
Decision Procedures for the
Temporal Verification of Concurrent Lists

Alejandro Sánchez1 and César Sánchez1,2

1 The IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain
{alejandro.sanchez,cesar.sanchez}@imdea.org

Abstract. This paper studies the problem of formally verifying tempo-
ral properties of concurrent datatypes. Concurrent datatypes are imple-
mentations of classical data abstractions, specially designed to exploit
the parallelism available in multiprocessor architectures. The correct-
ness of concurrent datatypes is essential for the overall correctness of the
client software. The main difficulty to reason about concurrent datatypes
is due to the simultaneous use of unstructured concurrency and dynamic
memory.
The first contribution of this paper is the use of deductive temporal
verification methods, in particular verification diagrams, enriched with
reasoning about dynamic memory. Proofs using verification diagrams are
decomposed into a finite collection of verification conditions. Our second
contribution is a decision procedure mixing memory regions, pointers and
lisp-like lists with locks, that allows the automatic verification of the
generated verification conditions. We illustrate our techniques proving
safety and liveness properties of lock-coupling concurrent lists.

1 Introduction

Concurrent data structures [5] are an efficient approach to exploit the paral-
lelism of multiprocessor architectures. In contrast with sequential implementa-
tions, concurrent datatypes allow the simultaneous access of many threads to
the memory representing the data value of the concurrent datatype. Concurrent
data structures are hard to design, difficult to implement correctly and even
more difficult to formally prove correct.

The main difficulty in reasoning about concurrent datatypes comes from the
interaction of concurrency and heap manipulation. The most popular technique
to reason about the structures in the heap is separation logic [10]. Leveraging
on this success, some researchers [6, 13] have extended this logic to deal with
concurrent programs. However, in separation logic disjoint regions are implic-
itly declared (hidden in the separation conjunction), which makes the reasoning
about unstructured concurrency more cumbersome.

In this paper, we propose a complementary approach. We start from tem-
poral deductive verification in the style of Manna-Pnueli [7], in particular using
general verification diagrams [4,11] to deal with concurrency. Then, inspired by

regional logic [1], we enrich the state predicate language to reason about the dif-
ferent regions in the heap that a program manipulates. Finally, we build decision
procedures capable of checking all generated verification conditions generated
during our proofs, to aid in the automation of the verification process.

Explicit regions allow the use of a classical first-order assertion language
to reason about heaps, including mutation and disjointness of memory regions.
Regions correspond to finite sets of object references. Unlike separation logic,
the theory of sets [14] can be easily combined with other classical theories to
build more powerful decision procedures. Classical theories are also amenable of
integration into SMT solvers [2]. Moreover, being a classical logic one can use
classical Assume-Guarantee reasoning, for example McMillan proof rules [8], for
reasoning compositionally about liveness properties. In practice, using explicit
regions requires the annotation and manipulation of ghost variables of type re-
gion, but adding these annotations is usually straightforward.

Verification diagrams can be understood as an intuitive way to abstract the
specific aspect of a program which illustrates why the program satisfies a given
temporal property We propose the following verification process to show that a
datatype satisfies a property expressed in linear temporal logic. First, we build
the most general client of the datatype, parametrized by the number of threads.
Then, we annotate the client and datatype with ghost fields and ghost code
to support the reasoning, if necessary. Second, we build a verification diagram
that serves as a witness of the proof that all possible parallel executions of the
program satisfy the given temporal formula.

The proof is checked in two phases. First, we check that all executions ab-
stracted by the diagram satisfy the property, which can be solved through a
fully-automatic finite state model checking method. Second, we must check that
the diagram does in fact abstract the program, which reduces to verifying a
collection of verification conditions, generated from the diagram. Each concur-
rent datatype maintains in memory a collection of nodes and pointers with a
particular layout. Based on this fact, we propose to use an assertion language
whose terms include predicates in specific theories for each layout. For instance,
in the case of singly linked lists, we use a decision procedure capable of rea-
soning about ideal lists as well as pointers representing lists in memory. In this
paper, we build a decision procedure extending the theory of linked lists [9] with
locks. We illustrate the whole approach to prove thread termination on a simple
implementation of concurrent lists.

Most previous approaches to verifying concurrent datatypes are restricted to
safety properties. In comparison, the method we propose can be used to prove
all liveness properties, relying on the completeness of verification diagrams.

The rest of the paper is structured as follows. Section 2 presents the running
example: lock-coupling concurrent lists. Section 3 briefly introduces verification
diagrams and explicit regions. Section 4 describes the proposed decision proce-
dure for concurrent lists. Finally, Section 5 shows how to apply our approach to
prove termination in one case of concurrent lists. Some proofs are missing due
to space limitations.

2 Concurrent Lock-Coupling Lists

The running example in this paper is the verification of lock-coupling concurrent
lists [5, 13]. Lock-coupling concurrent lists are ordered lists with non-repeating
elements, in which each node is protected by a lock. A thread advances through
the list acquiring the lock of the node it visits. This lock is only released after the
lock of the next node has been acquired. The List and Node structures, shown
in Fig. 1(a) are used to maintain the data of a concurrent list.

A List contains one field pointing to the Node representing the head of the
list. A Node consists of a value, a pointer to the next Node in the list and a lock.
We assume that the operating system provides the operations lock and unlock
to acquire and release a lock. Every list has two sentinel nodes, Head and Tail ,
with phantom values representing the lowest and highest possible values. For
simplicity, we assume such nodes cannot be removed or modified. Concurrent
Lock-Coupling Lists are used to implement sets, so they offer three operations:
– locate, shown in Fig. 1(d), finds an element traversing the list. This operation

returns the pair consisting of the desired node and the node that precedes
it in the list. If the element is not found the Tail node is returned as the

class List {
Node list ;

}

class Node {
Value val ;
Node next ;
Lock lock ;

}

1: while true do
2: e := NondetPickElem
3: nondet

4:

26666664

call search(e)

or

call add(e)

or

call remove(e)

37777775
5: end while

1: prev , curr := locate(e)
2: if curr .val = e then
3: result := true
4: else
5: result := false
6: end if
7: curr .unlock()
8: prev .unlock()
9: return result

(a) data structures (b) decide (c) search

1: prev := Head
2: prev .lock()
3: curr := prev .next
4: curr .lock()
5: while curr .val < e do
6: prev .unlock()
7: prev := curr
8: curr := curr .next
9: curr .lock()

10: end while
11: return (prev , curr)

1: prev , curr := locate(e)
2: if curr .val 6= e then
3: aux := new Node(e)
4: aux .next := curr
5: prev .next := aux
6: result := true
7: else
8: result := false
9: end if

10: prev .unlock()
11: curr .unlock()
12: return result

1: prev , curr := locate(e)
2: if curr .val = e then
3: aux := curr .next
4: prev .next := aux
5: result := true
6: else
7: result := false
8: end if
9: prev .unlock()

10: curr .unlock()
11: return result

(d) locate (e) add (f) remove

Fig. 1: Data structure and algorithms for concurrent lock-coupling list

current node. A search operation, shown in Fig. 1(c), that decides whether
an element is in the list can be easily extended from locate.

– add , shown in Fig. 1(e), inserts a new element in the list, using locate to
determine the position at which the element must be inserted. The operation
add returns true upon success, otherwise it returns false.

