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Abstract. This tool paper describes Leap, a tool for the verification
of concurrent datatypes and parametrized systems composed by an un-
bounded number of threads that manipulate infinite data3.
Leap receives as input a concurrent program description and a specifi-
cation and automatically generates a finite set of verification conditions
which are then discharged to specialized decision procedures. The va-
lidity of all discharged verification conditions implies that the program
executed by any number of threads satisfies the specification. Currently,
Leap includes not only decision procedures for integers and Booleans,
but it also implements specific theories for heap memory layouts such as
linked-lists and skiplists.

1 Introduction

The target application motivating the development of Leap is the verification
of concurrent datatypes [16]. Concurrent datatypes are designed to exploit the
parallelism of multiprocessor architectures by employing very weak forms of syn-
chronization, like lock-freedom and fine-grain locking, allowing multiple threads
to concurrently access the underlying data. The formal verification of these con-
current programs is a very challenging task, particularly considering that they
manipulate complex data structures capable of storing unbounded data, and are
executed by an unbounded number of threads.

The problem of verifying parametrized finite state systems has received a lot
of attention in recent years. In general, the problem is undecidable [3]. There
are two general ways to overcome this limitation: (i) algorithmic approaches,
which are necessarily incomplete; and (ii) deductive proof methods. Typically,
algorithmic methods—in order to regain decidability—are restricted to finite
state processes [8,9,14] and finite state shared data. Leap follows an alternative
approach, by extending temporal deductive methods like Manna-Pnueli [20] with
specialized proof rules for parametrized systems, thus sacrificing full automation
to handle complex concurrency and data manipulation. Our target with Leap is
wide applicability, while improving automation is an important secondary goal.
? This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01
STRONGSOFT”

3 Leap is under development at the IMDEA Software Institute. All examples and
code can be downloaded from http://software.imdea.org/leap
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Most algorithmic approaches to parametrized verification abstract both con-
trol and data altogether [1,2,21] reducing the safety to a (non)reachability prob-
lem in a decidable domain. In these approaches, data manipulation and control
flow are handled altogether, and the verification is limited to simple theories
such as Booleans and linear arithmetic. Leap, on the other hand, separates
the two concerns: (i) the concurrent interaction between threads; and (ii) the
data being manipulated. The first concern is tackled with specialized deduc-
tive parametrized proof rules, which, starting from a parametrized system and a
temporal specification, generate a finite number of verification conditions (VCs).
The second aspect is delegated to decision procedures (DP) specifically designed
for each datatype, which can prove the validity of VCs automatically. Our proof
rules are designed to generate quantifier free VCs, for which it is much easier to
design decidable theories and obtain automatic decision procedures.

There exists a wide range of tools for verifying concurrent systems. Small-
foot [4] is an automatic verifier that uses concurrent separation logic for verifying
sequential and concurrent programs. Smallfoot depends on built-in rules for the
datatypes, which are typically recursive definitions in separation logic. Unlike
Leap, Smallfoot cannot handle programs without strict separation (like shared
readers) or algorithms that do not follow the unrolling that is explicit in the
recursive definitions. TLA+ [7] is able to verify temporal properties of concur-
rent systems with the aid of theorem provers and SMT solvers, but TLA+ does
not support decision procedures for data in the heap. Similarly, HAVOC [11] is
capable of verifying C programs relying on Boogie as intermediate language and
Z3 as backend. Neither Frama-C [12] nor Jahob [17] handle parametrized ver-
ification, which is necessary to verify concurrent datatypes (for any number of
threads). The closest system to Leap is STeP [19], but STeP only handled tem-
poral proofs for simple datatypes. Unlike Leap, none of these tools can reason
about parametrized systems.

Chalice [18] is an experimental language that explores specification and ver-
ification of concurrency in programs with dynamic thread creation, and locks.
VeriCool [28] uses dynamic framing (as Chalice does) to tackle the verifica-
tion of concurrent programs using Z3 as backend. However, none of these tools
implement specialized DPs for complex theories of datatypes. VCC [10] is an
industrial-strength verification environment for low-level concurrent system code
written in C. Despite being powerful, in comparison to Leap it requires a great
amount of program annotation.

So far, the current version of Leap only handles safety properties, but sup-
port for liveness properties is ongoing work.

