
Formal Verification of Skiplists
with Arbitrary Many Levels?

Alejandro Sánchez1 and César Sánchez1,2

1 IMDEA Software Institute, Madrid, Spain
2 Institute for Information Security, CSIC, Spain

Abstract. We present an effective method for the formal verification of
skiplists, including skiplists with arbitrary length and unbounded size.
The core of the method is a novel theory of skiplists with a decidable
satisfiability problem, which up to now has been an open problem.
A skiplist is an imperative software data structure used to implement a
set by maintaining several ordered singly-linked lists in memory. Skiplists
are widely used in practice because they are simpler to implement than
balanced trees and offer a comparable performance. To accomplish this
efficiency most implementations dynamically increment the number of
levels as more elements are inserted. Skiplists are difficult to reason
about automatically because of the sharing between the different lay-
ers. Furthermore, dynamic height poses the extra challenge of dealing
with arbitrarily many levels. Our theory allows to express the memory
layout of a skiplist of arbitrary height, and has an efficient decision pro-
cedure. Using an implementation of our decision procedure, we formally
verify shape preservation and a functional specification of two source
code implementations of the skiplist datatype.
We also illustrate how our decision procedure can also improve the ef-
ficiency of the verification of skiplists with bounded levels. We show
empirically that a decision procedure for bounded levels does not scale
beyond 3 levels, while our decision procedure terminates quickly for any
number of levels.

1 Introduction

A skiplist [13] is a data structure that implements a set, maintaining several
sorted singly-linked lists in memory. Each node in a skiplist stores a value and at
least the pointer corresponding to the list at the lowest level, called the backbone
list. Some nodes also contain pointers at higher levels, pointing to the next node
present at that level. The skiplist property establishes that: (a) the backbone list
is ordered; (b) lists at all levels begin and terminate on special sentinel nodes
called head and tail respectively; (c) tail points to null at all levels; (d) the list
at level i+1 is a sublist of the list at level i. Search in skiplists is probabilistically
logarithmic.

? This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01
STRONGSOFT”



5 22 25 53 70 88

head

level 0

level 1

level 2

level 3

tail

−∞ +∞

Fig. 1. A skiplist with 4 levels and the traversal searching 88 (heavy arrow).

Consider the skiplist layout in Fig. 1. Higher-level pointers allow to skip
many elements during the search. A search is performed from left to right in a
top down fashion, progressing as much as possible in a level before descending.
For instance, in Fig. 1 a lookup for value 88 starts at level 3 of node head .
The successor of head at level 3 is tail , which stores value +∞, greater than
88. Consequently, the search continues at head by moving down to level 2. The
expected logarithmic search follows from the probability of a node being present
at a certain level decreasing by 1/2 as the level increases.

Contributions Most practical implementations of skiplists either can grow dy-
namically to any height or limit the maximum height of any node to a large
value like 32. Both kinds of implementations use a variable to store the current
highest level in use. In this paper we introduce TSL, a theory that captures skip-
list memory layouts, and we show that the (quantifier-free) satisfiability problem
for TSL is decidable, which has been up to now an open problem. This theory
builds non-trivially from the family of theories TSLK (see [17]) that allow to
reason about skiplists of a bounded number of levels. TSL is a decidable theory
which solves the following two open problems: (a) verification of skiplist imple-
mentations with an unbounded/growing number of levels; and (b) verification
of skiplist implementations for any bounded number of levels, even beyond the
practical limitation of 3 levels suffered by current verification techniques. With
our implementation of the decision procedure for TSL, we verify two implemen-
tations of the skiplist datatype: one, part of the industrial open source project
KDE [1,2], and a full implementation developed internally. In this paper we also
show, empirically, that TSLK does not scale beyond K = 3 levels but TSL allows
to verify skiplist implementations of arbitrarily many levels (bounded by some
value like 32 or not).

Related Work Reasoning about skiplists requires to deal with unbounded
mutable data stored in the heap. One popular approach to the verification
of heap programs is Separation Logic [15]. Skiplists, however, are problematic
for separation-like approaches due to the aliasing and memory sharing between
nodes at different levels. Most of the work in formal verification of pointer pro-
grams are based on program logics in the Hoare tradition enriched to deal with
the heap and pointer structures [4, 9, 20]. Our approach is complementary, con-
sisting of the design of specialized decision procedures for memory layouts which
can be incorporated into a reasoning system for proving temporal properties, in
the style of Manna-Pnueli [10]. Proofs (of both safety and liveness properties)
are ultimately decomposed into verification conditions (VCs) in the underlying



theory used for state assertions. This paper studies the automatic verification
of VCs involving the manipulation of skiplist memory layouts. For illustration
purposes we restrict the presentation in this paper to safety properties.

Logics like [4,9,20] are very powerful to describe pointer structures, but they
require the use of quantifiers to reach their expressive power. Hence, these logics
preclude their combination with methods like Nelson-Oppen [12] or BAPA [8]
for other aspects of the program state. Other alternatives based on shape anal-
ysis [19], like forest automata [3, 7] can only handle skiplists only of a bounded
height (empirical evaluation also suggest a current limit of 3). Unlike [7] our
approach is not fully automatic in the sense that it requires some user provided
annotations. On the other hand, our approach can handle skiplists of arbitrary
and growing height. The burden of additional annotation can be alleviated with
methods like invariant generation, but this is out of the scope of this paper.