– remove, in Fig. 1(f), deletes a node from the list by redirecting the next
pointer of the previous node appropriately.
Fig.1(b) shows the most general client of the concurrent-list datatype: the

program decide that repeatedly chooses non-deterministically a method and its
parameters. We construct a fair transition system S[N] parametrized by the total
number of threads N , in which all threads run decide. Let ψ be the temporal
formula that describes that the thread which holds the last lock in the list
terminates. The verification problem is then casted as S[N] � ψ, for all N .

A sketch of a verification diagram is depicted in Fig. 2. We say that a thread
is the rightmost owning a lock when there is no other thread owning a lock that
protects a Node closer to the tail. Each diagram node is labeled with a predicate.
This predicate captures the set of states of the transition system that the node
abstracts. Edges represent transitions between states abstracted by the nodes.

Checking the proof represented by the verification diagram requires two ac-
tivities. First, show that all traces of the diagram satisfy the temporal formula
ψ, which can be performed by finite state model checking. Second, prove that
all computations of S[N] are traces of the verification diagram. This process
involves the verification of formulas built from several theories. For instance,
considering the execution of line 5 of program add we should verify that the
following condition holds:

at add [k]
5 ∧ IsLast(k) ∧

(
r′ = r ∪ 〈aux [k]〉 ∧

prev ′[k].next = aux [k]

)
→ at ′ add [k]

6 ∧ IsLast ′(k)

n2 :
Thread k gets its first lock and

k is the rightmost thread owning a lock

n3 :
Thread k is the rightmost owning a lock

and k is not blocked

n4 :
Thread k is the rightmost owning a lock

and k is about to get a new lock

n5 :
Thread k is the rightmost owning a lock

and k has reached the last line of locate

n6 :
Thread k is the rightmost owning a lock

and k has gone beyond the last line of locate

n1 :
Thread k does not own a lock or

k does not hold the rightmost lock

Fig. 2: Sketched verification diagram for S[N] � ψ

The predicate prev ′[k].next = curr [k] is in the theory of pointers, while r′ =
r ∪ 〈curr [k]〉 is in the theory of regions. Moreover, some predicates belong to
a combination of theories, like IsLast(k), which among other things establishes
that List (h, x, r) holds. List (h, x, r) expresses that in heap h, starting from
pointer x, the pointers form a list of elements following the next field, and that
all nodes in this list form precisely the region r.

The construction of a verification diagram is a manual task, but it often
follows the programmer’s intuitive explanation of why the property holds. The
activity that we want to automate is checking that the diagram indeed proofs
the property. To accomplish this automation we must build a suitable decision
procedure involving many theories, which we describe in the rest of the paper.

3 Preliminaries

We describe the temporal properties of interest in linear temporal logic, using
operators such as  (always),  (eventually),  (next) or U (until) in con-
junction with classical logic operations. The state predicates are built from the
combination of theories that we present here.

Explicit Regions We use explicit regions to represent the manipulation of
memory during the execution of the system. This reasoning is handled by ex-
tending the program code with ghost variables of type rgn, and ghost updates
of these variables. Variables of type rgn represent finite sets of object refer-
ences stored in the heap. Regional logic [1] provides a rich set of language con-
structs and assertions. However, it is enough for our purposes to use only a
small fragment of regional logic. The term emp denotes the empty region and
〈x〉 represents the singleton region whose only object is the one referenced by
x. Traditional set-like operators such as ∪, ∩ and \ are also provided and can
be applied to rgn variables. The assertion language allows reasoning involving
mutation and separation. Given two rgn expressions r1 and r2 we can assert
whether they are equal (r1 = r2), one is contained into the other (r1 ⊆ r2) or
they are completely disjoint (r1#r2).

Verification Diagrams We sketch here the important notions from [4, 11].
Verification diagrams provide an intuitive way to abstract temporal proofs over
fair transition systems (fts). A fts Φ is a tuple 〈V, Θ, T ,J 〉 where V is a finite
set of variables, Θ is an initial assertion, T is a finite set of transitions and J ⊆ T
contains the fair transitions (in this paper we will not discuss strong fairness). A
state is an interpretation of V. We use S to denote the set of all possible states.
A transition τ ∈ T is a function τ : S → 2S, which is usually represented by a
first-order logic formula ρτ (s, s ′) describing the relation between the values of
the variables in a state s and in a successor state s′. Given a transition τ , the
state predicate En(τ) denotes whether there exists a successor state s′ such that
ρτ (s, s ′).

A computation of Φ is an infinite sequence of states such that (a) the first
state satisfies Θ; (b) any two consecutive states satisfy ρτ for some τ ∈ T ;

(c) for each τ ∈ J , if τ is continuously enabled after some point, then τ is
taken infinitely many times. We use L(Φ) to denote the set of computations of
the fts Φ. Given a formula ϕ, L(ϕ) denotes the set of sequences satisfying ϕ.
A fts Φ satisfies a temporal formula ϕ if all computations of Φ satisfy ϕ, i.e.,
L(Φ) ⊆ L(ϕ).

A verification diagram (vd) Ψ : 〈N,N0, E, µ, η,F , ∆, f〉 is a formula automa-
ton with components:
– N is a finite set of nodes.
– N0 ⊆ N is the set of initial nodes.
– E ⊆ N ×N is a set of edges.
– µ : N → F (V) is a labeling function mapping nodes to assertions over V .
– η : E → 2τ is a labeling function assigning sets of transitions to edges.
– F ⊆ 2E×E is an edge acceptance set of the form {(P1, R1) , . . . , (Pm, Rm)}.
– ∆ ⊆ {δ|δ : S→ D} is a set of ranking functions from states to a well founded

domain D.
– f maps nodes into propositional formulas over atomic subformulas of ϕ.

If n ∈ N then we use next (n) to denote the set {ñ ∈ N | (n, ñ) ∈ E} and τ (n)
for {ñ ∈ next (n) |τ ∈ η (n, ñ)}. For each (Pj , Rj) ∈ F and for each n ∈ N , ∆
contains a ranking function δj,n. An infinite sequence of nodes π = n0, n1, . . . is
a path if n0 ∈ N0 and for each i > 0, (ni, ni+1) ∈ E. A path π is accepted if for
each pair (Pj , Rj) ∈ F some edges of Rj occur infinitely often in π or all edges
that occur infinitely often in π are also in Pj . An infinite path π is fair when,
for any just transition τ , if τ is enabled on all nodes that appear infinitely often
in π then τ is taken infinitely often.

Given a sequence of states σ = s0, s1, . . . of Φ, a path π = n0, n1, . . . is a
trail of σ whenever si � µ(ni) for all i ≥ 0. An infinite sequence of states σ is a
computation of Ψ whenever there exists an accepting trail of σ such that is also
fair. L(Ψ) is the set of computations of Ψ .

A verification diagram shows that Φ � ϕ via the inclusions L(Φ) ⊆ L(Ψ) ⊆
L(ϕ). The map f is used to check L(Ψ) ⊆ L(ϕ). To show L(Φ) ⊆ L(Ψ) it is
enough to prove the following verification conditions:
– Initiation: at least one initial node from N0 satisfies the initial condition of

the fair transition system Φ.
– Consecution: for every node n ∈ N and transition τ ∈ T ,

µ (n) (s) ∧ ρτ (s, s ′)→ µ(next(n))(s′).

