P
′

check.P
′
t′�|∏

i:ei∈η� ei~P′next.P
′

check.P
′
t′� | cn~cc?

(
x1, · · · , x|η×∪η� |

)
.Pnext.Pcheck.Pt′�

which is exactly symM(η×1 )T t′

ηG
1 o,η↓1

. Further, since η×1 = η× \ η′′, and η′′ ⊆ η×, it follows that

η′′ = η× \η×1 . SinceM0
c!vBη′′
7−−−−−−−→M1, we also have thatM0

c!vBη′′

|=======⇒M1.

∗ T ′0

τ
|===⇒ T ′1 , andM0 =M1. This case can happen only if one of the nodes ei, i = 1, · · ·k, has

broadcast the acknowledgement value along channel cc; further, Outei (T
′
0) = ∅. Since node ei

can broadcast the acknowledgement value to node cn, then it has to be contained in the set η�.
Further, if we choose η×1 = η×, η�

1 = η� \ {ei}, and η↓1 = η� \ {ei}, then T ′1 = symM(T t′

η×1 ,η
�
1 ,η↓1

).

SinceM0 =M1, then we have thatM0
τ
|===⇒M1.

∗ T ′0
cc!δdBηM
7−−−−−−−−−→ T ′1 for some non-empty set of nodes ηM . Since we are assuming that no node

in the networkM0 can receive values along the channel cc, then we have thatM1 =M0. The
rest of the proof for this case is analogous to the previous one.

Recall that we want to prove that if T0 ∈ Dtestt then T j = T t′

check, andM0
c!vBη×

|=======⇒M j. Here T j is the
least configuration for the testing component in the successful computation we are considering for which
node cn is running the process Pcheck.Pnext.Pt′ .

So far we have showed that for T j′ = T t′

η×1 ,η
�
1 ,η↓1

for some sets η×1 ,η
�
1 ,η

↓

1 ∈ Dtestst such that T0 ≺ T j′ .

Further, if η′ = η× \η×1 is non-empty, thenM0
c!vBη′

|=======⇒M j′ , otherwiseM0
τ
|===⇒M j′ . Then the configu-

rationM j′ ‖> T
t′

η×1 ,η
�
1 ,η↓1

reaches, after a finite number of steps, the configuration T j | T j; by well-founded

induction it holds that T j = T t′

check, andM j′
c!vBη×1
|=======⇒M j.

If η× \ η×1 = ∅, then η× = η×1 . This is because η× ⊆ η×1 . In this case we have proved that M0
τ
|===⇒

M j′
c!vBη×1
|=======⇒M j, which is equivalent toM0

c!vBη×

|=======⇒M j. Otherwise, M0

c!vBη×\η×1
|==========⇒M j′

c!vBη×

|=======⇒

M j; the sets The sets η× \η×1 and η× are obviously disjoint, and their union correspond to η×. Therefore,

by Definition 4.1.5(3b) we obtain thatM0
c!vBη×

|=======⇒M j, as we wished to prove.

A.5 Proofs of the Results Concerning the Must-testing Preorder

Proof of Lemma 4.4.16 We only prove the first statement in the case µ = m.c?v. The proofs for any other
case, as well as the proof of the second statement, are in fact similar in style.

LetM be a finitary network and µ be an extensional action; we show that ifM is finitary, with

sup {M
m.c?v
|======⇒M′} =∞, thenM is not strongly convergent, thus contradicting the hypothesis.

To this end, we build a directed tree T as the smallest tree which satisfies the following conditions:

• Vertices of T are finite sequences of extensional transitions, with the root of T being the sequence of
length 0 coinciding withM

• IfM
τ
|===⇒M′′ andM′′

µ
7−−→M′, where µ is either τ or m.c?v, then there exists an edge fromM

τ
|===⇒M′′

toM
µ

|===⇒M′

• ifM
m.c?v
|======⇒M′′ andM′′

τ
7−−→M′, then there exists a vertex fromM

m.c?v
|======⇒M′′ toM

m.c?v
|======⇒M′
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Note thatM
µ

|===⇒M′ appears in T only if we can derive the corresponding weak extensional transition for
M; since no other vertices appear in T , it follows that T has a single connected component. Also, sinceM is
assumed to be a finitary network, each vertex in T has finite degree, for the number of outgoing edges for a

vertex of the formM
µ

|===⇒M′ is less or equal to the number of transitions whichM′ can perform.

Finally, the tree T has an infinite number of vertices. By assumption the quantity sup {M
m.c?v
|======⇒M′};

hence, there exists an index k ≥ 0 such that for any n ≥ k, there exists a transition of the formM
m.c?v
|======⇒M′′

of length n such thatM′′
τ
7−−→M′, leading to length(M

m.c?v
|======⇒M′) = n + 1. That is, we are able to associate

to any number n ≥ k a sequence of transitions of length n; since such a sequence of transitions corresponds to
a vertex in T , it follows that T has an infinite number of vertices.

