
Compositional reasoning about concurrent libraries on the
axiomatic TSO memory model

Artem Khyzha
IMDEA Software Institute

artem.khyzha@imdea.org

Alexey Gotsman
IMDEA Software Institute

alexey.gotsman@imdea.org

Abstract
Linearizability is a commonly accepted notion of correctness for libraries of concurrent algorithms, which

has recently started to become adopted for weaker consistency guarantees provided by hardware and software
platform. In this paper, we present the first definition of linearizability on the axiomatically formulated Total
Store Order weak memory model, implemented by x86 processors. We establish that our definition is a
correct one in the following sense: while proving a property of a client of a concurrent library, we can
soundly replace the library by its abstract implementation related to the original one by our generalisation of
linearizability. This allows abstracting from the details of the library implementation while reasoning about
the client.

1 Introduction

Modern multiprocessor architectures, such as Intel x86 [5], IBM POWER [6, 4] and ARM, provide
memory consistency models that are weaker than the classical sequential consistency (SC). What makes
these models different is that they do certain relaxations to the order of memory accesses, which make
program execution not sequentially consistent. Relying on relaxations enables implementing programs
more efficiently, but leads to counter-intuitive behaviours in many cases, so programming on weak
memory models can be subtle and error-prone.

Compositional reasoning about programs on the weak memory models requires a new formalisation
for correctness of program components. Correctness of concurrent libraries is commonly formalised
by the notion of linearizability [3], which fixes a certain correspondence between the library and its
(usually sequential) abstract specification with methods implemented atomically. Unfortunately, the
classical definition of linearizability is only appropriate for sequentially consistent (SC) memory models,
in which accesses to shared memory occur in a global-time linear order.

In this paper we suggest an approach for compositional reasoning on a weak memory model of Total
Store Order (TSO), implemented by x86 processors [5] (Sections 2, 3). TSO allows the store buffer
optimisation implemented by modern multiprocessors: writes performed by a processor are buffered in
a processor-local store buffer and are flushed into the memory at some later time.

A consequence of the store buffer optimisation is that on TSO, given two memory locations x and
y initially holding 0, if two CPUs respectively write 1 to x and y and then read from y and x, as in the
following program, it is possible for both to read 0 in the same execution:

{x = y = 0}
x = 1; y = 1;
b = y; a = x;

{a = b = 0}
This happens when the reads from y and x occur before the writes to them have propagated from the
store buffers of the corresponding CPUs to the memory. To exclude such behaviours, TSO processors
provide special instructions, called memory fences, that force the store buffer of the corresponding CPU

to be flushed completely before executing the next instruction. Adding memory fences after the writes
to x and y in the above program would make it produce only SC behaviours.

In this paper, we present the definition of linearizability on a weak memory model of TSO, which
is different from a classic definition due to the store buffer relaxation. Usually the semantics of weak
memory models is described in operational or axiomatic setting, and in this work we choose the ax-
iomatic way. While operational model is more intuitive, the axiomatic semantics is more abstracted
from a particular implementation and in some situations is easier to reason about.

We show that our definition of linearizability is a right one in the sense that it validates what we call
the Abstraction Theorem (Theorem 4, Section 4): while proving a property of a client of a concurrent
library, we can soundly replace the library by its abstract implementation related to the original one
by our generalisation of linearizability. Abstraction theorem has a practical value as a compositional
reasoning and verification technique: it enables abstracting from the details of the library implementation
while reasoning about its client, despite subtle interactions between the two caused by the weak memory
model.

2 Preliminaries

The most intuitive way to explain TSO is to define its operational semantics using an abstract machine.
In the following, we informally present the operational model, previously described in [5], and then in
Section 3 we formally define axiomatic semantics. Due to space constraints we do not provide a proof
of their equivalence.

Programming language. We assume that the memory consists of locations Loc= {1,2, . . .} containing
values Val= Z. We consider programs in the following core language:

C ::= α |C ; C |C+C |C* | m L ::= {m =Cm | m ∈ M} C(L) ::= let L in C1 ‖ . . . ‖Cn

A program consists of a library L implementing methods m ∈Method and its client C1 ‖ . . . ‖Cn, given
by a parallel composition of threads (for simplicity, in this paper we suppose that all threads are bi-
jectively mapped to a set of CPUs). Threads are indexed by ThreadID = {1, . . . ,n}. The commands
include primitive commands α ∈ PComm, method calls m ∈ Method, sequential composition C;C′,
non-deterministic choice C +C′ and iteration C*. We use + and * instead of conditionals and while
loops for theoretical simplicity: given appropriate primitive commands, the latter can be defined in the
language as syntactic sugar.

