
Dynamic First-Class Relations for Knowledge-based Systems

Alejandro Sanchez
INRIA Sophia Antipolis, FR

Universidad Nacional de Cordoba, AR
alejandro.sanchez@sophia.inria.fr

Sabine Moisan
INRIA Sophia Antipolis, FR

sabine.moisan@sophia.inria.fr

Jean-Paul Rigault
INRIA Sophia Antipolis, FR

University of Nice Sophia Antipolis
jpr@polytech.unice.fr

Abstract
In the context of knowledge-based systems interacting withdynamic
or even real time processes, experts need to express domain specific
relations in a natural way. We thus propose an expert language and
a C++ implementation of these relations as first-class objects. The
relations may have associated constraints such as multiplicities or
any predicate expressing a necessary condition. The focus of this
paper is to cope with time evolution of objects and their relations
and, in particular, with the possibility of temporary inconsistencies.
C++ components have been implemented to represent relations and
their management and first experiments on existing knowledge-
based systems are underway.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]; I.2.4 [Knowledge Representation Formalisms and
Methods]

General Terms relation, object-oriented language, knowledge-
based system

Keywords first class relation, dynamic system, domain specific
language

1. Motivation
We are working on a generic object-oriented component framework
for knowledge-based systems (KBS) (Moisan 2008) supporting
several kinds of reasoning tasks (classification, planning, resource
allocation, video understanding, activity recognition...). A KBS is a
software program basically composed of a knowledge base written
by a domain expert and an engine that performs inference reasoning
on this knowledge to solve a particular problem. The framework
provides C++ components implementing basic concepts of KBS
such asframes(sorts of classes),slots (structured attributes) and
daemons(methods automatically triggered in case of slot or frame
access),inference rules, andinference engines... It also allows the
definition of Domain Specific Languages (e.g., (Moisan 2002))
that are used by experts to enter their knowledge. Once translated
into C++ code, this expertise is linked with the engine to yield an
executable KBS for solving (non expert) end users’ problems.

These expert languages propose a syntax to describe application
objects and to manipulate them through domain specific rules.
Relations among objects constitute an indispensable part of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

RAOOL October 2008, Nashville.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

knowledge. These relations are intrinsic to the domain and may
present various natures, e.g., spatial relations between objects in a
scene, animals and their habitats, customer and service reservation...
They seldom are functional or even reducible to a formal theory.
Therefore, we need to provide experts with a direct means to assert
that a relation holds. Moreover, our relations do not belongto
the intrinsic properties of objects and thus should be separated
from them. Embedding relations into object attributes doesnot
favor this separation, nor is it a natural way for experts to declare
and manipulate them. Hence, we decided to introduce relations as
first class concepts in the expert languages as well as in the C++
components.

Two important properties of our KBSs are worth mentioning.
First, experts and end users are not programmers, all the C++code
is automatically generated from expert knowledge, no customiza-
tion is made at construction nor at execution time. Second, our
systems are usually embedded and autonomous; they manipulate
dynamic(even real time) objects. Thus the state of objects evolves
with time during the KBS execution, which may challenge existing
relation consistency. This paper concentrates on this topic.

This paper is organized as follows. In the next section we
describe our model of relations. Then we give the flavor of the
language proposed for experts to describe relations. Section 4
discusses various solutions to handle temporary inconsistent rela-
tions and details the C++ implementation. We terminate witha
comparison with other works, the present status, and futurework.

2. Proposed Relation Model
We chose to rely on the mathematical notion of a “relation”, for the
abstract definition as well as for the implementation. For the time
being, we limit ourselves to binary relations. A binary relationR is
a subset of the Cartesian product of two setsA andB: R ⊆ A×B.
In our case the sets are composed of all the instances of a class
(a.k.a, the class extension).A (resp.B) is the set that contains the
binary relation domain (resp. codomain); for simplicity, we callA
thedomainandB thecodomain. Hence, the relationR appears as a
set of tuples (here, pairs)(a, b) wherea ∈ A andb ∈ B. Therefore,
we reify the relations themselves, not the individual tuples.

