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Abstract—This paper introduces parametrized verification
diagrams (PVDs), a formalism that allows to prove temporal
properties of parametrized concurrent systems, in which a
given program is executed by an unbounded number of
processes.

PVDs extend general verification diagrams (GVDs). GVDs
encode succinctly a proof that a non-parametrized reactive
system satisfies a given temporal property. Even though GVDs
are known to be sound and complete for non-parametrized
systems, proving temporal properties of parametrized systems
potentially requires to find a different diagram for each
instantiation of the parameter (number of processes). In turn,
each diagram requires to discharge and prove a different
collection of verification conditions.

PVDs allow a single diagram to represent the proof that
all instances of the parametrized system for an arbitrary
number of threads running concurrently satisfy the temporal
specification. Checking the proof represented by a PVD requires
proving only a finite collection of quantifier-free verification
conditions.

The PVDs we present here exploit the symmetry assumption,
under which process identifiers are interchangeable. This as-
sumption covers a large class of concurrent systems, including
concurrent datatypes. We illustrate the use of PVDs in the
verification of an infinite state mutual exclusion protocol.

Keywords-temporal logic; formal verification; formal meth-
ods; liveness properties; parametrized systems; concurrent
datatypes

I. INTRODUCTION

Verification diagrams [1], [2] allow to prove temporal
specifications of reactive systems (finite or infinite state), in
particular of concurrent programs. A diagram is essentially
an abstraction of the system built specifically for the tem-
poral property under consideration. A successful diagram is
precise enough to formally represent the temporal proof, and
allows to check mechanically the correctness of the proof.

Formal verification using general verification diagrams
starts from a program and a specification given in linear
temporal logic. The semantics of the program are repre-
sented as a fair transition system (FTS) that encompasses all
executions of the program. A verification diagram encodes
a proof that all the executions covered by the FTS satisfy the
given temporal property. Checking the proof encoded in the
diagram requires two activities. First, the validity of a finite
collection of verification conditions (VCs) – automatically
generated from the FTS of the program – guarantees that the

diagram covers all (fair) executions of the system. Second,
a finite state model checking algorithm ensures that every
fair path of the diagram satisfies the temporal property. This
second problem can be fully automated. The first part can be
handled with decision procedures for the underlying data that
the program manipulates, like Boolean, integers, lists in the
heap, etc. This way, GVDs cleanly separates two concerns:
the temporal reasoning and the data-manipulation.

GVDs are complete in the following sense: if a (closed)
reactive system satisfies a given temporal property then there
is a diagram that encodes a proof. Unfortunately, GVDs
cannot be used directly to verify concurrent programs that
involve an arbitrary number of threads, which are naturally
modeled as parametrized systems where the parameter is
the number of threads involved. Each instantiation of the
parameter produces a different closed system, and in turn
a different FTS. In principle, following the GVD approach,
each closed instance of the parametrized system requires a
different diagram, proving a different collection of VCs and
solving a different model-checking problem.

To solve this issue we introduce in this paper Parametrized
Verification Diagrams (PVDs). PVDs enrich verification di-
agrams with capabilities to reason about executions with
an arbitrary number of symmetric threads. Checking the
proof represented by a PVD requires to handle a single finite
collection of verification conditions and to solve a single
finite-state model-checking problem. Success in proving
each of these obligations guarantees that the property holds
for all parameter instances. The key idea behind PVDs is
that a proof usually only requires to reason about a finite
number of processes at each point. This finite collection
includes (1) the processes referred to in the property, (2)
other processes with particular remarkable characteristic for
the proof in the given state (e.g., a leader), and (3) one fresh
thread id representing an arbitrary process. The PVDs we
present in this paper rely on the symmetry assumption. This
assumption states that process identifiers are interchangeable
and are only compared for equality and inequality. Swapping
identifiers in a given legal execution produces another legal
execution. Even though some protocols are not symmet-
ric, full symmetry covers an important class of concurrent
systems: concurrent datatypes [3], which are an efficient
approach to exploit the parallelism of modern multiprocessor



architectures. Concurrent datatypes allow the simultaneous
access to shared data, and are very hard to design, implement
and prove correct. In this line of work we aim at verifying
liveness properties of concurrent datatypes.

The main difficulty in reasoning about concurrent
datatypes comes from the interaction of unstructured un-
bounded concurrency, and heap manipulation. “Unstruc-
tured” concurrency refers to programs that are not structured
in sections protected by locks and with clear memory
footprints, but to programs that allow a more liberal pattern
of memory accesses. “Unbounded” refers to the aforemen-
tioned lack of a-priori bound on the number of threads.

The success of separation logic [4] and pointer logics [5],
[6] to deal with sequential heap manipulating programs
has influenced much research [7]–[10] to extended these
logics for concurrent programs, but unbounded unstructured
concurrency is still very challenging. Moreover, virtually all
these approaches are restricted to safety properties.

Our approach to the verification of concurrent datatypes
is complementary. We start from a very powerful technique
to reason about concurrent systems: the Manna-Pnueli [11]
temporal deductive approach, and in particular general ver-
ification diagrams. Then, we extend verification diagrams
for parametrized systems and equip these diagrams with
capabilities to reason about the heap (see [12], [13] for some
examples of decision procedures for heap data-types).

The work that is closest to ours is [14] and chapter 8
of [15], which also use diagrams to verify temporal prop-
erties of reactive systems. However, they use quantification
in the diagram nodes and hence generate quantified VCs. In
many cases, using quantifiers sacrifices the automation in the
proof of verification conditions (and in the model-checking
problem). In this paper, we generate quantifier-free VCs that
can be handled automatically by SMT solvers.

