
A Theory of Skiplists with Applications to the
Verification of Concurrent Datatypes?

Alejandro Sánchez1 and César Sánchez1,2

1 The IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain
{alejandro.sanchez,cesar.sanchez}@imdea.org

Abstract. This paper presents a theory of skiplists with a decidable
satisfiability problem, and shows its applications to the verification of
concurrent skiplist implementations. A skiplist is a data structure used
to implement sets by maintaining several ordered singly-linked lists in
memory, with a performance comparable to balanced binary trees. We
define a theory capable of expressing the memory layout of a skiplist and
show a decision procedure for the satisfiability problem of this theory.
We illustrate the application of our decision procedure to the temporal
verification of an implementation of concurrent lock-coupling skiplists.
Concurrent lock-coupling skiplists are a particular version of skiplists
where every node contains a lock at each possible level, reducing granu-
larity of mutual exclusion sections.

The first contribution of this paper is the theory TSLK. TSLK is a decid-
able theory capable of reasoning about list reachability, locks, ordered
lists, and sublists of ordered lists. The second contribution is a proof that
TSLK enjoys a finite model property and thus it is decidable. Finally, we
show how to reduce the satisfiability problem of quantifier-free TSLK for-
mulas to a combination of theories for which a many-sorted version of
Nelson-Oppen can be applied.

1 Introduction

A skiplist [14] is a data structure that implements sets, maintaining several sorted
singly-linked lists in memory. Skiplists are structured in multiple levels, where
each level consists of a single linked list. The skiplist property establishes that
the list at level i+1 is a sublist of the list at level i. Each node in a skiplist stores
a value and at least the pointer corresponding to the lowest level list. Some nodes
also contain pointers at higher levels, pointing to the next element present at
that level. The advantage of skiplists is that they are simpler and more efficient
to implement than search trees, and search is still (probabilistically) logarithmic.

? This work was funded in part by the EU project FET IST-231620 HATS, MICINN
project TIN-2008-05624 DOVES, CAM project S2009TIC-1465 PROMETIDOS, and
by the COST Action IC0901 Rich ModelToolkit-An Infrastructure for Reliable Com-
puter Systems.

5 22 25 53 70 88

head

level 0

level 1

level 2

level 3

tail

−∞ +∞

Fig. 1. A skiplist with 4 levels

Consider the skiplist shown in Fig. 1. Contrary to single-linked lists imple-
mentations, higher-level pointers allow to skip many elements during the search.
A search is performed from left to right in a top down fashion, progressing as
much as possible in a level before descending. For instance, in Fig. 1 a search for
value 88 starts at level 3 of node head . From head the pointer at level 3 reaches
tail with value +∞, which is greater than 88. Hence the search algorithm moves
down one level at head to level 2. The successor at level 2 contains value 22,
which is smaller than 88, so the search continues at level 2 until a node con-
taining a greater value is found. At that moment, the search moves down one
further level again. The expected logarithmic search follows from the probability
of any given node occurs at a certain level decreasing by 1/2 as a level increases
(see [14] for an analysis of the running time of skiplists).

We are interested in the formal verification of implementations of skiplists, in
particular in temporal verification (liveness and safety properties) of sequential
and concurrent implementations. This verification activity requires to deal with
unbounded mutable data. One popular approach to verification of heap programs
is Separation Logic [17]. Skiplists, however, are problematic for separation-like
approaches due to the aliasing and memory sharing between nodes at different
levels. Based on the success of separation logic some researchers have extended
this logic to deal with concurrent programs [23, 7], but concurrent datatypes
follow a programming style in which the activities of concurrent threads are
not structured according to critical regions with memory footprints. In these
approaches based on Separation Logic memory regions are implicitly declared
(hidden in the separation conjunction), which makes the reasoning about un-
structured concurrency more cumbersome.

Most of the work in formal verification of pointer programs follows program
logics in the Hoare tradition, either using separation logic or with specialized
logics to deal with the heap and pointer structures [9, 24, 3]. However, extending
these logics to deal with concurrent programs is hard, and though some success
has been accomplished it is still an open area of research, particularly for liveness.

Continuing our previous work [18] we follow a complementary approach. We
start from temporal deductive verification in the style of Manna-Pnueli [11], in
particular using general verification diagrams [5, 19] to deal with concurrency.
This style of reasoning allows a clean separation in a proof between the tem-
poral part (why the interleavings of actions that a set of threads can perform
satisfy a certain property) with the underlying data being manipulated. A veri-

fication diagram decomposes a formal proof into a finite collection of verification
conditions (VC), each of which corresponds to the effect that a small step in
the program has in the data. To automatize the process of checking the proof
represented by a verification diagram it is necessary to use decision procedures
for the kind of data structures manipulated. This paper studies the automatic
verification of VCs for the case of skiplists.

Logics like [9, 24, 3] are very powerful to describe pointer structures, but they
require the use of quantifiers to reach their expressive power. Hence, these logics
preclude a combination a-la Nelson-Oppen [12] or BAPA [8] with other aspects
of the program state. Instead, our solution starts from a quantifier-free theory
of single-linked lists [16], and extends it in a non trivial way with order and
sublists of ordered lists. The logic obtained can express skiplist-like properties
without using quantifiers, allowing the combination with other theories. Proofs
for an unbounded number of threads are achieved by parameterizing verification
diagrams, splitting cases for interesting threads and producing a single verifi-
cation condition to generalize the remaining cases. However, in this paper we
mainly focus in the decision procedure. Since we want to verify concurrent lock-
based implementations we extend the basic theory with locks, lock ownership,
and sets of locks (and in general stores of locks). The decision procedure that we
present here supports the manipulation of explicit regions, as in regional logic [2]
equipped with masked regions, which enables reasoning about disjoint portions
of the same memory cell. We use masked regions to “separate”different levels of
the same skiplist node.

We call our theory TSLK, that allows to reason about skiplists of height at
most K. To illustrate the use of this theory, we sketch the proof of termination
of every invocation of an implementation of a lock-coupling concurrent skiplist.

The rest of the paper is structured as follows. Section 2 presents lock-coupling
concurrent skiplists. Section 3 introduces TSLK. Section 4 shows that TSLK is
decidable by proving a finite model property theorem, and describes how to con-
struct a more efficient decision procedure using the many-sorted Nelson-Oppen
combination method. Finally, Section 5 concludes the paper. Some proofs are
missing due to space limitation.

2 Fine-Grained Concurrent Lock-Coupling Skiplists

In this section we present a simple concurrent implementation of skiplists that
uses lock-coupling [6] to acquire and release locks. This implementation can be
seen as an extension of concurrent lock-coupling lists [6, 23] to multiple layers
of pointers. This algorithm imposes a locking discipline, consisting of acquiring
locks as the search progresses, and releasing a node’s lock only after the lock
of the next node in the search process has been acquired. A näıve implementa-
tion of this solution would equip each node with a single lock, allowing multiple
threads to access simultaneously different nodes in the list, but protecting con-
current accesses to two different fields of the same node. The performance can
be improved by carefully allowing multiple threads to simultaneously access the

same node at different levels. We study here an implementation of this faster
solution in which each node is equipped with a different lock at each level. At
execution time a thread uses locks to protect the access to only some fields of
a given node. A precise reasoning framework needs to capture those portions
of the memory protected by a set of locks, which may include only parts of a
node. Approaches based on strict separation (separation logic [17] or regional
logic [2]) do not provide the fine grain needed to reason about individual fields
of shared objects. Here, we introduce the concept of masked regions to describe
regions and the fields within. A masked region consists of a set of pairs formed
by a region (Node cell) and a field (a skiplist level): mrgn =̂ 2Node×N We call
the field a mask, since it identifies which part of the object is relevant. For ex-
ample, in Fig. 2 the region within dots represents the area of the memory that
thread j is protecting. This portion of the memory is described by the masked
region {(n2, 2), (n5, 2), (n2, 1), (n4, 1), (n3, 0), (n4, 0)}. As with regional logic, an
empty set intersection denotes separation. In masked regions two memory nodes
at different levels do not overlap. This notion is similar to data-groups [10].

Fig. 3(a) contains the pseudo-code declaration of the Node and SkipList
classes. Throughout the paper we use //@ to denote ghost code added for veri-
fication purposes. Note that the structure is parametrized by a value K, which
determines the maximum possible level of any node in the modeled skiplist. The
fields val and key in the class Node contains the value and the key of the element
used to order them. Then, we can store key-value pairs, or use the skiplist as a
set of arbitrary elements as long as the key can be used to compare. The next
array stores the pointers to the next nodes at each of the possible K different
levels of the skiplist. Finally, the lock array keeps the locks, one for each level,
protecting the access to the corresponding next field. The SkipList class contains
two pointer fields: head and tail plus a ghost variable field r. Field head points
to the first node of the skiplist, and tail to the last one. Variable r, only used for
verification purposes, keeps the (masked) region represented by all nodes in the
skiplist with all their levels. In this implementation, head and tail are sentinel
nodes, with key = −∞ and key = +∞, respectively. For simplicity, these nodes
are not eliminated during the execution and their val field remains unchanged.

Fig. 3(b) shows the implementation of the insertion algorithm. The algo-
rithms for searching and removing are similar, and omitted due to space limi-
tations. The ghost variable mr stores a masked region containing all the nodes

8 11 14

head tail

−∞ +∞16 202

n1

j

j

jj

j

j

n2 n3 n4 n5 n6

level 0

level 1

level 2

level 3

Fig. 2. A skiplist with the masked region given by the fields locked by thread j

classNode {
Value val ;

Key key ;

Array〈Node∗〉(K) next ;

Array〈Node∗〉(K) lock ;

}

class SkipList {
Node∗ head ;

Node∗ tail ;

//@ mrgn r;

}

(a) data structures

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1] //@ mrgnmr := ∅
3: lvl := randomLevel(K)
4: Node∗pred := sl.head
5: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K − 1)}
6: Node∗curr := pred .next [K − 1]
7: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K − 1)}
8: for i := K − 1 downto 0 do
9: if i < K − 1 then

10: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
11: curr := pred .next [i]
12: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
13: if i ≥ lvl then
14: curr .locks[i+ 1].unlock() //@ mr := mr − {(curr , i+ 1)}
15: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}
16: end if
17: end if
18: while curr .val < newval do
19: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}
20: pred := curr
21: curr := pred .next [i]
22: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
23: end while
24: upd [i] := pred
25: end for
26: Bool valueWasIn := (curr .val = newval)
27: if valueWasIn then
28: for i := 0 to lvl do
29: upd [i].next [i].locks[i].unlock() //@ mr := mr−{(upd [i].next [i], i)}
30: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
31: end for
32: else
33: x := CreateNode(lvl ,newval)
34: for i := 0 to lvl do
35: x.next [i] := upd [i].next [i]
36: upd [i].next [i] := x //@ sl.r := sl.r ∪ {(x, i)}
37: x.next [i].locks[i].unlock() //@ mr := mr − {(x.next [i], i)}
38: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
39: end for
40: end if
41: return ¬valueWasIn
42: end procedure

(b) insertion algorithm

Fig. 3. Data structure and insert algorithm for concurrent lock-coupling skiplist

and fields currently locked by the running thread. The set operations ∪ and −
are used for the manipulation of the corresponding sets of pairs.