Instead, we borrow from [14] a model-theoretic technique to deal with reach-
ability to define the theory TSL and build its decision procedure. Our solution
uses specific theories of memory layouts [16, 17] that allow to express powerful
properties in the quantifier-free fragment through the use of built-in predicates.
For example, in [17] we presented a family of theories of skiplists of fixed height,
based on a theory of ordered singly-linked lists [16]. However, handling dynamic
height was still an open problem that precluded the verification of practical
skiplist implementations. We solve this open problem here.

The rest of the paper is structured as follows. Section 2 presents a running
example of two implementations of the skiplists datatype. Section 3 introduces
TSL. Section 4 contains the decidability proof. Section 5 provides some examples
of the use of TSL in the verification of skiplists. Finally, Section 6 concludes the
paper. Some proofs are missing due to space limitation and are included in the
appendix.

2 An Implementation of Skiplists

Fig. 2 shows the pseudo-code of a sequential implementation of a skiplist, whose
basic classes are Node and SkipList . Each Node object contains a key field for
keeping the list ordered, a field val for the actual value stored, and a field next :
an array of arbitrary length containing the addresses of the following nodes at
each level. The program in Fig. 2 implements an unbounded skiplist. The local
variables lvl in Insert, i in Search and removeFrom in Remove maintain the
maximum level that these algorithms should consider.

An object sl of class SkipList , maintains fields sl.head , sl.tail and sl.maxLevel
to keep the data members storing the addresses of the head and tail sentinel
nodes, and the maximum level in use (resp). When the SkipList object sl is
clear from the context, we use head , tail and maxLevel instead of sl.head , sl.tail
and sl.maxLevel . The head node has key = −∞ and tail has key = +∞. These
nodes are not removed during the execution and their key field is not modified.

Finally, Node objects also maintain a “ghost field” level for the highest rele-
vant level of next . SkipList objects maintain two ghost fields: reg for the region



1: procedure MGC(SkipList sl)
2: while true do
3: v := NondetPickValue
4: nondet

5:




call Insert(sl, v)
or

call Search(sl, v)
or

call Remove(sl, v)




6: end while
7: end procedure

8: procedure Insert(SkipList sl, Value v)
9: Array〈Node∗〉 [sl.maxLevel + 1]upd

10: Bool valueWasIn := false
11: Int lvl := randomLevel
12: if lvl > sl.maxLevel then
13: i := sl.maxLevel + 1
14: while i ≤ lvl do
15: sl.head .next [i] := sl.tail
16: sl.tail .next [i] := null
17: sl.maxLevel := i
18: i := i+ 1
19: end while
20: end if
21: Node∗pred := sl.head
22: Node∗curr := pred .next [sl.maxLevel ]
23: Int i := sl.maxLevel
24: while 0 ≤ i ∧ ¬valueWasIn do
25: curr := pred .next [i]
26: while curr .val < v do
27: pred := curr
28: curr := pred .next [i]
29: end while
30: upd [i] := pred
31: i := i− 1
32: valueWasIn := (curr .val = v)
33: end while
34: if ¬valueWasIn then
35: x := CreateNode(lvl , v)
36: i := 0
37: while i ≤ lvl do
38: x.next [i] := upd [i].next [i]
39: upd [i].next [i] := x

if i = 0 then
sl.reg := sl.reg ∪ {x}
sl.elems := sl.elems ∪ {v}

40: i := i+ 1
41: end while
42: end if
43: return ¬valueWasIn
44: end procedure

45: procedure Search(SkipList sl, Value v)
46: Node∗ pred := sl.head
47: Node∗ curr := pred .next [maxLevel ]
48: Int i := sl.maxLevel
49: while 0 ≤ i do
50: curr := pred .next [i]
51: while curr .val < v do
52: pred := curr
53: curr := pred .next [i]
54: end while
55: i := i− 1
56: end while
57: return curr .val = v
58: end procedure

59: procedure Remove(SkipList sl, Value v)
60: Array〈Node∗〉[sl.maxLevel + 1] upd
61: Int removeFrom := sl.maxLevel
62: Node∗ pred := sl.head
63: Node∗ curr := pred .next [sl.maxLevel ]
64: Int i := sl.maxLevel
65: while i ≥ 0 do
66: curr := pred .next [i]
67: while curr .val < v do
68: pred := curr
69: curr := pred .next [i]
70: end while
71: if curr .val 6= v then
72: removeFrom := i− 1
73: end if
74: upd [i] := pred
75: i := i− 1
76: end while
77: Bool valueWasIn := (curr .val = v)
78: if valueWasIn then
79: i := removeFrom
80: while i ≥ 0 do
81: upd [i].next [i] := curr .next [i]

if i = 0 then
sl.reg := sl.reg \ {curr}
sl.elems := sl.elems \ {v}

82: i := i− 1
83: end while
84: free (curr)
85: end if
86: return valueWasIn
87: end procedure

class Node { Value val ; Key key ; Array〈Node∗〉 next ; Int @level ; }
class SkipList { Node∗ head ; Node∗ tail ; Int @maxLevel ; Set〈Addr〉 @reg ; Set〈Value〉 @elems; }

Fig. 2. On top, the classes Node and SkipList . Below, the most general client MGC,
and the procedures Insert, Search and Remove.



(set of addresses) managed by the skiplist and elems for the set of values stored
in the skiplist. We use the @ symbol to denote a ghost field, and boxes (see
Fig. 2) to describe “ghost code”. These small extra ghost annotations are only
added for verification purposes and do not influence the execution of the real
program.