Therefore we can apply Corollary 4.4.15 to prove that the directed tree T has an infinite path rooted in the
networkM; this corresponds to an infinite sequence of transitions of the form

M
τ
7−−→M1

τ
7−−→ · · ·

τ
7−−→Mk−1

m.c?v
7−−−−−−→Mk

τ
7−−→ · · ·

τ
7−−→Mk+h

τ
7−−→ · · ·

Thus we have thatMk ↑ and, sinceM
m.c?v
|======⇒Mk, it follows thatM⇑m.c?v. By definition it follows that

M is not strongly convergent.

Outline of the Proof of Lemma 4.4.17 Consider the network M ‖> T ; we show that, for any sequence of
extensional transitions of the form

(M‖> T )
µ1
7−−−→ (M1 ‖> T 1)

µ2
7−−−→ ·· ·

µk
7−−−→ (Mk ‖> T k) (A.12)

of length nM there exists an index j ∈ J such that N j ‖> T is equipped with the sequence of weak extensional
transitions

(N j ‖> T )
µ1
|===⇒ (N1

j ‖> T1)
µ2
|===⇒ ·· ·

µn
|===⇒ (Nk

j ‖> T
k) (A.13)

where the length nN of the above computation fragment is greater or equal to nM.

This statement is proved by reasoning by induction on k.

k = 0 In this case the sequence of extensional transitions described in Equation (A.12) consists of the only
network (M ‖> T ). In this case, for any index j ∈ J, we have the empty sequence of weak extensional
transitions consisting of the only network (N j ‖> T ); hence, in this case there is nothing to prove.

k > 0 Suppose that the statement is true for k−1; we have that

(M‖> T )
µ1
7−−−→ (M1 ‖> T 1)

By Proposition 4.2.5 we can rewrite the transition above as (M ‖ TM)
µ1
7−−−→ (M1 ‖ T 1

M
), where TM =

symM(T ), T 1
M

= symM(T 1) 3

The rest of the proof is carried out by performing a case analysis on the action µ1; here we only show
some of the details for the case µ1 = τ. By Proposition 4.2.12 there are four possible sub-cases:

(i) M
τ
7−−→M1 and T 1 = T ,

(ii) T
τ
7−−→ T 1 andM1 =M,

(iii) M
c!vB{n}
7−−−−−−−→M′ and T

m.c?v
7−−−−−−→ T 1 or

(iv) M
n.c?v
7−−−−−→M1 and T

c!vBη
|======⇒T 1, with η ⊆ nodes(N).

3In practice, we have that T 1
M

= symM1 (T 1); however, this network coincides with symM(T 1), for the topological structure ofM and
M1 is the same, and the definition of symM(·) depends only on the topological structure ofM.
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We only provide the details for Case (iii). Since DTraces(M) ⊆
⋃

j∈J DTraces(N j), andM
c!vB{n}
7−−−−−−−→M1,

it follows that there exists an index j ∈ J such that N j
c!vB{n}
|=======⇒N ′ for some network N ′; in particular,

the set N = {N ′ |N j
c!vB{n}
|=======⇒N ′ for some j ∈ J} is non-empty.

Further, the set N is finite; in fact, if it were infinite, there would exist an index j ∈ J such that the set

N j = {N ′ |N j
c!vB{n}
|=======⇒N ′} would be infinite. For such a set, the quantity

k = sup {N j
c!vB{n}
|=======⇒N ′ | N ′ ∈N j} would be defined and finite, for otherwise it would follow thatN j is

not strongly convergent as a direct consequence of Lemma 4.4.16. Now it is possible to prove, by natural
induction on k and by using the assumption thatN j is finitary, that the set of networks N ′

j which can be
reached by the latter via a sequence of at most k (arbitrary) strong extensional transition is finite, hence
so is the set set N j, for it is trivial to note that N j ⊆N ′

j .

Thus we have shown that the set N is non-empty and finite. Now we show that it also holds that
DTraces(M)1

⊆
⋃
N ′∈N DTraces(N ′); this enables us to apply the inductive hypothesis to the sequence

of extensional transitions
(M1 ‖> T 1)

µ2
7−−−→ ·· ·

µk
|===⇒ (Mk ‖> T k)

and the set of networks N . Let t ∈ DTraces(M1); since M
c!vB{n}
7−−−−−−−→M1, we have that c!vB {n} :: t ∈

DTraces(M), and by hypothesis there exists an index j ∈ J such that c!vB {n} :: t ∈ DTraces(N j); this is

possible only if there exists a networkN ′ such that t ∈DTraces(N ′) andN j
c!vB{n}
|=======⇒N ′. It follows then

that N ′ ∈N , hence t ∈
⋃
N ′∈N DTraces(N ′).