Let sl be a pointer to a skiplist (an instance of the class described in Fig. 3(a)).
The following predicate captures whether sl points to a well-formed skiplist of
height 4 or less:

SkipList4(h, sl : SkipList) =̂ OList(h, sl, 0) ∧ (1)(
h[sl].tail .next [0] = null ∧ h[sl].tail .next [1] = null

h[sl].tail .next [2] = null ∧ h[sl].tail .next [3] = null

)
∧ (2)SubList(h, sl.head , sl.tail , 1, sl.head , sl.tail , 0) ∧

SubList(h, sl.head , sl.tail , 2, sl.head , sl.tail , 1) ∧
SubList(h, sl.head , sl.tail , 3, sl.head , sl.tail , 2)

 (3)

The predicate OList in (1) describes that in heap h, the pointer sl is an ordered
linked-lists when repeatedly following the pointers at level 0 starting at head . The
predicate (2) indicates all levels are null terminated, and (3) indicates that each
level is in fact a sublist of its nearest lower level. Predicates of this kind also allow
to express the effect of programs statements via first order transition relations.
Consider the statement at line 36 in program insert shown in Fig. 3(b) on a
skiplist of height 4, taken by thread with id t. This transition corresponds to a
new node x at level i being connected to the skiplist. If the memory layout from
pointer sl is that of a skiplist before the statement at line 36 is executed, then
it is also a skiplist after the execution:

SkipList4(h, sl) ∧ ϕaux ∧ ρ[t]36(V, V ′)→ SkipList4(h′, sl′)

The effect of the statement at line 36 is represented by the first-order transition

relation ρ
[t]
36. To ensure this property, i is required to be a valid level, and the

key of the nodes that will be pointing to x must be lower than the key of node
x. Moreover, the masked region of locked nodes remains unchanged. Predicate
ϕaux contains support invariants. For simplicity, we use prev for upd [t][i]. Then,
the full verification condition is:

SkipList4(h, sl) ∧

x.key = newval ∧

prev.key < newval ∧
x.next [i].key > newval ∧

prev.next [i] = x.next [i] ∧
(x, i) /∈ sl.r ∧ 0 ≤ i ≤ 3

 ∧

at36[t] ∧
prev′.next [i] = x ∧

at ′37[t] ∧
h′ = h ∧ sl = sl′ ∧

x′ = x . . .

→
SkipList4(h′, sl′)

As usual, we use primed variables to describe the values of the variables after the
transition is taken. Section 4 contains a full verification condition. This example
illustrates that to be able to automatically prove VCs for the verification of
skiplist manipulating algorithms, we require a theory that allows to reason about
heaps, addresses, nodes, masked regions, ordered lists and sublists.

3 The Theory of Concurrent Skiplists of Height K: TSLK

We build a decision procedure to reason about skiplist of height K combining
different theories, aiming to represent pointer data structures with a skiplist
layout, masked regions and locks. We extend the Theory of Concurrent Linked
Lists (TLL3) [18], a decidable theory that includes reachability of concurrent
list-like structures in the following way:
– each node is equipped with a key field, used to reason about element’s order.
– the reasoning about single level lists is extended to all the K levels.
– we extend the theory of regions with masked regions.
– lists are extended to ordered lists and sub-paths of ordered lists.

We begin with a brief description of the basic notation and concepts. A
signature Σ is a triple (S, F, P) where S is a set of sorts, F a set of functions
and P a set of predicates. If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2), we define
Σ1 ∪ Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2). Similarly we say that Σ1 ⊆ Σ2 when
S1 ⊆ S2, F1 ⊆ F2 and P1 ⊆ P2. If t(ϕ) is a term (resp. formula), then we denote
with Vσ(t) (resp. Vσ(ϕ)) the set of variables of sort σ occurring in t (resp. ϕ).

A Σ-interpretation is a map from symbols in Σ to values. A Σ-structure is
a Σ-interpretation over an empty set of variables. A Σ-formula over a set X
of variables is satisfiable whenever it is true in some Σ-interpretation over X .
Let Ω be a signature, A an Ω-interpretation over a set V of variables, Σ ⊆ Ω
and U ⊆ V . AΣ,U denotes the interpretation obtained from A restricting it to
interpret only the symbols in Σ and the variables in U . We use AΣ to denote
AΣ,∅. A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-
structures. Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation
A such that AΣ ∈ A. Given a Σ-theory T , a Σ-formula ϕ over a set of variables
X is T -satisfiable if it is true on a T -interpretation over X . Formally, the theory
of skiplists of height K is defined as TSLK = (ΣTSLK

,TSLK), where

ΣTSLK
= ΣlevelK ∪Σord ∪Σthid ∪Σcell ∪Σmem ∪Σreach ∪
Σset ∪Σsetth ∪Σmrgn ∪Σbridge

The signature of TSLK is shown in Fig. 4. TSLK is the class of ΣTSLK
-structures

satisfying the conditions depicted in Fig. 5. The symbols of Σset and Σsetth follow
their standard interpretation over sets of addresses and thread identifiers resp.

Informally, sort addr represents addresses; elem the universe of elements that
can be stored in the skiplist; ord the ordered keys used to preserve a strict order
in the skiplist; thid thread identifiers; levelK the levels of a skiplist; cell models
cells representing a node in a skiplist; mem models the heap, mapping addresses
to cells or to null ; path describes finite sequences of non-repeating addresses to
model non-cyclic list paths; set models sets of addresses – also known as regions
–, while setth models sets of thread identifiers and mrgn masked regions.

ΣlevelK contains symbols for level identifiers 0, 1, . . . , K− 1 and their conven-
tional order. Σord contains two special elements −∞ and ∞ for the lowest and
highest values in the order �. Σthid only contains, besides = and 6= as for all the
other theories, a special constant � to represent the absence of a thread iden-
tifier. Σcell contains the constructors and selectors for building and inspecting

cells, including error for incorrect dereferences. Σmem is the signature for heaps,
with the usual memory access and single memory mutation functions. Σset and
Σsetth are theories of sets of addresses and thread ids resp. Σmrgn is the theory of
masked regions. The signature Σreach contains predicates to check reachability of
address using paths at different levels, while Σbridge contains auxiliary functions
and predicates to manipulate and inspect paths and locks.

Signt Sort Functions Predicates

ΣlevelK levelK 0, 1, . . . ,K− 1 : levelK <: levelK × levelK

Σord ord −∞,+∞ : ord � : ord× ord

Σthid thid � : thid

Σcell

cell

elem

ord

addr

thid

error : cell

mkcell : elem× ord× addrK × thidK → cell

.data : cell→ elem

.key : cell→ ord

.next [] : cell× levelK → addr

.lockid [] : cell× levelK → thid

.lock [] : cell× levelK → thid→ cell

.unlock [] : cell× levelK → cell

Σmem

mem

addr

cell

null : addr

[] : mem× addr→ cell

upd : mem× addr × cell→ mem

Σreach

mem

addr

path

ε : path

[] : addr→ path

append : path× path× path

reachK : mem× addr × addr

× levelK × path

Σset

addr

set

∅ : set

{ } : addr→ set

∪,∩, \ : set× set→ set

∈ : addr × set

⊆ : set× set

Σsetth

thid

setth

∅T : setth

{ }T : thid→ setth

∪T ,∩T , \T : setth× setth→ setth

∈T : thid× setth

⊆T : setth× setth

Σmrgn

mrgn

addr

levelK

empmr : mrgn

〈 , 〉mr : addr × levelK → mrgn

∪mr,∩mr,−mr : mrgn×mrgn→ mrgn

∈mr : addr × levelK ×mrgn

⊆mr : mrgn×mrgn

#mr : mrgn×mrgn

Σbridge

mem

addr

set

path

path2set : path→ set

addr2setK : mem× addr × levelK → set

getpK : mem× addr × addr × levelK → path

fstlockK : mem× path× levelK → addr

ordList : mem× path

Fig. 4. The signature of the TSLK theory

Interpret. of sorts: addr, elem, thid, levelK, ord, cell, mem, path, set, setth and mrgn

Each sort σ in ΣTSLK is mapped to a non-empty set Aσ such that:
(a) Aaddr and Aelem are discrete sets (b) Athid is a discrete set containing �
(c) AlevelK is the finite collection 0,. . . ,K-1 (d) Aord is a total ordered set

(e) Acell = Aelem ×Aord ×AK
addr ×AK

thid (f) Amem = AAaddr
cell

(g) Apath is the set of all finite sequences of (h) Aset is the power-set of Aaddr

(pairwise) distinct elements of Aaddr (i) Asetth is the power-set of Athid

(j) Amrgn is the power-set of Aaddr ×AlevelK

Signature Interpretation

Σord

x�Ay ∧ y�Ax→ x = y x�Ay ∨ y�Ax for any x, y, z ∈ Aord

x�Ay ∧ y�Az → x�Az −∞A�Ax ∧ x�A+∞A

Σcell

– mkcellA(e, k,−→a ,−→t) = 〈e, k,−→a ,−→t 〉 – errorA.nextA = nullA

– 〈e, k,−→a ,−→t 〉.dataA = e – 〈e, k,−→a ,−→t 〉.keyA = k

– 〈e, k,−→a ,−→t 〉.nextA[j] = aj – 〈e, k,−→a ,−→t 〉.lockidA[j] = tj
– 〈e, k,−→a , ...tj−1, tj , tj+1...〉.lockA[j](t′) = 〈e, k,−→a , ...tj−1, t

′, tj+1...〉
– 〈e, k,−→a , ...tj−1, tj , tj+1...〉.unlockA[j] = 〈e, k,−→a , ...tj−1,�, tj+1...〉

for each e ∈ Aelem, k ∈ Aord, t0, . . . , tj , tj+1, tj−1, t
′ ∈ Athid,

−→a ∈ AK
addr,
−→
t ∈ AK

thid and j ∈ AlevelK

Σmem
m[a]A = m(a) updA(m,a, c) = ma7→c mA(nullA) = errorA

for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

Σreach

– εA is the empty sequence
– [i]A is the sequence containing i ∈ Aaddr as the only element
– ([i1 .. in] , [j1 .. jm] , [i1 .. in, j1 .. jm]) ∈ appendA iff ik 6= jl.
– (m,ainit, aend, l, p) ∈ reachK

A iff ainit = aend and p = ε, or there exist
addresses a1, . . . , an ∈ Aaddr such that:

(a) p = [a1 .. an] (c) m(ar).next
A[l] = ar+1, for r < n

(b) a1 = ainit (d) m(an).nextA[l] = aend

Σmrgn

– empAmr = ∅ – r ∪Amr s = r ∪ s – (a, j) ∈Amr r ↔ (a, j) ∈ r
– 〈a, j〉Amr = {(a, j)} – r ∩Amr s = r ∩ s – r ⊆Amr s↔ r ⊆ s

– r −Amr s = r \ s – r#Amrs↔ r ∩Amr s = empAmr

for each a ∈ Aaddr, j ∈ AlevelK and r, s ∈ Amrgn

Σbridge

– path2setA(p) = {a1, . . . , an} for p = [a1, . . . , an] ∈ Apath

– addr2setK
A(m,a, l) =

{
a′ | ∃p ∈ Apath . (m,a, a′, l, p) ∈ reachK

}
– getpK

A(m,ainit, aend, l) =

{
p if (m,ainit, aend, l, p) ∈ reachK

A

ε otherwise

for each m ∈ Amem, p ∈ Apath, l ∈ AlevelK and ainit, aend ∈ Aaddr

– fstlockA (m, [a1 .. an], l) =

ak if there is k ≤ n such that

for all j < k,m[aj].lockid [l] = �
and m[ak].lockid [l] 6= �

null otherwise

– ordListA (m, p) iff p = ε or p = [a] or p = [a1 .. an] with n ≥ 2 and
m(ai).key

A � m(ai+1).keyA for all 1 ≤ i < n, for any m ∈ Amem

Fig. 5. Characterization of a TSLK-interpretation A

4 Decidability of TSLK

We show that TSLK is decidable by proving that it enjoys the finite model
property with respect to its sorts, and exhibiting upper bounds for the sizes of
the domains of a small interpretation of a satisfiable formula.

Definition 1 (Finite Model Property). Let Σ be a signature, S0 ⊆ S be a set
of sorts, and T be a Σ-theory. T has the finite model property with respect to S0 if
for every T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation
A satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite.