Fig. 2 contains the algorithms for insertion (Insert), search (Search) and
removal (Remove). Fig. 2 also shows the most general client MGC that non-
deterministically performs calls to skiplist operations, and can exercise all pos-
sible sequences of calls. We use MGC to verify properties like skiplist preserva-
tion. The execution begins with an empty skiplist containing only head and tail
nodes at level 0, that has already been created. New nodes are then added using
Insert. To maintain reg and elems: (a) a new node becomes part of the skiplist
when it is connected at level 0 in Insert; and (b) a node stops being part of the
skiplist when it is disconnected at level 0 in Remove. For simplicity, we assume
in this paper that val and key contain the same object. We wish to prove that
in all reachable states of MGC the memory layout is that of a “skiplist”. We
will also show that this datatype implements a set.

3 TSL: The Theory of Skiplists of Arbitrary Height

We use many-sorted first order logic to define TSL, as a combination of theories.
We begin with a brief overview of notation and concepts. A signature Σ is a
triple (S, F, P ) where S is a set of sorts, F a set of functions and P a set of
predicates. If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2), we define Σ1 ∪ Σ2 =
(S1 ∪ S2, F1 ∪ F2, P1 ∪ P2). Similarly we say that Σ1 ⊆ Σ2 when S1 ⊆ S2, F1 ⊆
F2 and P1 ⊆ P2. Let t be a term and ϕ a formula. We denote with Vσ(t) (resp.
Vσ(ϕ)) the set of variables of sort σ occurring in t (resp. ϕ). Similarly, we denote
with Cσ(t) (resp. Cσ(ϕ)) the set of constants of sort σ occurring in t (resp. ϕ).

A Σ-interpretation is a map from symbols in Σ to values (see, e.g., [6]). A Σ-
structure is a Σ-interpretation over an empty set of variables. A Σ-formula over
a set X of variables is satisfiable whenever it is true in some Σ-interpretation
over X . A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-
structures. Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation
A such that AΣ ∈ A, where AΣ is A restricted to interpret no variables. Given
a Σ-theory T , a Σ-formula ϕ over a set of variables X is T -satisfiable whenever
it is true on a T -interpretation over X .

Formally, the theory of skiplists of arbitrary height is defined as TSL =
(ΣTSL,TSL), where ΣTSL is the union of the following signatures, shown in Fig. 3
ΣTSL = Σlevel ∪Σord ∪Σarray ∪Σcell ∪Σmem ∪Σreach ∪Σset ∪Σbridge , and TSL is
the class of ΣTSL-structures satisfying the conditions listed in Fig. 4.

Informally, sort addr represents addresses; elem the universe of elements that
can be stored in the skiplist; level the levels of a skiplist; ord the ordered keys
used to preserve a strict order in the skiplist; array corresponds to arrays of ad-
dresses, indexed by levels; cell models cells representing objects of class Node;
mem models the heap, a map from addresses to cells; path describes finite se-



quences of non-repeating addresses to model non-cyclic list paths; finally, set
models sets of addresses—also known as regions.

Σset is interpreted as finite sets of addresses. Σlevel as natural numbers with
order and addition with constants. Σord models the order between elements, and
contains two special elements −∞ and +∞ for the lowest and highest values in
the order �. Σarray is the theory of arrays [5, 11] with two operations: A[i] to
model that an element of sort addr is stored in array A at position i of sort level,
and A{i← a} for an array update, which returns the array that results from A
by replacing the element at position i with a. Σcell contains the constructors and
selectors for building and inspecting cells, including error for incorrect derefer-
ences. Σmem is the signature of heaps, with the usual memory access and single
memory mutation functions. The signature Σreach contains predicates to check
reachability of addresses using paths at different levels. Finally, Σbridge contains
auxiliary functions and predicates to manipulate and inspect paths as well as a
native predicate for the skiplist memory shape. In the paper, for a variable l of
sort level, we generally use l + 1 for s(l).

Signt Sort Functions Predicates

Σlevel level
0 : level
s : level→ level <: level× level

Σord ord −∞,+∞ : ord � : ord× ord

Σarray

array
level
addr

[ ] : array × level→ addr

{ ← } : array × level× addr→ array

Σcell

cell
elem
ord
array
addr
level

error : cell
mkcell : elem× ord× array × level→ cell
.data : cell→ elem
.key : cell→ ord
.arr : cell→ array
.max : cell→ level

Σmem

mem
addr
cell

null : addr
rd : mem× addr→ cell
upd : mem× addr × cell→ mem

Σreach

mem
addr
path

ε : path

[ ] : addr→ path

append : path× path× path
reach : mem× addr × addr

× level× path

Σset
addr
set

∅ : set

{ } : addr→ set

∪,∩, \ : set× set→ set

∈ : addr × set
⊆ : set× set

Σbridge

mem
addr
set
path
level

path2set : path→ set
addr2set : mem× addr × level→ set
getp : mem× addr × addr × level→ path

ordList : mem× path
skiplist : mem× set× level

× addr × addr

Fig. 3. The signature of the TSL theory



Each sort σ in ΣTSL is mapped to a non-empty set Aσ such that:
(a) Aaddr and Aelem are discrete sets (b) Alevel is the naturals with order

(c) Aord is a total ordered set (d) Aarray = AAlevel

addr

(e) Acell = Aelem ×Aord ×Aarray ×Alevel (f) Apath is the set of all finite sequences of

