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Abstract
Transactional memory (TM) facilitates the development of
concurrent applications by letting the programmer desig-
nate certain code blocks as atomic. Programmers using a
TM often would like to access the same data both inside
and outside transactions, e.g., to improve performance or
to support legacy code. In this case, programmers would
ideally like the TM to guarantee strong atomicity, where
transactions can be viewed as executing atomically also with
respect to non-transactional accesses. Since guaranteeing
strong atomicity for arbitrary programs is prohibitively ex-
pensive, researchers have suggested guaranteeing it only for
certain data-race free (DRF) programs, particularly those that
follow the privatization idiom: from some point on, threads
agree that a given object can be accessed non-transactionally.
Supporting privatization safely in a TM is nontrivial, because
this often requires correctly inserting transactional fences,
which wait until all active transactions complete.

Unfortunately, there is currently no consensus on a sin-
gle definition of transactional DRF, in particular, because
no existing notion of DRF takes into account transactional
fences. In this paper we propose such a notion and prove
that, if a TM satisfies a certain condition generalizing opacity
and a program using it is DRF assuming strong atomicity,
then the program indeed has strongly atomic semantics. We
show that our DRF notion allows the programmer to use
privatization idioms. We also propose a method for proving
our generalization of opacity and apply it to the TL2 TM.

CCS Concepts • Theory of computation → Concur-
rency; • Software and its engineering → Software ver-
ification;
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1 Introduction
Transactional memory (TM) facilitates the development of
concurrent applications by letting the programmer designate
certain code blocks as atomic [22]. TM allows developing
a program and reasoning about its correctness as if each
atomic block executes as a transaction—atomically and with-
out interleaving with other blocks—even though in reality
the blocks can be executed concurrently. This guarantee can
be formalized as observational refinement [7]: every behavior
a user can observe of a program using a TM implementation
can also be observed when the program uses an abstract
TM that executes each block atomically. A TM can be imple-
mented in hardware [23, 28], software [39] or a combination
of both [11, 26].
Often programmers using a TM would like to access the

same data both inside and outside transactions. This may be
desirable to avoid performance overheads of transactional
accesses, to support legacy code, or for explicit memory
deallocation. One typical pattern is privatization [41], il-
lustrated in Figure 1(a). There the atomic blocks return
a value signifying whether the transaction committed or
aborted. In the program, an object x is guarded by a flag
x_is_private, showing whether the object should be ac-
cessed transactionally (false) or non-transactionally (true).
The left-hand-side thread first tries to set the flag inside
transaction T1, thereby privatizing x. If successful, it then
accesses x non-transactionally. A concurrent transaction T2
in the right-hand-side thread checks the flag x_is_private
prior to accessing x, to avoid simultaneous transactional and
non-transactional access to the object. We expect the post-
condition shown to hold: if privatization is successful, at the
end of the program x should store 1, not 42. The opposite id-
iom is publication, illustrated in Figure 2. The left-hand-side
thread writes to x non-transactionally and then clears the
flag x_is_private inside transaction T1, thereby publishing
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(a) Delayed commit problem:
{ x_is_private = false ∧ x = 0 }

l := atomic { // T1
x_is_private = true;

}

if (l == committed)

x = 1; // ν

atomic { // T2
if (!x_is_private) {

x = 42;

}

}

{ l = committed =⇒ x = 1 }

(b) Doomed transaction problem:
{ x_is_private = false ∧ x = 0 }

l := atomic { // T1
x_is_private = true;

}

if (l == committed)

x = 1; // ν

atomic { // T2
if (!x_is_private) {

while (x == 1) {}

}

}

Figure 1. Privatization examples.

{ x_is_private = true ∧ x = l = 0 }
x := 42; // ν

l1 := atomic { // T1
x_is_private = false;

}

l2 := atomic { // T2
if (!x_is_private)

l = x;

}

{ l2 = committed ∧ l , 0 =⇒ l = 42 }

Figure 2. Publication example.

{ x = y = l1 = l2 = 0 }
l := atomic { // T

x := 1;

y := 2;

}

l1 := x; // ν1
l2 := y; // ν2

{ x = l1 =⇒ y = l2 }

Figure 3. A racy example.

x. The right-hand-side thread tests the flag inside transaction
T2, and if it is cleared, reads x. Again, we expect the postcon-
dition to hold: if the right-hand-side thread sees the write
to the flag, it should also see the write to x. The two idioms
can be combined: the programmer may privatize an object,
then access it non-transactionally, and then publish it back
for transactional access.
Ideally, programmers mixing transactional and non-

transactional accesses to objects would like the TM to guaran-
tee strong atomicity [21], where transactions can be viewed as
executing atomically also with respect to non-transactional
accesses, i.e., without interleaving with them. This is equiva-
lent to considering every non-transactional access as a single-
instruction transaction. For example, the program in Figure 3
under strongly atomic semantics can only produce execu-
tions where each of the non-transactional accesses ν1 and ν2

executes either before or after the transaction T , so that the
postcondition in Figure 3 always holds.

Unfortunately, providing strong atomicity in software re-
quires instrumenting non-transactional accesses with addi-
tional instructions for maintaining TMmetadata. This under-
mines scalability and makes it difficult to reuse legacy code.
Since most existing TMs are either software-based or rely
on a software fall-back, they do not perform such instrumen-
tation and, hence, provide weaker atomicity guarantees. For
example, they may allow the program in Figure 3 to execute
non-transactional accesses ν1 and ν2 between transactional
writes to x and y and, thus, observe an intermediate state
of the transaction, e.g., x = 1 and y = 0, which violates the
postcondition in Figure 3.

Researchers have suggested resolving the tension between
strong TM semantics and performance by taking inspiration
from non-transactional shared-memory models, which are
subject to the same problem: optimizations performed by
processors and compilers weaken the guarantee of sequential
consistency [27] ideal for this setting. The compromise taken
is to guarantee sequential consistency for certain data-race
free (DRF) programs, which do not access the same data con-
currently without synchronization [6]. Racy programs either
are allowed to produce non-sequentially-consistent behav-
iors [30], or are declared faulty and thus having no semantics
at all [2]. DRF thus establishes a contract between the pro-
grammer and the run-time system, which can be formalized
by the so-called Fundamental Property: if a program is DRF
assuming the strong semantics (such as sequential consis-
tency), then the program does have the strong semantics.
The crucial feature of this property is that DRF is checked
by considering only executions under the strong semantics,
which relieves the programmer from having to reason about
the weaker semantics of unrestricted programs. The DRF
contract has formed the basis of the memory models of both
Java [30] and C/C++ [2].
Applying the above approach to TM, strong atomicity

