Dynamic First-Class Relations for Knowledge-based Systems

Alejandro Sanchez

INRIA Sophia Antipolis, FR
Universidad Nacional de Cordoba, AR

alejandro.sanchez@sophia.inria.fr

Abstract

In the context of knowledge-based systems interactingayittamic
or even real time processes, experts need to express dopegific
relations in a natural way. We thus propose an expert lareyaad
a C++ implementation of these relations as first-class thjdhe
relations may have associated constraints such as mcitiigdi or
any predicate expressing a necessary condition. The fdctgso
paper is to cope with time evolution of objects and theirtietes
and, in particular, with the possibility of temporary in@istencies.
C++ components have been implemented to represent redatiah
their management and first experiments on existing knovdedg
based systems are underway.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Featurel 1.2.4 [Knowledge Representation Formalisms and
Method$

General Terms
based system

relation, object-oriented language, knowledge-

Keywords first class relation, dynamic system, domain specific
language

1. Motivation

We are working on a generic object-oriented component freonie
for knowledge-based systems (KBS) (Moisan 2008) suppprtin
several kinds of reasoning tasks (classification, planniegpurce
allocation, video understanding, activity recognitionA KBS is a
software program basically composed of a knowledge badtewri
by a domain expert and an engine that performs inferenceméas
on this knowledge to solve a particular problem. The frant&wo
provides C++ components implementing basic concepts of KBS
such asframes(sorts of classesklots (structured attributes) and
daemongmethods automatically triggered in case of slot or frame
access)inference rulesandinference engines It also allows the
definition of Domain Specific Languages (e.g., (Moisan 2p02)
that are used by experts to enter their knowledge. Oncelataals
into C++ code, this expertise is linked with the engine tdd/ien
executable KBS for solving (non expert) end users’ problems
These expert languages propose a syntax to describe afplica
objects and to manipulate them through domain specific .rules
Relations among objects constitute an indispensable [atieo

Permission to make digital or hard copies of all or part of tork for personal or
classroom use is granted without fee provided that copesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to postesmess or to redistribute
to lists, requires prior specific permission and/or a fee.

RAOOL October 2008, Nashville.
Copyright(© 2008 ACM [to be supplied]. .. $5.00

Sabine Moisan

INRIA Sophia Antipolis, FR
sabine.moisan@sophia.inria.fr

Jean-Paul Rigault

INRIA Sophia Antipolis, FR
University of Nice Sophia Antipolis

Jjpr@polytech.unice.fr

knowledge. These relations are intrinsic to the domain aag m
present various natures, e.g., spatial relations betwbptts in a
scene, animals and their habitats, customer and servieevadion...
They seldom are functional or even reducible to a formal theo
Therefore, we need to provide experts with a direct meansgera
that a relation holds. Moreover, our relations do not belong
the intrinsic properties of objects and thus should be sgedr
from them. Embedding relations into object attributes does
favor this separation, nor is it a natural way for experts ¢cldre
and manipulate them. Hence, we decided to introduce relatgs
first class concepts in the expert languages as well as in e C
components.

Two important properties of our KBSs are worth mentioning.
First, experts and end users are not programmers, all thecGede
is automatically generated from expert knowledge, no coita-
tion is made at construction nor at execution time. Second, o
systems are usually embedded and autonomous; they maeipula
dynamic(even real time) objects. Thus the state of objects evolves
with time during the KBS execution, which may challenge &g
relation consistency. This paper concentrates on thigtopi

This paper is organized as follows. In the next section we
describe our model of relations. Then we give the flavor of the
language proposed for experts to describe relations. @edti
discusses various solutions to handle temporary incangisela-
tions and details the C++ implementation. We terminate \sith
comparison with other works, the present status, and futork.