We can now apply the inductive hypothesis to infer that there is a network N ′ ∈ N such that

(N ′ ‖> T 1)
µ2
|===⇒ ·· ·

µk
|===⇒ (N ′k−1 ‖> T

k)

Further, we have already shown that there exists an index j ∈ J such that N j
c!vB{n}
|=======⇒N ′. It remains

to show that (N j ‖> T )
τ
|===⇒ (N ′ ‖> T 1). To this end, we first rewrite (N j ‖> T ) as (N j ‖ TN ), where

TN = symN (T ). Since T
m.c?v
7−−−−−−→ T 1, we can employ Lemma 4.2.22 to derive that TN

m.c?v
7−−−−−−→ T 1

N
,

where T 1
N

= symN (T 1). It follows from Proposition 4.2.23 (ii) that (N j ‖ TN )
τ
|===⇒ (N ′ ‖ T 1

N
). Finally,

we can rewrite the latter network asN ′ ‖>T 1; this is a direct consequence of propositions 4.2.4 and 4.2.3.
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Appendix B

Proofs of the Propositions in Part II

B.1 Decomposition and composition results

To prove propositions 7.2.10 and 7.2.11, we first need to prove the following statements for actions which can
be derived in the intensional semantics:

Proposition B.1.1 (Weakening). Let Γ1 BM be a network, and let Γ2 such that whenever Γ2 ` m↔ n with

n ∈ nodes(M) then n < nodes(M). Then

Γ1∪M
α
−→∆ if and only if (Γ1∪Γ2)BM

α
−→∆

where α ranges over the actions m.τ,c.m!v,c.m?v.

Proof. The two implications are proved separately; the only if case is proved by structural induction on the
proof of the derivation Γ1 BM

α
−→∆, while the if implication is proved by structural induction on the proof of

the derivation (Γ1∪Γ2)
α
−→∆; in both cases, the conditions required for the structure of Γ2 are vital. �

Proposition B.1.2 (Node identification). Let ΓM BM be a network such that

1. ΓM BM
m.τ
−→∆; then

• M ≡ m~s� |M′,

• s
τ
−→P, for some P,

• ∆ = m~∆′� |M′, with ∆′ = ~P�.

2. ΓM BM
c.m!v
−→ ∆, then

• M ≡ m~s� |M′,

• s
c!v
−→P for some P,

• ΓM BM′
c.m?v
−→ Θ for some Θ,

• ∆ = m~∆′� |Θ, with ∆′ = ~P�.

Proof. Both cases are proved by structural induction on the proof of the derivation ΓM BM
α
−→∆, using Propo-

sition B.1.1 and with α ranging over m.τ,c.m!v. �

Proof of Proposition 7.2.10 We only prove the first statements; details for the other statements are similar.
Suppose (ΓM BM) ‖ (ΓnBn~s�)

τ
−→∆; First we rewrite the network in the left hand side of the transition as

(ΓM ∪Γn)BM |n~s�. By definition of extensional actions, there are two possible cases:

1. (ΓM ∪Γn)BMn~s�
m.τ
−→∆; in this case we can apply Proposition B.1.2 (1) to derive Mn~s� ≡ m~s′� |M′.

Here again we have two possible cases:
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• m = n; then, again by Proposition B.1.2 (1) M ≡ M′m s
n.τ
−→Pn, with ~Pn� = ∆n and ∆ = n~∆� |M.

Now we can derive ΓM Bn~s�
n.τ
−→n~∆n�, and therefore ΓM Bn~s�

τ
−→ΓM Bn~∆n�.

• m , n; in this case m ∈ nodes(M). By Proposition B.1.2 (1) it holds M ≡ m~s′� |M′ |n~s�, s′
τ
−→P′

and ∆ = m~∆m� |M′ |n~s�. Let now ∆M = m~∆m� |M′. It is straightforward to show that ΓM ∪ΓnB

M
m.τ
−→∆M . Note also that, whenever Γn ` l↔ k for some l ∈ nodes(M), then k = n, and n < nodes(M).

Thus, we can apply Proposition B.1.1 to derive ΓM BM
m.τ
−→∆M , and by definition of extensional

actions we obtain ΓM BM
τ
−→∆M .

2. ΓM ∪Γn BM |n~s�
c.m!v
−→ ∆, with {l | (ΓM ∪Γn) ` m↔ l} ⊆ nodes(M |n~s�). Denote the set in the left hand

side of the inclusion above as ηm. Here, by Proposition B.1.2 (2) there are two different possible cases

• m = n. First, note that, as ηn ⊆ nodes(M), whenever Γn ` m↔ n then m ∈ nodes(M). Now we apply
Proposition B.1.2 (2) to obtain s

c.n!v
−→ Pn and (Γ1 ∪Γ2)BM

c.n?v
−→ ∆M , with ∆ = ∆M | n~∆n� for ∆n =

~Pn�. It is now easy to derive ΓnBn~s�
c.n!v
−→ΓnBn~s�; by definition of extentional actions, we obtain

Γn Bn~s�
c!vBη
−→ Γn B s~∆n�, where η = Int(Γn Bn~s�) = {m | Γn ` m↔ n}. However, we have already

noticed that every node in this set is a node in nodes(M), equivalently η ⊆ nodes(M). It remains to
prove ΓM BM

c.n?v
−→ ΓM B∆M . We have already shown that (Γ1∪Γ2)BM

c.n?v
−→∆M , and by Proposition

B.1.1 we obtain ΓM BM
c.n?v
−→∆M . By definition of weak extensional action, it remains to show that

n ∈ Int(ΓM BM). However, this is ensured, since Int(Γn B n~s�) = η ⊆ nodes(M) n ∈ Int(ΓM BM).
Since η is non-empty, there exists at least a node m ∈ nodes(M) such that Γn ` m↔ n, and by the
definition of ‖ we obtain ΓM ` mm↔ n.