The fact that TSLK has the finite model property with respect to domains
elem, addr, ord, levelK and thid, implies that TSLK is decidable by enumerating
all possible ΣTSLK

-structures up to a certain cardinality. We now define the set
of normalized TSLK-literals.

Definition 2 (TSLK-normalized literals). A TSLK-literal is normalized if it
is a flat literal of the form:

e1 6= e2 a1 6= a2 l1 6= l2
a = null c = error c = rd(m, a)
k1 6= k2 k1 � k2 m2 = upd(m1, a, c)
c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
g = {t}T g1 = g2 ∪T g3 g1 = g2 \T g3
r = 〈a, l〉mr r1 = r2 ∪mr r3 r1 = r2 −mr r3
p1 6= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2setK(m, a, l) p = getpK(m, a1, a2, l)
t1 6= t2 a = fstlock (m, p, l) ordList(m, p)

where e, e1 and e2 are elem-variables; a, a0, a1, a2, . . . , aK−1 are addr-variables;
c is a cell-variable; m, m1 and m2 are mem-variables; p, p1, p2 and p3 are path-
variables; s, s1, s2 and s3 are set-variables; g, g1, g2 and g3 are setth-variables;
r, r1, r2 and r3 are mrgn-variables; k, k1 and k2 are ord-variables; l, l1 and l2
are levelK-variables and t, t0, t1, t2, . . . , tK−1 are thid-variables.

Lemma 1. Every TSLK-formula is equivalent to a collection of conjunctions of
normalized TSLK-literals.

Proof (sketch). First, transform a formula in disjunctive normal form. Then each
conjunct can be normalized introducing auxiliary fresh variables when necessary.

The phase of normalizing a formula is commonly known [15] as the “variable
abstraction phase”. Note that normalized literals belong to just one theory.

Consider an arbitrary TSLK-interpretation A satisfying a conjunction of nor-
malized TSLK-literals Γ . We show that if A consists of domains Aelem, Aaddr,
Athid, AlevelK and Aord then there are finite sets Belem, Baddr, Bthid, BlevelK and
Bord with bounded cardinalities, where the finite bound on the sizes can be com-
puted from Γ . Such sets can in turn be used to obtain a finite interpretation B
satisfying Γ , since all the other sorts are bounded by the sizes of these sets.

Lemma 2 (Finite Model Property). Let Γ be a conjunction of normal-
ized TSLK-literals. Let e = |Velem (Γ)|, a = |Vaddr (Γ)|, m = |Vmem (Γ)|, p =
|Vpath (Γ)|, t = |Vthid (Γ)| and o = |Vord (Γ)|. Then the following are equivalent:
1. Γ is TSLK-satisfiable;
2. Γ is true in a TSLK interpretation B such that

|Baddr| ≤ a+ 1 +m a K + p2 + p3 + (K + 2)m p |Belem| ≤ e+m |Baddr|
|Bthid| ≤ t+ Km |Baddr|+ 1 |Bord| ≤ o+m |Baddr|
|BlevelK | ≤ K

Proof. (2 → 1) is immediate. (1 → 2) is proved on a case analysis over the set
of normalized literals of TSLK. ut

4.1 A combination-based decision procedure for TSLK

Lemma 2 enables a brute force method to automatically check whether a set of
normalized TSLK-literals is satisfiable. However, such a method is not efficient
in practice. We describe now how to obtain a more efficient decision procedure
for TSLK applying a many-sorted variant [22] of the Nelson-Oppen combination
method [12], by combining the decision procedures for the underlying theories.
This combination method requires that the theories fulfill some conditions. First,
each theory must have a decision procedure. Second, two theories can only share
sorts (but not functions or predicates). Third, when two theories are combined,
either both theories are stable infinite or one of them is polite with respect to the
underlying sorts that it shares with the other. The stable infinite condition for a
theory establishes that if a formula has a model then it has a model with infinite
cardinality. In our case, some theories are not stable infinite. For example, TlevelK

is not stably infinite, Tord, and Tthid need not be stable infinite in same instances.
The observation that the condition of stable infinity may be cumbersome in the
combination of theories for data structures was already made in [16] where they
suggest the condition of politeness:

Definition 3 (Politeness). T is polite with respect to sorts S : {σ1 . . . σn}
whenever:

(1) Let ϕ be a satisfiable formula in theory T , A be one model of ϕ and let
|Aσ1
|, . . . , |Aσn

| be the cardinalities of the domains of A for sorts in S. For
every tuple of larger cardinalities k1 ≥ |Aσ1

|, . . . , kn ≥ |Aσn
|, there is a

model B of ϕ with |Bσi
| = ki.

(2) There is a computable function that for every formula ϕ returns an equivalent
formula (∃v)ψ (where v = Vψ \Vϕ) such that, if ψ is satisfiable, then there
is an interpretation A with Aσ = [Vσ(ψ)]A for each sort σ.

Condition (1) is called smoothness, and guarantees that interpretations can
be enlarged as needed. Condition (2) is called finite witnessability, and gives a
procedure to produce a model in which every element is represented by a variable.

The Finite Model Property, Lemma 2 above, guarantees that every sub-theory
of TSLK is finite witnessable since one can add as many fresh variables as the
bound for the corresponding sort in the lemma. The smoothness property can
be shown for:

Tcell ⊕ Tmem ⊕ Tpath ⊕ Tset ⊕ Tsetth ⊕ Tmrgn

with respect to sorts addr, levelK, elem, ord and thid. Moreover, these theories can
be combined because all of them are stably infinite. The following can also be
combined: TlevelK⊕Tord⊕Tthid because they do not share any sorts, so combination
is trivial. The many-sorted Nelson-Oppen method allows to combine the first
collection of theories with the second. Regarding the decision procedures for each
individual theory, TlevelK is trivial since it is just a finite set of naturals with order.
For Tord we can adapt a decision procedure for dense orders as the reals [21], or
other appropriate theory. For Tcell we can use a decision procedure for recursive
data structures [13]. Tmem is the theory of arrays [1]. Tset, Tsetth and Tmrgn are
theories of (finite) sets for which there are many decision procedures [25, 8]. The
remaining theories are Treach and Tbridge. Following the approaches in [16, 18]
we extend a decision procedure for the theory Tpath of finite sequences of (non-
repeated) addresses with the auxiliary functions and predicates shown in Fig. 6,
and combine this theory to obtain:

TSLKBase = Taddr⊕Tord⊕Tthid⊕TlevelK⊕Tcell⊕Tmem⊕Tpath⊕Tset⊕Tsetth⊕Tmrgn

Using Tpath all symbols in Treach can be easily defined. The theory of fi-
nite sequences of addresses is defined by Tfseq = (Σfseq,TGen), where Σfseq =(
{addr, fseq}, {nil : fseq, cons : addr × fseq → fseq, hd : fseq → addr, tl : fseq →
fseq}, ∅

)
and TGen as the class of term-generated structures that satisfy the ax-

ioms of distinctness, uniqueness and generation of sequences using constructors,
as well as acyclicity (see, for example [4]). Let Σpath be Σfseq extended with the
symbols of Fig. 6 and let PATH be the set of axioms of Tfseq including the ones
in Fig. 6. Then, we can formally define Tpath = (Σpath,ETGen) where ETGen
is
{
AΣpath |AΣpath � PATH and AΣfseq ∈ TGen

}
. Next, we extend TSLKBase with

definitions for translating all missing functions and predicates from Σreach and
Σbridge appearing in normalized TSLK-literals by definitions from TSLKBase. Let
GAP be the set of axioms that define ε, [], append , reachK, path2set , getpK,
fstlock and ordList . For instance: ispath (p) ∧ ordPath (m, p) ↔ ordList (m, p)

We now define T̂SLK = (Σ
T̂SLK

, ÊTGen) where Σ
T̂SLK

is ΣTSLKBase
∪ { append ,

reachK, path2set , getpK, fstlock , ordList } and ÊTGen :=
{
AΣT̂SLK |AΣT̂SLK �

GAP and AΣTSLKBase ∈ ETGen
}

.
Using the definitions of GAP it is easy to prove that if Γ is a set of normalized

TSLK-literals, then Γ is TSLK-satisfiable iff Γ is T̂SLK-satisfiable. Therefore,

T̂SLK can be used in place of TSLK for satisfiability checking. The reduction from

T̂SLK into TSLKBase is performed in two steps. First, by the finite model theorem
(Lemma 2), it is always possible to calculate an upper bound in the number
of elements of sort addr, elem, thid, ord and level in a model (if there is one
model), based on the input formula. Therefore, one can introduce one variable

app : fseq× fseq→ fseq

app(nil , l) = l app(cons(a, l), l′) = cons(a, app(l, l′))

fseq2set : fseq→ set

fseq2set(nil) = ∅ fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq

ispath(nil) ispath(cons(a,nil)) {a} * fseq2set(l) ∧ ispath(l)→ ispath(cons(a, l))

last : fseq→ addr

last(cons(a,nil)) = a l 6= nil → last(cons(a, l)) = last(l)

isreachK : mem× addr × addr × levelK
isreachK(m,a, a, l) m[a].next [l] = a′ ∧ isreachK(m,a′, b, l)→ isreachK(m,a, b, l)

isreachpK : mem× addr × addr × levelK × fseq

isreachpK(m,a, a, l,nil)
m[a].next [l] = a′ ∧ isreachp(m,a′, b, l, p)→ isreachp(m,a, b, l, cons(a, p))

fstmark : mem× fseq× levelK × addr

fstmark(m,nil , l,null)
p 6= nil ∧ p = cons(a, q) ∧m[a].lockid [l] 6= � → fstmark(m, p, l, a)

p 6= nil ∧ p = cons(a, q) ∧m[a].lockid [l] = � ∧ fstmark(m, q, l, b)→ fstmark(m, p, l, b)

ordPath : mem× fseq

ordPath(h,nil)(
h[a].next [0] = a′ ∧ h[a].key � h[a′].key ∧
p = cons(a, q) ∧ ordPath(h, q)

)
→ ordPath(h, p)

Fig. 6. Functions, predicates and axioms of Tpath

per element of each of these sorts and unfold all definitions in PATH and GAP ,
by symbolic expansion, leading to terms in Σfseq, and thus, in TSLKBase. This

way, it is always possible to reduce a T̂SLK-satisfiability problem of normalized
literals into a TSLKBase-satisfiability problem. Hence, using a decision procedure

for TSLKBase we obtain a decision procedure for T̂SLK, and thus, for TSLK. Notice,
for instance, that the predicate subPath : path × path for ordered lists can be
defined using only path2set as: subPath(p1, p2) =̂ path2set(p1) ⊆ path2set(p2)

For space reasons, we do not provide complete specification and proofs of the
temporal properties. However, in [18] is detailed an example of a termination
proof over concurrent lists, which easily carries over to skiplists. For illustration
purposes, we now show the full verification condition for the verification of the
safety property

(
SkipList4(h, sl)

)
when executing transition 36 of program

insert by a thread with id t, from Section 2. For clarity, we again use prev as
a short for upd [t][i[t]], and we use the auxiliary predicate setnext(c, d, i, x) that
makes the cell d identical to c except that c.next [i] = x.

setnext(c, d, i, x)=̂

(
d.data = c.data ∧ d.key = c.key ∧ d.lock [j] = c.lock [j] ∧
(i 6= j)→ d.next [j] = c.next [j] ∧ d.next [i] = x

)

The VC is (SkipList4(h, sl) ∧ ϕ→ SkipList4(h′, sl′)) where ϕ is:
x[t].key = newval ∧

prev.key < newval ∧
x[t].next [i[t]].key > newval ∧

prev.next [i[t]] = x[t].next [i[t]] ∧
(x[t], i[t]) /∈ sl.r ∧ 0 ≤ i[t] ≤ 3

 ∧

at36[t] ∧ at ′37[t] ∧
prev′.next [i[t]] = x[t] ∧

setnext(h[prev],newcell , i[t], x[t]) ∧
h′ = upd(h, prev,newcell) ∧
sl = sl′ ∧ x′[t] = x[t] ∧

5 Conclusion and Future Work

In this paper we have presented TSLK, a theory of skiplists of height at most
K, useful for automatically prove the VCs generated during the verification of
concurrent skiplist implementations. TSLK is capable of reasoning about mem-
ory, cells, pointers, masked regions and reachability, enabling ordered lists and
sublists, allowing the description of the skiplist property, and the representation
of memory modifications introduced by the execution of program statements.