Environment abstraction [16] and thread quantification
abstractions [17] are abstraction based techniques to deal
with parametrized systems, but these systems abstract the
number of processes and the data altogether, and are much
more difficult to extend to arbitrary data and memory
layouts. In contrast, our approach can be applied to any
datatype as long as there is a decision procedure for its
memory state. This is also a key difference between our
approach and paramerized model checking for symmetric
systems [18]. Finally, [19] shown a verification approach
which uses abstract transition systems to simulate lock-free
algorithms, however it is limited only to safety and the
simulation obscures the verification. Besides, our approach
is also suitable for lock-free algorithms.

The rest of the paper is structured as follows. Section II
presents a simple mutual exclusion protocol based on tickets,
which we will use as a running example. Section III includes
the preliminaries and notation. Section IV presents parame-
terized verification diagrams and shows they are sound as a
proof system. Section V illustrates the use of PVDs to prove

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure MutExc
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail ++
bag .add(ticket ,myId)

〉

4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

Figure 1: MUTEXC: Mutual exclusion algorithm

a liveness property of a simple mutual exclusion protocol for
unbounded and infinite state processes. Finally, Section VI
presents the conclusion and future work.

II. RUNNING EXAMPLE

For illustration purposes we use a simple programming
language similar to SPL [11]. A parametrized program P is
described by a sequence of instructions. Each instruction is
identified uniquely using a finite set of program locations
loc ranging from 1 up to L. A program P also contains a
number of typed variable identifiers, partitioned into global
variables and local variables. We use Vglobal for the set of
global variables and Vlocal for the set of local variables. A
parametrized program is run in parallel by a collection of
processes. The size of this collection is not known a-priori.
We consider in this paper asynchronous interleaving seman-
tics as the semantics of parallel composition: at each point
in time one of the threads execute an action, corresponding
to the program statement pointed by its control location.
Fig. 1 shows a simple symmetric mutual exclusion protocol
based on tickets. Program MUTEXC implements a mutual
exclusion protocol that protects the critical section at line 5,
using two global variables. The int variable avail stores the
shared increasing counter. The set variable bag stores the
ticket number and the thread identifier of all threads that are
trying to access the critical section. When a process wishes
to enter the critical section (line 3), it grabs the current value
of avail as its ticket and atomically performs the following
two operations: (1) it increases the value of avail, and (2)
it adds the value of its ticket and its thread id to the global
storage bag . Then, the process waits (line 4) until it holds the
smaller ticket in the storage bag . Upon exiting the critical
section, the process removes its ticket from the bag (line 6).

We will illustrate in this paper how to formally prove
using PVDs that if a process wants to enter the critical
section, then it will eventually enter the critical section.



III. MODEL OF COMPUTATION

In this section we introduce a general model of compu-
tation to reason about parametrized concurrent programs.
We first revisit the notion of fair transition system. Then,
we introduce parametrized programs and parametrized fair
transition systems, which in turn provide the vocabulary to
define parametrized temporal formulas. Finally, we define
our notion of correctness of concurrent programs by associ-
ating parametrized fair transition systems with parametrized
temporal formulas.

A. Fair Transition Systems

A fair transition system (FTS), which models the ex-
ecutions of a non-parametrized system, is a tuple S :
〈Σprog,V ,Θ, T ,J 〉 where:
• Signature. The signature Σprog is a first-order signature

modeling the data manipulated in a given program,
where a signature Σ : (S, F, P ) consists of a set of sorts
S, a set F of function symbols, and a set P of predicate
symbols. We use Tprog for the theory that allows to
reason about formulas from Σprog.

• Program Variables. V is a finite set of (typed) vari-
ables, whose types are taken from sorts in Σprog. We
use V t to denote all variables of sort t in set V .

• Initial Condition. Θ is the initial condition, expressed
as a first-ordered assertion over the variables V . Values
of V satisfying Θ correspond to initial states of the
system.

• Transition Relation. T is a finite set of transitions.
Each transition τ is expressed as a first-order formula
τ(V, V ′) that can refer to program variables from V
(the set V ′ contains a fresh copy of v′ of each variable
v from V ). The variable v′ denotes the value of variable
v after a transition is taken.

• Fairness condition. J ⊆ T is the set of fair transitions.
A state is an interpretation of V , which assigns to each

program variable a value of the corresponding type. We
use S to denote the set of all possible states. A transition
between two states s and s′ satisfies a transition relation
τ when the combined valuation (that assigns valuations to
variables in V as s and to variables in V ′ as s′) satisfies
the formula τ(V, V ′). In this case, we write τ(s, s′), and we
say that the system reaches state s′ from state s by taking
transition τ . We say that a transition τ is enabled in state
s if there is a state s′ for which τ(s, s′). For example, the
program statement:

1 : x:=x + 1

is modeled by the following formula:

pc = 1 ∧ pc′ = 2 ∧ x′ = x+ 1 ∧ pres(V \ {pc, x})

where we use pres(U) as a short for u′ = u for all u ∈ U .

Given a transition τ , the state predicate En(τ), called the
enabling condition, captures whether τ can be taken from
s, that is, whether there exists a successor state s′ such that
τ(s, s′). In the example above, En(τ) is pc = 1, because
the statement “1 : x:=x+1” can always be taken if the
program is at location 1.