• n , m; this case is similar to the one above, and it is therefore skipped.

�

Proof of Proposition 7.2.11 We prove only (i) and (ii); the other cases ore similar. For (i), Suppose (ΓM B

∆)
τ

=⇒ (ΓM B∆M),ΓnBn~Θ�
τ

=⇒ΓnBn~Θn�, and (ΓM B∆) ‖ (ΓnBn~Θ�) is well defined

Now, note that for any node m ∈ nodes(M) we have that Γnn↔ m implies m , n. Thus, whenever for a
distribution ∆0 such that nodes(∆0) ⊆ nodes(∆) we can derive a (strong) action ΓM B∆0

τ
−→ΓM B∆1, we can

apply Propositions B.1.1 and B.1.2 to obtain (ΓM ∪Γn)∆0 | s~Θ�
τ
−→ (ΓM ∪Γn)B∆1 | n~Θ�. It is now easy to

show that we can infer the hyper-derivation (ΓM∪Γn)B∆
τ

=⇒ (ΓM∪Γn)B∆M |n~Θ�. A similar argument can be
used to show that (ΓM ∪Γn)B∆M |n~Θ�

τ
=⇒ (ΓM ∪Γn)B∆M |n~Θn�; the result follows now from the transitivity

of =⇒, Theorem 6.1.5 (1).

For (ii), suppose (ΓM B∆)
c!vBη
=⇒ (ΓM B∆M), with n < η. Then, we can rewrite ∆ as

∆ =
∑
i∈I

pi ·Mi

such that, for alli ∈ I, ΓM BMi
c!vBη
=⇒ ΓM B∆i and ∆M =

∑
iinI pi ·∆i. It is sufficient to show that, for every i ∈ I,

ΓM BMi ‖ ΓnBn~Θ�
c!vBη
=⇒ ΓM B∆i ‖ ΓnBn~Θ�, thus proving

(ΓM B∆ ‖ ΓnBn~Θ�)
c!vBη
=⇒ (ΓM B∆M ‖ ΓnBn~Θ�)

The proof for this statement can be done by performing an induction on the proof of the derivation ΓM B

Mi
c!vBη
=⇒ ΓM B∆i; for the base case, we have

ΓM BMi
τ

=⇒
c!vBη
−→

τ
=⇒ΓM B∆i
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By (i) and by Propositions B.1.1 and B.1.21, it is easy to derive

ΓM BMi ‖ ΓnBn~Θ�
τ

=⇒
c!vBη
−→

τ
=⇒ΓM B∆i ‖ ΓnBn~Θ�

For the inductive case, ΓM BMi
c!vBη1
=⇒

c!vBη2
=⇒ ΓM B∆i, with η = η1 ∪η2 in this case it is sufficient to note that

n < η1,n < η2 to apply the inductive hypothesis and obtain the result.

1Note that it is first necessary to convert an extensional action in an intensional one, in order to apply these theorems
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Appendix C

Proofs of the Propositions in Part III

C.1 Properties of the Calculus

Proof of Theorem 9.2.4 We show that if ΓBW _ Γ′BW′ and ΓBW is well-defined, then so is Γ′BW′. The
proof requires a structural induction on the proof of the reduction above; we only show the most interesting
cases, which corresponds to rules (R-NOCOLL) and (R-TIME).

• Rule (R-NOCOLL): in this case we have that Γ′ = updv
c(Γ) for some channel c and value v. Suppose

that W′ ≡ d[x].P|W′1 for some channel d , c, process P and network W′1. It follows by definition that
rcv(d[x].P,c) = false. Then it is the case that W ≡ d[x].P|W1; since ΓBW is well-formed, it follows that
Γ ` d : exp, and since (Γ′)(d) = (updv

c(Γ))(d) we also have that Γ′ ` d : exp.

If W′ ≡ c[x].P|W′1 it holds that updv
c(Γ) ` c : exp, hence there is nothing to prove.

• Rule (R-TIME): in this case, we have that whenever Γ′BW′ ≡ νl.c[x].P|W′ then l = ∅, Γ `t c : n for some
n > 1 and Γ′ = Γ	1; by definition of 	, it holds that Γ′ `t c : n−1, and since n−1 > 0 it follows Γ ` c : exp.

Proof of Theorem 9.3.1 Let ΓBW,Γ1BW1,Γ2BW2 be three configurations such that ΓBW _σ Γ1BW1 and
ΓBW _σ Γ2BW2.

We show that Γ1BW1 ≡ Γ2BW2 by performing a structural induction on the proof of the reduction ΓBW _σ

Γ1BW1.