We showed that TSLK is decidable by proving its finite model property, and
exhibiting the minimal cardinality of a model if one such model exists. More-
over, we showed how to reduce the satisfiability problem of quantifier-free TSLK
formulas to a combination of theories using the many-sorted version of Nelson-
Oppen, allowing the use of well studied decision procedures. The complexity
of the decision problem for TSLK is easily shown to be NP-complete since it
properly extends TLL [16].

Current work includes the translation of formulas from Tord, TlevelK , Tset,
Tsetth and Tmrgn into BAPA [8]. In BAPA, arithmetic, sets and cardinality aids in
the definition of skiplists properties. Paths can be represented as finite sequences
of addresses. We are studying how to replace the recursive functions from Treach

and Σbridge by canonical set and list abstractions [20], which would lead to a
more efficient decision procedure, essentially encoding full TSLK formulas into
BAPA. The family of theories presented in the paper is limited to skiplists of a
fixed maximum height. Typical skiplist implementations fix a maximum number
of levels and this can be handled with TSLK. Inserting more than than 2levels

elements into a skiplist may slow-down the search of a skiplist implementation
but this issue affects performance and not correctness, which is the goal pursued
in this paper. We are studying techniques to describe skiplists of arbitrary many
levels. A promising approach consists of equipping the theory with a primitive
predicate denoting that the skiplist property holds above and below a given
level. Then the reasoning is restricted to the single level being modified. This
approach, however, is still work in progress.

Furthermore, we are working on a direct implementation of our decision pro-
cedure, as well as its integration into existing solvers. Future work also includes
the temporal verification of sequential and concurrent skiplists implementations,
including one at the java.concurrent standard library. This can be accom-
plished by the design of verification diagrams that use the decision procedure
presented in this paper.

References

1. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Information and Computation 183(2), 140–164 (2003)

2. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning
about global invariants. In: Proc. of ECOOP’08. pp. 387–411. Springer (2008)

3. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: A logic-based framework for
reasoning about composite data structures. In: CONCUR’09. pp. 178–195 (2009)

4. Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer-Verlag (2007)
5. Browne, A., Manna, Z., Sipma, H.B.: Generalized verification diagrams. In: Proc.

of FSTTCS’95. LNCS, vol. 1206, pp. 484–498. Springer (1995)
6. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgran-

Kaufmann (2008)
7. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation

logic. In: Proc. of ESOP’08. LNCS, vol. 4960, pp. 353–367. Springer (2008)
8. Kuncak, V., Nguyen, H.H., Rinard, M.C.: An algorithm for deciding BAPA:

Boolean Algebra with Presburger Arithmetic. In: CADE’05. pp. 260–277 (2005)
9. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification

using smt solvers. In: Proc. of POPL’08. pp. 171–182. ACM (2008)
10. Leino, K.R.M.: Data groups: Specifying the modication of extended state. In: OOP-

SLA’98. pp. 144–153. ACM (1998)
11. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer (1995)
12. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM

Trans. Program. Lang. Syst. 1(2), 245–257 (1979)
13. Oppen, D.C.: Reasoning about recursively defined data structures. J. ACM 27(3),

403–411 (1980)
14. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM

33(6), 668–676 (1990)
15. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably

infinite theories using many-sorted logic. In: FROCOS’05. pp. 48–64 (2005)
16. Ranise, S., Zarba, C.G.: A theory of singly-linked lists and its extensible decision

procedure. In: Proc. of SEFM 2006. IEEE CS Press (2006)
17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

Proc. of LICS’02. pp. 55–74. IEEE CS Press (2002)
18. Sánchez, A., Sánchez, C.: Decision procedures for the temporal verification of con-

current lists. In: Proc. of ICFEM’10. LNCS, vol. 6447, pp. 74–89. Springer (2010)
19. Sipma, H.B.: Diagram-Based Verification of Discrete, Real-Time and Hybrid Sys-

tems. Ph.D. thesis, Stanford University (1999)
20. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with

abstractions. In: Proc. of POPL’10. pp. 199–210. ACM (2010)
21. Tarski, A.: A decision method for elementary algebra and geometry. University of

California Press (1951)
22. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:

JELIA’04. LNCS, vol. 3229, pp. 641–653. Springer (2004)
23. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Unver-

sity of Cambridge (2007)
24. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reach-

able patterns in linked data-structures. In: FOSSACS’06. pp. 94–110 (2006)
25. Zarba, C.G.: Combining sets with elements. In: Verification: Theory and Practice.

LNCS, vol. 2772, pp. 762–782. Springer (2003)

A Small Model Property

A.1 Normalized Literals

We show that TSLK also has the finite model property with respect to domains
elem, addr, thid, ord and level. Hence, TSLK is decidable because one can enu-
merate ΣTSLK

-structures up to a certain cardinality. To prove this result, we first
define the set of normalized TSLK-literals.

Definition 2 (TSLK-normalized literals). A TSLK-literal is normalized if it
is a flat literal of the form:

e1 6= e2 a1 6= a2 l1 6= l2
a = null c = error
k1 6= k2 k1 � k2
c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
c = rd(m, a) m2 = upd(m1, a, c)
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
g = {t}T g1 = g2 ∪T g3 g1 = g2 \T g3
r = 〈a, l〉mr r1 = r2 ∪mr r3 r1 = r2 −mr r3
p1 6= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2setK(m, a, l) p = getpK(m, a1, a2, l)
t1 6= t2 a = fstlock (m, p, l) ordList(m, p)

where e, e1 and e2 are elem-variables; a, a1, a2, . . . , aK−1 are addr-variables; c
is a cell-variable; m, m1 and m2 are mem-variables; p, p1, p2 and p3 are path-
variables; s, s1, s2 and s3 are set-variables; g, g1, g2 and g3 are setth-variables;
r, r1, r2 and r3 are mrgn-variables; k, k1 and k2 are ord-variables; l, l1 and l2
are levelK-variables and t, t1, t2, . . . , tK−1 are thid-variables.

The remaining literals can be rewritten from the normalized ones using the
following equivalences:

e = c.data ↔ (∃ordk ∃addra0, . . . , aK−1 ∃thidt0, . . . , tK−1)

[c = mkcell (e, k, a0, . . . , aK−1, t0, . . . , tK−1)]

k = c.key ↔ (∃eleme ∃addra0, . . . , aK−1 ∃thidt0, . . . , tK−1)

[c = mkcell (e, k, a0, . . . , aK−1, t0, . . . , tK−1)]

a = c.next [l] ↔ (∃eleme ∃ordk ∃addra0, . . . , al−1, al+1, . . . , aK−1 ∃thidt0, . . . , tK−1)

[c = mkcell (e, k, a0, . . . , al−1, a, al+1, . . . , aK−1, t0, . . . , tK−1)]

t = c.lockid [l]↔ (∃eleme ∃ordk ∃addra0, . . . , aK−1 ∃thidt0, . . . , tl−1, tl+1, . . . , tK−1)

[c = mkcell (e, k, a0, . . . , aK−1, t0, . . . , tl−1, t, tl+1, . . . , tK−1)]

c1 = c2.lock (l, t) ↔ c2.data = c1.data ∧ c2.key = c1.key ∧
c2.next [0] = c1.next [0] ∧
· · ·
c2.next [K− 1] = c1.next [K− 1] ∧
c2.lockid [0] = c1.lockid [0] ∧
· · ·
c2.lockid [l − 1] = c1.lockid [l − 1] ∧
t = c1.lockid [l] ∧
c2.lockid [l + 1] = c1.lockid [l + 1] ∧
· · ·
c2.lockid [K− 1] = c1.lockid [K− 1]

c1 = c2.unlock (l)↔ c2.data = c1.data ∧ c2.key = c1.key ∧
c2.next [0] = c1.next [0] ∧
· · ·
c2.next [K− 1] = c1.next [K− 1] ∧
c2.lockid [0] = c1.lockid [0] ∧
· · ·
c2.lockid [l − 1] = c1.lockid [l − 1] ∧
� = c1.lockid [l] ∧
c2.lockid [l + 1] = c1.lockid [l + 1] ∧
· · ·
c2.lockid [K− 1] = c1.lockid [K− 1]

c1 6=cell c2 ↔ c1.data 6= c2.data ∨ c1.key 6= c2.key ∨
c1.next [0] 6= c2.next [0] ∨
· · ·
c1.next [K− 1] 6= c2.next [K− 1] ∨
c1.lockid [0] 6= c2.next [0] ∨
· · ·
c1.lockid [K− 1] 6= c2.next [K− 1]

m1 6=mem m2 ↔ (∃addra) [rd(m1, a) 6= rd(m2, a)]

g1 6=setth g2 ↔ (∃thidt) [t ∈ (g1 \T g2) ∪T (g2 \T g1)]

g = ∅T ↔ g = g \T g
g3 = g1 ∩T g2 ↔ g3 = (g1 ∪T g2) \T ((g1 \T g2) ∪T (g2 \T g1))

t ∈T g ↔ {t}T ⊆T g
g1 ⊆T g2 ↔ g2 = g1 ∪T g2

r1 6=setth r2 ↔ (∃addra ∃levelK l) [(a, l) ∈ (r1 −mr r2) ∪mr (r2 −mr r1)]

r = empmr ↔ r = r −mr r

r3 = r1 ∩mr r2 ↔ r3 = (r1 ∪mr r2)−mr ((r1 −mr r2) ∪mr (r2 −mr r1))

(a, l) ∈mr r ↔ 〈a, l〉mr ⊆mr r

r1 ⊆mr r2 ↔ r2 = r1 ∪mr r2

r1#mrr2 ↔ empmr = (r1 ∪mr r2)−mr ((r1 −mr r2) ∪mr (r2 −mr r1))

p = ε ↔ append(p, p, p)

reachK(m, a1, a2, l, p)↔ a2 ∈ addr2setK(m, a1, l) ∧ p = getpK(m, a1, a2, l)

this means that we can rewrite such literals using:

Flat: e = c.data
Normalized: c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
Proviso: k, a0, . . . , aK−1, t0, . . . , tK−1 are fresh.
Flat: k = c.key
Normalized: c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
Proviso: e, a0, . . . , aK−1, t0, . . . , tK−1 are fresh.
Flat: a = c.next [l]
Normalized: c = mkcell(e, k, a0, . . . , al−1, a, al+1, . . . , aK−1, t0, . . . , tK−1)
Proviso: e, k, a0, . . . , al−1, al+1, aK−1, t0, . . . , tK−1 are fresh.
Flat: t = c.lockid [l]
Normalized: c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t, tl+1, . . . , tK−1)
Proviso: e, k, a0, . . . , aK−1, t0, . . . , tl−1, tl+1, . . . , tK−1 are fresh.
Flat: c1 = c2.lock(l, t)
Normalized: c1 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t, tl+1, . . . , tK−1) ∧

c2 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1)
Proviso: e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1 are fresh.
Flat: c1 = c2.unlock(l)
Normalized: c1 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1,�, tl+1, . . . , tK−1) ∧

c2 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1)
Proviso: e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1 are fresh.
Flat: c1 6= c2
Normalized: c1.data 6= c2.data ∨ c1.key 6= c2.key ∨

c1.next [0] 6= c2.next [0] ∨ · · · ∨ c1.next [K− 1] 6= c2.next [K− 1] ∨
c1.lockid [0] 6= c2.lockid [0]∨· · ·∨c1.lockid [K−1] 6= c2.lockid [K−1]