In some cases, a collection of tuples is not sufficient. Thus,
we also offer the expert the possibility to attach constraints to a
relation, that is predicates that each tuple must satisfy. Note that
these constraints add extranecessaryconditions for a tuple to be
part of a relation but they arenot, in general, the characteristic
function of the relation (which would be necessary and sufficient).
The well known multiplicity constraints are of this kind, although
they are usually expressed in a direct way. Other need a predicate
involving the two related objects. For instance, in video understan-
ding, two objects can be considered “close to” each other provided
that they are both visible (not occluded) in the scene; for the relation

Figure 1. A simple example of relation

between customers and flights in airline reservation, two customers
cannot reserve the same seat on the same flight...

There are two major forms of constraints: those which must
always hold (they are structural invariants of the system) and
those that may temporarily be violated provided that they hold
at some system observation point. The first form is rather simple
to handle: should such a constraints be violated, the systemthrows
exceptions. The second form is more challenging, especially in
real time applications. It imposes to correctly monitor theobject
state changes. Indeed, during KBS execution, object valuesevolve
which may invalidate the constraints of some relation tuples.
For instance, in process planning, the relations between objects
depend on the initial conditions, the spontaneous evolution of the
process, the effects of the previously planned actions, etc. Since
evolutions cannot be predicted by the expert nor by the engine;
we must provide an automatic mechanism to cope with relation
inconsistencies (see 4.1).

Some objects or even complete applications, however, do not
require relations and there is no reason to impose the corresponding
cost on them. Therefore, we wish that domain objects depend as
little as possible on relations so that they may be obliviousof
relations. Of course, the reverse is not feasible: relations have to
know the objects they relate but we shall keep this dependency as
abstract as possible.

3. Expert’s View of Relations
We extended the knowledge representation languages so that
experts can define binary relations, specifying their domain and
codomain. A relation as a whole may have its own attributes,
multiplicities on both ends, and be associated with constraint
predicates. These predicates express a (necessary) condition on
a tuple, thus they take two arguments, one in the domain, the other
in the codomain.

Here is an example of a possible expert’s input. We consider
the AirlineReservationrelation betweenCustomers andFlights,
which is represented by an “association class” in the UML diagram
of figure 1. Besides, the expert may set three constraints on this
relation (among many possible ones): (1) it should not be possible
to assign a non existing seat; (2) no reservation should exist over
“canceled” flights; (3) if a customer has a“miles club” reservation,
he/she must have enough miles for the reserved flight.

Assuming that the knowledge base already contains definitions
of the Customerand Flight classes, the expert may define the
relation as follows (keywords are in bold):

Relation
{

name AirlineReservation
domain Customerranges [0,1] role cust
codomain Flight ranges [0,1] role flight

Attributes
Integername assignedSeat
ReservationTypename reservationMode

Constraints
seatExistsensures that assignedSeat<= flight.seats
notCancelledensures that flight.status != canceled
enoughMilesensures that reservationType == milesclub

implies cust.miles>= flight.miles
}

In the first three lines the expert declares the relation name, its
domain and codomain and their multiplicity ranges. Each element
is given a role name: we do not support a sophisticated notionof
roles; role names are merely for easy naming of related objects in
constraints. The next lines describe the attributes of the relation.
Finally, the expert provides the three previous constraints. The
syntax of constraints supports predicate logic (on finite collections).
We presently impose no restriction on the predicate definition
which can use objects and relation attributes as well as relation
properties.

Then, the expert can directly manipulateAirlineReservation,
mainly when writing decision rules. Possible operations are to add,
remove, consult relation tuples, and extract all codomain objects
related to a given domain one (and the converse). For instance, if a
customer needs to travel somewhere, a standard rule could be

Let c a Customer, ta Town
If (c, t) in IsBoundTo
Then insert (c, t) into AirlineReservation [reservationType=custom]

where we assume thatIsBoundTois another relation, also defined
by the expert. As shown, this rule both consults relationIsBoundTo
and for each satisfying tuple, possibly inserts it intoAirlineReserva-
tion; indeed, insertion may fail because of constraints. Note that
relation attributes can be set when inserting, like forreservationType
in the example.