(g) Amem = AAaddr

cell (pairwise) distinct elements of Aaddr

(h) Aset is the power-set of Aaddr

Signature Interpretation

Σlevel • 0A = 0 • sA(l) = s(l), for each l ∈ Alevel

Σord

• x�Ay ∧ y�Ax→ x = y • x�Ay ∨ y�Ax
• x�Ay ∧ y�Az → x�Az • −∞A�Ax ∧ x�A+∞A

for any x, y, z ∈ Aord

Σarray

• A[l]A = A(l)
• A{l← a}A = B, where B(l) = a and B(i) = A(i) for i 6= l

for each A,B ∈ Aarray, l ∈ Alevel and a ∈ Aaddr

Σcell

• mkcellA(e, k, A, l) = 〈e, k, A, l〉 • errorA.arrA(l) = nullA

• 〈e, k, A, l〉.dataA = e • 〈e, k, A, l〉.keyA = k

• 〈e, k, A, l〉.arrA = A • 〈e, k, A, l〉.maxA = l

for each e ∈ Aelem, k ∈ Aord, A ∈ Aarray, and l ∈ Alevel

Σmem
• rd(m, a)

A
= m(a) • updA(m, a, c) = ma 7→c • mA(nullA) = errorA

for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

Σreach

• εA is the empty sequence
• [a]

A
is the sequence containing a ∈ Aaddr as the only element

• ([a1 .. an] , [b1 .. bm] , [a1 .. an, b1 .. bm]) ∈ appendA iff ak 6= bl.
• (m, ainit, aend, l, p) ∈ reachA iff ainit = aend and p = ε, or there

exist addresses a1, . . . , an ∈ Aaddr such that:
(a) p = [a1 .. an] (c) m(ar).arrA(l) = ar+1, for r < n

(b) a1 = ainit (d) m(an).arrA(l) = aend

Σbridge

for each m ∈ Amem, p ∈ Apath, l ∈ Alevel, ai, ae ∈ Aaddr, r ∈ Aset

• path2setA(p) = {a1, . . . , an} for p = [a1, . . . , an] ∈ Apath

• addr2setA(m, a, l) =
{
a′ | ∃p ∈ Apath . (m, a, a′, l, p) ∈ reachA

}

• getpA(m, ai, ae, l) = p if (m, ai, ae, l, p) ∈ reachA, and ε otherwise

• ordListA (m, p) iff p = ε or p = [a], or p = [a1, . . . , an] with n ≥ 2 and
m(aj).keyA � m(aj+1).keyA for all 1 ≤ j < n, for any m ∈ Amem

• skiplistA(m, r, l, ai, ae) iff




ordListA(m, getpA(m, ai, ae, 0)) ∧
r = addr2setA(m, ai, 0) ∧

0 ≤ l ∧ ∀a ∈ r . m(a).maxA ≤ l ∧
m(ae).arrA(l) = nullA ∧(

0 = l
)
∨(

∃lp . sA(lp) = l ∧ ∀ i ∈ 0, . . . , lp .

m(ae).arrA(i) = nullA ∧
path2setA(getpA(m, ai, ae, s

A(i))) ⊆
path2setA(getpA(m, ai, ae, i))

)




Fig. 4. Characterization of a TSL-interpretation A



4 Decidability of TSL

In this section we prove the decidability of the satisfiability problem of quantifier-
free TSL formulas. We first start with some preliminaries.

Preliminaries A flat literal is of the form x = y, x 6= y, x = f(y1, . . . , yn),
p(y1, . . . , yn) or ¬p(y1, . . . , yn), where x, y, y1, . . . , yn are variables, f is a function
symbol and p is a predicate symbol defined in the signature of TSL. We first
identify a set of normalized literals. All other literals can be converted into
normalized literals.

Lemma 1 (Normalized Literals). Every TSL-formula is equivalent to a dis-
junction of conjunctions of literals of the following list, called normalized TSL-
literals:

e1 6= e2 a1 6= a2 l1 6= l2
a = null c = error c = rd(m, a)
k1 6= k2 k1 � k2 m2 = upd(m1, a, c)
c = mkcell(e, k, A, l) l1 < l2 l = q

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
a = A[l] B = A{l← a}
p1 6= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2set(m, a, l) p = getp(m, a1, a2, l)
ordList(m, p) skiplist(m, s, a1, a2)

For instance, e = c.data can be rewritten as c = mkcell(e, k, A, l) for fresh
variables k, A and l. The predicate reach(m, a1, a2, l, p) can be similarly trans-
lated into a2 ∈ addr2set(m, a1, l) ∧ p = getp(m, a1, a2, l). Similar translations
can be defined for ¬ordList(m, p), ¬skiplist(m, r, l, ai, ae), etc.

We will use the following formula ψ as a running example:

ψ : i = 0 ∧ A = rd(heap, head).arr ∧ B = A{i← tail} ∧ rd(heap, head).max = 3.

This formula establishes that B is the array obtained from the next pointers
of node head , by replacing the pointer at the lower level by tail . To check the
satisfiability of ψ we first normalize it, obtaining ψnorm:

ψnorm : i = 0 ∧



c = rd(heap, head) ∧
c = mkcell(e, k, A, l) ∧

l = 3


 ∧ B = A{i← tail}.

4.1 A Decision Procedure for TSL

Fig. 5 sketches a decision procedure for the satisfiability problem of TSL formulas,
by reducing it to the satisfiability of quantifier-free TSLK formulas and quantifier-
free Presburger arithmetic formulas. We start from a TSL formula ϕ expressed
as a normalized conjunction of literals. The main idea is to guess a feasible



To decide whether ϕin : TSL is SAT:

STEP 1. Sanitize:
ϕ := ϕin ∧

∧
B=A{l←a}∈ϕin

(lnew = l + 1)

STEP 2. Guess arrangement α of Vlevel(ϕ).

STEP 3. Split ϕ into (ϕPA ∧ α), (ϕNC ∧ α).