2. Proposed Relation Model

We chose to rely on the mathematical notion of a “relatioaf' the
abstract definition as well as for the implementation. Fertime
being, we limit ourselves to binary relations. A binary t&a R is
a subset of the Cartesian product of two sésndB: R C A x B.
In our case the sets are composed of all the instances of & clas
(a.k.a, the class extensiom.(resp.B) is the set that contains the
binary relation domain (resp. codomain); for simplicitye wall A
thedomainand B thecodomainHence, the relatio® appears as a
set of tuples (here, pair§y, b) wherea € A andb € B. Therefore,
we reify the relations themselves, not the individual tgple

In some cases, a collection of tuples is not sufficient. Thus,
we also offer the expert the possibility to attach constsaio a
relation, that is predicates that each tuple must satisbge Nhat
these constraints add extnecessaryconditions for a tuple to be
part of a relation but they armot, in general, the characteristic
function of the relation (which would be necessary and sieffit).
The well known multiplicity constraints are of this kindttabugh
they are usually expressed in a direct way. Other need aqaedi
involving the two related objects. For instance, in videdenstan-
ding, two objects can be considered “close to” each otherigeol
that they are both visible (not occluded) in the scene; feréhation

zeEK perts>
AlirlineReservation
assignedSeat : int g parts=
reservationType : {custom, miles_club} Flight
zeEK perts>
id : strin
Customer cust flight g
date : string
name : string
0. 0.+ |status : {on_time, delayed, canceled}
miles int
seats :int
minMiles : int

Figurel. A simple example of relation

between customers and flights in airline reservation, tvgiaraers
cannot reserve the same seat on the same flight...

There are two major forms of constraints: those which must
always hold (they are structural invariants of the systemdl a
those that may temporarily be violated provided that thejd ho
at some system observation point. The first form is rathepkm
to handle: should such a constraints be violated, the systews
exceptions. The second form is more challenging, espgciall
real time applications. It imposes to correctly monitor tigect
state changes. Indeed, during KBS execution, object vaugse
which may invalidate the constraints of some relation tsiple
For instance, in process planning, the relations betwegactsh
depend on the initial conditions, the spontaneous evaiuticthe
process, the effects of the previously planned actions, Sitece
evolutions cannot be predicted by the expert nor by the engin
we must provide an automatic mechanism to cope with relation
inconsistencies (see 4.1).

Attributes
Integername assignedSeat
ReservationTyp@ame reservationMode

Congtraints
seatExistensures that assignedSeat = flight.seats
notCancellecensuresthat flight.status != canceled
enoughMilesensures that reservationType == mileslub
implies cust.miles>= flight.miles

}

In the first three lines the expert declares the relation naime
domain and codomain and their multiplicity ranges. Eacimelet
is given a role name: we do not support a sophisticated nation
roles; role names are merely for easy naming of related tbjac
constraints. The next lines describe the attributes of #hetion.
Finally, the expert provides the three previous constsaifithe
syntax of constraints supports predicate logic (on finiteections).
We presently impose no restriction on the predicate dedimiti
which can use objects and relation attributes as well agioala
properties.

Then, the expert can directly manipulatérlineReservation
mainly when writing decision rules. Possible operatiorestaradd,
remove, consult relation tuples, and extract all codomdijeas
related to a given domain one (and the converse). For instéine
customer needs to travel somewhere, a standard rule could be

Let c a Customer, a Town
If (c, t)in IsBoundTo
Then insert (c, t) into AirlineReservation [reservationType=custom]

where we assume th&BoundTais another relation, also defined
by the expert. As shown, this rule both consults relatgBoundTo
and for each satisfying tuple, possibly inserts it iAidineReserva-

Some Objec’[s or even Comp|ete app]ica’[ionsy however, do not tion; indeed, insertion may fail because of constraints. No&t th

require relations and there is no reason to impose the qmnekng
cost on them. Therefore, we wish that domain objects depsnd a
little as possible on relations so that they may be obliviofis
relations. Of course, the reverse is not feasible: relatioave to
know the objects they relate but we shall keep this deperydasic
abstract as possible.