• The last rule applied in the proof of the derivation is Rule (R-TIME). In this case there exists five index
sets J,R,K,L,S and three sets of channels {cr j}r∈R, j∈J , {ck}k∈K , {cl}l∈L, a set of closed values {vl}l∈L and
collection of processes {Pr j}r∈R, j∈J , {Qr j}r∈R, j∈J , {Ps j}s∈S , j∈J , {Pk}k∈K , {Pl}l∈L such that

1. Γ ` cr j : free for all r ∈ R, j ∈ J,

2. For any k ∈ K, Γ(ck) = (n,v) for some value v and n > 1,

3. For all l ∈ L, Γ ` l deliver vl

4. Γ1 = Γ	1

5. W ≡

prod j∈J
(∑

r∈Rbcr j?(Pr j).Qr jc+
∑

s∈S σ.Ps j
)
|
∏

k∈K ck[x].Pk |
∏

l ∈ Lcl[x]..Pl

6. W1 =
∏

j∈J

(∑
r∈R Qr j +

∑
s∈S σ.Ps j

)
|
∏

k∈K c[x].Pk
∏
|{vl/x}Pl

In order to prove that Γ1BW1 ≡ Γ2BW2 we need to perform an inner structural induction on the proof of
ΓBW _σ Γ2BW2. If the last rule applied is (R-TIME), then it is trivial to prove that Γ1 = Γ2,W1 = W2,

The only other possible case is that in which the last Rule applied in the proof of the reduction ΓBW _σ

Γ2 BW2 is Rule (R-STRUCT); note in fact that ΓBW has no restricted channels, so that it would not be
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possible to apply Rule (R-RSTRTMD) in the proof of the derivation above. In this case we have that there
exists a network W′2 such that W2 ≡ W′2 and ΓBW _σ Γ2 BW′2; by inductive hypothesis it holds that
Γ1BW1 ≡ Γ2BW′2, hence Γ1BW1 ≡ Γ2BW2.

• The last rule applied in the proof of the reduction ΓBW _σ Γ1 BW1 is Rule (R-RSTSTMD). In this
case we have that W = νc : (n,v)W′, W1 = νc : (n1,v1).W′1 and Γ[c 7→ (n,v)]BW _σ Γ′1 BW′1, where
Γ′1 = Γ1[c 7→ (n1,v1)].

It is easy now to note that the last rule applied in the proof of the derivation ΓBW _σ Γ2 BW2 is Rule
(R-RSTRTMD) and and W2 = νc : (n1,v1).W′2 for some network W′2 such that Γ[c 7→ (n,v)]BW _σ

Γ′2 BW′2, where Γ′2 = Γ1[c 7→ (n1,v1)]. By inductive hypothesis it follows that W′1 ≡W′2, hence W1 = νc :
(n,v).W′1 ≡ νc : (n,v).W′2 = W2.

It remains to show that Γ1 = Γ2; this is trivial, for we have Γ1 = Γ	1 = Γ2.

• The last case left to analyse is similar to that of Rule (R-STRUCT); this is similar to the other two cases,
and it is therefore omitted.

Proof of Theorem 9.3.2 Let ΓBW,Γ1 BW1 be two configurations such that ΓBW _u Γ1 BW1; we show, by
structural induction on the proof of the reduction above, that ΓBW is structurally congruent to a configuration
for which none of the rules (R-TIME), (B-RSTRTMD) can be applied. We only provide some of the details needed
to perform the proof.

• The last rule applied in the proof of the reduction above is Rule (R-INTERNAL); in this case we have that
W ≡ τ.P + Q|W′; now it suffices to note that Rule (B-TIME) cannot be applied to ΓBW, for in order for
the latter to be applied there should be no parallel component structurally congruent to process of the
form τ.P + Q in W. Rule (B-()rstrtmd) also cannot be applied, for it is required that W ≡ νc : (n,v).W′′,
which is not the case.

• In the case the last rule applied is either (B-NOCOLL) or (B-COLL) it suffices to note that W ≡ c !〈v〉.P +

Q|W′, then proceeding as in the previous case.

• If the last rule applied is Rule (B-LATEWAKEUP) then W ≡ bc?(x).PcQ + R|W for some channel c such
that Γ ` c : exp. In this case it suffices to note that the configuration above has no restricted channel, so
that Rule (R-RSTRTMD) cannot be applied to the configuration ΓBW; further, rule (R-TIME) cannot be
applied either to the latter, for the premises of such a rule require that whenever W ≡ bc?(x).PcQ + R|W

then Γ ` c : free.

Proof of Lemma 9.4.1(3) Suppose that ΓBW
τ
−→ Γ′ BW′; we need to show that Γ = Γ′; to this end, we

perform a rule induction on the proof of the transition above. We only show some of the details.

• The last rule applied is Rule (B-RCVLATE); then Γ ` c : exp and ΓBW = ΓB bc?(x).PcQ and Γ′ BW′ =

ΓB c[x].{err/x}P. The latter equation establishes that Γ = Γ′.

• The last rule applied is Rule (B-τ); in this case ΓBW = ΓBτ.P and Γ′BW′ = ΓBP, hence Γ = Γ′.

• The last rule applied is Rule (B-TAUPAR). We have that ΓBW = ΓBW1|W2, ΓBW1
τ
−→ Γ′ BW′1 and

Γ′BW′ = Γ′BW′1|W2; we can apply the inductive hypothesis to the transition ΓBW1
τ
−→Γ′BW′1 to infer

that Γ = Γ′.