STEP 4. Check SAT of (ϕPA ∧ α).
If UNSAT → return UNSAT

STEP 5. Check SAT of (ϕNC ∧ α) as follows:

5.1 Let k = |Vlevel(ϕNC ∧ α)|.
5.2 Check pϕNC ∧ αq : TSLK(k):

If SAT → return SAT
else return UNSAT.

l = q

l 6= l2

l = l + 1

Σord

Σarray

Σcell

Σmem

Σreach

Σbridge

l < l2

ϕPA
ϕNC

Fig. 5. A decision procedure for the satisfibility of TSL formulas (left). A split of ϕ
obtained after STEP 1 into ϕPA and ϕNC (right).

arrangement between level variables, and then extract from ϕ the relevant levels,
generating a TSLK formula using only relevant levels. To show correctness, we
will see that from the resulting model of the TSLK formula we can create a
model of the original TSL formula by replicating relevant levels into missing
intermediate levels.

STEP 1: Sanitization The decision procedure begins by sanitizing the normal-
ized collection of literals received as input. A formula is sanitized when the level
right above array updates is named explicitly by a level variable. Sanitization
serves to infer the existence of large models from smaller models where only
named levels are populated, in Theorem 1 below.

Definition 1 (Sanitized). A conjunction of normalized literals is sanitized if
for every literal B = A{l← a} there is a literal of the form l2 = l + 1.

A formula can be sanitized by adding a fresh variable lnew and a literal lnew = l+1
for every literal B = A{l ← a} in case there is no literal l2 = l + 1 already in
the formula. Sanitizing a formula does not affect its satisfiability because it only
adds an arithmetic constraint (lnew = l + 1) for a fresh new variable lnew. For
example, sanitizing ψnorm we obtain ψsanit : ψnorm ∧ lnew = i+ 1.

STEP 2: Order arrangements, and STEP 3: Split A model of a formula
assigns a natural number to every level variable. Hence, every two variables are
either assigned the same value or are ordered by <. An order arrangement is an
arithmetic formula that captures this relation between level variables.



Definition 2 (Order Arrangement). Given a sanitized formula ϕ, an order
arrangement is a collection of literals containing, for every pair of level variables
l1, l2 ∈ Vlevel(ϕ), exactly one of (l1 = l2), (l1 < l2), or (l2 < l1).

For instance, an order arrangement of ψsanit is {i < lnew, i < l, lnew < l}.
Since there is a finite number of level variables in a formula ϕ, there is a finite
number of order arrangements. Note also that a formula ϕ is satisfiable if and
only if there is an order arrangement α such that ϕ ∧ α is satisfiable. STEP 2 of
the decision procedure consists of guessing an order arrangement α.

STEP 3 of the decision procedure first splits the sanitized formula ϕ into
ϕPA, which contains precisely all those literals in the theory of arithmetic Σlevel,
and ϕNC containing all literals from ϕ except those involving constants (l = q).
Clearly, ϕ is equivalent to ϕNC ∧ ϕPA. In our running example, ψsanit is split
into ψPA and ψNC:

ψPA : i = 0 ∧ l = 3 ∧ lnew = i+ 1

ψNC :

(
c = rd(heap, head) ∧
c = mkcell(e, k, A, l)

)
∧B = A{i← tail} ∧ lnew = i+ 1.

STEP 3 uses the order arrangement to reduce the satisfiability of a sanitized
formula ϕ that follows an order arrangement α into the satisfiability of a Pres-
burger Arithmetic formula (ϕPA ∧ α), checked in STEP 4, and the satisfiability
of a sanitized formula without constants (ϕNC ∧ α), checked in STEP 5. An
essential notion to show the correctness of this split is that of a gap, which is a
level in a model that is not named by a level variable.

Definition 3 (Gap). Let A be a model of ϕ. We say that a number n is a gap
in A if there are variables l1, l2 in Vlevel(ϕ) such that lA1 < n < lA2 , but there is
no l in Vlevel(ϕ) with lA = n.

Consider ψsanit for which Vlevel(ψsanit) = {i, lnew, l}. A model Aψ of ψ that
interprets variables i, lnew and l as 0, 1 and 3 respectively has a gap at 2.

Definition 4 (Gap-less model). A model A of ϕ is a gap-less model whenever
it has no gaps, and for every array C in arrayA and level n > lA for all l ∈
Vlevel(ϕ), C(n) = null .

We will prove the existence of a gap-less model given that there is a model.
But, before, we need one last auxiliary notion to ease the construction of similar
models, by setting a condition under which reachability at different levels is
preserved.

Definition 5. Two interpretations A and B of ϕ agree on sorts σ whenever
(i) Aσ = Bσ,

(ii) for every v ∈ Vσ(ϕ), vA = vB,
(iii) for every function symbol f with domain and co-domain from sorts in σ,

fA = fB and for every predicate symbol P with domain in σ, PA iff PB.



Lemma 2. Let A and B be two interpretations of a sanitized formula ϕ that
agree on sorts {addr, elem, ord, path, set}, and s.t. for every l ∈ Vlevel(ϕ), m ∈
Vmem(ϕ), and a ∈ addrA, the following holds: mA(a).arrA(lA) = mB(a).arrB(lB)

Then,
(

reachA(mA, aAinit, a
A
end, l

A, pA)
)

iff
(

reachB(mB, aBinit, a
B
end, l

B, pB)
)
.

Proof (Sketch). The proof follows an inductive argument on the length of the
paths returned by reach.

We show now that if a sanitized formula without constants, as the one ob-
tained after the split in STEP 3, has a model then it has a model without gaps.

