Towards formal verification
of imperative concurrent
data structures

{Alejandro, Cesar} Sanchez

IMDEA Software - Madrid - Spain

Workshop ReSeCo - FaMAF - Dec. 17, 2009

What are we interested in?

What are we interested in?

@ Imperative programs

What are we interested in?

@ Imperative programs

® Concurrent data structures

Fapesffaly

What are we interested in?

@ Imperative programs

® Concurrent data structures

Fapesoljay
l

data structures
(heap)

What are we interested in?

@ Imperative programs
® Concurrent data structures

@ Temporal property (safety, liveness)

Pl Prle
|

data structures
(heap)

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pl Prle
|

data structures
(heap)

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pii|:-- || Pn E @} LTL(O.0,0U)
| | .

data structures
(heap)

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pii|:-- || Pn E @} LTL(O.0,0U)
| | .

Regional { data structures
Logic (heap)

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pii|:-- || Pn E @} LTL(O.0,0U)
Sy
Regional { datfa structures Verification
Logic (heap) Diagram

Reasoning about the heap

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

e

B s S ol

emp

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—

X3

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—> , %

B s S ol

[Pox Pi]sh < Fhg,h1ehg L hi Ahg.hy = h A[Py] s ho A[Pi] s hq

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—> , %

[Pox Pi]sh < Fhg,h1ehg L hi Ahg.hy = h A[Py] s ho A[Pi] s hq

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—> , %, —*

[Pox Pi]sh < Fhg,h1ehg L hi Ahg.hy = h A[Py] s ho A[Pi] s hq

Reasoning about the heap

@ Regional Logic

Reasoning about the heap

@ Regional Logic

Classical first order logic

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Reasoning about the heap

@ Regional Logic

Classical first order logic
Based on Hoare logic

Ghost fields/variables

Reasoning about the heap

@ Regional Logic

Classical first order logic
Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: 1 C R

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: R; C Ry, R1#R>

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp,(), U,N, -

Region assertion language: R1 C Ro,R1#R2.R1.f C R»

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp,(), U,N, -

Region assertion language: R1 C Ry, Ri#Ro.R1.f C Ro, R1.f#R>

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp,(), U,N, -

Region assertion language: R1 C Ry, Ri#Ro.R1.f C Ro, R1.f#R>
Vx: Ke R|P

Verification Diagrams

Verification Diagrams

Verification Diagrams

Verification Diagrams

@ Representation of a system by FTS

Vs

R
|
1

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

Vs

R
|
1

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,NO>E3/1'VF977)A9]C>

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N07Ea/1!)~ranaAaf>

e %
VT .
NE 3
il T e SR M’\,ﬁ
ti\~ 719 ;i

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N07Ea/1!)~ranaAaf>

A B

N ‘e
e 3 i
W ?
N 3
T e N
L \
T R 2N o
*;(1_ 2 ;} ... o
i j;-"

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N07Ea/1!)~ranaAaf>

ik H“\,L
e e ;.
wial TR
N 3

(o smatlel R L O lp

i)

PF % e 2 3
t _Tz 2 ¥ p ?ﬂgd e — ek

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N07Ea/1!)~ranaAaf>

1. N
i Wt 5 jf'
wial TR
N 3
OO pred
e caaslin v SN ol 28
i)
e i o .
1) " . p Tﬁd ':. ... i

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete
U = <N,N07E7/1'>-Fa77aAaf>

{nfe
i . X /
\fl : true

Main Idea

Concurrent D/a’ra Structure

Most General Client [N]

(extended with GV)

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] U

(extended with GV)

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] V] P

(extended with GV)

@ Verification conditions like: initialization,
consecution, acceptance, fairness, satisfaction...

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] «—— 7 «——

(extended with GV)

@ Verification conditions like: initialization, /
consecution, acceptance, fairness, satisfaction...