• The last rule applied is Rule (B-RESI); In this case we have that W = νn : (c,v).W′, Γ[c 7→ (n,v)]BW
c!v
−→

Γ′′BW′′ and Γ′BW′ = Γ′′[c 7→ Γ(c)]BW′′. By Proposition 9.4.1(1) it holds that Γ′′ = updv
c(Γ[c 7→ (n,v)]);

therefore we have that Γ′ = (Γ[c 7→ (n,v)])[c 7→ Γ(c)] = Γ[c 7→ Γ(c)] = Γ.
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Proof of Proposition 9.5.1 Let W be a term such that c < fn(W), and suppose ΓBW
λ
−→ Γ′ BW′, where

λ , σ,c?v. We show that Γ[c 7→ (n,v)]BW
λ
−→Γ′[c 7→ (n,v)]BW′ by performing a rule induction on the proof

of the former transition. We only show some of the possible cases, and we leave all the details to the interested
reader.

• The last rule applied is (B-SND); then W =!〈d〉.wP and λ = d!w for some channel d , c (recall that we are
assuming that c < fn(W)) and value w. It follows that Γ′ = updw

d (Γ) and W′ = dδv .P. Now we can apply

Rule (B-SND) to the configuration Γ[c 7→ (n,v)]BW to infer the transition Γ[c 7→ (n,v)]B d !〈w〉.P
d!w
−→

updw
d (Γ[c 7→ (n,v)])Bdδv .P.

It remains to note that updw
d (Γ[c 7→ (n,v)]) = updw

d (Γ)[c 7→ (n,v)] = Γ′[c 7→ (n,v)].

• The last rule applied is (B-EXPTHEN). In this case W = 〈d〉P,Q for some channel c such that Γ ` d : exp,
λ = τ and Γ′BW′ = ΓBσ.P.

For c < fn(W) it follows that d , c, hence Γ[c 7→ (n,v)] ` dexp. By an application of Rule (B-EXPTHEN) it
follows that Γ[c 7→ (n,v)]B 〈d〉P,Q

τ
−→Γ[c 7→ (n,v)]Bσ.P; the result follows by noting that Γ = Γ′, hence

Γ[c 7→ (n,v)] = Γ′[c 7→ (n,v)].

• The last rule applied is Rule (B-RESI). In this case it follows that W = νd : (n′,v′).W1, λ = τ and Γ[d 7→
(n′,v′)]BW1

d!w
−→Γ′′BW′1 for some Γ′′,W′1 such that Γ′ = Γ′′[d 7→ Γ(d)] and W1 = νd : Γ′′(d).W′1. We have

two possible cases:

1. d = c; consider the configuration Γ[d 7→ (n,v)]BW1. It is easy to show that (Γ[d 7→ (n,v)])[d 7→
(n′,v′)] = Γ[d 7→ (n′,v′)]. By applying Rule (B-RESI) to the transition Γ[d 7→ (n′,v′)]BW1

d!w
−→Γ′′B

W′1 we obtain that (Γ[d 7→ (n,v)])B νd : (n′,v′).W1
τ
−→Γ′′[d 7→ (Γ[d 7→ (n,v)])(d)]B νd : Γ′′(d).W′1.

Now it remains to note that

Γ′′[d 7→ (Γ[d 7→ (n,v)])(d)] = Γ′′[d 7→ (n,v)]

and, since Γ′ = Γ′′[d 7→ Γ(d)], we have also

Γ′[d 7→ (n,v)] = (Γ′′[d 7→ Γ(d)])[d 7→ (n,v)] = Γ′[d 7→ (n,v)]

Therefore we have that

Γ′′[d 7→ (Γ[d 7→ (n,v)])(d)] = Γ′[d 7→ (n,v)]

so that the transition (Γ[d 7→ (n,v)])Bνd : (n′,v′).W1
τ
−→Γ′′[d 7→ (Γ[d 7→ (n,v)])(d)]Bνd : Γ′′(d).W′1

can be rewritten as (Γ[d 7→ (n,v)])Bνd : (n′,v′).W1
τ
−→Γ′[d 7→ (n,v)]Bνd : Γ′′(d).W′1, as we wanted

to prove.

2. d , c; in this case we have that c < fn(W1), hence by inductive hypothesis (Γ[d 7→ (n′,v′)])[c 7→
(n,v)] B

d!w
−→Γ′′[c 7→ (n,v)] BW′1. Since d , c, we can rewrite the channel environment (Γ[d 7→

(n′,v′)])[c 7→ (n,v)] as (Γ[c 7→ (n,v)])[d 7→ (n′,v′)] in the transition above, leading to

(Γ[c 7→ (n,v)])[d 7→ (n′,v′)]BW1
d!w
−→Γ′′[c 7→ (n,v)]BW′1

By Applying Rule (B-RESI) to the last transition we obtain that

Γ[c 7→ (n,v)]B νd : (n′,v′)
τ
−→ (Γ′′[c 7→ (n,v)])[d 7→ (Γ[c 7→ (n,v)])(d)]B νd : (Γ′′[c 7→ (n,v)])(d).W′1
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By performing the required map, we find that (Γ′′[c 7→ (n,v)])(d) = Γ′′(d), while

(Γ′′[c 7→ (n,v)])[d 7→ (Γ[c 7→ (n,v)])(d)] = (Γ′′[c 7→ (n,v)][d 7→ Γ(d)])

= Γ′′[d 7→ Γ(d)][c 7→ (n,v)]

= Γ′[c 7→ (n,v)]

when the last equation can be proved by recalling that Γ′ = Γ′′[d 7→ Γ(d)].