We assume that every method accepts a single parameter and returns a single value. Parameters and
return values are passed by every thread via distinguished locations in memory, denoted paramt , retvalt ∈
Loc for t ∈ThreadID. The rest of memory locations are partitioned into those owned by the client (CLoc)
and the library (LLoc): Loc= CLoc⊎LLoc⊎{paramt , retvalt | t ∈ ThreadID}.

TSO operational semantics. In the operational semantics we consider an abstract machine executing
programs in the core language. Each CPU has a set of general-purpose registers Reg = {r1, . . . ,rm}
storing values from Val. On TSO, processors do not write to memory directly. Instead, every CPU has a
store buffer, which holds write requests that were issued by the CPU, but have not yet been flushed into
the shared memory. The state of a buffer is described by a sequence of location-value pairs.

The abstract machine can perform the following transitions:
∙ A CPU wishing to write a value to a memory location adds an appropriate entry to the tail of its store

buffer.

∙ The entry at the head of the store buffer of a CPU is flushed into the memory at a non-deterministically
chosen time. Store buffers thus have the FIFO ordering.

∙ A CPU can execute a memory fence that flushes all the content of its store buffer to the memory in the
FIFO ordering.

2

∙ ⟨skip⟩= {(/0, /0)};

∙ ⟨C1;C2⟩t = {(A1 ·∪A2,po1 ∪po2 ∪{(a,b) | a ∈ A1 ∧b ∈ A2})};

∙ ⟨C1 +C2⟩t = ⟨C1⟩t ∪⟨C2⟩t ;

∙ ⟨C*⟩t = { /0, /0}∪{(·
⋃n

i=1 Ai,
⋃n

i=1 poi ∪{(a,b) | a ∈ Ai ∧b ∈ A j ∧ i < j}) | (Ai,poi) ∈ ⟨C⟩t ∧n ≥ 1};

∙ ⟨m⟩t = {(A ·∪{c} ·∪{d},po∪{(c,d)}∪{(c,a),(a,d) | a ∈ A}) | (A,po)∈ ⟨Cm⟩t ∧c = (, t,call m())∧
d = (, t, ret m())};

∙ ⟨let {m = Cm | m ∈ M} in C1 ‖ . . . ‖ Cn⟩ = prefix({(·
⋃n

t=1 At ,
⋃n

t=1 pot) | (At ,pot) ∈ ⟨Ct⟩t , t = 1..n}),
where prefix(A,po) =

⋃
a∈A({a′ | a′ ∈ A∧a′

po−→ a},po)∪{(A,po)}.

Figure 1: Program order semantics of common commands

∙ A CPU wishing to read from a memory location first looks it up in its store buffer. If there are entries
for this location, it reads the value from the newest one; otherwise, it reads the value directly from the
memory.

∙ A CPU can execute a command affecting only its registers. In particular, it can call a library method
or return from it.

3 The TSO axiomatic memory model

Action structures. We record information about program executions using actions, defined as follows:

a ∈ Act ::= (e, t,store(x,v)) | (e, t, load(x,v)) | (e, t,call m(v)) | (e, t, ret m(v)) | (e, t, fence)

Here t ∈ ThreadID, x ∈ Loc, v ∈ Val, and e is an action identifier, picked from the set AId. For call
and return actions v means actual parameter and return value respectively. We omit e annotation from
actions, when it is not relevant, and often use r, w and f to denote load, store and fence actions.

We denote the set of all finite sets of actions with P(Act). When considering a relation R over

actions, we write (a,b) ∈ R and a R−→ b interchangeably.

Program order semantics. We first define a program order semantics, which generates all executions
of a program based solely on the structure of its statements, without taking into account the semantics of
memory operations. For instance, in generated executions loads can read arbitrary values disregarding
the values written by performed store actions. After we define the notion of execution, we introduce
axioms which filter out executions that do not satisfy them.

Program order semantics associates a program with a set of action structures—tuples (A,po), where
A ∈ P(Act), and po : A×A is program order that is a total on the set of actions by the same thread.

Let A ·∪B be the union of the sets of actions A and B with disjoint sets of action identifiers. Consider
a program C(L) = (let {m =Cm | m ∈ M} in C1 ‖ . . . ‖Cn). We define the set of action structures ⟨C(L)⟩
for program executions in Figure 1. By construction and definition of prefix(A,po), ⟨C(L)⟩ is also
prefix-closed, i.e. it includes incomplete executions.