would be guaranteed only for programs that do not have an
analog of data races in this setting—informally, concurrent
transactional and non-transactional accesses to the same
data [4, 5, 8, 9, 34, 41]. For example, we do not want to
guarantee strong atomicity for the program in Figure 3,
which has such concurrent accesses to x and y. On the
other hand, the programs in Figure 1 and Figure 2 should be
guaranteed strong atomicity, since at any point of time, an
object is accessed either only transactionally or only non-
transactionally. Unfortunately, whereas the DRF contract
in non-transactional memory models has been worked out
in detail, the situation in transactional models remains un-
settled. There is currently no consensus on a single defi-
nition of transactional DRF: there are multiple competing
proposals [4, 8, 9, 24, 29], which often come without a formal
justification similar to the Fundamental Property of non-
transactional memory models.
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This paper makes a step towards a definition of trans-
actional DRF on a par with solutions in non-transactional
memory models. A key technical challenge we tackle is
that many TM implementations, when used out-of-the-
box, do not guarantee strong atomicity for seemingly well-
behaved programs using privatization, such as the ones in
Figure 1 [12, 15, 31, 38]. For example, such TMs may invali-
date the postcondition of the program in Figure 1(a) due to
the delayed commit problem [41]. In more detail, many soft-
ware TM implementations execute transactions optimisti-
cally, buffering their writes, and flush them to memory only
on commit. In this case, it is possible for the transactionT1 to
privatize x and for ν to modify it afterT2 started committing,
but before its write to x reached the memory, so that T2’s
write subsequently overwrites ν ’s write and violates the post-
condition. TMs that make transactional updates in-place and
undo them on abort are subject to a similar problem. In Fig-
ure 1(b) we give another privatization example that is prone
to a different problem—the doomed transaction problem [41].
A TM may execute T2’s read from x_is_private, and then
T1 and ν . Because T1 modifies x_is_private, at this point
T2 is “doomed”, i.e., guaranteed to abort if it finishes execut-
ing. But if the non-transactional write ν is uninstrumented
and ignores the metadata the TM maintains to ensure the
consistency of reads, T2 will read the value written to x by ν
and enter an infinite loop. This would never happen under
strong atomicity, where T1 and ν may not execute while T2
is running.
A possible solution to the above problems is for the

compiler or the programmer to insert special transactional
fences [41]. These have semantics similar to read-copy-update
(RCU) [32]: a fence blocks until all the transactions that were
active when it was invoked complete, by either committing
or aborting. For example, assume we insert a fence between
the transaction T1 and the non-transactional access ν in Fig-
ure 1(a). Then the delayed commit problem does not arise:
if T2 enters the if body and writes to x, then it must begin
before the fence does; thus the fence will wait until T2 com-
pletes and flushes its write to memory, so that T2 cannot
incorrectly overwrite ν . Analogously, a fence between T1
and ν in Figure 1(b) ensures that the doomed transaction
problem does not arise: if T2 reaches the while loop, then ν
cannot execute before T2 finishes, and thus the while loop
immediately terminates.
Unfortunately, inserting transactional fences conserva-

tively after every transaction, even when not required, un-
dermines scalability. For example, Yoo et al. [43] showed
that unnecessarily fencing a selection of transactional bench-
marks leads to overheads of 32% on average and 107% in the
worst case, the latter on one of the STAMP benchmarks [33].
For this reason, researchers have suggested placing trans-
actional fences selectively, e.g., according to programmer
annotations [43]. However, omitting fences without violat-
ing strong atomicity is nontrivial: for example, for several

years the TM implementation in the GCC compiler had a
buggy placement of transactional fences that omitted them
after read-only transactions; this has recently been shown to
violate strong atomicity [44]. To make sure such bugs are not
habitual, we need a notion of transactional DRF that would
take into account selective fence placements.

In this paper we propose just such a notion and formalize
its Fundamental Property using observational refinement:
if a program is DRF under strong atomicity (formalized as
transactional sequential consistency [8, 9]), then all its exe-
cutions are observationally equivalent to strongly atomic
ones. We furthermore prove that the Fundamental Property
holds under a certain condition on the TM, generalizing opac-
ity [19, 20], which we call strong opacity. Thus, similarly to
non-transactional memory models, the programmer writing
code that has no data races according to our notion never
needs to reason about weakly atomic semantics.
Our results thus establish a contract between client pro-

grams and TM implementations sufficient for strong atom-
icity. Of course, for this contract to be useful, it should not
overconstrain either of its participants: programmers should
be able to use the typical programming idioms, and common
TM implementations should satisfy strong opacity that we
require. In this paper we argue that this is indeed the case.

On the client side, our DRF notion allows the programmer
to use privatization and publication idioms—programs in
Figure 2 and in Figure 1 with a fence between T1 and ν are
considered data-race free and thus guaranteed strong atom-
icity. We hence view privatization and publication idioms as
just particular ways of ensuring data-race freedom.
To justify appropriateness of our requirements on TM

systems, we develop a method for proving that a TM satisfies
strong opacity for DRF programs. Our method is modular: it
requires only a minimal adjustment to a proof of the usual
opacity of the TM assuming no mixed transactional/non-
transactional accesses. We demonstrate the effectiveness of
the method by applying it to prove the strong opacity of a
realistic TM, TL2 [12], enhanced with transactional fences
implemented using RCU. Our proof shows that this TM will
indeed guarantee strong atomicity to programs satisfying
our notion of DRF.

Thus, this paper makes the first proposal of transactional
DRF that considers a flexible programmingmodel (with trans-
actional fences) and comes with a formal justification of its
appropriateness—the Fundamental Property and the notion
of TM correctness required for it to hold.

2 Programming Language
We now introduce a simple programming language with
mixed transactional/non-transactional accesses, for which
we formalize our results. We also define the semantics of
the language when using a given TM implementation. As a
special case of this semantics, we get the notion of strong



PPoPP ’18, February 24–28, 2018, Vienna, Austria Artem Khyzha, Hagit Attiya, Alexey Gotsman, and Noam Rinetzky

atomicity [21] (also called transactional sequential consis-
tency [8]): this is obtained by instantiating our semantics
with a special idealized atomic TM where the execution of
transactions does not interleave with that of other transac-
tions or with non-transactional accesses.

2.1 Programming Language Syntax
A program P = C1 ∥ . . . ∥ CN in our language is a parallel
composition of commands Ct executed by different threads
t ∈ ThreadID = {1, . . . ,N }. Every thread t ∈ ThreadID has
a set of local variables l ∈ LVart , which only it can access; for
simplicity, we assume that these are integer-valued. Threads
have access to a transactional memory (TM), which manages
a fixed collection of shared register objects x ∈ Reg. The
syntax of commands C ∈ Com is as follows:

C = c | C ; C | if (b) then C else C | while (b) do C

| l := atomic {C} | l := x .read() | x .write(e ) | fence

where b and e denote Boolean, respectively, integer expres-
sions over local variables and constants. The language in-
cludes primitive commands c ∈ PComm, which operate on
local variables, and standard control-flow constructs.
An atomic block l := atomic {C} executes C as a trans-

action, which the TM can commit or abort. The system’s
decision is returned in the local variable l , which gets as-
signed a distinguished value committed or aborted. We do
not allow programs to abort a transaction explicitly, and
forbid nested atomic blocks and, hence, nested transactions.