Skiplists

® Sorted list of elements

fread i

|
........... M .‘.:} ;i, ﬁ? g

25| 53| (0] |88 [+ec

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

nead Lat

] ; ; i Eay :E i P :
..1, }. B } P |)E ‘ 5 e 1'{ F. ;T E ____________ ;. R g ___________ }) s I SR 1)
}

250 Las IO |88 | +oc!

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

fread

: il

A s Mg [e el g
—| | 5 g | BT oo OeE e

Ll ! ;; H?g
38 | |

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

mmmmmmmmmmmmmmmmm

st

B }u.uw
; 3‘; . e IRE.
s 3 A e |)% WA R e |

¥ il

s]

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

fread st

. 1

" .. i
____________________________ fhdt

y s e Ny il

| eded el B! e 5 §=r |)% [SR B G e l._._....F. e E ____________ > .o g __________ 5 F R B B L :} F ﬁ?g

e § o JBNT 22 1290 as o 88 |+

Skiplists

® Sorted list of elements
@ Hierarchy of linked lists

@ Efficiency comparable to balanced binary
search trees

fread st

. 1

" .. i
____________________________ fhdt

y s e Ny il

| eded el B! e 5 §=r |)% [SR B G e l._._....F. e E ____________ > .o g __________ 5 F R B B L :} F ﬁ?g

e § o JBNT 22 1290 as o 88 |+

Skiplists
® Sorted list of elements

@ Hierarchy of linked lists

@ Efficiency comparable to balanced binary
search trees

— 0\ CNERES

last
mmmmmmmmmmmmmmmmm Hig
S S nil

(RAER T s . 128l
............ B! [LRl '|)% ‘ﬂ ‘l? ‘E;. ‘E} el ‘:}} ﬁ?g
: g | SN aale N R s e

Fine-grained lock-coupling
concurrent skiplists

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert*1(9)

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Fine-grained lock-coupling CSL

Fine-grained lock-coupling CSL

Alporithm 4 Insertion on a2 lock-coupling concurrent skiplist

L: procedure Ixspwr{SkipLost =f, Key k, Value neweol)

Veclor <0 Nodes > wpdele[l..sLmgzlevel] /8 mren m,. — emnp

insert(sl, v

CO

Az el ;= randoriLevel()
Noude = pred (— s head

55 pred docks ol ook (] i— e U {pred, forwand [lzl])

Fed]

fi: Node = curr (— pred, forwand

i crre dveks [Fol] loek ()

B for ¢ :— [vf downto 1 do

i if @ = ol then

305 pread locks i dock()

BE; curr :— pred. forward (]
5 curr locks[i loek{) SEE e e U e, forward(E])
L end 1f

i while curr ke
Ban pred loeks

= e U fourr, forward [fel]}

£

e i— e i (pred, forwerd [t

y <k do

i urdock()

=
1k

i i— i — (pred, forwardid])
Efy; predd = ourr

BT curr — pred forward (]

EH; curt. docks [t ock() SO e o= e O curr, forward (i)}
i end while

2k update] i — pred

oif end for

22 if cwrr.key — & then

2k curr ped — newval

24 for i:=1 o lvl do

=
2 update [t forward 7). locks{¢]. unlock(}
HA8 g = my, — {update(d forwand 5], forward i)
26 update i Jocks[i unlock{) SO e i e — (epdate i), forward|[:])
pf end for
28 else
25 i« o= ChreafeNode (lel, b newval)
Ak fori:= 1 wizl do
ik o« forward

e,

] = updateld] forward
E sl = glpi [h

32 update [¢ forwardii] ;= ¢ i

% i forwerd|i]

! rre, = e, — (o forward [, forwand i)
E e i e — (updale i), forward[])

Jocks |t unlock{) ff
A update [¢ Jocks[i unloek!)
33 end for

135 end if

47 end procedure

Fine-grained lock-coupling CS

Alporithm 4 Insertion on a2 lock-coupling concurrent skiplist

insert(sl,v)

pred = SCUnr

end while

curr.locks i . lock()

Veclor < Nades = wpdele|1..sLinuzLevel]
el ;= randoriLevel()
Node = prad - — &8 head
pred locks Tel lock () A
Node = curr i— pred . forward [Led]
crre dveks [Fol] loek ()
for ¢ :— [vf downto 1 do
if @ = ol then
pread locks i dock() Pk
curr :— pred. forward (]
curr locks[i loek{) S
end 1f
while curr key = £ do
vred . locks [t unlock{) PR
il s I
curr :— pred forward (]
curt. docks [t ock() J
end while
update] i — pred
end for

while curr.key < k do
pred.locks i .unlock()

curr .= pred.forward i

-

T,

FAE

LB

M

e ¢

T

: procedure Inspwl(ShipLlast sl Key b, Value neweol)
SO mregn . — emp

:— e 1 (pred, forwarnd [Tl

= e U fourr, forward [fel]}

i— e i (pred, forward[i)

- i | curr, forward 7]

it — (pred, forward)

i— e i curr forward 7))

//@ m, = m, — {pred, forwardi)

S e C T Sforward |1)