– Acceptance: for each (Pj , Rj) ∈ F , if (n1, n2) ∈ Pj \Rj then

ρτ (s, s ′) ∧ µ (n1) (s) ∧ µ (n2) (s′)→ δj,n1 (s) � δj,n2 (s′)

and if (n1, n2) /∈ Pj ∪Rj then

ρτ (s, s ′) ∧ µ (n1) (s) ∧ µ (n2) (s′)→ δj,n1 (s) � δj,n2 (s′)

– Fairness: For each e = (n1, n2) ∈ E and τ ∈ η (e):
1. τ is guaranteed to be enabled in every µ(n1)(s).
2. Any τ -successor of a state satisfying µ (n1) satisfies the label of some

node in τ (n).

4 Building a Suitable Decision Procedure

The automatic check of the proof represented by a verification diagram requires
decision procedures to verify the generated verification conditions. These deci-
sion procedures must deal with formulas containing terms belonging to different
theories. In particular, for concurrent lists the decision procedure must reason
about pointer data structures with a list layout, regions and locks. To obtain a
suitable decision procedure, we extend the Theory of Linked Lists (TLL) [9], a de-
cidable theory including reachability of list-like structures. However, this theory
lacks the expressivity to describe locked lists of cells, a fundamental component
in our proofs.

We begin with a brief description of the basic notation and concepts. A
signature Σ is a triple (S, F, P) where S is a set of sorts, F a set of functions
and P a set of predicates. If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2) are two
signatures, we define their union Σ1∪Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2). Similarly
we say that Σ1 ⊆ Σ2 when S1 ⊆ S2, F1 ⊆ F2 and P1 ⊆ P2. If t(ϕ) is a term
(resp. formula), then we denote with Vσ(t) (resp. Vσ(ϕ)) the set of variables of
sort σ occurring in t (resp. ϕ).

A Σ-interpretation is a map assigning a value to each symbol in Σ. A Σ-
structure is a Σ-interpretation over an empty set of variables. A Σ-formula over a
set X of variables is satisfiable whenever it is true in some Σ-interpretation over
X . Let Ω be an interpretation, A a Ω-interpretation over a set V of variables,
Σ ⊆ Ω and U ⊆ V . AΣ,U denotes the interpretation obtained from A restricting
it to interpret only the symbols in Σ and the variables in U . We use AΣ to denote
AΣ,∅. A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-
structures. Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation
A such that AΣ ∈ A. Given a Σ-theory T , a Σ-formula ϕ over a set of variables
X is T -satisfiable if it is true on a T -interpretation over X .

Formally, the theory of linked lists is defined as TLL = (ΣTLL,TLL), where

ΣTLL := Σcell ∪Σmem ∪ΣReachability ∪Σset ∪ΣBridge

and TLL is the class of ΣTLL-structures satisfying the conditions shown in
Fig. 4. The sorts, functions and predicates of TLL correspond to the signatures
shown in Fig. 3. (Note that Figs. 4 and 3 contain an extended signature and
interpretation.) Informally, Σcell models cells, structures containing an element
(data), an addresses (pointer) and a lock owner, which represent a node in a
linked list. Σmem models the memory. ΣReachability models finite sequences of non-
repeating addresses, to represent paths. Σset models sets of addresses. Finally,
ΣBridge is a bridge theory containing auxiliary functions. The sort thid contains
thread identifiers. The sorts addr, elem and thid are uninterpreted, except that
� : thid is different from all others thread ids. Otherwise, Σaddr = (addr, ∅, ∅),
Σelem = (elem, ∅, ∅) and Σthid = (thid, ∅, ∅).

We extend TLL into the theory of concurrent single linked lists TLL3 :=
(ΣTLL3,TLL3), where ΣTLL3 = ΣTLL ∪Σsetth ∪ {lockid , lock , unlock ,firstlocked}.
The sorts, functions and predicates of ΣTLL3 are described in Fig. 3. TLL3 is
the class of ΣTLL3-structures satisfying the conditions listed in Fig. 4.

Signature Sorts Functions Predicates

Σcell

cell
elem
addr
thid

error : cell
mkcell : elem× addr × thid→ cell
.data : cell→ elem
.next : cell→ addr
.lockid : cell→ thid
.lock : cell→ thid→ cell
.unlock : cell→ cell

Σmem

mem
addr
cell

null : addr
[] : mem× addr→ cell

upd : mem× addr × cell→ mem

ΣReachability

mem
addr
path

ε : path
[] : addr→ path

append : path× path× path
reach : mem× addr × addr × path

Σset
addr
set

∅ : set
{ } : addr→ set
∪,∩, \ : set× set→ set

∈ : addr × set
⊆ : set× set

Σsetth
thid
setth

∅T : setth
{ }T : thid→ setth
∪T ,∩T , \T : setth× setth→ setth

∈T : thid× setth
⊆T : setth× setth

ΣBridge

mem
addr
set

path

path2set : path→ set
addr2set : mem× addr→ set
getp : mem× addr × addr→ path
firstlocked : mem× path→ addr

Fig. 3: The signature of the TLL3 theory

Definition 1 (Finite Model Property). Let Σ be a signature, S0 ⊆ S be a set
of sorts, and T be a Σ-theory. T has the finite model property with respect to S0 if
for every T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation
A satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite.

TLL [9] enjoys the finite model property. We now show that TLL3 also has
the finite model property with respect to domains elem, addr and thid. Hence,
TLL3 is decidable because one can enumerate ΣTLL3-structures up to a certain
cardinality. To prove this result, we first extend the set of normalized TLL-literals.

Definition 2 (TLL3-normalized literals). A TLL3-literal is normalized if it
is a flat literal of the form:

e1 6= e2 a1 6= a2

a = null c = error
c = mkcell(e, a) c = rd(m, a) m2 = upd(m1, a, c)
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
p1 6= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2set(m, a) p = getp(m, a1, a2)
k1 6= k2 c = mkcell (e, a, k) a = firstlocked (m, p)

where e, e1 and e2 are elem-variables, a, a1 and a2 are addr-variables, c is a cell-
variable, m, m1 and m2 are mem-variables, p, p1, p2 and p3 are path-variables,
and k, k1 and k2 are thid-variables.

Interpretation of sort symbols: cell, mem, path, set and setth
Each sort σ in ΣTLL3 is mapped to a non-empty set Aσ such that:
(a) Acell = Aelem ×Aaddr ×Athid (b) Amem = AAaddr

cell
(c) Apath is the set of all finite sequences of (pairwise) (d) Aset is the power-set of Aaddr

distinct elements of Aaddr (e) Asetth is the power-set of Athid

Signature Interpretation

Σcell

– mkcell(e, a, k) = 〈e, a, k〉 for each e ∈ Aelem, a ∈ Aaddr and k ∈ Athid

– 〈e, a, t〉.dataA = e for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– 〈e, a, t〉.nextA = a for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– 〈e, a, t〉.lockidA = t for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– 〈e, a, t〉.lockA(t′) = 〈e, a, t′〉 for each e ∈ Aelem, a ∈ Aaddr and t, t′ ∈ Athid

– 〈e, a, t〉.unlockA = 〈e, a,�〉 for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– errorA.nextA = nullA

Σmem

– m[a]A = m(a) for each m ∈ Amem and a ∈ Aaddr

– updA(m,a, c) = ma7→c for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

– mA(nullA) = errorA for each m ∈ Amem

ΣReachability

– εA is the empty sequence
– [i]A is the sequence containing i ∈ Aaddr as the only element
– ([i1, . . . , in] , [j1, . . . , jm] , [i1, . . . , in, j1, . . . , jm]) ∈ appendA iff ik and jl are

all distinct
– (m, i, j, p) ∈ reachA iff i = j and p = ε, or there exist addresses i1, . . . , in ∈
Aaddr such that:

(a) p = [i1, . . . , in] (c) m(ir).nextA = ir+1, for 1 ≤ r < n

(b) i1 = i (d) m(in).nextA = j

Σset
The symbols ∅, { }, ∪, ∩, \, ∈ and⊆ are interpreted according to their standard
interpretation over sets of addresses.