By performing the appropriate substitusions we can rewrite the transition we have derived as Γ[c 7→
(n,v)]Bνd : (n′,v′)W1

τ
−→Γ′[c 7→ (n,v)]Bνd : Γ′′(d).W′1, which is exactly what we wanted to prove.

Proof of Proposition 9.5.5 The proof is carried out by Rule induction on the proof of the derivation ΓBW
c!
−→

Γ′BW′. We provide the details only for the case in which Rule (B-SYNC) has been applied, and Γ(c)1 = 0.
In this case we have that W = S |R for some S ,R and value w such that ΓBS

c!
−→ΓBS ′ and ΓBS ′

c?w
−→ΓBR′,

with W′ = S ′|R′. Thus we can apply the inductive hypothesis to the first derivation, and we assume that
ΓBS ≡ ΓB νl′.(c !〈v〉.P + Q|S 1) for some l′,P,Q,S 1 and S ′1 such that the following is true:

• c does not appear in l′

• ΓB νl′.S 1
c?v
−→Γ′B νl′.S ′1

• Γ′BS ′ ≡ Γ′B νl′.(σδv .P|S ′1).

Here note that the value v being received by ΓBS 1 is not necessarily the same received by ΓBR.
Without loss of generality, we can also assume that none of the variable in ch(l′) appear free in R, as it is

always possible to perform an α-conversion.
First, we show that ΓBR

c?v
−→Γ′ BR′. This is a direct consequence of Propositions 9.4.2 and 9.4.1(3). In

fact, by applying Proposition 9.4.1(2) to the transition ΓB νl′.S
c?v
−→Γ′ B νl′.S ′ we obtain Γ′ = updv

c(Γ). Now,

by Proposition 9.4.2 applied to the transition ΓBR
c?w
−→Γ′ BR′ there exists a channel environment Γv such that

ΓBR
c?v
−→ Γv BR′. Finally, we can apply again Proposition 9.4.1(2) to the latter to obtain Γv = updv

c(Γ) = Γ′,

hence ΓBR
c?v
−→Γ′BR′.

We are now ready to prove the statements; we need to show that ΓBW = ΓB (S |R) is congruent to a
configuration whose form is ΓBνl.(c !〈v′〉.P′+ Q′|W1) for some l, v′, P,Q, W1, W′1 such that conditions (1-3) of
the Proposition are satisfied. To this end, let l = l′, P′ = P, Q′ = Q, W1 = S 1|R, W′1 = S ′1|R

′.
We now show that ΓBW ≡ ΓB νl.(c !〈v〉.PQ|(S 1|R)); but this follows directly from the assumptions W =

(S |R), S ≡ ΓBνl.(c !〈v〉.PQ|S 1) and the constraints satisfied by the congruence relation ≡, as none of the values
in l appear free in R.

Also, from the inductive hypothesis, it follows that c does not appear in l, so that Requirement (1) is met.
Let us turn our attention to Requirement (2); we need to show that ΓBνl.(S 1|R)

c?v
−→Γ′Bνl.(S ′1|R

′). This can

be proved as follows: As ΓBR
c?v
−→Γ′ BR′, and none of the names in ch(c) appear in R, a repeated application

of Proposition 9.5.1 leads to the derivation Γ[l]BR
c?v
−→Γ′[l]BR′. Further, by Corollary 9.5.4, we can remove

the channel restrictions from the transition ΓB νl.S 1
c?v
−→Γ′ B νl.S ′1, thus showing Γ[l]BS 1

c?v
−→Γ′[l]BS ′1. Now

it is sufficient to apply Rule (B-RCVPAR) to infer Γ[l]BS 1|R
c?v
−→Γ′[l]BS ′1|R

′, and by a repeated application of
Rule (B-RCV−UNRSTR) (recall that c does not appear in ch(l)), we obtain that Requirement (2) is met.

Finally, we need to show that Requirement (3) is met. That is, Γ′ BW′ ≡ Γ′ B νl.(σδv .P|(S ′1|R
′)). Note that

in this case we have Γ′ BW′ ≡ Γ′ B νl.(σδv .P|S ′1)|R′. As none of the free names in R appear free in ch(l), the
same holds for R′, as Γ′ BR′ is a derivative of ΓBR; again, the above congruence follows from the definition
of the congruence relation, and Requirement (3) is met.