A run of S is an infinite sequence s0τ0s1τ1s2 . . . of
states and transitions such that (a) the first state satisfies
the initial condition: s0 � Θ; (b) any two consecutive
states si and si+1 and the connecting transition τi satisfy
τi(si, si+1). We say that τi is taken at si, producing state
si+1. A computation of S is a run of S such that for each
transition τ ∈ J , if τ is continuously enabled after some
point, then τ is taken infinitely many times. We use L(S) to
denote the set of computations of S. Given an LTL formula
ϕ over a propositional vocabulary AP , L(ϕ) denotes the
set of sequences of elements of 2AP satisfying ϕ. Given a
computation π : s0τ0s1 . . . of a system S, the corresponding
run πAP for a given propositional vocabulary AP is the
sequence P1P2 . . . with Pi ⊆ AP , such that for all instants
i:

si � pi for all pi ∈ Pi and si � ¬pi for all pi /∈ Pi
We use LAP (S) for the set of sequences of propositions
from AP that result from L(S). A system S satisfies a
temporal formula ϕ over AP whenever all computations of
S when interpreted over AP satisfy ϕ, that is LAP (S) ⊆
L(ϕ). In this case we write S � ϕ.

B. Parametrized Concurrent Programs

Given a parametrized program P , we associate P to an
instance family {SP [M ]}, a collection of non-parametrized
transition systems indexed by M ≥ 1, the number of
running threads. This family is called the parametrized
system corresponding to program P . We use [M ] to denote
the set {0, . . . ,M − 1} of concrete thread identifiers. Given
a value M we refer to P [M ] as the instance of P with
M threads. For each M , the concrete non-parametrized
transition system P [M ] : 〈Σprog,V ,Θ, T ,J 〉 consists of:
• Signature. Σprog, as in FTSs.
• Program Variables. The set V of typed variables is:

V = Vglobal ∪ {v[k] | for every v ∈ Vlocal, k ∈ [M ]}
∪ {pc[k] | for every k ∈ [M ]}.

Note that “v[k]” is an indivisible variable name. Al-
ternative names could have been vk or vk. The set
{pc[k] | k ∈ [M ]} contains one variable of sort
loc for each thread id k in [M ]. The variable pc[k]
stores the program counter of thread k. Similarly, for
each local program variable v and thread k there is
one variable v[k] of the appropriate sort in the set
{v[k] | v ∈ Vlocal and k ∈ [M ]}.

• Initial Condition. The initial condition Θ is described
by two predicates Θg (that only refers to variables



τ1[0] : pc[0] = 1 ∧ pc[0]′ = 2 ∧ pres(V \ {pc[0]})
τ2[0] : pc[0] = 2 ∧ pc[0]′ = 3 ∧ pres(V \ {pc[0]})

τ3[0] : pc[0] = 3 ∧ pc[0]′ = 4 ∧




ticket [0]′ = avail

avail ′ = avail + 1

bag ′ = bag ∪ {(avail , 0)}


 ∧ pres({pc[1], ticket [1]})

τ4[0] : pc[0] = 4 ∧ pc[0]′ = 5 ∧ bag .min = ticket [0] ∧ pres(V \ {pc[0]})
τ5[0] : pc[0] = 5 ∧ pc[0]′ = 6 ∧ pres(V \ {pc[0]})
τ6[0] : pc[0] = 6 ∧ pc[0]′ = 7 ∧ bag ′ = bag \ (ticket [0], 0) ∧ pres(V \ {bag , pc[0]})
τ7[0] : pc[0] = 7 ∧ pc[0]′ = 1 ∧ pres(V \ {pc[0]})

Figure 2: Transition relations for thread 0 running program MUTEXC[2]

from Vglobal) and Θl (that can refer to variables in
Vglobal and Vlocal). These expressions are extracted from
the semantics of the programming language. Given a
thread identifier a ∈ [M ] for a concrete system SP [M ],
Θl[a] is the initial condition for thread a, obtained by
replacing in Θl every occurrence of a local variable v
from Vlocal for v[a]. The initial condition of the concrete
transition system SP [M ] is:

Θ : Θg ∧
∧

i∈M
Θl[i]

• Transition Relation. T contains a transition τ`[a] for
each program location ` and thread identifier a in [M ],
which are obtained from the semantics of the program-
ming language. The formula τ`[a] is obtained from τ`
by replacing every occurrence of a local variable v for
v[a], and v′ for v[a]′. Note again that “v[a]′” is an
indivisible variable name, denoting the primed version
of v[a].

• Fairness We consider all transitions fair, that is J = T .
Example 1: Consider program MUTEXC in Fig. 1. The

instance consisting of two running threads, MUTEXC[2],
contains the following variables:

V = {avail , bag , ticket [0], ticket [1], pc[0], pc[1]}
Global variable avail has type int, and global variable
bag has type set〈int, tid〉. The instances of local variable
ticket for threads 0 and 1, ticket [0] and ticket [1], have
type int. The program counters pc[0] and pc[1] have type
loc = {1 . . . 7}. The initial condition of MUTEXC[2] is:

Θg : avail = 0 ∧ bag = ∅
Θl[0] : ticket [0] = 0 ∧ pc[0] = 1

Θl[1] : ticket [1] = 0 ∧ pc[1] = 1

There are fourteen transitions in MUTEXC[2], seven tran-
sitions for each thread: τ1[0] . . . τ7[0] and τ1[1] . . . τ7[1].
The transitions corresponding to thread 0 are shown in
Fig. 2. The transitions for thread 1 are analogous. The

predicate pres summarizes the preservation of the values
of variables. For example, in MUTEXC[2], the predicate
pres(V \ {bag , pc[0]}) is simply:

avail ′ = avail ∧ ticket [0]′ = ticket [0] ∧
pc[1]′ = pc[1] ∧ ticket [1]′ = ticket [1]

Note that each transition in MUTEXC[2] is quantifier free,
and involves a combination of theories, including Presburger
arithmetic and a theory of finite sets of pairs with non-
repeating first component and minimum according also to
the first component.