Σsetth
The symbols ∅T , { }T , ∪T , ∩T , \T , ∈T and ⊆T are interpreted according to
their standard interpretation over sets of thread identifiers.

ΣBridge

– addr2setA(m, i) =
˘
j ∈ Aaddr | ∃p ∈ Apath s.t. (m, i, j, p) ∈ reach

¯
– path2setA(p) = {i1, . . . , in} for p = [i1, . . . , in] ∈ Apath

– getpA(m, i, j) =

(
p if (m, i, j, p) ∈ reachA

ε otherwise
for each m ∈ Amem, p ∈ Apath and i, j ∈ Aaddr

– firstlockedA (m, [a1, . . . , an]) =

8><>:
ak if there is 1 ≤ k ≤ n such that

for all 1 ≤ j < k,m[aj].lockid = �
and m[ak].lockid 6= �

null otherwise
for each m ∈ Amem and a1, . . . an ∈ Aaddr

Fig. 4: Characterization of a TLL3-interpretation A

Lemma 1. Deciding the TLL3-satisfiability of a quantifier-free TLL3-formula is
equivalent to verifying the TLL3-satisfiability of the normalized TLL3-literals.

Proof. By cases on the shape of all possible TLL3-literals. ut
Consider an arbitrary TLL3-interpretation A satisfying a conjunction of nor-

malized TLL3-literals Γ . We show that if there are sets Aelem, Aaddr and Athid

then there are finite sets A′elem, A′addr and A′thid with bounded cardinalities (the
bound depending on Γ). A′elem, A′addr and A′thid can in turn be used to obtain a
finite interpretation A′ satisfying Γ .

Lemma 2 (Finite Model Property). Let Γ be a conjunction of normal-
ized TLL3-literals. Let ē = |Velem (Γ)|, ā = |Vaddr (Γ)|, m̄ = |Vmem (Γ)|, p̄ =
|Vpath (Γ)| and k̄ = |Vthid (Γ)|. Then the following are equivalent:
1. Γ is TLL3-satisfiable;
2. Γ is true in a TLL3 interpretation A such that

|Aelem| ≤ ē+ m̄ |Aaddr|
|Aaddr| ≤ ā+ 1 + m̄ ā+ p̄2 + p̄3 + m̄p̄

|Athid| ≤ k̄ + m̄ |Aaddr|+ 1

Proof. (2 → 1) is immediate. (1 → 2), by case analysis on normalized TLL3
literals. ut

Lemma 3 justifies a brute force method to automatically check TLL3 satis-
fiability of normalized TLL3-literals. However, such a method is not efficient in
practice. To find a more efficient decision procedure we decompose TLL3 into a
combination of theories, and apply a many-sorted variant of the Nelson-Oppen
combination method [12]. This method requires the theories to fulfill two con-
ditions. First, each theory must have a decision procedure. Second, all involved
theories must be stable infinite and share sorts only.

Definition 3 (stable-infiniteness). A Σ-theory T is stably infinite if for ev-
ery T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation A
satisfying ϕ whose domain is infinite.

All theories involved in TLL [9] are stably-infinite, so the only missing theory
is the one defining firstlocked . We define the theory TBase3 as follows:

TBase3 = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ Tpath ⊕ Tset ⊕ Tsetth ⊕ Tthid

where Tpath extends the theory of finite sequences of addresses with the auxiliary
functions and predicates shown in Fig. 5.

The theory of finite sequences of addresses is defined by Tfseq = (Σfseq,TGen),
where Σfseq =

({addr, fseq}, {nil : fseq, cons : addr × fseq → fseq, hd : fseq →
addr, tl : fseq → fseq}, ∅) and TGen as the class of multi-sorted term-generated
structures that satisfy the axioms of Tfseq. These axioms are the standard for
a theory of lists, such as distinctness, uniqueness and generation of sequences
using the constructors cons and nil , as well as acyclicity of sequences (see, for ex-
ample [3]). Let PATH be the set of axioms of Tfseq including all in Fig. 5. Then,
we can formally define Tpath = (Σpath,ETGen) where ETGen is

{AΣpath |AΣpath �
PATH and AΣfseq ∈ TGen

}
. Next, we extend TBase3 defining the missing func-

tions and predicates from TReachability and ΣBridge. For example:

ispath (p) ∧ firstmarked (m, p, i)↔ firstlocked (m, p) = i

app : fseq× fseq→ fseq

app(nil , l) = l
app(cons(a, l), l′) = cons(a, app(l, l′))

fseq2set : fseq→ set

fseq2set(nil) = ∅
fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq

ispath(nil)
ispath(cons(a,nil))

{a} * fseq2set(l) ∧ ispath(l)→ ispath(cons(a, l))

last : fseq→ addr

last(cons(a,nil)) = a
l 6= nil → last(cons(a, l)) = last(l)

isreachable : mem× addr × addr

isreachable(m,a, a)
m[a].next = a′ ∧ isreachable(m,a′, b)→ isreachable(m,a, b)

isreachablep : mem× addr × addr × fseq

isreachablep(m,a, a,nil)
m[a].next = a′ ∧ isreachablep(m,a′, b, p)→ isreachablep(m,a, b, cons(a, p))

firstmarked : mem× fseq× addr

firstmarked(m,nil ,null)
p 6= nil ∧ p = cons(j, q) ∧m[j].lockid 6= � → firstmarked(m, p, j)

p 6= nil ∧ p = cons(j, q) ∧m[j].lockid = � ∧ firstmarked(m, q, i)→ firstmarked(m, p, i)

Fig. 5: Functions, predicates and axioms of Tpath

Let GAP be the set of axioms that define ε, [], append , reach, path2set ,
addr2set and getp. We define T̂LL3 = (Σ

T̂LL3
, ÊTGen) where Σ

T̂LL3
is ΣTLL ∪ {

getp, append , path2set , firstlocked } and ÊTGen :=
{AΣT̂LL3 |AΣT̂LL3 � GAP and

AΣpath ∈ ETGen
}

.
Using the definitions of GAP it is easy to prove that if Γ is a set of normal-

ized TLL3-literals, then Γ is TLL3-satisfiable iff Γ is T̂LL3-satisfiable. Therefore,
T̂LL3 can be used in place of TLL3 for satisfiability checking. We reduce T̂LL3
into TBase3 in two steps. First we do the unfolding of the definition of auxiliary
functions defined in PATH and GAP , getting rid of the extra functions, and
obtaining a formula in T̂LL3 and TBase. Then, we use the known reduction [9]
from T̂LL into TBase. All theories involved in TBase3 share only sorts symbols, are
stably-infinite and for all of them there is a decision procedure. Hence, the multi-
sorted Nelson-Oppen combination method can be applied, obtaining a decision
procedure for TLL3.