Commands can invoke twomethods on a shared register x :
x .read() returns the current value of x , and x .write(e ) sets
it to e . Threads may call these methods both inside and out-
side atomic blocks. We refer to the former as a transactional
accesses and to the latter as a non-transactional accesses. To
make our presentation more approachable, following [20]
we assume that each write in a single program execution
writes a distinct value. Finally, the language includes a trans-
actional fence command fence, which acts as explained in
§1. It may only be used outside transactions.

The simplicity of the above language allows us to clearly
explain our contributions. We leave handling advanced fea-
tures, such as nested transactions [35, 36] and nested syn-
chronization [40] as future work.

2.2 A Trace-based Model of Computations
To define the semantics of our programming language, we
need a formal model for program computations. To this end,
we introduce traces—certain finite sequences of actions, each
describing a single computation step (for simplicity, in this
paper we consider only finite computations). Let ActionId be
a set of action identifiers. Actions are of two kinds. A primitive
action denotes the execution of a primitive command and
is of the form (a, t , c ), where a ∈ ActionId, t ∈ ThreadID
and c ∈ PComm. A TM interface action has one of the forms
shown in Figure 4. We use α to range over actions.

Request actions Matching response actions
(a, t , txbegin) (a, t , ok) | (a, t , aborted)
(a, t , txcommit) (a, t , committed) | (a, t , aborted)
(a, t ,write(x ,v )) (a, t , ret(⊥)) | (a, t , aborted)
(a, t , read(x )) (a, t , ret(v )) | (a, t , aborted)
(a, t , fbegin) (a, t , fend)

Figure 4. TM interface actions. Here a ∈ ActionId, t ∈
ThreadID, x ∈ Reg, and v ∈ Z.

TM interface actions denote the control flow of a thread t
crossing the boundary between the program and the TM:
request actions correspond to the control being transferred
from the former to the latter, and response actions, the other
way around. A txbegin action is generated upon entering
an atomic block, and a txcommit action when a transaction
tries to commit upon exiting an atomic block. The request
actions write(x ,v ) and read(x ) denote invocations of the
write, respectively, read methods of register x ; a write
action is annotated with the value v written. The response
actions ret(⊥) and ret(v ) denote the return from invocations
of write, respectively, read methods of a register; the latter
is annotated with the value v read. For reasons explained
below, we consider non-transactional accesses to registers
as calling into the TM, and hence use the same actions for
them as for transactional accesses. The TM may abort a
transaction (but not a non-transactional access) at any point
when it is in control; this is recorded by an aborted response
action. The actions fbegin and fend denote the beginning,
respectively, the end of the execution of a fence command.
In the following _ denotes an irrelevant expression.

Definition 2.1. A trace τ is a finite sequence of actions satis-
fying certain well-formedness conditions (stated informally
due to space constraints; see [25, §A]):

• every action in τ has a unique identifier;
• commands in actions executed by a thread t do not access
local variables of other threads t ′ , t ;
• every write operation writes a unique value distinct from
vinit (the initial value of each register);
• for every thread t , the projection τ |t of τ onto the actions
by t cannot contain a request action immediately followed
by a primitive action;
• request and response actions are properly matched;
• actions denoting the beginning and the end of transactions
are properly matched;
• non-transactional accesses execute atomically: if τ =
τ1 α τ2, whereα is a read or awrite request action by thread
t , and all the transactions of t in τ1 completed, then τ2 be-
gins with a response to α .
• non-transactional accesses never abort;
• fence actions may not occur inside transactions; and
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• fence blocks until all active transactions complete:
if τ = τ1 (_, t , txbegin) τ2 (_, t ′, fbegin) τ3 (_, t ′, fend) τ4
then either τ2 or τ3 contains an action of the form
(_, t , committed) or (_, t , aborted).

We denote the set of traces by Trace and the set of actions
in a trace τ by act(τ ). For a trace τ = τ0_, where τ0 is also a
trace, we say that τ0 is a prefix of τ .

A transaction T is a nonempty trace such that it contains
actions by the same thread, begins with a txbegin action and
only its last action can be a committed or an aborted action.
A transaction T is: committed if it ends with a committed
action, aborted if it ends with aborted, commit-pending if it
ends with txcommit, and live, in all other cases. A transaction
T is in a trace τ if T is a subsequence of τ and no longer
transaction is. We let txns(τ ) be the set of transactions in τ .
We refer to TM interface actions in a trace outside of a

transaction as non-transactional actions. We call a matching
request/response pair of a read or a write a non-transactional
access. We denote by nontxn(τ ) the set of non-transactional
accesses in τ and range over them by ν .

A history is a trace containing only TM interface actions;
we use H , S to range over histories. Since histories fully cap-
ture the possible interactions between a TM and a client
program, we often conflate the notion of a TM and the set
of histories it produces. Hence, a transactional memory H
is a set of histories that is prefix-closed and closed under re-
naming action identifiers. Note that histories include actions
corresponding to non-transactional accesses, even though
these may not be directly managed by the TM implemen-
tation. This is needed to account for changes to registers
performed by such actions when defining the TM semantics:
e.g., in the case when a register is privatized, modified non-
transactionally and then published back for transactional
access. Of course, a well-formed TM semantics should not
impose restrictions on the placement of non-transactional
actions, since these are under the control of the program.

2.3 Programming Language Semantics
The semantics of the programming language is the set of
traces that computations of programs produce. Due to space
constraints, we defer its formal definition to [25, §A] and
describe only its high-level structure. A state of a program
P = C1 ∥ . . . ∥ CN records the values of all its variables:
s ∈ State = (

⊎N
t=1 LVart ) → Z. The semantics of a program

P is given by the set of traces JP ,H K(s ) ⊆ Trace it produces
when executed with a TMH from an initial state s . To define
this set, we first define the set of traces JPK(s ) ⊆ Trace
that a program can produce when executed from s with
the behavior of the TM unrestricted, i.e., considering all
possible values the TM can return on reads and allowing
transactions to commit or abort arbitrarily. This definition
follows the intuitive semantics of our programming language.
We then restrict JPK(s ) to the set of traces produced by P

when executed withH by selecting those traces that interact
with the TM in a way consistent with H : JP ,H K(s ) = {τ |
τ ∈ JPK(s ) ∧ history(τ ) ∈ H }, where history(·) projects to
TM interface actions.