Lemma 3 (Gap-reduction). Let A be a model of a sanitized formula ϕ with-
out constants, and let A have a gap at n. Then, there is a model B of ϕ such
that, for every l ∈ Vlevel(ϕ): lB = lA − 1 if lA > n, and lB = lA if lA < n. The
number of gaps in B is one less than in A.

Proof. (Sketch) We show here the construction of the model B and leave the
exhaustive case analysis of each literal for the appendix. Let A be a model of ϕ
with a gap at n. We build a model B with the condition in the lemma. B agrees
with A on addr, elem, ord, path, set. In particular, vB = vA for variables of these
sorts. For the other sorts we let Bσ = Aσ for σ = level, array, cell,mem. We define
transformation maps for elements of the corresponding domains as follows:

βlevel(j) =

{
j if j < n

j − 1 otherwise
βarray(A)(i) =




A(i) if i < n

A(i+ 1) if i ≥ n
βcell((e, k, A, l)) = (e, k, βarray(A), βlevel(l)) βmem(m)(a) = βcell(m(a))

Now, for variables l : level, A : array, c : cell and m : mem, we simply let
lB = βlevel(l

A), AB = βarray(A
A), cB = βcell(c

A), and mB = βmem(mA).
The interpretation of all functions and predicates is preserved from A. An

exhaustive case analysis on the normalized literals allows to show that B is indeed
a model of ϕ. ut

For instance, consider formula ψsanit and model Aψ above. We can construct

model B reducing one gap from Aψ by stating that iB = iAψ , lnew
B = lnew

Aψ

and lB = 2, and completely ignore arrays in model Aψ at level 2.
Similarly, by a simple case analysis of the literals of ϕ and Lemma 2 the

following Lemma holds, and the corollary that shows the existence of gapless
models.

Lemma 4 (Top-reduction). Let A be a model of ϕ, and n a level such that
n > lA for all l ∈ Vlevel(ϕ) and A ∈ arrayA be such that A(n) 6= null . Then the
interpretation B obtained from A by replacing A(n) = null is also a model of ϕ.

Corollary 1. Let ϕ be a sanitized formula without constants. Then, ϕ has a
model if and only if ϕ has a gapless model.



We show now that STEP 2 and the split in STEP 3 preserve satisfiability.

Theorem 1. A sanitized TSL formula ϕ is satisfiable if and only if for some
order arrangement α, both (ϕPA ∧ α) and (ϕNC ∧ α) are satisfiable.

Proof. (Sketch) The “⇒” direction follows immediately, since a model of ϕ con-
tains a model of its subformulas ϕPA and ϕNC, and a model of ϕPA induces a
satisfying order arrangement α.

For “⇐”, let α be an order arrangement for which both (ϕPA ∧ α) and
(ϕNC ∧ α) are satisfiable, and let B be a model of (ϕNC ∧ α) and A be a model
of (ϕPA ∧ α). By Corollary 1, we assume that B is a gapless model. The obstacle
in merging the models is that the values for levels in A and in B may differ. We
will build a model C of ϕ using B and A. In C, all levels will receive lC = lA,
but all other sorts will be filled according to B, including the contents of cells
at level l, which will be the corresponding cells of B at level lB. The remaining
issue is how to fill intermediate levels, not existing in B. Levels can be populated
cloning existing levels from B, illustrated in Fig. 6 (a) below. The two reasonable
candidates to populate the levels between lC1 and lC2 , are level lB1 and level lB2 , but
without sanitation both options can lead to a predicate changing its truth value
between models B and C, as illustrated in Fig. 6 (b) and (c). With sanitation,
level lnew can be used to populate the intermediate levels, preserving the truth
values of all predicates between models B and C. The detailed proof is in the
appendix. ut

STEP 4: Presburger Constraints The formula (ϕPA ∧ α) contains only
literals of the form l1 = q, l1 6= l2, l1 = l2 + 1, and l1 < l2 for integer variables
l1 and l2 and integer constant q, a simple fragment of Presburger Arithmetic.

STEP 5: Deciding Satisfiability of Formulas Without Constants In
STEP 5 we reduce a sanitized formula without constants ψ into an equisatisfi-
able formula pψq in the decidable theory TSLK, for a finite value K = |Vlevel(ψ)|
computed from the formula. This bound provides the number of levels required
in necessary to reason about the satisfiability of ψ. We use [K] as a short for the
set 0 . . .K − 1. For ψsanit, we have K = 3 and thus we construct a formula in
TSL3.

l2

l1l1

l2
?

l1

lnew

l2

(a) (b) (c) (d)

Fig. 6. Pumping a model of ϕNC to a model of ϕ is allowed thanks to the fresh level
lnew. In (b) the truth value of A = B{l1 ← e} is not preserved. In (c) A = B{l2 ← e}
is not preserved. In (d) all predicates are preserved.



The translation from ψ into pψq works as follows. For every variable A of
sort array appearing in some literal in ψ we introduce K fresh new variables
vA[0], . . . , vA[K−1] of sort addr. These variables correspond to the addresses from
A that the decision procedure for TSLK needs to reason about. All literals from
ψ are left unchanged in pψq except (c = mkcell(e, k, A, l)), (a = A[l]), (B =
A{l← a}), B = A and skiplist(m, s, a1, a2) that are changed as follows:
– c = mkcell(e, k, A, l) is transformed into c = (e, k, vA[0], . . . , vA[K−1]).
– a = A[l] gets translated into:

∧
i∈[K]

l = i→ a = vA[i].