An alternative model of computation consists in including
only one transition per program location, independently of
the number of threads. Each transition then would choose
one thread and manipulate the local variables for that thread
only. There is an advantage in our choice to include a
separate transition for each thread and program location.
Fairness of a closed FTS guarantees that a fair transition
must be taken if enabled continuously. In the alternative
model of computation, this simple notion of fairness would
not guarantee that each thread must eventually execute, but
only that each transition is taken for some thread. Obtaining
thread fairness in this alternative model would require to
extend the temporal reasoning specifically for this purpose.

C. Parametrized FTS and Parametrized Formulas
A parametrized transition system associated with a pro-

gram P is a tuple PP : 〈Σparam, Vparam, Θparam, Tparam〉,
where Σparam is the first-order signature used to reason
about data, Vparam is the set of system variables, Θparam
describes the initial condition and Tparam is the parametrized
transition relation. The intention of parametrized transition
systems is not to define program runs directly but to serve
as a modeling language for the definition of parametrized
formulas and to enable the definition of proof rules and
verification diagrams for parametrized systems. We describe
each component separately:
• Parametrized Program Signature. To capture thread

identifiers in an arbitrary instantiation of the parame-
trized system we introduce a new sort tid interpreted as



an unbounded discrete set. The signature Σtid contains
only = and 6=, and no constructor. Then, we extend
the theory Tprog—used to reason about the data in the
program— with the theory of arrays TA from [20], with
indices from tid and elements ranging over sorts t of
the local variables of program P . We use Tparam for
the union of theories Tprog, Ttid and TA, and Σparam for
the combined signature.

• Parametrized Program Variables. For each local vari-
able v of type t in the program, we introduce a variable
name av of sort array〈t〉, including apc for the program
counter pc. Using the theory of arrays, the expression
av(k) denotes the element of sort t stored in array
av at position given by expression k of sort tid. The
expression av{k ← e} corresponds to an array update,
and denotes the array that results from av by replacing
the element at position k with e. For clarity, we abuse
notation using v(k) for av(k), and v{k ← e} for
av{k ← e}. Note that v[0] is different from v(k): the
term v[0] is an atomic term in V (for a concrete system
SP [M ]) referring to the local program variable v of a
concrete thread with id 0. On the other hand, v(k) is
a non-atomic term built using the signature of arrays,
where k is a variable (logical variable, not program
variable) of sort tid serving as index of array v. The use
we make of TA is very limited: we do not use arithmetic
over indices or nested arrays, so the conditions for
decidability in [20] are trivially met. Variables of sort
tid indexing arrays play a special role, so we classify
formulas depending on the number of free variables of
sort tid. The parametrized set of program variables with
index variables X of sort tid is defined as:

Vparam(X) = Vglobal ∪ {av | v ∈ Vlocal} ∪ {apc} ∪X
We use Fparam(X) for the set of first-order formulas
constructed using predicates and symbols from Tparam
and variables from Vparam(X). Given a formula ϕ
from Fparam(X) we use Var(ϕ) to refer to the set
of variables of type tid free in ϕ. Since we restrict to
the quantifier-free fragment of Fparam(X) then Var(ϕ)
corresponds to the subset of variables from X actually
occurring in ϕ. We say that ϕ is a 1-index formula if
the cardinality of Var(ϕ) is 1 (similarly for 0, 2, 3,
etc).

• Parametrized Transition Relation. The set Tparam con-
tains for each statement ` in the program one formula
τ
(k)
` indexed by a fresh tid variable k. These formulas

are built using the semantics of the program statements,
as for concrete systems except that we now use array
reads and updates (to position k) instead of concrete
local variable reads and updates. The predicate pres
is now defined with array extensional equality for
unmodified local variables.

• Parametrized Initial Condition. We similarly define the

parametrized initial condition for a given set of thread
identifiers X as:

Θparam(X) : Θg ∧
∧

k∈X

Θl(k)

where Θl(k) is obtained by replacing every local vari-
able v in Θl by v(k).

Example 2: Consider program MUTEXC. The parame-
trized transition τ (k)4 , for thread k in line 4, is the following
formula from Fparam({k}):

pc(k) = 4 ∧ pc′ = pc{k ← 5} ∧
bag .min = ticket(k) ∧ pres(bag , avail , ticket)

where pres(bag , avail , ticket) stands for the equalities:

bag ′ = bag ∧ avail ′ = avail ∧ ticket ′ = ticket

Note that the last equality (ticket ′ = ticket) is an array
equality. The parametrized initial condition of MUTEXC for
two thread ids i and j is the formula Θparam({i, j}):

avail = 0 ∧ bag = ∅ ∧



ticket(i) = 0

∧
pc(i) = 0


 ∧



ticket(j) = 0

∧
pc(j) = 0




A parametrized formula ϕ({k0, . . . , kn}) with free vari-
ables {k0, . . . , kn} of sort tid is simply a formula from
Fparam({k0, . . . , kn}). For clarity, we use k for {k0, . . . , kn}
when the size and index of the set of tid variables is not
relevant. Parametrized formulas can only compare thread
identifiers using equality and inequality, and no constant
thread identifier exists.