3. Expert’sView of Relations

relation attributes can be set when inserting, likeréservationType
in the example.

Once complete, a knowledge base is automatically tramslate
into C++. A relation type such a&irlineReservatiorbecomes a
C++ class which represents a collection of tuples, eacle toging
a pair of (pointers to) objects. These classes automatibalhdle
constraint verifications when a new tuple is inserted as asll
when objects change their state (see 4.1). The resultingcGde is
linked with the engine and relation libraries, yielding aeeutable

We extended the knowledge representation languages so thaiBS that will be executed, without further expert input.

experts can define binary relations, specifying their donmeaid
codomain. A relation as a whole may have its own attributes,
multiplicities on both ends, and be associated with coirdtra
predicates. These predicates express a (necessary) icondit

a tuple, thus they take two arguments, one in the domain,tties o

in the codomain.

Here is an example of a possible expert’s input. We consider
the AirlineReservationrelation betweenCustomes and Flights,
which is represented by an “association class” in the UMIgdian
of figure 1. Besides, the expert may set three constraintsisn t
relation (among many possible ones): (1) it should not bsiptes
to assign a non existing seat; (2) no reservation should exer
“canceled” flights; (3) if a customer has“ailes club” reservation,
he/she must have enough miles for the reserved flight.

Assuming that the knowledge base already contains defisitio
of the Customerand Flight classes, the expert may define the
relation as follows (keywords are in bold):

Relation

name AirlineReservation
domain Customeranges [0,1] role cust
codomain Flight ranges [0,1] role flight

The advantage of an automatic code generation is that we may
optimize the target code, e.g., avoid generating relatiandhing
code for those classes not involved in any relation. On tlgathee
side, experts cannot introduce new classes, relations|es at run
time, which is not a real drawback for most of our target syste
which must run autonomously.

Localizing all the information about a relation in a unique
class relieves the expert (and the generated code) fromlihgnd
reference attributes in objects at both ends of the relakitumeover,
all decisions about object evolution follow up are cenaedi
and can be easily tuned. In addition, operations on relgtion
(inverting, combining...) would be easier to express inufat
versions. The experts adopt a natural declarative styds: shmply
define a relation together with its constraints and use iules;
processing relations is handled transparently by autaalbyi
triggered functions (daemons in objects).

4. Framework Componentsfor Relations
4.1 Copingwith object state change

In a KBS, the object states may change due to the engine iiagson
activity. In particular, related objects can change stadependently
and in any order. The consequence is that the constrainsnoé s

relation tuples may become false, which invalidates thdetup
itself. However, this invalidity may just be temporary oredto
serialization of updates which are in fact logically corrent.

For instance, in the reservation example, imagine thabouwst
John needs to make a reservation on tNé&e Paris flight and
can make it under theniles clubmode, because he has enough
miles. Suppose that he consumes too many of his miles for
other trips before flying to Paris. Then, the relation tuplehf
Nice Paris) becomes inconsistent since the third constraint is
violated. However, it is still possible thalohn regains enough
miles by flying to other destinations before honoringMise Paris
reservation. Until then, the reservation on tiee Paris flight is
inconsistent.

Of course, these types of inconsistency do not concern reontst
which represent structural invariants of the system, idicig
multiplicity ranges (see 2): as soon has they are violated, a
exception is thrown which may trigger “repair rules” definied
the knowledge base. In our KBSs, these repair rules allow to
“backtrack”, meaning that the system may forget state cesng
and resume in a previous (valid) configuration.