2 Formal Verification Using Leap

Fig. 1 shows the structure of Leap. Leap receives as input a program and a
specification. Fig. 2 presents an example of a procedure for inserting an element
into a concurrent lock-coupling single-linked list. The input language is a C-
like language with support for assignments—including pointers—, conditionals,
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Fig. 1. Scheme of LEAP

global
addr head, tail
ghost addrSet region

procedure insert (e:elem)
addr prev, curr, aux

begin
1: prev := head;
2: prev->lock;
3: curr := prev->next;
4: curr->lock;
5: while curr->data < e do
6: aux := prev;
7: prev := curr;
8: aux->unlock;
9: curr := curr->next;

10: curr->lock;
11: end while
12: if curr != null /\curr->data > e then
13: aux := malloc(e,null,#);
14: aux->next := curr;

:connect
15: prev->next := aux

$region := region Union {aux};$
16: end if
17: prev->unlock;
18: curr->unlock;
19: return

end procedure

Fig. 2. Example of input program

loops and non-recursive function calls.
Program lines can be assigned a label
to refer to them later in a specification
(e.g., connect labels line 15 in Fig. 2).
In a specification both program lines
and labels can be used to refer to an
specific section of the program. The
input language also supports atomic
sections and ghost code. Ghost code is
written between $ and, is added only
for verification purposes, and it is re-
moved during compilation. Fig. 2 de-
clares a global ghost variable region
for keeping track of address of nodes
belonging to the list, which is updated
at line 15 when a new node is con-
nected added to the list. Leap requires
only small annotations of extra ghost.
A specification consists of quantifier-
free parametrized formulas describing
the property to be verified. Consider the following specification, parametrized
by thread id i:

vars: tid i
specification [aux_ready] :

@connect(i). ->
(rd(heap, prev(i)).data < e /\ rd(heap, curr(i)).data > e /\
rd(heap, aux(i)).data = e /\
rd(heap, prev(i)).next = curr(i) /\ rd(heap, aux(i)).next = curr(i))

This formula describes conditions that every thread i satisfy during insertion
and that guarantee the preservation of the list shape when connecting the node
pointed by aux to the list. In particular, aux_ready states that: (1) the node
pointed by prev (resp. curr) stores a value lower (resp. higher) than e, (2) the
node pointed by aux stores value e, and (3) the field next of the nodes pointed
by prev and aux points to curr. We now give a brief description of how Leap
generates the VCs starting from the program and the specifications received as
input.



Verification Condition Generation. Given an input program P , Leap in-
ternally creates an implicit representation of a parametrized transition system
S[M ] = P1‖P2‖ . . . ‖PM , where each Pj is an instance of program P . For exam-
ple, if we consider the program from Fig. 2, S[1] is the instance of S[M ] consisting
of in a single thread running insert in isolation, and S[2] is the instance of S[M ]
consisting of two threads running insert concurrently. Leap solves the uniform
verification problem showing that all instances of the parametrized system sat-
isfy the safety property by using specialized proof rules [25] which generate a
finite number of VCs.

Each VC describes a small-step in the execution. All VCs generated by Leap
are quantifier free as long as the specification is quantifier free. We use the the-
ory of arrays [5] to encode the local variables of a system with an arbitrary
number of threads, but the dependencies with arrays are eliminated by sym-
metry. VCs are discharged to specialized DPs which automatically decide their
validity. If all VCs are proved valid, then the specification is verified to be an
invariant of the parametrized program. If a VC is not valid, then the DP gen-
erates a counter-model corresponding to an offending small-step of the system
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Fig. 3. A counter-example
for is_list when executing
line 15 (up shows before,
down shows after). Dashed
box represents region.

that leads to a violation of the specification. This
is typically a very small heap snippet that the
programmer can use to either identify a bug or
instrument the program with intermediate invari-
ants. Consider property is_list which states the
list shape property, including that the ghost vari-
able region stores the set of addresses of all nodes
belonging to the list. Property aux_ready is not
enough to prove is_list invariant. Fig. 3 shows
a counter example returned by the decision proce-
dure. The output can be used by the user as hint
to strengthen aux_ready, in this case, indicating
that prev must belong to region before executing
line 15 of insert.

Decision Procedures. Leap implements specialized decision procedures in-
cluding some theories of heap memory layouts and locks [23, 24, 27] whose de-
cidability is based on finite model theorems. Our implementation transforms
each VC into queries to the corresponding DP. The decision procedures are im-
plemented on top of off-the-shelf SMT solvers [13, 15]. Leap currently includes
decision procedures for Presburger arithmetic with finite sets and minimum,
lock-based concurrent single-linked lists [23], concurrent skiplists of bounded
height [24] and skiplists of arbitrary height [27]. The modular design of Leap
makes it straightforward to implement extensions for new program statements,
theories and DPs.