– B = A{l← a} is translated into:

( ∧

i∈[K]

l = i→ a = vB[i]

)
∧
( ∧

j∈[K]

l 6= j → vB[j] = vA[j]

)

– skiplist(m, r, a1, a2) gets translated into:

ordList(m, getp(m, a1, a2, 0)) ∧ r = path2set(getp(m, a1, a2, 0)) ∧∧

i∈[K]

rd(m, a2).arr [i] = null ∧
∧

i∈[K−1]

path2set(getp(m, a1, a2, i+ 1)) ⊆ path2set(getp(m, a1, a2, i))

Note that the formula pϕq obtained using this translation belongs to the
theory TSLK. For instance, in our running example,

pψNCq :



i = 0→ tail = vB[0] ∧ i = 1→ tail = vB[1] ∧ i = 2→ tail = vB[2] ∧
i 6= 0→ vB[0] = vA[0] ∧ i 6= 1→ vB[1] = vA[1] ∧ i 6= 2→ vB[2] = vA[2] ∧
c = rd(heap, head) ∧ c = mkcell(e, k, vA[0], vA[1], vA[2]) ∧ lnew = i+ 1




The following lemmas establishes the correctness of the translation.

Lemma 5. Let ψ be a sanitized TSL formula with no constants. Then, ψ is
satisfiable if and only if pψq is also satisfiable.

The main result of this paper is the following decidability theorem, which
follows from Lemma 5, Theorem 1 and the fact that every formula can be nor-
malized and sanitized.

Theorem 2. The satisfiability problem of QF TSL-formulas is decidable.

5 Shape and Functional Verification

In this section we report an empirical evaluation of the verification of two im-
plementations of a skiplist, including an implementation from the open-source
project KDE. The TSL decision procedure has been integrated in Leap3, a theo-
rem prover being developed at IMDEA, based on parametrized proof rules [18]. A

3 Leap and all examples can be downloaded from http://software.imdea.org/leap.



TSL query is ultimately decomposed into simple Presburger arithmetic formulas
and TSLK formulas. We use the decidability theorem for TSLK formulas, which
essentially computes a cardinality bound on a small model. Then, the TSLK
procedure encodes in SMT the existence of one such small model by unrolling
predicates (like e.g., reach) up to the computed bound.

We verified two kinds of properties: skiplist memory shape preservation and
functional correctness. Memory preservation is stated using the predicate skiplist
from TSL, and verified using the most general client from Fig. 2. For functional
verification we use the simple spec in Fig. 7.

The proof of shape preservation requires some auxiliary invariants region, next
and order (skiplistKDE, nodesKDE, pointersKDE and valuesKDE in the KDE imple-
mentation) that capture the separation between the skiplist region and new cells
and the relation between the pointers used to traverse the skiplist. The precise
definitions can be found in the web page of Leap. Fig. 8 reports an evaluation

1: procedure FuncSearch(SkipList sl)
2: Set〈Value〉 elems before := sl.elems
3: v := NondetPickValue
4: result := call Search(sl, v)

5: assert

(
elems = elems before ∧
result ↔ v ∈ elems

)

6: end procedure

1: procedure FuncInsert(SkipList sl)
2: Set〈Value〉 elems before := sl.elems
3: v := NondetPickValue
4: result := call Insert(sl, v)
5: assert (elems = elems before ∪ {v})
6: end procedure

1: procedure FuncRemove(SkipList sl)
2: Set〈Value〉 elems before := sl.elems
3: v := NondetPickValue
4: result := call Remove(sl, v)
5: assert (elems = elems before \ {v})
6: end procedure

Fig. 7. Functional specification

of the performance of the decision proce-
dure described in this paper for these two
implementations with unbounded num-
ber of levels (first 8 rows of the table)
compared with the performance of us-
ing only TSLK on implementations with
bounded levels (for bounds 1, 2, 3 and
4). The results for proving skiplist and
its auxiliary invariants appear in the first
four rows, and for skiplistKDE in the fol-
lowing four. The corresponding invariants
for bounded levels are reported in rows
labeled skiplisti, regioni, nexti and orderi
for i = 1, 2, 3, 4. Column #VC shows the
number of VCs generated. Column #ϕ
shows the number of formulas generated
from these VCs (after normalization, etc).
Column TSL shows the number of queries
to the TSL decision procedure, and column TSLi the number of queries to TSLK
for K = i. A query to TSL can result in several queries to TSLi. In some cases
there are fewer queries than formulas, because some formulas are trivially sim-
plified. Finally, the columns labeled “avg” and “slowest” report the average and
slowest running time to prove all VCs. The time reported in the column Leap
corresponds to the total verification time excluding the invocation to the DPs.
The column DP reports the total running time used in invoking all DPs.

This evaluation demonstrates that our decision procedure is practical to ver-
ify implementations with a variable number of levels, and allows to scale the
verification of implementations with a fixed number of levels where previously
known decision procedures time out. In the case of functional verification, Leap
using the TSL decision procedure was capable of verifying all three specifications
for the skiplist of unbounded height in less than one second.