We now define some auxiliary functions and predicates using TLL3, that aid
in the reasoning about concurrent linked-lists (see Fig. 6). For example, predicate
List(h, a, r) expresses that in heap h, starting from address a there is sequence
of cells all of which form region r. Function LastMarked(h, p), on the other hand,

List : mem× addr × set

List(h, a, r) ↔ null ∈ addr2set(h, a) ∧ r = path2set(getp(h, a,null))

fa : mem× addr→ path

fa(h, n) =

8<:ε if n = null

getp(h, h[n].next ,null) if n 6= null

LastMarked : mem× path→ addr

LastMarked(m, p) = firstlocked(m, rev(p))

NoMarks : mem× path

NoMarks(m, p)↔ firstlocked(m, p) = null

SomeMark : mem× path

SomeMark(m, p)↔ firstlocked(m, p) 6= null

Fig. 6: Auxiliary functions to reason about concurrent lists

returns the address of the last locked node in path p on memory h. All these
functions can be used in verification conditions. Then, using the equivalences
in Fig. 6 the predicates are removed, generating a pure T̂LL3 formula whose
satisfiability can be checked with the procedure described above.

5 Termination of Concurrent Lock-Coupling Lists

In this section we show the proof of a simple liveness property of concurrent
lock-coupling lists: termination of the leading thread.

To aid in the verification of this property we annotate the code in Fig. 1 with
ghost fields and ghost updates, as shown in Fig. 7, where the boxes represent
the annotations introduced. The predicate c.lockid = � denotes that the lock of
list node c is not taken. The predicate c.lockid = k establishes that the lock at
list node c is owned by thread k. We enrich List objects with a ghost field r of
type region that keeps track of all the nodes in the list. The code for add and
remove is extended with ghost updates to maintain r.

Tk denotes thread k. We want to prove that if a thread has acquired a lock
at node n and no other thread holds a lock ahead of n, then thread k eventually
terminates. The predicate at add [k]

n means that thread k is executing line n of
program add . Similarly, at add [k]

n1 ,...,nm
is a short for thread k is running some

of the lines n1, . . . , nm of program add . To reduce notation, τ [k]
an , τ [k]

rn and τ
[k]
ln

denote τ [k]
addn

, τ [k]
removen and τ

[k]
locaten

respectively. The instance of a local variable
v in thread k is represented by v[k]. We define DisjList as an extension of List
enriching it with the property that new nodes created during insertion are all
disjoint one from each other, including all nodes that are already part of the list:

DisjList(h, a, r) =̂ List(h, a, r) ∧ ∀j : TID.at a [j]
4 ,5 → 〈aux [j]〉#r ∧

∀i, j : TID.i 6= j ∧ at a [i]
4 ,5 ∧ at a [j]

4 ,5 → 〈aux [i]〉#〈aux [j]〉#r

We now define the following auxiliary predicate:

IsLast(k) =̂ DisjList(h, l.list , l.r) ∧ SomeMark
(
h, getp(h, l.list ,null)

)
∧ LastMarked

(
h, getp(h, l.list ,null)

)
= a ∧ h[a].lockid = k

The formula IsLast(k) identifies whether Tk is the thread owning the last
lock in the list (i.e., the closest node towards the end of the list). Using these
predicates we define the parametrized temporal formula we want to verify as:

ψ(k) =̂
(

at locate [k]
3 ..10 ∧ IsLast(k)→ IsLast(k) U at locate [k]

11

)
This temporal formula states that if thread k is running locate and it owns

the last locked node in the list, then thread Tk will still own the last locked
node until Tk reaches the last line of locate. Reachability of the last line of locate
implies termination of the invocation to the concurrent datatype because locate
is the only program containing potentially blocking operations.

We proceed with the construction of a verification diagram that proves the
parallel execution of all threads guarantee the satisfaction of formula ψ(k). Given
N , we build the transitions system S[N], in which threads T1, . . . , TN run in
parallel the program decide and show that S[N] � ψ(k). The verification diagram

class List {
Node list ;

rgn r;

}

class Node {
Value val ;

Node next ;

Lock lock ;

}
(a) data structure

1: prev := Head
2: prev .lock()
3: curr := prev .next
4: curr .lock()
5: while curr .val < e do
6: prev .unlock()
7: prev := curr
8: curr := curr .next
9: curr .lock()

10: end while
11: return (prev , curr)

1: prev , curr := locate(e)
2: if curr .val 6= e then
3: aux := new Node(e)
4: aux .next := curr
5: prev .next := aux

l.r := l.r ∪ 〈aux 〉

6: result := true
7: else
8: result := false
9: end if

10: prev .unlock()
11: curr .unlock()
12: return result

1: prev , curr := locate(e)
2: if curr .val = e then
3: aux := curr .next
4: prev .next := aux

l.r := l.r − 〈curr〉

5: result := true
6: else
7: result := false
8: end if
9: prev .unlock()

10: curr .unlock()
11: return result

(b) locate (c) add (d) remove

Fig. 7: Concurrent lock-coupling list extended with ghost fields

˘
τ
[k]
l5

¯

n2 : IsLast(k) ∧ at l
[k]
3 ,4

n4 : IsLast(k) ∧ at l
[k]
9

˘
τ
[k]
l3

¯

˘
τ
[k]
l4

¯ ˘
τ
[k]
l5,6,7,10

¯

n5 : IsLast(k) ∧ at l
[k]
11

n6 : IsLast(k)

˘
τ
[k]
l8

¯ ˘
τ
[k]
l9

¯n3 : IsLast(k) ∧ at l
[k]
5 ..8 ,10

n1 : ¬IsLast(k)

Fig. 8: Verification diagram Ψ for ‖j<N Tj � ψ(k)

is depicted in Fig. 8. Dashed arrows in the diagram denote transitions that
strictly decrement the ranking function δ. Formally, the verification diagram is:
– N0 = {n1}
– F = {(P,R)} where
P = {(n3, n4), (n3, n5), (n5, n6), (n6, n1)} ∪

{(n1, nj)|j ∈ 2..6} ∪ {(nj , nj)|j ∈ 1..6}
R = ∅

– δ(n, s) =

{
{a | a ∈ dom(h)} n = n1, n2

path2set
(
fa(h,LastMarked(h, getp(h, prev [k],null)))

)
otherwise

– f(n) =


∅ if n = n1, n6 at locate [k]

3 ,4 if n = n2

at locate [k]
5 ..8 ,10 if n = n3 at locate [k]

9 if n = n4

at locate [k]
11 if n = n5

We can now describe the verification conditions:
initialization Trivial, since in the initial state l.list forms an empty list, and

consequently ¬IsLast(k).
consecution We will show, for illustration purposes, transition τ [j]

l9
on node n2

with j 6= k. The verification condition is:

TLL3︷ ︸︸ ︷
IsLast(k)∧

Tthid︷ ︸︸ ︷
j 6= k ∧

at l [k]
3 ,4 ∧ at l [j]9 ∧

curr [j].lockid = �︸ ︷︷ ︸
TLL3


∧

TLL3︷ ︸︸ ︷
curr [j].lock(j)→



TLL3︷ ︸︸ ︷
IsLast(k′)∧at ′ l [k

′]
3 ,4 ∧

at ′ l [j
′]