Once complete, a knowledge base is automatically translated
into C++. A relation type such asAirlineReservationbecomes a
C++ class which represents a collection of tuples, each tuple being
a pair of (pointers to) objects. These classes automatically handle
constraint verifications when a new tuple is inserted as wellas
when objects change their state (see 4.1). The resulting C++code is
linked with the engine and relation libraries, yielding an executable
KBS that will be executed, without further expert input.

The advantage of an automatic code generation is that we may
optimize the target code, e.g., avoid generating relation handling
code for those classes not involved in any relation. On the negative
side, experts cannot introduce new classes, relations, or rules at run
time, which is not a real drawback for most of our target systems,
which must run autonomously.

Localizing all the information about a relation in a unique
class relieves the expert (and the generated code) from handling
reference attributes in objects at both ends of the relation. Moreover,
all decisions about object evolution follow up are centralized
and can be easily tuned. In addition, operations on relations
(inverting, combining...) would be easier to express in future
versions. The experts adopt a natural declarative style: they simply
define a relation together with its constraints and use it in rules;
processing relations is handled transparently by automatically
triggered functions (daemons in objects).

4. Framework Components for Relations
4.1 Coping with object state change

In a KBS, the object states may change due to the engine reasoning
activity. In particular, related objects can change state independently
and in any order. The consequence is that the constraints of some

relation tuples may become false, which invalidates the tuple
itself. However, this invalidity may just be temporary or due to
serialization of updates which are in fact logically concurrent.

For instance, in the reservation example, imagine that customer
John needs to make a reservation on theNice Paris flight and
can make it under themiles clubmode, because he has enough
miles. Suppose that he consumes too many of his miles for
other trips before flying to Paris. Then, the relation tuple (John,
Nice Paris) becomes inconsistent since the third constraint is
violated. However, it is still possible thatJohn regains enough
miles by flying to other destinations before honoring hisNice Paris
reservation. Until then, the reservation on theNice Paris flight is
inconsistent.

Of course, these types of inconsistency do not concern constraints
which represent structural invariants of the system, including
multiplicity ranges (see 2): as soon has they are violated, an
exception is thrown which may trigger “repair rules” definedin
the knowledge base. In our KBSs, these repair rules allow to
“backtrack”, meaning that the system may forget state changes
and resume in a previous (valid) configuration.

In the other cases, different solutions can be considered tocope
with temporary inconsistencies:

1. Decide validity points where the relations are assumed tobe
consistent, meaning that in between they can be inconsistent
and thus should not be consulted. In this line falls the use
of transactionsas used in data bases. In our case, this is not
always practicable since these points must be decided either
by the expert or by the engine. In some cases, the expert can
express validity points using relation constraints, and all is well.
For instance, it is easy to express that an airline reservation must
be consistent two hours before flight departure. In many other
cases, there is no meaningful information about validity points
that can be drawn from the expertise. The only way would be an
ad hocmodification of the generated code, something to avoid
in our generative approach. Therefore, a default mechanism
is needed for setting validity points. This cannot be done
by the engine since it has no semantic knowledge about the
objects and their relations in a particular KBS. Hence, it cannot
choose semantically significant validity points. The only events
it could track are low level, such as all object changes; checking
relations at these points is not only expensive but it usually has
no meaning and does not solve the problem of several objects
evolving concurrently.

2. Check on demand: the constraints are verified only when using
(accessing, consulting...) a relation tuple. This solution means
that a relation must be consistent at each access. The main
advantage of this approach is that the objects do not have to
know about their relations. However, this solution may induce
superfluous checks when no changes at all occurred or when
the changes did not impact the constraints. Yet, this could
be improved by simply marking the relation tuples when one
member changes, but this breaks the independence of objects
with respect to relations.

3. Use a temporary black list: when an object state changes so
that some relation constraints are violated, put the inconsistent
tuples in a “black list” and give a chance to related objects to
change accordingly to satisfy the constraints again. In thelatter
case, the corresponding tuples go back into the relation. This
allows to keep the memory of the relations stated by experts
even when they are inconsistent and to cope with concurrently
evolving objects. There are, however, two drawbacks. First,
objects need to know in which relations they are involved. The
second drawback is more problematic: how long should we
keep the relation tuples in the black list?