In the other cases, different solutions can be consideredge
with temporary inconsistencies:

1. Decide validity points where the relations are assumebleto
consistent, meaning that in between they can be inconsisten
and thus should not be consulted. In this line falls the use
of transactionsas used in data bases. In our case, this is not
always practicable since these points must be decidedreithe

by the expert or by the engine. In some cases, the expert can.

express validity points using relation constraints, ahatell.
Forinstance, itis easy to express that an airline resemwatiust

be consistent two hours before flight departure. In manyrothe
cases, there is no meaningful information about validitints
that can be drawn from the expertise. The only way would be an
ad hocmadification of the generated code, something to avoid
in our generative approach. Therefore, a default mechanism
is needed for setting validity points. This cannot be done

by the engine since it has no semantic knowledge about the

objects and their relations in a particular KBS. Hence, iitrest
choose semantically significant validity points. The onlgrats
it could track are low level, such as all object changes; kingc
relations at these points is not only expensive but it uguels

We propose a compromise between solutions 2 and 3. When
an object changes its state, we mark all relation tuples irtlwh
it is involved. When a relation is accessed, that is when ketigp
retrieved, we check this tuple only if it is marked. If the cke
succeeds, there is no problem and we can unmark the tuple.
Otherwise, the relation does not hold for this tuple and it wa
to the expert to specify one among several “remedial sties&g
(globally for all relations or specifically for some):

S1 remove the inconsistent tuples; this comes down to solution
item 2 above (check on demand);

S2 blacklist inconsistent tuples until either they becomeststent
again (and thus are recycled as valid) or some expert rules
decide to remove them;

S3 blacklist the inconsistent tuples until both objects aralified,;
then remove the inconsistent tuples and recycle the others.

In our reservation example, choosing remedial strat&gy
the actions on sequence diagram in figure 2 are triggeredeat th
moment whenJohris miles are modified (section 4.1. Whdohn
consumes miles, the reservation is notified and all tupled wi
John as Customerare marked. Wheldohn decides to query his
reservation, the constraints of his marked tuples are aueck
they are satisfied, the tuple is unmarked and the query sdscee
Otherwise the tuple is blacklisted and, at the next quenhexk
will be performed again; ilohnhas accumulated new miles in the
meantime, the query can be successful.
Thus, when a relation or an object attribute (as in the exajnpl
is modified, all the relations to which the modified objectdogjs
are notified. This solution implies that objects know theiations
whereas we wish to keep objects as independent as possible of
relations. Fortunately, this dependency can be kept to @&maim,
similar to the dependency between an object and one of its
observers. In fact the relation plays the role of an Obsefoer
the objects.

4.2 Structureof the C++ Components

We give here a brief description of the C++ component design
for implementing relations. As already mentioned, we redfy
whole relation as a set of tuples (set of pairs in our caseesin
we restrict to binary relation). Figure 3 presents a simgifi

no meaning and does not solve the problem of several objectsclass diagram. The most important class is the templatdract-

evolving concurrently.

. Check on demand: the constraints are verified only whergusi
(accessing, consulting...) a relation tuple. This soluticeans

know about their relations. However, this solution may icelu

superfluous checks when no changes at all occurred or when

the changes did not impact the constraints. Yet, this could
be improved by simply marking the relation tuples when one

Relation which is parametrized by the types of the domain and
the codomain and which contains the tuple set: each tuple is a
pair of pointers (to domain and codomain objects) togethién w

that a relation must be consistent at each access. The mainoo e application dependent information (e.g., the seabeurof

advantage of this approach is that the objects do not have to

an airline reservation) represented by template parandizr

The relations declared by the expert are transformed intassc
derived fromAbstractRelatiorinstantiated with the corresponding
domain and codomain types. In our example AlrineReservation
relation derives fromAbstractRelatior:Customer, Flight-. This
class is generated from declarations given in expert’sasyit

member changes, but this breaks the independence of object:

. X Ssection 3. In particular, the three constraints of the exemp
with respect to relations.