We are interested in verifying temporal properties of
parametrized programs, so we extend parametrized formulas
to temporal parametrized formulas, by taking predicates
from Fparam({k0 . . . , kn}) and combining them using tem-
poral operators from LTL (, U , , etc). For example,
the following formula (a 2-index safety formula) expresses
mutual exclusion for MUTEXC:

i 6= j → ¬(pc(i) = 6 ∧ pc(j) = 6)

Progress of each individual thread is expressed by the
following 1-index temporal formula:


(
pc(i) = 3→pc(i) = 6

)

D. Parametrized Temporal Verification

In order to define the parametrized temporal verification
problem we need to introduce an auxiliary notion. Let S be
a parametrized FTS, ϕ(k) a parametrized temporal formula,
and M be a parameter value (a finite collection of thread
ids). A concretization is a map α : k → [M ]. This map can
be extended to formulas in the usual manner (by assigning
v[α(i)] to av(i)) and extending to Boolean and temporal
connectives. In this manner, elementary propositions from



the parametrized formula ϕ are in Tparam but the corre-
sponding elementary propositions of the concrete α(ϕ) are
in Tprog using the variables of the concrete system S[M ].
For example, the concretization of mutual exclusion

i 6= j → ¬(pc(i) = 6 ∧ pc(j) = 6)

for MUTEXC[2] and α : {i→ 0, j → 1} is

¬(pc[0] = 6 ∧ pc[1] = 6)

The concretization for α : {i → 0, j → 0} is T. We are
now ready to define the parametrized temporal verification
problem.

Definition 1: Given a parametrized system S and parame-
trized temporal formula ϕ(k) we say that S � ϕ(k) when-
ever for all concrete instances S[M ] and concretizations α,
S[M ] � α(ϕ(k)).

IV. PARAMETRIZED VERIFICATION DIAGRAMS

We introduce parametrized verification diagrams in this
section as an effective method to solve the parametrized
temporal verification problem. The aim of PVDs is to capture
formally the proof that all instances of a parametrized
program satisfy a temporal specification. Essentially, for
each value of M , the diagram over-approximates the set of
runs of S[M ], while in turn being covered by the executions
allowed by the temporal formula.

A. Definition of PVD

Given a parametrized temporal formula ϕ(k) and a para-
metrized system S, a PVD is a tuple 〈N,N0, E,B, µ, η,F , f〉
where:
• N is a finite set of nodes.
• N0 ⊆ N is the subset of initial notes.
• B is a finite collection of pairs {(B1, b1), . . . , (Bq, bq)},

where Bi ⊆ N are disjoint set of nodes (Bi ∩ Bj = ∅
for i 6= j), and each bi is a fresh tid variable. Each pair
(Bi, bi) is called a box and the set Vbox = {b1, . . . , bq}
is called the set of box variables. We use Vtid for k∪Vbox.

• E is a finite set of edges each connecting two nodes.
Edges are equipped with the following functions and
predicates:
– in : E → N and out : E → N to indicate the

incoming and outgoing node. We use n →e m for
an edge e ∈ E with in(e) = n and out(e) = m.

– within ⊆ E, with the restriction that for all e ∈
within, there is a box Bi with in(e), out(e) ∈ Bi.
This predicate indicates whether a transition modeled
by e that connects two nodes within the same box
must preserve the box variable, if e ∈ within, or can
change the box variable arbitrarily.

• µ is a labeling function for nodes which assigns to each
node n a formula µ(n) in the theory FT (Vtid), with the
restriction that µ(n) can only contain bi whenever node
n is in box Bi.

• η : E ⇀ T × Vtid is a partial function labeling some
edges with transitions to indicate that these edges label
fair transitions (transitions that must be taken because
of fairness).

• F is the acceptance condition of the diagram, described
by a finite collection 〈〈B1, G1, δ1〉 . . . 〈Bm, Gm, δm〉〉.
Each triplet acceptance condition 〈Bi, Gi, δi〉 is formed
by an edge Streett condition Bi, G1 ⊆ E and a ranking
function δ : N → O, where O is a well founded
domain. Without loss of generality we can assume
Gi ∩ Bi = ∅. Edges in Gi are called good edges, and
edges in Bi are called bad edges.

• f is a map from nodes into Boolean combinations of
elementary propositions from ϕ(k).

The following are restriction of node and edge labelings:
1) for each n ∈ N , bi is not free in µ(n) unless n ∈ Bi.
2) if η(e) = (τ, bi) then in(e) ∈ Bi.
Restriction 1) establishes that the labeling of a node n that

belongs to box (Bi, bi) can use k and bi as free variables.
Restriction 2) indicates that the labeling of edges e for which
in(e) belongs to box (Bi, bi), can be transitions of the form
τ(k) for a k ∈ k, or τ(bi). Boxes can be understood as a
compact representation of a section of a computation for all
possible thread values. Conceptually, if a parameter instance
M is fixed, every box can be populated M times, assigning
in each expansion one of the possible tid values to the box
variable that occurs in nodes and edges within the box. The
resulting diagram is a classical non-parametrized GVD.

The intended meaning of each edge Streett condition
〈Bi, Gi, δi〉 is to ensure that in any accepting trail of the
diagram either some edge from Gi is visited infinitely often,
or all edges from Bi are visited finitely often.

A path in the diagram is a sequence of states and edges
n0e0n1e1 . . . such that for every i, ni →ei ni+1. A path
is fair whenever if after some point i all nodes ni have an
outgoing edge labeled with (τ, v) then edges labeled (τ, v)
are taken infinitely often. A path is accepting whenever for
every acceptance condition (Bi, Gi, δi) either all edges from
Bi are traversed finitely often, or some edge from Gi is
traversed infinitely often.