2.4 Strong Atomicity
We now define an idealized atomic TM Hatomic where the
execution of transactions does not interleave with that of
other transactions or with non-transactional accesses. By
instantiating the semantics of §2.3 with this TM,we formalize
the strongly atomic semantics [21] (transactional sequential
consistency [8, 9]).Hatomic contains only histories that are
non-interleaved, i.e., where actions by one transaction do
not overlap with the actions of another transaction or of
non-transactional accesses. Note that by definition actions
pertaining to different non-transactional accesses cannot
interleave. Note also that transactions in a non-interleaved
history do not have to be complete. For example,

H0 = (_, t1, txbegin) (_, t1, ok) (_, t1,write(x , 1)) (_, t1, ret(⊥))
(_, t1, txcommit) (_, t2, txbegin) (_, t2, ok) (_, t2,write(x , 2))
(_, t3, read(x )) (_, t3, ret(1))

is non-interleaved.We have to allow such histories inHatomic,
because they may be produced by programs in our language,
e.g., due to a non-terminating loop inside an atomic block.
We define Hatomic in such a way that the changes made

by a live or aborted transaction are invisible to other trans-
actions. However, there is no such certainty in the treatment
of a commit-pending transaction: the TM implementation
might have already reached a point at which it is decided that
the transaction will commit. Then the transaction is effec-
tively committed, and its operations may affect other trans-
actions [20]. To account for this, when definingHatomic we
consider every possible completion of each commit-pending
transaction in a history to either committed or an aborted
one. Formally, we say that a history H c is a completion of
a non-interleaved history H if: (i) H c is non-interleaved;
(ii) H c is has no commit-pending transactions; (iii) H is a
subsequence of H c ; and (iv) any action in H c which is not in
H is either a committed or an aborted action. For example,
we can obtain a completion of history H0 above by inserting
(_, t1, committed) after (_, t1, txcommit).
We defineHatomic as the set of all non-interleaved histories

H that have a completionH c where every response action of
a read(x ) returns the valuev in the last precedingwrite(x ,v )
action that is not located in an aborted or live transaction
different from the one of the read; if there is no such write,
the read should return the initial value vinit. For example,
H0 ∈ Hatomic. Hence, Hatomic defines the intuitive atomic
semantics of transactions.

3 Data-Race Freedom
A data race happens between a pair of conflicting actions, as
defined below.
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Definition 3.1. A non-transactional request action α and a
transactional request action α ′ conflict if α and α ′ are exe-
cuted by different threads and they are read or write actions
on the same register, with at least one being a write.

For such actions to form a data race, they should be concur-
rent. As is standard, we formalize this using a happens-before
relation on actions in a history: hb(H ) ⊆ act(H ) × act(H ).
To streamline explanations, we first define DRF in terms of
happens-before, and only after this define the latter. For a
history H and an index i , let H (i ) denote the i-th action in
the sequence H .

Definition 3.2. ActionsH (i ) andH (j ) in a historyH form a
data race, if they conflict and are not related by hb(H ) either
way. A history H is data-race free (DRF), written DRF(H ), if
it has no data races.

Definition 3.3. A program P is data-race free (DRF) when
executed from a state s with a TMH, written DRF(P , s,H),
if ∀τ ∈ JPK(H, s ).DRF(history(τ )).

Our goal is to enable programmers to ensure strong atom-
icity of a program by checking its data-race freedom. How-
ever, the notion of DRF depends on the TMH, and we do not
want the programmer to have to reason about the actual TM
implementation. In Section 5, we give conditions on TMH
under which strong atomicity of a program is guaranteed if it
is DRF assuming strong atomicity, i.e., DRF(P , s,Hatomic) for
Hatomic from §2.4. We next define hb(H ) and show examples
of programs that are racy and race-free underHatomic.
For a history H , we define several relations over act(H ),

which we explain in the following:
• execution order: α <H α ′ iff
for some i, j we have α = H (i ), α ′ = H (j ) and i < j.
• per-thread order po(H ): α <po(H ) α

′ iff
α <H α ′ and actions α and α ′ are by the same thread.
• restricted per-thread order xpo(H ): α <xpo(H ) α

′ iff
α <H α ′, actions α and α ′ are by the same thread t , and
there is a (_, t , txbegin) action between α and α ′.
• client order cl(H ): α <cl(H ) α

′ iff
α <H α ′ and α ,α ′ are non-transactional in H .
• after-fence order af (H ): α <af (H ) α

′ iff
α <H α ′, α = (_, _, fbegin) and α ′ = (_, _, txbegin), i.e.,
the transaction begins after the fence does (Figure 5(a)).
• before-fence order bf (H ): α <bf (H ) α

′ iff
α <H α ′, α ∈ {(_, _, committed), (_, _, aborted)} and
α ′ = (_, _, fend), i.e., the transaction ends before the fence
does (Figure 5(b)).
• read-dependency relation wrx (H ) for x ∈ Reg1:
α <wrx (H ) α

′ iff α = (_, _,write(x ,v )), α ′ = (_, _, ret(v ))
and the matching request action for α ′ is (_, _, read(x )).

1The notation wr, standing for “write-to-read”, is chosen to mirror other
kinds of dependencies introduced in §6.

fence

T

α

α ′af

T

fence

α

α ′

bf

(a) (b)

Figure 5. Illustration of the fence relations.

{ x_is_ready = false ∧ x = 0 }
l1 := atomic { // T

x = 42;

}

x_is_ready := true; // ν

do {

l2 := x_is_ready; // ν ′

} while (¬l2);

int l3 := x; // ν ′′

{ l1 = committed =⇒ l3 = 42 }

Figure 6. Privatization by agreement outside transactions.

• transactional read-dependency relation txwrx (H ):
α <txwrx (H ) α

′ iff α <wrx (H ) α
′, and α and α ′ are transac-

tional.

Definition 3.4. For a history H we let the happens-before
relation of H be

hb(H ) = (po(H ) ∪ cl(H ) ∪ af (H ) ∪ bf (H ) ∪⋃
x ∈Reg (xpo(H ) ; txwrx (H )))+.