Proviso: -

Flat: m1 6= m2

Normalized: m[a] 6= m[b]
Proviso: a is fresh.
Flat: s1 6= s2
Normalized: s12 = s1\s2∧s21 = s2\s1∧s3 = s12∪s21∧s = s3∪{a}∧{a} ⊆ s
Proviso: s12, s21, s3, s and a are fresh.
Flat: s = ∅
Normalized: s = s \ s
Proviso: -
Flat: s3 = s1 ∩ s2
Normalized: s12 = s1 \ s2 ∧ s21 = s2 \ s1 ∧ su1

= s1 ∪ s2 ∧ su2
= s12 ∪ s21 ∧

s3 = su1
\ su2

Proviso: s12, s21, su1
and su2

are fresh.
Flat: a ∈ s
Normalized: s = {a} ∪ s
Proviso: -
Flat: s1 ⊆ s2
Normalized: s2 = s1 ∪ s2
Proviso: -
Flat: g1 6= g2
Normalized: g12 = g1 \T g2∧g21 = g2 \T g1∧g3 = g12∪T g21∧g = g3∪T {a}∧

{a} ⊆T g
Proviso: g12, g21, g3, g and a are fresh.
Flat: g = ∅T
Normalized: g = g \T g
Proviso: -
Flat: g3 = g1 ∩T g2
Normalized: g12 = g1\T g2∧g21 = g2\T g1∧gu1

= g1∪T g2∧gu2
= g12∪T g21 ∧

g3 = gu1
\T gu2

Proviso: g12, g21, gu1 and gu2 are fresh.
Flat: t ∈T g
Normalized: g = {t} ∪T g
Proviso: -
Flat: g1 ⊆T g2
Normalized: g2 = g1 ∪T g2
Proviso: -
Flat: r1 6= r2
Normalized: r12 = r1 −mr r2 ∧ r21 = r2 −mr r1 ∧ r3 = r12 ∪mr r21 ∧

r = r3 ∪mr {(a, l)} ∧ {(a, l)} ⊆mr r
Proviso: r12, r21, r3, r, a and l are fresh.
Flat: r = empmr

Normalized: r = r −mr r
Proviso: -
Flat: r3 = r1 ∩mr r2
Normalized: r12 = r1 −mr r2 ∧ r21 = r2 −mr r1 ∧ ru1 = r1 ∪mr r2 ∧

ru2 = r12 ∪mr r21 ∧ r3 = ru1 −mr ru2

Proviso: r12, r21, ru1
and ru2

are fresh.

Flat: (a, l) ∈mr r
Normalized: r = {(a, l)} ∪mr r
Proviso: -
Flat: r1 ⊆mr r2
Normalized: r2 = r1 ∪mr r2
Proviso: -
Flat: r1#mrr2
Normalized: r12 = r1 −mr r2 ∧ r21 = r2 −mr r1 ∧ ru1

= r1 ∪mr r2 ∧
ru2

= r12 ∪mr r21 ∧ r3 = ru1
−mr ru2

∧ r3 = r3 −mr r3
Proviso: r12, r21, ru1

, ru2
and r3 are fresh.

Flat: p = ε
Normalized: append(p, p, p)
Proviso: -
Flat: reachK(m, a1, a2, l, p)
Normalized: a2 ∈ addr2setK(m, a1, l) ∧ p = getpK(m, a1, a2)
Proviso: -

A.2 The Small Model Property

Consider an arbitrary TSLK-interpretation A satisfying a conjunction of normal-
ized TSLK-literals Γ . We show that if there are sets Aelem, Aaddr, Athid, AlevelK and
Aord then there are finite sets A′elem, A′addr, A′thid, A′levelK and A′ord with bounded
cardinalities (the bound depending on Γ). A′elem, A′addr, A′thid, A′levelK and A′ord
can in turn be used to obtain a finite interpretation A′ satisfying Γ .

Before proving that TSLK enjoys of finite model property, we define some
auxiliary functions. We start by defining the function firstK. Let Baddr ⊆ B̃addr,
m : B̃addr → Belem × Bord × B̃Kaddr × BKthid, a ∈ Baddr and l ∈ BlevelK . The function
firstK(m, a, l,Baddr) is defined by

firstK(m, a, l,Baddr) =

null if for all r ≥ 1 mr(a).next(l) /∈ Baddr
ms (a) .next(l) if for some s ≥ 1 ms(a).next(l) ∈ Baddr,

and for all r < s mr(a).next(l) /∈ Baddr

where
– m1(a).next(l) stands for m(a).next(l) and
– mn+1(a).next(l) stands for m(mn(a).next(l)).next(l) when n > 0.

Basically, given the original model A and a subset of addresses X ⊆ Aaddr,
function firstK chooses the next address in X that can be reached from a given
address following repeatedly the next(l) pointer. It is easy to see, for example,
that if m(a).next(l) ∈ X then firstK(m, a, l,X) = m(a).next(l). We will later
filter out unnecessary intermediate nodes and use firstK to bypass properly the
removed nodes, preserving the important connectivity properties.

Lemma 3. Let Baddr ⊆ B̃addr, m : B̃addr → Belem ×Bord × B̃Kaddr ×BKthid, a ∈ Baddr
and l ∈ BlevelK . If m(a).next(l) ∈ Baddr, then firstK(m, a, l,Baddr) = m(a).next(l).

Proof. Immediate from definition of firstK.

Secondly, we define the compress function which, given a path p and a set
Baddr of addresses, returns the path obtained from p by removing all the addresses
that do not belong to Baddr.

compress([i1, . . . , in],Baddr) =
ε if n = 0

[i1] ◦ compress([i2, . . . , in], X) if n > 0 and i1 ∈ X
compress([i2, . . . , in], X) otherwise

Third, the function fstL that, given a memory, a path and a level, chooses
the first address in a path (at the given level), whose lock is not �, returning
the address as a singleton set:

fstL(m, [i1, . . . , in], l) =
∅ if n = 0

{i1} if m(i1).lockid(l) 6= �
fstL(m, [i2, . . . , in], l) if m(i1).lockid(l) = �

Fourth, the function unordered that given a memory m and a path p, returns a
set containing two address that witness the failure to preserve the key order of
elements in p:

unordered(m, [i1, . . . , in]) =

∅ if n = 0 or n = 1

{i1, i2} if m(i2).key � m(i1).key and

m(i2).key 6= m(i1).key

unordered(m, [i2, . . . , in]) otherwise

If two such addresses exist, unordered returns the first two consecutive ad-
dresses whose keys violate the order.

Lemma 4. Let p be a path such that p = [a1, . . . , an] with n ≥ 2 and let m be
a memory. If exists ai, with 1 ≤ i < n, such that m(ai+1).key � m(ai).key and
m(ai+1).key 6= m[ai].key, then unordered(m, p) 6= ∅

Proof. By induction. Let’s consider n = 2 and let p = [a1, a2] s.t., m(a2).key �
m(a1).key and m(a2).key 6= m(a1).key . Then, by definition of unordered , we
have that unordered(m, p) = {a1, a2} 6= ∅.

Now let’s assume that n > 2 and let p = [a1, . . . , an]. If m(a2).key �
m(a1).key and m(a2).key 6= m(a1).key , then we have that unordered(m, p) =
{a1, a2} 6= ∅. On the other hand, if m(a1).key � m(a2).key , we still knows that

there is a ai, with 2 ≤ i < n, s.t., m(ai+1).key � m(ai).key and m(ai+1).key 6=
m(ai).key . Therefore, by induction we have that unordered(m, [a2, . . . , an]) 6= ∅
and by definition of unordered , unordered(m, p) = unordered(m, [a2, . . . , an]) 6=
∅.

Fifth, the function diseq [16] that outputs a set of address accountable for
the disequality of two given paths:

diseq([i1, . . . , in], [j1, . . . jm]) =

∅ if n = m = 0

{i1} if n > 0 and m = 0

{j1} if n = 0 and m > 0

{i1, j1} if n,m > 0 and i1 6= j1

diseq([i2, . . . , im], [j2, . . . , jm]) otherwise

Finally, the function common [16] that outputs an element common to two
paths (an element that witnesses that path2set(p) ∩ path2set(q) 6= ∅):

common([i1, . . . , in], p) =
∅ if n = 0

{i1} if n > 0 and i1 ∈ path2set(p)

common([i2, . . . , in], p) otherwise

Lemma 2 (Finite Model Property). Let Γ be a conjunction of normal-
ized TSLK-literals. Let e = |Velem (Γ)|, a = |Vaddr (Γ)|, m = |Vmem (Γ)|, p =
|Vpath (Γ)|, t = |Vthid (Γ)| and o = |Vord (Γ)|. Then the following are equivalent:

1. Γ is TSLK-satisfiable;
2. Γ is true in a TSLK interpretation B such that

|Baddr| ≤ a+ 1 +m a K + p2 + p3 + (K + 2)m p

|Belem| ≤ e+m |Baddr|
|Bthid| ≤ t+ Km |Baddr|+ 1

|BlevelK | ≤ K

|Bord| ≤ o+m |Baddr|

Proof. (2 → 1) is immediate.

(1 → 2). We prove this implication only for the new TSLK-literals.

Bearing in mind the auxiliary functions we have defined, let now A be a
TSLK-interpretation satisfying a set of normalized TSLK-literals Γ . We use A to
construct a TSLK-interpretation B which satisfies Γ .

BlevelK = AlevelK = [0 . . .K − 1]

Baddr = VAaddr ∪
{

nullA
}
∪{

mA(aA).nextA(l) | m ∈ Vmem, a ∈ Vaddr and l ∈ BlevelK
}
∪{

v ∈ diseq(pA, qA) | the literal p 6= q is in Γ
}
∪{

v ∈ common(p1
A, p2

A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) 6= ∅
}
∪{

v ∈ common(p1
A ◦ p2

A, p3
A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) = ∅
}
∪{

v ∈ fstL(mA, pA, l) | fstlock(m, p, l) is in Γ
}{

v ∈ unordered(mA, pA) | ¬ordList(m, p) is in Γ
}

Bthid = VAthid ∪
{
�
}
∪
{

mA(vA).lockidA(l) | m ∈ Vmem, v ∈ Baddr and l ∈ BlevelK
}

Belem = VAelem ∪
{

mA(v).dataA | m ∈ Vmem and v ∈ Baddr
}

Bord = VAord ∪
{

mA(v).keyA | m ∈ Vmem and v ∈ Baddr
}

These domains satisfy the cardinality constrains expressed in the statement
of the theorem. The interpretations of the symbols are:

errorB = errorA

nullB = nullA

eB = eA for each e ∈ Velem

aB = aA for each a ∈ Vaddr

cB = cA for each c ∈ Vcell

tB = tA for each t ∈ Vthid

kB = kA for each k ∈ Vord

lB = lA for each l ∈ VlevelK

mB(v) =
(
mA(v).dataA,mA(v).keyA, for each m ∈ Vmem

firstK(mA, v, 0 ,Baddr), and v ∈ Baddr
. . .
firstK(mA, v,K− 1,Baddr),
mA(v).lockidA[0], . . . ,mA(v).lockidA[K− 1]

)
sB = sA ∩ Baddr for each s ∈ Vset

gB = gA ∩ Bthid for each g ∈ Vsetth

rB = rA ∩ (Baddr × BlevelK) for each r ∈ Vmrgn

pB = compress(pA,Baddr) for each p ∈ Vpath

Essentially, all variables and constants in B are interpreted as in A except
that next pointers use firstK to point to the next reachable element that has
been preserved in Baddr, and paths filter out all elements except those in Baddr.
It can be routinely checked that B is an interpretation of Γ . So it remains to be
seen that B satisfies all literals in Γ assuming that A does, concluding that B is

indeed a model of Γ . This check is performed by cases. The proof that B satisfies
all TSLK-literals in Γ is not shown here. We just focus on the new functions and
predicates that are not part of TLL. The proof for the missing literals can be
found in [16]. For TSLK-literals we must consider the following cases:

Literals of the form l1 6= l2, k1 6= k2 and k1 � k2. Immediate
Literals of the form c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1).

cB = cA =
(
eA, kA, a0

A, . . . , aK−1
A, t0

A, . . . , tK−1
A)

=
(
eB, kB, a0

B, . . . , aK−1
B, t0

B, . . . , tK−1
B)

Literals of the form c = rd(m, a). In this case we have that[
rd(m, a)

]B
= mB(aB)

= mB(aA)

=
(

mA(aA).dataA,mA(aA).keyA,

firstK(mA, aA, 0,BsAddr), . . . ,firstK(mA, aA,K− 1,BsAddr),
mA(aA).lockidA[0], . . . ,mA(aA).lockidA[K− 1]

)
=
(

mA(aA).dataA,mA(aA).keyA,

mA(aA).nextA(0), . . . ,mA(aA).nextA(K− 1),

mA(aA).lockidA[0], . . . ,mA(aA).lockidA[K− 1]
)

(Lemma 3)

= mA(aA)

= cA

= cB

Literals of the form g = {t}T . We have that

gB = gA ∩ BsThId = {tA}T ∩ BsThId = {tB}T ∩ BsThId = {tB}T

Literals of the form g1 = g2 ∪T g3. In this case we have that

gB1 = gA1 ∩ BsThId =
(
gA2 ∪T gA3

)
∩ BsThId

=
(
gA2 ∩ BsThId

)
∪T
(
gA3 ∩ BsThId

)
= gB2 ∪T gB3

Literals of the form g1 = g2 \T g3. We have that

gB1 = gA1 ∩ BsThId =
(
gA2 \T gA3

)
∩ BsThId

=
(
gA2 ∩ BsThId

)
\T
(
gA3 ∩ BsThId

)
= gB2 \T gB3

Literals of the form r = 〈a, l〉mr. We have that

rB = rA ∩ (BsAddr × BlevelK)

= 〈aA, lA〉mr ∩ (BsAddr × BlevelK)

= 〈aB, lB〉mr ∩ (BsAddr × BlevelK)

= 〈aB, lB〉mr

Literals of the form r1 = r2 ∪mr r3. In this case we have that

rB1 = rA1 ∩ (BsAddr × BlevelK)

=
(
rA2 ∪mr rA3

)
∩ (BsAddr × BlevelK)

=
(
rA2 ∩ (BsAddr × BlevelK)

)
∪mr

(
rA3 ∩ (BsAddr × BlevelK)

)
= rB2 ∪mr rB3

Literals of the form r1 = r2 −mr r3. We have that

rB1 = rA1 ∩ (BsAddr × BsLevelK)

=
(
rA2 −mr rA3

)
∩ (BsAddr × BsLevelK)

=
(
rA2 ∩ (BsAddr × BsLevelK)

)
−mr

(
rA3 ∩ (BsAddr × BsLevelK)

)
= rB2 −mr rB3

Literals of the form s = addr2setK(m, a, l). Let x = aB = aA. Then, we have
that

sB = sA ∩ BsAddr
=
{
y ∈ Aaddr | ∃ p ∈ Apath s.t., (mA, x, y, l, p) ∈ reachK

A
}
∩ BsAddr

=
{
y ∈ BsAddr | ∃ p ∈ Apath s.t., (mA, x, y, l, p) ∈ reachK

A
}

=
{
y ∈ BsAddr | ∃ p ∈ Bpath s.t., (mB, x, y, l, p) ∈ reachK

B
}

It just remains to see that the last equality holds. Let

– SB =
{
y ∈ BsAddr | ∃ p ∈ Bpath s.t., (mB, x, y, l, p) ∈ reachK

B
}

, and

– SA =
{
y ∈ BsAddr | ∃ p ∈ Apath s.t., (mA, x, y, l, p) ∈ reachK

A
}

We first show that SA ⊆ SB. Let y ∈ SA. Then exists p ∈ Apath such

that (mA, x, y, l, p) ∈ reachK
A. Then, by definition of reachK there are two

possible cases.

– If p = ε and x = y, then (mB, x, y, l, εB) ∈ reachK
B and therefore y ∈ SB.

– Otherwise, there exists a1, . . . , an ∈ Aaddr s.t.,

i) p = [a1, . . . , an] iii) mA(ar).nextA(l) = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mA(an).nextA(l) = y

Then, we only need to find ã1, . . . , ãm ∈ Baddr s.t.,

i) q = [ã1, . . . , ãm] iii) mB(ãr).nextB(l) = ãr+1, for 1 ≤ r < m

ii) x = ã1 iv) mB(ãm).nextB(l) = y

We define ã1 = a1 = x and ã2 = firstK(mA, ã1, l,BsAddr). Then we know
that ã2 = mB(ã1).nextB(l) and that ã2 ∈ BsAddr and thus ã2 ∈ Baddr.
Then, if ã2 = y there is nothing else to prove. On the other hand, if
ã2 6= y then we proceed in the same way to define ã3 and so on until
ãm+1 = y. Notice that this way, y is guaranteed to be found in at most
n steps.
To show that SB ⊆ SA we proceed in a similar way. Let y ∈ SB. Then x =
y and p = ε and thus (mA, x, y, l, εA) ∈ reachK

A, or exists a1, . . . , an ∈
BsAddr such that

i) p = [a1, . . . , an] iii) mB(ar).nextB(l) = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mB(an).nextB(l) = y

As we know that a1, . . . , an, y ∈ BsAddr, by definition of firstK we know
that exists s ≥ 1 s.t.,

mA
(
· · ·
(
mA (a1) .nextA (l)

)
· · ·
)
.nextA (l)︸ ︷︷ ︸

s

= a2

Let then a11, . . . , a
s−1
1 ∈ Aaddr such that

mA(a1).nextA(l) = a11

mA(a11).nextA(l) = a21
...

mA(as−11).nextA(l) = a2

We then use a11, . . . , a
s−1
1 to construct the section of a path q that goes

from a1 up to a2. Finally we use the same approach to finish with the
construction of such path in A. Then we have that (mA, x, y, l, qA) ∈
reachK

A. Then, y ∈ SA.
Literals of the form p = getpK(m, a, b, l). We consider two possible cases.

– Case bA ∈ addr2setK(mA, aA, l).
Since (mA, aA, bA, l, pA) ∈ reachK

A, it is enough to prove:

(mA, x, y, l, q) ∈ reachK
A → (mB, x, y, l, compress(q,BsAddr)) ∈ reachK

B

for each x, y ∈ BsAddr and q ∈ Apath. Assume that (mA, x, y, l, q) ∈
reachK

A. If x = y and q = ε, then (mB, x, y, l, compress(q,BsAddr)) ∈
reachK

B. Otherwise, there exists a1, . . . , an ∈ Aaddr such that:

i) q = [a1, . . . , an] iii) mA(ar).nextA(l) = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mA(an).nextA(l) = y

Then, we proceed by induction on n.
• If n = 1, then q = [a1] and therefore compress(q,BsAddr) = [a1],

since x = a1 ∈ BsAddr. Besides mA(a1).nextA(l) = y which implies
that mB(a1).nextB(l) = y. Then (mB, x, y, l, compress(q,BsAddr)) ∈
reachK

B.
• If n > 1, then let ai = firstK(mA, x, l,BsAddr). As

q = [x = a1, a2, . . . , ai, ai+1, . . . , an]

we have that

compress(q,BsAddr) = [x = a1] ◦ compress([ai, ai+1, . . . , an],BsAddr)

Besides, as (mA, ai, y, l, [ai, ai+1, . . . , an]) ∈ reachK
A, by induction

we have that

(mB, ai, y, l, compress([ai, ai+1, . . . , an],BsAddr)) ∈ reachK
B

Moreover mB(x).nextB(l) = ai and therefore

(mB, x, y, l, compress(q,BsAddr)) ∈ reachK
B

– Case bA /∈ addr2setK(mA, aA, l).
In such case we have that pA = ε, which implies that pB = ε. Then
using a reasoning similar to the previous case we can deduce that bB /∈
addr2setK(mB, aB, l).

Literals of the form a = fstlockK(m, p, l). If we consider the case p = ε, then
we know that fstlockK

A(mA, εA, lA) = nullA. At the same time, we know
that εB = compress(εA,BsAddr) and so fstlockK

B(mB, εB, lB) = nullB. Let’s
now consider the case at which p = [a1, . . . , an]. There are two scenarios to
consider.

– If for all 1 ≤ k ≤ n, mA(aAk).lockid(l) = �, then we have that

fstlockK
A(mA, pA, lA) = nullA

Notice that function compress returns a subset of the path it receives
with the property that all addresses in the returned path belong to the
received set. Then, if [ã1, . . . , ãm] = pB = compress(pA,BsAddr), we
know that {ã1, . . . , ãm} ⊆ BsAddr and therefore for all 1 ≤ j ≤ m,
mB(ãj).lockidB(lB) = �. Then, we can finally conclude that in fact

fstlockK
B(mB, pB, lB) = nullB.

– If exists a 1 ≤ k ≤ n such that for all 1 ≤ j < k, mA(aAj).lockid(l) = �
and mA(aAk).lockid(l) 6= � then since aB = aA, we can say that aB =
aA = x ∈ BsAddr. It then remains to verify whether

x = fstlockK
A(mA, pA, lA) → x = fstlockK

B(mB, compress(pA,BsAddr), lB)

By definition of fstlockK we have that x = aAk and by κ we know that
aAk ∈ BsAddr. Let [ã1, . . . , ãi, . . . , ãm] = compress(pA,BsAddr) such that
ãi = aAk . We also know that ãj ∈ BsAddr for all 1 ≤ j ≤ m. Then, as

compress preserves the order and for all 1 ≤ j < k, mA(aAj).lockidA(lA) =

�, we have that for all 1 ≤ j < i, mB(ãj).lockidB(lB) = �. Besides

mB(ãi).lockidB(lB) 6= �. Then:

fstlockK
B(mB, compress(pA), lB) = fstlockK

B(mB, [ã1, . . . , ãm], lB)

= ãi

= aA

= x

Literals of the form ordList(m, p). Assume that (mA, pA) ∈ ordListA. We
want to see that (mB, pB) ∈ ordListB i.e., (mB, compress(pA,BsAddr)) ∈
ordListB. We proceed by induction on p.
– If p = ε, by definition of compress and ordList , we have that (mB, εB) ∈

ordListB.
– If p = [a1], we know that (mA, [a1]

A
) ∈ ordListA and that pB =

compress(pA,BsAddr). Then, if aA1 ∈ BsAddr, we have that pB = [a1]
B

and then clearly (mB, pB) ∈ ordListB holds. On the other hand, if
aA1 /∈ BsAddr, then pB = εB and once more (mB, pB) ∈ ordListB holds.

– If p = [a1, . . . , an+1] with n ≥ 1, then we have two possible cases
to bear in mind. If we consider the case at which aA1 /∈ BsAddr then

compress(pA,BsAddr) = compress([a2 , . . . , an+1]
A
,BsAddr) and as by in-

duction we have that (mB, compress([a2 , . . . , an+1]
A
,BsAddr)) ∈ ordListB

we conclude that (mB, compress([a1 , a2 , . . . , an+1]
A
,BsAddr)) ∈ ordListB.

On the other hand, if aA1 ∈ BsAddr then once more, by induction,

(mB, compress([a2 , . . . , an+1]
A
,BsAddr)) ∈ ordListB. Besides, as we have

that mA(aA1).keyA � mA(aA2).keyA we can deduce that mB(aA1).keyB �
mB(aA2).keyB. And so, (mB, compress([a1 , a2 , . . . , an+1]

A
,BsAddr)) ∈

ordListB.