For a primitive command α ∈ PComm, we assume a set ⟨α⟩t of all action structures α produces
when executed by thread t. We require that structures in ⟨α⟩t do not contain call or return actions.

The memory model gives a semantics to a program as a set of executions, each of which is a tuple
X = (A,po, rf,mo,sc,hb) of a set of actions A ∈ P(Act) and relations on A. An execution enriches an
action structure with information about the way operations on memory are performed. The relations
included into an execution are as follows:

3

MOWF. mo is total, transitive, irreflexive and relates only store actions in the execution.

POWF. po is total, transitive, irreflexive and relates only actions by the same thread.

SCWF. sc is total, transitive, irreflexive and relates only fences in the execution.

RFWF. (∀w1,w2,r.w1
rf−→ r∧w2

rf−→ r =⇒ w1 = w2)∧
(∀w,r.w rf−→ r =⇒ ∃x,a.w = (,store(x,a))∧(r = (, load(x,a)))∨r = (,call (a)))∨r = (, ret (a))))

RFDET. ∀x,w,r.(r = (, load(x,))∨ (∃t.x = paramt ∧ r = (t,call))∨
(∃t.x = retvalt ∧ r = (t, ret)))∧w = (,store(x,))∧ (w hb−→ r∨w

po−→ r) =⇒ ∃w′.w′ rf−→ r
HBDEF. hb= (po∪ rf)+

HBVSMO. ¬∃w1,w2. w1

hb **
w2

mo
jj

RFMR. ¬∃w1,w2,r. w1
mo //

rf

33w2
hb // r

where w1, w2 and r access the same location.
RFMR’. ¬∃w,w1,w2,r.

w1
mo //

rf

11w2
mo // w rf // r′ sb // r

where w1 and w2 write to the same location,
and w and r′ are by different threads.

HBWF. hb is acyclic.

HBVSSC. ¬∃ f1, f2. f1

hb)) f2
sc
ii

MOVSSC. ¬∃w1,w2, f1, f2.

w1
hb // f1

sc // f2
hb // w2

mo

ll

SCRF. ¬∃w,w′, f1, f2,r.

w mo //

rf

11w′ po // f1
sc // f2

po // r

Figure 2: The validity axioms

∙ rf: reads-from, relating the load actions r to the store actions w from which they take their values;

∙ mo: modification order, relates all store actions in the order they hit the memory;

∙ sc: synchronisation order, relates all fences in the order of their execution;

∙ hb: happens-before, showing the precedence of actions in the execution.

Validity. For an execution X and one of the relations R defined above, we write R(X) to select the
corresponding relation for X . An execution X = (A,po, rf,mo,sc,hb) is called valid when it satisfies the
validity axioms in Figure 2.

A call action (t,call m(v)) gets its argument v by reading from a correspondent client’s store to
paramt . A return action (t, ret m(v)) gets its return value v by reading from a correspondent library’s
store to retvalt . In the following we treat calls and returns as loads, what is established in RFWF axiom.
We also assume that call (return) actions access paramt (retvalt) only when executed by a thread t.

A store action (t,store(x,v)) writes a value v to the address in memory. Analogously to the opera-
tional semantics, where a written value does not hit the main memory immediately, in our model a store
(t,store(x,v)) becomes observable from a thread t, but not always from the other ones. The explicit
way to make the written value visible to the other threads is to execute a fence action (t, fence). We
add RFMR, RFMR’ and SCRF axioms to ensure that a load action reads the most recent value that is
observable to its thread.

We further use JC(L)K to denote for a given program C(L) the set of all valid executions with action
structures from ⟨C(L)⟩: JC(L)K = {X | X = (A,po, , , ,)∧ (A,po) ∈ ⟨C(L)⟩}.

Execution projections. We call actions of the form (t,call m(v)) or (t, ret m(v)) interface actions.
Consider an execution X = (A,po, rf,mo,sc,hb) of C(L). An action a ∈ A is a library action, if it is

an interface action, or ∃b. b = (,call)∧b
po−→ a∧¬∃c.c = (, ret)∧b

po−→ c
po−→ a.

4

w

rf

��

mo
// w′

hb

yyx

zzy
hb

yyr

w
rf

//

mo ��
r

w′

hb
��

y′
hb
OO

x

��

x′

OO

y
hb
// f sc

// f ′
hb

OO

f1
sc // f2

hb

��
y

hb

OO

xoo

w1
mo // w2

hb

��
y

hb

OO

xoo

RFMR’ SCRF HBVSSC HBVSMO

Figure 3: The definition of the deny(X). Here x,y,x′,y′ are interface actions. If the solid edges belong
to the corresponding relations in X , the dashed edges belong to deny(X).