Given a concretization function α : k → [M ] for some
concrete system S[M ] and a path π of the diagram, we
define an extended concretization of the path as a sequence
of functions αi : (k ∪ Vbox)→ [M ] that coincide with α on
all k ∈ k, and such that if ei ∈ within then αi+1 = αi.
Essentially, the extended concretizations choose concrete
indices for the box variables whenever these are free to
choose.

Given a run π : s0τ0s1τ1 . . . of a concrete instance S[M ]
and a concretization α : k →M , a path d = n0e0n1e1 . . . of
D is a trail of π whenever for some extended concretization
{αi}, the following holds: si � αi(µ(ni)) for all i ≥ 0. A
run π is a computation of D if there exists a trail of π that is
fair and accepting. L[M ](D) denotes the set of computations



of D for parameter instance M (i.e., sequences of states
of S[M ] accepted by D). In the next subsection we will
list a collection of verification conditions extracted from the
diagram, and we will show that proving the validity of these
verification conditions implies that all computations of S[M ]
are in L[M ](D).

Given a concrete instance S[M ] and a concretization α :
k → [M ], a sequence P0P1 . . . of elements from concrete
elementary propositions of α(AP(ϕ)) is a propositional
model of D whenever there is a fair and accepting path
π : n0e0n1 . . . of D for which Pi � α(f(ni)). We use
L[M ]
p (D) to denote the set of propositional models of D (for
S[M ]). Again, we will show that checking all verification
conditions implies that for all S[M ] and concretizations
α, every sequence of elementary propositions of a run
of S[M ] is included in L[M ]

p (D). We use L[M ](ϕ) for
∪α:k→[M ]L(α(ϕ)). Finally, we will also show that every

trace in L[M ]
p (D) for concretization α is included in α(ϕ),

that is L[M ]
p (D) ⊆ L[M ](ϕ).

B. Verification Conditions

A PVD shows that S[M ] � ϕ(k) via the inclusions
L(S[M ]) ⊆ L[M ](D) and L[M ]

p (D) ⊆ L[M ](ϕ(k)). Theo-
rem 1 below shows that to prove L(S[M ]) ⊆ L[M ](D) it
is enough to prove the verification conditions presented in
Fig. 3.

The main difficulty is to define a finite number of ver-
ification conditions that guarantee the previous language
inclusion. A key notion is that of a formula vocabulary,
the set of free variables of type tid appearing in a formula.
Formally:

Voc(c) =

{
{c} if c ∈ C tid

∅ otherwise
Voc(pc(k)) = {k}

Voc(v) =

{
{v} if v ∈ V tid

global

∅ otherwise

Voc(v(k)) =

{
{v(k), k} if V tid

local

{k} otherwise
Voc(ϕ1 ./ ϕ2) = Voc(ϕ1) ∪Voc(ϕ2)

Voc(.ϕ) = Voc(ϕ)

where ./ represents any binary operators like ∧, ∨, →, U
or W , and . denotes any unary operator such as ¬, , ,
, etc. We use Voc(x1, . . . , xn) to denote

⋃n
i=1 Voc(xi).

Note that the vocabulary represents the set of variables of
type tid whose modification can potentially alter the truth
value of a given formula. We let the vocabulary of a node
be: NVoc(n) = {bi | n ∈ Bi} ∪ k. Given a node n, let
next(n) = {n′ ∈ N | for some n→e n

′ ∈ E}.
Given a parametrized transition system S[M ], a parame-

trized temporal formula ϕ(k) and a parametrized verifica-

tion diagram D, Fig. 3 presents the verification conditions
generated from the diagram. Given an edge e ∈ E, with
in(e), out(e) ∈ Bi, β(e) is the formula (b′i = bi) if
e ∈ within and the formula true otherwise. Also, τ(i) is the
formula obtained from the transition relation τ by replacing
all occurrences of local variables v[i] by parameters v(i),
and all occurrences of v[i]′ by v′(i).

Condition (Init), called initiation, says that at least one
initial node in N0 satisfies the initial condition of S. Con-
dition (SelfConsec), called self-consecution, establishes that
any τ -successor of a state satisfying µ(n) satisfies the label
of some successor node of n. In other words, the diagram
can always move when taking any transition by any thread
mentioned in the property. Condition (OtherConsec), others-
consecution, is analogous, but considers transitions taken by
an arbitrary thread not considered in the vocabulary of ϕ(k)
nor as argument of any of the boxes in the diagram. This
condition is the key to guaranteed that only a finite number
of verification conditions is necessary, because this condition
encompasses all other threads not mentioned in the formula
(or in boxes). Conditions (SelfAcc) and (OtherAcc), called
self-acceptance and others-acceptance resp., guarantee the
acceptance condition of the diagram though the verification
of ranking functions. Intuitively speaking, these VCs use
information extracted from the data in the system to infer
that certain sequences of states must be terminating. For
example, this is the manner in which one checks that at
most a finite number of threads can out-run a given thread
when entering the critical section. These conditions verify
that the ranking function δi is (strictly) decreasing in Bi
edges, and non-increasing in edges E − (Gi ∪Bi). We use
Pi to denote edges in E−(Gi∪Bi), called permitted edges.
If the verification conditions for δ are valid, infinite trails
either traverse Gi edges infinitely often, or traverse edges in
Pi and Bi infinitely often. However, in this second case bad
edges cannot be seen infinitely often because (1) the domain
is well-founded, (2) permitted edges are non-increasing, and
(3) bad edges are decreasing. Condition (En) establishes that
any transition labeling an edge coming out from a node must
be enabled at every state modeled by the node. Condition
(Succ) establishes that if a transition labeling an edge is
taken at the incoming node, then all edge labels cover the
possible actions of the transitions. The combination of (En)
and (Succ) guarantee that a label τ is always enabled at the
given nodes and that the only way to exit the nodes taking
τ is through the label edges. This relates fairness in any
concrete system with fairness in the diagram.