Components of the happens-before describe various forms
of synchronization available in our programming language,
which we now explain one by one. First, actions by the
same thread cannot be concurrent, and thus, we let po(H ) ⊆
hb(H ). To concentrate on issues related to TM, in this pa-
per we do not consider the integration of transactions into
a language with a weak memory model and assume that
the underlying non-transactional memory is sequentially
consistent. Hence, we do not consider pairs of concurrent
non-transactional accesses as races and let cl(H ) ⊆ hb(H ).
This can be used to privatize an object by agreeing on its
status outside transactions, as illustrated in Figure 6. There
the left-hand-side thread writes to x inside a transaction and
then sets the flag x_is_ready outside. The right-hand-side
thread keeps reading the flag non-transactionally until it is
set, and then reads x non-transactionally. This program is
DRF underHatomic because, in any of its traces, the conflict-
ing write inT and the non-transactional read ν ′′ are ordered
in happens-before due to the client order between the write
in ν and the read in ν ′ that causes the do loop to terminate.
We also have xpo(H ) ; txwrx (H ) ⊆ hb(H ). Intuitively,

this is because, if we have (α ,α ′) ∈ txwrx (H ), then the com-
mands by the thread of α preceding the transaction of α are
guaranteed to have taken effect by the time α ′ executes.2

2Note, however, that the commands preceding α in its transaction may
not have taken effect by this time: the TM may flush the writes of the
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This ensures that publication can be done safely, as we now
illustrate by showing that the program in Figure 2 is DRF
underHatomic. Traces of the program may have only a sin-
gle pair of conflicting actions—the accesses to x in ν and T2.
For both conflicting actions to occur, T2 has to read false
from x_is_private. Since underHatomic transactions do not
interleave with other transactions or non-transactional ac-
cesses, for thisT1 has to execute beforeT2, yielding a history
of the form νT1T2. In this history, we have a read-dependency
between the write to x_is_private in T1 and the read from
x_is_private in T2. But then the write to x in ν happens
before the read from x in T2, so that these actions cannot
form a race.

Relations af (H ) and bf (H ) are used to formalize synchro-
nization ensured by transactional fences. Recall that a fence
blocks until all active transactions complete, by either com-
mitting or aborting. Hence, every transaction either begins
after the fence does (and thus the fence does not need to wait
for it; Figure 5(a)) or ends (including any required clean-up)
before the fence does (Figure 5(b)). The relations af (H ) and
bf (H ) capture the two respective cases. Note that, as required
by Definition 2.1, every transaction has to be related to a
fence at least by one of the two relations: a transaction may
not span a fence.
Including after-fence and before-fence relations into

happens-before ensures that privatization can be done safely
given an appropriate placement of fences. To illustrate this,
we show that the programs in Figure 1 are DRF under
Hatomic when we place a transactional fence between T1
and ν . The possible conflicts are between the accesses to x in
ν and T2. For a conflict to occur, T2 has to read false from
x_is_private. Then T2 has to execute before T1, yielding a
history H of the form T2T1α1α2ν , where α1 and α2 denote
the request and the response actions of the fence. Since T2
occurs before α2 in the history, they are related by the before-
fence relation. But then the accesses to x inT2 happen-before
the write in ν and, therefore, the conflicting actions do not
form a race. Finally, the program in Figure 3 is racy, since
its traces contain pairs of conflicting actions unordered in
happens-before. Inserting fences into this program will not
make it DRF.
Our notion of DRF under Hatomic establishes the condi-

tion that a program has to satisfy to be guaranteed strong
atomicity. In the next section, we formulate the obligations
of its TM counterpart in the DRF contract.

4 Strong Opacity
We state the requirements on a TMH by generalizing the
notion of opacity [19, 20], yieldingwhat we call strong opacity.
As part of our definition, we require that a historyH of a TM
H can be matched by a history S of the atomic TMHatomic

transaction to the memory in any order. This is why we do not require
txwrx (H ) ⊆ hb(H ).

that “looks similar” toH from the perspective of the program.
The similarity is formalized by the following relation H ⊑ S ,
which requires S to be a permutation of H preserving the
happens-before relation.

Definition 4.1. A historyH1 is in the strong opacity relation
with a history H2, written H1 ⊑ H2, if there is a bijection
θ : {1, . . . , |H1 |} → {1, . . . , |H2 |} such that:
• ∀i .H1 (i ) = H2 (θ (i )), and
• ∀i, j . i < j ∧ H1 (i ) <hb(H1 ) H2 (j ) =⇒ θ (i ) < θ (j ).

The original definition of opacity requires any history of a
TMH to have a matching history of the atomic TMHatomic.
However, such a requirement would be too strong for our
setting: since the TM has no control over non-transactional
actions of its clients, histories in H may be racy, and we
do not want to require the TM to guarantee strong atom-
icity in such cases. Hence, our definition of strong opacity
requires only DRF histories to have justifications inHatomic.
LetH |DRF = {H ∈ H | DRF(H )}.

Definition 4.2. A TM H is strongly opaque, written
H |DRF ⊑ Hatomic, if

∀H .H ∈ H |DRF =⇒ ∃S . S ∈ Hatomic ∧ H ⊑ S .

Apart from the restriction to DRF histories, strong opac-
ity and the usual opacity differ in several other ways.
First, unlike in the usual opacity, our histories include non-
transactional actions, because these can affect the behav-
ior of the TM (e.g., via the idiom of “privatize, modify non-
transactionally, publish”, §2.2). Second, instead of preserv-
ing happens-before hb(H1) in Definition 4.1, the usual opac-
ity requires preserving the program order po(H1) and the
following real-time order rt(H1) on actions: α <rt(H ) α iff
α ∈ {(_, _, committed), (_, _, aborted)}, α ′ = (_, _, txbegin)
and α <H α ′. This orders non-overlapping transactions,
with the duration of a transaction determined by the interval
from its txbegin action to the corresponding committed or
aborted action (or to the end of the history if there is none).
As shown in [16], preserving real-time order is unnecessary
if program threads do not have means of communication
not reflected in histories. Since we record the actions using
both transactional and non-transactional accesses, preserv-
ing real-time order is unnecessary for our results. However,
we use this order to prove strong opacity by adjusting the
proofs of the usual one (§6). Finally, preserving happens-
before in Definition 4.1 is required so that we could check
DRF assuming strong atomicity, as we explain next.

5 The Fundamental Property
We now formalize the Fundamental Property of our DRF
notion using observational refinement [7]: if a program is
DRF under the atomic TMHatomic, then any trace of the pro-
gram under a strongly opaque TMH has an observationally
equivalent trace under the atomic TMHatomic.



PPoPP ’18, February 24–28, 2018, Vienna, Austria Artem Khyzha, Hagit Attiya, Alexey Gotsman, and Noam Rinetzky

Definition 5.1. Traces τ and τ ′ are observationally equiva-
lent, denoted by τ ∼ τ ′, if

(∀t ∈ ThreadID. τ |t = τ ′ |t ) ∧ (τ |nontx = τ
′ |nontx),

where τ |nontx denotes the subsequence of τ containing all
actions from non-transactional accesses.

Equivalent traces are considered indistinguishable to the
user. In particular, the sequences of non-transactional ac-
cesses in equivalent traces (which usually include all input-
output) satisfy the same linear-time temporal properties. We
lift the equivalence to sets of traces as follows.