An action a ∈ A is a client action, if it is an interface action, or the negation of the above property
holds. Let client(A) be the set of client actions in A. We define a client’s execution:

client(X) = (client(A),client(po),client(rf),client(mo),client(hb))

by projecting all the relations in X to actions from client(A). We also use analogous projection lib(X) to
library actions and lift client and lib to sets of executions pointwise.

Non-interference. We assume that the set of memory locations Loc is partitioned into those owned by
the client (CLoc) and the library (LLoc): Loc = CLoc⊎LLoc. The client C and the library L are non-
interfering in C(L), if in every computation from JC(L)K, commands performed by the client (library)
code access only locations from CLoc (LLoc). Formally, an execution C(L) is called non-interfering
when it satisfies the following axiom:

NONINTERF.∀a,x, t.a ∈ A∧ (a = (t,store(x,))∨a = (t, load(x,))) =⇒
((a ∈ lib(A,po) ⇐⇒ (x ∈ LLoc∨a = (t,store(retvalt ,))∨a = (t, load(paramt ,))))∧

(a ∈ client(A,po) ⇐⇒ (x ∈ CLoc∨a = (t,store(paramt ,))∨a = (t, load(retvalt ,))))).

In the following, we assume that at the beginning of execution all locations are arbitrarily and explicitly
initialised by means of store actions.

4 Abstraction theorem

The idea behind linearizability is to record all interactions between the client and the library. That is
done by means of the notion of a history. Clients and libraries can affect each other by passing different
values through interface actions. Precisely, the library can observe the parameters provided by the client
at calls, and the client can observe the library’s return values. Therefore, a history includes the set of
interface actions in the execution. We also include in histories two partial orders (guarantee and deny)
over interface actions to consider additional interactions caused by relaxations of TSO.

Definition 1. A history is a set of interface actions and a pair of partial orders over it.

Informally, in a history H = (I,G,D), the guarantee G describes the happens-before edges enforced
by the library; and the deny D describes the happens-before edges that a client must not enforce.

Consider an execution X and its interface actions I(X). We let guar(X) be the projection of hb(X)
onto I(X) and deny(X) be the relation over I(X) obtained from dashed edges in Figure 3. These edges
describe all the possible ways in which happens-before edges enforced by the client can contradict other
relations from the library execution; the axioms that can be violated are indicated in the figure. Let
history(X) = (I(X),guar(X),deny(X)). We lift history to sets of executions pointwise.

We use the ⊆ relation between partial orders to denote that a partial order is a sub-relation of another
one, and lift it to histories as follows: (I1,G1,D1)⊆ (I2,G2,D2) = (I1 = I2)∧ (G1 ⊆ G2)∧ (D1 ⊆ D2).

5

C(L1)
{x = y = 0}

x = 1 y = 1
call m1 call m2
skip skip
ret m1 ret m2
b = y a = x

{a = b = 0}

C(L2)
{x = y = z = 0}

x = 1 y = 1
call m1 call m2
z = 1 while !z do skip
ret m1 ret m2
b = y a = x

{a = 1}

Figure 4: A motivation to include guarantee: it should not be the case that L1 ⊑ L2, if the latter adds
synchronisation and therefore allows less behaviours.

Definition 2. A history H ′ linearizes a history H if H ′ ⊆ H.

Thus, a linearized history enforces fewer dependencies between interface actions for a client and has
less restrictions on enforcing dependencies by a client. This indeed allows more client behaviours.

To generate the set of all histories of a given library L, we consider its most general client, whose
threads repeatedly invoke library methods in any order and with any parameters possible. Take n ≥ 1
and assume sig(L) = {m1, . . . ,ml}. Then we define MGCn(L) = (let L in Cmgc

1 ‖ . . . ‖Cmgc
n), where for

all t, Cmgc
t = (m1 + . . .+ml)

*.
A library execution of L is an execution of JMGCn(L)K for some n ≥ 1. A library execution is valid,

if it satisfies the validity axioms in Figure 2, and it is non-interfering, if it satisfies NONINTERF axiom.
Let JLK be the set of all valid library executions of L. The set of executions in JLK defines a library-

local semantics of L. We say that a library L is non-interfering if so is every execution in JLK.
Now we present our main result – the definition of linearizability for the axiomatic model of TSO.

The correctness of the proposed notion is established in Theorem 4.