Finally, condition (Prop) guarantees the correctness of
the propositional models of the diagram. The propositional
label f allows to use a single query to a finite state model-
checker to show that propositional models of the diagram
are included in traces of the property, in (ModelCheck).

For a parametrized system S[M ], a formula ϕ(k) and a
PVD D, if all verification conditions described above hold



Given S[M ], ϕ(k) and D, D shows that S[M ] � ϕ(k) whenever all these conditions hold:

Initiation:
(Init) Θ→ µ(N0)

Consecution: for every node n ∈ N , with V = NVoc(n):
(SelfConsec)

∨
n→em

µ(n) ∧ τ(i) ∧ β(e) → µ′(m) for all i ∈ V
(OtherConsec)

∨
n→em

µ(n) ∧ τ(j) ∧ β(e) ∧ ∧
i∈V

i 6= j → µ′(m) for a fresh j /∈ V

Acceptance: for each (B,G, δ) ∈ F and edge n→e m. Let V = NVoc(n),
(SelfAcc) for all i ∈ V(

µ(n) ∧ τ(i) ∧ µ′(m) ∧ β(e)
)
→ δ(n) � δ(m) if e ∈ B(

µ(n) ∧ τ(i) ∧ µ′(m) ∧ β(e)
)
→ δ(n) � δ(m) if e ∈ E \ (G ∪B)

(OtherAcc) for a fresh j /∈ V(
µ(n) ∧ τ(j) ∧ ∧

i∈V
i 6= j ∧ µ′(m) ∧ β(e)

)
→ δ(n) � δ(m) if e ∈ B

(
µ(n) ∧ τ(j) ∧ ∧

i∈V
i 6= j ∧ µ′(m) ∧ β(e)

)
→ δ(n) � δ(m) if e ∈ E \ (G ∪B)

Fairness: for each edge e = (n,m, p) and τ(i) = η(e):
(En) µ(n)→ En(τ(i))

(Succ) µ(n) ∧ τ(i)→ ∨
τ(i)=η(n→em)

µ′(m)

Satisfaction:
(Prop) µ(n)→ f(n) for all n ∈ N

(ModelCheck) L[M ]
p (D) ⊆ L[M ](D)

Figure 3: Verification conditions for parametrized verification diagrams.

we say that D is (S, ϕ)-valid.
Note that in every case, there is finite number of verifica-

tion conditions. In particular, we need to verify |N |(|Vtid|+1)
conditions for consecution and at most |F||E|(|Vtid| + 1)
conditions for acceptance. The number of conditions needed
to verify fairness is limited by the number of edges, program
lines and thread identifiers in the vocabulary of the formulas
labeling nodes in each box.

Theorem 1 (Soundness): Let S be a parametrized system
and ϕ(k) a temporal formula. If there exists a (S, ϕ)−valid
PVD, then S � ϕ.

Proof: We start by assuming that there is a
(S, ϕ)−valid PVD D, and show that S � ϕ. This requires
showing that for an arbitrary M and concretization α : k →
[M ], S[M ] � α(ϕ(k)). We will use repeatedly the following
result from [21]: let ψ(k) be a parametrized (non-temporal)
formula and α a concretization. Then, if ψ(k) is valid, so is
α(ψ(k)).

Let M be an arbitrary bound and α an arbitrary con-
cretization function. We consider an arbitrary run (that is,
a fair computation) of S[M ]: σ : s0τ0[i0]s1τ1[i1] . . . and
show that σp � α(ϕ), where σp is the projection of σ on
the propositional alphabet of α(ϕ).

We first consider an extension of α such that Img(α) = M
by adding one fresh thread identifier i for each k ∈ M not
mapped by the original alpha and making α(i) = k. In this
manner, all elements of M have at least one representative
thread identifier (not necessarily in k).

First, we show by induction that there is a path π :
n0e0n1e1n2 . . . of σ in the diagram, and a sequence of
thread identifiers j0j1 . . . such that α(jk) = ik and si �
α(µ(ni)). It is enough to prove that there is a trail of nodes
nk of the diagram and a extended concretization αk such
that (1) sk � αk(µ(nk)) and (2) τ jkk can be taken to traverse
edge ek (that is, ¬(µ(nk) ∧ τ jkk ∧ β(ek) → µ′(nk+1)) is
not valid). We build the trace by induction:



• The base case of induction follows from (Init): since
Θ→ µ(N0) is valid, then α(Θ→ µ(N0)) is valid, and
α(Θ) → α(µ(N0)) is valid. Hence, since s0 � α(Θ)
if follows that s0 � α(µ(N0)) and for some n0 ∈ N0,
s0 � α(µ(n0)) as desired.

• Induction step: Let nk be the last node of the trail,
αk the extended concretization, and jk be a thread
identifier for which αk(jk) = α(jk) = ik. We consider
the cases for the outgoing transition τk(jk) from nk:
– if jk is referred to in the property, from (SelfConsec)

we have that
∨

nk→enk+1

µ(nk) ∧ τ(jk) ∧ β(e)→ µ′(nk+1)

is valid, so the following is also valid

αk

( ∨

nk→enk+1

µ(nk) ∧ τ(jk) ∧ β(e)→ µ′(nk+1)
)

or equivalently
∨

nk→enk+1

αk(µ(nk)) ∧ τ [ik] ∧ β(e)→ αk(µ′(nk+1)))

is valid. Now, since sk � αk(µ(nk)), and (sk, sk+1)
is a model of the last formula (possibly for a different
value of box if β(e) is true), for at least one of
the conjuncts sk+1 � αk+1(µ′(nk+1). This conjunct
provides the edge ek, the successor nk+1 and the
value of the box for αk+1.