Formulas #Calls to DPs VC time (s.) Total time (s.)
#VC #ϕ TSL TSL1 TSL2 TSL3 TSL4 slowest avg Leap DP

skiplist 80 560 28 45 92 38 14 5.40 0.24 0.15 19.64
region 80 1583 56 111 185 76 − 22.66 0.54 1.35 42.93
next 80 1899 30 39 55 22 − 0.32 0.02 1.59 1.60
order 80 2531 57 167 286 116 4 2.35 0.84 4.44 6.75

skiplistKDE 54 214 14 37 61 32 12 5.93 0.24 0.05 13.14
nodesKDE 54 585 32 99 174 76 − 3.10 0.17 0.31 9.36

pointersKDE 54 1115 27 38 42 16 − 0.22 0.01 0.86 0.76
valuesKDE 54 797 34 120 194 76 − 0.64 0.06 0.69 3.06

skiplist1 77 119 − 32 − − − 0.10 0.01 0.20 0.32
region1 77 119 − 27 − − − 0.14 0.01 0.37 0.28
next1 77 79 − 19 − − − 0.02 0.01 0.15 0.14
order1 77 79 − 25 − − − 0.02 0.01 0.58 0.11

skiplist2 79 137 − − 47 − − 2.15 0.05 0.35 4.13
region2 79 122 − − 27 − − 1.08 0.03 0.46 2.44
next2 79 82 − − 19 − − 0.06 0.01 0.18 0.27
order2 79 82 − − 25 − − 0.68 0.01 0.95 0.95

skiplist3 80 154 − − − 62 − 776.45 15.27 0.45 1221.52
region3 80 124 − − − 27 − 17.36 0.34 0.58 26.92
next3 80 84 − − − 19 − 0.09 0.01 0.20 0.47
order3 80 84 − − − 25 − 7.80 0.10 1.31 8.35

skiplist4 81 171 − − − − 77 T.O. T.O. 0.80 T.O.
region4 81 126 − − − − 27 226.08 4.30 0.79 348.44
next4 81 86 − − − − 19 0.22 0.01 0.25 0.83
order4 81 86 − − − − 25 43.97 0.56 1.83 45.28

Fig. 8. Number of queries and running times for the verification of skiplist shape
preservation. T.O. means time out, ’−’ means no calls to DP were required.

6 Conclusion and Future Work

We have presented TSL, a theory of skiplists of arbitrary many levels, useful
to automatically prove the VCs generated during the verification of skiplist im-
plementations. We showed that TSL is decidable by reducing its satisfiability
problem to TSLK, a decidable family of theories restricted to a bounded collec-
tion of levels. Our reduction illustrates that the decision procedure only needs
to reason those levels explicitly mentioned in the (sanitized) formula. We have
implemented our decision procedures on top of off-the-shelf SMT solvers (Yices
and Z3), and integrated it into our prototype theorem prover. Our empirical
evaluation demonstrates that our decision procedure is practical not only to
verify unbounded skiplists but also to scale the verification of bounded imple-
mentations to realistic sizes.

Our main line of current and future work is the verification of liveness prop-
erties of concurrent skiplist implementations, as well as improving automation
by generating and propagating invariants.



References

1. The KDE Platform. http://kde.org/.
2. KDE Skiplist implementation. http://api.kde.org/4.1-api/kdeedu-apidocs/

kstars/html/SkipList_8cpp_source.html.
3. P. A. Abdulla, L. Hoĺık, B. Jonsson, O. Lengál, C. Q. Trinh, and T. Vojnar.

Verification of heap manipulating programs with ordered data by extended forest
automata. In Proc. of 11th ATVA, volume 8172 of LNCS, pages 224–239. Springer,
2013.

4. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-based framework for
reasoning about composite data structures. In Proc 20th CONCUR, volume 5710
of LNCS, pages 178–195. Springer, 2009.

5. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
Proc. of 7th VMCAI, volume 3855 of LNCS, pages 427–442. Springer, 2006.

6. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. Harper & Row, 1986.

7. L. Hoĺık, O. Lengál, A. Rogalewicz, J. Simácek, and T. Vojnar. Fully automated
shape analysis based on forest automata. In Proc. of 25th CAV, volume 8044,
pages 740–755, 2013.

8. V. Kuncak, H. H. Nguyen, and M. C. Rinard. An algorithm for deciding BAPA:
Boolean Algebra with Presburger Arithmetic. In Proc. of 20th CADE, volume
3632 of LNCS, pages 260–277. Springer, 2005.

9. S. K. Lahiri and S. Qadeer. Back to the future: revisiting precise program verifi-
cation using SMT solvers. In Proc. of POPL’08, pages 171–182. ACM, 2008.

10. Z. Manna and A. Pnueli. Temporal Verif. of Reactive Systems. Springer, 1995.
11. J. McCarthy. Towards a mathematical science of computation. In IFIP Congress,

pages 21–28, 1962.
12. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.
13. W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,

33(6):668–676, 1990.
14. S. Ranise and C. G. Zarba. A theory of singly-linked lists and its extensible decision

procedure. In Proc. of SEFM 2006. IEEE CS Press, 2006.
15. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proc. of LICS’02, pages 55–74. IEEE CS Press, 2002.
16. A. Sánchez and C. Sánchez. Decision procedures for the temporal verification

of concurrent lists. In Proc. of ICFEM’10, volume 6447 of LNCS, pages 74–89.
Springer, 2010.

17. A. Sánchez and C. Sánchez. A theory of skiplists with applications to the veri-
fication of concurrent datatypes. In Proc. of NFM 2011, volume 6617 of LNCS.
Springer, 2011.

18. A. Sánchez and C. Sánchez. Parametrized invariance for infinite state processes.
CoRR, abs/1312.4043, 2013.

19. T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. Rinard. Verifying complex
properties using symbolic shape analysis. In Workshop on heap abstraction and
verification (collocated with ETAPS), 2007.

20. G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of
reachable patterns in linked data-structures. In Proc. of FOSSACS’06, volume
3921 of LNCS, pages 94–110. Springer, 2006.

http://kde.org/
http://api.kde.org/4.1-api/kdeedu-apidocs/kstars/html/SkipList_8cpp_source.html
http://api.kde.org/4.1-api/kdeedu-apidocs/kstars/html/SkipList_8cpp_source.html

	Formal Verification of Skiplistswith Arbitrary Many Levels 