will be embedded by the generator into tkheck method of

. Use a temporary black list: when an object state changes soAirlineReservatiorthat implements the pure virtual functi@heck
that some relation constraints are violated, put the incterst in AbstractRelationThis method is the one that will verify whether
tuples in a “black list” and give a chance to related objects t the relation constraints are satisfied. Hence, the base d&ftnes
change accordingly to satisfy the constraints again. Irdtter all properties, attributes and methods common to all redesti
case, the corresponding tuples go back into the relatioirs Th whereas expert subclasses add application specific infamma
allows to keep the memory of the relations stated by experts The implementation of relation tuples provides the mecrasito
even when they are inconsistent and to cope with concuyrentl store, access, share, mark, and blacklist the tuples in plesiamd
evolving objects. There are, however, two drawbacks. First efficient way.
objects need to know in which relations they are involvece Th As has been already discussed, application objects need to
second drawback is more problematic: how long should we notify their changes to their relations. Thus each objed ha
keep the relation tuples in the black list? reference to the set of relations in which itis involved. &duce the

|Jc-hn:Customer I|Nice Paris:Flight I| ‘AirlineReservation I

Blacklist

| lace(Mice P.llris)

set relationithis
set relationithis
consume_miles () |
:Inot'rfy[.Joth |

|
|
J— queryiNice PLris;! N

| =

| f:heck[Jchn. Mice_Paris)
|

|

|

ark_instances(John)

is_marked|John, Nice_Paris)

true

answer
é -

[answer = true] unmark(John. Nice_Paris)

]

D,

— |

increase_miles () |

Mothing is done because it
has already been marked.

notify { John} !

] —

query(Nice F’%iﬁ? check(John, Nice_Paris)

frug
é o

|

| un_black_list{John, Nice Paris

| garkuchn. Nice_Paris) !Ij
| |
I I

___='7__|j|_

Figure 2. Management of temporary inconsistency (This scenario
supposes that airline companies do not debit the miles atcou
at reservation time but only at flying time, a really generous
behavior!)

BaseAbst

_relat ApplicationObject

notify() =<gets>
4“1: Domain, Godomain, Policy E
AbAtrcificimion —I Domain, Codomain Infoi
; \ semetss| fTTTTTTTTTTTTTTTTTT
insert) Tuple
contains() .
check(]
notify (}
“Pecbing>
<=<Expert>
AbstractRelation=Customer, Flight, DefPolicy=
ﬁ) <<BKpert>> <<Experts>
Customer
et Flight
AlriineReservation

check()

Figure 3. Structure of relation implementation in the KBS
framework: classes in grey (or orange) are generated frqmeréx
definitions whereas all others are part of the framework.

object-relation dependency a non-templ8&seAbstractRelation
base class is used, which just provides an abstract intetifisough
which real relations can be accessed.

The current C++ implementation relies on class templates an
STL containers only.

5. Related Works

Most works aiming at relation support in object-orientexgaages
address the transformation of UML-like associations toec@bme
implement associations as first-class objects (Page etOall;2
Bierman and Wren 2005), other use different techniques sisch
patterns or aspects (Pearce and Noble 2006). Some haveoa noti
of constraints or invariants attached to their relationagéet al.
2001) (Génova et al. 2003). There is also an important [frveook
interested in connecting relations with the notion of rdiBsella
and Steinmann 2008).

The goal is often to reason about relations or to verify the
consistency of a relational systems or ontologies, foraimsg
using some form of algebraic calculus (Balzer et al. 200gePa
et al. 2001). The target applications are data mining, médfon
systems, knowledge base verification... In this case, ioekt
correspond to structural properties of the objects.

By contrast, our goal is not to reason about pure structural
relations but to address dynamic relations with constsathtit
can be temporarily unsatisfied. In our applications, olsjetiange
independently of their relations and relations themseblesot
impact object evolution. Although previously cited worksayn
address objects evolving with time, most of them do not take
constraints or temporary inconsistencies into accountvéver,
some authors have broached this problem, for instance d@én
et al. 2003) who suggest to delay constraint and multiplicit
verification until accessing the relation. Unfortunatéhgy rejected
an implementation of relations as first class, mainly forlenpenta-
tion reasons. For our part, we think that direct implemeatabf
relations is not only natural but also practicable.