We propose a compromise between solutions 2 and 3. When
an object changes its state, we mark all relation tuples in which
it is involved. When a relation is accessed, that is when a tuple is
retrieved, we check this tuple only if it is marked. If the check
succeeds, there is no problem and we can unmark the tuple.
Otherwise, the relation does not hold for this tuple and it was up
to the expert to specify one among several “remedial strategies”
(globally for all relations or specifically for some):

S1 remove the inconsistent tuples; this comes down to solutionin
item 2 above (check on demand);

S2 blacklist inconsistent tuples until either they become consistent
again (and thus are recycled as valid) or some expert rules
decide to remove them;

S3 blacklist the inconsistent tuples until both objects are modified;
then remove the inconsistent tuples and recycle the others.

In our reservation example, choosing remedial strategyS2,
the actions on sequence diagram in figure 2 are triggered at the
moment whenJohn’s miles are modified (section 4.1. WhenJohn
consumes miles, the reservation is notified and all tuples with
John as Customerare marked. WhenJohn decides to query his
reservation, the constraints of his marked tuples are checked. If
they are satisfied, the tuple is unmarked and the query succeeds.
Otherwise the tuple is blacklisted and, at the next query, a check
will be performed again; ifJohnhas accumulated new miles in the
meantime, the query can be successful.

Thus, when a relation or an object attribute (as in the example)
is modified, all the relations to which the modified object belongs
are notified. This solution implies that objects know their relations
whereas we wish to keep objects as independent as possible of
relations. Fortunately, this dependency can be kept to a minimum,
similar to the dependency between an object and one of its
observers. In fact the relation plays the role of an Observerfor
the objects.

4.2 Structure of the C++ Components

We give here a brief description of the C++ component design
for implementing relations. As already mentioned, we reifya
whole relation as a set of tuples (set of pairs in our case, since
we restrict to binary relation). Figure 3 presents a simplified
class diagram. The most important class is the templateAbstract-
Relation, which is parametrized by the types of the domain and
the codomain and which contains the tuple set: each tuple is a
pair of pointers (to domain and codomain objects) together with
some application dependent information (e.g., the seat number of
an airline reservation) represented by template parameterInfo.

The relations declared by the expert are transformed into a class
derived fromAbstractRelationinstantiated with the corresponding
domain and codomain types. In our example, theAirlineReservation
relation derives fromAbstractRelation<Customer, Flight>. This
class is generated from declarations given in expert’s syntax in
section 3. In particular, the three constraints of the example
will be embedded by the generator into thecheck method of
AirlineReservationthat implements the pure virtual functioncheck
in AbstractRelation. This method is the one that will verify whether
the relation constraints are satisfied. Hence, the base class defines
all properties, attributes and methods common to all relations
whereas expert subclasses add application specific information.
The implementation of relation tuples provides the mechanisms to
store, access, share, mark, and blacklist the tuples in a simple and
efficient way.

As has been already discussed, application objects need to
notify their changes to their relations. Thus each object has a
reference to the set of relations in which it is involved. To reduce the

Figure 2. Management of temporary inconsistency (This scenario
supposes that airline companies do not debit the miles account
at reservation time but only at flying time, a really generous
behavior!)

Figure 3. Structure of relation implementation in the KBS
framework: classes in grey (or orange) are generated from expert
definitions whereas all others are part of the framework.

object-relation dependency a non-templateBaseAbstractRelation
base class is used, which just provides an abstract interface through
which real relations can be accessed.

The current C++ implementation relies on class templates and
STL containers only.

5. Related Works
Most works aiming at relation support in object-oriented languages
address the transformation of UML-like associations to code. Some
implement associations as first-class objects (Page et al. 2001;
Bierman and Wren 2005), other use different techniques suchas
patterns or aspects (Pearce and Noble 2006). Some have a notion
of constraints or invariants attached to their relations (Page et al.
2001) (Génova et al. 2003). There is also an important line of work
interested in connecting relations with the notion of roles(Boella
and Steinmann 2008).

The goal is often to reason about relations or to verify the
consistency of a relational systems or ontologies, for instance
using some form of algebraic calculus (Balzer et al. 2007; Page
et al. 2001). The target applications are data mining, information
systems, knowledge base verification... In this case, relations
correspond to structural properties of the objects.