Definition 3. For non-interfering libraries L1 and L2, L2 linearizes L1, written L1 ⊑ L2, if:

∀H1 ∈ history(JL1K).∃H2 ∈ history(JL2K).H2 ⊆ H1.

Noteworthily, checking linearizability L1 ⊑ L2 does not involve reasoning about any client. What we
need to do is to generate all possible library-local executions, or, in other words, all possible executions
of MGC(L1) and MGC(L2), and check the definition.

Theorem 4 (Abstraction). If L1, L2 and C(L2) are non-interfering and L1 ⊑ L2, then C(L1) is non-
interfering and ∀X1,X2 . X1 ∈ client(JC(L1)K)∧X2 ∈ client(JC(L2)K)∧hb(X2)⊆ hb(X1).

By Theorem 4, while reasoning about a client C(L1) of a library L1, we can soundly replace L1 with
a simpler library L2 linearizing L1: if a property over client actions holds over C(L2), it will also hold
over C(L1). Since L2 is usually simpler than L1, this eases the proof of the resulting program. Thus, the
proposed notion of linearizability and Theorem 4 enable compositional reasoning about programs on
TSO: they allow decomposing the verification of a whole program into the verification of its constituent
components.

Let us now return to definition of a history and illustrate the ideas behind inclusion of two relations
into it. The inclusion of a guarantee relation into a history is aimed to prevent a library L2 that linearizes
L1 from adding new synchronisations, so that a client cannot notice a difference between them.

Consider libraries L1 and L2 with different implementations for methods m1 and m2 along with their
client C in Figure 4. A client is able to observe a synchronisation inside a library L2, because it disables
some client’s behaviours. Particularly, because of reading z in m2, a store x = 1 is always flushed by the
moment of reading a = x. Consequently, the outcome b = 0 is possible in C(L1) and never happens in
C(L2). In our setting such case is ruled out by a guarantee relation, since all histories of L2 contain an
edge (between a call to m1 and a return from m2) that any history of L1 does not.

6

Execution of C(L)
m1()
m2()
z = 1 while !z do skip

m1()

Methods
L1, L2: m1 { return ++ x; }
L1: m2 { return 2; }
L2: m2 { return ++ x; }

Figure 5: A motivation to include deny: if L1 ⊑ L2, then client must not be able to distinguish them by
making a synchronisation between library methods calls.

With the following example we show the role of a deny relation in a history. Consider libraries L1
and L2 with different implementations for a method m2 along with their client in Figure 5. The former
one always returns 2 while the latter returns the value of x++. It is easy to see that for any history
from history(JL1K) there is an equivalent one from history(JL2K), so by definition L1 ⊑ L2. However,
Abstraction Theorem does not hold of L1 and L2. The subtlety here is that a client is able to perform a
synchronisation that influences library’s execution and makes it possible to detect a different behaviour
of a linearized library.

In terms of our axiomatic model this means, that an execution of C(L2) violates RFMR’ validity
axiom, while C(L1) does not. To avoid this, each validity axiom that can be violated because of client’s
synchronisation contributes edges into a deny relation. This way any client synchronisation that breaks
a library-local execution is explicitly forbidden.

5 Related work and conclusions

Recent work has proposed definitions of linearizability for the operational model of TSO [2] and the
axiomatic model of C++11 [1]; the latter memory model is significantly more complex than TSO. The
techniques we used in this paper are inspired by the construction of the definition of linearizability for
C++11. By demonstrating their application in a simple and clean setting, we hope to highlight their
main underlying ideas and make it easier for other researchers to use them for developing compositional
reasoning methods for other memory models.

We also hope that the definition of linearizability for an axiomatic version of TSO will lend itself
easier to automatic verification and testing than the operational definition [2]. Namely, model checking
the latter requires enumerating an exponential number of concurrent program executions. In contrast, a
single execution in an axiomatic model concisely represents whole classes of executions in a way that
can be accepted by standard SAT or SMT solvers, which enables efficient verification [4].

References
[1] Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for C/C++ concurrency. POPL, 2013. To

appear.
[2] Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Concurrent library cor-

rectness on the TSO memory model. In ESOP, 2012.
[3] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent objects.

ACM TOPLAS, 1990.
[4] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev

Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams. An axiomatic memory model for POWER
multiprocessors. In CAV, 2012.

[5] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In TPHOLs, 2009.
[6] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding POWER

multiprocessors. In PLDI, 2011.

7

	Introduction
	Preliminaries
	The TSO axiomatic memory model
	Abstraction theorem
	Related work and conclusions