Literals of the form ¬ordList(m, p). Let’s assume that (mA, pA) /∈ ordListA.
We want to see that (mB, pB) /∈ ordListB. If (mA, pA) /∈ ordListA, then it
means that p = [a1, . . . , an] with n ≥ 2 and mA(ai+1).keyA � mA(ai).keyA

and mA(ai+1).keyA 6= mA(ai).keyA for some i ∈ 1, . . . , n − 1. Let that
i be the one such that for all j < i, mA(aj).keyA � mA(aj+1).keyA.

Then, by Lemma 4 we know that unordered(mA, [a1 , . . . , an]
A

) 6= ∅ and

besides {aAi , aAi+1} ⊆ unordered(mA, [a1 , . . . , an]
A

) ⊆ BsAddr. This means

that compress([a1 , . . . , an]
A
,BsAddr) = [ã1 , . . . , ai , ai+1 , . . . , ãm]

B
. There-

fore, since mB(ai+1).keyB � mB(ai).keyB and mB(ai+1).keyB 6= mB(ai).keyB,

we have that (mB, compress([a1 , . . . , an]
A
, BsAddr)) /∈ ordListB.

B Missing Implementations

1: procedure Search(SkipList sl, Value v)
2: int i := K − 1 //@ mrgnmr := ∅
3: Node∗pred := sl.head
4: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
5: Node∗curr := pred .next [i]
6: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
7: while 0 ≤ i ∧ curr .val 6= v do
8: if i < K − 1 then
9: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}

10: curr := pred .next [i]
11: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
12: pred .next [i+ 1].locks[i+ 1].unlock()//@ mr := mr − {(pred .next [i+ 1], i+ 1)}
13: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}
14: end if
15: while curr .val < v do
16: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}
17: pred := curr
18: curr := pred .next [i]
19: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
20: end while
21: i := i− 1
22: end while
23: Bool valueIsIn := (curr .val = v)
24: if i = K − 1 then
25: curr .locks[i].unlock() //@ mr := mr − {(curr , i)}
26: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}
27: else
28: curr .locks[i+ 1].unlock() //@ mr := mr − {(curr , i+ 1)}
29: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}
30: end if
31: return valueIsIn
32: end procedure

Fig. 7. Algorithm for searching on a concurrent lock-coupling skiplist

1: procedure Remove(SkipList sl, Value v)
2: Vector < Node∗ > upd [0..K − 1] //@ mrgnmr := ∅
3: Node∗pred := sl.head
4: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K)}
5: Node∗curr := pred .next [K − 1]
6: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K)}
7: for i := K − 1 downto 0 do
8: if i < K − 1 then
9: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}

10: curr := pred .next [i]
11: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
12: end if
13: while curr .val < v do
14: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}
15: pred := curr
16: curr := pred .next [i]
17: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
18: end while
19: upd [i] := pred
20: end for
21: for i := K − 1 downto 0 do
22: if upd [i].next [i] = curr ∧ curr .val = v then
23: upd [i].next [i] := curr .next [i] //@ sl.r := sl.r − {(curr , i)}
24: curr .locks[i].unlock() //@ mr := mr − {(curr , i)}
25: else
26: upd [i].next [i].locks[i].unlock() //@ mr := mr − {upd [i].next [i], i)}
27: end if
28: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
29: end for
30: Bool valueWasIn := (curr .val = v)
31: if valueWasIn then
32: free (curr)
33: end if
34: return valueWasIn
35: end procedure

Fig. 8. Algorithm for deletion on a concurrent lock-coupling skiplist

C No Thread Overtakes

In this section we proof that, in fact, no thread can overtake another thread,
considering the region of the skiplist that can potentially be modified by the
latter one. This does not mean that no thread can overtake another one using a
higher level pointer. Instead, we want to verify that no thread can go through
the region to be modified by another thread.

Let’s consider the skiplist shown in Fig. 9(a). Imagine a thread j trying to
insert a one level node with value 11. Then, after reaching the position where
the node must be inserted the skiplist may look as the one depicted in Fig. 9(b).
If then another thread, lets say i, wants to insert a node with value 19, it will
undoubtedly jump over the nodes locked by thread j. This is not the situation
we are trying to prevent, since this is a correct behavior for a concurrent skiplist.
Moreover, the modifications introduced by thread i will not interfere with thread
i at all.

level 0

level 1

level 2

−∞ 3 5 7 10 12 15 18 20 +∞

head tail

(a) initial skiplist

level 0

level 1

level 2

−∞ 3 5 7 10 12 15 18 20 +∞

head tail

j j

(b) skiplist before thread j inserts the new node

level 0

level 1

level 2

−∞ 3 5 7 10 12 15 18 20 +∞

head tail

i i

ii

i i

(c) skiplist after thread i is ready to insert node 16

level 0

level 1

level 2

−∞ 3 5 7 10 12 15 18 20 +∞

head tail

i i

ii

i ijj

(d) skiplist with thread j about to insert node 11

Fig. 9. Example of skiplist

However, let’s now consider the same skiplist depicted in Fig. 9(a). Imagine
now that thread i wants to insert a node of three levels with value 16. In such
case, before the insertion is accomplished, the skiplist will have the aspect de-
picted in Fig. 9(c). Is in this case we want to show that thread j will not be
able to progress up to the position where node 11 must be inserted, ending up
in a scenario as the one shown in Fig. 9(d). An informal reasoning let us deduce
that thread j cannot reach such position since node 7 should be reached in a
top-down fashion, something that cannot happen since thread i has locked the
upper levels of such node. We now proceed to formalize this reasoning.

We begin by extending the actual code with ghost code to aid the verification.
We add the ghost variables L, U , H denoting the limits of the minimum region
we are sure a thread can potentially modified (PM). Such region is then formally
defined as a masked region by:

PM =̂

H⋃
i=0

{
(n, i) | n ∈ getpK(h, L, U, i)

}
assuming that the skiplist resides in the heap h. Considering once more the
situation of thread i trying to insert a node with value 16 depicted in Fig. 9(c),
we can represent the PM region of such thread as shown with dashed lines in
Fig. 10.

level 0

level 1

level 2

−∞ 3 5 7 10 12 15 18 20 +∞

head tail

i i

ii

i i

Fig. 10. PM region for thread i when inserting node 16

We first extend the algorithm for search, insert and remove with the new
ghost variables. Then, we define a function skipRgTh : addr×addr×levelK → setth
and a predicate lastTh : addr × addr × levelK. Given a lower address L, and
upper address U and a level L, the function skipRgTh(L,U,H) returns the set of
threads identifiers which has a locked node within the PM region described by L,
U and H. Meanwhile, lastTh(L,U,H) holds whenever skipRgTh(L,U,H) = ∅T .

The new algorithms extended with ghost variables are depicted in Fig. 11, 12
and 13. Notice that when setting H to −1 we are just saying that PM becomes
empty.

The main idea is that ever moment, PM [t] represents the minimum region of
the skiplist we are sure thread t can potentially modify. After every transition is
taken, we end up with a subregion (possibly the same one) as before. We would
like to ensure that every transition, taken by threadt or any other thread of the
system, does not increment the number of threads within its PM region.

1: procedure Search(SkipList sl, Value v)
2: int i := K − 1 //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: Node∗pred := sl.head
4: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
5: Node∗curr := pred .next [i]
6: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
7: while 0 ≤ i ∧ curr .val 6= v do
8: if i < K − 1 then
9: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}

//@ U := curr
10: curr := pred .next [i]
11: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
12: pred .next [i+ 1].locks[i+ 1].unlock()

//@ mr := mr − {(pred .next [i+ 1], i+ 1)}
13: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}

//@ H := i
14: end if
15: while curr .val < v do
16: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ L := curr
17: pred := curr
18: curr := pred .next [i]
19: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
20: end while
21: i := i− 1
22: end while
23: Bool valueIsIn := (curr .val = v)
24: if i = K − 1 then
25: curr .locks[i].unlock() //@ mr := mr − {(curr , i)}

//@ U := L
26: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ H := -1
27: else
28: curr .locks[i+ 1].unlock() //@ mr := mr − {(curr , i+ 1)}

//@ U := L
29: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}

//@ H := -1
30: end if
31: return valueIsIn
32: end procedure

Fig. 11. Algorithm for searching on a concurrent lock-coupling skiplist

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1] //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: lvl := randomLevel(K)
4: Node∗pred := sl.head
5: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K − 1)}
6: Node∗curr := pred .next [K − 1]
7: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K − 1)}
8: for i := K − 1 downto 0 do
9: if i < K − 1 then

10: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
//@ U := curr

11: curr := pred .next [i]
12: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
13: if i ≥ lvl then
14: pred .next [i+ 1].locks[i+ 1].unlock()

//@ mr := mr − {(pred .next [i+ 1], i+ 1)}
15: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}

//@ H := i
16: end if
17: end if
18: while curr .val < newval do
19: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ if (i = lvl){L := curr}
20: pred := curr
21: curr := pred .next [i]
22: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
23: end while
24: upd [i] := pred
25: end for
26: Bool valueWasIn := (curr .val = newval)
27: if valueWasIn then
28: for i := 0 to lvl do
29: upd [i].next [i].locks[i].unlock() //@ mr := mr−{(upd [i].next [i], i)}
30: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
31: end for
32: else
33: x := CreateNode(lvl ,newval)
34: for i := 0 to lvl do
35: x.next [i] := upd [i].next [i]
36: upd [i].next [i] := x //@ sl.r := sl.r ∪ {(x, i)}
37: x.next [i].locks[i].unlock() //@ mr := mr − {(x.next [i], i)}
38: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
39: end for
40: end if

//@ H = −1
41: return ¬valueWasIn
42: end procedure

Fig. 12. Algorithm for insertion on a concurrent lock-coupling skiplist

1: procedure Remove(SkipList sl, Value v)
2: Vector < Node∗ > upd [0..K − 1] //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: Node∗pred := sl.head
4: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K)}
5: Node∗curr := pred .next [K − 1]
6: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K)}
7: Node∗aux
8: for i := K − 1 downto 0 do
9: if i < K − 1 then

10: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
//@ U := curr

11: aux := curr
12: curr := pred .next [i]
13: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
14: if aux .val 6= e then
15: aux .locks[i+ 1].unlock()
16: pred .locks[i+ 1].unlock() //@ H := i
17: end if
18: end if
19: while curr .val < v do
20: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ if (aux .val 6= e){L := curr}
21: pred := curr
22: curr := pred .next [i]
23: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
24: end while
25: upd [i] := pred
26: end for
27: for i := K − 1 downto 0 do
28: if upd [i].next [i] = curr ∧ curr .val = v then
29: upd [i].next [i] := curr .next [i] //@ sl.r := sl.r − {(curr , i)}
30: curr .locks[i].unlock() //@ mr := mr − {(curr , i)}
31: else
32: upd [i].next [i].locks[i].unlock() //@ mr := mr − {upd [i].next [i], i)}
33: end if
34: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}

//@ H := i− 1
35: end for
36: Bool valueWasIn := (curr .val = v)
37: if valueWasIn then
38: free (curr)
39: end if
40: return valueWasIn
41: end procedure

Fig. 13. Algorithm for deletion on a concurrent lock-coupling skiplist

D Non Termination Under Weak Fairness

Here we proof that the implementation given in Fig. 3 does not ensure termi-
nation of all threads under the assumption of weak-fairness. For such purpose,
consider the skiplist depicted in Fig. 14.

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞

head tail

15

Fig. 14. An example of skiplist

We use values L[t], U [t] and H [t] to denote the section of the skiplist that
can be potentially modified by thread t. L[t] describes the lowest address bound
while U [t] denotes the upper address bound. Meanwhile, H [t] represents the
higher level to be modified. Considering the skiplist at Fig. 14 we consider two
thread running concurrently. Thread 1 (called T1) will insert value 14 with height
1, while thread 2 (denoted T2) inserts value 16 with height 2.