Proof Graphs and Tactics. Proofs in Leap are structured as proof graphs,
which describes the inter-dependency between invariants. Proof graphs improve
the efficiency of proof development and proof checking, by establishing the nec-



essary support for proving consecution (see [20] and optionally specifying tactics
and heuristics. Current implemented tactics include the use of simpler DPs with
some symbols uninterpreted, lazy instantiation of supporting invariants, and ap-
plications of typical first-order tactics like equality propagation and removal of
irrelevant literals. Tactics are very useful when performed prior to the discharge
of a VC to the SMT solver, as bound sizes of candidate models are reduced. For
instance, the proof graph for is_list includes:
=> is_list [15:aux_ready] { pruning : split-goal | | | simplify-pc}

indicating that in order to prove consecution for is_list at line 15, aux_ready
is a useful support. The annotation pruning establishes a tighter domain bound
calculation for the list DP. The graph also lists tactics split-goal and simplify-pc.
In proof creation, these tactics can be explored automatically in parallel dumping
the fastest option to the proof graph file for efficient proof checking.

3 Empirical Evaluation

Fig. 4 reports the use of Leap to verify some concurrent and sequential pro-
grams, executed on a computer with a 2.8 GHz processor and 8GB of memory.
Each row includes the outcome of the verification of a single invariant. Rows 1 to
12 correspond to the verification of a concurrent lock-coupling single-linked lists
implementing a set, including both shape preservation and functional properties.
Formulas list and order state that the shape is that of an ordered single-linked
list, lock describes the fine-grain lock ownership, next captures the relative po-
sition of local pointer variables, region constraints the region of the heap to
contain precisely the list nodes and disj encodes the separation of new cells al-
located by different threads. Functional properties include funSchLinear: search
returns whether the element is present at the linearization point; funSchInsert
and funSchRemove: a search is successful precisely when the element was inserted
and not removed after; funRemove, funInsert and funSearch describe a scenario in
which a thread manipulates different elements than all other threads: an element
is found if and only if it is in the list, an element is not present after removal,
and an element is present after insertion. Rows 13 to 16, and 17 to 20 describe
the verification of two sequential implementation of a skiplist. The first imple-
mentation limits the maximum height to 3 levels, and the second considers an
implementation in which the height can grow beyond any bound, using a more
sophisticated DP. Rows 21 to 23 correspond to a parametrized ticket based mu-
tual exclusion protocol. This protocol is infinite state using integers as tickets.
Lines 24 to 26 correspond to a similar protocol that uses sets of integers.

The first four columns show (1) the formula’s index (i.e., the number of
threads parametrizing the formula), (2) the number of VCs discharged, (3) the
number of such VCs proved by program location reasoning, and (4) by using
a specialized DP. In all cases, all VCs are automatically verified. The next two
columns report the total running time of discharging and proving all VCs (5)
without using any tactic and (6) with tactics enabled. The next columns present
the slowest (7) and average (8) running time to solve VCs, and the final column



formula #solved vc Brute Heurist. DP time Leap
idx #vc pos dp time time slowest average time

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLinear 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchInsert 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRemove 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

Fig. 4. Verification running times (in secs.). ∞ represents a timeout of 30 minutes.

includes the analysis time without considering the running time of decision pro-
cedures. Our results indicate that Leap can verify sophisticated concurrent pro-
grams and protocols with relatively small human intervention. Required annota-
tion for our examples was around 15% of the source code (roughly 1 invariant—
containing 6 primitive predicates each—every 7 lines). The time employed by
Leap to analyze the program and generate all VCs is a negligible part of the to-
tal running time, which suggests that research in DP design and implementation
is the crucial bottleneck for scalability. Also, in practice, tactics are important
for efficiency to handle non-trivial systems.

4 Future Work

We are considering the use of CIL/Frama-C as a front-end for C. Extending Leap
with support for liveness properties is ongoing work. Our approach consists of
specializing generalized verification diagrams [6] and transition invariants [22]
for parametrized systems. The development of new theories and decision proce-
dures for new datatypes such as hash-maps and lock-free lists is currently un-
der development. We are also exploring the possibility of increasing automation
by automatically generating intermediate specifications. Our approaches include
(1) how to apply effectively weakest precondition propagation for parametrized
systems, and (2) extending our previous work on abstract interpretation-based



invariant generation for parametrized systems [26] to handle complex heap lay-
outs.
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