By contrast, our goal is not to reason about pure structural
relations but to address dynamic relations with constraints that
can be temporarily unsatisfied. In our applications, objects change
independently of their relations and relations themselvesdo not
impact object evolution. Although previously cited works may
address objects evolving with time, most of them do not take
constraints or temporary inconsistencies into account. However,
some authors have broached this problem, for instance (Génova
et al. 2003) who suggest to delay constraint and multiplicity
verification until accessing the relation. Unfortunately,they rejected
an implementation of relations as first class, mainly for implementa-
tion reasons. For our part, we think that direct implementation of
relations is not only natural but also practicable.

As far as implementation is concerned, there are many ways of
representing relations (see for instance (Noble 1997) for asurvey).
Contrasting with Noble’s “Relationship Object” our application
objects do not point to the tuples in which they are involved,but
to the relations that contain these tuples. By centralizingmost of
the information about the relation as a whole, so that we may
experiment different design choices and strategies, as described
in 4.1. We may also simply traverse the whole relation to perform
some global operation (e.g., find all customers flying to Paris some
time in the next week).

Several implementations are available either as extensions of
object-oriented languages as Java (Bierman and Wren 2005) or as
libraries in Tcl (Mangogna 2006), or using C++ templates (DOL)
as we do. However, we are less concerned with persistence and
we preferred a representation of the whole relation, mainlyfor
experimentation purpose.

6. Present Status and Future Work
In this paper, we have presented an implementation of first-class
binary relations for knowledge-based systems. These relations are
associated with constraints which are dynamically checked. The
possible temporary inconsistencies are handled through parametri-
zed strategies. This is work in progress and we did not address here
other problems such as n-ary relations, composition of relations or
even relations between relations, that we are currently exploring.

At this time, we have defined an expert’s language to describe
relations together with its parser and C++ code generator. The
generated code uses a set of C++ classes smoothly integratedinto
our KBS framework. Currently, we are “re-engineering” existing

knowledge bases to take advantage of relations and to evaluate the
expression power and performance issues.

There are two major paths to introduce relations into an object-
oriented language: extend the syntax and semantics of the language
or implement a library. In fact we use both: we extended our domain
specific language and the generated C++ code relies on a (template)
library.

References
S. Balzer, T. R. Gross, and P. Eugster. A relational model of object

collaborations and its use in reasoning about relationships. In E. Ernst,
editor, ECOOP 2007, number 4609 in LNAI, pages 323–346. Springer
Verlag, 2007.

G. Bierman and A. Wren. First-class relationships in an object-oriented
language. In A. P. Black, editor,ECOOP 2005, volume 3586 ofLNCS,
pages 262–286. Springer Verlag, 2005.

G. Boella and F. Steinmann. Roles and relationships in object-oriented
programming, multiagent systems and ontologies. In M. Cebulla, editor,
ECOOP 2007 Workshop Reader, number 4906 in LNCS, pages 108–
122. Springer Verlag, 2008.

DOL. Data Object Library. CodeFarms. http://www.codefarms.com.

G. Génova, C. Ruiz del Castillo, and J. Llorens. Mapping UMLassociations
into Java code.Journal of Object Technology, 2(5):135–162, 2003.

A. Mangogna. TclRAL: A realational algebra for Tcl. In13th Annual
Tcl/Tk Conference, Naperville, IL, October 2006.

S. Moisan. Knowledge representation for program reuse. InEuropean
Conference on Artificial Intelligence (ECAI), pages 240–244, Lyon,
France, July 2002.

S. Moisan. Component-based support for knowledge-based systems.
In ICEIS, 10th International Conference on Enterprise Information
Systems, Barcelona, Spain, June 2008.

J. Noble. Basic relationship patterns. InIn EuroPLOP Proceedings.
Addison-Wesley, 1997.

M. Page, J. Gensel, C. Capponi, C. Bruley, P. Genoud, D. Ziébelin,
D. Bardou, and V. Dupierris. A new approach in object-based knowledge
representation: The AROM system. InProc. 14th IEA/AIE, number 2070
in LNCS, pages 113–118, Budapest, Hungary, 2001. Springer.

D. J. Pearce and James Noble. Relationship aspects. InAOSD 06, pages
75–85. ACM, 2006.