10 ∧ pres(V − curr [j]) ∧
curr ′[j

′]
.lockid = j′︸ ︷︷ ︸
TLL3


where pres is the predicate denoting variable preservation. Note that all
fragments of such verification condition belong to theories for which we have

already defined a decision procedure, including propositional logic for the
(finite) locations of the program counters.

acceptance The ranking function δ maps, at a given state, the set of list nodes
accessible from the last node with an owned lock. This set remains identical
for all transitions except τ [k]

l4
and τ

[k]
l9

, for which the set decrements (in the
inclusion order on sets). The decision procedure presented in Section 4 proves
this automatically (using ⊂ operation and equality over sets of addresses).

fairness Only two conditions must be verified. First, all transitions labeling an
edge are enabled since the only potentially blocking operation is τ [k]

l9
and

IsLast(k) implies that τ [k]
l9

is enabled. Second, for all nodes and labelled
edges, starting from a state that satisfies the predicate of the incoming node
satisfies the predicate of the outgoing node via taking the transition. Sequen-
tial progress of thread k is guaranteed by fairness, since all idling transitions
for thread k are in fact a diagram idiom to represent the expansion of such
nodes to a sequence of nodes with a single program position on each node.

satisfaction L(Ψ) ⊆ L(ψ(k)) is automatically checkable via a finite LTL model-
checking problem.

6 Conclusion

We have presented a method for the verification of temporal properties (safety
and liveness) of an imperative implementation of concurrent lists. The verifica-
tion is performed using verification diagrams – a complete method to prove tem-
poral properties of reactive systems – and explicit reasoning of memory regions.
The verification process usually requires the aid of ghost variables. Checking
a proof is reduced to proving a finite number of verification conditions, which
requires decision procedures in the appropriate theories, including regions, point-
ers, locks and specific theories for memory layouts, in this case single linked-lists.
This paper also presents a decision procedure built as a combination of theories.

There are some key differences with other approaches in the literature. Build-
ing on the success of separation logic in proving sequential programs, the most
popular approach has been extending separation logic to concurrent programs.
These extensions require adapting techniques like rely-guarantee that cannot be
directly used with separation logic. Our decision to use explicit regions (finite sets
of addresses) allows the direct use of classical techniques like assume-guarantee
and the combination of decision procedures. Furthermore, in concurrent separa-
tion logic, it is critical to describe memory footprints of sections of code. This
description becomes very cumbersome when the code is not organized in mutual
exclusion regions, as in fine-grain synchronization algorithms. Moreover, the in-
tegration into SMT solvers is quite straightforward with classical logics, but it
is still an open question with separation logic.

The technique we propose can be seen as a method to separate the reason-
ing about concurrency (with verification diagrams) from the reasoning about
the memory (with decision procedures). The former is independent of the data
structure under consideration. We are currently extending our approach to the

verification of other pointer-based concurrent data structures like skip-lists or
concurrent hash maps. Again, the sharing of these data structures makes it very
hard to reason using separation logic. For our approach, these extensions will
require the design of suitable decision procedures. Future work also includes
building a generic VCgen for verification diagrams, implementing an ad-hoc ver-
sion of the decision procedure described here, and later integrating this decision
procedure into state-of-the-art SMT solvers.

Acknowledgment

We are grateful to the anonymous reviewers for their detailed comments and
suggestions.

References

1. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning
about global invariants. In: Proc. of Europ. Conf. Object-Oriented Programming
(ECOOP’08). LNCS, vol. 5142, pp. 387–411. Springer (2008)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Handbook of Satifiability,
chap. Satisfiability Modulo Theories. IOS Press (2008)

3. Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer (2007)
4. Browne, A., Manna, Z., Sipma, H.B.: Generalized verification diagrams. In: Proc.

of 15th Conf. on the Foundations of Software Theory an Theoretical Computer
Science (FSTTCS’95). LNCS, vol. 1206, pp. 484–498. Springer (1995)

5. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan-
Kaufmann (2008)

6. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation
logic. In: Proc. of European Symposium on Programming (ESOP’08). LNCS, vol.
4960, pp. 353–367. Springer (2008)

7. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer (1995)
8. McMillan, K.L.: Circular compositional reasoning about liveness. In: Proc. of

CHARME’99. LNCS, vol. 1703, pp. 342–345. Springer (1999)
9. Ranise, S., Zarba, C.G.: A theory of singly-linked lists and its extensible decision

procedure. In: Proc. of Software Engineering and Formal Methods (SEFM’06).
IEEE Computer Society Press (2006)

10. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. Logic in Computer Science (LICS’02). pp. 55–74. IEEE Computer Society
Press (2002)

11. Sipma, H.B.: Diagram-Based Verification of Discrete, Real-Time and Hybrid Sys-
tems. Ph.D. thesis, Stanford University (1999)

12. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:
Proc. Logic in Artificial Intelligence (JELIA’04). LNCS, vol. 3229, pp. 641–653.
Springer (2004)

13. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Principles & Practice of Parallel Programming
(PPOPP’06). pp. 129–136. ACM (2006)

14. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Proc. of Frontiers of Combining Systems (FroCoS’09). LNCS, vol. 5749, pp.
366–382. Springer (2009)

A Missing Proofs

Lemma 1. Deciding the TLL3-satisfiability of a quantifier-free TLL3-formula is
equivalent to verifying the TLL3-satisfiability of the normalized TLL3-literals.

Proof. By cases on the shape of all possible TLL3-literals. ut
We define the compress function which, given a path p and a set X of ad-

dresses, returns the path obtained from p by removing all the addresses that do
not belong to X .

compress([i1, . . . , in],X) =


ε if n = 0
[i1] ◦ compress ([i2, . . . , in] ,X) if n > 0 and i1 ∈ X
compress ([i2, . . . , in] ,X) otherwise

Lemma 3 (Finite Model Property). Let Γ be a conjunction of normal-
ized TLL3-literals. Let e = |Velem (Γ)|, a = |Vaddr (Γ)|, m = |Vmem (Γ)|, p =
|Vpath (Γ)| and k = |Vthid (Γ)|. Then the following are equivalent:
1. Γ is TLL3-satisfiable;
2. Γ is true in a TLL3 interpretation A such that

|Aelem| ≤ e+m |Aaddr|
|Aaddr| ≤ a+ 1 +m a+ p2 + p3 +mp

|Athid| ≤ k +m |Aaddr|+ 1

Proof. (2 → 1). Immediate.
(1→ 2). We will prove this implication only for the new TLL3-literals. Before

doing so, we define some auxiliary functions. We start by defining the function
first . Let X ⊆ X̃ , m : X̃ → Z × X̃ × Y and a ∈ X . The function first(m, a,X)
is defined by

first(m, a,X) =


null if (∀r ≥ 1) [mr (a) .next /∈ X]

ms (a) .next if (∃s ≥ 1)
[
ms (a) .next ∈ X∧

(∀r ≥ 1) (r < s→ mr (a) .next /∈ X)
]

wherem1(a).next stands form(a).next andmn+1(a).next form(mn(a).next).next
when n > 1. We also define the compress function which, given a path p and a set
X of addresses, returns the path obtained from p by removing all the addresses
that do not belong to X .

compress([i1, . . . , in],X) =


ε if n = 0
[i1] ◦ compress ([i2, . . . , in] ,X) if n > 0 and i1 ∈ X
compress ([i2, . . . , in] ,X) otherwise

We now define the κ : mem× path→ set function. This function, given m of
sort mem and p of sort path analyzes the cells stored at each address in p mapped

at memory m and returns a set with the address at which the first locked node
has been found.