C.2 Barbed Equivalence and Weak Bisimulation
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Proof of Theorem 10.1.4 Let ΓBW be a configuration such that ΓBW ⇓c. By definition we have that
ΓBW _∗ Γ′ BW′ ↓c or, more specifically, ΓBW _n Γ′ BW′ ↓c for some n ≥ 0. Recall that _n denotes a
sequence of n reductions. We show that ΓBW |T _∗ Γ′ BW′ by induction on n. Note that, since we are
assuming that eureka, fail are fresh channels it holds that Γ ` eureka : free, Γ ` fail : free.

• Base case: n = 0. In this case ΓBW = Γ′ BW′, hence ΓBW ↓c, which implies Γ ` c : exp. In this case it
is easy to show that

ΓBW |T _u ΓBW |T1 _∗
σ Γ1BW1|T2 _u Γ2BW1|T3

where

T1 = σ.eureka!〈ok〉

T2 = eureka!〈ok〉

T3 = σ.nil

ΓBW _∗
σ Γ1BW1

Γ2 ` fail : free

Γ2 ` eureka : exp

Note that we can infer the weak timed reduction ΓBW _∗
σ Γ1 BW1 for we are assuming that ΓBW is

well-timed. We have proved that ΓBW |T _∗ Γ2BW1|T3 with Γ2 ` fail : free,Γ2 ` eureka : exp.

Since fail < fn(T3) and fail < fn(W) (from which fail < fn(W2) follows) it is straightforward to note that
Γ2BW1|T3 6⇓fail. Further, since Γ2 ` eureka : exp we also have Γ2BW1|T3 ↓eureka, as we wanted to prove.

• Suppose now n > 0, and assume the statements holds for n− 1 If Γ ` c : exp we can proceed as in the
previous case, otherwise we have that there exists a configuration Γ1 BW1 such that Γ1 BW1 for some
Γ1 BW1 and Γ1 BW1 _n−1 Γ′ BW′. By inductive hypothesis it holds that Γ1 BW1|T _∗ C for some
configuration C such that C ↓eureka,C 6⇓fail.

We have to consider two different cases, according to the nature of the reduction ΓBW _ Γ1BW1.

– ΓBW _u Γ1BW1. In this case it is easy to show that ΓBW |T _u Γ1BW1|T , hence ΓBW |T _∗ C;
at this point there is nothing left to prove.

– ΓBW _σ Γ1BW1; in this case we can build the sequence of transitions

ΓBW |T _u ΓBW |T4 _σ Γ1BW1|T5 _u Γ1BW1|T

where T4 =σ.(fail!〈no〉+τ.T ) and T5 = fail!〈no〉+τ.T . We have proved that ΓBW |T _∗
σ Γ1BW1|T ,

hence ΓBW |T _∗ C. Since C ↓eureka,C 6⇓fail there is nothing left to prove.

Now suppose that ΓBW |T _∗ C for some configuration C such that C ↓eureka, C 6⇓fail. In order to prove that
ΓBW ⇓c it is convenient to introduce the notation T6 = fail!〈no〉, T7 = nil.
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First, note that whenever ΓBW |T _∗ C′ for some configuration C′ then the latter is structurally equivalent
to ΓBW′|T ′ for some channel environment Γ′ and system term T ′ such that either

T ′ = T and Γ′ ` eureka : free and Γ′ ` f ail : free
T ′ = T1 and Γ′ ` eureka : free and Γ′ ` f ail : free
T ′ = T2 and Γ′ ` eureka : free and Γ′ ` f ail : free
T ′ = T3 and Γ′ ` eureka : exp and Γ′ ` f ail : free
T ′ = T3 and Γ′ ` eureka : free and Γ′ ` f ail : exp
T ′ = T4 and Γ′ ` eureka : free and Γ′ ` f ail : free
T ′ = T5 and Γ′ ` eureka : free and Γ′ ` f ail : free
T ′ = T6 and Γ′ ` eureka : free and Γ′ ` f ail : free
T ′ = T7 and Γ′ ` eureka : free and Γ′ ` f ail : free

Note that the only possibility for Γ′ BW′|T ′ to have a strong barb on channel eureka is the fourth case.
Further, recall that T3 = σ.nil; since fail < fn(T3) and fail < fn(W′), it follows that Γ′BW′|T3 6⇓fail.

We also note that the weak reduction ΓBW |T _∗ Γ′ BW′ can be obtained only via a sequence of (both
weak and strong) reductions of the form

ΓBW |T _∗
u Γ1BW1|T _∗ Γ′1BW′1|T _u Γ′′1 BW1|T1 _∗

u Γ2BW2|T1 _σ

_σ Γ′2BW2|T2 _∗
u Γ3BW3|T2 _u Γ′3BW3|T3 _∗ Γ′′3 BW′3|T7

where Γ′1 is a channel environment such that Γ′1 ` c : exp (note that we can reach the configuration T1

from T only if the exposure check on channel c returns a positive outcome). Since the only value T can
broadcast is along channel fail!〈no〉, which does not appear free in W, it is possible to infer the weak reduction
ΓBW _∗

u Γ′1BW′1 from ΓBW |T _∗ Γ1BW′1|T . Not it is trivial to note that Γ′1BW′1 ↓ c, hence ΓBW ⇓ c.
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