Definition 5.2. A set of traces T observationally refines a
set of traces T ′, written T ⪯ T ′, if ∀τ ∈ T . ∃τ ′ ∈ T ′. τ ∼ τ ′.

Theorem 5.3 (Fundamental Property). If H is a TM such
thatH |DRF ⊑ Hatomic, then

∀P , s .DRF(P , s,Hatomic) =⇒ JPK(H , s ) ⪯ JPK(Hatomic, s ).

Theorem 5.3 establishes a contract between the program-
mer and the TM implementors. The TM implementor has
to ensure strong opacity of the TM assuming the program
is DRF: H |DRF ⊑ Hatomic. The programmer has to en-
sure the DRF of the program assuming strong atomicity:
DRF(P , s,Hatomic). This contract lets the programmer to
check properties of a program assuming strong atomicity
(JPK(Hatomic, s )) and get the guarantee that the properties
hold when the program uses the actual TM implementa-
tion (JPK(H , s )). We have already shown that the expected
privatization and publication idioms are DRF under strong
atomicity (§3), so that the programmer can satisfy its part of
the contract. In the following sections we develop a method
for discharging the obligations of the TM.
The proof of Theorem 5.3 follows directly from the fol-

lowing lemma, proved in [25, §B].

Lemma 5.4. IfH is a TM such thatH |DRF ⊑ Hatomic, then:
1. ∀P , s .DRF(P , s,H ) =⇒ JPK(H , s ) ⪯ JPK(Hatomic, s ).
2. ∀P , s .DRF(P , s,Hatomic) =⇒ DRF(P , s,H ).

Part 1 shows that if a program is DRF under the concrete
TMH , then it has the expected strongly atomic semantics. It
is an adaptation of a result from [7]. Part 2 enables checking
DRF using an atomic TMHatomic and is a contribution of the
present paper. Its proof relies on the fact that strong opacity
preserves happens-before (Definition 4.1).

6 Proving Strong Opacity
We now develop a method for proving H |DRF ⊑ Hatomic.
The method builds on a graph characterization of opacity
of Guerraoui and Kapalka [20], which was proposed for
proving the usual opacity of TMs that do not allow mixed
transactional/non-transactional accesses to the same data.
The characterization allows checking opacity of a history by
checking two properties: consistency of the history and the

acyclicity of a certain opacity graph, which we define further
in this section.

Consistency captures some very basic properties of read-
dependency relation wrx (for each register x) that have to
be satisfied by every opaque TM history. Intuitively, in a
consistent history every transaction T reading the value of
a register x either reads the latest value T itself wrote to x
before, or some value written non-transactionally or by a
committed or commit-pending transaction.

Definition 6.1. A pair of matching request and response
actions (α ,α ′) is said to be local to T ∈ txns(H ), if:
• α = (_, _, read(x )) ∧
∃β ∈ T . β <po(H ) α ∧ β = (_, _,write(x , _)); or
• α = (_, _,write(x , _)) ∧
∃β ∈ T . α <po(H ) β ∧ β = (_, _,write(x , _)).

We let local(H ) denote the set of all local actions in H .

Thus, local reads from x are preceded by a write to x in the
same transaction; local writes to x are followed by a write
to x in the same transaction.

Definition 6.2. In a history H , a read request α =

(_, _, read(x )) and its matching response α ′ = (_, _, ret(v ))
are said to be consistent, if:
• when (α ,α ′) ∈ local(H ) and performed by a transac-
tion T , v is the value written by the most recent write
(_, _,write(x ,v )) preceding the read in T ;
• when (α ,α ′) < local(H ), either there exists a non-local
β not located in an aborted or live transaction such
that β <wrx (H ) α

′, or there is no such β and v = vinit.
We also say that a history H is consistent, written cons(H ),
if all of its matching read requests and responses are.

We now present the definition of an opacity graph of a
history with mixed transactional/non-transactional accesses.

Definition 6.3. The opacity graph of a history H is a tuple
G = (N , vis,HB,WR,WW,RW), where:
• N = txns(H ) ∪ nontxn(H ) is the set of nodes.
• vis ⊆ N is a visibility predicate, such that it holds of all
non-transactional accesses and committed transactions
and does not hold of all aborted and live transactions.
• HB ∈ P (N × N ) is such that

n
HB
−−→ n′ ⇐⇒ ∃α ∈ n,α ′ ∈ n′. α <hb(H ) α

′.

• WR ∈ Reg → P (N × N ) specifies read-dependency rela-
tions on nodes: for each x ∈ Reg,

n
WRx
−−−−→ n′ ⇐⇒ n , n′ ∧ ∃α ∈ n,α ′ ∈ n′. α <wrx (H ) α

′,

where the relation on actions wrx (H ) is defined in §3. We
require that each node that is read from be visible:

∀n,x .n
WRx
−−−−→ _ =⇒ vis(n).
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• WW ∈ Reg→ P (N × N ) specifies write-dependency rela-
tions, such that for each x ∈ Reg, WWx is an irreflexive
total order on {n ∈ N | vis(n) ∧ (_, _,write(x , _)) ∈ n}.
• RW ∈ Reg → P (N × N ) specifies anti-dependency rela-
tions, computed from WR and WW as follows:

n
RWx
−−−−→ n′ ⇐⇒ n , n′ ∧ ((∃n′′.n′′

WWx
−−−−→ n′ ∧ n′′

WRx
−−−−→ n)

∨ (vis(n′) ∧ (_, _,write(x , _)) ∈ n′

∧ (_, _, ret(x ,vinit)) ∈ n)).

We let Graph(H ) denote the set of all opacity graphs of H .
We say that a graph G is acyclic, written acyclic(G ), if edges
from HB,WR, WW and RW do not form a cycle.
The nodes in our opacity graph include transactions and

non-transactional accesses in H . The intention of the vis
predicate is to mark those nodes that have taken effect, in
particular, commit-pending transactions that should be con-
sidered committed (cf. history completions in §2.4). The other
components, intuitively, constrain the order in which the
nodes should go in a sequential history witnessing the strong
opacity ofH . TheHB relation is the lifting of happens-before
to the nodes of the graph. A read-dependency n

WRx
−−−−→ n′

specifies when the node n′ reads a value of x written by
another node n. A write-dependency n

WWx
−−−−→ n′ specifies

when n′ overwrites a value of x written by n; for the writes
to take effect, both nodes should be visible. Finally, an anti-
dependency n

RWx
−−−−→ n′ specifies when n reads a value of x

overwritten by n′; the initial value vinit of x is considered
overwritten by any write to the register.
The following lemma (proved in [25, §B]) shows that we

can check strong opacity of a history by checking its con-
sistency and the acyclicity of its opacity graph. Then the
theorem following from it gives a criterion for the strong
opacity of a TMH .