κ (m, [i1, . . . , in]) =


∅ if n = 0

{i1} if m [i1] .lockid 6= �
κ (m, [i2, . . . , in]) if m [i1] .lockid = �

We conclude by defining the function δ [9] that outputs a set of addresses ac-
countable for disequality of two given paths:

δ([i1, . . . , in], [j1, . . . jm]) =



∅ if n = m = 0

{i1} if n > 0 and m = 0

{j1} if n = 0 and m > 0

{i1, j1} if n,m > 0 and i1 6= j1

δ([i2, . . . , im], [j2, . . . , jm]) otherwise

and function σ [9] that outputs an element common to two paths (an element
that witnesses that path2set(p) ∩ path2set(q) 6= ∅):

σ([i1, . . . , in], p) =


∅ if n = 0

{i1} if n > 0 and i1 ∈ path2set(p)

σ([i2, . . . , in], p) otherwise

Bearing in mind all auxiliary functions defined above, let now B be a TLL3-
interpretation satisfying Γ . We will use B to construct a TLL3-interpretation A
satisfying Γ . We define the sets X , Y and Z as

X = V Baddr ∪
{

nullB
} ∪{

mB(vB).nextB | m ∈ Vmem and v ∈ Vaddr

} ∪{
v ∈ δ(pB, qB) | the literal p 6= q is in Γ

} ∪{
v ∈ σ(p1

B, p2
B) | the literal ¬append(p1, p2, p3) is in Γ and

path2setB(p1
B) ∩ path2setB(p2

B) 6= ∅} ∪{
v ∈ σ(p1

B ◦ p2
B, p3

B) | the literal ¬append(p1, p2, p3) is in Γ and

path2setB(p1
B) ∩ path2setB(p2

B) = ∅} ∪{
v ∈ κ(m, p) | firstlocked(m, p) is in Γ

}
Y = V Bthid ∪

{� } ∪ {mB(v).lockidB | m ∈ Vmem and v ∈ X
}

Z = V Belem ∪
{

mB(v).dataB | m ∈ Vmem and v ∈ X
}

We now let A be the TLL3-interpretation defined by

Aaddr = X , Athid = Y and Aelem = Z

and let

errorA = errorB

nullA = nullB

eA = eB for each e ∈ Velem

aA = aB for each a ∈ Vaddr

cA = cB for each c ∈ Vcell

kA = kB for each k ∈ Vthid

mA(v) =
(
mB(v).dataB,first(mB, v,Baddr),mB(v).lockidB

)
for each m ∈ Vmem

and v ∈ Baddr

sA = sB ∩ Baddr for each s ∈ Vset

gA = gB ∩ Bthid for each g ∈ Vsetth

pA = compress(pB,Baddr) for each p ∈ Vpath

Clearly, by construction Aaddr, Athid and Aelem satisfy the given cardinality
constraints. The proof that A satisfies all TLL-literals in Γ is not shown here.
For TLL3-literals we must consider the following cases:

Literals of the form k1 6= k2 Immediate
Literals of the form c = mkcell(e, a, k) We know that

cA = cB =
(
eB, aB, kB

)
=
(
eA, aA, kA

)
Literals of the form c = rd(m, a) In this case we have that[

rd(m, a)
]A = mA(aA)

= mA(aB)

=
(

mB(aB).dataB,first(mB, aB,X),mB(aB).lockidB
)

=
(

mB(aB).dataB,mB(aB).nextB,mB(aB).lockidB
)

(Lemma 21.a [9])
= mB(aB)
= cB

= cA

Literals of the form m = upd(m̃, a, c) In this particular case we want to prove
that mA = m̃AaA 7→cA . However, since mB(aB) = cB, then we have that
cA = mA(aA). Let now v 6= aA. We have that

mA(v) =
(

mb(v).dataB,first(mB, v,X),mB(v).lockidB
)

=
(

m̃b(v).dataB,first(m̃B, v,X), m̃B(v).lockidB
)

(Lemma 21b [9])
= m̃B(v)

Literals of the form a = firstlocked(m, p). If we consider the case at which
p = ε, then we know that firstlockedB(mB, εB) = nullB. At the same time,
we know that εA = compress(εB,X) and so firstlockedA(mA, εA) = nullA.
Let’s now consider the case at which p = [a1, . . . , an]. There are two possible
scenarios to consider.
– If for all 1 ≤ k ≤ n, mB(aBk).lockidB = �, then we have that

firstlockedB(mB, pB) = nullB

Notice that function compress returns a subset of the path it receives
with the property that all addresses in the returned path belong to the
received path. Then, if [ã1, . . . , ãm] = pA = compress(pB,X), we know
that {ã1, . . . , ãm} ⊆ X and hence for all 1 ≤ j ≤ m, mA(ãj).lockidA =
�. Then, we can conclude that firstlockedA(mA, pA) = nullA.

– If exists a 1 ≤ k ≤ n such that for all 1 ≤ j < k, mB(aBj).lockidB = �
and mB(aBk).lockidB 6= � then since by the construction of model A, we
have that aA = aB, we can say that aA = aB = x ∈ X . It then remains
to verify whether

x = firstlockedB(mB, pB) → x = firstlockedA(mA, compress(pB,X))

By definition of firstlocked we have that x = aBk and by function κ and the
construction of set X , we know that aBk ∈ X . Let [ã1, . . . , ãi, . . . , ãm] =
compress(pB,X) such that ãi = aBk . It is clear that ãj ∈ X for all
1 ≤ j ≤ m. Then, as compress preserves the order and for all 1 ≤ j < k,
mB(aBj).lockidB = �, we have that for all 1 ≤ j < i, mA(ãj).lockidA =
�. Besides mA(ãi).lockidA 6= �. Then:

firstlockedA(mA, compress(pB,X) = firstlockedA(mA, [ã1, . . . , ãm])
= ãi

= aB

= x
ut

Instead of proving that all accepting paths in the diagram are contained
into the set of sequences satisfying formula ψ(k), we show that the intersection
with the negation of the formula is empty. We say that 〈v1, v2, v3〉 interprets
〈at l [k]

3 ..10 , at l [k]
11 , IsLast〉. In fact IsLast should be decomposed into all its atomic

subformulas. However, for the sake of simplicity we assume that an assignment to
IsLast represents all necessarily assignments to its atomic subformulas in order
to make IsLast predicate true. Then, since:

¬ψ(k) =
(

at l [k]
3 ..10 ∧ IsLast ∧

(
¬at l [k]

11 W ¬IsLast
))

we have that:

LP (¬ψ (k)) = 〈−,−,−〉∗〈t, f,t〉 (〈−, f,−〉ω ∪ 〈−, f,−〉∗〈−,−, f〉〈−,−,−〉ω)

while for our verification diagram we have(〈−,−, f〉+〈t, f,t〉∗〈f,t,t〉+〈−,−,t〉+)ω
Imagine we consider the sequence 〈−,−,−〉∗〈t, f,t〉〈−, f,−〉ω. Then, 〈t, f,t〉

should correspond to 〈t, f,t〉∗. Then, it is impossible to match 〈−, f,−〉ω with
any possible pattern in the accepting paths of the diagram. On the other hand,
if we consider the sequence 〈−, f,−〉∗〈−,−, f〉〈−,−,−〉ω, notice that there is no
possible way to match 〈−,−, f〉 with the accepting paths of the diagram. This
way we have shown that both languages are disjoint.