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

(a) initial locking by T1

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

(b) T1 on level 1

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

(c) T1 on level 0

Fig. 15. Progress of T1 towards insertion of value 14

We start executing T1. This thread grabs the lock at level 2 on node −∞ and
18, as shown in Fig. 15(a). As it detects that it has gone beyond the position

where 16 should be inserted, it decides to go down a level. The algorithm proceeds
as depicted in Fig. 15(b) and 15(c).

At this moment, T2 starts its execution. Fig. 16 shown the progress made by
T2 toward the insertion of a level 2 node with value 16.

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

2 2

(a) initial locking by T2

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

2 2

(b) T2 on level 1

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

2 2

(c) final position of T2 on level 1

Fig. 16. Progress of T2 towards insertion of value 16

Notice that the potentially modifiable regions by thread T1 and T2 intersects,
as shown in Fig. 16(c). In this case, it is quite easy to see that under the assump-
tion of weak-fairness, if T2 continuously perform the same insertion, it prevents
T1 from progressing. However, no problem exists under the assumption of strong
fairness, since T1 is not continuously enabled. Notice that T1 becomes disable
every time T2 gets the lock at level 0 on node 15.

E Optimistic Lock-Coupling Skiplist

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1] //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: lvl := randomLevel(K)
4: Node∗curr := sl.head
5: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K − 1)}
6: Node∗pred
7: for i := K − 1 downto 0 do
8: if i < K − 1 then
9: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}

//@ U := curr .next [i+ 1]
10: if i ≥ lvl then
11: curr .locks[i+ 1].unlock() //@ mr := mr − {(curr , i+ 1)}

//@ H := i
12: end if
13: end if
14: while curr .next [i].val < newval do
15: curr .next [i].locks[i].lock() //@ mr := mr ∪ {(curr .next , i)}
16: pred := curr
17: curr := curr .next [i]
18: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ if (i = lvl){L := curr}
19: end while
20: upd [i] := curr
21: end for
22: Bool valueWasIn := (curr .next [i].val = newval)
23: if valueWasIn then
24: for i := 0 to lvl do
25: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
26: end for
27: else
28: x := CreateNode(lvl ,newval)
29: for i := 0 to lvl do
30: x.next [i] := upd [i].next [i]
31: upd [i].next [i] := x //@ sl.r := sl.r ∪ {(x, i)}
32: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
33: end for
34: end if

//@ H = −1
35: return ¬valueWasIn
36: end procedure

Fig. 17. Optimistic algorithm for insertion on a concurrent lock-coupling skiplist

F Pessimistic Lock-Coupling Skiplist

1: procedure Search(SkipList sl, Value v)
2: int i := K − 1 //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: Node∗pred := sl.head
4: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
5: Node∗curr := pred .next [i]
6: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
7: while 0 ≤ i ∧ curr .val 6= v do
8: if i < K − 1 then
9: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}

//@ U := curr
10: curr := pred .next [i]
11: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
12: pred .next [i+ 1].locks[i+ 1].unlock()

//@ mr := mr − {(pred .next [i+ 1], i+ 1)}
13: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}

//@ H := i
14: end if
15: while curr .val < v do
16: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ L := curr
17: pred := curr
18: curr := pred .next [i]
19: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
20: end while
21: i := i− 1
22: end while
23: Bool valueIsIn := (curr .val = v)
24: if i = K − 1 then
25: curr .locks[i].unlock() //@ mr := mr − {(curr , i)}

//@ U := L
26: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ H := -1
27: else
28: curr .locks[i+ 1].unlock() //@ mr := mr − {(curr , i+ 1)}

//@ U := L
29: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}

//@ H := -1
30: end if
31: return valueIsIn
32: end procedure

Fig. 18. Pessimistic algorithm for searching on a concurrent lock-coupling skiplist

G Proving Termination of All Threads

In this section we describe how to extend our decision procedure in order to
reason about the termination of all threads. We use the (L,U,H) regions in-
troduced in Section C to represent the minimum portion of the skiplist we are
sure a thread can potentially modify. We say that two threads conflict when
the (L,U,H) of one is included into the (L,U,H) of the other one. The idea of
the proof is that if a thread does not conflict with other thread, then it termi-
nates. For such purpose we consider the optimistic and pessimistic version of the
algorithms presented in Section E and F respectively.

To apply this idea, we need to define a min : mem×addr×addr×levelK → setth
function which, given a memory representation and a skiplist regions denoted
by a (L,U,H) triple, returns the set of thread identifiers whose (L,U,H) is
contained in such region. To aid the definition of min, we extend TSLK with a
new function skipRgTh : mem×addr×addr× levelK×addr×addr× levelK → setth,
defined into Σbridge. The function skipRgTh returns the set of thread identifiers
that contain a lock on any node in the list that goes from a to b considering
level l of the skiplist. Besides, we ask that the (L,U,H) of all thread identifiers
in the set returned by skipRgTh are contained into the region denoted by the L,
U and H given as parameter.

Before we proceed with the definition of such function, there are some as-
sumptions we need to make. In particular, we require that (L,U,H) values are
not kept locally, as depicted in previous algorithms. We need them to be shared
among all threads. Therefore, we assume that the SkipList class is extended with
ghost mappings mL, mU and mH which goes from thid to addr. These mappings
are updated by the algorithms such that at every moment, for every thread
identifier t, (mL(t),mU (t),mH (t)) matches with the (L,U,H) of thread t.

We begin extending our decision procedure by adding a cont predicate to
PATH . This predicate holds when a region (L′, U ′, H ′) is contained into a region
(L,U,H):

cont : mem× addr × addr × levelK × addr × addr × levelK

cont(h, L′, U ′, H ′, L, U,H) =̂ reachK(h, L, L′, 0) ∧
reachK(h, U ′, U, 0) ∧
(K ′ < K ∨K ′ = K)

Basically, predicate cont says that considering level 0 of the skiplist, from
L it is possible to reach L′, from U ′ it can be reached U and K ′ should be
lower or equal to K. Of course, we can ensure that (L′, U ′, H ′) represents a valid
rectangular region by adding the constraint reachK(h, L′, U ′, 0) to the predicate.
Then, we can extend PATH further by adding a recursive contTh predicate
which takes as argument:

– a memory layout, h
– a lower bound address, L
– an upper bound address, U

– a bound on the skiplist’s level, H

– an initial address, a

– a final address, b

– a level, l

– a set of thread identifiers, s

Then, the predicate contTh(h, L, U,H, a, b, l, s) holds whether s is the set of
threads identifiers owing a lock in the list that goes from address a to b, through
level l of the skiplist. Moreover, we require that the (L,U,H) of each thread
identifiers in s must be a subset of the region denoted by the L, U and K given
as parameter. Formally, we define the predicate contTh as:

contTh : mem× addr × addr × levelK × addr × addr × levelK × setth

 t = h[a].lockid [l] ∧
t 6= � ∧
contained

→ contTh(h, L, U,H, a, a, l, {t}T)

(
t = h[a].lockid [l] ∧
(t = �) ∨ (t 6= � ∧ ¬contained)

)
→ contTh(h, L, U,H, a, a, l, ∅T)

t = h[a].lockid [l] ∧
h[a].next [l] = a′ ∧
contTh(h, L, U,H, a′, b, l, s) ∧
t 6= � ∧
contained

→ contTh(h, L, U,H, a, b, l, s ∪T {t}T)

t = h[a].lockid [l] ∧
h[a].next [l] = a′ ∧
contTh(h, L, U,H, a′, b, l, s) ∧
(t == null ∨ ¬contained)

→ contTh(h, L, U,H, a, b, l, s)

where contained =̂ cont(h,mL(t),mU (t),mH (t), L, U,H)

Notice that the definition of contTh is similar to the one of reachK. Finally,
we need to add to GAP the following equivalence:

contTh(h, L, U,H, a, b, l, s) ↔ skipRgTh(h, L, U,H, a, b, l) = s

We can now use function skipRgTh to define the function min we required.
We can do so through the following equivalence:

t = min(h, L, U,H)↔ s = skipRgTh(h, L, U,H) ∧
t ∈ s ∧
∅ = skipRgTh(h,mL(t),mU (t),mH (t))

As usual, every time we find a literal of the form t = min(h, L, U,H) we
proceed to replace it by the equivalent definition we have given above. Then, we
replace the invocations of skipRgTh by invocations to contTh. We can finally
unroll the occurrences of contTh according to its recursive definition up to the
bound given by the small model property.

TODO: Remains to verify whether the SMP still holds.

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1] //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: lvl := randomLevel(K)
4: Node∗pred := sl.head
5: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K − 1)}
6: Node∗curr := pred .next [K − 1]
7: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K − 1)}
8: Node∗cover
9: for i := K − 1 downto 0 do

10: if i < K − 1 then
11: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}

//@ U := pred .next [i+ 1]
12: if i ≥ lvl then
13: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}

//@ H := i
14: end if
15: if i < k − 2 ∧ i > lvl − 2 then
16: cover .locks[i+ 2].unlock()
17: end if
18: cover := curr
19: curr := pred .next [i]
20: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
21: end if
22: while curr .val < newval do
23: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ if (i = lvl){L := curr}
24: pred := curr
25: curr := pred .next [i]
26: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
27: end while
28: upd [i] := pred
29: end for
30: Bool valueWasIn := (curr .val = newval)
31: if valueWasIn then
32: for i := 0 to lvl do
33: upd [i].next [i].locks[i].unlock() //@ mr := mr−{(upd [i].next [i], i)}
34: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
35: end for
36: else
37: x := CreateNode(lvl ,newval)
38: for i := 0 to lvl do
39: x.next [i] := upd [i].next [i]
40: upd [i].next [i] := x //@ sl.r := sl.r ∪ {(x, i)}
41: x.next [i].locks[i].unlock() //@ mr := mr − {(x.next [i], i)}
42: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
43: end for
44: end if

//@ H = −1
45: return ¬valueWasIn
46: end procedure

Fig. 19. Pessimistic algorithm for insertion on a concurrent lock-coupling skiplist

1: procedure Remove(SkipList sl, Value v)
2: Vector < Node∗ > upd [0..K − 1] //@ mrgnmr := ∅

//@ L := sl.head
//@ U := sl.tail
//@ H := K − 1

3: Node∗pred := sl.head
4: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K − 1)}
5: Node∗curr := pred .next [K − 1]
6: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K − 1)}
7: for i := K − 1 downto 0 do
8: if i < K − 1 then
9: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}

//@ U := curr
10: curr := pred .next [i]
11: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
12: if pred .next [i+ 1].val 6= e then
13: pred .next [i+ 1].locks[i+ 1].unlock()
14: pred .locks[i+ 1].unlock() //@ H := i
15: end if
16: end if
17: while curr .val < v do
18: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}

//@ if (aux .val 6= e){L := curr}
19: pred := curr
20: curr := pred .next [i]
21: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
22: end while
23: upd [i] := pred
24: end for
25: for i := K − 1 downto 0 do
26: if upd [i].next [i] = curr ∧ curr .val = v then
27: upd [i].next [i] := curr .next [i] //@ sl.r := sl.r − {(curr , i)}
28: curr .locks[i].unlock() //@ mr := mr − {(curr , i)}
29: else
30: upd [i].next [i].locks[i].unlock() //@ mr := mr − {upd [i].next [i], i)}
31: end if
32: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}

//@ H := i− 1
33: end for
34: Bool valueWasIn := (curr .val = v)
35: if valueWasIn then
36: free (curr)
37: end if
38: return valueWasIn
39: end procedure

Fig. 20. Pessimistic algorithm for deletion on a concurrent lock-coupling skiplist