Lemma 6.4. ∀H . (cons(H ) ∧ ∃G ∈ Graph(H ). acyclic(G))
=⇒ (∃H ′ ∈ Hatomic.H ⊑ H ′).

Theorem 6.5. H ⊑ Hatomic holds, if the following is true:

∀H ∈ H . cons(H ) ∧ ∃G ∈ Graph(H ). acyclic(G).

In comparison to the graph characterization of the usual
opacity [20] for TMs without mixed transactional/non-
transactional accesses, ours is more complex: the graph in-
cludes non-transactional accesses and the acyclicity check
has to take into account the happens-before relation. We
now show that, to prove the strong opacity of a TM using
Theorem 6.5, we need to make only a minimal adjustment to
a proof of its usual opacity using graph characterization. The
latter characterization includes only transactions as nodes
of the graph, and instead of happens-before, considers the
lifting of the real-time order from §4 to transactions: for a
historyH , we let RT(H ) be the relation between transactions
in H such thatT <RT(H ) T

′ iff for some α ∈ T and α ′ ∈ T we
have α <rt(H ) α .

In the following we abuse notation and denote byWR also
the relation

⋃
x ∈Reg WRx , and similarly forWW and RW.

Theorem 6.6. Let a history H ∈ HC |DRF and an opacity
graph G = (N , vis,HB,WR,WW,RW) ∈ Graph(H ) be such
that the relation (HB ; (WR∪WW∪ RW)) is irreflexive. IfG
contains a cycle, then it also contains a cycle over transactions
only with edges from RT ∪WR ∪WW ∪ RW.

Thus, the theorem allows us to modularize the proof of the
acyclicity of an opacity graph into: (i) checking the absence of
“small” cycles with a single dependency edge; and (ii) check-
ing the absence of cycles in the projection of the graph to
transactions, with real-time order replacing happens-before.
The latter acyclicity check is exactly the one required in the
graph characterization of the usual opacity [20]. In the next
section, we show how the theorem enables a simple proof of
strong opacity of a realistic TM, TL2 [12].

The proof of the Theorem 6.6 is given in [25, §B]. Its main
idea lies in the observation that any edge inWR∪WW∪RW,
where one of the endpoints is a transaction and one is a non-
transactional access, yields a pair of conflicting actions in
H . Since H is DRF, this means that the nodes are related
by HB one way or another, and the irreflexivity of (HB ;
(WR∪WW∪ RW)) means that the dependency edge has to
be covered by HB. Using this, we can transform any cycle in
the graph into one in RT ∪WR ∪WW ∪ RW by replacing
segments of edges involving non-transactional accesses by
the real-time order.

7 Case Study: TL2
The TL2 algorithm. The metadata maintained by the TL2
software TM are summarized in Figure 7. For each register x ,
TL2 maintains its value reg[x], version number ver[x] and
a write-lock lock[x]. New version numbers are generated
with the help of a global counter clock, which transactions
advance on commit. For every thread t , the TM maintains a
flag active[t], which indicates that the thread t is currently
performing a transaction and is used to implement fences.
TL2 also maintains metadata for each transaction T : a read-
set rset[T ] of registersT has read from, a write-set wset[T ]
of registers and values T intends to write to.
For brevity, we only provide pseudocode for transaction

commits and fences, and describe the initialization, read, and
write informally. When a transaction T starts in a thread
t , it sets the flag active[t] to true, and stores the value of
clock into a local variable rver[T ], which determines T ’s
read timestamp: TL2 allows T to read registers only with
versions less than or equal to rver[T ]. The write of a value
v into a register x simply adds the pair (x ,v ) to the write-set
wset[T ].

Each time T performs a read from a register x , it first
checks if it has already performed a write to x , in which case
it returns that the value for x from the write-set wset[T ].
In other cases, T reads the current value reg[x] and checks
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that its version is less than or equal to rver[T ]; if not, TL2
aborts the transaction.
Upon a commit, the current transaction T executes the

function txcommit in Figure 7. The commit starts by acquir-
ing locks on each register in the write-set wset[T ] (lines 11–
18). Next, T fetches-and-increments the value of clock,
which it stores into wver[T ] and uses as the version for the
new valuesT will write to registers—its write timestamp (line
19). Afterwards, T ensures that each register x in rset[T ]
has not been modified during the execution ofT by checking
that x ’s version ver[x] remains less than or equal to rver[T ]
and that x is not currently locked (lines 20–26). The transac-
tion then proceeds to write to the registers and release the
locks one register at a time (lines 27–30). Finally, T commits.
Upon aborting or committing at lines 18, 26 or 31,T executes
a handler that clears the active[t] flag (not shown in the
code).
We consider a simple implementation of transactional

fences in lines 33–39 (taken from [17]). The implementation
works in two steps: it first determines which transactions the
fence should wait for by checking and storing their active
flags, and then blocks until the threads performing those
transactions clear their active flags.

Proof overview. Due to space constraints, we only give an
overview of the proof of the strong opacity of TL2. To gen-
erate the set HTL2 of all histories of TL2, we consider the
most general client of TL2: a program where every thread
non-deterministically chooses the commands to execute. The
well-formedness conditions on fences from Definition 2.1
can be established with a simple reasoning about the fence
function in lines 33–39 independently from the rest of the
proof. We prove strong opacity using Theorem 6.5: for every
execution of the most general client of TL2 with a DRF his-
tory H , we show that H is consistent and build an opacity
graph. To this end, we only need to define a visibility relation
vis and write-dependenciesWW, as the other components
of the graph can be computed from these and H .
The consistency proof and the construction of the graph

are inductive in the length of the execution of the most
general client.We start with an empty trace, an empty history
and an empty graph, and extend them as the executions
proceeds. Whenever a non-transactional access ν is executed,
we add a new visible node to the graph. When ν is a write
to a register x , we also append it to the total order WWx .
Whenever a new transactionT starts, we add a corresponding
invisible node. When T executes the txcommit function, if
it reaches line 27, then we are sure T is going to commit. At
this point we therefore we make T visible and append it to
the total order WWx for each register x ∈ wset[T ].
We need to show that, whenever the graph is extended

with new edges, it stays acyclic. To this end, we use Theo-
rem 6.6 to reduce the acyclicity check to the one required
when proving the usual opacity, i.e., checking the absence

1 Value clock, reg[NRegs], ver[NRegs];

2 Lock lock[NRegs];

3 Bool active[NThreads];

4 Set<Register> rset; // for each transaction

5 Map<Register, Value> wset; // for each transaction

6 Value rver; // for each transaction, initially ⊥

7 Value wver; // for each transaction, initially ⊤

8

9 function txcommit(Transaction T):

10 Set<Lock> lset := ∅;

11 foreach x in wset[T]:

12 Bool locked := lock[x].trylock();

13 if (¬locked):

14 lset.add(x);

15 else:

16 foreach y in lset[T]:

17 lock[y].unlock();

18 return aborted(T);

19 wver[T] := fetch_and_increment(clock)+1;

20 foreach x in rset[T].keys():

21 Bool locked := lock[x].test();

22 Value ts := ver[x];

23 if (locked ∨ rver[T] < ts):

24 foreach y in lset[T]:

25 lock[y].unlock();

26 return aborted(T);

27 foreach (x, v) in wset[T]:

28 reg[x] := v;

29 ver[x] := wver[T];

30 lock[x].unlock();

31 return committed(T);

32

33 function fence():

34 Bool r[NThreads]; // initially all false

35 foreach t in ThreadID:
36 r[t] := active[t];

37 foreach t in ThreadID:
38 if (r[t]):

39 while (active[t]);

40 return;

Figure 7. A fragment of the TL2 algorithm.

of cycles over transactions in RT∪WR∪WW∪ RW (check-
ing the absence of cycles with a single dependency is easier
and we omit its description for brevity). In our proof, only
graph updates of the read and commit operations of each
transaction impose proof obligations.
At every step of the graph construction, we maintain an

inductive invariant that helps us prove both consistency of
the history and the acyclicity of RT ∪WR ∪WW ∪ RW. Its
most important part associates a notion of time with the
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edges of the graph based on the read and write timestamps
of transactions:

1. ∀T ,T ′.T
RT
−−→ T ′ =⇒ rver[T ′] = ⊥ ∨

((vis(T ) =⇒ wver[T ] ≤ rver[T ′]) ∧
(¬vis(T ) =⇒ rver[T ] ≤ rver[T ′])).

2. ∀T ,T ′.T
WR
−−−→ T ′ =⇒ wver[T ] ≤ rver[T ′].

3. ∀T ,T ′.T
RW
−−−→ T ′ =⇒ rver[T ] < wver[T ′].

4. ∀T ,T ′.T
WW
−−−→ T ′ =⇒ wver[T ] < wver[T ′].

Property 1 asserts that, whenever a transaction T ′ occurs
after a completed transaction T in the real time, it either has
not yet generated a read timestamp rver[T ′], or it has and
rver[T ′] is greater or equal to wver[T ] (when T is visible
and, therefore, committed) or rver[T ] (otherwise). Property
2 asserts that, whenever a transaction T ′ reads a value of
a register written by a transaction T , the version that T ′
assigned to the register may not be greater than the read
timestamp of T . This is validated by the check TL2 performs
when reading registers. Property 3 asserts that a transaction
T ′ overwriting the value read by a transactionT has the write
timestamp greater than the read timestamp of T . It holds
because, if T ′ commits its write after T reads the previous
value of the register, then T generates its read timestamp
before T ′ generates its write timestamp. Property 4 follows
from the mutual exclusion that TL2 ensures for committing
transactions that write the same register x (using lock[x]).
Since writes in commit operations occur within a critical
section, write dependencies are always consistent with the
order on write timestamps.

With the help of the above invariant, we establish that for a
path between any transactionsT andT ′ in the graph, certain
inequalities between their timestamps take place depending
on visibility of the two transactions, such as the following:

vis(T ) ∧ vis(T ′) =⇒ wver[T ] < wver[T ′]. (1)

Using this and otherminor observations, we can demonstrate
that graph updates preserve the acyclicity ofRT∪WR∪WW∪
RW, by showing that a cycle would imply a contradiction
involving the timestamps of transactions. As an example
of such reasoning, consider a transaction T executing the
txcommit operation. As T reaches line 27, we mark it as
visible and add new write dependencies in the graph. Let us
assume that addingT ′

WW
−−−→ T , whereT ′ is some transaction,

causes a cycle over transactions. Then there must exist a
path from T to T ′. Note that vis(T ) and vis(T ′) both hold,
since they are ordered byWW. By (1), wver[T ] < wver[T ′]
holds, because there is a path fromT toT ′. On the other hand,
Property 4 above gives us wver[T ′] < wver[T ], sinceT ′

WW
−−−→

T is in the graph. Thus, we have arrived to a contradiction.

8 Related and Future Work
In this paper we have concentrated on one technique for en-
suring privatization safety—transactional fences. However,

there have been several proposals of alternative techniques
(see [21, §4.6.1] for a survey), and in the future, we plan to
address these. In particular, some TMs do not require trans-
actional fences for safe privatization [10, 13, 37, 42], even
though the programmer still has to follow a certain DRF dis-
cipline. Such a discipline has been proposed by Dalessandro
and Scott [8, 9], but it did not come with a formal justifica-
tion, such as our proofs of the Fundamental Property and
TM correctness.

Kestor et al. [24] proposed a notion of DRF for TMs that
do not support safe privatization and a race-detection tool
for this notion. Unlike us, they do not consider transactional
fences, so that the only way to safely privatize an object is
to agree on its status outside transactions (Figure 6). Our
notion of DRF specializes to the one by Kestor et al. if we
consider only histories without fences. We hope that, in the
future, race-detection tools like the one of Kestor et al. can
be adapted to detect our notion of data races.
Lesani et al. [29] proposed a transactional DRF based on

TMS [14], a TM consistency criterion. However, as they ac-
knowledge, their proposal does not support privatization.

To the best of our knowledge, a line of work by Abadi et al.
was the only one that proposed disciplines for privatization
with a formal justification of their safety [3, 4]. However, they
did not take into account transactional fences and considered
programming disciplines more restrictive than ours. Their
static separation [4] ensures strong atomicity by not mixing
transactional and non-transactional accesses to the same
register. Dynamic separation [3] relaxes this by introducing
explicit commands to privatize and publish an object. We
believe such disciplines are particular ways of achieving the
more general notion of data-race freedom that we adopted.

We have previously proposed a logic for reasoning about
programs using RCU [17]. Since transactional fences are
similar to RCU, we believe this logic can be adapted to guide
programmers in inserting fences to satisfy our notion of DRF.

In this paper we assumed sequential consistency as a base-
line non-transactional memory model. However, transac-
tions are being integrated into languages, such as C++, that
have weaker memory models [1]. Our definition of a data
race is given in the axiomatic style used in the C++ memory
model [2]. For this reason, we believe that our results can in
the future be adapted to the more complex setting of C++.

Guerraoui et al. [18] considered TMs that provide strong
atomicity without making any assumptions about the client
program. They formalized the requirement on such TMs
as parameterized opacity and proved the impossibility of
achieving it onmanymemorymodels without instrumenting
non-transactional accesses. This result justifies our decision
to provide strong atomicity only to DRF programs.

Acknowledgments. We thank Michael Spear and Tingzhe
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