As far as implementation is concerned, there are many ways of
representing relations (see for instance (Noble 1997) fraey).
Contrasting with Noble’s “Relationship Object” our appglion
objects do not point to the tuples in which they are involveuat,
to the relations that contain these tuples. By centralizmast of
the information about the relation as a whole, so that we may
experiment different design choices and strategies, asrided
in 4.1. We may also simply traverse the whole relation to quenf
some global operation (e.g., find all customers flying to$soime
time in the next week).

Several implementations are available either as extessibn
object-oriented languages as Java (Bierman and Wren 20G&) o
libraries in Tcl (Mangogna 2006), or using C++ templates [[pO
as we do. However, we are less concerned with persistence and
we preferred a representation of the whole relation, mafoly
experimentation purpose.

6. Present Statusand Future Work

In this paper, we have presented an implementation of fiastsc
binary relations for knowledge-based systems. Theseioalbare
associated with constraints which are dynamically checRéx
possible temporary inconsistencies are handled througdmpetri-
zed strategies. This is work in progress and we did not addrese
other problems such as n-ary relations, composition ofiozla or
even relations between relations, that we are currentlyoeixg.

At this time, we have defined an expert's language to describe
relations together with its parser and C++ code generatbe T
generated code uses a set of C++ classes smoothly integméted
our KBS framework. Currently, we are “re-engineering” eixig

knowledge bases to take advantage of relations and to ¢ésdha
expression power and performance issues.

There are two major paths to introduce relations into anaibje
oriented language: extend the syntax and semantics ofrigedae
orimplement alibrary. In fact we use both: we extended oongio
specific language and the generated C++ code relies on aléenp
library.

References

S. Balzer, T. R. Gross, and P. Eugster. A relational model péat
collaborations and its use in reasoning about relatiorsship E. Ernst,
editor, ECOOP 2007 number 4609 in LNAI, pages 323-346. Springer
Verlag, 2007.

G. Bierman and A. Wren. First-class relationships in an cthjgiented
language. In A. P. Black, editoECOOP 2005volume 3586 oLNCS
pages 262—-286. Springer Verlag, 2005.

G. Boella and F. Steinmann. Roles and relationships in tojéented
programming, multiagent systems and ontologies. In M. Gabeditor,
ECOOP 2007 Workshop Readerumber 4906 in LNCS, pages 108-
122. Springer Verlag, 2008.

DOL. Data Object Library CodeFarms. http://www.codefarms.com.

G. Génova, C. Ruiz del Castillo, and J. Llorens. Mapping UAskociations
into Java codeJournal of Object Technology(5):135-162, 2003.

A. Mangogna. TcIRAL: A realational algebra for Tcl. 3th Annual
Tcl/Tk ConferenceNaperville, IL, October 2006.

S. Moisan. Knowledge representation for program reuse.Edropean
Conference on Artificial Intelligence (ECAlpages 240-244, Lyon,
France, July 2002.

S. Moisan. Component-based support for knowledge-basstersg.
In ICEIS, 10th International Conference on Enterprise Infation
SystemsBarcelona, Spain, June 2008.

J. Noble. Basic relationship patterns. Im EuroPLOP Proceedings
Addison-Wesley, 1997.

M. Page, J. Gensel, C. Capponi, C. Bruley, P. Genoud, D.eliigb
D. Bardou, and V. Dupierris. A new approach in object-basealkedge
representation: The AROM system.Rmoc. 14th IEA/AIEnumber 2070
in LNCS, pages 113-118, Budapest, Hungary, 2001. Springer.

D. J. Pearce and James Noble. Relationship aspect8O8D 06 pages
75-85. ACM, 2006.