B No Thread Overtake

In this section we proof that it is not possible in our implementation that once
a thread has acquired a lock, then it is impossible for it to overtake another one.
To carry out the proof, we first extend the code for concurrent lock-coupling
singly-linked lists with two ghost variables. A global ghost variable ticket and a
local ghost variable myTicket . The modifications need to be done on the Node
data structure and on the locate function. An extended version of these two
functions is depicted in Figure 9

The idea is that every time a thread gets the first lock in the list, it also
gets a ticket number. The tickets are delivered by the data structure and they
are strictly increasingly. This policy guarantees that no thread gets a duplicated
ticket and ticket’s number order threads according to the order in which they
acquired their first lock. We want to assure that there is no overtake in the

class List {
Node list ;

rgn r;

}

class Node {
Value val ;

Node next ;

Lock lock ;

}

1: prev := Head
2: prev .lock()

myTicket := ticket

ticket := ticket + 1

3: curr := prev .next
4: curr .lock()
5: while curr .val < e do
6: prev .unlock()
7: prev := curr
8: curr := curr .next
9: curr .lock()

10: end while
11: return (prev , curr)

(a) data structures (b) locate

Fig. 9: Data structure and locate for preventing overtake

system. This means that, threads remains ordered as they got their ticket. For
describing the formula that describes this condition we first define the ahead
predicate defined over elements of TID and a memory M :

ahead(t1, t2) =̂ firstlocked(M, prev [t1]) 6= null ∧
firstlocked(M, prev [t2]) 6= null ∧
firstlocked(M, prev [t2]) ∈ addr2set(M, curr [t1])

Roughly speaking, predicate ahead holds when both threads have at least one
locked node and the first node locked (that is, the nearest to the head of the
list) by t2 is between the position of t1 and the tail of the list.

We can now use ahead predicate to define the condition we want to verify.
We define the formula ϕ by:

ϕ =̂ myTicket [t1] > myTicket [t2] →  (ahead(t1, t2)→  (ahead(t1, t2)))

Notice that ϕ is a system invariant. Then, we just need to verify that:

– it is satisfied by the system’s initial condition, and
– all transitions preserve it.

It is easy to see that the initial condition satisfies ϕ. At such moment, no ticket
number has been assigned nor any thread has acquired any lock. Then, formula
ϕ is trivially satisfied.

Here we do not analyze all transitions, but we limit ourself to possible of-
fending ones. These transitions are:

– When a threads acquires its first lock. For an arbitrary thread t, this tran-
sition corresponds to at locate [t]

2 . This transition clearly satisfies ϕ′ because
of, on one hand, value of ticket is strictly increasing. This guarantees that
for all other thread s with locks in the list, myTicket [t] > myTicket [s] and
ahead(t, s) hold, since firstlocked(M, s) ∈ addr2set(M, prev(t))

– When a thread gets a new lock. This modification is accomplished by the
transitions at locate [t]

4 and at locate [t]
9 .

– When a thread releases its last lock. This happens when transitions at add [t]
11 ,

at remove [t]
10 or at search [t]

8 are taken.
– When the position of a thread advances through the nodes in the lists. This

progress corresponds to transitions at locate [t]
3 and at locate [t]

8 .

C Supporting Invariants

To prove list preservation, we require to verify that the invariant ψ = (List(h, l.list .r))
holds. However, to verify it, we require some extra supporting invariants. In this
section, we provide a rigorous detail of such invariants.

We want to verify that ∀pc.∀j.ψ{τ [j]
pc }ψ′. This means to verify whether:

θ → ψ

∀j ψ{τ [j]
locate1

}ψ′
...

∀j ψ{τ [j]
locate11

}ψ′
∀j ψ{τ [j]

add1
}ψ′

...

∀j ψ{τ [j]
add12

}ψ′
∀j ψ{τ [j]

remove1}ψ′
...

∀j ψ{τ [j]
remove11}ψ′

∀j ψ{τ [j]
search1

}ψ′
...

∀j ψ{τ [j]
search9

}ψ′
∀j ψ{τ [j]

decide1
}ψ′

...

∀j ψ{τ [j]
decide5

}ψ′

(ψ)

Notice that it is not necessary to bear in mind all possible transitions. We
require only to verify those on which an element involved in the List predicate is
modified. More precisely, h, l and r. Notice that the only transitions that intro-
duce some modification in these elements are τadd5 and τremove4 . Moreover, we
do not carry out the proof for all possible threads. Instead, under the assump-
tion of a symmetric system, we do the proof for a single thread, generalizing the
behavior of all of them.

Let’s first consider transition τremove4 for an arbitrary thread j. The verifi-
cation condition for such transition is:

ψ ∧



h′[a] = h[a] ∧ a 6= prev [j] ∧
h′[prev [j]].val = h[prev [j]].val ∧
h′[prev [j]].lock = h[prev [j]].lock ∧

h′[prev [j]].next = aux ∧
pres(V − h[prev [j]])

→ ψ′

However, in this verification condition we are not asserting that aux is in fact the
node that follows curr . Therefore, we require to add some supporting invariants.

Let β be the following formula:

β(i) =̂

 curr [i] = prev [i].next ∧
prev [i].lock = i ∧ curr [i].lock = i ∧
at remove [i]

4 → curr [i].next = aux [i]


then, we define the supporting invariant ψ1 parametrized by thread i by:

ψ1(i) =̂ 
(

at remove [i]
1 ..4 → β(i)

)
Invariant ψ1 establishes that before proceeding to remove a node from the list,
curr pointer points to the node next to prev . Besides, it sets that prev and curr
must be locked and once position at remove4 is reached, aux points to the node
next to curr . This prevents us from constructing circular lists. Now, using ψ1 it
is possible to prove ψ as invariant, since the predicate List holds.

Let’s now consider transition τadd5 taken by an arbitrary thread j. The first
supporting invariant we need is one similar to ψ1, describing the position of prev ,
curr and aux before performing the operation of transition τadd5 . We name such
invariant ψ2 and we define it by:

ψ2(i) =̂ 
(

at add [i]
1 ..5 → β(i)

)
Besides, we require that cells returned by an invocation to new are kept in new
addresses which must not be part of the list. This property is guaranteed by the
semantic of the new operator and let us define the supporting invariant ψ3(i)
that says:

ψ3(i) =̂ 
(

at add [i]
4 ,5 → 〈curr [i]〉#r

)
Moreover, we also require that calls to new , performed by different threads, do
also return disjoint addresses. Invariant ψ4 describes this property:

ψ4(i, j) =̂ 
(
i 6= j ∧ at add [i]

4 ,5 ∧ at add [i]
4 ,5 → 〈aux [i]〉#〈aux [j]〉

)