– the case for (OtherConsec) follows similarly.
We now show that the trail π : n0e0n1 . . . with
transitions τ (jk)k is a fair trail of the diagram. Assume
it is not fair for transition τ taken by thread id i, which
is enabled continuously but not taken. Then, there is a
position j in the path π after which, for all successive
k > j, the node nk of the path has an outgoing edge
labeled τ(i) but τ (jk)k in the path is not τ(i). Now,
by verification conditions (En) and (Succ), there is a
successor in the diagram for τ(i) and τ(i) is enabled.
By taking α on these two verification conditions it
follows that τ [α(i)] is enabled in sk and has a successor
in S[M ] but is not taken. Hence σ is not a fair run of
S[M ], which contradicts our assumption that σ is a
computation.
We now check that the trail π is accepting. Assume it
is not and let (Bi, Gi, δi) be the offending acceptance
condition. This means that after some position j, for all
k > j, only edges ek /∈ Gi are visited, and some edges
in Bi are seen infinitely often. This means, by condi-
tions (SelfAcc) and (OtherAcc), that δ(nk) � δ(nk+1)
and for infinitely many r > j: δ(nr) � δ(nr+1).
Hence, there is an infinite descending chain in a well-
founded domain, which is a contradiction. This shows
that σ ∈ L[M ](D).

minTid(bag) = t ∧
t 6= k ∧ pc(k) = 4

t minTid(bag) = k

τ6(t)

τ6(t)

τ3(k)

τ3(k)

τ4(k)

n1 : wants(k)

n5 : pc(k) = 4

n6 : critical(k)

τt(4)

τt(5)

n2 : pc(t) = 4

n3 : pc(t) = 5

n4 : pc(t) = 6

n0 : pc(k) = 1, 2, 6, 7

Figure 4: Parametrized verification diagram for MUTEXC �
(wants(k)→critical(k)).

Finally, condition (Prop) ensures that sk � αk(µ(nk))
and since αk(µ(nk) → f(nk)) is valid, then sk �
αk(f(nk)). Hence, σp is in L[M ]

p (D). Finally, by
(ModelCheck), L[M ]

p (D) ⊆ L(α(ϕ)). This finishes the
proof.

V. PROGRESS OF A MUTUAL EXCLUSION ALGORITHM

We illustrate PVDs by showing a diagram for a response
property of the simple mutual exclusion algorithm MUTEXC
shown in Fig. 1.

We use wants(k) for (pc(k) = 3), and critical(k)
for pc(k) = 5, 6. We show now how to verify a simple
liveness property: every thread that wants to enter the critical
section eventually does, formally expressed in LTL using the
following response property [11]:

ψ(k) =̂ (wants(k)→critical(k))

To verify this example, we use the theory of finite sets of
pairs of integers with ordered comprehension and minimum
value. In this theory, the function lower(s, n) receives a set
of pairs s and an integer n, and returns the subset of pairs
whose first component is strictly lower than n. Additionally,
this theory also provides a function that returns the lowest
value in a set of pairs, for each of the components. We show
now a parameterized verification diagram that represents the
desired proof. The diagram is depicted in Fig. 4 and it is
formally defined by:

N =̂ {ni | 0 ≤ i ≤ 6}
N0 =̂ {n0}
E =̂ {n0 → n1, n5 → n6, n6 → n0} ∪

{nj → ni | j = 1, 4 and i = 2, 3, 4, 5} ∪
{n2 → n3, n3 → n4}

within =̂ {n2 → n3, n3 → n4}
B =̂ {(B1, t)}

F =̂ 〈〈{n4 → ni | i = 2, 3, 4, 5}, {n6 → n0},
λn→ lower(bag , ticket(k))〉〉



The value of the ranking function is the subset of tickets
lower than the ticket of k. This set decreases (with respect to
⊆) every time the leader thread (whoever that is, captured by
the box variable) exits the critical section. The map f labels
node n1 into wants(k) and node n6 with critical(k) and all
the other nodes to T. Each node in the diagram contains
self-loop edges for all transitions which are not labeling
any other outgoing edge from such node. For example,
for node n4 there exists an (implicit) edge n4 → n4 for
all transitions other than τ6(t). In the diagram, function
minTid(s) returns the thread identifier (second component)
in the pair considered as the minimun in set s following the
order provided by the first component of the pairs.

VI. CONCLUSION

This paper has introduced parametrized verification dia-
grams, an extension of verification diagrams that allow to
prove temporal properties of concurrent systems with an
unbounded number of processes.

PVDs enable to encode in a single proof an evidence
that all instances of the parametrized system satisfy a given
temporal specification. This evidence can be automatically
checked solving a finite-state model checking problem, and
proving a finite number of verification conditions, generated
automatically from the program and the diagram. Decision
procedures for the underlying theories of the data-types in
the program allow to handle this VCs automatically as well.

Ongoing work includes an implementation of PVDs in
the theorem prover for parametrized systems LEAP—under
development at the IMDEA Software Institute 1—and their
use in verifying various concurrent protocols and datatypes.

Future work includes studying the completeness for PVDs,
and relaxations of the symmetry requirement for which
parametrized diagrams can also be used.
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