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v)

[while curr.key < k do
pred.locks i .unlock()
pred = SCUnr

curr := pred.forwardly
curr.locks i-.lock{) i e S e umr forward |1
| end while

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

[while curr.key < k do
pred.locks i .unlock()
pred = SCUnr

curr := pred.forwardly
curr.locks i-.lock{) i e S e umr forward |1
| end while

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

1;

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

Ti Pinsert (7/)

Pinsorikl] at_insert[g. 96 — at_'msertg 96 U at_insertgl,

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

|jerin—{i} T5 || Ts EO@insert(2)

Pinsorikl] at_insertg 96 — at_'msertgy 96 U at_insertgl,

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

|jerin—{i} T5 || Ts EO@insert(2)

I

1

Pinsorikl] at_insertg 96 — at_'msertgy 96 U at_insertgl,

Fine-grained lock-coupling CSL

Fine-grained lock-coupling CSL

'3 .
f i A \"I
detadiey 4ot =
-
- i
. ki L
H For] F
i

B
. AN i
W i -
B g
_-"l'
i
.-*"
i
HE 2
__I'
b T
3 .
B
e k 1
' L1
iR

Fine-grained lock-coupling CSL

'3 .
f i A \"I
detadiey 4ot =
-
- i
. ki L
H For] F
i

iy
——
=
B
L in Z
W i -
PR T vy
L
o
i
=
e
211 : e
r
i =
- ER S TR
A 3
.1
o !
'l h
ah

Fine-grained lock-coupling CSL

it

£ ./j- g &
linsertg 13 pEeri14, 15,18, 18 -

gy
ekt i et
/ﬁﬂg l at ?T?béj;r‘tié Iﬁr 18 Ef} J{) /’\ I.{r”&f .ry
5 "f _HH‘\H
] } { [1] } ; {“‘"[j} |
{Téﬂ.sm‘*t i}y Tins ert 16 b \“

B iy

17LE m“t/

NI @4 ? mswiié/\I \ "

Fine-grained lock-coupling CSL

14: while curr. Ley < k do

15 pred.locks i .unlock() 1@ m, .= m, —(pred, forwardi)
16 Dredsi=r il

7 CURT & p-red forward i

18 curr.locks i .lock() /e -\ BEtlrr, forward (i)
9. end while

{Tl] } / { iz ,._.LT',? }

: .mgg-?“fgt}ﬁ ??lﬁbrfi_’; bt g S
@ p /

; (4] \ ik
~—Ans ! at ??’Laeﬂrﬁu 16.18.19.20) Imwy

| fec s

/4] } { 1] } i {,,_U} ‘*

{Téﬂﬁerri i}y Tins&ﬂlﬁ frsr ’*‘

L
/
- (na : at_insert" ,1, /\Im WD "/

54

Fine-grained lock-coupling CSL

Verification conditions

I

T el A g

insertg 18 ipsertig 15.18,18% -
Vs o 7

’ 1’ i
/->\ﬂ3 - af ??Ebégrt£4 16.,18.19,20 /\ IMF&:{‘ ry

& —

{rimere 1 ST &3 3

ETRSeTL Tins ert 16 o ‘

N~

17LE m“t/

= @4 g mseﬁi;/\l \ o

Fine-grained lock-coupling CSL

Verification conditions v

I

T el A g

insertg 18 ipsertig 15.18,18% -
Vs o 7

’ 1’ i
/->\ﬂ3 - af ??Ebégrt£4 16.,18.19,20 /\ IMF&:{‘ ry

i -
{rimeragd 15 y
ETRSeTL insert1 g B ‘
I

17LE m“t/

= @4 g mseﬁi;/\l \ o

Fine-grained lock-coupling CSL

Verification conditions v

HjeTID—{i} Tj H 1; Soinse?“t(i)

Fine-grained lock-coupling CSL

Verification conditions v

|

!
HjeTID—{i} Tj H 1; Soinse?“t(i)

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties

@ A different approach to Separation Logic

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties
@ A different approach to Separation Logic

@ Good results over many mutable data
structures

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties
@ A different approach to Separation Logic

@ Good results over many mutable data
structures

@ Experience shows possibility of working with
parameterized VD

Future work

® Extend the work over other concurrent data
structures

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

@ Analyze decidability of involved logics

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

@ Analyze decidability of involved logics

@ Development of assisted decision procedures

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

@ Analyze decidability of involved logics
@ Development of assisted decision procedures

@ This Is just the beginning

